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SUMMARY 

We use a numerical ocean model to evaluate the hypothesis that the continental 

shelves are significant sources of dissolved iron to the Southern Ocean. We simulate the 

distribution of passive tracers released from the 18 different continental shelf regions of 

the extra-tropical southern hemisphere oceans using an offline, eddy-permitting transport 

model. The circulation fields are taken from the Southern Ocean State Estimate, and we 

only simulate the transport of inert tracers focusing on the physical transport pathways. 

The resulting tracer fields are then compared with the remotely sensed ocean color data, 

revealing a remarkable resemblance between the distributions of shelf-source tracers and 

the climatological surface chlorophyll-a concentrations. We further analyze the spatial 

pattern of simulated tracer fields in relation to satellite ocean color data. Dynamic ocean 

features such as the Southern Ocean fronts and coastal waters are reflected in both the 

tracer model and the observed biological productivity. Our results support the overall 

importance of continental shelves as a potential source region for dissolved iron. The 

relative importance of different shelf regions is found to vary significantly depending on 

the relevant circulation features.  
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CHAPTER 1 

INTRODUCTION  

Literature Survey 

 Life has various impacts and needs; the chemical interactions between the abiotic 

sphere of the planet, and the biosphere are largely referred to as biogeochemical cycles. 

The field of biogeochemistry includes many natural processes, including the nutrient 

supply for low trophic level ocean organisms such as plankton (2,7,8). The factors behind 

the distribution of these organisms is not well understood (2,4). Since ocean life requires 

many nutrients to thrive, the distribution of each of these nutrients is important (6,4,7,8). 

Models are used to analyze and predict the impact that ocean physics has upon these 

nutrients, thus also upon the life therein (1,3). 

 The impact and nature of nutrients is a core problem in biogeochemistry. Carbon 

flux is often studied due to the importance that carbon has upon atmospheric chemistry 

and climate, as well as the direct link between carbon flux and the biological environment 

of the oceans (3). Changes in the amount and form of carbon in the ocean controls pH, 

thus also controls carbonation. There are a number of studies outlining the mechanisms 

through which carbon impacts these multiple facets of the ocean system, as well as 

analysis on the causes and extent of these changes and the associated feedback (3). 

Similarly, sulfur can reflect the condition of oceanic biology (8). Sulfur is partially 

indicative of an anoxic ocean, thus also could have co-linearity with iron chemistry. This 

paper analyzes the ocean variability during this time, but doesn't describe modern oceanic 

sulfur, or reflect directly on a iron-sulfur connection, though this analysis could lend to a 

solution. 

 A particular topic within biogeochemical study of oceanic nutrients is the study of 

oceanic iron. A comparative lack of information on iron in relation to other micro-
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nutrients makes direct analysis difficult; as a result, the literature seems to be divided into 

small scale concept testing, and modeling. Iron is an important nutrient for biological 

processes, though it is not always sufficiently present, and can be a limiting factor in 

some oceanic ecosystems as a result of scarcity. One paper (2) connects iron limitation to 

algae and phytoplankton limitation, thus establishes a possible connection between iron 

and chlorophyll. The paper, however, does not attempt to explain impacts from 

circulation, or the nature of the iron pathways. The form, or speciation, of iron is 

important in understanding how it is used by the ecosystems in which it is used, as well 

as for understanding the propensity of the iron to precipitate out of the mixed layer. A 

review by Tagliabue and Volker describes the chemistry and physical framework 

associated with iron speciation (5). The model outlined by this paper provides a useful 

framework to augment a model for iron pathway analysis, although this may or may not 

be necessary for this particular application, or it may be able to be computed 

independently of the physical model. Iron's other chemical properties, such as oxidation 

state, are potentially important in respect to biology and persistence, as explored by Roy, 

Wells, and King (6); this paper explores iron, namely iron(II) in water with respect to 

depth in certain environments and establishes a clear significant connection in the areas 

studied. The paper suggests that certain variables would cause a model with an inert 

tracer and a collection of iron tracers to diverge; the extent of this divergence could, 

however, be negligible in particular models. Although the focus is much different, the 

focus upon estuaries by Buck et al (2007) could prove to be a useful insight on the impact 

of other variables upon the role iron has upon biotic activities (7). Overall, the iron 

literature suggests which adjustments should be done to the model if inert tracer 

modeling proves to be insufficient for the purposes of transport in the Southern Ocean. 

