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About	  This	  Document	  
This	  resource	  contains	  curriculum	  for	  the	  distance	  education	  version	  of	  a	  course	  offered	  at	  the	  Georgia	  Institute	  of	  Technology,	  
Math	  1502,	  in	  Fall	  2014.	  This	  distance	  education	  course	  explored	  linear	  algebra,	  infinite	  series,	  and	  differential	  equation	  concepts	  
during	  lectures	  and	  recitations.	  Recitations	  are	  synchronous	  sessions	  that	  offer	  students	  an	  opportunity	  to	  apply	  and	  review	  course	  
concepts,	  which	  they	  have	  been	  exposed	  to	  in	  lectures.	  Contained	  in	  this	  curriculum	  are	  materials	  for	  26	  recitations,	  available	  in	  PDF	  
and	  presentation	  slide	  formats.	  The	  slide	  format	  is	  offered	  for	  teaching	  assistants	  to	  import	  directly	  into	  web-‐conferencing	  software.	  
Slides	  contain	  activities	  that	  students	  would	  solve	  during	  recitations.	  The	  associated	  notes	  contain	  solutions	  to	  corresponding	  
activities	  and	  are	  available	  in	  PDF	  format.	  A	  similar	  version	  of	  this	  work,	  that	  corresponds	  to	  activities	  conducted	  in	  the	  Spring	  2014	  
semester	  is	  available	  through	  SMARTech	  at	  https://smartech.gatech.edu/handle/1853/52896	  

Copyright	  

This	  work	  is	  licensed	  under	  the	  Creative	  Commons	  Attribution-‐NonCommercial-‐ShareAlike	  4.0	  International	  License.	  To	  view	  a	  copy	  
of	  this	  license,	  visit	  http://creativecommons.org/licenses/by-‐nc-‐sa/4.0/	  

For	  Further	  Information	  

Questions	  regarding	  this	  document	  can	  be	  directed	  to	  Greg	  Mayer	  (gsmayer@gmail.com),	  who	  would	  be	  happy	  to	  hear	  your	  
suggestions	  on	  how	  to	  improve	  this	  document.	  



Schedule	  of	  Activities	  
The	  following	  table	  presents	  a	  list	  of	  topics	  that	  were	  explored	  in	  the	  recitation	  activities.	  Numbers	  in	  brackets	  correspond	  to	  section	  
numbers	  in	  the	  course	  textbook	  (Lay,	  D.,	  Linear	  Algebra	  and	  its	  Applications,	  Fourth	  Edition).	  	  
	  

Week Recitation Topics Chapters Format 

1 
1 Introduction to Math 2401, Vector Parametric Representations of Curves 13.1 PPT 
2 Quadratic Surfaces, Vector Parametric Representations of Curves 12.6, 13.1 PPT 

2 
3 Quadratic Surfaces, Vector Parametric Representations of Curves 12.6, 13.1 PPT 
4 Projectile Motion, Path Length 13.2, 13.3 PPT 

3 
5 Projectile Motion, Path Length 13.2, 13.3 PPT 
6 Curvature & Normal Vectors, Tangential & Normal Components of Acceleration 13.4, 13.5 PPT 

4 
7 Quiz 1 Review Review PPT 
8 No Recitation - Quiz 1 NA  

5 
9 Domain of Multivariable Function, Limits 14.1, 14.2 LaTeX 

10 Limits, Partial Derivatives, Chain Rule 14.2, 14.3, 14.4 LaTeX 

6 
11 The Gradient 14.5 LaTeX 
12 Tangent Planes, Absolute Min/Max 14.6, 14.7 LaTeX 

7 
13 Quiz 2 Review Review LaTeX 
14 No Recitation - Quiz 2 NA  

8 
15 Lagrange Multipliers 14.8 LaTeX 
16 Lagrange Multipliers, Taylor Approx, Derivatives with Constrained Var 14.8, 14.9, 14.10 LaTeX 

9 
17 Integration over General Regions 15.2, 15.3 LaTeX 
18 Integration over General Regions 15.2, 15.3 LaTeX 

10 
19 Quiz 3 Review, Integration with Polar Coordinates 15.4 LaTeX 
20 No Recitation - Quiz 3    

11 
21 No Recitation – Spring Break    
22 No Recitation – Spring Break    

12 23 Triple Integrals in Rectangular Coordinates, Moments of Inertia and Mass 15.5, 15.6 LaTeX 



24 Integration in Cylindrical and Spherical Coordinates 15.7 LaTeX 

13 
25 Quiz 4 Review, Change of Variables 15.8 LaTeX 
26 No Recitation - Quiz 4    

14 
27 Line Integrals; Vector Fields and Line Integrals, Work, Circulation, Flux 16.1, 16.2 PPT 
28 Vector Fields and Line Integrals, Work, Circulation, Flux; Path Independence 16.2, 16.3 PPT 

15 
29 Vector Fields and Line Integrals, Work, Circulation, Flux; Path Independence 16.2, 16.3 PPT 
30 Green's Theorem, Surface Area 16.4, 16.5 PPT 

16 
31 Surface Area, Surface Integrals 16.5, 16.6 PPT 
32 Final Exam Review, Stokes Theorem, Divergence Theorem 16.7, 16.8 PPT 

	  



Welcome Back! 
This session is an opportunity to make sure that your computer 
is ready for recitations and to familiarize yourself with the 
software we are using. 
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Today:	  Course	  Organization,	  Vector	  Representations	  of	  Curves	  (13.1)	  
Thursday:	  Quadratic	  Surfaces	  (12.6)	  

Recitation 01: Welcome Back! 

Start-‐of-‐Term	  Survey	  
Please	  fill	  out	  if	  you	  haven’t	  already:	  

h5ps://www.surveymonkey.com/s/Math2401-‐2015	  
	  
Graded	  Recita4on	  Ac4vi4es	  This	  Semester	  
•  details	  sent	  via	  email	  
•  group	  work,	  in	  Adobe	  Connect,	  count	  towards	  your	  pop	  quiz	  grade	  
	  
WebEx	  and	  Adobe	  Connect	  
1.  WebEx	  for	  first	  two	  weeks	  
2.  online	  survey	  to	  determine	  if	  we	  want	  to	  conNnue	  using	  WebEx	  
3.  Adobe	  Connect	  for	  graded	  group	  work	  acNviNes	  and	  pop	  quizzes	  

Other	  Announcements	  
•  Piazza	  isn’t	  set-‐up	  yet	  
•  Tegrity	  is	  set-‐up,	  can	  view	  yesterday’s	  lecture	  (let	  me	  know	  if	  you	  can’t)	  
•  Two	  MML	  HWs	  due	  Monday	  



R01 

2 

Tenta4ve	  Quiz	  Dates	  
•  Quiz	  1:	  	  Thursday,	  January	  29	  
•  Quiz	  2:	  	  Thursday,	  February	  19	  
•  Quiz	  3:	  	  Thursday,	  	  March	  12	  
•  Quiz	  4:	  	  Thursday,	  	  April	  9	  
	  
GRAs:	  Tuesdays	  before	  quizzes	  
•  Tue	  Jan	  27	  
•  Tue	  Feb	  17	  
•  Tue	  Feb	  10	  
•  Tue	  Apr	  7	  
	  
We	  may	  have	  addiNonal	  GRAs.	  
	  
Final	  Exam	  Exemp4on	  and	  Quizzes	  
•  no	  menNon	  of	  exempNon	  in	  syllabus	  or	  course	  calendar	  
•  the	  most	  difficult	  material	  in	  this	  course	  is	  at	  the	  end	  of	  the	  semester	  

Quiz and GRA Dates 

2 
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3 Objectives 
Throughout	  this	  course	  we	  find	  parametric	  
representaNons	  of	  moNon	  and	  use	  them	  to	  
characterize	  moNons.	  
	  
Today’s	  Learning	  Objec4ves	  
Characterize	  the	  two	  (or	  three)	  dimensional	  
moNon	  of	  an	  object,	  in	  parametric	  form,	  in	  terms	  
of	  its	  	  
•  velocity	  and	  acceleraNon	  
•  unit	  tangent	  vector	  

Later	  in	  this	  course	  we’ll	  use	  parametric	  representaNons	  of	  curves	  to	  
calculate	  curvature,	  path	  length,	  momentum,	  and	  other	  ways	  of	  describing	  
a	  moNon.	  
	  
I’m	  assuming	  you’ve	  seen	  parametric	  representa3on	  of	  curves	  in	  lecture.	  

3 



R01 
Parametric	  Representa4on	  
Find a parametric representation of the counterclockwise motion that travels along 
the curve 4x2 + 9y2 = 36. Sketch the motion. 

4 



R01 
Wolfram Alpha Syntax 
This	  is	  the	  syntax	  you	  would	  use	  for	  plo^ng	  parametric	  curves	  in	  WolframAlpha.	  

5 



R01 
Position,  Velocity and Acceleration 
The position of an object is given by the curve r(t) = sin(t)i + cos(t)j, for all t. 

a)  Sketch the curve. 
b)  When are the position and velocity vectors perpendicular? 
c)  When do the position and acceleration vectors have the same direction? 
d)  Calculate the unit tangent vector for all t. 

6 
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The position of a particle is given by r(t). Describe situations where the following is 
true for all values of t. 

r t( ) ⋅ d
r
dt
= 0

Position and Velocity 7 
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Find a parametric vector representation, r(t), of the curve that satisfies the following 
equations, and y increases when x is positive. Sketch the motion.  

z = x2 + y2 , y = x

Parametric Vector Representation 8 
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Find a parametric vector representation, r(t), of the curve that satisfies the following 
equations, and z decreases when x is positive. Sketch the motion.  

z = 4− x2 − y2 ,  y2 + x2 − 2y = 0

Parametric Vector Representation 9 
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Today:	  Vector	  Representations	  of	  Curves	  (13.1),	  Quadratic	  Surfaces	  (12.6)	  

Recitation	  02	  

Start-‐of-‐Term	  Survey	  
Please	  fill	  out	  if	  you	  haven’t	  already:	  

h5ps://www.surveymonkey.com/s/Math2401-‐2015	  
	  
Last	  Recita4on	  
•  Find	  parametric	  representaEons	  of	  given	  curves	  
•  Characterize	  moEon	  of	  an	  object,	  in	  parametric	  form,	  in	  terms	  of	  its	  	  

o  velocity	  and	  acceleraEon	  
o  unit	  tangent	  vector	  

	  
Today	  
•  IdenEfy	  and	  sketch	  quadraEc	  surfaces	  given	  their	  algebraic	  equaEons	  

Don’t	  Forget	  	  
Evidence	  of	  inappropriate	  behavior	  will	  be	  forwarded	  to	  the	  course	  instructors,	  and	  possibly	  also	  to	  the	  chair	  of	  the	  School	  
of	  MathemaEcs	  and	  High	  school	  facilitators.	  Evidence	  will	  be	  reviewed	  to	  determine	  if	  further	  acEon	  is	  required.	  Such	  
acEon	  could	  either	  result	  in	  the	  Georgia	  Tech's	  Office	  of	  Undergraduate	  Admissions	  being	  made	  aware	  of	  student	  behavior,	  
and/or	  all	  students	  from	  a	  parEcular	  school	  moved	  to	  another	  secEon	  where	  interacEons	  between	  students	  from	  different	  
schools	  is	  not	  possible.	  Behavior	  is	  inappropriate	  if	  it	  can	  interpreted	  as	  hurZul	  or	  disrespecZul.	  	  Students	  can	  request	  to	  be	  
moved	  to	  another	  secEon	  at	  any	  Eme.	  QuesEons	  can	  be	  directed	  to	  the	  students	  teaching	  assistant	  and/or	  the	  course	  
instructors	  at	  any	  Eme.	  	  



R02 
Quadratic Surfaces (12.6) 
Sketch and describe the surface 5x2 + 2y2 – z2 = –10.  

2 



R02 
Quadratic Surfaces (12.6) 
Sketch and describe the surface 5x2 + 2y2 – z2 = –10.  

3 



R02 Quadratic Surfaces 
4 

The	  textbook	  should	  list	  and	  describe	  every	  quadraEc	  surface	  that	  you	  need	  to	  be	  familiar	  
with	  (but	  the	  online	  textbook	  currently	  doesn’t	  work).	  Wikipedia	  also	  has	  a	  page	  that	  lists	  
and	  describes	  every	  possible	  quadraEc	  surface	  (for	  our	  course):	  	  
h5p://en.wikipedia.org/wiki/Quadric	  
	  
Below	  are	  four	  surfaces:	  

Ellipsoid	  
x2

a2
+
y2

b2
+
z2

c2
=1

EllipEc	  paraboloid	  
x2

a2
+
y2

b2
− z = 0

Hyperbolic	  paraboloid	  

EllipEc	  hyperboloid	  of	  
one	  sheet	  

x2

a2
+
y2

b2
−
z2

c2
=1



R02 
Quadratic Surfaces 5 

IdenEfy	  the	  correct	  answer.	  	  
	  
The	  set	  of	  all	  points	  whose	  distance	  from	  the	  z-‐axis	  is	  4	  is	  the:	  	  
	  
a)  sphere	  of	  radius	  4	  centered	  on	  the	  z-‐axis	  
b)  line	  parallel	  to	  the	  z-‐axis	  4	  units	  away	  from	  the	  origin	  	  
c)  cylinder	  of	  radius	  4	  centered	  on	  the	  z-‐axis	  
d)  plane	  z	  =	  4	  	  
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Find	  a	  parametric	  vector	  representaEon	  of	  the	  curve,	  r(t),	  that	  saEsfies	  both	  
quadraEc	  surfaces.	  Sketch	  r(t)	  and	  both	  surfaces.	  

z = x2 + y2,   5= x2 + y2

Parametric Vector Representation and Quadratic Surfaces 6 



R02 
Quadratic Surfaces (12.6) 7 

Consider	  the	  surface	  z	  =	  Ax2	  +	  By2,	  where	  A	  and	  B	  are	  constants.	  IdenEfy	  all	  
possible	  surfaces	  for	  the	  following	  cases.	  
i)  A	  =	  B	  =	  0	  
ii)  AB	  >	  0	  
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The	  following	  surfaces	  intersect	  along	  a	  curve,	  C.	  Find	  a)	  the	  projecEon	  of	  C	  onto	  
the	  xy-‐plane	  and	  b)	  the	  parametric	  vector	  representaEon	  of	  the	  projecEon.	  	  

Parametric Vector Representation and Quadratic Surfaces 8 

z = x2 + y2,   z = 2y+3
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Today:	  Group	  Work	  on	  Vector	  Representations	  of	  Curves,	  Quadratic	  Surfaces	  

Recitation	  03	  

Hello	  from	  San	  Antonio!	  Your	  instructor	  and	  I	  are	  at	  a	  large	  annual	  math	  
conference.	  I	  hope	  the	  wifi	  is	  going	  to	  hold	  up	  for	  our	  recita<on	  this	  morning,	  
many	  apologies	  if	  it	  doesn’t.	  	  In	  case	  you’re	  interested,	  this	  the	  conference	  
website:	  hBp://jointmathema<csmee<ngs.org/jmm	  
	  
Textbook:	  technical	  issues	  should	  be	  resolved	  now	  
	  
Start-‐of-‐Term	  Survey	  
Please	  fill	  out	  if	  you	  haven’t	  already	  (survey	  closes	  Wednesday	  at	  midnight):	  

hBps://www.surveymonkey.com/s/Math2401-‐2015	  
	  
Today:	  Quadrac6c	  Surfaces	  and	  Parametric	  Vectors	  
•  Find	  parametric	  representa<ons	  of	  given	  curves	  
•  Characterize	  mo<on	  of	  an	  object,	  in	  parametric	  form,	  in	  terms	  of	  its	  	  velocity	  

and	  accelera<on,	  unit	  tangent	  vector	  
•  Iden<fy	  and	  sketch	  quadra<c	  surfaces	  given	  their	  algebraic	  equa<ons	  



R03 
Group Work Questions 
Complete	  each	  problem	  in	  small	  groups.	  The	  first	  four	  ques<ons	  are	  from	  old	  Math	  2401	  
quizzes	  (2013	  and	  2014).	  	  
	  
1)  Consider	  the	  twisted	  cubic	  r(t)	  =	  <	  +	  t2j	  +	  t3k	  and	  the	  plane	  x	  +	  2y	  +	  3z	  =	  34.	  

a)  Where	  does	  the	  cubic	  intersect	  the	  plane?	  	  
b)  Find	  the	  cosine	  of	  the	  tangent	  to	  the	  curve	  and	  the	  normal	  to	  the	  plane.	  

2)  Find	  the	  intersec<on	  of	  the	  surface	  x2	  +	  2y2	  =	  z	  and	  the	  plane	  x	  -‐	  y	  =	  5.	  A	  
parameteriza<on	  would	  be	  fine.	  	  

3)  Conisder	  the	  surface	  x2	  –	  6x	  +	  4y	  +	  y2	  +	  8z	  –	  z2	  =	  4.	  	  
a)  Find	  the	  center	  of	  the	  surface.	  
b)  Name	  the	  surface.	  	  
c)  Draw	  a	  picture	  of	  the	  surface,	  labelling	  the	  center	  and	  axes.	  

4)  Conisder	  the	  surface	  9x2	  –	  18x	  –	  16y	  +	  4y2	  –	  4z2	  =	  11.	  	  
a)  Find	  the	  center	  of	  the	  surface.	  
b)  Name	  the	  surface.	  	  
c)  Draw	  a	  picture	  of	  the	  surface,	  labelling	  the	  center	  and	  axes.	  

5)  Create	  a	  vector	  func<on,	  r(t),	  on	  the	  interval	  [0,	  2π],	  that	  sa<sfies	  the	  condi<ons	  	  
r(0)	  =	  ai,	  and	  as	  t	  increases	  from	  0	  to	  2π,	  traces	  out	  an	  ellipse	  b2x2	  +	  a2y2	  =	  a2b2,	  twice	  
in	  a	  counterclockwise	  manner.	  

2 



R03 1)	  Consider	  the	  twisted	  cubic	  r(t)	  =	  <	  +	  t2j	  +	  t3k	  and	  the	  plane	  x	  +	  2y	  +	  3z	  =	  34.	  
a)  Where	  does	  the	  cubic	  intersect	  the	  plane?	  	  
b)  Find	  the	  cosine	  of	  the	  tangent	  to	  the	  curve	  and	  the	  normal	  to	  the	  plane.	  

3 



R03 2)	  Find	  the	  intersec<on	  of	  the	  surface	  x2	  +	  2y2	  =	  z	  and	  the	  plane	  x	  -‐	  y	  =	  5.	  A	  
parameteriza<on	  would	  be	  fine.	  	  4 



R03 3)	  Conisder	  the	  surface	  x2	  –	  6x	  +	  4y	  +	  y2	  +	  8z	  –	  z2	  =	  4.	  	  
a)  Find	  the	  center	  of	  the	  surface.	  
b)  Name	  the	  surface.	  	  
c)  Draw	  a	  picture	  of	  the	  surface,	  labelling	  the	  center	  and	  axes.	  

5 



R03 4)	  Conisder	  the	  surface	  9x2	  –	  18x	  –	  16y	  +	  4y2	  –	  4z2	  =	  11.	  	  
a)  Find	  the	  center	  of	  the	  surface.	  
b)  Name	  the	  surface.	  	  
c)  Draw	  a	  picture	  of	  the	  surface,	  labelling	  the	  center	  and	  axes.	  

