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About	
  This	
  Document	
  
This	
  resource	
  contains	
  curriculum	
  for	
  the	
  distance	
  education	
  version	
  of	
  a	
  course	
  offered	
  at	
  the	
  Georgia	
  Institute	
  of	
  Technology,	
  
Math	
  1502,	
  in	
  Fall	
  2014.	
  This	
  distance	
  education	
  course	
  explored	
  linear	
  algebra,	
  infinite	
  series,	
  and	
  differential	
  equation	
  concepts	
  
during	
  lectures	
  and	
  recitations.	
  Recitations	
  are	
  synchronous	
  sessions	
  that	
  offer	
  students	
  an	
  opportunity	
  to	
  apply	
  and	
  review	
  course	
  
concepts,	
  which	
  they	
  have	
  been	
  exposed	
  to	
  in	
  lectures.	
  Contained	
  in	
  this	
  curriculum	
  are	
  materials	
  for	
  26	
  recitations,	
  available	
  in	
  PDF	
  
and	
  presentation	
  slide	
  formats.	
  The	
  slide	
  format	
  is	
  offered	
  for	
  teaching	
  assistants	
  to	
  import	
  directly	
  into	
  web-­‐conferencing	
  software.	
  
Slides	
  contain	
  activities	
  that	
  students	
  would	
  solve	
  during	
  recitations.	
  The	
  associated	
  notes	
  contain	
  solutions	
  to	
  corresponding	
  
activities	
  and	
  are	
  available	
  in	
  PDF	
  format.	
  A	
  similar	
  version	
  of	
  this	
  work,	
  that	
  corresponds	
  to	
  activities	
  conducted	
  in	
  the	
  Spring	
  2014	
  
semester	
  is	
  available	
  through	
  SMARTech	
  at	
  https://smartech.gatech.edu/handle/1853/52896	
  

Copyright	
  

This	
  work	
  is	
  licensed	
  under	
  the	
  Creative	
  Commons	
  Attribution-­‐NonCommercial-­‐ShareAlike	
  4.0	
  International	
  License.	
  To	
  view	
  a	
  copy	
  
of	
  this	
  license,	
  visit	
  http://creativecommons.org/licenses/by-­‐nc-­‐sa/4.0/	
  

For	
  Further	
  Information	
  

Questions	
  regarding	
  this	
  document	
  can	
  be	
  directed	
  to	
  Greg	
  Mayer	
  (gsmayer@gmail.com),	
  who	
  would	
  be	
  happy	
  to	
  hear	
  your	
  
suggestions	
  on	
  how	
  to	
  improve	
  this	
  document.	
  



Schedule	
  of	
  Activities	
  
The	
  following	
  table	
  presents	
  a	
  list	
  of	
  topics	
  that	
  were	
  explored	
  in	
  the	
  recitation	
  activities.	
  Numbers	
  in	
  brackets	
  correspond	
  to	
  section	
  
numbers	
  in	
  the	
  course	
  textbook	
  (Lay,	
  D.,	
  Linear	
  Algebra	
  and	
  its	
  Applications,	
  Fourth	
  Edition).	
  	
  
	
  

Week Recitation Topics Chapters Format 

1 
1 Introduction to Math 2401, Vector Parametric Representations of Curves 13.1 PPT 
2 Quadratic Surfaces, Vector Parametric Representations of Curves 12.6, 13.1 PPT 

2 
3 Quadratic Surfaces, Vector Parametric Representations of Curves 12.6, 13.1 PPT 
4 Projectile Motion, Path Length 13.2, 13.3 PPT 

3 
5 Projectile Motion, Path Length 13.2, 13.3 PPT 
6 Curvature & Normal Vectors, Tangential & Normal Components of Acceleration 13.4, 13.5 PPT 

4 
7 Quiz 1 Review Review PPT 
8 No Recitation - Quiz 1 NA  

5 
9 Domain of Multivariable Function, Limits 14.1, 14.2 LaTeX 

10 Limits, Partial Derivatives, Chain Rule 14.2, 14.3, 14.4 LaTeX 

6 
11 The Gradient 14.5 LaTeX 
12 Tangent Planes, Absolute Min/Max 14.6, 14.7 LaTeX 

7 
13 Quiz 2 Review Review LaTeX 
14 No Recitation - Quiz 2 NA  

8 
15 Lagrange Multipliers 14.8 LaTeX 
16 Lagrange Multipliers, Taylor Approx, Derivatives with Constrained Var 14.8, 14.9, 14.10 LaTeX 

9 
17 Integration over General Regions 15.2, 15.3 LaTeX 
18 Integration over General Regions 15.2, 15.3 LaTeX 

10 
19 Quiz 3 Review, Integration with Polar Coordinates 15.4 LaTeX 
20 No Recitation - Quiz 3    

11 
21 No Recitation – Spring Break    
22 No Recitation – Spring Break    

12 23 Triple Integrals in Rectangular Coordinates, Moments of Inertia and Mass 15.5, 15.6 LaTeX 



24 Integration in Cylindrical and Spherical Coordinates 15.7 LaTeX 

13 
25 Quiz 4 Review, Change of Variables 15.8 LaTeX 
26 No Recitation - Quiz 4    

14 
27 Line Integrals; Vector Fields and Line Integrals, Work, Circulation, Flux 16.1, 16.2 PPT 
28 Vector Fields and Line Integrals, Work, Circulation, Flux; Path Independence 16.2, 16.3 PPT 

15 
29 Vector Fields and Line Integrals, Work, Circulation, Flux; Path Independence 16.2, 16.3 PPT 
30 Green's Theorem, Surface Area 16.4, 16.5 PPT 

16 
31 Surface Area, Surface Integrals 16.5, 16.6 PPT 
32 Final Exam Review, Stokes Theorem, Divergence Theorem 16.7, 16.8 PPT 

	
  



Welcome Back! 
This session is an opportunity to make sure that your computer 
is ready for recitations and to familiarize yourself with the 
software we are using. 
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Today:	
  Course	
  Organization,	
  Vector	
  Representations	
  of	
  Curves	
  (13.1)	
  
Thursday:	
  Quadratic	
  Surfaces	
  (12.6)	
  

Recitation 01: Welcome Back! 

Start-­‐of-­‐Term	
  Survey	
  
Please	
  fill	
  out	
  if	
  you	
  haven’t	
  already:	
  

h5ps://www.surveymonkey.com/s/Math2401-­‐2015	
  
	
  
Graded	
  Recita4on	
  Ac4vi4es	
  This	
  Semester	
  
•  details	
  sent	
  via	
  email	
  
•  group	
  work,	
  in	
  Adobe	
  Connect,	
  count	
  towards	
  your	
  pop	
  quiz	
  grade	
  
	
  
WebEx	
  and	
  Adobe	
  Connect	
  
1.  WebEx	
  for	
  first	
  two	
  weeks	
  
2.  online	
  survey	
  to	
  determine	
  if	
  we	
  want	
  to	
  conNnue	
  using	
  WebEx	
  
3.  Adobe	
  Connect	
  for	
  graded	
  group	
  work	
  acNviNes	
  and	
  pop	
  quizzes	
  

Other	
  Announcements	
  
•  Piazza	
  isn’t	
  set-­‐up	
  yet	
  
•  Tegrity	
  is	
  set-­‐up,	
  can	
  view	
  yesterday’s	
  lecture	
  (let	
  me	
  know	
  if	
  you	
  can’t)	
  
•  Two	
  MML	
  HWs	
  due	
  Monday	
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Tenta4ve	
  Quiz	
  Dates	
  
•  Quiz	
  1:	
  	
  Thursday,	
  January	
  29	
  
•  Quiz	
  2:	
  	
  Thursday,	
  February	
  19	
  
•  Quiz	
  3:	
  	
  Thursday,	
  	
  March	
  12	
  
•  Quiz	
  4:	
  	
  Thursday,	
  	
  April	
  9	
  
	
  
GRAs:	
  Tuesdays	
  before	
  quizzes	
  
•  Tue	
  Jan	
  27	
  
•  Tue	
  Feb	
  17	
  
•  Tue	
  Feb	
  10	
  
•  Tue	
  Apr	
  7	
  
	
  
We	
  may	
  have	
  addiNonal	
  GRAs.	
  
	
  
Final	
  Exam	
  Exemp4on	
  and	
  Quizzes	
  
•  no	
  menNon	
  of	
  exempNon	
  in	
  syllabus	
  or	
  course	
  calendar	
  
•  the	
  most	
  difficult	
  material	
  in	
  this	
  course	
  is	
  at	
  the	
  end	
  of	
  the	
  semester	
  

Quiz and GRA Dates 

2 
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3 Objectives 
Throughout	
  this	
  course	
  we	
  find	
  parametric	
  
representaNons	
  of	
  moNon	
  and	
  use	
  them	
  to	
  
characterize	
  moNons.	
  
	
  
Today’s	
  Learning	
  Objec4ves	
  
Characterize	
  the	
  two	
  (or	
  three)	
  dimensional	
  
moNon	
  of	
  an	
  object,	
  in	
  parametric	
  form,	
  in	
  terms	
  
of	
  its	
  	
  
•  velocity	
  and	
  acceleraNon	
  
•  unit	
  tangent	
  vector	
  

Later	
  in	
  this	
  course	
  we’ll	
  use	
  parametric	
  representaNons	
  of	
  curves	
  to	
  
calculate	
  curvature,	
  path	
  length,	
  momentum,	
  and	
  other	
  ways	
  of	
  describing	
  
a	
  moNon.	
  
	
  
I’m	
  assuming	
  you’ve	
  seen	
  parametric	
  representa3on	
  of	
  curves	
  in	
  lecture.	
  

3 



R01 
Parametric	
  Representa4on	
  
Find a parametric representation of the counterclockwise motion that travels along 
the curve 4x2 + 9y2 = 36. Sketch the motion. 

4 



R01 
Wolfram Alpha Syntax 
This	
  is	
  the	
  syntax	
  you	
  would	
  use	
  for	
  plo^ng	
  parametric	
  curves	
  in	
  WolframAlpha.	
  

5 



R01 
Position,  Velocity and Acceleration 
The position of an object is given by the curve r(t) = sin(t)i + cos(t)j, for all t. 

a)  Sketch the curve. 
b)  When are the position and velocity vectors perpendicular? 
c)  When do the position and acceleration vectors have the same direction? 
d)  Calculate the unit tangent vector for all t. 

6 
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The position of a particle is given by r(t). Describe situations where the following is 
true for all values of t. 

r t( ) ⋅ d
r
dt
= 0

Position and Velocity 7 
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Find a parametric vector representation, r(t), of the curve that satisfies the following 
equations, and y increases when x is positive. Sketch the motion.  

z = x2 + y2 , y = x

Parametric Vector Representation 8 
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Find a parametric vector representation, r(t), of the curve that satisfies the following 
equations, and z decreases when x is positive. Sketch the motion.  

z = 4− x2 − y2 ,  y2 + x2 − 2y = 0

Parametric Vector Representation 9 
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Today:	
  Vector	
  Representations	
  of	
  Curves	
  (13.1),	
  Quadratic	
  Surfaces	
  (12.6)	
  

Recitation	
  02	
  

Start-­‐of-­‐Term	
  Survey	
  
Please	
  fill	
  out	
  if	
  you	
  haven’t	
  already:	
  

h5ps://www.surveymonkey.com/s/Math2401-­‐2015	
  
	
  
Last	
  Recita4on	
  
•  Find	
  parametric	
  representaEons	
  of	
  given	
  curves	
  
•  Characterize	
  moEon	
  of	
  an	
  object,	
  in	
  parametric	
  form,	
  in	
  terms	
  of	
  its	
  	
  

o  velocity	
  and	
  acceleraEon	
  
o  unit	
  tangent	
  vector	
  

	
  
Today	
  
•  IdenEfy	
  and	
  sketch	
  quadraEc	
  surfaces	
  given	
  their	
  algebraic	
  equaEons	
  

Don’t	
  Forget	
  	
  
Evidence	
  of	
  inappropriate	
  behavior	
  will	
  be	
  forwarded	
  to	
  the	
  course	
  instructors,	
  and	
  possibly	
  also	
  to	
  the	
  chair	
  of	
  the	
  School	
  
of	
  MathemaEcs	
  and	
  High	
  school	
  facilitators.	
  Evidence	
  will	
  be	
  reviewed	
  to	
  determine	
  if	
  further	
  acEon	
  is	
  required.	
  Such	
  
acEon	
  could	
  either	
  result	
  in	
  the	
  Georgia	
  Tech's	
  Office	
  of	
  Undergraduate	
  Admissions	
  being	
  made	
  aware	
  of	
  student	
  behavior,	
  
and/or	
  all	
  students	
  from	
  a	
  parEcular	
  school	
  moved	
  to	
  another	
  secEon	
  where	
  interacEons	
  between	
  students	
  from	
  different	
  
schools	
  is	
  not	
  possible.	
  Behavior	
  is	
  inappropriate	
  if	
  it	
  can	
  interpreted	
  as	
  hurZul	
  or	
  disrespecZul.	
  	
  Students	
  can	
  request	
  to	
  be	
  
moved	
  to	
  another	
  secEon	
  at	
  any	
  Eme.	
  QuesEons	
  can	
  be	
  directed	
  to	
  the	
  students	
  teaching	
  assistant	
  and/or	
  the	
  course	
  
instructors	
  at	
  any	
  Eme.	
  	
  



R02 
Quadratic Surfaces (12.6) 
Sketch and describe the surface 5x2 + 2y2 – z2 = –10.  

2 



R02 
Quadratic Surfaces (12.6) 
Sketch and describe the surface 5x2 + 2y2 – z2 = –10.  

3 



R02 Quadratic Surfaces 
4 

The	
  textbook	
  should	
  list	
  and	
  describe	
  every	
  quadraEc	
  surface	
  that	
  you	
  need	
  to	
  be	
  familiar	
  
with	
  (but	
  the	
  online	
  textbook	
  currently	
  doesn’t	
  work).	
  Wikipedia	
  also	
  has	
  a	
  page	
  that	
  lists	
  
and	
  describes	
  every	
  possible	
  quadraEc	
  surface	
  (for	
  our	
  course):	
  	
  
h5p://en.wikipedia.org/wiki/Quadric	
  
	
  
Below	
  are	
  four	
  surfaces:	
  

Ellipsoid	
  
x2

a2
+
y2

b2
+
z2

c2
=1

EllipEc	
  paraboloid	
  
x2

a2
+
y2

b2
− z = 0

Hyperbolic	
  paraboloid	
  

EllipEc	
  hyperboloid	
  of	
  
one	
  sheet	
  

x2

a2
+
y2

b2
−
z2

c2
=1



R02 
Quadratic Surfaces 5 

IdenEfy	
  the	
  correct	
  answer.	
  	
  
	
  
The	
  set	
  of	
  all	
  points	
  whose	
  distance	
  from	
  the	
  z-­‐axis	
  is	
  4	
  is	
  the:	
  	
  
	
  
a)  sphere	
  of	
  radius	
  4	
  centered	
  on	
  the	
  z-­‐axis	
  
b)  line	
  parallel	
  to	
  the	
  z-­‐axis	
  4	
  units	
  away	
  from	
  the	
  origin	
  	
  
c)  cylinder	
  of	
  radius	
  4	
  centered	
  on	
  the	
  z-­‐axis	
  
d)  plane	
  z	
  =	
  4	
  	
  



R02 

Find	
  a	
  parametric	
  vector	
  representaEon	
  of	
  the	
  curve,	
  r(t),	
  that	
  saEsfies	
  both	
  
quadraEc	
  surfaces.	
  Sketch	
  r(t)	
  and	
  both	
  surfaces.	
  

z = x2 + y2,   5= x2 + y2

Parametric Vector Representation and Quadratic Surfaces 6 



R02 
Quadratic Surfaces (12.6) 7 

Consider	
  the	
  surface	
  z	
  =	
  Ax2	
  +	
  By2,	
  where	
  A	
  and	
  B	
  are	
  constants.	
  IdenEfy	
  all	
  
possible	
  surfaces	
  for	
  the	
  following	
  cases.	
  
i)  A	
  =	
  B	
  =	
  0	
  
ii)  AB	
  >	
  0	
  



R02 

The	
  following	
  surfaces	
  intersect	
  along	
  a	
  curve,	
  C.	
  Find	
  a)	
  the	
  projecEon	
  of	
  C	
  onto	
  
the	
  xy-­‐plane	
  and	
  b)	
  the	
  parametric	
  vector	
  representaEon	
  of	
  the	
  projecEon.	
  	
  

Parametric Vector Representation and Quadratic Surfaces 8 

z = x2 + y2,   z = 2y+3
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Today:	
  Group	
  Work	
  on	
  Vector	
  Representations	
  of	
  Curves,	
  Quadratic	
  Surfaces	
  

Recitation	
  03	
  

Hello	
  from	
  San	
  Antonio!	
  Your	
  instructor	
  and	
  I	
  are	
  at	
  a	
  large	
  annual	
  math	
  
conference.	
  I	
  hope	
  the	
  wifi	
  is	
  going	
  to	
  hold	
  up	
  for	
  our	
  recita<on	
  this	
  morning,	
  
many	
  apologies	
  if	
  it	
  doesn’t.	
  	
  In	
  case	
  you’re	
  interested,	
  this	
  the	
  conference	
  
website:	
  hBp://jointmathema<csmee<ngs.org/jmm	
  
	
  
Textbook:	
  technical	
  issues	
  should	
  be	
  resolved	
  now	
  
	
  
Start-­‐of-­‐Term	
  Survey	
  
Please	
  fill	
  out	
  if	
  you	
  haven’t	
  already	
  (survey	
  closes	
  Wednesday	
  at	
  midnight):	
  

hBps://www.surveymonkey.com/s/Math2401-­‐2015	
  
	
  
Today:	
  Quadrac6c	
  Surfaces	
  and	
  Parametric	
  Vectors	
  
•  Find	
  parametric	
  representa<ons	
  of	
  given	
  curves	
  
•  Characterize	
  mo<on	
  of	
  an	
  object,	
  in	
  parametric	
  form,	
  in	
  terms	
  of	
  its	
  	
  velocity	
  

and	
  accelera<on,	
  unit	
  tangent	
  vector	
  
•  Iden<fy	
  and	
  sketch	
  quadra<c	
  surfaces	
  given	
  their	
  algebraic	
  equa<ons	
  



R03 
Group Work Questions 
Complete	
  each	
  problem	
  in	
  small	
  groups.	
  The	
  first	
  four	
  ques<ons	
  are	
  from	
  old	
  Math	
  2401	
  
quizzes	
  (2013	
  and	
  2014).	
  	
  
	
  
1)  Consider	
  the	
  twisted	
  cubic	
  r(t)	
  =	
  <	
  +	
  t2j	
  +	
  t3k	
  and	
  the	
  plane	
  x	
  +	
  2y	
  +	
  3z	
  =	
  34.	
  

a)  Where	
  does	
  the	
  cubic	
  intersect	
  the	
  plane?	
  	
  
b)  Find	
  the	
  cosine	
  of	
  the	
  tangent	
  to	
  the	
  curve	
  and	
  the	
  normal	
  to	
  the	
  plane.	
  

2)  Find	
  the	
  intersec<on	
  of	
  the	
  surface	
  x2	
  +	
  2y2	
  =	
  z	
  and	
  the	
  plane	
  x	
  -­‐	
  y	
  =	
  5.	
  A	
  
parameteriza<on	
  would	
  be	
  fine.	
  	