 Since we will use three-dimensional physical and chemical ocean modeling, the 

current methods associated with ocean modeling are an important baseline for building 

specialized models. General spatial ocean modeling is well understood, but not always 
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easy to implement. Many models create a large-scale box model to simulate the spatial 

distribution of tracers, mapping circulation patterns on the inter-box fluxes (1). These 

models are easy to implement, thus are usually uncomplicated and allow for addition or 

removal of different systems without impacting the model mechanisms. Modeling iron is 

done with or without any considerations of other physical/chemical properties of iron 

within a circulation model (4). The model we use will include considerations for these 

properties, so that accurate iron pathways can be found. 

 Due to the nature of the problem, analysis is critical; standard statistics and 

numerical analysis may be insufficient to analyze the results. Kernel methods and 

function optimization within machine learning are well understood and optimized, though 

these have not been well explored in the fields of biogeochemistry or oceanography 

(9,10). Since some variables may impact the interactions between other variables, 

methods ranging from Hidden Markov Models (HMM) to a custom kernel analysis can 

be used to determine the results. 

Background 

 Biogeochemistry is a collective name for many of the processes which govern 

certain abiotic and biotic systems. It concerns the nature, sources, sinks, and impacts of 

different nutrients upon the planet. The nature of a nutrient usually refers to the chemical 

properties and relative abundance of a nutrient. The dichotomy of the scarcity levels of  

these nutrients results in the classification of macro and micro nutrients. 

While some materials lack a meaningful source or sink region, many of the materials 

present in biogeochemical cycling have a source process or region. Some of these are 

sourced from high-productivity regions, some by anthropogenic processes, but many of 

them are sourced from geological processes, especially erosion/weathering in the case of 

ocean biogeochemistry (23). Since different regions have different and localized geologic 
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composition, the resulting chemical composition of the ocean in these regions can be 

diverse. Geologic and biologic subsystems exist within biogeochemistry. 

 Biological processes have profound impact upon biogeochemical cycling. 

Organisms have some common needs, as is signified by an estimator such as the Redfield 

ratio (3). On a small scale, biological processes can remove a majority of certain 

substances, at the amount needed by the organisms. On a larger scale, the positioning of 

low trophic level organisms can fundamentally change the nature of nutrients on such a 

macro-scale. Higher-trophic level organisms or the destruction of other organisms can 

release nutrients which allows for organisms to be both a sink and a transport of nutrients 

(13). Biological processes can also alter the form of less stable nutrients, which allows for 

longer circulation and more broad transport of said nutrients (14). The sum of the 

effective biological processes perturbs the system in ways which are often difficult to 

predict, and often entirely predictable, depending on the nature of the exact process (17). 

 Chemical cycling and biological processes have profound impacts upon each 

other within biogeochemistry. Since different life forms have different needs, the 

presence or absence of a nutrient can dictate if a life form will be able to exist in a given 

area. This is often apparent when considering the high correlation of seasonality and 

distribution of biology (28). Likewise, this relationship often means that biological 

productivity can be an indication that the area is replete of the specific nutrients needed 

by the specific biology (17). However, a lack of biological productivity cannot be 

accurately related to a lack of nutrients, in the general case (24). 

 Many components of oceanography itself must be understood to understand the 

role which the ocean has upon this problem in particular. Oceanography is a broad field, 

yet the focus herein will be upon ocean chemistry and ocean dynamics. 

Ocean chemistry is a superset of ocean biogeochemistry, as mentioned in the previous 

section. Some of the processes within ocean chemistry exhibit trends and patterns which 

match other processes, or which may match processes or patterns about which little is 
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known. Sulfur, for example, has a well-known process cycle, in which organismal 

interaction is necessary for nutrient speciation, is sourced at the crusts, and undergoes 

notable oxidization changes (8). Manganese and aluminum have low oceanic solubility, 

and can be used to infer properties of biological uptake over time (18). Carbon, likewise, 

can be related to many other biological chemical process due to the abundance of the 

nutrient, and the near-universal relation between carbon and biological processes, via the 

implications of the Redfield ratio, (3) and also can be inferred to represent flux in other 

nutrient cycles (29). Copper experiences organic ligand based speciation within oceanic 

context (23).  