6 



R03 5)	  Create	  a	  vector	  func<on,	  r(t),	  on	  the	  interval	  [0,	  2π],	  that	  sa<sfies	  the	  condi<ons	  	  
r(0)	  =	  ai,	  and	  as	  t	  increases	  from	  0	  to	  2π,	  traces	  out	  an	  ellipse	  b2x2	  +	  a2y2	  =	  a2b2,	  twice	  in	  a	  
counterclockwise	  manner.	  

7 
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Today:	  Displacement,	  Velocity,	  Acceleration	  (13.2),	  Path	  Length	  (13.3)	  	  

Recitation	  04	  

Homework:	  Due	  Tonight	  and	  Monday	  
Learning	  Obec2ves	  for	  Today:	  Characterize	  mo5on	  of	  an	  object,	  in	  
parametric	  form,	  in	  terms	  of	  its	  unit	  tangent	  vector,	  accelera5on,	  
path	  length	  (aka	  arc	  length). 

Photo by Wikimedia Commons user Kreuzschnabel 
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Par2cle	  Mo2on	  
Let	  r(t)	  =	  x(t)i	  +	  y(t)j	  +	  z(t)k.	  	  
a)  How	  is	  the	  unit	  tangent	  vector,	  T(t),	  defined	  mathema5cally?	  
b)  Suppose	  x	  =	  t2,	  y	  =	  t3,	  z	  =	  t2,	  and	  t	  ≥	  0.	  Then	  what	  is	  the	  unit	  tangent	  vector	  

when	  t	  =	  0?	  	  
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Differen2al	  Equa2on	  
Solve	  the	  following	  ini5al	  value	  problem.	  
!
F(t) =m!r ''(t) = tî + t2 ĵ,  !r (0) = î ,  !v(0) = k̂. 
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Velocity	  and	  Accelera2on	  
What	  constant	  accelera5on	  must	  a	  par5cle	  experience	  if	  it	  is	  to	  travel	  from	  (1,2,3)	  to	  
(4,5,7)	  along	  the	  straight	  line	  joining	  the	  points,	  star5ng	  from	  rest,	  and	  covering	  the	  
distance	  in	  2	  units	  of	  5me?	  
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Velocity	  and	  Posi2on	  
r(t)	  is	  the	  posi5on	  of	  a	  moving	  par5cle.	  	  
a)  Describe,	  in	  words,	  what	  r’	  is	  parallel	  to.	  	  
b)  Show	  that	  ||r(t)||	  is	  constant	  iff	  r	  ⟂	  r’	  	  
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The	  Hanging	  Cable	  
	  
The	  hanging	  cable,	  also	  referred	  to	  as	  a	  _____________	  ,	  has	  the	  shape:	  

Photo by Flickr user Robert Valencia 
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A	  cable	  is	  suspended	  between	  two	  poles	  that	  are	  10	  m	  apart.	  Find	  the	  length	  of	  the	  cable,	  if	  
the	  cable’s	  shape	  is	  	  y(x)	  =	  k	  [cosh(x/k)	  –	  1].	  
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Today’s	  Topics	  
•  Projectile	  Motion	  (13.2)	  
•  Path	  Length	  and	  Tangential	  Vector	  (13.3)	  	  
•  Curvature	  &	  Normal	  Vectors	  (13.4)	  
	  
Today’s	  Learning	  Obectives	  
•  Apply	  vector	  function	  integration	  to	  determine	  path	  of	  projectiles	  
•  Characterize	  motion	  of	  an	  object,	  in	  parametric	  form,	  in	  terms	  of	  its	  arc	  
length	  and	  its	  tangential,	  normal	  and	  binormal	  vectors	  

Recitation	  05	  
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Announcements	  
	  
Survey	  Results:	  students	  want	  to	  collaborate,	  have	  trouble	  with	  technical	  issues	  and	  not	  
knowing	  how	  to	  solve	  problems	  in	  group	  work.	  So	  lets	  use	  Adobe	  Connect,	  keep	  group	  size	  
to	  4	  to	  6,	  use	  group	  work	  on	  stuff	  covered	  from	  last	  assignments.	  	  
	  
Thursday	  Recita7on:	  13.4,	  13.5,	  Adobe	  Connect	  
Graded	  Recita7on	  Ac7vity:	  Next	  week	  during	  Tuesday	  recitaGon,	  quesGon	  coming	  soon	  
HW	  Due	  Tomorrow:	  13.4,	  13.5	  
Quiz	  1:	  Thur	  Jan	  29	  
Office	  Hours:	  7:30	  pm	  –	  8:30	  pm,	  Wed	  Jan	  21,	  Wed	  Jan	  28	  
hRps://georgiatech.adobeconnect.com/distancecalculusofficehours	  
	  
Send	  Your	  TA	  an	  Email	  
Explain,	  in	  an	  email,	  using	  your	  own	  words,	  what	  the	  following	  quanGGes	  represent:	  
	  
•  the	  unit	  tangent	  vector,	  T(t)	  
•  the	  curvature,	  κ	  
	  
Try	  to	  send	  this	  email	  by	  the	  end	  of	  the	  day	  today.	  If	  you	  send	  your	  TA	  an	  email	  with	  a	  
descripGon	  of	  what	  these	  quanGGes	  represent,	  you	  will	  get	  a	  reply.	  	  
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Unit	  tangent	  vector	   	   	  T	  =	  	  ________________	  

	  

Principle	  unit	  normal	  vector	  	  	   	  N	  =	  ________________	  

	  

Binormal	  vector 	   	   	  B	  =	  _________________	  

Ideal Projectile Motion: !r (t) = v0 cosα( ) tî + v0 sinα( ) t − gt
2

2
"

#
$

%

&
' ĵ

max range: R = v0
2 sin2α
g

v0	  is	  the	  ___________________	  ,	  and	  α	  is	  the	  _____________________________	  .	  

max height: v0
2 sin2α

2g

Helpful	  Formulas	  
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1)	  Ball	  Rolling	  off	  of	  a	  Table	  (Projec7le	  Mo7on,	  13.2)	  
A	  ball	  rolls	  off	  a	  table	  1	  meter	  high	  with	  a	  speed	  of	  0.5	  m/s.	  	  
a)  At	  what	  speed	  does	  the	  ball	  strike	  the	  floor?	  
b)  Where	  does	  the	  ball	  strike	  the	  floor?	  

2)	  Golf	  Ball	  (Projec7le	  Mo7on,	  13.2)	  
A	  golfer	  can	  send	  a	  golf	  ball	  300m	  across	  a	  level	  ground.	  From	  the	  tee	  in	  the	  figure,	  can	  the	  
golfer	  clear	  the	  water?	  	  
	  
	  
	  
	  
	  
	  
3)	  Arc	  Length,	  Normal	  and	  Binormal	  Vectors	  (13.3,	  13.4)	  
Consider	  the	  surfaces	  x2	  +	  y2	  +	  z2	  =	  4,	  and	  z2	  =	  x2	  +	  y2	  for	  z	  ≥	  0.	  
a)  Find	  a	  parameterizaGon	  for	  the	  intersecGon	  curve,	  r(t),	  of	  the	  two	  surfaces.	  
b)  Sketch	  the	  two	  surfaces	  and	  their	  intersecGon.	  	  
c)  Calculate	  the	  length	  of	  r(t).	  
d)  Find	  the	  unit	  tangent,	  normal,	  and	  binormal	  vectors	  for	  r(t)	  at	  the	  point	  	  

(sqrt(2)	  ,	  0,	  	  sqrt(2)).	  	  	  	  	  
e)  Add	  the	  three	  vectors	  to	  your	  sketch.	  	  
	  

water	  

310 m Tee 

20 m 
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1)	  Ball	  Rolling	  off	  of	  a	  Table	  (Projec7le	  Mo7on,	  13.2)	  
A	  ball	  rolls	  off	  a	  table	  1	  meter	  high	  with	  a	  speed	  of	  0.5	  m/s.	  	  
a)  At	  what	  speed	  does	  the	  ball	  strike	  the	  floor?	  
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1)	  Ball	  Rolling	  off	  of	  a	  Table	  (Projec7le	  Mo7on,	  13.2)	  
A	  ball	  rolls	  off	  a	  table	  1	  meter	  high	  with	  a	  speed	  of	  0.5	  m/s.	  	  
b)	  	  	  	  	  	  Where	  does	  the	  ball	  strike	  the	  floor?	  
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2)	  Golf	  Ball	  (Projec7le	  Mo7on,	  13.2)	  
A	  golfer	  can	  send	  a	  golf	  ball	  300m	  across	  a	  level	  ground.	  From	  the	  tee	  in	  the	  figure,	  can	  the	  
golfer	  clear	  the	  water?	  	  
	  
	  
	  
	  

water	  

310 m Tee 

20 m 
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3)	  Arc	  Length,	  Normal	  and	  Binormal	  Vectors	  (13.3,	  13.4)	  
Consider	  the	  surfaces	  x2	  +	  y2	  +	  z2	  =	  4,	  and	  z2	  =	  x2	  +	  y2	  for	  z	  ≥	  0.	  
a)  Find	  a	  parameterizaGon	  for	  the	  intersecGon	  curve,	  r(t),	  of	  the	  two	  surfaces.	  
b)  Sketch	  the	  two	  surfaces	  and	  their	  intersecGon.	  	  
c)  Calculate	  the	  length	  of	  r(t).	  
d)  Find	  the	  unit	  tangent,	  normal,	  and	  binormal	  vectors	  for	  r(t)	  at	  the	  point	  	  

(sqrt(2)	  ,	  0,	  	  sqrt(2)).	  	  	  	  	  
e)  Add	  the	  three	  vectors	  to	  your	  sketch.	  	  
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3)	  Arc	  Length,	  Normal	  and	  Binormal	  Vectors	  (13.3,	  13.4)	  
Consider	  the	  surfaces	  x2	  +	  y2	  +	  z2	  =	  4,	  and	  z2	  =	  x2	  +	  y2	  for	  z	  ≥	  0.	  
c)	  	  Calculate	  the	  length	  of	  r(t).	  
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3)	  Arc	  Length,	  Normal	  and	  Binormal	  Vectors	  (13.3,	  13.4)	  
Consider	  the	  surfaces	  x2	  +	  y2	  +	  z2	  =	  4,	  and	  z2	  =	  x2	  +	  y2	  for	  z	  ≥	  0.	  
d)	  	  Find	  the	  unit	  tangent,	  normal,	  and	  binormal	  vectors	  for	  r(t)	  at	  the	  point	  	  
(sqrt(2)	  ,	  0,	  	  sqrt(2)).	  	  	  	  	  
e)	  	  Add	  the	  three	  vectors	  to	  your	  sketch.	  	  
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Today’s	  Topics:	  	  
•  Curvature	  &	  Normal	  Vectors	  (13.4)	  
•  Tangential	  and	  Normal	  Components	  of	  Acceleration	  (13.5)	  
•  Veocity	  and	  Acceleration	  in	  Polar	  Coordinates	  (13.6)	  
	  	  

Recitation	  06	  

Today’s	  Learning	  Obectives	  
1.  Given	  a	  motion	  of	  an	  object,	  in	  either	  parametric	  form	  or	  as	  a	  function	  

of	  a	  single	  variable,	  calculate	  the	  
•  curvature	  
•  tangent,	  normal,	  and	  binormal	  vectors	  
•  acceleration	  (tangential	  and	  normal	  components)	  
•  torsion	  	  

2.  Calculate	  the	  osculating,	  normal,	  and	  rectifying	  planes	  for	  a	  given	  
curve	  r(t)	  at	  a	  given	  value	  of	  t	  
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Notes:	  
•  One	  of	  the	  above	  equations	  has	  an	  error,	  where	  is	  it?	  
•  There	  are	  alternate	  expressions	  for	  these	  formulas.	  Above	  are	  the	  formulas	  that	  
the	  textbook	  uses.	  

principle normal vector: 
!
N =

!
T '(t)
!
T '(t)

curvature: κ = 1
!v
!
T '(t)

curvature: κ =
f ''(x)

1+ f ' x( )( )
2!

"#
$
%&

3/2

acceleration: !a = aT
!
T + aN

!
N

aT =
d
dt
!v

aN =
!a + aT torsion: τ =

x ' y ' z '
x '' y '' z ''
x ''' y ''' z '''
!v × !a 2

Helpful Formulas 



R06 
3 

The	  geometry	  of	  the	  three	  planes	  determined	  by	  vectors	  T,	  N,	  and	  B,	  for	  curve	  r(t),	  at	  r(t0).	  

B

T 

N 

osculating plane 

rectifying plane 
normal plane 

r(t) 

r(t0) 

Normal, Rectifying, and Osculating Planes 

If	  a	  mo=on,	  r(t),	  lies	  completely	  in	  a	  plane,	  then	  the	  binormal	  vector	  is	  _______________	  .	  
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Graded	  Recita.on	  Ac.vity:	  Next	  week	  during	  Tuesday	  recita=on,	  ques=on	  sent	  
HW	  Due	  Tomorrow:	  13.6	  
Quiz	  1:	  Thur	  Jan	  29	  
Office	  Hours:	  7:30	  pm	  –	  8:30	  pm,	  Wed	  Jan	  28	  
hOps://georgiatech.adobeconnect.com/distancecalculusofficehours	  
	  
Send	  Your	  TA	  an	  Email	  
	  
Using	  your	  own	  words,	  describe	  
	  
•  the	  rela=onship	  between	  the	  curvature	  and	  the	  normal	  plane	  
•  the	  rela=onship	  between	  the	  torsion	  and	  the	  oscula=ng	  plane	  
	  
Try	  to	  send	  an	  email	  with	  your	  answers	  by	  the	  end	  of	  the	  day	  today.	  If	  you	  send	  your	  
TA	  an	  email	  with	  an	  answer	  to	  these	  ques=ons	  you	  will	  get	  a	  response.	  	  
Hint:	  these	  rela-onships	  are	  described	  in	  the	  textbook.	  	  

Announcements 
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There	  are	  four	  parts	  to	  the	  following	  question.	  Solve	  them	  in	  groups	  of	  3	  to	  5	  
students.	  	  
	  
Consider	  r(t)	  =	  sin(t)i	  +	  cos(t)j	  +	  k,	  t	  =	  -‐π/2.	  
	  
a)  Find	  T,	  N,	  and	  B	  at	  the	  given	  value	  of	  t.	  Is	  B	  constant	  for	  all	  values	  of	  t?	  	  
	  

Group Work Activity: Part (a) 
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Consider	  r(t)	  =	  sin(t)i	  +	  cos(t)j	  +	  k,	  t	  =	  -‐π/2.	  
b)  Sketch	  r	  for	  [0,	  2π]	  and	  indicate	  the	  direction	  of	  motion.	  	  
c)  Sketch	  T,	  N,	  and	  B	  at	  the	  given	  value	  of	  t.	  	  	  

Group Work Activity: Parts (b) and (c) 
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Consider	  r(t)	  =	  sin(t)i	  +	  cos(t)j	  +	  k,	  t	  =	  -‐π/2.	  
d)  Find	  the	  equation	  of	  the	  normal	  plane	  at	  t	  =	  -‐π/2.	  
Message	  your	  TA	  when	  you’ve	  Binished	  this	  question.	  Move	  on	  to	  the	  remaining	  
questions	  after	  this	  if	  there	  is	  time.	  	  

Group Work Activity: Part (d) 
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a)	  	  Curvature	  is	  a	  scalar	  and	  can	  be	  any	  real	  number.	  

This	  statement	  is	  _____________	  because:	  	  
	  
	  
b)	  	  Torsion	  is	  a	  scalar	  and	  can	  be	  any	  real	  number.	  

This	  statement	  is	  _____________	  because:	  	  
	  

c)	  	  If	  r(t)	  =	  x(t)i	  +	  y(t)j,	  then	  the	  normal	  vector,	  N,	  is	  given	  by	  N	  =	  n/|n|,	  	  
where	  n	  =	  -‐x’(t)i	  +	  y’(t)j.	  
	  
This	  statement	  is	  _____________	  because:	  	  
	  
	  
	  
	  	  

True or False 
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Today’s	  Topics:	  Quiz	  1	  Review,	  Graded	  Recitation	  Activity	  1	  	  
	  
Quiz	  1	  Topics	  
12.6	  Quadratic	  Surfaces	  
13.1	  Vector	  Parametric	  Representations	  of	  Curves	  
13.2	  Quadratic	  Surfaces	  
13.2	  Projectile	  Motion	  
13.2	  Path	  Length 	  	  
13.3	  Curvature	  &	  Normal	  Vectors	  
13.5	  Tangential	  &	  Normal	  Components	  of	  Acceleration	  

Recitation	  07	  
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2 Quiz	  1	  Learning	  Objec1ves	  

You	  should	  be	  able	  to	  do	  the	  following	  for	  Quiz	  1.	  
•  Iden1fy	  and	  sketch	  quadra1c	  surfaces	  given	  their	  algebraic	  equa1ons	  
•  Develop	  parameteric	  representa1ons	  of	  curves	  	  
•  Integrate	  vector	  func1ons	  to	  determine	  projec1le	  mo1on	  
•  Characterize	  a	  mo1on,	  given	  in	  either	  parametric	  form	  r(t),	  or	  as	  a	  con1nuous	  func1on	  

f(x),	  using:	  
•  vectors:	  velocity,	  accelera1on,	  tangent,	  binormal	  
•  scalars:	  curvature,	  torsion,	  tanen1al	  &	  normal	  components	  of	  accel,	  arc	  length	  
•  planes:	  tangen1al,	  rec1fying,	  __________	  

B 

T
N 

rectifying 
plane 

normal plane 

r(t) 

r(t0) 

________  plane 
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3 Interpreta1ons	  of	  Curvature	  and	  Torsion	  

B 

T
N 

rectifying 
plane 

normal plane 

r(t) 

r(t0) 

________  plane 

Cuvature	  is	  the	  rate	  at	  which	  the	  _______________________	  turns.	  
	  	  
Torsion	  is	  the	  rate	  at	  which	  the	  _____________________	  turns.	  
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principle normal vector: 
!
N =
!
T '(t)

!
T '(t)

binormal vector: 
!
B =
!
N ' t( )

!
N ' t( )

curvature: κ =
!
T '(t) !v

curvature: κ = f ''(x) 1+ f ' x( )( )
2!

"#
$
%&

3/2

acceleration: !a = aT
!
T + aN

!
N

aT = _______
aN = _______

torsion: τ =

x ' y ' z '
x '' y '' z ''
x ''' y ''' z '''
!v × !a 2

Helpful Formulas 

Ideal Projectile Motion: !r (t) = v0 cosα( ) tî + v0 sinα( ) t − gt
2

2
"

#
$

%

&
' ĵ

max range: R = v0
2 sin2α
g

max height: v0
2 sin2α

2g
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Graded	  Group	  Work	  Ac1vity	  	  
	  
Instruc)ons	  
•  Every	  student	  in	  your	  group	  needs	  to	  write	  their	  name	  or	  ini1als	  on	  the	  board.	  
•  You	  have	  20	  minutes	  to	  answer	  the	  ques1ons	  below.	  
•  For	  full	  marks,	  show	  at	  least	  three	  intermediate	  steps	  for	  each	  ques1on.	  
•  Answer	  each	  ques1on	  on	  a	  different	  slide.	  	  
•  All	  students	  in	  the	  same	  group	  receive	  the	  same	  grade.	  	  
•  Please	  do	  not	  share	  computers:	  every	  student	  should	  log	  in	  on	  their	  own	  computer.	  
•  You	  do	  not	  need	  to	  simplify	  your	  answers	  
•  You	  can	  use	  c	  =	  cos(t)	  and	  s	  =	  sin(t)	  
	  
1)  Tangen)al	  &	  Normal	  Components	  of	  Accelera)on	  (4	  points)	  
Let	  r(t)	  =	  2ti	  +	  tj	  +	  2t2k	  be	  a	  mo1on.	  Compute	  the	  tangen1al	  and	  normal	  components	  of	  
the	  accelera1on.	  	  
	  