  

3)  Conisder	
  the	
  surface	
  x2	
  –	
  6x	
  +	
  4y	
  +	
  y2	
  +	
  8z	
  –	
  z2	
  =	
  4.	
  	
  
a)  Find	
  the	
  center	
  of	
  the	
  surface.	
  
b)  Name	
  the	
  surface.	
  	
  
c)  Draw	
  a	
  picture	
  of	
  the	
  surface,	
  labelling	
  the	
  center	
  and	
  axes.	
  

4)  Conisder	
  the	
  surface	
  9x2	
  –	
  18x	
  –	
  16y	
  +	
  4y2	
  –	
  4z2	
  =	
  11.	
  	
  
a)  Find	
  the	
  center	
  of	
  the	
  surface.	
  
b)  Name	
  the	
  surface.	
  	
  
c)  Draw	
  a	
  picture	
  of	
  the	
  surface,	
  labelling	
  the	
  center	
  and	
  axes.	
  

5)  Create	
  a	
  vector	
  func<on,	
  r(t),	
  on	
  the	
  interval	
  [0,	
  2π],	
  that	
  sa<sfies	
  the	
  condi<ons	
  	
  
r(0)	
  =	
  ai,	
  and	
  as	
  t	
  increases	
  from	
  0	
  to	
  2π,	
  traces	
  out	
  an	
  ellipse	
  b2x2	
  +	
  a2y2	
  =	
  a2b2,	
  twice	
  
in	
  a	
  counterclockwise	
  manner.	
  

2 



R03 1)	
  Consider	
  the	
  twisted	
  cubic	
  r(t)	
  =	
  <	
  +	
  t2j	
  +	
  t3k	
  and	
  the	
  plane	
  x	
  +	
  2y	
  +	
  3z	
  =	
  34.	
  
a)  Where	
  does	
  the	
  cubic	
  intersect	
  the	
  plane?	
  	
  
b)  Find	
  the	
  cosine	
  of	
  the	
  tangent	
  to	
  the	
  curve	
  and	
  the	
  normal	
  to	
  the	
  plane.	
  

3 



R03 2)	
  Find	
  the	
  intersec<on	
  of	
  the	
  surface	
  x2	
  +	
  2y2	
  =	
  z	
  and	
  the	
  plane	
  x	
  -­‐	
  y	
  =	
  5.	
  A	
  
parameteriza<on	
  would	
  be	
  fine.	
  	
  4 



R03 3)	
  Conisder	
  the	
  surface	
  x2	
  –	
  6x	
  +	
  4y	
  +	
  y2	
  +	
  8z	
  –	
  z2	
  =	
  4.	
  	
  
a)  Find	
  the	
  center	
  of	
  the	
  surface.	
  
b)  Name	
  the	
  surface.	
  	
  
c)  Draw	
  a	
  picture	
  of	
  the	
  surface,	
  labelling	
  the	
  center	
  and	
  axes.	
  

5 



R03 4)	
  Conisder	
  the	
  surface	
  9x2	
  –	
  18x	
  –	
  16y	
  +	
  4y2	
  –	
  4z2	
  =	
  11.	
  	
  
a)  Find	
  the	
  center	
  of	
  the	
  surface.	
  
b)  Name	
  the	
  surface.	
  	
  
c)  Draw	
  a	
  picture	
  of	
  the	
  surface,	
  labelling	
  the	
  center	
  and	
  axes.	
  

6 



R03 5)	
  Create	
  a	
  vector	
  func<on,	
  r(t),	
  on	
  the	
  interval	
  [0,	
  2π],	
  that	
  sa<sfies	
  the	
  condi<ons	
  	
  
r(0)	
  =	
  ai,	
  and	
  as	
  t	
  increases	
  from	
  0	
  to	
  2π,	
  traces	
  out	
  an	
  ellipse	
  b2x2	
  +	
  a2y2	
  =	
  a2b2,	
  twice	
  in	
  a	
  
counterclockwise	
  manner.	
  

7 
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Today:	
  Displacement,	
  Velocity,	
  Acceleration	
  (13.2),	
  Path	
  Length	
  (13.3)	
  	
  

Recitation	
  04	
  

Homework:	
  Due	
  Tonight	
  and	
  Monday	
  
Learning	
  Obec2ves	
  for	
  Today:	
  Characterize	
  mo5on	
  of	
  an	
  object,	
  in	
  
parametric	
  form,	
  in	
  terms	
  of	
  its	
  unit	
  tangent	
  vector,	
  accelera5on,	
  
path	
  length	
  (aka	
  arc	
  length). 

Photo by Wikimedia Commons user Kreuzschnabel 
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Par2cle	
  Mo2on	
  
Let	
  r(t)	
  =	
  x(t)i	
  +	
  y(t)j	
  +	
  z(t)k.	
  	
  
a)  How	
  is	
  the	
  unit	
  tangent	
  vector,	
  T(t),	
  defined	
  mathema5cally?	
  
b)  Suppose	
  x	
  =	
  t2,	
  y	
  =	
  t3,	
  z	
  =	
  t2,	
  and	
  t	
  ≥	
  0.	
  Then	
  what	
  is	
  the	
  unit	
  tangent	
  vector	
  

when	
  t	
  =	
  0?	
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Differen2al	
  Equa2on	
  
Solve	
  the	
  following	
  ini5al	
  value	
  problem.	
  
!
F(t) =m!r ''(t) = tî + t2 ĵ,  !r (0) = î ,  !v(0) = k̂. 
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Velocity	
  and	
  Accelera2on	
  
What	
  constant	
  accelera5on	
  must	
  a	
  par5cle	
  experience	
  if	
  it	
  is	
  to	
  travel	
  from	
  (1,2,3)	
  to	
  
(4,5,7)	
  along	
  the	
  straight	
  line	
  joining	
  the	
  points,	
  star5ng	
  from	
  rest,	
  and	
  covering	
  the	
  
distance	
  in	
  2	
  units	
  of	
  5me?	
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Velocity	
  and	
  Posi2on	
  
r(t)	
  is	
  the	
  posi5on	
  of	
  a	
  moving	
  par5cle.	
  	
  
a)  Describe,	
  in	
  words,	
  what	
  r’	
  is	
  parallel	
  to.	
  	
  
b)  Show	
  that	
  ||r(t)||	
  is	
  constant	
  iff	
  r	
  ⟂	
  r’	
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The	
  Hanging	
  Cable	
  
	
  
The	
  hanging	
  cable,	
  also	
  referred	
  to	
  as	
  a	
  _____________	
  ,	
  has	
  the	
  shape:	
  

Photo by Flickr user Robert Valencia 
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A	
  cable	
  is	
  suspended	
  between	
  two	
  poles	
  that	
  are	
  10	
  m	
  apart.	
  Find	
  the	
  length	
  of	
  the	
  cable,	
  if	
  
the	
  cable’s	
  shape	
  is	
  	
  y(x)	
  =	
  k	
  [cosh(x/k)	
  –	
  1].	
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Today’s	
  Topics	
  
•  Projectile	
  Motion	
  (13.2)	
  
•  Path	
  Length	
  and	
  Tangential	
  Vector	
  (13.3)	
  	
  
•  Curvature	
  &	
  Normal	
  Vectors	
  (13.4)	
  
	
  
Today’s	
  Learning	
  Obectives	
  
•  Apply	
  vector	
  function	
  integration	
  to	
  determine	
  path	
  of	
  projectiles	
  
•  Characterize	
  motion	
  of	
  an	
  object,	
  in	
  parametric	
  form,	
  in	
  terms	
  of	
  its	
  arc	
  
length	
  and	
  its	
  tangential,	
  normal	
  and	
  binormal	
  vectors	
  

Recitation	
  05	
  



R05 
2 

Announcements	
  
	
  
Survey	
  Results:	
  students	
  want	
  to	
  collaborate,	
  have	
  trouble	
  with	
  technical	
  issues	
  and	
  not	
  
knowing	
  how	
  to	
  solve	
  problems	
  in	
  group	
  work.	
  So	
  lets	
  use	
  Adobe	
  Connect,	
  keep	
  group	
  size	
  
to	
  4	
  to	
  6,	
  use	
  group	
  work	
  on	
  stuff	
  covered	
  from	
  last	
  assignments.	
  	
  
	
  
Thursday	
  Recita7on:	
  13.4,	
  13.5,	
  Adobe	
  Connect	
  
Graded	
  Recita7on	
  Ac7vity:	
  Next	
  week	
  during	
  Tuesday	
  recitaGon,	
  quesGon	
  coming	
  soon	
  
HW	
  Due	
  Tomorrow:	
  13.4,	
  13.5	
  
Quiz	
  1:	
  Thur	
  Jan	
  29	
  
Office	
  Hours:	
  7:30	
  pm	
  –	
  8:30	
  pm,	
  Wed	
  Jan	
  21,	
  Wed	
  Jan	
  28	
  
hRps://georgiatech.adobeconnect.com/distancecalculusofficehours	
  
	
  
Send	
  Your	
  TA	
  an	
  Email	
  
Explain,	
  in	
  an	
  email,	
  using	
  your	
  own	
  words,	
  what	
  the	
  following	
  quanGGes	
  represent:	
  
	
  
•  the	
  unit	
  tangent	
  vector,	
  T(t)	
  
•  the	
  curvature,	
  κ	
  
	
  
Try	
  to	
  send	
  this	
  email	
  by	
  the	
  end	
  of	
  the	
  day	
  today.	
  If	
  you	
  send	
  your	
  TA	
  an	
  email	
  with	
  a	
  
descripGon	
  of	
  what	
  these	
  quanGGes	
  represent,	
  you	
  will	
  get	
  a	
  reply.	
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Unit	
  tangent	
  vector	
   	
   	
  T	
  =	
  	
  ________________	
  

	
  

Principle	
  unit	
  normal	
  vector	
  	
  	
   	
  N	
  =	
  ________________	
  

	
  

Binormal	
  vector 	
   	
   	
  B	
  =	
  _________________	
  

Ideal Projectile Motion: !r (t) = v0 cosα( ) tî + v0 sinα( ) t − gt
2

2
"

#
$

%

&
' ĵ

max range: R = v0
2 sin2α
g

v0	
  is	
  the	
  ___________________	
  ,	
  and	
  α	
  is	
  the	
  _____________________________	
  .	
  

max height: v0
2 sin2α

2g

Helpful	
  Formulas	
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1)	
  Ball	
  Rolling	
  off	
  of	
  a	
  Table	
  (Projec7le	
  Mo7on,	
  13.2)	
  
A	
  ball	
  rolls	
  off	
  a	
  table	
  1	
  meter	
  high	
  with	
  a	
  speed	
  of	
  0.5	
  m/s.	
  	
  
a)  At	
  what	
  speed	
  does	
  the	
  ball	
  strike	
  the	
  floor?	
  
b)  Where	
  does	
  the	
  ball	
  strike	
  the	
  floor?	
  

2)	
  Golf	
  Ball	
  (Projec7le	
  Mo7on,	
  13.2)	
  
A	
  golfer	
  can	
  send	
  a	
  golf	
  ball	
  300m	
  across	
  a	
  level	
  ground.	
  From	
  the	
  tee	
  in	
  the	
  figure,	
  can	
  the	
  
golfer	
  clear	
  the	
  water?	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
3)	
  Arc	
  Length,	
  Normal	
  and	
  Binormal	
  Vectors	
  (13.3,	
  13.4)	
  
Consider	
  the	
  surfaces	
  x2	
  +	
  y2	
  +	
  z2	
  =	
  4,	
  and	
  z2	
  =	
  x2	
  +	
  y2	
  for	
  z	
  ≥	
  0.	
  
a)  Find	
  a	
  parameterizaGon	
  for	
  the	
  intersecGon	
  curve,	
  r(t),	
  of	
  the	
  two	
  surfaces.	
  
b)  Sketch	
  the	
  two	
  surfaces	
  and	
  their	
  intersecGon.	
  	
  
c)  Calculate	
  the	
  length	
  of	
  r(t).	
  
d)  Find	
  the	
  unit	
  tangent,	
  normal,	
  and	
  binormal	
  vectors	
  for	
  r(t)	
  at	
  the	
  point	
  	
  

(sqrt(2)	
  ,	
  0,	
  	
  sqrt(2)).	
  	
  	
  	
  	
  
e)  Add	
  the	
  three	
  vectors	
  to	
  your	
  sketch.	
  	
  
	
  

water	
  

310 m Tee 

20 m 
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1)	
  Ball	
  Rolling	
  off	
  of	
  a	
  Table	
  (Projec7le	
  Mo7on,	
  13.2)	
  
A	
  ball	
  rolls	
  off	
  a	
  table	
  1	
  meter	
  high	
  with	
  a	
  speed	
  of	
  0.5	
  m/s.	
  	
  
a)  At	
  what	
  speed	
  does	
  the	
  ball	
  strike	
  the	
  floor?	
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1)	
  Ball	
  Rolling	
  off	
  of	
  a	
  Table	
  (Projec7le	
  Mo7on,	
  13.2)	
  
A	
  ball	
  rolls	
  off	
  a	
  table	
  1	
  meter	
  high	
  with	
  a	
  speed	
  of	
  0.5	
  m/s.	
  	
  
b)	
  	
  	
  	
  	
  	
  Where	
  does	
  the	
  ball	
  strike	
  the	
  floor?	
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2)	
  Golf	
  Ball	
  (Projec7le	
  Mo7on,	
  13.2)	
  
A	
  golfer	
  can	
  send	
  a	
  golf	
  ball	
  300m	
  across	
  a	
  level	
  ground.	
  From	
  the	
  tee	
  in	
  the	
  figure,	
  can	
  the	
  
golfer	
  clear	
  the	
  water?	
  	
  
	
  
	
  
	
  
	
  

water	
  

310 m Tee 

20 m 
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3)	
  Arc	
  Length,	
  Normal	
  and	
  Binormal	
  Vectors	
  (13.3,	
  13.4)	
  
Consider	
  the	
  surfaces	
  x2	
  +	
  y2	
  +	
  z2	
  =	
  4,	
  and	
  z2	
  =	
  x2	
  +	
  y2	
  for	
  z	
  ≥	
  0.	
  
a)  Find	
  a	
  parameterizaGon	
  for	
  the	
  intersecGon	
  curve,	
  r(t),	
  of	
  the	
  two	
  surfaces.	
  
b)  Sketch	
  the	
  two	
  surfaces	
  and	
  their	
  intersecGon.	
  	
  
c)  Calculate	
  the	
  length	
  of	
  r(t).	
  
d)  Find	
  the	
  unit	
  tangent,	
  normal,	
  and	
  binormal	
  vectors	
  for	
  r(t)	
  at	
  the	
  point	
  	
  

(sqrt(2)	
  ,	
  0,	
  	
  sqrt(2)).	
  	
  	
  	
  	
  
e)  Add	
  the	
  three	
  vectors	
  to	
  your	
  sketch.	
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3)	
  Arc	
  Length,	
  Normal	
  and	
  Binormal	
  Vectors	
  (13.3,	
  13.4)	
  
Consider	
  the	
  surfaces	
  x2	
  +	
  y2	
  +	
  z2	
  =	
  4,	
  and	
  z2	
  =	
  x2	
  +	
  y2	
  for	
  z	
  ≥	
  0.	
  
c)	
  	
  Calculate	
  the	
  length	
  of	
  r(t).	
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3)	
  Arc	
  Length,	
  Normal	
  and	
  Binormal	
  Vectors	
  (13.3,	
  13.4)	
  
Consider	
  the	
  surfaces	
  x2	
  +	
  y2	
  +	
  z2	
  =	
  4,	
  and	
  z2	
  =	
  x2	
  +	
  y2	
  for	
  z	
  ≥	
  0.	
  
d)	
  	
  Find	
  the	
  unit	
  tangent,	
  normal,	
  and	
  binormal	
  vectors	
  for	
  r(t)	
  at	
  the	
  point	
  	
  
(sqrt(2)	
  ,	
  0,	
  	
  sqrt(2)).	
  	
  	
  	
  	
  
e)	
  	
  Add	
  the	
  three	
  vectors	
  to	
  your	
  sketch.	
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Today’s	
  Topics:	
  	
  
•  Curvature	
  &	
  Normal	
  Vectors	
  (13.4)	
  
•  Tangential	
  and	
  Normal	
  Components	
  of	
  Acceleration	
  (13.5)	
  
•  Veocity	
  and	
  Acceleration	
  in	
  Polar	
  Coordinates	
  (13.6)	
  
	
  	
  

Recitation	
  06	
  

Today’s	
  Learning	
  Obectives	
  
1.  Given	
  a	
  motion	
  of	
  an	
  object,	
  in	
  either	
  parametric	
  form	
  or	
  as	
  a	
  function	
  

of	
  a	
  single	
  variable,	
  calculate	
  the	
  
•  curvature	
  
•  tangent,	
  normal,	
  and	
  binormal	
  vectors	
  
•  acceleration	
  (tangential	
  and	
  normal	
  components)	
  
•  torsion	
  	
  

2.  Calculate	
  the	
  osculating,	
  normal,	
  and	
  rectifying	
  planes	
  for	
  a	
  given	
  
curve	
  r(t)	
  at	
  a	
  given	
  value	
  of	
  t	
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Notes:	
  
•  One	
  of	
  the	
  above	
  equations	
  has	
  an	
  error,	
  where	
  is	
  it?	
  
•  There	
  are	
  alternate	
  expressions	
  for	
  these	
  formulas.	
  Above	
  are	
  the	
  formulas	
  that	
  
the	
  textbook	
  uses.	
  

principle normal vector: 
!
N =

!
T '(t)
!
T '(t)

curvature: κ = 1
!v
!
T '(t)

curvature: κ =
f ''(x)

1+ f ' x( )( )
2!

"#
$
%&

3/2

acceleration: !a = aT
!
T + aN

!
N

aT =
d
dt
!v

aN =
!a + aT torsion: τ =

x ' y ' z '
x '' y '' z ''
x ''' y ''' z '''
!v × !a 2

Helpful Formulas 
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The	
  geometry	
  of	
  the	
  three	
  planes	
  determined	
  by	
  vectors	
  T,	
  N,	
  and	
  B,	
  for	
  curve	
  r(t),	
  at	
  r(t0).	
  

B

T 

N 

osculating plane 

rectifying plane 
normal plane 

r(t) 

r(t0) 

Normal, Rectifying, and Osculating Planes 

If	
  a	
  mo=on,	
  r(t),	
  lies	
  completely	
  in	
  a	
  plane,	
  then	
  the	
  binormal	
  vector	
  is	
  _______________	
  .	
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Graded	
  Recita.on	
  Ac.vity:	
  Next	
  week	
  during	
  Tuesday	
  recita=on,	
  ques=on	
  sent	
  
HW	
  Due	
  Tomorrow:	
  13.6	
  
Quiz	
  1:	
  Thur	
  Jan	
  29	
  
Office	
  Hours:	
  7:30	
  pm	
  –	
  8:30	
  pm,	
  Wed	
  Jan	
  28	
  
hOps://georgiatech.adobeconnect.com/distancecalculusofficehours	
  
	
  
Send	
  Your	
  TA	
  an	
  Email	
  
	
  
Using	
  your	
  own	
  words,	
  describe	
  
	
  
•  the	
  rela=onship	
  between	
  the	
  curvature	
  and	
  the	
  normal	
  plane	
  
•  the	
  rela=onship	
  between	
  the	
  torsion	
  and	
  the	
  oscula=ng	
  plane	
  
	
  
Try	
  to	
  send	
  an	
  email	
  with	
  your	
  answers	
  by	
  the	
  end	
  of	
  the	
  day	
  today.	
  If	
  you	
  send	
  your	
  
TA	
  an	
  email	
  with	
  an	
  answer	
  to	
  these	
  ques=ons	
  you	
  will	
  get	
  a	
  response.	
  	