 Ocean Dynamics are the physical processes by which the ocean interacts with the 

earth, atmosphere, and itself. As a result, implementation ocean dynamics are vital and 

necessary in modeling nutrient cycling. On a large scale, currents, like the Antarctic 

Circumpolar Current (ACC) and Antarctic Surface Water (ASW) can be seen in nutrient 

distribution over long periods of time, while mesoscale eddies often can perturb the 

currents on smaller scales in both time and space, though they tend to be stochastic when 

multiple events are considered together for the purposes of tracers (19). To a certain 

extent, the currents form a semi predictable path set for tracers such as iron, (20) as 

depthwise processes such as upwelling can be predicted and inferred as a source (21,22). 

In the case of iron transport, specifically, ocean dynamics controls not only the 

distribution of the nutrient, but also the erosion and weathering processes which allow for 

the nutrient to enter the ocean (26). Dynamics follow seasonal and inter-annual patterns, 

as most notable in the tropics, but also present in the Antarctic (30). In the winter, 

mesoscale circulation is associated largely by landform impact on ocean dynamics (31). 

 Iron chemistry is an important independent consideration, as iron is the nutrient of 

concern. Iron behaves differently than other nutrients in a few notable ways; in modeling 

iron circulation, these considerations must at least be understood to properly assess 

importance and implication (4). 
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 Oceanic iron arises from different sources in different forms in different locations. 

(15) Some of these sources are more significant than others; given regional 

considerations, often one or two iron sources compose a large majority of iron present. 

(12) One possible source for oceanic iron is from hydrothermal venting: these geologic 

features release heat, as well as iron and other nutrients, into the deep ocean (11). Wind 

and atmospheric processes may also result in iron deposition (17). Sediment may also be 

a fundamental source of oceanic iron in some conditions (33). Furthermore, the role of 

pathways in considering a regional iron source map is essential; even if no hydrothermal 

vents are present in a region, or atmospheric iron deposition is minimal, iron, as well as 

other nutrients, may migrate from another, seemingly disconnected, spatial region (20, 

21). 

 The impact of iron in a given region is manifold and essential. Both regionally 

and globally, the biological impact of adding iron to otherwise nutrient replete water is 

sufficiently well understood (13). There are additional regional experiments on the 

southern ocean and Antarctic which further suggest significant impact and usage of iron 

as a nutrient in said region (16).  

 There are some essential chemical considerations specific to oceanic iron; in 

oxygen replete waters iron reacts via oxidation, which precipitates iron out in certain 

quantities. While certain eras of paleoceanography-predicted oceans lacked sufficient 

oxygen to precipitate out iron in large quantities, sedimentary banded iron formations 

show a change in the properties of the ocean and atmosphere over time. One 

consideration is that the chemical environment is in flux in regards to iron, though 

modeling these trends may be analogous to over fitting the model (25). Another 

consideration is iron speciation (33). 

 Iron speciation refers to the different forms which iron and iron-related 

compounds take (6). One major property difference between certain speciations of iron 

and unspeciated iron is a large difference in solubility (18). Although certain speciations 
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of iron do not interact with biology in the same manner of unspeciated iron, the 

differences are often negligible in large-scale (2).  

State of the Problem  

 From previous studies, especially those with empirical measurements, there is a 

reasonable background about the nature of other nutrients; figure 2 shows the z-score 

normalized (standard deviation normalized) silicon (a) and nitrogen (b) distributions in 

the target area, the Southern Ocean. As a result of such extensive studies, and the relative 

abundance of data describing productivity at some resolution (figure 3), the areas where 

these nutrients are important in predicting productivity can be determined. Iron, however, 

lacks robust enough data to as assuredly make such a claim. Additionally, oxidation and 

precipitation of Iron make the problem of Iron more difficult to conclude directly. 

 

Figure 1: Schematic of iron sources in the Southern Ocean 

 The literature has some suggestions towards the nature of the problem. In regard 

to other nutrients, it is suggested that iron has a linear relationship with nutrients such as 

magnesium, which shows the strength of the importance of horizontal mixing for both. 