2)	  Arc	  Length	  (2	  points)	  
Find	  the	  arc	  length,	  from	  0	  to	  t,	  of	  the	  curve	  r(t)	  =	  etcos(t)i	  +	  etsin(t)j	  +	  5etk.	  
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1)  Tangen)al	  &	  Normal	  Components	  of	  Accelera)on	  (4	  points)	  
Let	  r(t)	  =	  2ti	  +	  tj	  +	  2t2k	  be	  a	  mo1on.	  Compute	  the	  tangen1al	  and	  normal	  components	  of	  
the	  accelera1on.	  	  
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2)	  Arc	  Length	  (2	  points)	  
Find	  the	  arc	  length,	  from	  0	  to	  t,	  of	  the	  curve	  r(t)	  =	  etcos(t)i	  +	  etsin(t)j	  +	  5etk.	  
	  	  

Message	  your	  TA	  when	  you’ve	  2inished	  both	  questions.,	  then	  move	  on	  to	  the	  remaining	  questions.	  	  
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Curvature	  and	  Torsion	  
This	  ques1on	  has	  4	  parts.	  Consider	  the	  surfaces	  z	  =	  x2	  +	  y2	  and	  y	  =	  2,	  for	  z	  ≥	  0.	  
A)	  	  Find	  a	  parametric	  vector	  representa1on	  for	  their	  intersec1on.	  
B)	  	  Sketch	  the	  intersec1on	  and	  the	  2	  surfaces.	  
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Curvature	  and	  Torsion	  
This	  ques1on	  has	  4	  parts.	  Consider	  the	  surfaces	  z	  =	  x2	  +	  y2	  and	  y	  =	  2,	  for	  z	  ≥	  0.	  
C)	  	  	  Calculate	  the	  curvature	  and	  iden1fy	  on	  your	  sketch	  whre	  the	  curvature	  is	  maximized.	  
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Curvature	  and	  Torsion	  
This	  ques1on	  has	  4	  parts.	  Consider	  the	  surfaces	  z	  =	  x2	  +	  y2	  and	  y	  =	  2,	  for	  z	  ≥	  0.	  
D)	  Calculate	  the	  torsion	  of	  the	  intersec1ng	  curve	  and	  explain	  your	  answer.	  	  



Recitation 09

R09 Topics
14.1 Functions of Several Variables
14.2 Limits and Continuity

R09 Learning Objectives
By the end of today’s session you should be able to

I Identify and sketch the domain of a function of several variables.

I Determine whether or not limits of functions of several variables
exist.

While We’re Waiting to Start
Consider the function

g(x, y) =

√
y + 1

x2y + xy2
.

For g(x, y) to be defined and a real-valued function, what values of x
and y can we allow?
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Domain of a Function of Two Variables

Identify and sketch the domain of

g(x, y) =

√
y + 1

x2y + xy2
.

Recitation 09, Slide 2



Limits of a Function of Two Variables

Consider the function of two variables

f(x, y) =
x(x− 1)3 + y2

4(x− 1)2 + 9y3
.

We want to evaluate

lim
(x,y)→(1,0)

f(x, y)

What strategies might we try to evaluate the desired limit?
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Limits of a Function of Two Variables, Example 1

Evaluate

lim
(x,y)→(1,0)

x(x− 1)3 + y2

4(x− 1)2 + 9y3
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Limits of a Function of Two Variables, Example 2

In groups of 3 to 5 students, evaluate the limit

lim
(x,y)→(0,0)

xy2

x2 + y4
.

Recitation 09, Slide 5



Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use the definition of limit.

The limit of f(x, y) as (x, y) aproach (a, b) is L if for every number
ε > 0, there is a corresponding δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x, y) to (a, b) sufficiently small.
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An Epsilon Delta Example

Evaluate, or show that the following limit does not exist.

lim
(x,y)→(0,0)

3x2y

x2 + y2
.
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An Epsilon Delta Example
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An Epsilon Delta Example
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An Epsilon Delta Example
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Conclusions: Evaluating Limits of Multivariable Functions

Suppose we need to evaluate a limit of a function of two variables

lim
(x,y)→(a,b)

f(x, y).

If we know that f(x, y) is continuous at (a, b), we can evaluate the limit
with direct substitution. If we don’t know that f(x, y) is continuous at
(a, b), we can either

I evaluate the limit along curves (y = mx, for example) to see if the
limit does not exist, or

I we can use the definition of limit to prove that the limit does exist
and determine what the limit is equal to.

Notes:

I evaluating a limit along curves cannot tell us that a given limit
exists, it can only tell us whether it doesn’t exist

I I’m assuming you’re familiar with continuity for a function of several
variables, but if you aren’t it’s on the next homework and isn’t a
diffcult concept.
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Recitation 11

R11 Topics
14.5 The Gradient

R11 Learning Objectives
By the end of today’s session you should be able to do the following.

I Compute gradients and directional derivatives.

I Provide geometric interpretations of gradients and directional
derivatives.

I Describe the relationship between gradients and level curves.

While We’re Waiting to Start
Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .
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The Gradient and Directional Derivative

Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .
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The Gradient and Directional Derivative
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Wolfram Alpha’s Plots of f(x, y)

In case it helps see what is going
on, to the left are plots of our
function, y2e2x, that
WolframAlpha produces.

Notice that the contour plot
gives a set of level curves.
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Level Curves

If C is in the of f(x, y), then the curve C = f(x, y)
is a level curve of f(x, y). For functions of two variables, we can think
of level curves as curves of constant height (analogous to topographic
maps, that have curves of constant elevation).

In other words, a level curve is an intersection between f(x, y) and the
plane z = C. Level curves are a useful view of the overall behavior of a
function.

Banaba Island image under a CCBY2.0 license, available from https://www.flickr.com/photos/evsmap
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Level Curves and the Gradient

This following helps explain why the gradient is ⊥ to level curves.

Let C = g(x, y) be a level curve of g(x, y). Show that ∇g is always
perpendicular to the level curve.
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A Conceptual Question: The Gradient

At which point does the gradient vector have the largest magnitude?
Draw the gradient at this point.

1. (0,0)

2. (8,-8)

3. (6,-2)

4. (-4,-4)
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards
the point (2, 2, 1) and provide a geometric interpretation of your
answer.

2. For z = 3xy − x3 − y3, find the points where the gradient vector is
the zero vector. Provide a geometric interpretation of your answer.

3. Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find
f(x, y).
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Question 1: A Directional Derivative

Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards the
point (2, 2, 1). Provide a geometric interpretation of your answer.
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Question 2: Zero Gradient

For z = 3xy − x3 − y3, find the points where the gradient vector is the
zero vector. Provide a geometric interpretation of your answer.
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Question 3: Constructing a Function From its Gradient

Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find f(x, y).

Recitation 11, Slide 11



Recitation 12

R12 Topics
14.6 Tangent Planes and Differentials
14.7 Absolute Min/Max

R12 Learning Objectives
By the end of today’s session you should be able to do the following.

I Find equations of tangent planes and normal lines of surfaces.

I Apply tangent planes and differentials to make approximations.

I Locate and classify critical points of surfaces.

Example 1
Consider the surface x2 + 4y2 = z2.

1. Find the equation of the tangent plane at P (3, 2, 5).

2. Find the equation of the normal line at P , and identify where the
normal line intersects the xy-plane.

3. Sketch the surface and the normal line.
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Example 1: Part 1

Consider the surface x2 + 4y2 = z2. Find the equation of the tangent
plane at P (3, 2, 5).
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Example 1: Part 2

Consider the surface x2 + 4y2 = z2. Find the equation of the normal line
at P (3, 2, 5), and identify where the normal line intersects the xy-plane.
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Example 1: Part 3

Consider the surface x2 + 4y2 = z2. Sketch the surface and the normal
line.
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Tangent Planes and Differentials (14.6)

For a function of one variable, y(x), we define the differential dy as

dy =
dy

dx
dx,

where dy is the change in height of the tangent line.

For a function of two variables, z(x, y), we define the differential dz as

dz = ,

where dz is the change in height of the .

The equation of the tangent plane to z = z(x, y) at the point ~r0 is

z = z0 +∇z · (~r − ~r0)

The vector ~r − ~r0 is a vector in the tangent plane.
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A Quick Calculation: Tangent Plane Approximation

Suppose zx(3, 4) = 5, zy(3, 4) = −2, and z(3, 4) = 6. Assuming the
function z is differentiable, what is the best estimate for z(3.1, 3.9) using
this information?

1. 6.3

2. 9

3. 6

4. 6.7
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Estimating Change in Volume

Estimate, using the tangent plane approximation, the change in volume
of a cylinder if its height is changed from 12.0 to 12.2 cm and the radius
is changed from 8.0 to 7.7 cm. How much does the volume actually
change?
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Second Derivative Test (14.7)

Suppose f has continuous 2nd order partial derivatives around some
point P (x0, y0), and that ∇f(x0, y0) = 0. Let

D =
∂2f

∂x2

∂2f

∂y2
−
( ∂2f

∂x∂y

)2

If D = 0, then .
If D < 0, then P is a saddle point.
If D > 0, then P is a maximum if fxx < 0 and a minimum if fxx > 0.

Recitation 12, Slide 8



Optimization

Find the critical points of f(x, y) = y + x sin(y) and determine whether
they correspond to local or absolute minimums or maximums of f(x, y).
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Surface Plot of f(x, y) = y + x sin(y)
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Consider the function f(x, y) = 3xy − x3 − y3.

1.1 Find the points where the gradient vector, ∇f(x, y), is the zero
vector.

1.2 Find the points where the tangent plane is horizontal.
1.3 Find the critical points of f(x, y). Classify these points as min, max,

or saddle points.

2. Find an equation of the tangent plane and normal line to
z = (x2 + y2)2 at P (1, 1, 4).
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Question 1.1: Zero Gradient

For f = 3xy − x3 − y3, find the points where the gradient vector,
∇f(x, y), is the zero vector.
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Questions 1.2 and 1.3

Consider the function f(x, y) = 3xy − x3 − y3. Find the points where
the tangent plane is horizontal. Find the critical points of f(x, y).
Classify these points as min, max, or saddle points.
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Question 2

Find an equation of the tangent plane and normal line to z = (x2 + y2)2

at P (1, 1, 4).
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Recitation 16

R16 Topics
14.8 Lagrange Multipliers
14.9 Taylor’s Formula for Two Variables
14.10 Partial Derivatives with Constrained Variables

R16 Learning Objectives
I Derive the least squares equations to fit the plane Ax+By + C to a set

of given points (14.8).
I Calculate a cubic approximation to a function of two variables at a

specified point (14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).

While We’re Waiting to Start
Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U
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The Chain Rule with Intermediate Variables, Parts A and B

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV
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The Chain Rule with Intermediate Variables, Parts C and D

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U
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Taylor Approximation (14.9)

Calculate the cubic approximation to f(x, y) = 4x cos(y) near the origin.
Complete this question in group work. Note: this was a pop quiz in 2014.
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Approximation Error (14.9)

Use your results from the previous problem to find the quadratic approximation
to f(x, y) = 4x cos(y) near the origin. Then estimate the error in the
approximation if |x| < 0.5 and |y| < 0.1.
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Least Squares (14.8)

The plane z = Ax+By + C is to be fitted to a given set of points,
(xn, yn, zn). Derive the linear system of equations that, when solved, minimizes

E =

N∑
n=1

(Axn +Byn + C − zn)
2.
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Least Squares (continued)
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Least Squares (continued)

Recitation 15, Slide 8



Recitation 17

R17 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R17 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral (Cartesian
coordinates).

Today’s Questions

1. Sketch the region bounded by the given curves and construct a double
integral that represents its area.
a) y =

√
x, y = x3.

b) x = 5− y, x = 2y − 1, y = 1.
c) y = x− 6, y2 = x.

2. Change the order of integration for the following integrals.

a)

∫ 0

−1

∫ √y+1

−
√
y+1

dxdy b)

∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx
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Announcements, WolframAlpha Syntax

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: One Week from Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.

Wolfram Alpha Syntax for Double Integrals
You may want to use Wolfram Alpha to check your answers while completing
your HW. Suppose that we want to determine the value of∫ −1

−2

∫ x−1

0

(x2C + y)dydx

The syntax we could use to compute this particular integral is the following.

integrate x^{2C}+y, x from -2 to -1 and y from 0 to (x-1)
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1a) Area of a Region

Sketch the region bounded by y =
√
x, y = x3 and construct a double integral

that represents its area.
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1b) Area of a Region

Sketch the region bounded by x = 5− y, x = 2y − 1, y = 1, and construct a
double integral that represents its area.
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1c) Area of a Region

Sketch the region bounded by y = x− 6, y2 = x, and construct a double
integral that represents its area.
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2a) Changing the Order of Integration

2a) Change the order of integration for the following integral.∫ 0

−1

∫ √y+1

−
√

y+1

dxdy
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2a) Changing the Order of Integration (continued)
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2b) Changing the Order of Integration

Change the order of integration for the following integral.∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx
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3) Evaluating an Integral (if time permits)

Evaluate the following double integral.∫ 4

0

∫ 4

y

ex
2

dxdy
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Recitation 18

R18 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R18 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral.

I Calculate the average value of a function of two variables.

Today’s Questions

1. Change the order of integration.

a)

∫ 0

−1

∫ √y+1

−
√
y+1

dxdy b)

∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx

2. Construct a double integral that represents the volume of the solid
enclosed by the cylinder x2 + y2 = 1, the planes z = y, x = 0, z = 0, in
the first octant.

3. Evaluate
∫ 4

0

∫ 4

y
ex

2

dxdy.
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Announcements

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: Next Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.
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The Average Value of a Function (15.3)

The average value of a function, f(x, y), over a region R, is given by

Average value of f over region R =
1

area of R

∫∫
R

f(x, y)dA

This definition can be used to find the value of some double integrals quickly.

Example
Region R is the unit circle

√
x2 + y2 ≤ 1. The definite integral of f = x+ 1

over R is equal to:

a) 0

b) 1

c) π

d) π/4
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Conceptual Question Related to Double Integrals

Let region R be the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. The definite integral of
x3 over region R is equal to:

a) a positive number

b) a negative number

c) zero

d) a function of x
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1a) Changing the Order of Integration

Change the order of integration.∫ 0

−1

∫ √y+1

−
√

y+1

dxdy
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1a) Changing the Order of Integration (continued)
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1b) Changing the Order of Integration

Change the order of integration.∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx
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2) Volume of a Solid

Construct a double integral that represents the volume of the solid enclosed by
the cylinder x2 + y2 = 1, the planes z = 1− y, x = 0, z = 0, in the first octant.
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3) Evaluating a Double Integral

Evaluate the following double integral.∫ 4

0

∫ 4

y

ex
2

dxdy
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Additional Exercises

1. Set up an integral that represents the volume of the solid enclosed by the
planes x = 1, y = 3, the three coordinate planes, and x2 + 2y2 + z = 1.

2. Find the volume of the solid enclosed by z = x2 + y2, y = x2 and x = y2.
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Recitation 19

R19 Topics
15.4 Double Integrals in Polar Coordinates
Quiz 3 Review

Quiz 3 Topics

I 14.08 Lagrange Multipliers
I 14.09 Taylor’s Formula for Two Variables
I 14.10 Partial Derivatives with Constrained Variables
I 15.01 Iterated Integrals over Rectangles
I 15.02 Double Integrals over General Regions
I 15.03 Area by Double Integration
I 15.04 Double Integration in Polar Coordinates

Office Hours
I’ll hold additional office hours and a review session:

I Quiz 3 Review Session ∀ Math 2401 students: Tue 5:30 - 7:00 pm, at
https://georgiatech.adobeconnect.com/dcp-online-drop-in-tutor-center-2014-fall

I Quiz 3 Review Session ∀ QH8 students: Wed: 7:30 - 8:30 pm at
https://georgiatech.adobeconnect.com/distancecalculusofficehours
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Quiz 3 Learning Objectives

You should be able to do the following for Quiz 3.

I Solve constrained optimization problems using Lagrange multipliers (14.8).
I Calculate a Taylor approximation to a function of two variables at a point

(14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).
I Construct a double integral that represents the area of a region bounded

by a set of given curves in Cartesian or polar coordinates (15.1 to 15.4).
I Change the order of integration of a double integral (15.1 to 15.4).
I Calculate the average value of a function of two variables (15.3).

Recitation 19, Slide 2



Volume of a Sphere

Identify the expressions that represent the volume of a sphere of radius R.

1) 4

∫ π

0

∫ R

0

r
√
R2 − r2drdθ

2)

∫ 2π

0

∫ R

0

√
R2 − r2drdθ

3) 2

∫ 2π

0

∫ R

0

r
√
R2 − r2drdθ

4)

∫ 2π

0

∫ R/2

0

r
√
R2 − r2drdθ
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Volume of a Sphere (continued)
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Graded Recitation Activity 3

Instructions

I Every student in your group needs to write their name or initials on the
board.

I You have 10 minutes to answer the question below.
I For full marks, show at least one intermediate step.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Question (5 points, from last year’s quiz)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Recitation 19, Slide 5



GRA3

Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Recitation 19, Slide 6



Converting Double Integral to Polar Coordinates

Convert to a double integral in polar coordinates (from 2014 Quiz 2).∫ 2

0

∫ √4−(x−2)2

0

xydydx
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Converting Double Integral to Polar Coordinates (continued)
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Additional Exercise: Normal Distribution

Evaluate

I =

∫ ∞
0

e−x
2

dx

Recitation 19, Slide 9



Additional Exercise: Integration in Polar Coordinates

Sketch the rose curve r = 2 cos(2θ) and find the area of one petal.

Recitation 19, Slide 10



Recitation 23

R23 Topics
15.5 Triple Integrals in Rectangular Coordinates
15.6 Moments of Inertia and Mass

R23 Learning Objectives

I Construct a triple integral that represents the area of a region bounded by
a set of given curves in Cartesian or cylindrical coordinates

I Change the order of integration of a triple integral
I Set-up integrals that represent moments of inertia and centres of mass of

solids

Today’s Questions

1. Set-up a triple integral that represents the volume bounded by the
following surfaces. Set-up the integrals in at least two different ways.

1.1 y2 + z2 = 1, and the planes y = x, x = 0, and z = 0.
1.2 z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0.

2. Consider the region inside the curve r = 2 + sin(θ). Set up the three
integrals you need to find the x and y coordinates of the centroid of the
region, assuming its density is δ(x, y). Express these integrals in polar
coordinates. This is a question from a 2014 quiz.

Recitation 23, Slide 1



Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 23, Slide 2



Triple Integrals, Example 1

Set-up a triple integral that represents the volume of the region bounded by
y2 + z2 = 1, and the planes y = x, x = 0, and z = 0. Set-up the integral in at
least two different ways.

Recitation 23, Slide 3



Triple Integrals, Example 1 (continued)
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Triple Integrals, Example 2

Set-up a triple integral that represents the volume of the region bounded by
z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0. Set-up the integral
in at least two different ways.