  
Hint:	
  these	
  rela-onships	
  are	
  described	
  in	
  the	
  textbook.	
  	
  

Announcements 
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There	
  are	
  four	
  parts	
  to	
  the	
  following	
  question.	
  Solve	
  them	
  in	
  groups	
  of	
  3	
  to	
  5	
  
students.	
  	
  
	
  
Consider	
  r(t)	
  =	
  sin(t)i	
  +	
  cos(t)j	
  +	
  k,	
  t	
  =	
  -­‐π/2.	
  
	
  
a)  Find	
  T,	
  N,	
  and	
  B	
  at	
  the	
  given	
  value	
  of	
  t.	
  Is	
  B	
  constant	
  for	
  all	
  values	
  of	
  t?	
  	
  
	
  

Group Work Activity: Part (a) 
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Consider	
  r(t)	
  =	
  sin(t)i	
  +	
  cos(t)j	
  +	
  k,	
  t	
  =	
  -­‐π/2.	
  
b)  Sketch	
  r	
  for	
  [0,	
  2π]	
  and	
  indicate	
  the	
  direction	
  of	
  motion.	
  	
  
c)  Sketch	
  T,	
  N,	
  and	
  B	
  at	
  the	
  given	
  value	
  of	
  t.	
  	
  	
  

Group Work Activity: Parts (b) and (c) 
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Consider	
  r(t)	
  =	
  sin(t)i	
  +	
  cos(t)j	
  +	
  k,	
  t	
  =	
  -­‐π/2.	
  
d)  Find	
  the	
  equation	
  of	
  the	
  normal	
  plane	
  at	
  t	
  =	
  -­‐π/2.	
  
Message	
  your	
  TA	
  when	
  you’ve	
  Binished	
  this	
  question.	
  Move	
  on	
  to	
  the	
  remaining	
  
questions	
  after	
  this	
  if	
  there	
  is	
  time.	
  	
  

Group Work Activity: Part (d) 
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a)	
  	
  Curvature	
  is	
  a	
  scalar	
  and	
  can	
  be	
  any	
  real	
  number.	
  

This	
  statement	
  is	
  _____________	
  because:	
  	
  
	
  
	
  
b)	
  	
  Torsion	
  is	
  a	
  scalar	
  and	
  can	
  be	
  any	
  real	
  number.	
  

This	
  statement	
  is	
  _____________	
  because:	
  	
  
	
  

c)	
  	
  If	
  r(t)	
  =	
  x(t)i	
  +	
  y(t)j,	
  then	
  the	
  normal	
  vector,	
  N,	
  is	
  given	
  by	
  N	
  =	
  n/|n|,	
  	
  
where	
  n	
  =	
  -­‐x’(t)i	
  +	
  y’(t)j.	
  
	
  
This	
  statement	
  is	
  _____________	
  because:	
  	
  
	
  
	
  
	
  
	
  	
  

True or False 
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Today’s	
  Topics:	
  Quiz	
  1	
  Review,	
  Graded	
  Recitation	
  Activity	
  1	
  	
  
	
  
Quiz	
  1	
  Topics	
  
12.6	
  Quadratic	
  Surfaces	
  
13.1	
  Vector	
  Parametric	
  Representations	
  of	
  Curves	
  
13.2	
  Quadratic	
  Surfaces	
  
13.2	
  Projectile	
  Motion	
  
13.2	
  Path	
  Length 	
  	
  
13.3	
  Curvature	
  &	
  Normal	
  Vectors	
  
13.5	
  Tangential	
  &	
  Normal	
  Components	
  of	
  Acceleration	
  

Recitation	
  07	
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2 Quiz	
  1	
  Learning	
  Objec1ves	
  

You	
  should	
  be	
  able	
  to	
  do	
  the	
  following	
  for	
  Quiz	
  1.	
  
•  Iden1fy	
  and	
  sketch	
  quadra1c	
  surfaces	
  given	
  their	
  algebraic	
  equa1ons	
  
•  Develop	
  parameteric	
  representa1ons	
  of	
  curves	
  	
  
•  Integrate	
  vector	
  func1ons	
  to	
  determine	
  projec1le	
  mo1on	
  
•  Characterize	
  a	
  mo1on,	
  given	
  in	
  either	
  parametric	
  form	
  r(t),	
  or	
  as	
  a	
  con1nuous	
  func1on	
  

f(x),	
  using:	
  
•  vectors:	
  velocity,	
  accelera1on,	
  tangent,	
  binormal	
  
•  scalars:	
  curvature,	
  torsion,	
  tanen1al	
  &	
  normal	
  components	
  of	
  accel,	
  arc	
  length	
  
•  planes:	
  tangen1al,	
  rec1fying,	
  __________	
  

B 

T
N 

rectifying 
plane 

normal plane 

r(t) 

r(t0) 

________  plane 



R07 
3 Interpreta1ons	
  of	
  Curvature	
  and	
  Torsion	
  

B 

T
N 

rectifying 
plane 

normal plane 

r(t) 

r(t0) 

________  plane 

Cuvature	
  is	
  the	
  rate	
  at	
  which	
  the	
  _______________________	
  turns.	
  
	
  	
  
Torsion	
  is	
  the	
  rate	
  at	
  which	
  the	
  _____________________	
  turns.	
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principle normal vector: 
!
N =
!
T '(t)

!
T '(t)

binormal vector: 
!
B =
!
N ' t( )

!
N ' t( )

curvature: κ =
!
T '(t) !v

curvature: κ = f ''(x) 1+ f ' x( )( )
2!

"#
$
%&

3/2

acceleration: !a = aT
!
T + aN

!
N

aT = _______
aN = _______

torsion: τ =

x ' y ' z '
x '' y '' z ''
x ''' y ''' z '''
!v × !a 2

Helpful Formulas 

Ideal Projectile Motion: !r (t) = v0 cosα( ) tî + v0 sinα( ) t − gt
2

2
"

#
$

%

&
' ĵ

max range: R = v0
2 sin2α
g

max height: v0
2 sin2α

2g
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Graded	
  Group	
  Work	
  Ac1vity	
  	
  
	
  
Instruc)ons	
  
•  Every	
  student	
  in	
  your	
  group	
  needs	
  to	
  write	
  their	
  name	
  or	
  ini1als	
  on	
  the	
  board.	
  
•  You	
  have	
  20	
  minutes	
  to	
  answer	
  the	
  ques1ons	
  below.	
  
•  For	
  full	
  marks,	
  show	
  at	
  least	
  three	
  intermediate	
  steps	
  for	
  each	
  ques1on.	
  
•  Answer	
  each	
  ques1on	
  on	
  a	
  different	
  slide.	
  	
  
•  All	
  students	
  in	
  the	
  same	
  group	
  receive	
  the	
  same	
  grade.	
  	
  
•  Please	
  do	
  not	
  share	
  computers:	
  every	
  student	
  should	
  log	
  in	
  on	
  their	
  own	
  computer.	
  
•  You	
  do	
  not	
  need	
  to	
  simplify	
  your	
  answers	
  
•  You	
  can	
  use	
  c	
  =	
  cos(t)	
  and	
  s	
  =	
  sin(t)	
  
	
  
1)  Tangen)al	
  &	
  Normal	
  Components	
  of	
  Accelera)on	
  (4	
  points)	
  
Let	
  r(t)	
  =	
  2ti	
  +	
  tj	
  +	
  2t2k	
  be	
  a	
  mo1on.	
  Compute	
  the	
  tangen1al	
  and	
  normal	
  components	
  of	
  
the	
  accelera1on.	
  	
  
	
  
2)	
  Arc	
  Length	
  (2	
  points)	
  
Find	
  the	
  arc	
  length,	
  from	
  0	
  to	
  t,	
  of	
  the	
  curve	
  r(t)	
  =	
  etcos(t)i	
  +	
  etsin(t)j	
  +	
  5etk.	
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1)  Tangen)al	
  &	
  Normal	
  Components	
  of	
  Accelera)on	
  (4	
  points)	
  
Let	
  r(t)	
  =	
  2ti	
  +	
  tj	
  +	
  2t2k	
  be	
  a	
  mo1on.	
  Compute	
  the	
  tangen1al	
  and	
  normal	
  components	
  of	
  
the	
  accelera1on.	
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2)	
  Arc	
  Length	
  (2	
  points)	
  
Find	
  the	
  arc	
  length,	
  from	
  0	
  to	
  t,	
  of	
  the	
  curve	
  r(t)	
  =	
  etcos(t)i	
  +	
  etsin(t)j	
  +	
  5etk.	
  
	
  	
  

Message	
  your	
  TA	
  when	
  you’ve	
  2inished	
  both	
  questions.,	
  then	
  move	
  on	
  to	
  the	
  remaining	
  questions.	
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Curvature	
  and	
  Torsion	
  
This	
  ques1on	
  has	
  4	
  parts.	
  Consider	
  the	
  surfaces	
  z	
  =	
  x2	
  +	
  y2	
  and	
  y	
  =	
  2,	
  for	
  z	
  ≥	
  0.	
  
A)	
  	
  Find	
  a	
  parametric	
  vector	
  representa1on	
  for	
  their	
  intersec1on.	
  
B)	
  	
  Sketch	
  the	
  intersec1on	
  and	
  the	
  2	
  surfaces.	
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Curvature	
  and	
  Torsion	
  
This	
  ques1on	
  has	
  4	
  parts.	
  Consider	
  the	
  surfaces	
  z	
  =	
  x2	
  +	
  y2	
  and	
  y	
  =	
  2,	
  for	
  z	
  ≥	
  0.	
  
C)	
  	
  	
  Calculate	
  the	
  curvature	
  and	
  iden1fy	
  on	
  your	
  sketch	
  whre	
  the	
  curvature	
  is	
  maximized.	
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Curvature	
  and	
  Torsion	
  
This	
  ques1on	
  has	
  4	
  parts.	
  Consider	
  the	
  surfaces	
  z	
  =	
  x2	
  +	
  y2	
  and	
  y	
  =	
  2,	
  for	
  z	
  ≥	
  0.	
  
D)	
  Calculate	
  the	
  torsion	
  of	
  the	
  intersec1ng	
  curve	
  and	
  explain	
  your	
  answer.	
  	
  



Recitation 09

R09 Topics
14.1 Functions of Several Variables
14.2 Limits and Continuity

R09 Learning Objectives
By the end of today’s session you should be able to

I Identify and sketch the domain of a function of several variables.

I Determine whether or not limits of functions of several variables
exist.

While We’re Waiting to Start
Consider the function

g(x, y) =

√
y + 1

x2y + xy2
.

For g(x, y) to be defined and a real-valued function, what values of x
and y can we allow?

Recitation 09, Slide 1



Domain of a Function of Two Variables

Identify and sketch the domain of

g(x, y) =

√
y + 1

x2y + xy2
.

Recitation 09, Slide 2



Limits of a Function of Two Variables

Consider the function of two variables

f(x, y) =
x(x− 1)3 + y2

4(x− 1)2 + 9y3
.

We want to evaluate

lim
(x,y)→(1,0)

f(x, y)

What strategies might we try to evaluate the desired limit?
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Limits of a Function of Two Variables, Example 1

Evaluate

lim
(x,y)→(1,0)

x(x− 1)3 + y2

4(x− 1)2 + 9y3

Recitation 09, Slide 4



Limits of a Function of Two Variables, Example 2

In groups of 3 to 5 students, evaluate the limit

lim
(x,y)→(0,0)

xy2

x2 + y4
.

Recitation 09, Slide 5



Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use the definition of limit.

The limit of f(x, y) as (x, y) aproach (a, b) is L if for every number
ε > 0, there is a corresponding δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x, y) to (a, b) sufficiently small.
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An Epsilon Delta Example

Evaluate, or show that the following limit does not exist.

lim
(x,y)→(0,0)

3x2y

x2 + y2
.

Recitation 09, Slide 7



An Epsilon Delta Example
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An Epsilon Delta Example
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An Epsilon Delta Example
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Conclusions: Evaluating Limits of Multivariable Functions

Suppose we need to evaluate a limit of a function of two variables

lim
(x,y)→(a,b)

f(x, y).

If we know that f(x, y) is continuous at (a, b), we can evaluate the limit
with direct substitution. If we don’t know that f(x, y) is continuous at
(a, b), we can either

I evaluate the limit along curves (y = mx, for example) to see if the
limit does not exist, or

I we can use the definition of limit to prove that the limit does exist
and determine what the limit is equal to.

Notes:

I evaluating a limit along curves cannot tell us that a given limit
exists, it can only tell us whether it doesn’t exist

I I’m assuming you’re familiar with continuity for a function of several
variables, but if you aren’t it’s on the next homework and isn’t a
diffcult concept.
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Recitation 11

R11 Topics
14.5 The Gradient

R11 Learning Objectives
By the end of today’s session you should be able to do the following.

I Compute gradients and directional derivatives.

I Provide geometric interpretations of gradients and directional
derivatives.

I Describe the relationship between gradients and level curves.

While We’re Waiting to Start
Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .

Recitation 11, Slide 1



The Gradient and Directional Derivative

Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .
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The Gradient and Directional Derivative
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Wolfram Alpha’s Plots of f(x, y)

In case it helps see what is going
on, to the left are plots of our
function, y2e2x, that
WolframAlpha produces.

Notice that the contour plot
gives a set of level curves.
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Level Curves

If C is in the of f(x, y), then the curve C = f(x, y)
is a level curve of f(x, y). For functions of two variables, we can think
of level curves as curves of constant height (analogous to topographic
maps, that have curves of constant elevation).

In other words, a level curve is an intersection between f(x, y) and the
plane z = C. Level curves are a useful view of the overall behavior of a
function.

Banaba Island image under a CCBY2.0 license, available from https://www.flickr.com/photos/evsmap
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Level Curves and the Gradient

This following helps explain why the gradient is ⊥ to level curves.

Let C = g(x, y) be a level curve of g(x, y). Show that ∇g is always
perpendicular to the level curve.
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A Conceptual Question: The Gradient

At which point does the gradient vector have the largest magnitude?
Draw the gradient at this point.

1. (0,0)

2. (8,-8)

3. (6,-2)

4. (-4,-4)
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards
the point (2, 2, 1) and provide a geometric interpretation of your
answer.

2. For z = 3xy − x3 − y3, find the points where the gradient vector is
the zero vector. Provide a geometric interpretation of your answer.

3. Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find
f(x, y).

Recitation 11, Slide 8



Question 1: A Directional Derivative

Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards the
point (2, 2, 1). Provide a geometric interpretation of your answer.

Recitation 11, Slide 9



Question 2: Zero Gradient

For z = 3xy − x3 − y3, find the points where the gradient vector is the
zero vector. Provide a geometric interpretation of your answer.
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Question 3: Constructing a Function From its Gradient

Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find f(x, y).

Recitation 11, Slide 11



Recitation 12

R12 Topics
14.6 Tangent Planes and Differentials
14.7 Absolute Min/Max

R12 Learning Objectives
By the end of today’s session you should be able to do the following.

I Find equations of tangent planes and normal lines of surfaces.

I Apply tangent planes and differentials to make approximations.

I Locate and classify critical points of surfaces.

Example 1
Consider the surface x2 + 4y2 = z2.

1. Find the equation of the tangent plane at P (3, 2, 5).

2. Find the equation of the normal line at P , and identify where the
normal line intersects the xy-plane.

3. Sketch the surface and the normal line.
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Example 1: Part 1

Consider the surface x2 + 4y2 = z2. Find the equation of the tangent
plane at P (3, 2, 5).
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Example 1: Part 2

Consider the surface x2 + 4y2 = z2. Find the equation of the normal line
at P (3, 2, 5), and identify where the normal line intersects the xy-plane.
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Example 1: Part 3

Consider the surface x2 + 4y2 = z2. Sketch the surface and the normal
line.
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Tangent Planes and Differentials (14.6)

For a function of one variable, y(x), we define the differential dy as

dy =
dy

dx
dx,

where dy is the change in height of the tangent line.

For a function of two variables, z(x, y), we define the differential dz as

dz = ,

where dz is the change in height of the .

The equation of the tangent plane to z = z(x, y) at the point ~r0 is

z = z0 +∇z · (~r − ~r0)

The vector ~r − ~r0 is a vector in the tangent plane.

Recitation 12, Slide 5



A Quick Calculation: Tangent Plane Approximation

Suppose zx(3, 4) = 5, zy(3, 4) = −2, and z(3, 4) = 6. Assuming the
function z is differentiable, what is the best estimate for z(3.1, 3.9) using
this information?

1. 6.3

2. 9

3. 6

4. 6.7

Recitation 12, Slide 6



Estimating Change in Volume

Estimate, using the tangent plane approximation, the change in volume
of a cylinder if its height is changed from 12.0 to 12.2 cm and the radius
is changed from 8.0 to 7.7 cm. How much does the volume actually
change?

Recitation 12, Slide 7



Second Derivative Test (14.7)

Suppose f has continuous 2nd order partial derivatives around some
point P (x0, y0), and that ∇f(x0, y0) = 0. Let

D =
∂2f

∂x2

∂2f

∂y2
−
( ∂2f

∂x∂y

)2

If D = 0, then .
If D < 0, then P is a saddle point.
If D > 0, then P is a maximum if fxx < 0 and a minimum if fxx > 0.
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Optimization

Find the critical points of f(x, y) = y + x sin(y) and determine whether
they correspond to local or absolute minimums or maximums of f(x, y).
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Surface Plot of f(x, y) = y + x sin(y)
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Consider the function f(x, y) = 3xy − x3 − y3.

1.1 Find the points where the gradient vector, ∇f(x, y), is the zero
vector.

1.2 Find the points where the tangent plane is horizontal.
1.3 Find the critical points of f(x, y). Classify these points as min, max,

or saddle points.

2. Find an equation of the tangent plane and normal line to
z = (x2 + y2)2 at P (1, 1, 4).
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Question 1.1: Zero Gradient

For f = 3xy − x3 − y3, find the points where the gradient vector,
∇f(x, y), is the zero vector.
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Questions 1.2 and 1.3

Consider the function f(x, y) = 3xy − x3 − y3. Find the points where
the tangent plane is horizontal. Find the critical points of f(x, y).
Classify these points as min, max, or saddle points.
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Question 2

Find an equation of the tangent plane and normal line to z = (x2 + y2)2

at P (1, 1, 4).

Recitation 12, Slide 14



Recitation 16

R16 Topics
14.8 Lagrange Multipliers
14.9 Taylor’s Formula for Two Variables
14.10 Partial Derivatives with Constrained Variables

R16 Learning Objectives
I Derive the least squares equations to fit the plane Ax+By + C to a set

of given points (14.8).
I Calculate a cubic approximation to a function of two variables at a

specified point (14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).