(26). Horizontal mixing and advection is also shown to be greatly connected with chl-a 

concentration in at least the drake passage (22), so we should expect high connection 

between iron and chl-a in this region. In the Erebus bay, we see a similar connection 

between iron and aluminum, and a connection with sea ice and productivity in this area. 
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(17) Further areas, however, are not commented upon in such a regard; this study aims to 

provide a wider scope for these comparisons. 

 Some aspects of the other areas of the Southern Ocean are reflected upon in the 

literature. One paper suggests that 10-50% of iron present in Antarctic regions is 

connected to shelf subsurface pathways (33), as where in the Indian Ocean, the role of the 

deep layer depth, about 3 km, is expanded upon (11). Within the ACC, while a few 

stations show high productivity and low iron water content, most of the observations 

show either low iron and low productivity, or high iron and high productivity (25). 

 Some papers provide either theoretical or observational insight upon the nature of 

iron. It has been established that hydrothermal vents and terrestrial inputs are the primary 

sources of Iron (11). Surface transport can also be seen as an effective mechanism, but in 

a lower order of magnitude (12). From these considerations, and the nature of the 

Southern Ocean, it can be determined that a model focused in terrestrial inputs is a 

reasonable model for this problem. 

 
Figure 2: Annual mean oceanic Silicon (left) and Nitrogen (right) Z-score 

Comparison 
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Figure 3: Ocean Color Data, 10 year average from SWAWiFS (log10) 

 Iron is an important micronutrient in chemical and biological oceanography due 

to the processes which depend on the quantity and form which iron takes in different 

locales. To determine the trends of iron, different techniques are used, namely analysis of 

existing data and creating models, and using simulations to determine potential changes 

in hypothetical situations. However, not many outlooks effectively integrate the 

advantages of both techniques of analysis and simulation. As an attempt to properly 

understand the problem and to analyze the solution output, this study uses machine 

learning to digest data to be used in the simulation, as well as the data output by the 

simulation to determine accuracy relative to empirical data. The simulation classifies 

different source areas of shelf related iron in the southern ocean and Ross Sea, using 

clustering geospatial clustering methods. The simulation treats iron as an inert tracer; 

each source extent being categorized per the cluster. The results are intended to determine 

the iron presence in the area, as well as to determine the extent of the link between iron 

and biological productivity. The different source regions are shown in figure 4. 

 Nutrient cycling and availability is important to many fields, especially biology 

and earth science. While some nutrients are relatively well understood, other nutrients, 
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such as Iron do not have such a comprehensive coverage from a robustness of data 

perspective. Iron is hypothesized to be a primary-producer limiting micronutrient, thus 

the balance of other nutrients can depend on iron presence or absence. 
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CHAPTER 2 

METHODS.  

Model Description and Experimental Design 

 A model is constructed to determine the nature and extent of Iron from sediment 

inputs across the Southern Ocean. The model is constructed out of the Southern Ocean 

State Estimate (SOSE), using the global circulation model via MIT (MITgcm). The 

model is a three dimensional time-dependent model, including seasonal and interannual 

processes in addition to advection-diffusion. The resolution is ⅙ of a degree squared over 

25s to 78s, across all longitudes (2160x320). The model is run with a fifteen minute time 

step for ten years simulated time. 

 To determine the regional connection, the experiment is designed such that the 

sedimentary iron (30) can be used to model the biological productivity, given light 

limitation (20.) Due to the nature of the ocean color data present, however, light 

limitation is disregarded, and only surface ocean is considered in analysis. 

 In brief, the model runs upon sedimentary iron sources clustered on similarity, 

and the results are optimized to the color data. Each of the following sections focuses on 

one of these aspects. 

Clustering 

 Data in large quantities, as opposed to insufficient amounts of data, allows for deeper 

analysis, even if the data present is not directly related to the problem itself. As the other 

aspects of the nature of environmental interactions are essential to understanding the 

exact problem, a primary analysis of some features can be used to specify aspects of 

input. 
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   Some aspects of the environment have a great impact upon the later full analysis of the 

output of the model, so some separation is used as a consolidation of other features based 

upon mutual similarity; this is the basis for clustering. 

 

    Since the source regions may have different shelf release rates or other such important 

properties to consider in analysis, the sources are categorized by normalized variance in 

latitude, longitude, and depth using clustering. The classification results show similarity 

to continental divisions, and a deep/shallow subclassification therein. There are different 

algorithmic approaches to clustering; each of which may be used to conform to different 

considerations.  