Recitation 23, Slide 5



Triple Integrals, Example 2, Continued
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Triple Integrals, Example 2, Continued
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Centroid

Consider the region inside the curve r = 2 + sin(θ). Set up the three integrals
you need to find the x and y coordinates of the centroid of the region,
assuming its density is δ(x, y). Express these integrals in polar coordinates.
This is a question from a 2014 quiz.

Recitation 23, Slide 8



Recitation 24

R24 Topics
15.7 Integration in Cylindrical and Spherical Coordinates

R24 Learning Objectives

I Construct a triple integral that represents the area of a region bounded by
a set of given curves in cylindrical or spherical coordinates

I Change the order of integration of a triple integral

The Spherical Coordinate System

Fill in the blanks.

x = ρ cos θ

y = ρ sin θ

z = ρ

Recitation 24, Slide 1



Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 24, Slide 2



Spherical Coordinates

Provide a geometric interpretation the surfaces ρ sinφ = 1 and ρ cosφ = 1.

Recitation 24, Slide 3



1) A Triple Integral in Cylindrical Coordinates

Use cylindrical coordinates to set-up an integral that represents the volume of
the solid bounded by x2 + y2 + z2 = 1, and z2 = 3(x2 + y2).

Recitation 24, Slide 4



2) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid bounded by z = 0, x2 + y2 = 4, and z = 2

√
x2 + y2.

Recitation 24, Slide 5



3) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid in the first octant, between the surfaces x2 + y2 = z2 and
z =

√
2− (x2 + y2).

Recitation 24, Slide 6



4) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
z = x2 + y2, and the plane y = z. Use cylindrical coordinates.

Recitation 24, Slide 7



Recitation 25

Quiz 4 Topics
15.3 to 15.8

Quiz 4 Learning Objectives

I Construct a triple integral that represents the area or volume of a region in
Cartesian, polar, cylindrical, or spherical coordinates

I Change the order of integration, or coordinate system, for a triple integral
I Construct integrals that represent moments of inertia and centres of mass
I Identify a suitable transformation for a triple integral, and use that

transform to find the area or volume of a given region

GRA4

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 25, Slide 1



Graded Recitation Activity 4

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 25, Slide 2



GRA4.1

Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

Recitation 25, Slide 3



GRA4.2

Set-up a triple integral that represents the volume of the solid bounded by the
hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the plane
z = 10. Do not evaluate.

Recitation 25, Slide 4



Change of Variables

I After completing HW 15.8, you might be familiar with computing an
integral, if you are given a transform.

I But if we were given an integral over a complicated region, and were not
given a suitable transform, how could we find one?

I The basic idea is to find a transform that converts a complicated region
into a simple one, such as a square, or a circle

Recitation 25, Slide 5



1) Change of Variables

Show that the area of the ellipse (x/a)2 + (y/b)2 = 1 is πab.

Recitation 25, Slide 6



2) Change of Variables

Set-up an integral that represents the area of a region bounded by x+ y = 0,
x+ y = 1, x− y = 0, x− y = 2.
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2) Change of Variables (continued)
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3) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2, and

√
x2 + y2 ≤ z ≤

√
2− (x2 + y2).

Recitation 25, Slide 9



4) Cylindrical

Set-up a triple integral that represents the volume of the solid bounded by
z = x2 + y2, and the plane y = z. Use cylindrical coordinates.

Recitation 25, Slide 10



5) Triple Integral

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.

Recitation 25, Slide 11



5) Triple Integral (Alternate Solution)

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.

Recitation 25, Slide 12



R27 

1 

1 

Today’s	  Topics	  
16.1	  Line	  Integrals	  (brief	  review)	  
16.2	  Vector	  Fields	  and	  Line	  Integrals,	  Work,	  Circulation,	  Flux	  
	  
Learning	  Objectives	  
16.1	  Set-‐up	  and	  evaluate	  a	  line	  integral	  to	  calculate	  the	  mass	  of	  a	  thin	  wire	  
16.2	  Set-‐up	  and	  evaluate	  a	  line	  integral	  that	  represents	  total	  work	  	  

Recitation	  27	  



R27 
2 16.1:	  Mass	  of	  a	  Thin	  Wire	  (a	  review	  of	  lecture	  material?)	  

O 

r(t) 

wire 

How	  To	  Calculate	  Mass	  of	  a	  Wire	  
•  posi=on	  on	  wire	  given	  by	  parameteriza=on,	  r(t)	  
•  density	  of	  wire	  is	  δ	  =	  δ(r(t))	  
•  length	  of	  a	  small	  piece	  of	  wire	  is	  ∆s(r(t))	  
•  we	  can	  approximate	  the	  total	  mass	  with:	  

x 

y 

In	  the	  limit	  as	  ∆s	  tends	  to	  zero,	  

M =

To	  compute	  total	  mass,	  we	  can	  show	  that:	  

M =

M ≈



R27 
3 16.1:	  Mass	  of	  a	  Thin	  Wire	  

Compute	   the	   total	  mass	  of	   a	  wire	  whose	  density	   is	   given	  by	  δ	  =	  3x2	  –	  2y,	   and	  
whose	  shape	  is	  given	  by	  the	  line	  segment	  from	  the	  origin	  to	  the	  point	  (2,4).	  	  
	  
	  



R27 
4 16.2:	  Work	  (a	  review	  of	  lecture	  material?)	  
Work	  is	  the	  _______________	  	  transferred	  to	  or	  from	  an	  object	  by	  	  
	  
means	  of	  a	  	  _______________	  ac=ng	  on	  the	  ______________	  .	  



R27 

we need to extend this concept to curved paths in R3 

a b x 

y 

m	  

Applied	  Force	   Work	  

Case	  1	   F	  =	  4i	   W	  =	  

Case	  2	   F	  =	  4i	  –	  2j	   W	  =	  

Force F is applied to an object as it moves from x = a to x = b along the x-axis. 

16.2:	  Work	  Over	  a	  Straight	  Line	  Path	  



R27 
6 16.2:	  Force	  Over	  a	  Curved	  Path	  

O
r(u) 

r(u+h) 

C 

F(r(u)) 

Force F applied to an object as it moves from r(u) to r(u + h) along curve C. 

Work done by force F from r(u) to r(u+h) 
is W(u + h) – W(u).   

Applied	  Force	   Work	  

Case	  3	   F	  =	  F(r(u))	   W(u	  +	  h)	  –	  W(u)	  	  ≈	  



R27 
7 16.2:	  Calcula=ng	  Work	  

Set	  up	  an	  integral	  that	  represents	  the	  total	  work.	  
a)  F	  =	  (x	  +	  2y)i	  +	  (2x	  +	  y)j,	  path	  is	  y	  =	  x2	  from	  (0,0)	  to	  (2,4).	  
b)  F	  =	  (x	  -‐	  y)	  i	  –	  xy	  j,	  along	  the	  line	  from	  (2,3)	  to	  (1,2).	  
c)  F	  =	  xy	  i	  –	  2	  j	  +	  4zk,	  along	  the	  circular	  helix	  r	  =	  cos(u)i	  +	  sin(u)j	  +	  uk,	  from	  	  

u	  =	  0	  to	  u	  =	  2π.	  
	  



R28 

1 

1 

Today’s	  Topics	  
16.2	  Vector	  Fields	  and	  Line	  Integrals,	  Work,	  Circulation,	  Flux	  
16.3	  Path	  Independence	  
	  
Learning	  Objectives	  
16.2	  Set-‐up,	  evaluate,	  and	  interpret	  integrals	  to	  calculate	  circulation	  and	  8lux	  
16.3	  Determine	  whether	  a	  vector	  Field	  is	  conservative	  
	  
Circulation	  
Cicrulation	  is	  a	  measure	  of	  the	  8low	  along	  a	  curve	  C,	  or	  net	  velocity	  along	  C.	  

Recitation	  28	  

circulation = Γ = !v !r( ) ⋅d!r
C
∫ =

!v !r t( )( ) ⋅ !r ' t( )dt
a

b
∫



R28 
2 16.2:	  Circula.on	  

Sketch	  the	  velocity	  field	  for	  v,	  and	  calculate	  the	  circula(on	  over	  curve	  C,	  where	  C	  
is	  the	  circle	  of	  radius	  R.	  	  

x 

y 

!v  =  2 î,  R ≤ y ≤ R
0,  else

!
"
#

$#

For	  part	  a),	  the	  circula.on	  is	  ______	  because	  _____________	  .	  
	  
For	  part	  b),	  the	  circula.on	  is	  ______	  because	  _____________	  .	  



R28 

3 

R20 

Application of Circulation 

The	  circula.on	  of	  a	  vector	  field	  V	  around	  a	  directed	  closed	  curve	  is	  

•  Note the cross-sectional profile of the wing
•  Take C to be a path around the wing, on its surface
•  Upward lift force is proportional to circulation, Γ

circulation = Γ = v r( ) ⋅dr
C
∫



R28 

Take C to be a closed path around the wing on its surface 

•  Write Γ as Γ = Γupper + Γlower

•  Γupper and Γlower
 have opposite signs

•  the magnitude of V along the upper surface of the wing is greater than 
along the lower surface: net circulation is non-zero

4 16.2:	  An	  Applica.on	  of	  Circula.on	  



R28 
5 16.2:	  Flux	  Across	  a	  Closed	  Plane	  Curve	  

flux = !v ⋅
!
N dt

C"∫ = M dy− N dx
C"∫

•  k	  is	  the	  unit	  vector	  parallel	  to	  the	  z-‐axis	  
•  T	  is	  the	  tangent	  vector	  
•  N	  is	  the	  outward	  poin.ng	  unit	  normal	  vector	  of	  C	  

	  
k 

T 

N = T × k 
x 

y 

z 

C 

counterclockwise motion 

Note	  that:	  
•  for	  a	  clockwise	  mo.on,	  we	  would	  instead	  use	  k	  ×	  T	  
•  later	  on,	  we	  will	  make	  a	  connec.on	  between	  flux	  and	  Green’s	  theorem	  

Suppose	  we	  have	  a	  curve	  C	  in	  the	  xy	  plane,	  and	  a	  flow	  field	  v	  =	  M(x,y)i	  +	  N(x,y)k.	  
We	  want	  to	  measure	  the	  net	  flow	  through	  C.	  



R28 
6 16.2:	  Flux	  

Calculate	  the	  flux	  over	  curve	  C,	  where	  C	  is	  the	  circle	  of	  radius	  R.	  

x 

y 

Therefore:	  the	  flux	  is	  ______	  because	  _____________	  .	  

!v  =  2 î,  R ≤ y ≤ R
0,  else

!
"
#

$#



R28 
7 16.2:	  Circula.on	  and	  Flux	  

1)	  Sketch	  the	  velocity	  field	  for	  v	  =	  - xi - yj,	  and	  calculate	  the	  circula(on	  and	  flux	  
over	  curve	  C,	  where	  C	  is	  the	  circle	  of	  radius	  R.	  	  

x 

y 

Therefore:	  the	  circula.on	  is	  ______	  because	  _____________	  .	  
	  
Therefore:	  the	  flux	  is	  ______	  because	  _____________	  .	  



R28 
8 16.2:	  Circula.on	  and	  Flux	  

2)	  Sketch	  the	  velocity	  field	  for	  v	  =	  - yi + xj,	  and	  calculate	  the	  circula(on	  and	  flux	  
over	  curve	  C,	  where	  C	  is	  the	  circle	  of	  radius	  R.	  	  

x 

y 



R28 
9 16.3:	  Conserva.ve	  Vector	  Fields	  

Recall	  the	  Pipe	  example.	  
	  	  
a)  Why	  was	  the	  circula.on	  zero?	  	  

b)  For	  any	  path	  that	  starts	  and	  ends	  at	  point	  A,	  and	  stays	  inside	  “the	  pipe”,	  the	  	  
	  
circula.on	  is	  ____________	  .	  	  	  

c)  For	  all	  paths	  that	  starts	  at	  A	  and	  ends	  at	  point	  B,	  the	  integral	  _____________	  
is	  the	  same.	  

In	  general:	  if	  v	  is	  a	  conserva.ve	  vector	  field	  (or	  is	  path	  independent),	  then	  there	  
exists	  a	  scalar	  field,	  S,	  s.t.	  ________	  .	  
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1 

1 

Today's Topics 
16.2 Vector Fields and Line Integrals, Work, Circulation, Flux 
16.3 Path Independence 
 
Learning Objectives 
16.2 Set-up, evaluate, and interpret integrals to calculate circulation and flux 
16.3 Determine whether a vector field is conservative and apply the FTLI 
 
Circulation and Flux 
Circulation is a measure of __________________ 
 
Flux is a measure of _________________ 

Recitation 29 

circulation = Γ = !v !r( ) ⋅d!r
C
∫ =

!v !r t( )( ) ⋅ !r ' t( )dt
a

b
∫

flux = !v ⋅
!
N dt

C"∫ = M dy− N dx
C"∫



R29 
2 16.2:	  Circula.on	  and	  Flux	  (review)	  

1)	  Sketch	  the	  velocity	  field	  for	  v	  =	  - xi - yj,	  and	  calculate	  the	  circula*on	  and	  flux	  
over	  curve	  C,	  where	  C	  is	  the	  circle	  of	  radius	  R.	  	  

x 

y 

Therefore:	  the	  circula.on	  is	  ______	  because	  _____________	  .	  
	  
Therefore:	  the	  flux	  is	  ______	  because	  _____________	  .	  



R29 
3 16.3:	  Conserva.ve	  Vector	  Fields	  
In	  general:	  if	  F	  is	  a	  conserva.ve	  vector	  field	  (or	  is	  path	  independent),	  then	  there	  
exists	  a	  scalar	  field,	  f,	  s.t.	  ________	  ,	  and	  
	  

Example:	  Calculate	  total	  work	  from	  the	  force	  F	  =	  (x2-‐y)i	  +	  (y2	  –	  x)j,	  over	  the	  path	  	  
r	  =	  a	  cos(t)i	  +	  b	  sin(t)j,	  where	  0	  ≤	  t	  ≤	  2π.	  



R29 
4 16.3:	  Conserva.ve	  Fields	  

Group	  work	  ac.vity:	  determine	  whether	  the	  following	  fields	  are	  conserva.ve	  
1) 	  v	  =	  – xi – yj 
2) 	  v	  =	  – yi + xj 



R29 
5 16.2:	  Circula.on	  and	  Flux	  

Group	  work	  ac.vity:	  sketch	  the	  velocity	  field	  for	  v	  =	  - yi + xj,	  and	  calculate	  the	  
circula*on	  and	  flux	  over	  curve	  C,	  where	  C	  is	  the	  circle	  of	  radius	  R.	  	  

x 

y 



R29 
6 Conclusions	  

a)  Circula.on	  measures	  flow	  ________________	  	  	  path	  C.	  
	  
b)  Flux	  measures	  the	  flow	  ___________________	  of	  C.	  
	  
c)  If	  a	  flow	  is	  conserva.ve,	  the	  line	  integral	  ______	  is	  the	  same	  for	  any	  path	  C.	  

field	  name	   velocity	  field	  
equa*on	  

circula*on	   flux	   is	  v	  
conserva*ve?	  

pipe	   v	  =	  2i	  for	  	  
–R	  ≤	  y	  ≤	  +R,	  

v	  =	  0	  otherwise	  

v	  =	  -‐xi	  -‐	  yj	  

v	  =	  -‐yi	  +	  xj	  
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1 

Today's Topics 
16.4 Green's Theorem 
16.5 Surfaces and Areas 
 
Learning Objectives 
16.4 Apply Green’s theorem to calculate area, flux, and circulation 
16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically 
 
Green’s Theorem  
If R is a region that is _______________________________ , and M and N are 
scalar fields that are differentiable on R, and C is the boundary of R, then: 

Recitation 30 

flux =  

circulation =  



R30 
2 Green’s	  Theorem	  Example	  (from	  an	  old	  quiz)	  

Below are five regions. For which regions can we apply Green’s Theorem? 

a) b) c) d) e) 



R30 
3 Green’s	  Theorem	  Example	  (from	  an	  old	  quiz)	  



R30 
4 Green’s	  Theorem	  Example	  (from	  an	  old	  quiz)	  



R30 
5 Addi:onal	  Green’s	  Theorem	  Example	  

x(t)	  =	  t	  –	  sin(t)	  	  
y(t)	  =	  1	  –	  cos(t)	  

x 

y 

The curve traced by a point on a rolling wheel is 



R30 
6 Addi:onal	  Example:	  Green’s	  Theorem	  	  
Find	  the	  area	  under	  one	  arch	  of	  the	  cycloid:	  
x(t)	  =	  t	  –	  sin(t),	  y(t)	  =	  1	  –	  cos(t)	  



R30 
7 Addi:onal	  Example:	  Green’s	  Theorem	  	  

a)  Evaluate	  
	  

b)  Change	  the	  integral	  so	  that	  	  it	  represents	  the	  area	  of	  one	  loop.	  

y2 dx + 2xydy,  C  is one loop of  r = 2sin2θ
C∫



R30 
16.5	  Surfaces	  and	  Areas	  

Surface	  area	  for	  a	  parameterized	  surface:	  

	  
	  
Your	  textbook	  has	  formulas	  for	  calcuatling	  the	  surface	  area	  for	  
implicit	  and	  explicit	  surfaces,	  we	  probably	  won’t	  have	  :me	  to	  
work	  on	  these	  in	  recita:on.	  

8 



R30 
16.5	  Surfaces	  and	  Areas	  

a)  What	  proper:es	  does	  a	  parametric	  representa:on	  of	  a	  surface	  
need	  to	  have?	  

b)  Find	  a	  parametric	  representa:on	  for	  the	  part	  of	  the	  plane	  z	  =	  x	  +	  2	  
in	  the	  first	  octant	  and	  inside	  the	  cylinder	  x2	  +	  y2	  =	  1.	  

9 
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Today's Topics 
16.5 Surfaces and Areas 
16.6 Surface Integrals 
 
Learning Objectives 
16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically 
16.6 Calculate outward flux through a surface 
16.6 Calculate the total mass and centroid of a thin surface (if time permits) 
 
Course Logistics 

1.  Has a final exemption cutoff been announced?  

2.  What is the cutoff? 

3.  When is your final exam? 
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16.5	  Surfaces	  and	  Areas	  

Surface	  area	  for	  a	  parameterized	  surface:	  

	  
	  
Your	  textbook	  has	  formulas	  for	  calcuatling	  the	  surface	  area	  for	  
implicit	  and	  explicit	  surfaces,	  we	  probably	  won’t	  have	  Dme	  to	  
work	  on	  these	  in	  recitaDon.	  

2 



R31 

Set	  up	  an	  integral	  that	  represents	  the	  surface	  area	  of	  z	  =	  y2,	  for	  0	  ≤	  x	  ≤	  a,	  0	  ≤	  y	  ≤	  b.	  

3 16.5	  Surface	  Area	  Example	  



R31 

Calculate	  the	  surface	  area	  of	  the	  part	  of	  the	  plane	  x	  +	  2y	  +	  z	  =	  4	  that	  is	  inside	  the	  	  
cylinder	  x2	  +	  y2	  =	  4.	  	  

4 16.5	  Surface	  Area	  Example	  
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R24 

Suppose we want to characterize 3D flow through a pipe.   
 