While We’re Waiting to Start
Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U

Recitation 15, Slide 1



The Chain Rule with Intermediate Variables, Parts A and B

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV
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The Chain Rule with Intermediate Variables, Parts C and D

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U
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Taylor Approximation (14.9)

Calculate the cubic approximation to f(x, y) = 4x cos(y) near the origin.
Complete this question in group work. Note: this was a pop quiz in 2014.
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Approximation Error (14.9)

Use your results from the previous problem to find the quadratic approximation
to f(x, y) = 4x cos(y) near the origin. Then estimate the error in the
approximation if |x| < 0.5 and |y| < 0.1.
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Least Squares (14.8)

The plane z = Ax+By + C is to be fitted to a given set of points,
(xn, yn, zn). Derive the linear system of equations that, when solved, minimizes

E =

N∑
n=1

(Axn +Byn + C − zn)
2.
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Least Squares (continued)
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Least Squares (continued)

Recitation 15, Slide 8



Recitation 17

R17 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R17 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral (Cartesian
coordinates).

Today’s Questions

1. Sketch the region bounded by the given curves and construct a double
integral that represents its area.
a) y =

√
x, y = x3.

b) x = 5− y, x = 2y − 1, y = 1.
c) y = x− 6, y2 = x.

2. Change the order of integration for the following integrals.

a)

∫ 0

−1

∫ √y+1

−
√
y+1

dxdy b)

∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx
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Announcements, WolframAlpha Syntax

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: One Week from Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.

Wolfram Alpha Syntax for Double Integrals
You may want to use Wolfram Alpha to check your answers while completing
your HW. Suppose that we want to determine the value of∫ −1

−2

∫ x−1

0

(x2C + y)dydx

The syntax we could use to compute this particular integral is the following.

integrate x^{2C}+y, x from -2 to -1 and y from 0 to (x-1)
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1a) Area of a Region

Sketch the region bounded by y =
√
x, y = x3 and construct a double integral

that represents its area.
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1b) Area of a Region

Sketch the region bounded by x = 5− y, x = 2y − 1, y = 1, and construct a
double integral that represents its area.
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1c) Area of a Region

Sketch the region bounded by y = x− 6, y2 = x, and construct a double
integral that represents its area.
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2a) Changing the Order of Integration

2a) Change the order of integration for the following integral.∫ 0

−1

∫ √y+1

−
√

y+1

dxdy
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2a) Changing the Order of Integration (continued)
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2b) Changing the Order of Integration

Change the order of integration for the following integral.∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx
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3) Evaluating an Integral (if time permits)

Evaluate the following double integral.∫ 4

0

∫ 4

y

ex
2

dxdy

Recitation 17, Slide 9



Recitation 18

R18 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R18 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral.

I Calculate the average value of a function of two variables.

Today’s Questions

1. Change the order of integration.

a)

∫ 0

−1

∫ √y+1

−
√
y+1

dxdy b)

∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx

2. Construct a double integral that represents the volume of the solid
enclosed by the cylinder x2 + y2 = 1, the planes z = y, x = 0, z = 0, in
the first octant.

3. Evaluate
∫ 4

0

∫ 4

y
ex

2

dxdy.
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Announcements

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: Next Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.
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The Average Value of a Function (15.3)

The average value of a function, f(x, y), over a region R, is given by

Average value of f over region R =
1

area of R

∫∫
R

f(x, y)dA

This definition can be used to find the value of some double integrals quickly.

Example
Region R is the unit circle

√
x2 + y2 ≤ 1. The definite integral of f = x+ 1

over R is equal to:

a) 0

b) 1

c) π

d) π/4
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Conceptual Question Related to Double Integrals

Let region R be the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. The definite integral of
x3 over region R is equal to:

a) a positive number

b) a negative number

c) zero

d) a function of x

Recitation 18, Slide 4



1a) Changing the Order of Integration

Change the order of integration.∫ 0

−1

∫ √y+1

−
√

y+1

dxdy
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1a) Changing the Order of Integration (continued)
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1b) Changing the Order of Integration

Change the order of integration.∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx
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2) Volume of a Solid

Construct a double integral that represents the volume of the solid enclosed by
the cylinder x2 + y2 = 1, the planes z = 1− y, x = 0, z = 0, in the first octant.

Recitation 18, Slide 8



3) Evaluating a Double Integral

Evaluate the following double integral.∫ 4

0

∫ 4

y

ex
2

dxdy

Recitation 18, Slide 9



Additional Exercises

1. Set up an integral that represents the volume of the solid enclosed by the
planes x = 1, y = 3, the three coordinate planes, and x2 + 2y2 + z = 1.

2. Find the volume of the solid enclosed by z = x2 + y2, y = x2 and x = y2.

Recitation 18, Slide 10



Recitation 19

R19 Topics
15.4 Double Integrals in Polar Coordinates
Quiz 3 Review

Quiz 3 Topics

I 14.08 Lagrange Multipliers
I 14.09 Taylor’s Formula for Two Variables
I 14.10 Partial Derivatives with Constrained Variables
I 15.01 Iterated Integrals over Rectangles
I 15.02 Double Integrals over General Regions
I 15.03 Area by Double Integration
I 15.04 Double Integration in Polar Coordinates

Office Hours
I’ll hold additional office hours and a review session:

I Quiz 3 Review Session ∀ Math 2401 students: Tue 5:30 - 7:00 pm, at
https://georgiatech.adobeconnect.com/dcp-online-drop-in-tutor-center-2014-fall

I Quiz 3 Review Session ∀ QH8 students: Wed: 7:30 - 8:30 pm at
https://georgiatech.adobeconnect.com/distancecalculusofficehours

Recitation 19, Slide 1



Quiz 3 Learning Objectives

You should be able to do the following for Quiz 3.

I Solve constrained optimization problems using Lagrange multipliers (14.8).
I Calculate a Taylor approximation to a function of two variables at a point

(14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).
I Construct a double integral that represents the area of a region bounded

by a set of given curves in Cartesian or polar coordinates (15.1 to 15.4).
I Change the order of integration of a double integral (15.1 to 15.4).
I Calculate the average value of a function of two variables (15.3).
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Volume of a Sphere

Identify the expressions that represent the volume of a sphere of radius R.

1) 4

∫ π

0

∫ R

0

r
√
R2 − r2drdθ

2)

∫ 2π

0

∫ R

0

√
R2 − r2drdθ

3) 2

∫ 2π

0

∫ R

0

r
√
R2 − r2drdθ

4)

∫ 2π

0

∫ R/2

0

r
√
R2 − r2drdθ

Recitation 19, Slide 3



Volume of a Sphere (continued)
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Graded Recitation Activity 3

Instructions

I Every student in your group needs to write their name or initials on the
board.

I You have 10 minutes to answer the question below.
I For full marks, show at least one intermediate step.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Question (5 points, from last year’s quiz)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Recitation 19, Slide 5



GRA3

Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Recitation 19, Slide 6



Converting Double Integral to Polar Coordinates

Convert to a double integral in polar coordinates (from 2014 Quiz 2).∫ 2

0

∫ √4−(x−2)2

0

xydydx

Recitation 19, Slide 7



Converting Double Integral to Polar Coordinates (continued)
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Additional Exercise: Normal Distribution

Evaluate

I =

∫ ∞
0

e−x
2

dx

Recitation 19, Slide 9



Additional Exercise: Integration in Polar Coordinates

Sketch the rose curve r = 2 cos(2θ) and find the area of one petal.

Recitation 19, Slide 10



Recitation 23

R23 Topics
15.5 Triple Integrals in Rectangular Coordinates
15.6 Moments of Inertia and Mass

R23 Learning Objectives

I Construct a triple integral that represents the area of a region bounded by
a set of given curves in Cartesian or cylindrical coordinates

I Change the order of integration of a triple integral
I Set-up integrals that represent moments of inertia and centres of mass of

solids

Today’s Questions

1. Set-up a triple integral that represents the volume bounded by the
following surfaces. Set-up the integrals in at least two different ways.

1.1 y2 + z2 = 1, and the planes y = x, x = 0, and z = 0.
1.2 z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0.

2. Consider the region inside the curve r = 2 + sin(θ). Set up the three
integrals you need to find the x and y coordinates of the centroid of the
region, assuming its density is δ(x, y). Express these integrals in polar
coordinates. This is a question from a 2014 quiz.

Recitation 23, Slide 1



Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 23, Slide 2



Triple Integrals, Example 1

Set-up a triple integral that represents the volume of the region bounded by
y2 + z2 = 1, and the planes y = x, x = 0, and z = 0. Set-up the integral in at
least two different ways.

Recitation 23, Slide 3



Triple Integrals, Example 1 (continued)
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Triple Integrals, Example 2

Set-up a triple integral that represents the volume of the region bounded by
z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0. Set-up the integral
in at least two different ways.

Recitation 23, Slide 5



Triple Integrals, Example 2, Continued
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Triple Integrals, Example 2, Continued
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Centroid

Consider the region inside the curve r = 2 + sin(θ). Set up the three integrals
you need to find the x and y coordinates of the centroid of the region,
assuming its density is δ(x, y). Express these integrals in polar coordinates.
This is a question from a 2014 quiz.

Recitation 23, Slide 8



Recitation 24

R24 Topics
15.7 Integration in Cylindrical and Spherical Coordinates

R24 Learning Objectives

I Construct a triple integral that represents the area of a region bounded by
a set of given curves in cylindrical or spherical coordinates

I Change the order of integration of a triple integral

The Spherical Coordinate System

Fill in the blanks.

x = ρ cos θ

y = ρ sin θ

z = ρ

Recitation 24, Slide 1



Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Spherical Coordinates

Provide a geometric interpretation the surfaces ρ sinφ = 1 and ρ cosφ = 1.

Recitation 24, Slide 3



1) A Triple Integral in Cylindrical Coordinates

Use cylindrical coordinates to set-up an integral that represents the volume of
the solid bounded by x2 + y2 + z2 = 1, and z2 = 3(x2 + y2).

Recitation 24, Slide 4



2) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid bounded by z = 0, x2 + y2 = 4, and z = 2

√
x2 + y2.

Recitation 24, Slide 5



3) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid in the first octant, between the surfaces x2 + y2 = z2 and
z =

√
2− (x2 + y2).

Recitation 24, Slide 6



4) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
z = x2 + y2, and the plane y = z. Use cylindrical coordinates.

Recitation 24, Slide 7



Recitation 25

Quiz 4 Topics
15.3 to 15.8

Quiz 4 Learning Objectives

I Construct a triple integral that represents the area or volume of a region in
Cartesian, polar, cylindrical, or spherical coordinates

I Change the order of integration, or coordinate system, for a triple integral
I Construct integrals that represent moments of inertia and centres of mass
I Identify a suitable transformation for a triple integral, and use that

transform to find the area or volume of a given region

GRA4

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 25, Slide 1



Graded Recitation Activity 4

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 25, Slide 2



GRA4.1

Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

Recitation 25, Slide 3



GRA4.2

Set-up a triple integral that represents the volume of the solid bounded by the
hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the plane
z = 10. Do not evaluate.

Recitation 25, Slide 4



Change of Variables

I After completing HW 15.8, you might be familiar with computing an
integral, if you are given a transform.

I But if we were given an integral over a complicated region, and were not
given a suitable transform, how could we find one?

I The basic idea is to find a transform that converts a complicated region
into a simple one, such as a square, or a circle

Recitation 25, Slide 5



1) Change of Variables

Show that the area of the ellipse (x/a)2 + (y/b)2 = 1 is πab.
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2) Change of Variables

Set-up an integral that represents the area of a region bounded by x+ y = 0,
x+ y = 1, x− y = 0, x− y = 2.
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2) Change of Variables (continued)
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3) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2, and

√
x2 + y2 ≤ z ≤

√
2− (x2 + y2).

Recitation 25, Slide 9



4) Cylindrical

Set-up a triple integral that represents the volume of the solid bounded by
z = x2 + y2, and the plane y = z. Use cylindrical coordinates.

Recitation 25, Slide 10



5) Triple Integral

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.

Recitation 25, Slide 11



5) Triple Integral (Alternate Solution)

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.

Recitation 25, Slide 12



R27 

1 

1 

Today’s	
  Topics	
  
16.1	
  Line	
  Integrals	
  (brief	
  review)	
  
16.2	
  Vector	
  Fields	
  and	
  Line	
  Integrals,	
  Work,	
  Circulation,	
  Flux	
  
	
  
Learning	
  Objectives	
  
16.1	
  Set-­‐up	
  and	
  evaluate	
  a	
  line	
  integral	
  to	
  calculate	
  the	
  mass	
  of	
  a	
  thin	
  wire	
  
16.2	
  Set-­‐up	
  and	
  evaluate	
  a	
  line	
  integral	
  that	
  represents	
  total	
  work	
  	
  

Recitation	
  27	
  



R27 
2 16.1:	
  Mass	
  of	
  a	
  Thin	
  Wire	
  (a	
  review	
  of	
  lecture	
  material?)	
  

O 

r(t) 

wire 

How	
  To	
  Calculate	
  Mass	
  of	
  a	
  Wire	
  
•  posi=on	
  on	
  wire	
  given	
  by	
  parameteriza=on,	
  r(t)	
  
•  density	
  of	
  wire	
  is	
  δ	
  =	
  δ(r(t))	
  
•  length	
  of	
  a	
  small	
  piece	
  of	
  wire	
  is	
  ∆s(r(t))	
  
•  we	
  can	
  approximate	
  the	
  total	
  mass	
  with:	
  

x 

y 

In	
  the	
  limit	
  as	
  ∆s	
  tends	
  to	
  zero,	
  

M =

To	
  compute	
  total	
  mass,	
  we	
  can	
  show	
  that:	
  

M =

M ≈



R27 
3 16.1:	
  Mass	
  of	
  a	
  Thin	
  Wire	
  

Compute	
   the	
   total	
  mass	
  of	
   a	
  wire	
  whose	
  density	
   is	
   given	
  by	
  δ	
  =	
  3x2	
  –	
  2y,	
   and	
  
whose	
  shape	
  is	
  given	
  by	
  the	
  line	
  segment	
  from	
  the	
  origin	
  to	
  the	
  point	
  (2,4).	
  	
  
	
  
	
  



R27 
4 16.2:	
  Work	
  (a	
  review	
  of	
  lecture	
  material?)	
  
Work	
  is	
  the	
  _______________	
  	
  transferred	
  to	
  or	
  from	
  an	
  object	
  by	
  	
  
	
  
means	
  of	
  a	
  	
  _______________	
  ac=ng	
  on	
  the	
  ______________	
  .	
  



R27 

we need to extend this concept to curved paths in R3 

a b x 

y 

m	
  

Applied	
  Force	
   Work	
  

Case	
  1	
   F	
  =	
  4i	
   W	
  =	
  

Case	
  2	
   F	
  =	
  4i	
  –	
  2j	
   W	
  =	
  

Force F is applied to an object as it moves from x = a to x = b along the x-axis. 

16.2:	
  Work	
  Over	
  a	
  Straight	
  Line	
  Path	
  



R27 
6 16.2:	
  Force	
  Over	
  a	
  Curved	
  Path	
  

O
r(u) 

r(u+h) 

C 

F(r(u)) 

Force F applied to an object as it moves from r(u) to r(u + h) along curve C. 

Work done by force F from r(u) to r(u+h) 
is W(u + h) – W(u).   

Applied	
  Force	
   Work	
  

Case	
  3	
   F	
  =	
  F(r(u))	
   W(u	
  +	
  h)	
  –	
  W(u)	
  	
  ≈	
  



R27 
7 16.2:	
  Calcula=ng	
  Work	
  

Set	
  up	
  an	
  integral	
  that	
  represents	
  the	
  total	
  work.	
  
a)  F	
  =	
  (x	
  +	
  2y)i	
  +	
  (2x	
  +	
  y)j,	
  path	
  is	
  y	
  =	
  x2	
  from	
  (0,0)	
  to	
  (2,4).	
  
b)  F	
  =	
  (x	
  -­‐	
  y)	
  i	
  –	
  xy	
  j,	
  along	
  the	
  line	
  from	
  (2,3)	
  to	
  (1,2).	
  
c)  F	
  =	
  xy	
  i	
  –	
  2	
  j	
  +	
  4zk,	
  along	
  the	
  circular	
  helix	
  r	
  =	
  cos(u)i	
  +	
  sin(u)j	
  +	
  uk,	
  from	
  	
  

u	
  =	
  0	
  to	
  u	
  =	
  2π.	
  
	
  



R28 

1 

1 

Today’s	
  Topics	
  
16.2	
  Vector	
  Fields	
  and	
  Line	
  Integrals,	
  Work,	
  Circulation,	
  Flux	
  
16.3	
  Path	
  Independence	
  
	
  
Learning	
  Objectives	
  
16.2	
  Set-­‐up,	
  evaluate,	
  and	
  interpret	
  integrals	
  to	
  calculate	
  circulation	
  and	
  8lux	
  
16.3	
  Determine	
  whether	
  a	
  vector	
  Field	
  is	
  conservative	
  
	
  
Circulation	
  
Cicrulation	
  is	
  a	
  measure	
  of	
  the	
  8low	
  along	
  a	
  curve	
  C,	
  or	
  net	
  velocity	
  along	
  C.	
  

Recitation	
  28	
  

circulation = Γ = !v !r( ) ⋅d!r
C
∫ =

!v !r t( )( ) ⋅ !r ' t( )dt
a

b
∫



R28 
2 16.2:	
  Circula.on	
  

Sketch	
  the	
  velocity	
  field	
  for	
  v,	
  and	
  calculate	
  the	
  circula(on	
  over	
  curve	
  C,	
  where	
  C	
  
is	
  the	
  circle	
  of	
  radius	
  R.	
  	
  

x 

y 

!v  =  2 î,  R ≤ y ≤ R
0,  else

!
"
#

$#

For	
  part	
  a),	
  the	
  circula.on	
  is	
  ______	
  because	
  _____________	
  .	
  
	
  
For	
  part	
  b),	
  the	
  circula.on	
  is	
  ______	
  because	
  _____________	
  .	
  



R28 

3 

R20 

Application of Circulation 

The	
  circula.on	
  of	
  a	
  vector	
  field	
  V	
  around	
  a	
  directed	
  closed	
  curve	
  is	
  

•  Note the cross-sectional profile of the wing
•  Take C to be a path around the wing, on its surface
•  Upward lift force is proportional to circulation, Γ

circulation = Γ = v r( ) ⋅dr
C
∫



R28 

Take C to be a closed path around the wing on its surface 

•  Write Γ as Γ = Γupper + Γlower

•  Γupper and Γlower
 have opposite signs

•  the magnitude of V along the upper surface of the wing is greater than 
along the lower surface: net circulation is non-zero

4 16.2:	
  An	
  Applica.on	
  of	
  Circula.on	
  



R28 
5 16.2:	
  Flux	
  Across	
  a	
  Closed	
  Plane	
  Curve	
  

flux = !v ⋅
!
N dt

C"∫ = M dy− N dx
C"∫

•  k	
  is	
  the	
  unit	
  vector	
  parallel	
  to	
  the	
  z-­‐axis	
  
•  T	
  is	
  the	
  tangent	
  vector	
  
•  N	
  is	
  the	
  outward	
  poin.ng	
  unit	
  normal	
  vector	
  of	
  C	
  

	
  
k 

T 

N = T × k 
x 

y 

z 

C 

counterclockwise motion 

Note	
  that:	
  
•  for	
  a	
  clockwise	
  mo.on,	
  we	
  would	
  instead	
  use	
  k	
  ×	
  T	
  
•  later	
  on,	
  we	
  will	
  make	
  a	
  connec.on	
  between	
  flux	
  and	
  Green’s	
  theorem	
  

Suppose	
  we	
  have	
  a	
  curve	
  C	
  in	
  the	
  xy	
  plane,	
  and	
  a	
  flow	
  field	
  v	
  =	
  M(x,y)i	
  +	
  N(x,y)k.	
  