 Clustering itself is a well understood and frequently used method of understanding, 

manipulating, and digesting data. The solution archetype is largely to split a large number 

of tuples into groups based upon some function of their attributes or the attributes of 

similar tuples (36). Two of the most used solution implementations are k-means and k-

nearest-neighbors. These are unsupervised iterative algorithms, and often diverge in 

results, allowing for users to pick the one which best suits their problem. 

 The K-means algorithm works by assigning points to the centroid to which they are 

closest, and updates centroid position and cluster membership iteratively. This is 

particularly appropriate for cases that cooperate with dimensionality reduction, as 

Euclidean distance to centroid is the only measure used (36). K-nearest neighbor works 

by taking a majority vote of points with the lowest Euclidean distance to unlabeled 

points. This algorithm is more flexible, but requires some labeled points to start (34). 

Some other solution implementations that can be used or modified for solution sets are 
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single-linkage hierarchy and recursive range search. Single-linkage works by iteratively 

connecting close groups, eventually grouping everything together; meaningful results are 

found by evaluating the results at different iterations, or hierarchical levels (35). 

Recursive range search works by adding all elements deemed “good” by a certain 

measure to a cluster; this method benefits greatly from user specified initial points (34).                

 Within the problem, some assumptions may be reasonable, such that areas close to each 

other may have similar properties (37). These seem to be the case for iron cycle 

modeling, where observational data is sparse and continental dust/runoff is a primary 

source of iron in the ocean. Since the model tracks the source region of all modeled iron 

throughout the simulation, the initial determination of source regions is essential to 

interpreting model output. Hydrology, namely pollutant tracing, has similar 

considerations, but instead of models used, observational data is used (37). 

    Currently, a manual merged k-means or a pure manual clustering method is used for 

splitting the source regions. This solves some problems with many out of the box 

techniques, such as assurance that no two continents have a common cluster, but ignores 

many more subtle characteristics of the land-forms, such as small islands (36). In 

designing a solution for biogeochemical model source clustering, a few of these 

considerations must be implemented. 

 The method proposed is to use a seeded recursive or iterative range search, followed by 

an algorithmic consolidation of the groups. To assure that continents and other large 

landforms have unique clusters, the minimum distance between such landforms is 

specified, and each cluster attains all points within that distance of a seeded point (34). 

This is run iteratively, until convergence, where each unique geospatial feature gets a 
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cluster. Afterwards, to consolidate, each cluster calculates an affinity measure for other 

groups, and merges with the one with the highest affinity, if the normalized affinity 

reaches a certain threshold. 

 

 To assure that the consolidation does not violate any of the requirements while still 

adding meaningful work, the affinity is determined per application; in this case, affinity 

should be a function of the sizes of both clusters, and the proximity. This assures that if 

either cluster is too large, a consolidation will not occur between them, and that groups 

clustered maintain a spatial coherence. Due to the nature of the background and 

experiment, there is reasonable justification to use a broad manual clustering method (9).  

 In this experiment, eighteen clusters are made, in respect to the nine areas in figure 4, 

with the additional nine areas being the deep-source areas of these same regions.  

 

Figure 4: Dye Source Regions 
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Optimization 

 Since the different source areas have different attributes, they also have different 

contributions to the total output of iron in the region. As a result, the free variables 

introduced can be used as multipliers to the output flux of the tracers in each region. 

These different methods are used to attempt to establish the connection between Iron 

from shelf pathways and ocean productivity using these free variables. 

 The three optimization methods used were relative z-score matching, as reflected 

in figures 2 and 3, yet this seemed only to be useful to understand the nature of the data. 

As a result, linear optimization was used initially. However, as described in figure 5, the 

data is about normal in the log scale, the optimization was also applied to the log scale, as 

described by the cost functions of both of the optimization methods. 

 For the linear optimization, the function is simply 

,whereas for the nonlinear optimization in log space is 

described by ; for both methods, the goal is to 

minimize . 
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Figure5: Observations of chl-a by proxy of color data (log10) 
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CHAPTER 3 

RESULTS.  

Dye simulation output 

 The model produces raw output from releasing the same dye amount in each 

active region at a constant rate. Figure 6 shows the result of this raw method. From the 

result, a few spatial patterns emerge, namely the presence of the “tail” and resulting gap 

due to the ACC. Furthermore, it shows some differences in coastal areas, most notably 

the variability in Antarctica, but also reflected in the difference between the east and west 

side of South America. Additionally, most islands seem to show a clear drift in a single 

direction. 