To calculate 2D flux across a curve, we used: 
 
If our flow field, v, is 3D, we calculate flux across a surface.   

flux = v ⋅ n du
C
∫ = M dy− N dx

C
∫

16.6	  Surface	  Integrals	  



R31 

A fluid has velocity field v = yi + j + zk. Set up an integral that represents the flux 
through the paraboloid z = 9 – (x2 + y2)/4, if x2 + y2 ≤ 36.  

16.6	  Flux	  Through	  a	  Surface	  6 



R31 

Set up a double integral that represents the flux of flow F = xi + zk thorugh the surface 
z(x,y) = x2 - y2 , where 0 ≤ x ≤ 1,  -1 ≤ y ≤ 1. 

16.6	  Surface	  Integrals	  (this	  was	  a	  2014	  pop	  quiz	  quesDon)	  7 



R31 
8 16.6	  Centroid	  of	  a	  Thin	  Surface	  (if	  Dme	  permits)	  
The mass density at any point on a thin surface z2 = x2 + y2, 0 ≤ z ≤ 1, is proportional to 
its distance to the z-axis.  
a)  Find the total mass of the surface.  
b)  Find the centroid of the surface. 



R31 
9 16.5	  Surface	  Area	  ParameterizaDon	  (addiDonal	  example)	  

Find parametric representations for the following surfaces. 
a)  the upper half of 4x2 + 9y2 + z2 = 36 
b)  the part of the plane z = x + 2 inside the cylinder of x2 + y2 = 1 
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Today's Topics 
Final Exam Review 
16.7 Stokes Theorem 
16.8 The Divergence Theorem 
 
Learning Objectives 
16.7 Use Stoke’s theorem to calculate either work, or circulation over a curve 
16.8 Calculate flux through a surface using the divergence theorem 
 
Final Exam Logistics 
Review session: information sent via email 
Questions during final: information sent via email 
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R32 
Studying	  for	  the	  Final	  Exam	  

There are two prep-finals available on T2. Each of them have five 
questions that focus on specific areas of our textbook. 

2 

Chapter	  13	   Chapter	  14	   Chapter	  15	   Chapter	  16	  

Prep-‐Final	  A	   P1	  	   P2,	  P3,	  P4,	  P5	  

Prep-‐Final	  B	   P1	   P2	   P3	   P4,	  P5	  

Ways you may want to study: 
•  solve prep final questions 
•  re-do quizzes 1 through 4 
•  re-do MML problems 
•  memorize formulas (especially from Chapters 13 and 16) 



R32 
PrepFinal	  QuesBon	  A1	  

Find the speed, the tangential acceleration and the normal acceleration 
for the motion r = (t,t2,t2). Compute also the curvature of the 
corresponding curve as a function of t. 

3 



R32 
PrepFinal	  QuesBon	  A2	  

Find the moment of inertia with respect to the x axis of a thin shell of 
mass δ that is in the first quadrant of the xy plane and bounded by the 
curve r2 = sin 2θ. 

4 



R32 
PrepFinal	  QuesBon	  A3	  

Compute the center of mass of a thin shell that is formed by the cone  
(z − 2)2 = x2 + y2, 0 ≤ z ≤ 2. 

5 



R32 
PrepFinal	  QuesBon	  A4	  

Compute the line integral of the vector field F = (xyz + 1, x2z, x2y)exyz 
along the curve r(t) = (cost,sint,t), 0 ≤ t ≤ π. 

6 



R32 
PrepFinal	  QuesBon	  A5	  

Use the divergence theorem to compute the outward flux of the vector 
field F = (x2 , y2 , z2) through the cylindrical can that is bounded on the 
side by x2 + y2 = 4, bounded above by z = 1 and below by z = 0. 

7 



R32 
PrepFinal	  QuesBon	  B1	  

Find the parametric equations of the line that is tangent to the curve  
r(t) = (et, sin t, ln(1 − t)), at t = 0. 

8 



R32 
PrepFinal	  QuesBon	  B2	  

Find the minimum cost area of a rectangular solid with volume 64 cubic 
inches, given that the top and sides cost 4 cents per square inch and the 
bottom costs 7 cents per square inch. Just set up the equations using 
Lagrange multipliers, you do not have to solve them. 

9 



R32 
PrepFinal	  QuesBon	  B3	  

Compute the average of the function x4 over the sphere centered at the 
origin whose radius is R > 0. 

10 



R32 
PrepFinal	  QuesBon	  B4	  

Compute the flux ∫sF·ndσ, S where S is the hemisphere x2 + y2 + z2 = 4,  
z ≥ 0, n points toward the origin and F =(x(z−y), y(x−z), z(y−x)). 

11 
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PrepFinal	  QuesBon	  B5	  

Compute the line integral ∫cF·dr where C is the curve given by the 
intersection of the sphere x2 + y2 + z2 = 4 and the plane z = −y, 
counterclockwise when viewed from above, and F = (x2 + y, x + y, 4y2 − z) . 

12 
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16.7	  Stokes’	  Theorem	  13 

Curl describes the tendency a fluid has to ________________ at a specific 
point. Stokes’ Theorem states that:  

Historical	  note:	  Stokes’	  theorem	  is	  named	  a4er	  Sir	  George	  Stokes,	  but	  was	  discovered	  by	  Sir	  
William	  Thomson.	  	  

Note that curve C must be ___________  
 
Stokes’ theorem can be used to calculate ___________ and _______ . 
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16.8	  What	  is	  Divergence?	  	  

Divergence	  describes	  the	  tendency	  a	  fluid	  has	  to	  ________________.	  	  

Water	  is	  (approximately)	  an	  incompressible	  fluid.	  If	  you	  place	  your	  thumb	  at	  the	  end	  of	  a	  hose,	  	  

the	  speed	  of	  the	  water	  _____________	  ,	  because	  ______________	  ,	  or	  because	  ____________.	  



R32 
16.8	  The	  Divergence	  Theorem	  15 

The divergence theorem states that 



R32 

R26 

Upward	  buoyant	  force	  =	  

16.8	  The	  Divergence	  Theorem:	  Archimedes	  Principle	  	  



R32 
16.8	  Prove	  Archimedes	  Principle	  17 



R32 
16.8	  Electric	  Charge	  18 

E	  =	  electric	  field.	  Then,	  Gauss’s	  Law	  states	  that:	  	  

	  total	  charge	  =	  (ε0)(flux	  of	  E	  through	  closed	  surface	  )	  

Find	  the	  total	  charge	  contained	  in	  a	  solid	  hemisphere	  if	  E	  =	  xi	  +	  yj	  +	  zk.	  	  	  













































































































Recitation 09

R09 Topics
14.1 Functions of Several Variables
14.2 Limits and Continuity

R09 Learning Objectives
By the end of today’s session you should be able to

I Identify and sketch the domain of a function of several variables.

I Determine whether or not limits of functions of several variables
exist.

While We’re Waiting to Start
Consider the function

g(x, y) =

√
y + 1

x2y + xy2
.

For g(x, y) to be defined and a real-valued function, what values of x
and y can we allow?
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Domain of a Function of Two Variables

Identify and sketch the domain of

g(x, y) =

√
y + 1

x2y + xy2
.

Solution
For g(x, y) to be defined, its denominator cannot be zero. This implies
that 0 6= x2y + xy2 = xy(x+ y). Thus, x 6= 0, y 6= 0, and y 6= −x. The
numerator of g(x, y) also cannot be complex, which implies that
y + 1 ≥ 0, or that y ≥ −1. The domain is the set
D = {(x, y)|y ≥ −1, x 6= 0, y 6= 0, y 6= −x}.
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Limits of a Function of Two Variables

Consider the function of two variables

f(x, y) =
x(x− 1)3 + y2

4(x− 1)2 + 9y3
.

We want to evaluate

lim
(x,y)→(1,0)

f(x, y)

What strategies might we try to evaluate the desired limit?

Solution
When we evaluate f(x, y) at the limit point, we find f(1, 0) is an
indeterminant form of type 0/0. It may be that f is not continuous at
the point (1, 0). In one dimension, we would use l’Hopsital’s rule, or
algebraic manipulation, to evaluate such a limit. But l’Hospitals rule only
works for functions of one variable. So for this limit, we will try
approaching the limit point along curves that pass through the limit
point. In this case, we can try evaluating the limit along y = m(x− 1).
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Limits of a Function of Two Variables, Example 1

Evaluate

lim
(x,y)→(1,0)

x(x− 1)3 + y2

4(x− 1)2 + 9y3

Solution
Choose a function, y(x), that passes through the given limit point (1, 0).
We can try y = m(x− 1), which passes through (1, 0), and see what
happens.

lim
(x,y)→(1,0)

x(x− 1)3 + y2

4(x− 1)2 + 9y3
= lim

(x,y)→(1,0)

x(x− 1)3 +m2(x− 1)2

4(x− 1)2 + 9m3(x− 1)3

= lim
(x,y)→(1,0)

x(x− 1) +m2

4 + 9m3(x− 1)

=
m2

4

Because the value of the limit depends on the path of approach, the limit
does not exist.
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Limits of a Function of Two Variables, Example 2

In groups of 3 to 5 students, evaluate the limit

lim
(x,y)→(0,0)

xy2

x2 + y4
.

Solution
Along the path y = mx, we obtain

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

(x,y)→(0,0)

xm2x2

x2 +m4x4
= lim

(x,y)→(0,0)

m2x

1 +m4x2
= 0.

We might be tempted to believe that this limit exists. But along the path
x = my2, we find

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

(x,y)→(0,0)

my4

m2y4 + y4
=

m

m2 + 1

Because the value of the limit depends on the path of approach, the limit
does not exist.
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Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use the definition of limit.

The limit of f(x, y) as (x, y) aproach (a, b) is L if for every number
ε > 0, there is a corresponding δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x, y) to (a, b) sufficiently small.
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An Epsilon Delta Example

Evaluate, or show that the following limit does not exist.

lim
(x,y)→(0,0)

3x2y

x2 + y2
.

Solution
Along the path y = mx, we obtain

lim
(x,y)→(0,0)

3x2y

x2 + y2
= lim

(x,y)→(0,0)

3m2x3

x2(1 +m2)
= 0

Along the path y = mx, the limit is zero. We can also show that along
the path y = mx2, that the limit is also zero. So we are starting to
suspect that this limit exists and that L = 0. Let ε > 0. We want to find
a δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

We will do this on the next few slides.
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An Epsilon Delta Example

We want to find a δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

The limit point is (0, 0), so a = b = 0. And we think the limit might
equal zero, so we can try L = 0 and see what happens.∣∣∣ 3x2y

x2 + y2
− 0
∣∣∣ < ε when 0 <

√
x2 + y2 < δ

However, ∣∣∣ 3x2y

x2 + y2
− 0
∣∣∣ = 3x2|y|

x2 + y2

≤ 3(x2 + y2)|y|
x2 + y2

= 3|y| = 3
√
y2 ≤ 3

√
x2 + y2

This result will suggest that we choose δ = ε/3. We see why on the next
slide.
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An Epsilon Delta Example

We have found that

|f(x, y)− L| =
∣∣∣ 3x2y

x2 + y2
− 0
∣∣∣ ≤ 3

√
x2 + y2

Choosing δ = ε/3, and letting 0 <
√
x2 + y2 < δ, we obtain

|f(x, y)− L| ≤ 3δ = 3(ε/3) = ε

Thus, given any ε, choosing δ = ε/3, and 0 <
√
x2 + y2 < δ = ε/3, we

can guarantee that |f(x, y)− L| < ε.

Therefore, the limit exists and is equal to 0.
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Conclusions: Evaluating Limits of Multivariable Functions

Suppose we need to evaluate a limit of a function of two variables

lim
(x,y)→(a,b)

f(x, y).

If we know that f(x, y) is continuous at (a, b), we can evaluate the limit
with direct substitution. If we don’t know that f(x, y) is continuous at
(a, b), we can either

I evaluate the limit along curves (y = mx, for example) to see if the
limit does not exist, or

I we can use the definition of limit to prove that the limit does exist
and determine what the limit is equal to.

Notes:

I evaluating a limit along curves cannot tell us that a given limit
exists, it can only tell us whether it doesn’t exist

I I’m assuming you’re familiar with continuity for a function of several
variables, but if you aren’t it’s on the next homework and isn’t a
diffcult concept.
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R10 Topics
14.2 Limits and Continuity
14.3 Partial Derivatives
14.4 The Chain Rule

R10 Learning Objectives
By the end of today’s session you should be able to

I Determine whether or not limits of functions of several variables
exist by evaluating the limit along paths or by using the formal
definition of limit.

I Compute partial derivatives of multivariable functions using the
chain rule.

While We’re Waiting to Start
Calculate fy(1,−2,−1) for f(x, y, z) = x2yey/z.
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A Partial Derivative

Calculate fy(1,−2,−1) for f(x, y, z) = x2yey/z.

Solution

fy =
∂f

∂y

(
x2yey/z

)
= x2ey/z + x2yey/z

( ∂
∂y

y

z

)
= x2ey/z +

x2yey/z

z

Thus, fy(1,−2,−1) = (1)2e2 + (1)2(−2)e2
−1 = 3e2.
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A Conceptual Question

Select all options that are correct.

Given a function f(x, y), to evaluate ∂f
∂x at the point (1,3), we can:

1. Differentiate f with respect to x and then set x = 1, y = 3.

2. Set x = 1, y = 3 and then differentiate f with respect to x.

3. Set x = 1 and then differentiate f with respect to x.

4. Set y = 3 and then differentiate f with respect to x.

Solution
The first option is acceptable and is the usual approach.

The second and third options would result in an answer of zero: we
should differentiate with respect to the prescribed variable, x, and then
set the variable equal to its value.

The fourth option is acceptable, because variables other than the one
that we are differentiating are treated as constants.
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Recall: Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use its formal definition.

The limit of f(x, y) as (x, y) approach (a, b) is L if for every number
ε > 0, there is a corresponding δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x, y) to (a, b) sufficiently small.
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Epsilon Delta Definition of Limit

Use the definition of limit to show that the following exists and is equal
to 0.

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x+ y

x2 + 1

Solution
To apply the definition of limit, we start with |f(x, y)− L|, and work
towards an expression that involves

√
(x− a)2 + (y − b)2. We know are

given that the limit is equal to zero, so we can use L = 0. We also know
that the limit point is (0, 0), so we can also use a = b = 0.∣∣∣f(x, y)− L∣∣∣ = ∣∣∣ x+ y

x2 + 1
− 0
∣∣∣

=
|x+ y|
|x2 + 1|

≤ |x+ y|
1

because x2 + 1 ≥ 1

= |x+ y|
≤ |x|+ |y| by the triangle inequality
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Epsilon Delta Definition of Limit

∣∣∣f(x, y)− L∣∣∣ ≤ |x|+ |y|
=
√
x2 +

√
y2

≤
√
x2 + y2 +

√
x2 + y2

= 2
√
x2 + y2

This result suggests that we choose δ = ε/2. By choosing δ = ε/2, and

letting 0 <
√
x2 + y2 < δ, we obtain

|f(x, y)− L| ≤ 2
√
x2 + y2 < 2δ = 2(ε/2) = ε

Thus, given any ε, choosing δ = ε/2, and 0 <
√
x2 + y2 < δ = ε/2, we

can guarantee that |f(x, y)− L| < ε.

Therefore, the limit exists and is equal to 0.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Evaluate the following limit, or show that it does not exist.

lim
(x,y,z)→(0,0,0)

x2 − y2 − z2

x2 + y2 + z2
.

2. Evaluate the following limit, or show that it does not exist.

lim
(x,y)→(0,0)

xy

x2 + y2
.

3. Calculate du/dt given that u = x2 − y2, x = t2 − 1, and
y = 3 sin(πt). Simplification is not necessary.

4. The radius of a cylinder is decreasing at a rate of 2 cm/s while its
height is increasing at a rate of 3 cm/s. At what rate is the volume
changing when the radius is 10 cm and the height is 100 cm?

5. Create a function, f(x, y), that satisfies the following

∂f(x, y)

∂x
= x2 + y, and

∂f(x, y)

∂y
= y3 + x
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Question 1: Limits

Evaluate, or show that the following limit does not exist.

lim
(x,y,z)→(0,0,0)

x2 − y2 − z2

x2 + y2 + z2
.

Solution
Along the x-axis, y = z = 0, and the limit becomes

lim
(x,y,z)→(0,0,0)

x2 − 0− 0

x2 + 0 + 0
= 1.

Along the y-axis, x = z = 0, and the limit becomes

lim
(x,y,z)→(0,0,0)

0− y2 − 0

0 + y2 + 0
= −1.

Depending on which path we approach the limit point, we arrive at
different values. Therefore the limit does not exist (DNE).
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Question 2: Limits

Evaluate, or show that the following limit does not exist.

lim
(x,y)→(0,0)

xy

x2 + y2
.

Solution
Along the line y = mx, the limit becomes

lim
(x,y)→(0,0)

xmx

x2 +m2x2
= lim

(x,y)→(0,0)

mx2

x2(1 +m2)
=

m

1 +m2
.

Depending on which path we approach the limit point, we arrive at
different values. Therefore the limit does not exist (DNE).
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Question 3: The Chain Rule

Calculate du/dt given that u = x2 − y2, x = t2 − 1, and y = 3 sin(πt).
Simplification is not necessary.

Solution
We can approach this in two different ways. We can use the chain rule,
as follows.

∂u

∂t
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

= 2x · 2t+ (−2y)(3π cos(πt))
= 4t(t2 − 1)− 6 sin(πt) · 3π cos(πt)

An also substitute our known values for x and y first, and then
differentiate.

∂u

∂t
=

∂

∂t
(x2 − y2) = ∂

∂t

(
(t2 − 1)2 − (3 sin(πt))2

)
= 2(t2 − 1)(2t)− 6π sin(πt) · 3 cos(πt)
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Question 4: The Chain Rule

The radius of a cylinder is decreasing at a rate of 2 cm/s while its height
is increasing at a rate of 3 cm/s. At what rate is the volume changing
when the radius is 10 cm and the height is 100 cm?

Solution

V = πR2H

∂V

∂t
=
∂V

∂R

dR

dt
+
∂V

∂H

dH

dt

=
∂(πR2H)

∂R
(−2) + ∂(πR2H)

∂H
(3)

= 2πRH(−2) + (πR2)(3)

= −4πRH + 3πR2

When R = 10 and H = 100, we have

∂V

∂t
= −4π · 10 · 100 + 3π(10)2 = −4000π + 300π = −3700π.
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Question 5: Partial Derivatives

Create a function, f(x, y), that satisfies the following

∂f(x, y)

∂x
= x2 + y, and

∂f(x, y)

∂y
= y3 + x

Solution
A function whose derivative with respect to x is x2 + y is

f = x3

3 + xy +C(y), where C is some function of y. Differentiating with
respect to y gives us fy = 0 + x+C ′(y). Thus, by comparison, C ′ = y3,

and C = y4

4 . Thus

f(x, y) =
x3

3
+ xy + C(y) =

x3

3
+ xy +

y4

4
.

Recitation 10, Slide 12



Recitation 11

R11 Topics
14.5 The Gradient

R11 Learning Objectives
By the end of today’s session you should be able to do the following.

I Compute gradients and directional derivatives.

I Provide geometric interpretations of gradients and directional
derivatives.

I Describe the relationship between gradients and level curves.

While We’re Waiting to Start
Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .
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The Gradient and Directional Derivative

Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .

Solution
The direction of steepest ascent at any point is given by the gradient.