We	
  want	
  to	
  measure	
  the	
  net	
  flow	
  through	
  C.	
  



R28 
6 16.2:	
  Flux	
  

Calculate	
  the	
  flux	
  over	
  curve	
  C,	
  where	
  C	
  is	
  the	
  circle	
  of	
  radius	
  R.	
  

x 

y 

Therefore:	
  the	
  flux	
  is	
  ______	
  because	
  _____________	
  .	
  

!v  =  2 î,  R ≤ y ≤ R
0,  else

!
"
#

$#



R28 
7 16.2:	
  Circula.on	
  and	
  Flux	
  

1)	
  Sketch	
  the	
  velocity	
  field	
  for	
  v	
  =	
  - xi - yj,	
  and	
  calculate	
  the	
  circula(on	
  and	
  flux	
  
over	
  curve	
  C,	
  where	
  C	
  is	
  the	
  circle	
  of	
  radius	
  R.	
  	
  

x 

y 

Therefore:	
  the	
  circula.on	
  is	
  ______	
  because	
  _____________	
  .	
  
	
  
Therefore:	
  the	
  flux	
  is	
  ______	
  because	
  _____________	
  .	
  



R28 
8 16.2:	
  Circula.on	
  and	
  Flux	
  

2)	
  Sketch	
  the	
  velocity	
  field	
  for	
  v	
  =	
  - yi + xj,	
  and	
  calculate	
  the	
  circula(on	
  and	
  flux	
  
over	
  curve	
  C,	
  where	
  C	
  is	
  the	
  circle	
  of	
  radius	
  R.	
  	
  

x 

y 



R28 
9 16.3:	
  Conserva.ve	
  Vector	
  Fields	
  

Recall	
  the	
  Pipe	
  example.	
  
	
  	
  
a)  Why	
  was	
  the	
  circula.on	
  zero?	
  	
  

b)  For	
  any	
  path	
  that	
  starts	
  and	
  ends	
  at	
  point	
  A,	
  and	
  stays	
  inside	
  “the	
  pipe”,	
  the	
  	
  
	
  
circula.on	
  is	
  ____________	
  .	
  	
  	
  

c)  For	
  all	
  paths	
  that	
  starts	
  at	
  A	
  and	
  ends	
  at	
  point	
  B,	
  the	
  integral	
  _____________	
  
is	
  the	
  same.	
  

In	
  general:	
  if	
  v	
  is	
  a	
  conserva.ve	
  vector	
  field	
  (or	
  is	
  path	
  independent),	
  then	
  there	
  
exists	
  a	
  scalar	
  field,	
  S,	
  s.t.	
  ________	
  .	
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1 

1 

Today's Topics 
16.2 Vector Fields and Line Integrals, Work, Circulation, Flux 
16.3 Path Independence 
 
Learning Objectives 
16.2 Set-up, evaluate, and interpret integrals to calculate circulation and flux 
16.3 Determine whether a vector field is conservative and apply the FTLI 
 
Circulation and Flux 
Circulation is a measure of __________________ 
 
Flux is a measure of _________________ 

Recitation 29 

circulation = Γ = !v !r( ) ⋅d!r
C
∫ =

!v !r t( )( ) ⋅ !r ' t( )dt
a

b
∫

flux = !v ⋅
!
N dt

C"∫ = M dy− N dx
C"∫



R29 
2 16.2:	
  Circula.on	
  and	
  Flux	
  (review)	
  

1)	
  Sketch	
  the	
  velocity	
  field	
  for	
  v	
  =	
  - xi - yj,	
  and	
  calculate	
  the	
  circula*on	
  and	
  flux	
  
over	
  curve	
  C,	
  where	
  C	
  is	
  the	
  circle	
  of	
  radius	
  R.	
  	
  

x 

y 

Therefore:	
  the	
  circula.on	
  is	
  ______	
  because	
  _____________	
  .	
  
	
  
Therefore:	
  the	
  flux	
  is	
  ______	
  because	
  _____________	
  .	
  



R29 
3 16.3:	
  Conserva.ve	
  Vector	
  Fields	
  
In	
  general:	
  if	
  F	
  is	
  a	
  conserva.ve	
  vector	
  field	
  (or	
  is	
  path	
  independent),	
  then	
  there	
  
exists	
  a	
  scalar	
  field,	
  f,	
  s.t.	
  ________	
  ,	
  and	
  
	
  

Example:	
  Calculate	
  total	
  work	
  from	
  the	
  force	
  F	
  =	
  (x2-­‐y)i	
  +	
  (y2	
  –	
  x)j,	
  over	
  the	
  path	
  	
  
r	
  =	
  a	
  cos(t)i	
  +	
  b	
  sin(t)j,	
  where	
  0	
  ≤	
  t	
  ≤	
  2π.	
  



R29 
4 16.3:	
  Conserva.ve	
  Fields	
  

Group	
  work	
  ac.vity:	
  determine	
  whether	
  the	
  following	
  fields	
  are	
  conserva.ve	
  
1) 	
  v	
  =	
  – xi – yj 
2) 	
  v	
  =	
  – yi + xj 



R29 
5 16.2:	
  Circula.on	
  and	
  Flux	
  

Group	
  work	
  ac.vity:	
  sketch	
  the	
  velocity	
  field	
  for	
  v	
  =	
  - yi + xj,	
  and	
  calculate	
  the	
  
circula*on	
  and	
  flux	
  over	
  curve	
  C,	
  where	
  C	
  is	
  the	
  circle	
  of	
  radius	
  R.	
  	
  

x 

y 



R29 
6 Conclusions	
  

a)  Circula.on	
  measures	
  flow	
  ________________	
  	
  	
  path	
  C.	
  
	
  
b)  Flux	
  measures	
  the	
  flow	
  ___________________	
  of	
  C.	
  
	
  
c)  If	
  a	
  flow	
  is	
  conserva.ve,	
  the	
  line	
  integral	
  ______	
  is	
  the	
  same	
  for	
  any	
  path	
  C.	
  

field	
  name	
   velocity	
  field	
  
equa*on	
  

circula*on	
   flux	
   is	
  v	
  
conserva*ve?	
  

pipe	
   v	
  =	
  2i	
  for	
  	
  
–R	
  ≤	
  y	
  ≤	
  +R,	
  

v	
  =	
  0	
  otherwise	
  

v	
  =	
  -­‐xi	
  -­‐	
  yj	
  

v	
  =	
  -­‐yi	
  +	
  xj	
  



R30 

1 

1 

Today's Topics 
16.4 Green's Theorem 
16.5 Surfaces and Areas 
 
Learning Objectives 
16.4 Apply Green’s theorem to calculate area, flux, and circulation 
16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically 
 
Green’s Theorem  
If R is a region that is _______________________________ , and M and N are 
scalar fields that are differentiable on R, and C is the boundary of R, then: 

Recitation 30 

flux =  

circulation =  



R30 
2 Green’s	
  Theorem	
  Example	
  (from	
  an	
  old	
  quiz)	
  

Below are five regions. For which regions can we apply Green’s Theorem? 

a) b) c) d) e) 



R30 
3 Green’s	
  Theorem	
  Example	
  (from	
  an	
  old	
  quiz)	
  



R30 
4 Green’s	
  Theorem	
  Example	
  (from	
  an	
  old	
  quiz)	
  



R30 
5 Addi:onal	
  Green’s	
  Theorem	
  Example	
  

x(t)	
  =	
  t	
  –	
  sin(t)	
  	
  
y(t)	
  =	
  1	
  –	
  cos(t)	
  

x 

y 

The curve traced by a point on a rolling wheel is 



R30 
6 Addi:onal	
  Example:	
  Green’s	
  Theorem	
  	
  
Find	
  the	
  area	
  under	
  one	
  arch	
  of	
  the	
  cycloid:	
  
x(t)	
  =	
  t	
  –	
  sin(t),	
  y(t)	
  =	
  1	
  –	
  cos(t)	
  



R30 
7 Addi:onal	
  Example:	
  Green’s	
  Theorem	
  	
  

a)  Evaluate	
  
	
  

b)  Change	
  the	
  integral	
  so	
  that	
  	
  it	
  represents	
  the	
  area	
  of	
  one	
  loop.	
  

y2 dx + 2xydy,  C  is one loop of  r = 2sin2θ
C∫



R30 
16.5	
  Surfaces	
  and	
  Areas	
  

Surface	
  area	
  for	
  a	
  parameterized	
  surface:	
  

	
  
	
  
Your	
  textbook	
  has	
  formulas	
  for	
  calcuatling	
  the	
  surface	
  area	
  for	
  
implicit	
  and	
  explicit	
  surfaces,	
  we	
  probably	
  won’t	
  have	
  :me	
  to	
  
work	
  on	
  these	
  in	
  recita:on.	
  

8 



R30 
16.5	
  Surfaces	
  and	
  Areas	
  

a)  What	
  proper:es	
  does	
  a	
  parametric	
  representa:on	
  of	
  a	
  surface	
  
need	
  to	
  have?	
  

b)  Find	
  a	
  parametric	
  representa:on	
  for	
  the	
  part	
  of	
  the	
  plane	
  z	
  =	
  x	
  +	
  2	
  
in	
  the	
  first	
  octant	
  and	
  inside	
  the	
  cylinder	
  x2	
  +	
  y2	
  =	
  1.	
  

9 
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1 

1 

Today's Topics 
16.5 Surfaces and Areas 
16.6 Surface Integrals 
 
Learning Objectives 
16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically 
16.6 Calculate outward flux through a surface 
16.6 Calculate the total mass and centroid of a thin surface (if time permits) 
 
Course Logistics 

1.  Has a final exemption cutoff been announced?  

2.  What is the cutoff? 

3.  When is your final exam? 

Recitation 31 



R31 
16.5	
  Surfaces	
  and	
  Areas	
  

Surface	
  area	
  for	
  a	
  parameterized	
  surface:	
  

	
  
	
  
Your	
  textbook	
  has	
  formulas	
  for	
  calcuatling	
  the	
  surface	
  area	
  for	
  
implicit	
  and	
  explicit	
  surfaces,	
  we	
  probably	
  won’t	
  have	
  Dme	
  to	
  
work	
  on	
  these	
  in	
  recitaDon.	
  

2 



R31 

Set	
  up	
  an	
  integral	
  that	
  represents	
  the	
  surface	
  area	
  of	
  z	
  =	
  y2,	
  for	
  0	
  ≤	
  x	
  ≤	
  a,	
  0	
  ≤	
  y	
  ≤	
  b.	
  

3 16.5	
  Surface	
  Area	
  Example	
  



R31 

Calculate	
  the	
  surface	
  area	
  of	
  the	
  part	
  of	
  the	
  plane	
  x	
  +	
  2y	
  +	
  z	
  =	
  4	
  that	
  is	
  inside	
  the	
  	
  
cylinder	
  x2	
  +	
  y2	
  =	
  4.	
  	
  

4 16.5	
  Surface	
  Area	
  Example	
  



R31 

R24 

Suppose we want to characterize 3D flow through a pipe.   
 
To calculate 2D flux across a curve, we used: 
 
If our flow field, v, is 3D, we calculate flux across a surface.   

flux = v ⋅ n du
C
∫ = M dy− N dx

C
∫

16.6	
  Surface	
  Integrals	
  



R31 

A fluid has velocity field v = yi + j + zk. Set up an integral that represents the flux 
through the paraboloid z = 9 – (x2 + y2)/4, if x2 + y2 ≤ 36.  

16.6	
  Flux	
  Through	
  a	
  Surface	
  6 



R31 

Set up a double integral that represents the flux of flow F = xi + zk thorugh the surface 
z(x,y) = x2 - y2 , where 0 ≤ x ≤ 1,  -1 ≤ y ≤ 1. 

16.6	
  Surface	
  Integrals	
  (this	
  was	
  a	
  2014	
  pop	
  quiz	
  quesDon)	
  7 



R31 
8 16.6	
  Centroid	
  of	
  a	
  Thin	
  Surface	
  (if	
  Dme	
  permits)	
  
The mass density at any point on a thin surface z2 = x2 + y2, 0 ≤ z ≤ 1, is proportional to 
its distance to the z-axis.  
a)  Find the total mass of the surface.  
b)  Find the centroid of the surface. 



R31 
9 16.5	
  Surface	
  Area	
  ParameterizaDon	
  (addiDonal	
  example)	
  

Find parametric representations for the following surfaces. 
a)  the upper half of 4x2 + 9y2 + z2 = 36 
b)  the part of the plane z = x + 2 inside the cylinder of x2 + y2 = 1 
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1 

1 

Today's Topics 
Final Exam Review 
16.7 Stokes Theorem 
16.8 The Divergence Theorem 
 
Learning Objectives 
16.7 Use Stoke’s theorem to calculate either work, or circulation over a curve 
16.8 Calculate flux through a surface using the divergence theorem 
 
Final Exam Logistics 
Review session: information sent via email 
Questions during final: information sent via email 

Recitation 32 



R32 
Studying	
  for	
  the	
  Final	
  Exam	
  

There are two prep-finals available on T2. Each of them have five 
questions that focus on specific areas of our textbook. 

2 

Chapter	
  13	
   Chapter	
  14	
   Chapter	
  15	
   Chapter	
  16	
  

Prep-­‐Final	
  A	
   P1	
  	
   P2,	
  P3,	
  P4,	
  P5	
  

Prep-­‐Final	
  B	
   P1	
   P2	
   P3	
   P4,	
  P5	
  

Ways you may want to study: 
•  solve prep final questions 
•  re-do quizzes 1 through 4 
•  re-do MML problems 
•  memorize formulas (especially from Chapters 13 and 16) 



R32 
PrepFinal	
  QuesBon	
  A1	
  

Find the speed, the tangential acceleration and the normal acceleration 
for the motion r = (t,t2,t2). Compute also the curvature of the 
corresponding curve as a function of t. 

3 



R32 
PrepFinal	
  QuesBon	
  A2	
  

Find the moment of inertia with respect to the x axis of a thin shell of 
mass δ that is in the first quadrant of the xy plane and bounded by the 
curve r2 = sin 2θ. 

4 



R32 
PrepFinal	
  QuesBon	
  A3	
  

Compute the center of mass of a thin shell that is formed by the cone  
(z − 2)2 = x2 + y2, 0 ≤ z ≤ 2. 

5 



R32 
PrepFinal	
  QuesBon	
  A4	
  

Compute the line integral of the vector field F = (xyz + 1, x2z, x2y)exyz 
along the curve r(t) = (cost,sint,t), 0 ≤ t ≤ π. 

6 



R32 
PrepFinal	
  QuesBon	
  A5	
  

Use the divergence theorem to compute the outward flux of the vector 
field F = (x2 , y2 , z2) through the cylindrical can that is bounded on the 
side by x2 + y2 = 4, bounded above by z = 1 and below by z = 0. 

7 



R32 
PrepFinal	
  QuesBon	
  B1	
  

Find the parametric equations of the line that is tangent to the curve  
r(t) = (et, sin t, ln(1 − t)), at t = 0. 

8 



R32 
PrepFinal	
  QuesBon	
  B2	
  

Find the minimum cost area of a rectangular solid with volume 64 cubic 
inches, given that the top and sides cost 4 cents per square inch and the 
bottom costs 7 cents per square inch. Just set up the equations using 
Lagrange multipliers, you do not have to solve them. 

9 



R32 
PrepFinal	
  QuesBon	
  B3	
  

Compute the average of the function x4 over the sphere centered at the 
origin whose radius is R > 0. 

10 



R32 
PrepFinal	
  QuesBon	
  B4	
  

Compute the flux ∫sF·ndσ, S where S is the hemisphere x2 + y2 + z2 = 4,  
z ≥ 0, n points toward the origin and F =(x(z−y), y(x−z), z(y−x)). 

11 



R32 
PrepFinal	
  QuesBon	
  B5	
  

Compute the line integral ∫cF·dr where C is the curve given by the 
intersection of the sphere x2 + y2 + z2 = 4 and the plane z = −y, 
counterclockwise when viewed from above, and F = (x2 + y, x + y, 4y2 − z) . 

12 



R32 
16.7	
  Stokes’	
  Theorem	
  13 

Curl describes the tendency a fluid has to ________________ at a specific 
point. Stokes’ Theorem states that:  

Historical	
  note:	
  Stokes’	
  theorem	
  is	
  named	
  a4er	
  Sir	
  George	
  Stokes,	
  but	
  was	
  discovered	
  by	
  Sir	
  
William	
  Thomson.	
  	
  

Note that curve C must be ___________  
 
Stokes’ theorem can be used to calculate ___________ and _______ . 



R32 

R26 

16.8	
  What	
  is	
  Divergence?	
  	
  

Divergence	
  describes	
  the	
  tendency	
  a	
  fluid	
  has	
  to	
  ________________.	
  	
  

Water	
  is	
  (approximately)	
  an	
  incompressible	
  fluid.	
  If	
  you	
  place	
  your	
  thumb	
  at	
  the	
  end	
  of	
  a	
  hose,	
  	
  

the	
  speed	
  of	
  the	
  water	
  _____________	
  ,	
  because	
  ______________	
  ,	
  or	
  because	
  ____________.	
  



R32 
16.8	
  The	
  Divergence	
  Theorem	
  15 

The divergence theorem states that 



R32 

R26 

Upward	
  buoyant	
  force	
  =	
  

16.8	
  The	
  Divergence	
  Theorem:	
  Archimedes	
  Principle	
  	
  



R32 
16.8	
  Prove	
  Archimedes	
  Principle	
  17 



R32 
16.8	
  Electric	
  Charge	
  18 

E	
  =	
  electric	
  field.	
  Then,	
  Gauss’s	
  Law	
  states	
  that:	
  	
  

	
  total	
  charge	
  =	
  (ε0)(flux	
  of	
  E	
  through	
  closed	
  surface	
  )	
  

Find	
  the	
  total	
  charge	
  contained	
  in	
  a	
  solid	
  hemisphere	
  if	
  E	
  =	
  xi	
  +	
  yj	
  +	
  zk.	
  	
  	
  













































































































Recitation 09

R09 Topics
14.1 Functions of Several Variables
14.2 Limits and Continuity

R09 Learning Objectives
By the end of today’s session you should be able to

I Identify and sketch the domain of a function of several variables.

I Determine whether or not limits of functions of several variables
exist.

While We’re Waiting to Start
Consider the function

g(x, y) =

√
y + 1

x2y + xy2
.

For g(x, y) to be defined and a real-valued function, what values of x
and y can we allow?

Recitation 09, Slide 1



Domain of a Function of Two Variables

Identify and sketch the domain of

g(x, y) =

√
y + 1

x2y + xy2
.

Solution
For g(x, y) to be defined, its denominator cannot be zero. This implies
that 0 6= x2y + xy2 = xy(x+ y). Thus, x 6= 0, y 6= 0, and y 6= −x. The
numerator of g(x, y) also cannot be complex, which implies that
y + 1 ≥ 0, or that y ≥ −1. The domain is the set
D = {(x, y)|y ≥ −1, x 6= 0, y 6= 0, y 6= −x}.

Recitation 09, Slide 2



Limits of a Function of Two Variables

Consider the function of two variables

f(x, y) =
x(x− 1)3 + y2

4(x− 1)2 + 9y3
.

We want to evaluate

lim
(x,y)→(1,0)

f(x, y)

What strategies might we try to evaluate the desired limit?