 

Figure6: Unweighted sum of all tracers after 10 simulated years (log10) 

 When looking at each tracer individually, many key notable features, such as 

island drift present in tracer 4, and the strong tail off the Antarctic Peninsula in tracers 5 

and 9. For the most part, these seem to show a strong decomposition in features from 

different source regions, as later discussed.   
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Figure 7: Unweighted result of each region-sourced tracer after 10 simulated years 

(log10) 

 Looking at the model from a histogram perspective, it shows rough similarity to 

the chlorophyll data, as shown in figure 8. Notable are the peak near the left side, the tail 

to the right, and the increase with respect to normal found to the slight right of the peak. 
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The difference in the increase with respect to normal between the two, and the 

longer/thicker right tail in the model data is a distinct concern. 

 

Figure 8: Comparison Between Figure 5 and the data in Figure 6 Histograms 

Optimization 

 

 

Figure 9: The result from the model after nonlinear optimization, in comparison with 

the data from figure 4, normalized. 
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 In addition to the model, our optimization also produced interesting results. The 

optimization gave significant increases to the correlation coefficient between the model 

and the productivity data, to R=0.65 when using the nonlinear optimization, which 

resulted more favorably than the linear model, which gave R=0.45 for the same data sets. 

Visually, in the comparison in Figure 9, the model has the ability to show seemingly 

similar coastal trends for both islands and continents. The model does over predict the 

nature of the ACC, which seems not to be as pronounced in the data from Figure 3. 

The coefficients from the nonlinear model are shown in Figure 10. 

 

Figure 10: Weights from (figure 9) for each region from in figure 10. The height of 

each color represents its value. 

. 
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CHAPTER 4 

DISCUSSION.  

Validation 

 As a form of validation, some observations and trends in the literature will be 

compared with the differences shown in Figure 9. A simple observation which matches 

theory is the general pattern for the iron amount to be highest around land and island, and 

for this concentration to decrease with distance out (32). While observing this trend, the 

connection is not direct enough for this to be the only controlling factor, though it does 

support the hypothesis on iron sources. The northern part of the southern ocean seems to 

be slightly more responsive to input, which matches the model and data comparison, as 

the comparison seems more direct in more northern areas of the studied region (13). The 

Amundsen Sea’s productivity is present in the model as predicted, but seems to extend 

further, into the Bellingshausen Sea, from the results (16). Of course, the large tail 

stemming from the Antarctic Peninsula in the model, despite its absence in the 

productivity data, is also in line with the other observations with regard to the Antarctic 

Peninsula. (20) Similarly, the trend in respect to islands is validated (30). 

Conclusions and Implications 

 Given that many prominent features of the result are validated to both theory and 

observation, we can describe the implications of this study. The data in figure 10 can 

have multiple interpretations, one of which being the amount of iron in shelf sediment, 

and another the ability for the ocean to take up sediment. Furthermore, the coefficients 

may be made less physical by areas missing another nutrient making a source region 

seem less prevalent in productivity data, so a comparison to figure 2 or similar data is 

essential in interpreting the optimization results. 
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    Perhaps one of the more interesting interpretations of the result from the model 

are the areas where the two subplots in figure 9 do not match. Features such as a shorter 

tail in the productivity data may reflect some of the limitations in the model, as well as 

other transport processes or sources, nutrients, or species. Additionally, while it may 

represent a disparity in color data with respect to productivity, this seems less likely than 

other explanations. 

 The approach of the model is intentionally simple, showing only shelf transport 

pathways. As a result, many relevant aspects have been excluded from the model. With 

regard to the problem of Iron, chemical impacts, other pathways, biological impacts, ice 

(18), decay, and other sources (11) have been neglected. With regard to productivity, 

other nutrients, light (28), and past productivity have been omitted. All of these omitted 

processes are important in understanding the system, and may be useful to include in 

future experimentation. However, it is important to note that this simple model was able 

to somewhat accurately link productivity to unreactive passive dyes from shelf regions 

alone. From this, we defend that the link between shelf iron and biological productivity is 

an essential mechanism in biogeochemistry. 
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