∇f =

[ ∂
∂xf
∂
∂yf

]
=

[
2y2e2x

2ye2x

]
The direction of steepest ascent at P and Q are:

∇f(0, 1) =
[

2
2

]
, ∇f(0,−1) =

[
2
−2

]
The level curves are obtained by setting f(x, y) = C, where C is a value
in the range of f . C = y2e−2x implies y = ±

√
Ce−x. We will plot the

curves on the next slide.
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The Gradient and Directional Derivative

The gradient vectors at points
P (0, 1) and Q(0,−1) should be
perpendicular to the level curves
(apologies for the rough
drawing).

The rate at which f(x, y) is increasing at P in the direction ~u = î− ĵ is
given by the dot product:

∇f(0, 1) ·
[

1
−1

]
=

[
2
2

]
·
[

1
−1

]
= 2− 2 = 0

Thus, the rate of change of f in the direction of ~u is zero. Vector ~u
points in the direction of a level curve of f(x, y).
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Wolfram Alpha’s Plots of f(x, y)

In case it helps see what is going
on, to the left are plots of our
function, y2e2x, that
WolframAlpha produces.

Notice that the contour plot
gives a set of level curves.
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Level Curves

If C is in the of f(x, y), then the curve C = f(x, y)
is a level curve of f(x, y). For functions of two variables, we can think
of level curves as curves of constant height (analogous to topographic
maps, that have curves of constant elevation).

In other words, a level curve is an intersection between f(x, y) and the
plane z = C. Level curves are a useful view of the overall behavior of a
function.

Banaba Island image under a CCBY2.0 license, available from https://www.flickr.com/photos/evsmap
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Level Curves and the Gradient

This following helps explain why the gradient is ⊥ to level curves.

Let C = g(x, y) be a level curve of g(x, y). Show that ∇g is always
perpendicular to the level curve.

Solution
Let ~r(t) be a parameterization of the curve g(x, y) = C. A vector that is
parallel to the curve at any t is ~v(t) = ~r′(t). We will show that the
gradient is perpendicular to ~v(t) for all t.

Because of our parameterization, C = g(x, y) = g(x(t), y(t)), and by the
chain rule,

dg

dt
= 0 =

∂g

∂x

dx

dt
+

∂g

∂y

dy

dt
=

[
gx
gy

]
·
[

dx/dt
dy/dt

]
= ∇g · ~v

Thus, the gradient is always perpendicular to the level curve C = g(x, y).
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A Conceptual Question: The Gradient

At which point does the gradient vector have the largest magnitude?
Draw the gradient at this point.

1. (0,0)

2. (8,-8)

3. (6,-2)

4. (-4,-4)

Solution
The magnitude of the gradient is |∇f | =

√
f2
x + f2

y . At (6,−2), the

contour lines are most closely packed: f is changing most rapidly at that
point. The gradient points in the direction of steepest ascent and is
perpendicular to the level curve at (6,−2), so ∇f points to the right.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards
the point (2, 2, 1) and provide a geometric interpretation of your
answer.

2. For z = 3xy − x3 − y3, find the points where the gradient vector,
∇z(x, y), is the zero vector. Provide a geometric interpretation of
your answer.

3. Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find
f(x, y).
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Question 1: A Directional Derivative

Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards the
point (2, 2, 1). Provide a geometric interpretation of your answer.
Solution
For clarity, I’m writing out more steps than are needed. We’re using the
Chain Rule a few times in this problem.

∇f =
∂

∂x

(
z ln(x/y)

)
î+

∂

∂y

(
z ln(x/y)

)
ĵ +

∂

∂z

(
z ln(x/y)

)
k̂

= z
∂

∂x
ln(x/y)̂i+ z

∂

∂y
ln(x/y)ĵ + ln(x/y)

∂

∂z
(z)k̂

= z
1

x/y

∂

∂x
(x/y)̂i+ z

1

x/y

∂

∂y
(x/y)ĵ + ln(x/y)k̂

=
z

x
î− z

y
ĵ + ln(x/y)k̂

∇f(1, 1, 2) = 2̂i− 2ĵ + 0k̂

On the next slide we will find the directional derivative and provide a
geometric interpretation.
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Question 1: A Directional Derivative (Continued)

Let the vector pointing from (1, 1, 2) to (2, 2, 1) be ~u. The desired
directional derivative is the dot product ∇f · ~u.

∇f(1, 1, 2) · ~u =

 2
−2
0

 ·
 2− 1

2− 1
1− 2

 =

 2
−2
0

 ·
 1

1
−1

 = 0

Therefore, the directional derivative, at the point (1, 1, 2), in the
direction pointing towards (2, 2, 1), is zero. Geometrically, this means
that the value of the function f is not changing in the specified direction.
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Question 2: Zero Gradient

For z = 3xy − x3 − y3, find the points where the gradient vector,
∇z(x, y), is the zero vector. Provide a geometric interpretation of your
answer.

Solution

∇z =

[ ∂
∂xz
∂
∂y z

]
=

[
3y − 3x2

3x− 3y2

]
The gradient vector has zero magnitude when

0 = 3y − 3x2

0 = 3x− 3y2

Rearranging these equations yields the two curves y = x2 and x = y2.
These curves intersect at two points, (0, 0), and (1, 1). Geometrically,
these points correspond to points where the function z(x, y) is flat. In
other words, where its tangent plane is horizontal. These points could
also indicate local minima/maxima.
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Question 3: Constructing a Function From its Gradient

Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find f(x, y).

Solution
A function whose derivative with respect to x is 2x+ sin y is
f = x2 + x sin y + C(y), where C is some function of y. Differentiating
with respect to y gives us fy = 0 + x cos y + C ′(y). Thus, by
comparison, C ′ = −2y, and C = −y2. Thus

f(x, y) = x2 + x sin y + C(y) = x2 + x sin y − y2.
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Recitation 12

R12 Topics
14.6 Tangent Planes and Differentials
14.7 Absolute Min/Max

R12 Learning Objectives
By the end of today’s session you should be able to do the following.

I Find equations of tangent planes and normal lines of surfaces.

I Apply tangent planes and differentials to make approximations.

I Locate and classify critical points of surfaces.

Example 1
Consider the surface x2 + 4y2 = z2.

1. Find the equation of the tangent plane at P (3, 2, 5).

2. Find the equation of the normal line at P , and identify where the
normal line intersects the xy-plane.

3. Sketch the surface and the normal line.
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Example 1: Part 1

Consider the surface x2 + 4y2 = z2. Find the equation of the tangent
plane at P (3, 2, 5).

Solution
The surface may be represented by the function
f(x, y, z) = x2 + y2 − z2. A normal vector at any point on the surface is
given by the gradient ∇f(x, y, z).

∇f(x, y, z) =

 ∂
∂xf
∂
∂yf
∂
∂z f

 =

 2x
8y
−2z

 ⇒ ∇f(3, 2, 5) =

 6
16
−10


The equation for the tangent plane is the dot product between a normal
vector and a vector in the tangent plane.

0 = ∇f(3, 2, 5) ·

 x− 3
y − 2
z − 5

 = 6(x− 3) + 16(y − 2)− 10(z − 5)

This simplifies to 3x+ 8y − 5z = 0.
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Example 1: Part 2

Consider the surface x2 + 4y2 = z2. Find the equation of the normal line
at P (3, 2, 5), and identify where the normal line intersects the xy-plane.

Solution
Recall that the scalar parametric equations for a line are given by
~r(t) = ~r0 + ~dt, where ~r0 is a point on the line, ~d is a direction vector.
But ∇f is parallel to the normal line. So the normal line is given by

~r = ~r0 +∇ft =

 3
2
5

+

 3t
8t
−5t


If you prefer, we could also write the normal line as:

x = 3 + 3t, y = 2 + 8t, z = 5− 5t.

The line intersects the xy-plane when z = 0, or when t = 1. Substituting
t = 1 into the above equations yields the point (6, 10, 0).
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Example 1: Part 3

Consider the surface x2 + 4y2 = z2. Sketch the surface and the normal
line.

Solution
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Tangent Planes and Differentials (14.6)

For a function of one variable, y(x), we define the differential dy as

dy =
dy

dx
dx,

where dy is the change in height of the tangent line.

For a function of two variables, z(x, y), we define the differential dz as

dz = ,

where dz is the change in height of the .

The equation of the tangent plane to z = z(x, y) at the point ~r0 is

z = z0 +∇z · (~r − ~r0)

The vector ~r − ~r0 is a vector in the tangent plane.
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A Quick Calculation: Tangent Plane Approximation

Suppose zx(3, 4) = 5, zy(3, 4) = −2, and z(3, 4) = 6. Assuming the
function z is differentiable, what is the best estimate for z(3.1, 3.9) using
this information?

1. 6.3

2. 9

3. 6

4. 6.7

Solution
The correct answer is 6.7.
Since we are moving .1 units in the x direction, the function increases
from 6 to approximately 6 + .1 ∗ 5 = 6.5. By similar reasoning, when we
move in the y direction, the height is approximately
6.5 + (−.1)(−2) = 6.7.
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Estimating Change in Volume

Estimate, using the tangent plane approximation, the change in volume
of a cylinder if its height is changed from 12.0 to 12.2 cm and the radius
is changed from 8.0 to 7.7 cm. How much does the volume actually
change?

Solution
Using V = πR2H, R = 8, H = 12, dR = −0.3, dH = 0.2, we obtain

dV =
∂V

∂R
dR+

∂V

∂H
dH

= (2πRH)dR+ (πR2)dH

= 2π(8)(12)(−0.3) + π(8)2(0.2)

= −44.8π
≈ −140.74

The estimate gives us a decrease in volume of about 140.74 cm3. The
actual change in volume is V (12.2, 7.7)− V (12, 8) which, plugging
everything into a calculator, is roughly 140.31 cm3.
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Second Derivative Test (14.7)

Suppose f has continuous 2nd order partial derivatives around some
point P (x0, y0), and that ∇f(x0, y0) = 0. Let

D =
∂2f

∂x2
∂2f

∂y2
−
( ∂2f

∂x∂y

)2
If D = 0, then .
If D < 0, then P is a saddle point.
If D > 0, then P is a maximum if fxx < 0 and a minimum if fxx > 0.
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Optimization

Find the critical points of f(x, y) = y + x sin(y) and determine whether
they correspond to local or absolute minimums or maximums of f(x, y).

Solution
The critical points are points where ∇f = ~0.

~0 = ∇f(x, y) = sin yî+ (1 + x cos y)ĵ

But sin y = 0 implies that y = Nπ, where N is any integer. But
cos(Nπ) = (−1)N , so x = ±1. The stationary points are located at the
points (−1, 2πN) and at

(
1, 2π(N + 1)

)
.

To determine whether these points correspond to local min/max, we use
the second derivatives test.

D = fxxfyy − f2xy = 0−
(
cos(Nπ)

)2
= −1 < 0

All of the critical points correspond to saddle points. A plot of the
surface, shown on the next slide, helps us see that this is the case.
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Surface Plot of f(x, y) = y + x sin(y)

Solution
Notice how there are no local
min/max at the points
(−1, 2πN),

(
1, 2π(N + 1)

)
.

In fact, the function has no local
min/max values at all.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Consider the function f(x, y) = 3xy − x3 − y3.

1.1 Find the points where the gradient vector, ∇f(x, y), is the zero
vector.

1.2 Find the points where the tangent plane is horizontal.
1.3 Find the critical points of f(x, y). Classify these points as min, max,

or saddle points.

2. Find an equation of the tangent plane and normal line to
z = (x2 + y2)2 at P (1, 1, 4).
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Question 1.1: Zero Gradient

For f = 3xy − x3 − y3, find the points where the gradient vector,
∇f(x, y), is the zero vector.

Solution
Note: this question was explored in the previous recitation.

∇f =

[
3y − 3x2

3x− 3y2

]
The gradient vector has zero magnitude when

0 = 3y − 3x2

0 = 3x− 3y2

Rearranging these equations yields the two curves y = x2 and x = y2.
These curves intersect at two points, (0, 0), and (1, 1). These are the
only two points where the gradient is zero.
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Questions 1.2 and 1.3

Consider the function f(x, y) = 3xy − x3 − y3. Find the points where
the tangent plane is horizontal. Find the critical points of f(x, y).
Classify these points as min, max, or saddle points.

Solution
The tangent plane is horizontal at points where ∇z(x, y) is the zero
vector. We found these points to be (0, 0), and (1, 1).

These two points (0, 0), and (1, 1) could also indicate local
minima/maxima. We use the second derivative test to tell us if they are.

D = fxxfyy − f2xy = (9x)(9y)− (3)(3) = 81xy − 9

At (0, 0), D is negative, so we have a saddle at (0, 0).
At (1, 1), D is positive, so we have a local maximum at (1, 1) because
fxx is also positive.
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Question 2

Find an equation of the tangent plane and normal line to z = (x2 + y2)2

at P (1, 1, 4).
Solution
Set f(x, y, z) = (x2 + y2)2 − z.

∇f(x, y, z) =

 ∂
∂xf
∂
∂yf
∂
∂z f

 =

 4x(x2 + y2)
4y(x2 + y2)
−1

→ ∇f(1, 1, 4) =
 8

8
−1


Thus, the tangent plane is given by 8(x− 1) + 8(y − 1)− (z − 4) = 0,
which simplifies to 8x+ 8y − z = 12. The normal line is given by the
parametric equations

x = 1 + 8t, y = 1 + 8t, z = 4− t.
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Recitation 13

R13 Topics
GRA2, Quiz 2 Review

Quiz 2 Covers These Topics
13.6 Velocity and Acceleration in Polar Coordinates
14.2 Limits and Continuity
14.3 Partial Derivatives
14.4 The Chain Rule
14.5 Directional Derivatives, the Gradient
14.6 Tangent Planes, Differentials
14.7 Absolute Max/Min

Office Hours
I’ll hold the usual additional office hours and drop-in session (same times and
URLs as last quiz).

While We’re Waiting to Start
Find the dimensions of a rectangular box of maximum volume such that the
sum of its 12 lengths is a constant L.
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Dimensions of a Rectangular Box

Find the dimensions of a rectangular box of maximum volume such that the
sum of its 12 lengths is a constant L.

Solution
Letting the dimensions be a, b, and c, then V = abc. To incorporate the length
constraint, we will eliminate c by using 4a+ 4b+ 4c = L, or c = L/4− a− b.
The volume is

V = abc = ab(L/4− a− b) = abL/4− a2b− ab2

Va = bL/4− 2ab− b2 = 0⇒ 2a+ b = L/4

Vb = aL/4− a2 − 2ab = 0⇒ 2b+ a = L/4

Solving these two questions yields a = b = L/12. Not surprisingly, c = L/12.
From the geometrical nature of this problem, this critical point corresponds to
a maximum.

Thus, the rectangular box is a cube with sides of length L/12.

Note that another approach to this problem would be to use Lagrange
Multipliers, but we haven’t explored that method yet in our course.
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Quiz 2

Quiz 2 Learning Objectives
For Quiz 2, you should be able to do the following.

I Determine whether or not limits of functions of several variables exist by
evaluating the limit along paths or by using the formal definition of limit.

I Compute partial derivatives of multi-variable functions using the chain rule.

I Compute gradients and directional derivatives.

I Provide geometric interpretations of gradients and directional derivatives.

I Describe the relationship between gradients and level curves and surfaces.

I Apply the gradient to find equations of tangent planes, normal lines and
tangent lines of surfaces.

I Apply tangent planes and differentials to make approximations.

I Locate and classify critical points of surfaces.
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Graded Recitation Activity 2

Instructions

I Every student in your group needs to write their name or initials on the
board.

I You have 20 minutes to answer the questions below.

I For full marks, show at least two intermediate steps for each question.

I Answer each question on a different slide.

I All students in the same group receive the same grade.

I Please do not share computers: every student should log in on their own
computer.

I You do not need to simplify your answers.

Question 1 (3 points)
Consider the surface x2yz + xy − y2z2 = −27.

1. Find an equation of the tangent plane to the surface at the point (1, 3, 2).

2. Find a parameterization of the normal line at the point (1, 3, 2).

Question 2 (2 points)
Consider the surface z = x3y − x2y2. Find a normal vector to z at (2, 1, 4).
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GRA2, Question 1 Part 1

Consider the surface x2yz + xy − y2z2 = −27. Find an equation of the
tangent plane to the surface at the point (1, 3, 2).

Solution
Let F (x, y, z) = x2yz + xy − y2z2. A vector that is perpendicular to this
surface at any point is ∇F .

∇F (x, y, z) =

 ∂
∂x

F
∂
∂y

F
∂
∂z

F

 =

 2xyz + y
x2z + x− 2yz2

x2y − 2y2z

 ⇒ ∇F (1, 3, 2) =

 15
−21
−33


We now have a vector that is normal to the surface at (1, 3, 2). The dot
product between this vector, and any vector in the plane, is going to be zero.

0 = ∇F (1, 3, 2) ·

 x− 1
y − 3
z − 2

 =

 15
−21
−33

 ·
 x− 1

y − 3
z − 2


Thus, the tangent plane is given by 15(x− 1)− 21(y − 3)− 33(z − 2) = 0,
which simplifies to 15x− 21y − 33z = −114.
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GRA2, Question 1 Part 2

Consider the surface x2yz + xy − y2z2 = −27. Find a parameterization of the
normal line at the point (1, 3, 2).

Solution
The normal line is given by the parametric equations

x = 1 + 15t, y = 3− 21t, z = 2− 33t.
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GRA2, Question 2

Consider the surface z = x3y − x2y2. Find a normal vector to z at (2, 1, 4).

Solution
Let F (x, y, z) = x3y − x2y2 − z. Then the surface z has a normal vector given
by the gradient ∇F .

∇F (x, y, z) =

 ∂
∂x

F
∂
∂y

F
∂
∂z

F

 =

 3x2y − 2xy2

x3 − 2x2y
−1


∇F (2, 1, 4) =

 3(2)2(1)− 2(2)(1)2

23 − 2(2)2(1)
−1

 =

 8
0
−1


A vector that is normal to the surface is [8, 0,−1]. Another normal vector is
[−8, 0, 1].
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Tangent Line

Find an equation for the tangent line to the curve of intersection of the
surfaces z = x2 + y2 and 4x2 + y2 + z2 = 9 at (−1, 1, 2).

Solution
Let f = z − x2 − y2 and g = 4x2 + y2 + z2 − 9. Then the tangent line is
perpendicular to both ∇f and ∇g. Vector ~v = ∇f ×∇g is parallel to the
desired tangent line (the textbook explains why in Section 14.6).

∇f(x, y, z) =

 −2x−2y
1

 , ∇f(−1, 1, 2) =

 2
−2
1


∇g(x, y, z) =

 8x
2y
2z

 , ∇g(−1, 1, 2) =

 −82
4


∇f(−1, 1, 2)×∇g(−1, 1, 2) =

∣∣∣∣∣∣
i j k
2 −2 1
−8 2 4

∣∣∣∣∣∣ =
 −1016
−12


Parametric vector equations for the tangent line at (−1, 1, 2) are

x = −1− 10t, y = 1− 16t, z = 2− 12t.
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Absolute Max/Min

Find the absolute maximum and minimum of the function
f(x, y) = 4xy2 − x2y2 − xy3 in the closed triangle bounded by the lines x = 0,
y = 0 and y = 6− x.

Solution
We will first consider the boundaries of the triangular region, and then
investigate the interior.

The Boundaries of the Triangular Region
There are three boundaries we must consider.

I Everywhere along x = 0, f(0, y) = 0.

I Everywhere along y = 0, f(x, 0) = 0.