Solution
When we evaluate f(x, y) at the limit point, we find f(1, 0) is an
indeterminant form of type 0/0. It may be that f is not continuous at
the point (1, 0). In one dimension, we would use l’Hopsital’s rule, or
algebraic manipulation, to evaluate such a limit. But l’Hospitals rule only
works for functions of one variable. So for this limit, we will try
approaching the limit point along curves that pass through the limit
point. In this case, we can try evaluating the limit along y = m(x− 1).
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Limits of a Function of Two Variables, Example 1

Evaluate

lim
(x,y)→(1,0)

x(x− 1)3 + y2

4(x− 1)2 + 9y3

Solution
Choose a function, y(x), that passes through the given limit point (1, 0).
We can try y = m(x− 1), which passes through (1, 0), and see what
happens.

lim
(x,y)→(1,0)

x(x− 1)3 + y2

4(x− 1)2 + 9y3
= lim

(x,y)→(1,0)

x(x− 1)3 +m2(x− 1)2

4(x− 1)2 + 9m3(x− 1)3

= lim
(x,y)→(1,0)

x(x− 1) +m2

4 + 9m3(x− 1)

=
m2

4

Because the value of the limit depends on the path of approach, the limit
does not exist.
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Limits of a Function of Two Variables, Example 2

In groups of 3 to 5 students, evaluate the limit

lim
(x,y)→(0,0)

xy2

x2 + y4
.

Solution
Along the path y = mx, we obtain

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

(x,y)→(0,0)

xm2x2

x2 +m4x4
= lim

(x,y)→(0,0)

m2x

1 +m4x2
= 0.

We might be tempted to believe that this limit exists. But along the path
x = my2, we find

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

(x,y)→(0,0)

my4

m2y4 + y4
=

m

m2 + 1

Because the value of the limit depends on the path of approach, the limit
does not exist.

Recitation 09, Slide 5



Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use the definition of limit.

The limit of f(x, y) as (x, y) aproach (a, b) is L if for every number
ε > 0, there is a corresponding δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x, y) to (a, b) sufficiently small.

Recitation 09, Slide 6



An Epsilon Delta Example

Evaluate, or show that the following limit does not exist.

lim
(x,y)→(0,0)

3x2y

x2 + y2
.

Solution
Along the path y = mx, we obtain

lim
(x,y)→(0,0)

3x2y

x2 + y2
= lim

(x,y)→(0,0)

3m2x3

x2(1 +m2)
= 0

Along the path y = mx, the limit is zero. We can also show that along
the path y = mx2, that the limit is also zero. So we are starting to
suspect that this limit exists and that L = 0. Let ε > 0. We want to find
a δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

We will do this on the next few slides.
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An Epsilon Delta Example

We want to find a δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

The limit point is (0, 0), so a = b = 0. And we think the limit might
equal zero, so we can try L = 0 and see what happens.∣∣∣ 3x2y

x2 + y2
− 0
∣∣∣ < ε when 0 <

√
x2 + y2 < δ

However, ∣∣∣ 3x2y

x2 + y2
− 0
∣∣∣ = 3x2|y|

x2 + y2

≤ 3(x2 + y2)|y|
x2 + y2

= 3|y| = 3
√
y2 ≤ 3

√
x2 + y2

This result will suggest that we choose δ = ε/3. We see why on the next
slide.
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An Epsilon Delta Example

We have found that

|f(x, y)− L| =
∣∣∣ 3x2y

x2 + y2
− 0
∣∣∣ ≤ 3

√
x2 + y2

Choosing δ = ε/3, and letting 0 <
√
x2 + y2 < δ, we obtain

|f(x, y)− L| ≤ 3δ = 3(ε/3) = ε

Thus, given any ε, choosing δ = ε/3, and 0 <
√
x2 + y2 < δ = ε/3, we

can guarantee that |f(x, y)− L| < ε.

Therefore, the limit exists and is equal to 0.
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Conclusions: Evaluating Limits of Multivariable Functions

Suppose we need to evaluate a limit of a function of two variables

lim
(x,y)→(a,b)

f(x, y).

If we know that f(x, y) is continuous at (a, b), we can evaluate the limit
with direct substitution. If we don’t know that f(x, y) is continuous at
(a, b), we can either

I evaluate the limit along curves (y = mx, for example) to see if the
limit does not exist, or

I we can use the definition of limit to prove that the limit does exist
and determine what the limit is equal to.

Notes:

I evaluating a limit along curves cannot tell us that a given limit
exists, it can only tell us whether it doesn’t exist

I I’m assuming you’re familiar with continuity for a function of several
variables, but if you aren’t it’s on the next homework and isn’t a
diffcult concept.
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Recitation 10

R10 Topics
14.2 Limits and Continuity
14.3 Partial Derivatives
14.4 The Chain Rule

R10 Learning Objectives
By the end of today’s session you should be able to

I Determine whether or not limits of functions of several variables
exist by evaluating the limit along paths or by using the formal
definition of limit.

I Compute partial derivatives of multivariable functions using the
chain rule.

While We’re Waiting to Start
Calculate fy(1,−2,−1) for f(x, y, z) = x2yey/z.
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A Partial Derivative

Calculate fy(1,−2,−1) for f(x, y, z) = x2yey/z.

Solution

fy =
∂f

∂y

(
x2yey/z

)
= x2ey/z + x2yey/z

( ∂
∂y

y

z

)
= x2ey/z +

x2yey/z

z

Thus, fy(1,−2,−1) = (1)2e2 + (1)2(−2)e2
−1 = 3e2.
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A Conceptual Question

Select all options that are correct.

Given a function f(x, y), to evaluate ∂f
∂x at the point (1,3), we can:

1. Differentiate f with respect to x and then set x = 1, y = 3.

2. Set x = 1, y = 3 and then differentiate f with respect to x.

3. Set x = 1 and then differentiate f with respect to x.

4. Set y = 3 and then differentiate f with respect to x.

Solution
The first option is acceptable and is the usual approach.

The second and third options would result in an answer of zero: we
should differentiate with respect to the prescribed variable, x, and then
set the variable equal to its value.

The fourth option is acceptable, because variables other than the one
that we are differentiating are treated as constants.
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Recall: Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use its formal definition.

The limit of f(x, y) as (x, y) approach (a, b) is L if for every number
ε > 0, there is a corresponding δ > 0 such that

|f(x, y)− L| < ε when 0 <
√
(x− a)2 + (y − b)2 < δ

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x, y) to (a, b) sufficiently small.
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Epsilon Delta Definition of Limit

Use the definition of limit to show that the following exists and is equal
to 0.

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x+ y

x2 + 1

Solution
To apply the definition of limit, we start with |f(x, y)− L|, and work
towards an expression that involves

√
(x− a)2 + (y − b)2. We know are

given that the limit is equal to zero, so we can use L = 0. We also know
that the limit point is (0, 0), so we can also use a = b = 0.∣∣∣f(x, y)− L∣∣∣ = ∣∣∣ x+ y

x2 + 1
− 0
∣∣∣

=
|x+ y|
|x2 + 1|

≤ |x+ y|
1

because x2 + 1 ≥ 1

= |x+ y|
≤ |x|+ |y| by the triangle inequality
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Epsilon Delta Definition of Limit

∣∣∣f(x, y)− L∣∣∣ ≤ |x|+ |y|
=
√
x2 +

√
y2

≤
√
x2 + y2 +

√
x2 + y2

= 2
√
x2 + y2

This result suggests that we choose δ = ε/2. By choosing δ = ε/2, and

letting 0 <
√
x2 + y2 < δ, we obtain

|f(x, y)− L| ≤ 2
√
x2 + y2 < 2δ = 2(ε/2) = ε

Thus, given any ε, choosing δ = ε/2, and 0 <
√
x2 + y2 < δ = ε/2, we

can guarantee that |f(x, y)− L| < ε.

Therefore, the limit exists and is equal to 0.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Evaluate the following limit, or show that it does not exist.

lim
(x,y,z)→(0,0,0)

x2 − y2 − z2

x2 + y2 + z2
.

2. Evaluate the following limit, or show that it does not exist.

lim
(x,y)→(0,0)

xy

x2 + y2
.

3. Calculate du/dt given that u = x2 − y2, x = t2 − 1, and
y = 3 sin(πt). Simplification is not necessary.

4. The radius of a cylinder is decreasing at a rate of 2 cm/s while its
height is increasing at a rate of 3 cm/s. At what rate is the volume
changing when the radius is 10 cm and the height is 100 cm?

5. Create a function, f(x, y), that satisfies the following

∂f(x, y)

∂x
= x2 + y, and

∂f(x, y)

∂y
= y3 + x
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Question 1: Limits

Evaluate, or show that the following limit does not exist.

lim
(x,y,z)→(0,0,0)

x2 − y2 − z2

x2 + y2 + z2
.

Solution
Along the x-axis, y = z = 0, and the limit becomes

lim
(x,y,z)→(0,0,0)

x2 − 0− 0

x2 + 0 + 0
= 1.

Along the y-axis, x = z = 0, and the limit becomes

lim
(x,y,z)→(0,0,0)

0− y2 − 0

0 + y2 + 0
= −1.

Depending on which path we approach the limit point, we arrive at
different values. Therefore the limit does not exist (DNE).
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Question 2: Limits

Evaluate, or show that the following limit does not exist.

lim
(x,y)→(0,0)

xy

x2 + y2
.

Solution
Along the line y = mx, the limit becomes

lim
(x,y)→(0,0)

xmx

x2 +m2x2
= lim

(x,y)→(0,0)

mx2

x2(1 +m2)
=

m

1 +m2
.

Depending on which path we approach the limit point, we arrive at
different values. Therefore the limit does not exist (DNE).
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Question 3: The Chain Rule

Calculate du/dt given that u = x2 − y2, x = t2 − 1, and y = 3 sin(πt).
Simplification is not necessary.

Solution
We can approach this in two different ways. We can use the chain rule,
as follows.

∂u

∂t
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

= 2x · 2t+ (−2y)(3π cos(πt))
= 4t(t2 − 1)− 6 sin(πt) · 3π cos(πt)

An also substitute our known values for x and y first, and then
differentiate.

∂u

∂t
=

∂

∂t
(x2 − y2) = ∂

∂t

(
(t2 − 1)2 − (3 sin(πt))2

)
= 2(t2 − 1)(2t)− 6π sin(πt) · 3 cos(πt)
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Question 4: The Chain Rule

The radius of a cylinder is decreasing at a rate of 2 cm/s while its height
is increasing at a rate of 3 cm/s. At what rate is the volume changing
when the radius is 10 cm and the height is 100 cm?

Solution

V = πR2H

∂V

∂t
=
∂V

∂R

dR

dt
+
∂V

∂H

dH

dt

=
∂(πR2H)

∂R
(−2) + ∂(πR2H)

∂H
(3)

= 2πRH(−2) + (πR2)(3)

= −4πRH + 3πR2

When R = 10 and H = 100, we have

∂V

∂t
= −4π · 10 · 100 + 3π(10)2 = −4000π + 300π = −3700π.
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Question 5: Partial Derivatives

Create a function, f(x, y), that satisfies the following

∂f(x, y)

∂x
= x2 + y, and

∂f(x, y)

∂y
= y3 + x

Solution
A function whose derivative with respect to x is x2 + y is

f = x3

3 + xy +C(y), where C is some function of y. Differentiating with
respect to y gives us fy = 0 + x+C ′(y). Thus, by comparison, C ′ = y3,

and C = y4

4 . Thus

f(x, y) =
x3

3
+ xy + C(y) =

x3

3
+ xy +

y4

4
.
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Recitation 11

R11 Topics
14.5 The Gradient

R11 Learning Objectives
By the end of today’s session you should be able to do the following.

I Compute gradients and directional derivatives.

I Provide geometric interpretations of gradients and directional
derivatives.

I Describe the relationship between gradients and level curves.

While We’re Waiting to Start
Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .
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The Gradient and Directional Derivative

Consider f(x, y) = y2e2x.

1. Find the direction of steepest ascent at P (0, 1) and at Q(0,−1).
2. Sketch the level curves of f , and the gradient vectors at P and Q.

3. Find the rate at which f is increasing in the direction ~u = î− ĵ at P .

Solution
The direction of steepest ascent at any point is given by the gradient.

∇f =

[ ∂
∂xf
∂
∂yf

]
=

[
2y2e2x

2ye2x

]
The direction of steepest ascent at P and Q are:

∇f(0, 1) =
[

2
2

]
, ∇f(0,−1) =

[
2
−2

]
The level curves are obtained by setting f(x, y) = C, where C is a value
in the range of f . C = y2e−2x implies y = ±

√
Ce−x. We will plot the

curves on the next slide.
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The Gradient and Directional Derivative

The gradient vectors at points
P (0, 1) and Q(0,−1) should be
perpendicular to the level curves
(apologies for the rough
drawing).

The rate at which f(x, y) is increasing at P in the direction ~u = î− ĵ is
given by the dot product:

∇f(0, 1) ·
[

1
−1

]
=

[
2
2

]
·
[

1
−1

]
= 2− 2 = 0

Thus, the rate of change of f in the direction of ~u is zero. Vector ~u
points in the direction of a level curve of f(x, y).
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Wolfram Alpha’s Plots of f(x, y)

In case it helps see what is going
on, to the left are plots of our
function, y2e2x, that
WolframAlpha produces.

Notice that the contour plot
gives a set of level curves.
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Level Curves

If C is in the of f(x, y), then the curve C = f(x, y)
is a level curve of f(x, y). For functions of two variables, we can think
of level curves as curves of constant height (analogous to topographic
maps, that have curves of constant elevation).

In other words, a level curve is an intersection between f(x, y) and the
plane z = C. Level curves are a useful view of the overall behavior of a
function.

Banaba Island image under a CCBY2.0 license, available from https://www.flickr.com/photos/evsmap
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Level Curves and the Gradient

This following helps explain why the gradient is ⊥ to level curves.

Let C = g(x, y) be a level curve of g(x, y). Show that ∇g is always
perpendicular to the level curve.

Solution
Let ~r(t) be a parameterization of the curve g(x, y) = C. A vector that is
parallel to the curve at any t is ~v(t) = ~r′(t). We will show that the
gradient is perpendicular to ~v(t) for all t.

Because of our parameterization, C = g(x, y) = g(x(t), y(t)), and by the
chain rule,

dg

dt
= 0 =

∂g

∂x

dx

dt
+

∂g

∂y

dy

dt
=

[
gx
gy

]
·
[

dx/dt
dy/dt

]
= ∇g · ~v

Thus, the gradient is always perpendicular to the level curve C = g(x, y).
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A Conceptual Question: The Gradient

At which point does the gradient vector have the largest magnitude?
Draw the gradient at this point.

1. (0,0)

2. (8,-8)

3. (6,-2)

4. (-4,-4)

Solution
The magnitude of the gradient is |∇f | =

√
f2
x + f2

y . At (6,−2), the

contour lines are most closely packed: f is changing most rapidly at that
point. The gradient points in the direction of steepest ascent and is
perpendicular to the level curve at (6,−2), so ∇f points to the right.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards
the point (2, 2, 1) and provide a geometric interpretation of your
answer.

2. For z = 3xy − x3 − y3, find the points where the gradient vector,
∇z(x, y), is the zero vector. Provide a geometric interpretation of
your answer.

3. Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find
f(x, y).
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Question 1: A Directional Derivative

Find the directional derivative of f = z ln(x/y) at (1, 1, 2) towards the
point (2, 2, 1). Provide a geometric interpretation of your answer.
Solution
For clarity, I’m writing out more steps than are needed. We’re using the
Chain Rule a few times in this problem.

∇f =
∂

∂x

(
z ln(x/y)

)
î+

∂

∂y

(
z ln(x/y)

)
ĵ +

∂

∂z

(
z ln(x/y)

)
k̂

= z
∂

∂x
ln(x/y)̂i+ z

∂

∂y
ln(x/y)ĵ + ln(x/y)

∂

∂z
(z)k̂

= z
1

x/y

∂

∂x
(x/y)̂i+ z

1

x/y

∂

∂y
(x/y)ĵ + ln(x/y)k̂

=
z

x
î− z

y
ĵ + ln(x/y)k̂

∇f(1, 1, 2) = 2̂i− 2ĵ + 0k̂

On the next slide we will find the directional derivative and provide a
geometric interpretation.
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Question 1: A Directional Derivative (Continued)

Let the vector pointing from (1, 1, 2) to (2, 2, 1) be ~u. The desired
directional derivative is the dot product ∇f · ~u.

∇f(1, 1, 2) · ~u =

 2
−2
0

 ·
 2− 1

2− 1
1− 2

 =

 2
−2
0

 ·
 1

1
−1

 = 0

Therefore, the directional derivative, at the point (1, 1, 2), in the
direction pointing towards (2, 2, 1), is zero. Geometrically, this means
that the value of the function f is not changing in the specified direction.
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Question 2: Zero Gradient

For z = 3xy − x3 − y3, find the points where the gradient vector,
∇z(x, y), is the zero vector. Provide a geometric interpretation of your
answer.

Solution

∇z =

[ ∂
∂xz
∂
∂y z

]
=

[
3y − 3x2

3x− 3y2

]
The gradient vector has zero magnitude when

0 = 3y − 3x2

0 = 3x− 3y2

Rearranging these equations yields the two curves y = x2 and x = y2.
These curves intersect at two points, (0, 0), and (1, 1). Geometrically,
these points correspond to points where the function z(x, y) is flat. In
other words, where its tangent plane is horizontal. These points could
also indicate local minima/maxima.
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Question 3: Constructing a Function From its Gradient

Suppose ~F = ∇f(x, y) = (2x+ sin y)̂i+ (x cos(y)− 2y)ĵ. Find f(x, y).

Solution
A function whose derivative with respect to x is 2x+ sin y is
f = x2 + x sin y + C(y), where C is some function of y. Differentiating
with respect to y gives us fy = 0 + x cos y + C ′(y). Thus, by
comparison, C ′ = −2y, and C = −y2. Thus

f(x, y) = x2 + x sin y + C(y) = x2 + x sin y − y2.
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Recitation 12

R12 Topics
14.6 Tangent Planes and Differentials
14.7 Absolute Min/Max

R12 Learning Objectives
By the end of today’s session you should be able to do the following.

I Find equations of tangent planes and normal lines of surfaces.

I Apply tangent planes and differentials to make approximations.

I Locate and classify critical points of surfaces.

Example 1
Consider the surface x2 + 4y2 = z2.

1. Find the equation of the tangent plane at P (3, 2, 5).

2. Find the equation of the normal line at P , and identify where the
normal line intersects the xy-plane.

3. Sketch the surface and the normal line.
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Example 1: Part 1

Consider the surface x2 + 4y2 = z2. Find the equation of the tangent
plane at P (3, 2, 5).

Solution
The surface may be represented by the function
f(x, y, z) = x2 + y2 − z2. A normal vector at any point on the surface is
given by the gradient ∇f(x, y, z).

∇f(x, y, z) =

 ∂
∂xf
∂
∂yf
∂
∂z f

 =

 2x
8y
−2z

 ⇒ ∇f(3, 2, 5) =

 6
16
−10


The equation for the tangent plane is the dot product between a normal
vector and a vector in the tangent plane.

0 = ∇f(3, 2, 5) ·

 x− 3
y − 2
z − 5

 = 6(x− 3) + 16(y − 2)− 10(z − 5)

This simplifies to 3x+ 8y − 5z = 0.
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Example 1: Part 2

Consider the surface x2 + 4y2 = z2. Find the equation of the normal line
at P (3, 2, 5), and identify where the normal line intersects the xy-plane.