I Along y = 6− x, and f(x, 6− x) = −2x(x− 6)2. Taking the derivative
and setting the result to zero gives us
0 = fx(x, 6− x) = −6(x2 − 8x+ 12) = −6(x− 2)(x− 6). This suggests
that x = 2 and x = 6 could be min/max, so we can evaluate f at these
points f(2, 4) = −64, and f(6, 0) = 0.

On the next slide, we will look at the interior of the region.
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Absolute Max/Min

The Interior of the Region
fx = 4y2 − 2xy2 − y3 = 0 implies that either y = 0 or y = 4− 2x. But y = 0
is not in the interior (it is along the boundary, which we’ve already looked at).
fy = 8xy − 2x2y − 3xy2 = 0 implies that either y = 0 or 8x− 2x2 − 3xy = 0.
By substitution,

0 = 8x− 2x2 − 3xy = 8x− 2x2 − 3x(4− 2x) = 4x(x− 1)

Thus, x = 0 or x = 1. Again, x = 0 is not in the interior of our region. When
x = 1, y = 4− 2(1) = 2. So for the interior, we need only consider the point
(1, 2), and f(1, 2) = 4

Putting everything together, we have:

f(0, y) = 0

f(x, 0) = 0

f(2, 4) = −64
f(1, 2) = 4

The absolute maximum is f(1, 2) = 4 and the absolute minimum is
f(2, 4) = −64.
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Recitation 15

R15 Topics
14.8 Lagrange Multipliers (LM)

R15 Learning Objectives

I
Solve constrained optimization problems using LM.

I
Compare LM to other approaches that solve constriained optimization

problems.

While We’re Waiting to Start
A wire in the shape of a circle of radius 1 has temperature T (x, y) = xy.

1. Sketch the level curves of T .

2. Based on your sketch, where are rT , and the normal vector to the wire,

parallel?

3. Find the hottest and coldest points on the wire using LM.

4. Describe another method of finding the hottest and coldest points, and

why it may not work in more complex situations.
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Constrained Temperature Optimization

A wire in the shape of a circle of radius 1 has a temperature of T (x, y) = xy.

1. Sketch the level curves of T .

2. Based on your sketch, where are rT , and the normal vector to the wire,

parallel?

Solution
The level curves have the form C = xy, or y = C/x, for constant C. The plot

below shows the level curves for positive temperatures in red, negative in blue,

and the wire in black. The four points where rT looks parallel to rg are also

shown.

It would seem from our sketch that

the hottest points occur at the

points (1/

p
2, 1/

p
2) and

(�1/

p
2,�1/

p
2), and the coldest

points occur at (�1/

p
2, 1/

p
2) and

(1/

p
2,�1/

p
2). It is at these

points that rT seems to be parallel

to rg, where g(x, y) = x

2
+ y

2 � 4.
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Constrained Temperature Optimization

A wire in the shape of a circle of radius 1 has a temperature of T (x, y) = xy.

Find the hottest and coldest points on the wire using LM.

Solution
Let the constraint be g(x, y) = x

2
+ y

2 � 1 = 0. The coldest and warmest

points correspond to where the two gradients are parallel: rT = �rg. The

constant � is an unknown parameter. Calculating the gradients gives us:


y

x

�
=


�2x

�2y

�

Substitution yields y = 2�(2�y) = 4�

2
y, which has the solutions y = 0 or

� = ±1/2. If y = 0, then x = 0, which is not a point on the wire. Thus, �

must be ±1/2, which means y = ±x.

The constraint x

2
+ y

2
= 1 implies we have four solutions, (1/

p
2, 1/

p
2),

(�1/

p
2,�1/

p
2), (1/

p
2,�1/

p
2), and (�1/

p
2, 1/

p
2).

Since T is positive in the first and third quadrants and negative in the other

two, the first two points are the warmest points, and the other two are the

coldest points on the wire.
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Constrained Temperature Optimization

Describe another method of locating the hottest and coldest points, and why it

may not work in more complex situations.

Parametric Representations

The constraint is specified by the unit circle, so we can identify a parametric

representation of the constraint curve, with x(t) = cos t, y(t) = sin t. Then

g = 0 is satisfied, and T (x, y) = T (x(t), y(t)). We can find the warmest and

coldest points by solving 0 =

d

dt

T =

d

dt

�
cos t sin t

�
. This approach works for

the given problem. But for more complicated constraints, g(x, y), it may not

be possible to find a parametric representation.

Cross Product of the Gradients

The cross product of two parallel vectors is the zero vector. Knowing that we

need points where rT and rg are parallel, we can instead solve

~

0 =

������

i j k

T

x

T

y

0

g

x

g

y

0

������
= (T

x

g

y

� T

y

g

x

)

ˆ

k = (y

2 � x

2
)

ˆ

k

The rest of the solution is straightforward. This method is e�cient because we

have functions of two variables and did not need to introduce �. But if we had

functions of 3 variables, the resulting algebra could be tedious.
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A Definition of the Method of LM

If point (x0, y0, z0) a function f(x, y, z), subject to

g(x, y, z) = 0, then rf and rg are parallel at (x0, y0, z0), and there exists a

constant �, such that

rf(x0, y0, z0) = �rg(x0, y0, z0)

The scalar � is called a Lagrange multiplier.

Note also that the above definition applies to when there is only one constraint,

g. Your textbook also describes an approach for when there are two constraints:

if we wish to minimize/maximize f subject to g and to h, then we solve

rf = �rg + µrh

In this case, we have two Lagrange multipliers, � and µ.

Solution
minimizes or maximizes
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Test Your Understanding of LM

Where is the absolute maximum value of f(x, y) = x+ y, subject to xy = 9,

located?

1. (3,3)

2. (3,3) and (-3,-3)

3. (3,3), (-3,3), (3,-3), and (-3,-3)

4. There is no absolute maximum value.

Solution
There is no absolute maximum value of f subject to the given constraint. If we

were to use LM, we would solve rf = �rg, along with xy = 9. Calculating

the gradients gives us


1

1

�
= �


y

x

�
.

If 1 = �y, then � 6= 0. And if �x = �y, then we can divide by � to obtain

x = y. Thus,

xy = 9 ) x

2
= 9 ) x = ±3.

Thus, we have two points where the gradients are parallel, (3, 3) and (�3,�3).

But we need to find the absolute maximum of f(x, y). This problem is

continued on the next slide.
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Test Your Understanding of LM (Continued)

We have two points where the gradients are parallel, at (3, 3) and (�3,�3).

But what do these points correspond to? Are they local minima? Local

maxima?

Maximizing f(x, y) along the curve xy = 9

implies that we are interested in values of f

along y = 9/x. Along this curve, our

function becomes f = x+ 9/x, shown to the

right. This function has critical points at

x = 3 and at x = �3. We can also see that

(�3,�3) corresponds to a local maximum,

and (3, 3) corresponds to a local minimum.

But there is no absolute maximum, because f ! 1 as x ! 1 along the curve

xy = 9.

Conclusion: LM only gives us points where gradients are parallel. Extra work is

needed to determine if these points are local/absolute min/max.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the distance from the point P (0, 1) to the curve x

2
= 4y.

2. The volume of a cylindrical tank with hemispherical ends must be 100

cubic meters. What dimensions of the tank minimizes its surface area?
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Distance From a Point to a Curve

1) Find the minimum distance from the point P (0, 1) to the curve x

2
= 4y.

Solution
We can minimize the square of the distance, d(x, y) = x

2
+ (y � 1)

2
, subject

to the constraint curve g(x, y) = x

2 � 4y = 0.

rd(x, y) =


2x

2(y � 1)

�
, rg =


2x

�4

�

The minimum must occur where rd is parallel to rg. We can proceed by

either solving rd = �rg, or by using a cross product.

Solve Using rd = �rg

We must solve the equations

2x = 2x�

2(y � 1) = �4�

The first equation implies that either x = 0 or � = 1. If x = 0, then from our

constraint curve, y = 0. If � = 1, then y = �1 but y can’t be negative

(because x

2
= 4y). We therefore have the point (0, 0). And d(0, 0) = 1.
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Distance From a Point to a Curve

Alternate Solution: Cross Product

The cross product of parallel vectors is zero, and we are looking for points

where two vectors are parallel. We can also use a cross product to solve this

problem.

~

0 =

2

4
2x

2(y � 1)

0

3

5⇥

2

4
2x

�4

0

3

5

=

������

i j k

2x 2(y � 1) 0

2x �4 0

������

=

⇣
� 8x� 4x(y � 1)

⌘
ˆ

k

= (�4x� 4xy)

ˆ

k

Thus, �4x� 4xy = 0, or x(y + 1) = 0. As before, y can’t be negative, so

x = 0. And since x

2
= 4y, x = y = 0. The distance is d(0, 0) = 1.
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Minimizing Surface Area of a Tank

2) The volume of a cylindrical tank with hemispherical ends must be 100 cubic

meters. What dimensions of the tank minimizes its surface area?

Solution
We want to minimize S = 4⇡R

2
+ 2⇡RL, subject to

V =

4
3⇡R

3
+ ⇡R

2
L = 100. We could substitute one expression into the other

to obtain a function of one variable which we can minimize, or we can use LM.

To use LM, we set g = g(R,L) =

4
3⇡R

3
+ ⇡R

2
L� 100. Then rS = �rg

yields

rS = �rV


8⇡R+ 2⇡L

2⇡R

�
= �


4⇡R

2
+ 2⇡RL

⇡R

2

�

Thus, � = 2/R, and

8⇡R+ 2⇡L = (2/R)(4⇡R

2
+ 2⇡RL)

4R+ L = 4R+ 2L

Thus, L = 0, the volume constraint gives R = (75/⇡)

1/3
, and

S = 4⇡(75/⇡)

2/3
.
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Recitation 16

R16 Topics
14.8 Lagrange Multipliers
14.9 Taylor’s Formula for Two Variables
14.10 Partial Derivatives with Constrained Variables

R16 Learning Objectives
I Derive the least squares equations to fit the plane Ax+By + C to a set

of given points (14.8).
I Calculate a cubic approximation to a function of two variables at a

specified point (14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).

While We’re Waiting to Start
Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U
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The Chain Rule with Intermediate Variables, Parts A and B

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV

Solution
A) The notation

(
∂S
∂V

)
U

implies that V and U are independent variables, and

that S is a dependent variable. Using S = 3UV , we obtain( ∂S
∂V

)
U
=

∂

∂V

(
3UV

)
= 3U

B) The derivative dS/dV implies that S is a dependent variable, and V is an
independent variable. U is not identified as either an independent or as a
dependent variable, and so we must assume that U is an intermediate variable
(U could be a function of V ). Using the equation S = 3UV , we obtain

dS

dV
=

d

dV

(
3UV

)
= 3V

dU

dV
+ 3U = 3V U ′ + 3U
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The Chain Rule with Intermediate Variables, Parts C and D

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U

Solution
C) V and U are identified as independent variables. S is an intermediate
variable and could be a function of V , so( ∂L

∂V

)
U
=

∂f

∂V
+

∂f

∂S

∂S

∂V

=
∂f

∂V
+

∂f

∂S
3U

D) V , U , and S are independent variables, so( ∂L
∂V

)
S,U

=
∂f

∂V

If you want to check your results for parts C and D, it may help to substitute a
function for f(U, V, S) and see what happens, such as f = 4U2V S. It may
also help to use more familiar variables, so that S = 3xy and L = f(x, y, z).
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Taylor Approximation (14.9)

Calculate the cubic approximation to f(x, y) = 4x cos(y) near the origin.
Complete this question in group work. Note: this was a pop quiz in 2014.
Solution (below is a screen capture of my notes from 2014)
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Approximation Error (14.9)

Use your results from the previous problem to find the quadratic approximation
to f(x, y) = 4x cos(y) near the origin. Then estimate the error in the
approximation if |x| < 0.5 and |y| < 0.1.
Solution
Taylor’s formula for a quadratic approximation is

f(x, y) = f(0, 0) + (xfx + yfy) +
1

2
(x2fxx + 2xyfxy + y2fyy)

Using our results from the previous problem, our quadratic approximation is
f = 4x. The maximum error of this approximation is given by the next term in
the expansion, which is

|E(x, y)| ≤
∣∣∣ 1
3!
(x3fxxx + 3x2yfxxy + 3xy2fxyy + y3fyyy)

∣∣∣
=

1

3!

∣∣∣(x3 · 0 + 3x2y · 0 + 3xy2 · (−4) + y3 · 0)
∣∣∣

=
1

3!

∣∣∣(−12xy2)
∣∣∣ = 2|x|y2.

Therefore, the desired error estimate is

|E(0.5, 0.1)| ≤ 2(0.5)(0.1)2 = 0.01.
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Least Squares (14.8)

The plane z = Ax+By + C is to be fitted to a given set of points,
(xn, yn, zn). Derive the linear system of equations that, when solved, minimizes

E =

N∑
n=1

(Axn +Byn + C − zn)
2.

Solution
We must find an expression that, given a set of data points, returns the values
of A, B, and C that minimizes E. To minimize E, we take the derivatives of
E with respect to the independent variables A, B, and C, and set these 3
equations to zero. In doing so, we can treat xn, yn, and zn as constants.

0 =
∂E

∂A
=

∂

∂A

N∑
n=1

(Axn +Byn + C − zn)
2

=

N∑
n=1

2(Axn +Byn + C − zn)
∂

∂A
(Axn +Byn + C − zn)

But ∂
∂A

(Axn +Byn + C − zn) = xn, because ∂
∂A

(Byn + C − zn) = 0.
Remember that we are treating xn, yn, and zn as constants.
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Least Squares (continued)

We will also divide both sides of the equation by 2 to obtain the following.

0 =
∂E

∂A
= 2

N∑
n=1

(Axn +Byn + C − zn)
∂

∂A
(Axn +Byn + C − zn)

= 2

N∑
n=1

(Axn +Byn + C − zn)xn

=
N∑

n=1

Axnxn +
N∑

n=1

Bynxn + C
N∑

n=1

xn −
N∑

n=1

znxn

N∑
n=1

znxn = A
N∑

n=1

(xn)
2 +B

N∑
n=1

ynxn + C
N∑

n=1

xn

=

[
N∑

n=1

(xn)
2

N∑
n=1

xnyn
N∑

n=1

xn

] A
B
C


In the last step above we expressed our sum as a vector product. A similar
process for the derivatives EB and EC yields equations on the next slide.
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Least Squares (continued)

Calculating the partial derivative EB and setting it equal to zero gives us

N∑
n=1

znyn =

[
N∑

n=1

xnyn
N∑

n=1

(yn)
2

N∑
n=1

yn

] A
B
C


Likewise, EC = 0 gives us the following.

N∑
n=1

zn =

[
N∑

n=1

xn

N∑
n=1

yn
N∑

n=1

1

] A
B
C


Note that

N∑
n=1

1 = N . Putting our three vector product equations together

gives us the linear system of equations that we were asked to find. ∑
znxn∑
znyn∑
zn

 =

 ∑
(xn)

2 ∑
xnyn

∑
xn∑

xnyn
∑

(yn)
2 ∑

yn∑
xn

∑
yn N

 A
B
C
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Recitation 17

R17 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R17 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral (Cartesian
coordinates).

Today’s Questions
Sketch the region bounded by the given curves and construct a double integral
that represents its area.

a) y =
√
x, y = x3.

b) x = 5− y, x = 2y − 1, y = 1.

c) y = x− 6, y2 = x.

Recitation 17, Slide 1



Announcements, WolframAlpha Syntax

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: One Week from Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.

Wolfram Alpha Syntax for Double Integrals
You may want to use Wolfram Alpha to check your answers while completing
your HW. Suppose that we want to determine the value of∫ −1

−2

∫ x−1

0

(x2C + y)dydx

The syntax we could use to compute this particular integral is the following.

integrate x^{2C}+y, x from -2 to -1 and y from 0 to (x-1)
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1a) Area of a Region

Sketch the region bounded by y =
√
x, y = x3 and construct a double integral

that represents its area.
Solution

We can either integrate with respect to
(wrt) x first, or wrt y first. Either
approach will let us express the area with
one double integral.

Integrating wrt y first: the region of integration is the set of all points, (x, y),
such that 0 ≤ x ≤ 1, and x3 ≤ y ≤

√
x. A double integral that represents the

area of the region is ∫ 1

0

∫ √x

x3

dydx.

Alternatively, integrating wrt x first, we can express the region of integration as
the set of all points, (x, y), such that 0 ≤ y ≤ 1, and y2 ≤ x ≤ y1/3. A double
integral that represents the area of the region is∫ 1

0

∫ y1/3

y2

dxdy.
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1b) Area of a Region

Sketch the region bounded by x = 5− y, x = 2y − 1, y = 1, and construct a
double integral that represents its area.
Solution

The shape of the region suggests that if
we integrate wrt x first, then we can
express the area with a single integral.

The region of integration is the set of all points, (x, y), such that 1 ≤ y ≤ 2,
and 2y − 1 ≤ x ≤ 5− y. A double integral that represents the area of the
region is ∫ 2

1

∫ 5−y

2y−1

dxdy.

Alternatively, we could also integrate wrt y first. This approach would require
two integrals, ∫ 3

1

∫ x+1
2

1

dydx+

∫ 4

3

∫ 5−x

1

dydx.
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1c) Area of a Region

Sketch the region bounded by y = x− 6, y2 = x, and construct a double
integral that represents its area.
Solution
Finding the intersection points requires solving y2 = y + 6, which yields
y = −2 and y = 3.

The shape of the region suggests that we integrate wrt x first. A double
integral that represents the area of the region is∫ 3

−2

∫ y+6

y2

dxdy.

Alternatively, we could also integrate wrt y first. It would require two integrals,∫ 4

0

∫ √x

−
√
x

dydx+

∫ 9

4

∫ 5−x

1

dydx.
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Recitation 18

R18 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R18 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral.

I Calculate the average value of a function of two variables.

Today’s Questions

1. Change the order of integration.

a)

∫ 0

−1

∫ √y+1

−
√
y+1

dxdy b)

∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx

2. Construct a double integral that represents the volume of the solid
enclosed by the cylinder x2 + y2 = 1, the planes z = y, x = 0, z = 0, in
the first octant.

3. Evaluate
∫ 4

0

∫ 4

y
ex

2

dxdy.
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Announcements

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: Next Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.
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The Average Value of a Function (15.3)

The average value of a function, f(x, y), over a region R, is given by

Average value of f over region R =
1

area of R

∫∫
R

f(x, y)dA

This definition can be used to find the value of some double integrals quickly.

Example
Region R is the unit circle

√
x2 + y2 ≤ 1. The definite integral of f = x+ 1

over R is equal to:

a) 0

b) 1

c) π

d) π/4

Solution
The answer is c). The area of R is π. The average value of 1 + x over R is 1.

1 =
1

π

∫∫
R

(1 + x)dA ⇒
∫∫

R

(1 + x)dA = π.

Calculating this double integral by hand would have required many more steps.
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Conceptual Question Related to Double Integrals

Let region R be the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. The definite integral of
x3 over region R is equal to:

a) a positive number

b) a negative number

c) zero

d) a function of x

Solution
The answer is zero because the average value of f over R is zero. Alternatively,
we can also argue that the double integral is zero because we are integrating an
odd function (in x) over an interval that is symmetric about the y-axis.

Calculating the integral may help explain what this means.∫ 1

−1

∫ 1

−1

x3dxdy =

∫ 1

−1

x4

4

∣∣∣1
−1
dy =

∫ 1

−1

0 dy = 0.