Solution
Recall that the scalar parametric equations for a line are given by
~r(t) = ~r0 + ~dt, where ~r0 is a point on the line, ~d is a direction vector.
But ∇f is parallel to the normal line. So the normal line is given by

~r = ~r0 +∇ft =

 3
2
5

+

 3t
8t
−5t


If you prefer, we could also write the normal line as:

x = 3 + 3t, y = 2 + 8t, z = 5− 5t.

The line intersects the xy-plane when z = 0, or when t = 1. Substituting
t = 1 into the above equations yields the point (6, 10, 0).

Recitation 12, Slide 3



Example 1: Part 3

Consider the surface x2 + 4y2 = z2. Sketch the surface and the normal
line.

Solution
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Tangent Planes and Differentials (14.6)

For a function of one variable, y(x), we define the differential dy as

dy =
dy

dx
dx,

where dy is the change in height of the tangent line.

For a function of two variables, z(x, y), we define the differential dz as

dz = ,

where dz is the change in height of the .

The equation of the tangent plane to z = z(x, y) at the point ~r0 is

z = z0 +∇z · (~r − ~r0)

The vector ~r − ~r0 is a vector in the tangent plane.
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A Quick Calculation: Tangent Plane Approximation

Suppose zx(3, 4) = 5, zy(3, 4) = −2, and z(3, 4) = 6. Assuming the
function z is differentiable, what is the best estimate for z(3.1, 3.9) using
this information?

1. 6.3

2. 9

3. 6

4. 6.7

Solution
The correct answer is 6.7.
Since we are moving .1 units in the x direction, the function increases
from 6 to approximately 6 + .1 ∗ 5 = 6.5. By similar reasoning, when we
move in the y direction, the height is approximately
6.5 + (−.1)(−2) = 6.7.
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Estimating Change in Volume

Estimate, using the tangent plane approximation, the change in volume
of a cylinder if its height is changed from 12.0 to 12.2 cm and the radius
is changed from 8.0 to 7.7 cm. How much does the volume actually
change?

Solution
Using V = πR2H, R = 8, H = 12, dR = −0.3, dH = 0.2, we obtain

dV =
∂V

∂R
dR+

∂V

∂H
dH

= (2πRH)dR+ (πR2)dH

= 2π(8)(12)(−0.3) + π(8)2(0.2)

= −44.8π
≈ −140.74

The estimate gives us a decrease in volume of about 140.74 cm3. The
actual change in volume is V (12.2, 7.7)− V (12, 8) which, plugging
everything into a calculator, is roughly 140.31 cm3.
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Second Derivative Test (14.7)

Suppose f has continuous 2nd order partial derivatives around some
point P (x0, y0), and that ∇f(x0, y0) = 0. Let

D =
∂2f

∂x2
∂2f

∂y2
−
( ∂2f

∂x∂y

)2
If D = 0, then .
If D < 0, then P is a saddle point.
If D > 0, then P is a maximum if fxx < 0 and a minimum if fxx > 0.

Recitation 12, Slide 8



Optimization

Find the critical points of f(x, y) = y + x sin(y) and determine whether
they correspond to local or absolute minimums or maximums of f(x, y).

Solution
The critical points are points where ∇f = ~0.

~0 = ∇f(x, y) = sin yî+ (1 + x cos y)ĵ

But sin y = 0 implies that y = Nπ, where N is any integer. But
cos(Nπ) = (−1)N , so x = ±1. The stationary points are located at the
points (−1, 2πN) and at

(
1, 2π(N + 1)

)
.

To determine whether these points correspond to local min/max, we use
the second derivatives test.

D = fxxfyy − f2xy = 0−
(
cos(Nπ)

)2
= −1 < 0

All of the critical points correspond to saddle points. A plot of the
surface, shown on the next slide, helps us see that this is the case.
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Surface Plot of f(x, y) = y + x sin(y)

Solution
Notice how there are no local
min/max at the points
(−1, 2πN),

(
1, 2π(N + 1)

)
.

In fact, the function has no local
min/max values at all.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Consider the function f(x, y) = 3xy − x3 − y3.

1.1 Find the points where the gradient vector, ∇f(x, y), is the zero
vector.

1.2 Find the points where the tangent plane is horizontal.
1.3 Find the critical points of f(x, y). Classify these points as min, max,

or saddle points.

2. Find an equation of the tangent plane and normal line to
z = (x2 + y2)2 at P (1, 1, 4).
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Question 1.1: Zero Gradient

For f = 3xy − x3 − y3, find the points where the gradient vector,
∇f(x, y), is the zero vector.

Solution
Note: this question was explored in the previous recitation.

∇f =

[
3y − 3x2

3x− 3y2

]
The gradient vector has zero magnitude when

0 = 3y − 3x2

0 = 3x− 3y2

Rearranging these equations yields the two curves y = x2 and x = y2.
These curves intersect at two points, (0, 0), and (1, 1). These are the
only two points where the gradient is zero.
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Questions 1.2 and 1.3

Consider the function f(x, y) = 3xy − x3 − y3. Find the points where
the tangent plane is horizontal. Find the critical points of f(x, y).
Classify these points as min, max, or saddle points.

Solution
The tangent plane is horizontal at points where ∇z(x, y) is the zero
vector. We found these points to be (0, 0), and (1, 1).

These two points (0, 0), and (1, 1) could also indicate local
minima/maxima. We use the second derivative test to tell us if they are.

D = fxxfyy − f2xy = (9x)(9y)− (3)(3) = 81xy − 9

At (0, 0), D is negative, so we have a saddle at (0, 0).
At (1, 1), D is positive, so we have a local maximum at (1, 1) because
fxx is also positive.
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Question 2

Find an equation of the tangent plane and normal line to z = (x2 + y2)2

at P (1, 1, 4).
Solution
Set f(x, y, z) = (x2 + y2)2 − z.

∇f(x, y, z) =

 ∂
∂xf
∂
∂yf
∂
∂z f

 =

 4x(x2 + y2)
4y(x2 + y2)
−1

→ ∇f(1, 1, 4) =
 8

8
−1


Thus, the tangent plane is given by 8(x− 1) + 8(y − 1)− (z − 4) = 0,
which simplifies to 8x+ 8y − z = 12. The normal line is given by the
parametric equations

x = 1 + 8t, y = 1 + 8t, z = 4− t.
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Recitation 13

R13 Topics
GRA2, Quiz 2 Review

Quiz 2 Covers These Topics
13.6 Velocity and Acceleration in Polar Coordinates
14.2 Limits and Continuity
14.3 Partial Derivatives
14.4 The Chain Rule
14.5 Directional Derivatives, the Gradient
14.6 Tangent Planes, Differentials
14.7 Absolute Max/Min

Office Hours
I’ll hold the usual additional office hours and drop-in session (same times and
URLs as last quiz).

While We’re Waiting to Start
Find the dimensions of a rectangular box of maximum volume such that the
sum of its 12 lengths is a constant L.
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Dimensions of a Rectangular Box

Find the dimensions of a rectangular box of maximum volume such that the
sum of its 12 lengths is a constant L.

Solution
Letting the dimensions be a, b, and c, then V = abc. To incorporate the length
constraint, we will eliminate c by using 4a+ 4b+ 4c = L, or c = L/4− a− b.
The volume is

V = abc = ab(L/4− a− b) = abL/4− a2b− ab2

Va = bL/4− 2ab− b2 = 0⇒ 2a+ b = L/4

Vb = aL/4− a2 − 2ab = 0⇒ 2b+ a = L/4

Solving these two questions yields a = b = L/12. Not surprisingly, c = L/12.
From the geometrical nature of this problem, this critical point corresponds to
a maximum.

Thus, the rectangular box is a cube with sides of length L/12.

Note that another approach to this problem would be to use Lagrange
Multipliers, but we haven’t explored that method yet in our course.
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Quiz 2

Quiz 2 Learning Objectives
For Quiz 2, you should be able to do the following.

I Determine whether or not limits of functions of several variables exist by
evaluating the limit along paths or by using the formal definition of limit.

I Compute partial derivatives of multi-variable functions using the chain rule.

I Compute gradients and directional derivatives.

I Provide geometric interpretations of gradients and directional derivatives.

I Describe the relationship between gradients and level curves and surfaces.

I Apply the gradient to find equations of tangent planes, normal lines and
tangent lines of surfaces.

I Apply tangent planes and differentials to make approximations.

I Locate and classify critical points of surfaces.
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Graded Recitation Activity 2

Instructions

I Every student in your group needs to write their name or initials on the
board.

I You have 20 minutes to answer the questions below.

I For full marks, show at least two intermediate steps for each question.

I Answer each question on a different slide.

I All students in the same group receive the same grade.

I Please do not share computers: every student should log in on their own
computer.

I You do not need to simplify your answers.

Question 1 (3 points)
Consider the surface x2yz + xy − y2z2 = −27.

1. Find an equation of the tangent plane to the surface at the point (1, 3, 2).

2. Find a parameterization of the normal line at the point (1, 3, 2).

Question 2 (2 points)
Consider the surface z = x3y − x2y2. Find a normal vector to z at (2, 1, 4).

Recitation 13, Slide 4



GRA2, Question 1 Part 1

Consider the surface x2yz + xy − y2z2 = −27. Find an equation of the
tangent plane to the surface at the point (1, 3, 2).

Solution
Let F (x, y, z) = x2yz + xy − y2z2. A vector that is perpendicular to this
surface at any point is ∇F .

∇F (x, y, z) =

 ∂
∂x

F
∂
∂y

F
∂
∂z

F

 =

 2xyz + y
x2z + x− 2yz2

x2y − 2y2z

 ⇒ ∇F (1, 3, 2) =

 15
−21
−33


We now have a vector that is normal to the surface at (1, 3, 2). The dot
product between this vector, and any vector in the plane, is going to be zero.

0 = ∇F (1, 3, 2) ·

 x− 1
y − 3
z − 2

 =

 15
−21
−33

 ·
 x− 1

y − 3
z − 2


Thus, the tangent plane is given by 15(x− 1)− 21(y − 3)− 33(z − 2) = 0,
which simplifies to 15x− 21y − 33z = −114.
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GRA2, Question 1 Part 2

Consider the surface x2yz + xy − y2z2 = −27. Find a parameterization of the
normal line at the point (1, 3, 2).

Solution
The normal line is given by the parametric equations

x = 1 + 15t, y = 3− 21t, z = 2− 33t.
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GRA2, Question 2

Consider the surface z = x3y − x2y2. Find a normal vector to z at (2, 1, 4).

Solution
Let F (x, y, z) = x3y − x2y2 − z. Then the surface z has a normal vector given
by the gradient ∇F .

∇F (x, y, z) =

 ∂
∂x

F
∂
∂y

F
∂
∂z

F

 =

 3x2y − 2xy2

x3 − 2x2y
−1


∇F (2, 1, 4) =

 3(2)2(1)− 2(2)(1)2

23 − 2(2)2(1)
−1

 =

 8
0
−1


A vector that is normal to the surface is [8, 0,−1]. Another normal vector is
[−8, 0, 1].
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Tangent Line

Find an equation for the tangent line to the curve of intersection of the
surfaces z = x2 + y2 and 4x2 + y2 + z2 = 9 at (−1, 1, 2).

Solution
Let f = z − x2 − y2 and g = 4x2 + y2 + z2 − 9. Then the tangent line is
perpendicular to both ∇f and ∇g. Vector ~v = ∇f ×∇g is parallel to the
desired tangent line (the textbook explains why in Section 14.6).

∇f(x, y, z) =

 −2x−2y
1

 , ∇f(−1, 1, 2) =

 2
−2
1


∇g(x, y, z) =

 8x
2y
2z

 , ∇g(−1, 1, 2) =

 −82
4


∇f(−1, 1, 2)×∇g(−1, 1, 2) =

∣∣∣∣∣∣
i j k
2 −2 1
−8 2 4

∣∣∣∣∣∣ =
 −1016
−12


Parametric vector equations for the tangent line at (−1, 1, 2) are

x = −1− 10t, y = 1− 16t, z = 2− 12t.
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Absolute Max/Min

Find the absolute maximum and minimum of the function
f(x, y) = 4xy2 − x2y2 − xy3 in the closed triangle bounded by the lines x = 0,
y = 0 and y = 6− x.

Solution
We will first consider the boundaries of the triangular region, and then
investigate the interior.

The Boundaries of the Triangular Region
There are three boundaries we must consider.

I Everywhere along x = 0, f(0, y) = 0.

I Everywhere along y = 0, f(x, 0) = 0.

I Along y = 6− x, and f(x, 6− x) = −2x(x− 6)2. Taking the derivative
and setting the result to zero gives us
0 = fx(x, 6− x) = −6(x2 − 8x+ 12) = −6(x− 2)(x− 6). This suggests
that x = 2 and x = 6 could be min/max, so we can evaluate f at these
points f(2, 4) = −64, and f(6, 0) = 0.

On the next slide, we will look at the interior of the region.
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Absolute Max/Min

The Interior of the Region
fx = 4y2 − 2xy2 − y3 = 0 implies that either y = 0 or y = 4− 2x. But y = 0
is not in the interior (it is along the boundary, which we’ve already looked at).
fy = 8xy − 2x2y − 3xy2 = 0 implies that either y = 0 or 8x− 2x2 − 3xy = 0.
By substitution,

0 = 8x− 2x2 − 3xy = 8x− 2x2 − 3x(4− 2x) = 4x(x− 1)

Thus, x = 0 or x = 1. Again, x = 0 is not in the interior of our region. When
x = 1, y = 4− 2(1) = 2. So for the interior, we need only consider the point
(1, 2), and f(1, 2) = 4

Putting everything together, we have:

f(0, y) = 0

f(x, 0) = 0

f(2, 4) = −64
f(1, 2) = 4

The absolute maximum is f(1, 2) = 4 and the absolute minimum is
f(2, 4) = −64.
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Recitation 15

R15 Topics
14.8 Lagrange Multipliers (LM)

R15 Learning Objectives

I
Solve constrained optimization problems using LM.

I
Compare LM to other approaches that solve constriained optimization

problems.

While We’re Waiting to Start
A wire in the shape of a circle of radius 1 has temperature T (x, y) = xy.

1. Sketch the level curves of T .

2. Based on your sketch, where are rT , and the normal vector to the wire,

parallel?

3. Find the hottest and coldest points on the wire using LM.

4. Describe another method of finding the hottest and coldest points, and

why it may not work in more complex situations.
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Constrained Temperature Optimization

A wire in the shape of a circle of radius 1 has a temperature of T (x, y) = xy.

1. Sketch the level curves of T .

2. Based on your sketch, where are rT , and the normal vector to the wire,

parallel?

Solution
The level curves have the form C = xy, or y = C/x, for constant C. The plot

below shows the level curves for positive temperatures in red, negative in blue,

and the wire in black. The four points where rT looks parallel to rg are also

shown.

It would seem from our sketch that

the hottest points occur at the

points (1/

p
2, 1/

p
2) and

(�1/

p
2,�1/

p
2), and the coldest

points occur at (�1/

p
2, 1/

p
2) and

(1/

p
2,�1/

p
2). It is at these

points that rT seems to be parallel

to rg, where g(x, y) = x

2
+ y

2 � 4.
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Constrained Temperature Optimization

A wire in the shape of a circle of radius 1 has a temperature of T (x, y) = xy.

Find the hottest and coldest points on the wire using LM.

Solution
Let the constraint be g(x, y) = x

2
+ y

2 � 1 = 0. The coldest and warmest

points correspond to where the two gradients are parallel: rT = �rg. The

constant � is an unknown parameter. Calculating the gradients gives us:


y

x

�
=


�2x

�2y

�

Substitution yields y = 2�(2�y) = 4�

2
y, which has the solutions y = 0 or

� = ±1/2. If y = 0, then x = 0, which is not a point on the wire. Thus, �

must be ±1/2, which means y = ±x.

The constraint x

2
+ y

2
= 1 implies we have four solutions, (1/

p
2, 1/

p
2),

(�1/

p
2,�1/

p
2), (1/

p
2,�1/

p
2), and (�1/

p
2, 1/

p
2).

Since T is positive in the first and third quadrants and negative in the other

two, the first two points are the warmest points, and the other two are the

coldest points on the wire.

Recitation 15, Slide 3



Constrained Temperature Optimization

Describe another method of locating the hottest and coldest points, and why it

may not work in more complex situations.

Parametric Representations

The constraint is specified by the unit circle, so we can identify a parametric

representation of the constraint curve, with x(t) = cos t, y(t) = sin t. Then

g = 0 is satisfied, and T (x, y) = T (x(t), y(t)). We can find the warmest and

coldest points by solving 0 =

d

dt

T =

d

dt

�
cos t sin t

�
. This approach works for

the given problem. But for more complicated constraints, g(x, y), it may not

be possible to find a parametric representation.

Cross Product of the Gradients

The cross product of two parallel vectors is the zero vector. Knowing that we

need points where rT and rg are parallel, we can instead solve

~

0 =

������

i j k

T

x

T

y

0

g

x

g

y

0

������
= (T

x

g

y

� T

y

g

x

)

ˆ

k = (y

2 � x

2
)

ˆ

k

The rest of the solution is straightforward. This method is e�cient because we

have functions of two variables and did not need to introduce �. But if we had

functions of 3 variables, the resulting algebra could be tedious.
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A Definition of the Method of LM

If point (x0, y0, z0) a function f(x, y, z), subject to

g(x, y, z) = 0, then rf and rg are parallel at (x0, y0, z0), and there exists a

constant �, such that

rf(x0, y0, z0) = �rg(x0, y0, z0)

The scalar � is called a Lagrange multiplier.

Note also that the above definition applies to when there is only one constraint,

g. Your textbook also describes an approach for when there are two constraints:

if we wish to minimize/maximize f subject to g and to h, then we solve

rf = �rg + µrh

In this case, we have two Lagrange multipliers, � and µ.

Solution
minimizes or maximizes
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Test Your Understanding of LM

Where is the absolute maximum value of f(x, y) = x+ y, subject to xy = 9,

located?

1. (3,3)

2. (3,3) and (-3,-3)

3. (3,3), (-3,3), (3,-3), and (-3,-3)

4. There is no absolute maximum value.

Solution
There is no absolute maximum value of f subject to the given constraint. If we

were to use LM, we would solve rf = �rg, along with xy = 9. Calculating

the gradients gives us


1

1

�
= �


y

x

�
.

If 1 = �y, then � 6= 0. And if �x = �y, then we can divide by � to obtain

x = y. Thus,

xy = 9 ) x

2
= 9 ) x = ±3.

Thus, we have two points where the gradients are parallel, (3, 3) and (�3,�3).

But we need to find the absolute maximum of f(x, y). This problem is

continued on the next slide.
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Test Your Understanding of LM (Continued)

We have two points where the gradients are parallel, at (3, 3) and (�3,�3).

But what do these points correspond to? Are they local minima? Local

maxima?

Maximizing f(x, y) along the curve xy = 9

implies that we are interested in values of f

along y = 9/x. Along this curve, our

function becomes f = x+ 9/x, shown to the

right. This function has critical points at

x = 3 and at x = �3. We can also see that

(�3,�3) corresponds to a local maximum,

and (3, 3) corresponds to a local minimum.

But there is no absolute maximum, because f ! 1 as x ! 1 along the curve

xy = 9.

Conclusion: LM only gives us points where gradients are parallel. Extra work is

needed to determine if these points are local/absolute min/max.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the distance from the point P (0, 1) to the curve x

2
= 4y.