You may remember from integral calculus that for a function of one variable,
the integral of an odd function over a symmetric interval is zero.
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1a) Changing the Order of Integration

Change the order of integration.∫ 0

−1

∫ √y+1

−
√

y+1

dxdy

Solution
The inner integral tells us that x ∈

[
−
√
y + 1,

√
y + 1

]
. We can solve for y

to more easily sketch the region of integration.

−
√
y + 1 ≤ x ≤

√
y + 1

x2 ≤ y + 1

y ≥ x2 − 1

The above inequality tells us that we are interested in the region above the
parabola y = x2 − 1. The outer integral tells us that −1 ≤ y ≤ 0, so we are
only interested in the region between y = x2 − 1 and the x-axis. The rest of
this problem is on the next slide.
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1a) Changing the Order of Integration (continued)

Integrating wrt y first requires y ∈ [x2 − 1, 0], and x ∈ [−1, 1]. The integral
becomes ∫ 0

−1

∫ √y+1

−
√

y+1

dxdy =

∫ 1

−1

∫ 0

x2−1

dydx

Recitation 18, Slide 6



1b) Changing the Order of Integration

Change the order of integration.∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx

Solution
The region over which we are integrating f(x, y) is the shaded area below.

The region is bounded by the lines y = 0, x = 1 + e, and by the curve
y = ln(x− 1). Integrating wrt y last, values of y range from 0 to 1, and values
of x range from x = ey + 1 to x = 1 + e. The double integral becomes∫ 1

0

∫ 1+e

ey+1

f(x, y)dxdy.
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2) Volume of a Solid

Construct a double integral that represents the volume of the solid enclosed by
the cylinder x2 + y2 = 1, the planes z = 1− y, x = 0, z = 0, in the first octant.

Solution
The solid lies under the surface z = 1− y and above the quarter circle R, with
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2.

V =

∫∫
R

f(x, y)dA =

∫ 1

0

∫ √1−x2

0

(1− y)dydx

Alternatively, we could also integrate with respect to x first.

V =

∫∫
R

f(x, y)dA =

∫ 1

0

∫ √1−y2

0

(1− y)dxdy

In case it helps, sketches of region R and the solid are below.
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3) Evaluating a Double Integral

Evaluate the following double integral.∫ 4

0

∫ 4

y

ex
2

dxdy

Solution
The integral of ex

2

cannot be expressed in terms of elementary functions.
What can we do to get around this problem?

The given integration region is bounded by the lines y = 0, x = 4, and y = x.
Changing the order of integration, the double integral becomes∫ 4

0

∫ 4

y

ex
2

dxdy =

∫ 4

0

∫ x

0

ex
2

dydx

=

∫ 4

0

yex
2
∣∣∣y=x

y=0
dx

=

∫ 4

0

xex
2

dx =
ex

2

2

∣∣∣4
0
=
e16 − 1

2

Changing the order of integration can sometimes make it easier to evaluate
certain integrals.
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Additional Exercises

1. Set up an integral that represents the volume of the solid enclosed by the
planes x = 1, y = 3, the three coordinate planes, and x2 + 2y2 + z = 1.

2. Find the volume of the solid enclosed by z = x2 + y2, y = x2 and x = y2.

Solution
1. The solid lies under the surface z = 1− x2 − 2y2 and above the rectangle
R, with 0 ≤ x ≤ 1, 0 ≤ y ≤ 3.∫∫

R

f(x, y)dA =

∫ 1

0

∫ 3

0

(1− x2 − 2y2)dydx

2. The curves y = x2 and x2 = y intersect at (0,0) and at (1,1).∫ 1

0

∫ √x

x2

x2 + y2dydx =

∫ 1

0

(
yx2 +

y3

3

)∣∣∣√x

x2
dx

=

∫ 1

0

(
x5/2 +

x3/2

3
− x4 − x6

3

)
dx

=
(2
7
x7/2 +

2

15
x5/2 − 1

5
x5 − 1

21
x7
)∣∣∣1

0

=
2

7
+

2

15
− 1

5
− 1

21
= 6/35
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Recitation 19

R19 Topics
15.4 Double Integrals in Polar Coordinates
Quiz 3 Review

Quiz 3 Topics

I 14.08 Lagrange Multipliers
I 14.09 Taylor’s Formula for Two Variables
I 14.10 Partial Derivatives with Constrained Variables
I 15.01 Iterated Integrals over Rectangles
I 15.02 Double Integrals over General Regions
I 15.03 Area by Double Integration
I 15.04 Double Integration in Polar Coordinates

Office Hours
I’ll hold additional office hours and a review session:

I Quiz 3 Review Session ∀ Math 2401 students: Tue 5:30 - 7:00 pm, at
https://georgiatech.adobeconnect.com/dcp-online-drop-in-tutor-center-2014-fall

I Quiz 3 Review Session ∀ QH8 students: Wed: 7:30 - 8:30 pm at
https://georgiatech.adobeconnect.com/distancecalculusofficehours
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Quiz 3 Learning Objectives

You should be able to do the following for Quiz 3.

I Solve constrained optimization problems using Lagrange multipliers (14.8).
I Calculate a Taylor approximation to a function of two variables at a point

(14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).
I Construct a double integral that represents the area of a region bounded

by a set of given curves in Cartesian or polar coordinates (15.1 to 15.4).
I Change the order of integration of a double integral (15.1 to 15.4).
I Calculate the average value of a function of two variables (15.3).
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Volume of a Sphere

Identify the expressions that represent the volume of a sphere of radius R.

1) 4

∫ π

0

∫ R

0

r
√
R2 − r2drdθ

2)

∫ 2π

0

∫ R

0

√
R2 − r2drdθ

3) 2

∫ 2π

0

∫ R

0

r
√
R2 − r2drdθ

4)

∫ 2π

0

∫ R/2

0

r
√
R2 − r2drdθ

Solution: (1) and (3) are correct. In Cartesian coordinates, the volume of the
sphere is

2

∫ R

−R

∫ √R2−x2

−
√
R2−x2

√
R2 − (x2 + y2)dydx

We multiply by 2 because the integral only represents the upper half of the
sphere, whose height from the xy-plane is R2 − (x2 + y2). We must convert
this integral from Cartesian to polar coordinates.
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Volume of a Sphere (continued)

We need to do three things: convert the integrand to polar coordinates,
identify the limits of integration, and change the differential (dxdy) to a polar
representation, rdrdθ.

Knowing that x2 + y2 = r2, the integrand becomes
√
R2 − r2.

The projection of the volume onto the xy-plane is a circle of radius R, centered
at the origin. So the points in the region have polar coordinates (r, θ) in the
set 0 ≤ θ ≤ 2π, and 0 ≤ r ≤ R.

Using these limits of integration our integral becomes

2

∫ 2π

0

∫ R

0

r
√
R2 − r2drdθ

Alternatively, we can use symmetry and use the limits 0 ≤ θ ≤ π, and
0 ≤ r ≤ R, so the integral becomes

4

∫ π

0

∫ R

0

r
√
R2 − r2drdθ
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Graded Recitation Activity 3

Instructions

I Every student in your group needs to write their name or initials on the
board.

I You have 10 minutes to answer the question below.
I For full marks, show at least one intermediate step.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Question (5 points, from last year’s quiz)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Recitation 19, Slide 5



GRA3

Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.
Solution: a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates

Convert to a double integral in polar coordinates (from 2014 Quiz 2).∫ 2

0

∫ √4−(x−2)2

0

xydydx

Solution: the 1st part of a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 2nd part of a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 3rd part of a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 4th part of a screen capture of hand-written solutions are below.
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Additional Exercise: Normal Distribution

Evaluate

I =

∫ ∞
0

e−x
2

dx

Solution

I2 =

∫ ∞
0

e−x
2

dx ·
∫ ∞
0

e−y
2

dy

=

∫ ∞
0

∫ ∞
0

e−x
2−y2dxdy

= lim
a→∞

∫ π/2

0

∫ a

0

re−r
2

drdθ

= lim
a→∞

∫ π/2

0

−1
2
e−r

2
∣∣∣a
0
dθ

=
−1
2

lim
a→∞

∫ π/2

0

(e−a
2

− 1)dθ

I2 = π/4

I =
√
π/4
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Additional Exercise: Integration in Polar Coordinates

Sketch the rose curve r = 2 cos(2θ) and find the area of one petal.
Solution: a screen capture of hand-written solutions are below.
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Recitation 23

R23 Topics
15.5 Triple Integrals in Rectangular Coordinates
15.6 Moments of Inertia and Mass

R23 Learning Objectives

I Construct a triple integral that represents the area of a region bounded by
a set of given curves in Cartesian or cylindrical coordinates

I Change the order of integration of a triple integral
I Set-up integrals that represent moments of inertia and centres of mass of

solids

Today’s Questions

1. Set-up a triple integral that represents the volume bounded by the
following surfaces. Set-up the integrals in at least two different ways.

1.1 y2 + z2 = 1, and the planes y = x, x = 0, and z = 0.
1.2 z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0.

2. Consider the region inside the curve r = 2 + sin(θ). Set up the three
integrals you need to find the x and y coordinates of the centroid of the
region, assuming its density is δ(x, y). Express these integrals in polar
coordinates. This is a question from a 2014 quiz.
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Triple Integrals, Example 1

Set-up a triple integral that represents the volume of the region bounded by
y2 + z2 = 1, and the planes y = x, x = 0, and z = 0. Set-up the integral in at
least two different ways.
Solution: dzdydx
We could choose the integration order dzdydx. The solid is shown below.

We chose to integrate wrt x last, so x ∈ [0, 1].
Then, for any given value of x in [0, 1] , y ∈ [x, 1].
Then, for any y ∈ [x, 1], z ∈ [0,

√
1− y2].

The volume of the solid, V, is equal to the triple integral

V =

∫ 1

0

∫ 1

x

∫ √1−y2

0

dzdydx.
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Triple Integrals, Example 1 (continued)

Solution: dxdzdy
We could also use the integration order dxdzdy.
We decided to integrate wrt y last, so y ∈ [0, 1].
Then, for any given value of y in [0, 1] , z ∈ [0,

√
1− y2].

Then, for any z ∈ [0,
√

1− y2], x ∈ [0, 2].
The volume is the triple integral:

V =

∫ 1

0

∫ √1−y2

0

∫ y

0

dxdzdy

Note:

I Using only Cartesian coordinates, there are six integration orders that can
be considered (dxdydz, dxdzdy, dydxdz, dydzdx, dzdxdy, dzdydx).

I Regardless of how we set up our integral, we should obtain the same value
for V , which in this case happens to be 1/3.

I WolframAlpha syntax for evaluating the above triple integral is

\int_0^1 \int_0^{\sqrt{1-y^2}} \int_0^y dxdzdy

Recitation 23, Slide 4



Triple Integrals, Example 2

Set-up a triple integral that represents the volume of the region bounded by
z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0. Set-up the integral
in at least two different ways.

Solution
If we were to choose dzdydx, then we would need to break up our volume into
two regions. The curves z = 2− y and z = y2 are shown below, along with
regions R1 and R2.
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Triple Integrals, Example 2, Continued

Volume of Region R1 with dzdydx
We chose to integrate wrt x last, so x ∈ [0, 2].
Then, for any given value of x in [0, 2] , y ∈ [0, 1].
Then, for any y ∈ [0, 1], z ∈ [0,

√
y].

Volume Region R2 with dzdydx
We chose to integrate wrt x last, so x ∈ [0, 2].
Then, for any x in [0, 2] , y ∈ [1, 2].
Then, for any y ∈ [1, 2], z ∈ [0, 2− y].

Thus, the total volume is the sum of the two triple integrals:

V =

∫∫∫
R1

dV +

∫∫∫
R2

dV

=

∫ 2

0

∫ 1

0

∫ √y
0

dzdydx+

∫ 2

0

∫ 2

1

∫ 2−y

0

dzdydx
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Triple Integrals, Example 2, Continued

Solution: dydzdx

With the integration order dydzdx, we do not
need to break up the solid into two regions.
We are integrating wrt x last, so x ∈ [0, 2].
Then, for any x in [0, 2] , z ∈ [0, 1].
Then, for any z ∈ [0, 1], y ∈ [z2, 2− z].

Thus, the total volume is the triple integral:

V =

∫ 2

0

∫ 1

0

∫ 2−z

z2
dydzdx

Note:

I Regardless of how we set up our integral, we should obtain the same value
for V , which in this case happens to be 7/3.

I WolframAlpha syntax for evaluating the above triple integral is

\int_0^2 \int_0^1 \int_{z^2}^{2-z}dydzdx
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Centroid

Consider the region inside the curve r = 2 + sin(θ). Set up the three integrals
you need to find the x and y coordinates of the centroid of the region,
assuming its density is δ(x, y). Express these integrals in polar coordinates.
This is a question from a 2014 quiz.

Solution

A plot of the curve is
shown below.

The mass of the solid, m, is

m =

∫ 2π

0

∫ 2+sin(θ)

0

δ(r, θ) rdrdθ

The coordinates (x̄, ȳ) of the center of
mass of the region are

mx̄ =

∫ 2π

0

∫ 2+sin(θ)

0

δ(r, θ) r2 cos(θ)drdθ

mȳ =

∫ 2π

0

∫ 2+sin(θ)

0

δ(r, θ) r2 sin(θ)drdθ
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Recitation 24

R24 Topics
15.7 Integration in Cylindrical and Spherical Coordinates

R24 Learning Objectives

I
Construct a triple integral that represents the area of a region bounded by

a set of given curves in cylindrical or spherical coordinates

I
Change the order of integration of a triple integral

The Spherical Coordinate System

Fill in the blanks.

x = ⇢ cos ✓

y = ⇢ sin ✓

z = ⇢
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I
Every student in your group needs to write their name or initials on the

board.

I
You have 15 minutes to answer both questions below.

I
For full marks, show at least two intermediate steps.

I
All students in the same group receive the same grade.

I
Please do not share computers: every student should log in on their own

computer.

I
You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid

x

2
+ (y/2)

2
+ (z/9)

2
= 1 in the 1st octant (x,y,z non-negative). Do not

evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by

the hyperboloid of two sheets �x

2 � y

2
+ z

2
= 4, the plane z = 8 and the

plane z = 10. Do not evaluate.
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Spherical Coordinates

Provide a geometric interpretation the surfaces ⇢ sin� = 1 and ⇢ cos� = 1.

Solution: Below is a screen capture of a previous year’s handwritten notes.
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1) A Triple Integral in Cylindrical Coordinates

Use cylindrical coordinates to set-up an integral that represents the volume of

the solid bounded by x

2
+ y

2
+ z

2
= 1, and z

2
= 3(x

2
+ y

2
).

Solution: Below is a screen capture of a previous year’s handwritten notes.
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2) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of

the solid bounded by z = 0, x

2
+ y

2
= 4, and z = 2

p
x

2
+ y

2
.

Solution: Below is a screen capture of a previous year’s handwritten notes.
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Recitation 25

Quiz 4 Topics
15.5 to 15.8 (I think)

Quiz 4 Learning Objectives

I Construct a triple integral that represents the area or volume of a region in
Cartesian, polar, cylindrical, or spherical coordinates

I Change the order of integration, or coordinate system, for a triple integral
I Construct integrals that represent moments of inertia and centres of mass
I Identify a suitable transformation for a triple integral, and use that

transform to find the area or volume of a given region

GRA4

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Graded Recitation Activity 4

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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GRA4.1

Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
Solution: Let u = x, 2v = y, 9w = z, then J = 18, and we are integrating
over the unit sphere in the 1st quadrant. From here, we can use Cartesian,
cylindrical, or spherical coordinates. Using spherical coordinates, we have:

V =

∫ π/2

0

∫ π/2

0

∫ 1

0

18ρ2 sinφdρdφdθ

But there are other ways to set this integral up without using a uvw
transformation. In Cartesian, we could use the following.

V =

∫ 1

0

∫ 2
√

1−x2

0

∫ 9
√

1−x2−y2/4

0

dzdydx

The value of the integral is 3π. WolframAlpha syntax for the above integrals
are:

\int_0^{1} \int_0^{2\sqrt{1-x^2}}\int_0^{9\sqrt{1-x^2-y^2/4}} dz dy dx
\int_0^{pi/2} \int_0^{\pi/2} \int_0^1 18 r^2 sin(p) dr dp d\theta
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GRA4.2

Set-up a triple integral that represents the volume of the solid bounded by the
hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the plane
z = 10. Do not evaluate.
Solution: Below is a screen capture of a previous year’s handwritten notes.
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Change of Variables

I After completing HW 15.8, you might be familiar with computing an
integral, if you are given a transform.

I But if we were given an integral over a complicated region, and were not
given a suitable transform, how could we find one?

I The basic idea is to find a transform that converts a complicated region
into a simple one, such as a square, or a circle
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1) Change of Variables

Show that the area of the ellipse (x/a)2 + (y/b)2 = 1 is πab.

Solution: let u = x/a, and v = y/b, so that we are integrating over the unit
circle, u2 + v2 = 1. We can show that |J | = ab, and the area, A, becomes

A = 4

∫ 1

0

∫ √1−u2

0

abdvdu

Now let u = r cos θ and v = r sin θ.

A = 4ab

∫ π/2

0

∫ 1

0

rdrdθ

= 4ab

∫ π/2

0

r2

2

∣∣∣1
0
dθ

= 2ab

∫ π/2

0

dθ

= 2ab
π

2

= πab
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2) Change of Variables

Set-up an integral that represents the area of a region bounded by x+ y = 0,
x+ y = 1, x− y = 0, x− y = 2.
Solution: The appearance of the terms (x+ y) and (x− y) in the integrand
and in the lines that bound R suggests the transformation

u = x+ y (1)

v = x− y. (2)

In order to compute the Jacobian, we need explicit expressions for u and v. If
we add equations 1 and 2 we find that x = u+v

2
. If we subtract equations 1

and 2 we find that y = u−v
2

. The Jacobian becomes

J =

∣∣∣∣∣∣
1
2

1
2

1
2
− 1

2

∣∣∣∣∣∣ = −1

4
− 1

4
= −1

2
.

We also need to find the limits of integration in the transformed integral. Using
equations 1 and 2 the four lines bounding R in the xy-plane become

u = 0, u = 1, v = 0, v = 1.

The solution is continued on the next slide.
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2) Change of Variables (continued)

The double integral therefore becomes∫∫
R

(
x2 − y2

)
dxdy =

∫∫
R

(x− y)(x+ y)dxdy

=

∫ 1

0

∫ 1

0

uv

∣∣∣∣∣− 1

2

∣∣∣∣∣dudv
=

1

2

∫ 1

0

∫ 1

0

(uv)dudv

We did not need to evaluate the integral, but this works out to be 1/8.
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3) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2, and

√
x2 + y2 ≤ z ≤

√
2− (x2 + y2).

Solution: Below is a screen capture of a previous year’s handwritten notes.
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4) Cylindrical

Set-up a triple integral that represents the volume of the solid bounded by
z = x2 + y2, and the plane y = z. Use cylindrical coordinates.
Solution: Below is a screen capture of a previous year’s handwritten notes.

Recitation 25, Slide 10



5) Triple Integral

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.
Solution: Below is a screen capture of a previous year’s handwritten notes.

Let me know if you catch any typos in the above.
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5) Triple Integral (Alternate Solution)

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.
Solution: Below is a screen capture of a previous year’s handwritten notes.

In the above, for the upper limit of the innermost integral, we should have used
r2, rather than x2 + y2.
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