2. The volume of a cylindrical tank with hemispherical ends must be 100

cubic meters. What dimensions of the tank minimizes its surface area?
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Distance From a Point to a Curve

1) Find the minimum distance from the point P (0, 1) to the curve x

2
= 4y.

Solution
We can minimize the square of the distance, d(x, y) = x

2
+ (y � 1)

2
, subject

to the constraint curve g(x, y) = x

2 � 4y = 0.

rd(x, y) =


2x

2(y � 1)

�
, rg =


2x

�4

�

The minimum must occur where rd is parallel to rg. We can proceed by

either solving rd = �rg, or by using a cross product.

Solve Using rd = �rg

We must solve the equations

2x = 2x�

2(y � 1) = �4�

The first equation implies that either x = 0 or � = 1. If x = 0, then from our

constraint curve, y = 0. If � = 1, then y = �1 but y can’t be negative

(because x

2
= 4y). We therefore have the point (0, 0). And d(0, 0) = 1.
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Distance From a Point to a Curve

Alternate Solution: Cross Product

The cross product of parallel vectors is zero, and we are looking for points

where two vectors are parallel. We can also use a cross product to solve this

problem.

~

0 =

2

4
2x

2(y � 1)

0

3

5⇥

2

4
2x

�4

0

3

5

=

������

i j k

2x 2(y � 1) 0

2x �4 0

������

=

⇣
� 8x� 4x(y � 1)

⌘
ˆ

k

= (�4x� 4xy)

ˆ

k

Thus, �4x� 4xy = 0, or x(y + 1) = 0. As before, y can’t be negative, so

x = 0. And since x

2
= 4y, x = y = 0. The distance is d(0, 0) = 1.
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Minimizing Surface Area of a Tank

2) The volume of a cylindrical tank with hemispherical ends must be 100 cubic

meters. What dimensions of the tank minimizes its surface area?

Solution
We want to minimize S = 4⇡R

2
+ 2⇡RL, subject to

V =

4
3⇡R

3
+ ⇡R

2
L = 100. We could substitute one expression into the other

to obtain a function of one variable which we can minimize, or we can use LM.

To use LM, we set g = g(R,L) =

4
3⇡R

3
+ ⇡R

2
L� 100. Then rS = �rg

yields

rS = �rV


8⇡R+ 2⇡L

2⇡R

�
= �


4⇡R

2
+ 2⇡RL

⇡R

2

�

Thus, � = 2/R, and

8⇡R+ 2⇡L = (2/R)(4⇡R

2
+ 2⇡RL)

4R+ L = 4R+ 2L

Thus, L = 0, the volume constraint gives R = (75/⇡)

1/3
, and

S = 4⇡(75/⇡)

2/3
.
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Recitation 16

R16 Topics
14.8 Lagrange Multipliers
14.9 Taylor’s Formula for Two Variables
14.10 Partial Derivatives with Constrained Variables

R16 Learning Objectives
I Derive the least squares equations to fit the plane Ax+By + C to a set

of given points (14.8).
I Calculate a cubic approximation to a function of two variables at a

specified point (14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).

While We’re Waiting to Start
Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U
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The Chain Rule with Intermediate Variables, Parts A and B

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

A)
( ∂S
∂V

)
U

B)
dS

dV

Solution
A) The notation

(
∂S
∂V

)
U

implies that V and U are independent variables, and

that S is a dependent variable. Using S = 3UV , we obtain( ∂S
∂V

)
U
=

∂

∂V

(
3UV

)
= 3U

B) The derivative dS/dV implies that S is a dependent variable, and V is an
independent variable. U is not identified as either an independent or as a
dependent variable, and so we must assume that U is an intermediate variable
(U could be a function of V ). Using the equation S = 3UV , we obtain

dS

dV
=

d

dV

(
3UV

)
= 3V

dU

dV
+ 3U = 3V U ′ + 3U

Recitation 16, Slide 2



The Chain Rule with Intermediate Variables, Parts C and D

Let L = f(U, V, S), and S = 3UV . Calculate or derive expressions for the
following derivatives.

C)
( ∂L
∂V

)
U

D)
( ∂L
∂V

)
S,U

Solution
C) V and U are identified as independent variables. S is an intermediate
variable and could be a function of V , so( ∂L

∂V

)
U
=

∂f

∂V
+

∂f

∂S

∂S

∂V

=
∂f

∂V
+

∂f

∂S
3U

D) V , U , and S are independent variables, so( ∂L
∂V

)
S,U

=
∂f

∂V

If you want to check your results for parts C and D, it may help to substitute a
function for f(U, V, S) and see what happens, such as f = 4U2V S. It may
also help to use more familiar variables, so that S = 3xy and L = f(x, y, z).
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Taylor Approximation (14.9)

Calculate the cubic approximation to f(x, y) = 4x cos(y) near the origin.
Complete this question in group work. Note: this was a pop quiz in 2014.
Solution (below is a screen capture of my notes from 2014)
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Approximation Error (14.9)

Use your results from the previous problem to find the quadratic approximation
to f(x, y) = 4x cos(y) near the origin. Then estimate the error in the
approximation if |x| < 0.5 and |y| < 0.1.
Solution
Taylor’s formula for a quadratic approximation is

f(x, y) = f(0, 0) + (xfx + yfy) +
1

2
(x2fxx + 2xyfxy + y2fyy)

Using our results from the previous problem, our quadratic approximation is
f = 4x. The maximum error of this approximation is given by the next term in
the expansion, which is

|E(x, y)| ≤
∣∣∣ 1
3!
(x3fxxx + 3x2yfxxy + 3xy2fxyy + y3fyyy)

∣∣∣
=

1

3!

∣∣∣(x3 · 0 + 3x2y · 0 + 3xy2 · (−4) + y3 · 0)
∣∣∣

=
1

3!

∣∣∣(−12xy2)
∣∣∣ = 2|x|y2.

Therefore, the desired error estimate is

|E(0.5, 0.1)| ≤ 2(0.5)(0.1)2 = 0.01.
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Least Squares (14.8)

The plane z = Ax+By + C is to be fitted to a given set of points,
(xn, yn, zn). Derive the linear system of equations that, when solved, minimizes

E =

N∑
n=1

(Axn +Byn + C − zn)
2.

Solution
We must find an expression that, given a set of data points, returns the values
of A, B, and C that minimizes E. To minimize E, we take the derivatives of
E with respect to the independent variables A, B, and C, and set these 3
equations to zero. In doing so, we can treat xn, yn, and zn as constants.

0 =
∂E

∂A
=

∂

∂A

N∑
n=1

(Axn +Byn + C − zn)
2

=

N∑
n=1

2(Axn +Byn + C − zn)
∂

∂A
(Axn +Byn + C − zn)

But ∂
∂A

(Axn +Byn + C − zn) = xn, because ∂
∂A

(Byn + C − zn) = 0.
Remember that we are treating xn, yn, and zn as constants.
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Least Squares (continued)

We will also divide both sides of the equation by 2 to obtain the following.

0 =
∂E

∂A
= 2

N∑
n=1

(Axn +Byn + C − zn)
∂

∂A
(Axn +Byn + C − zn)

= 2

N∑
n=1

(Axn +Byn + C − zn)xn

=
N∑

n=1

Axnxn +
N∑

n=1

Bynxn + C
N∑

n=1

xn −
N∑

n=1

znxn

N∑
n=1

znxn = A
N∑

n=1

(xn)
2 +B

N∑
n=1

ynxn + C
N∑

n=1

xn

=

[
N∑

n=1

(xn)
2

N∑
n=1

xnyn
N∑

n=1

xn

] A
B
C


In the last step above we expressed our sum as a vector product. A similar
process for the derivatives EB and EC yields equations on the next slide.
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Least Squares (continued)

Calculating the partial derivative EB and setting it equal to zero gives us

N∑
n=1

znyn =

[
N∑

n=1

xnyn
N∑

n=1

(yn)
2

N∑
n=1

yn

] A
B
C


Likewise, EC = 0 gives us the following.

N∑
n=1

zn =

[
N∑

n=1

xn

N∑
n=1

yn
N∑

n=1

1

] A
B
C


Note that

N∑
n=1

1 = N . Putting our three vector product equations together

gives us the linear system of equations that we were asked to find. ∑
znxn∑
znyn∑
zn

 =

 ∑
(xn)

2 ∑
xnyn

∑
xn∑

xnyn
∑

(yn)
2 ∑

yn∑
xn

∑
yn N

 A
B
C


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Recitation 17

R17 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R17 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral (Cartesian
coordinates).

Today’s Questions
Sketch the region bounded by the given curves and construct a double integral
that represents its area.

a) y =
√
x, y = x3.

b) x = 5− y, x = 2y − 1, y = 1.

c) y = x− 6, y2 = x.
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Announcements, WolframAlpha Syntax

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: One Week from Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.

Wolfram Alpha Syntax for Double Integrals
You may want to use Wolfram Alpha to check your answers while completing
your HW. Suppose that we want to determine the value of∫ −1

−2

∫ x−1

0

(x2C + y)dydx

The syntax we could use to compute this particular integral is the following.

integrate x^{2C}+y, x from -2 to -1 and y from 0 to (x-1)
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1a) Area of a Region

Sketch the region bounded by y =
√
x, y = x3 and construct a double integral

that represents its area.
Solution

We can either integrate with respect to
(wrt) x first, or wrt y first. Either
approach will let us express the area with
one double integral.

Integrating wrt y first: the region of integration is the set of all points, (x, y),
such that 0 ≤ x ≤ 1, and x3 ≤ y ≤

√
x. A double integral that represents the

area of the region is ∫ 1

0

∫ √x

x3

dydx.

Alternatively, integrating wrt x first, we can express the region of integration as
the set of all points, (x, y), such that 0 ≤ y ≤ 1, and y2 ≤ x ≤ y1/3. A double
integral that represents the area of the region is∫ 1

0

∫ y1/3

y2

dxdy.
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1b) Area of a Region

Sketch the region bounded by x = 5− y, x = 2y − 1, y = 1, and construct a
double integral that represents its area.
Solution

The shape of the region suggests that if
we integrate wrt x first, then we can
express the area with a single integral.

The region of integration is the set of all points, (x, y), such that 1 ≤ y ≤ 2,
and 2y − 1 ≤ x ≤ 5− y. A double integral that represents the area of the
region is ∫ 2

1

∫ 5−y

2y−1

dxdy.

Alternatively, we could also integrate wrt y first. This approach would require
two integrals, ∫ 3

1

∫ x+1
2

1

dydx+

∫ 4

3

∫ 5−x

1

dydx.
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1c) Area of a Region

Sketch the region bounded by y = x− 6, y2 = x, and construct a double
integral that represents its area.
Solution
Finding the intersection points requires solving y2 = y + 6, which yields
y = −2 and y = 3.

The shape of the region suggests that we integrate wrt x first. A double
integral that represents the area of the region is∫ 3

−2

∫ y+6

y2

dxdy.

Alternatively, we could also integrate wrt y first. It would require two integrals,∫ 4

0

∫ √x

−
√
x

dydx+

∫ 9

4

∫ 5−x

1

dydx.
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Recitation 18

R18 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R18 Learning Objectives

I Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

I Change the order of integration of a double integral.

I Calculate the average value of a function of two variables.

Today’s Questions

1. Change the order of integration.

a)

∫ 0

−1

∫ √y+1

−
√
y+1

dxdy b)

∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx

2. Construct a double integral that represents the volume of the solid
enclosed by the cylinder x2 + y2 = 1, the planes z = y, x = 0, z = 0, in
the first octant.

3. Evaluate
∫ 4

0

∫ 4

y
ex

2

dxdy.
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Announcements

GRA3, Next Tuesday (5 points)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: Next Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We’ll see.
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The Average Value of a Function (15.3)

The average value of a function, f(x, y), over a region R, is given by

Average value of f over region R =
1

area of R

∫∫
R

f(x, y)dA

This definition can be used to find the value of some double integrals quickly.

Example
Region R is the unit circle

√
x2 + y2 ≤ 1. The definite integral of f = x+ 1

over R is equal to:

a) 0

b) 1

c) π

d) π/4

Solution
The answer is c). The area of R is π. The average value of 1 + x over R is 1.

1 =
1

π

∫∫
R

(1 + x)dA ⇒
∫∫

R

(1 + x)dA = π.

Calculating this double integral by hand would have required many more steps.
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Conceptual Question Related to Double Integrals

Let region R be the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. The definite integral of
x3 over region R is equal to:

a) a positive number

b) a negative number

c) zero

d) a function of x

Solution
The answer is zero because the average value of f over R is zero. Alternatively,
we can also argue that the double integral is zero because we are integrating an
odd function (in x) over an interval that is symmetric about the y-axis.

Calculating the integral may help explain what this means.∫ 1

−1

∫ 1

−1

x3dxdy =

∫ 1

−1

x4

4

∣∣∣1
−1
dy =

∫ 1

−1

0 dy = 0.

You may remember from integral calculus that for a function of one variable,
the integral of an odd function over a symmetric interval is zero.
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1a) Changing the Order of Integration

Change the order of integration.∫ 0

−1

∫ √y+1

−
√

y+1

dxdy

Solution
The inner integral tells us that x ∈

[
−
√
y + 1,

√
y + 1

]
. We can solve for y

to more easily sketch the region of integration.

−
√
y + 1 ≤ x ≤

√
y + 1

x2 ≤ y + 1

y ≥ x2 − 1

The above inequality tells us that we are interested in the region above the
parabola y = x2 − 1. The outer integral tells us that −1 ≤ y ≤ 0, so we are
only interested in the region between y = x2 − 1 and the x-axis. The rest of
this problem is on the next slide.
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1a) Changing the Order of Integration (continued)

Integrating wrt y first requires y ∈ [x2 − 1, 0], and x ∈ [−1, 1]. The integral
becomes ∫ 0

−1

∫ √y+1

−
√

y+1

dxdy =

∫ 1

−1

∫ 0

x2−1

dydx
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1b) Changing the Order of Integration

Change the order of integration.∫ 1+e

2

∫ ln(x−1)

0

f(x, y)dydx

Solution
The region over which we are integrating f(x, y) is the shaded area below.

The region is bounded by the lines y = 0, x = 1 + e, and by the curve
y = ln(x− 1). Integrating wrt y last, values of y range from 0 to 1, and values
of x range from x = ey + 1 to x = 1 + e. The double integral becomes∫ 1

0

∫ 1+e

ey+1

f(x, y)dxdy.
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2) Volume of a Solid

Construct a double integral that represents the volume of the solid enclosed by
the cylinder x2 + y2 = 1, the planes z = 1− y, x = 0, z = 0, in the first octant.

Solution
The solid lies under the surface z = 1− y and above the quarter circle R, with
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2.

V =

∫∫
R

f(x, y)dA =

∫ 1

0

∫ √1−x2

0

(1− y)dydx

Alternatively, we could also integrate with respect to x first.

V =

∫∫
R

f(x, y)dA =

∫ 1

0

∫ √1−y2

0

(1− y)dxdy

In case it helps, sketches of region R and the solid are below.
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3) Evaluating a Double Integral

Evaluate the following double integral.∫ 4

0

∫ 4

y

ex
2

dxdy

Solution
The integral of ex

2

cannot be expressed in terms of elementary functions.
What can we do to get around this problem?

The given integration region is bounded by the lines y = 0, x = 4, and y = x.
Changing the order of integration, the double integral becomes∫ 4

0

∫ 4

y

ex
2

dxdy =

∫ 4

0

∫ x

0

ex
2

dydx

=

∫ 4

0

yex
2
∣∣∣y=x

y=0
dx

=

∫ 4

0

xex
2

dx =
ex

2

2

∣∣∣4
0
=
e16 − 1

2

Changing the order of integration can sometimes make it easier to evaluate
certain integrals.
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Additional Exercises

1. Set up an integral that represents the volume of the solid enclosed by the
planes x = 1, y = 3, the three coordinate planes, and x2 + 2y2 + z = 1.

2. Find the volume of the solid enclosed by z = x2 + y2, y = x2 and x = y2.

Solution
1. The solid lies under the surface z = 1− x2 − 2y2 and above the rectangle
R, with 0 ≤ x ≤ 1, 0 ≤ y ≤ 3.∫∫

R

f(x, y)dA =

∫ 1

0

∫ 3

0

(1− x2 − 2y2)dydx

2. The curves y = x2 and x2 = y intersect at (0,0) and at (1,1).∫ 1

0

∫ √x

x2

x2 + y2dydx =

∫ 1

0

(
yx2 +

y3

3

)∣∣∣√x

x2
dx

=

∫ 1

0

(
x5/2 +

x3/2

3
− x4 − x6

3

)
dx

=
(2
7
x7/2 +

2

15
x5/2 − 1

5
x5 − 1

21
x7
)∣∣∣1

0

=
2

7
+

2

15
− 1

5
− 1

21
= 6/35
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Recitation 19

R19 Topics
15.4 Double Integrals in Polar Coordinates
Quiz 3 Review

Quiz 3 Topics

I 14.08 Lagrange Multipliers
I 14.09 Taylor’s Formula for Two Variables
I 14.10 Partial Derivatives with Constrained Variables
I 15.01 Iterated Integrals over Rectangles
I 15.02 Double Integrals over General Regions
I 15.03 Area by Double Integration
I 15.04 Double Integration in Polar Coordinates

Office Hours
I’ll hold additional office hours and a review session:

I Quiz 3 Review Session ∀ Math 2401 students: Tue 5:30 - 7:00 pm, at
https://georgiatech.adobeconnect.com/dcp-online-drop-in-tutor-center-2014-fall

I Quiz 3 Review Session ∀ QH8 students: Wed: 7:30 - 8:30 pm at
https://georgiatech.adobeconnect.com/distancecalculusofficehours
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Quiz 3 Learning Objectives

You should be able to do the following for Quiz 3.

I Solve constrained optimization problems using Lagrange multipliers (14.8).
I Calculate a Taylor approximation to a function of two variables at a point

(14.9).
I Apply the chain rule to compute partial derivatives with intermediate

variables (14.10).
I Construct a double integral that represents the area of a region bounded

by a set of given curves in Cartesian or polar coordinates (15.1 to 15.4).
I Change the order of integration of a double integral (15.1 to 15.4).
I Calculate the average value of a function of two variables (15.3).
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Volume of a Sphere

Identify the expressions that represent the volume of a sphere of radius R.

1) 4

∫ π

0

∫ R

0

r
√
R2 − r2drdθ

2)

∫ 2π

0

∫ R

0

√
R2 − r2drdθ

3) 2

∫ 2π

0

∫ R

0

r
√
R2 − r2drdθ

4)

∫ 2π

0

∫ R/2

0

r
√
R2 − r2drdθ

Solution: (1) and (3) are correct. In Cartesian coordinates, the volume of the
sphere is

2

∫ R

−R

∫ √R2−x2

−
√
R2−x2

√
R2 − (x2 + y2)dydx

We multiply by 2 because the integral only represents the upper half of the
sphere, whose height from the xy-plane is R2 − (x2 + y2). We must convert
this integral from Cartesian to polar coordinates.
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Volume of a Sphere (continued)

We need to do three things: convert the integrand to polar coordinates,
identify the limits of integration, and change the differential (dxdy) to a polar
representation, rdrdθ.

Knowing that x2 + y2 = r2, the integrand becomes
√
R2 − r2.

The projection of the volume onto the xy-plane is a circle of radius R, centered
at the origin. So the points in the region have polar coordinates (r, θ) in the
set 0 ≤ θ ≤ 2π, and 0 ≤ r ≤ R.

Using these limits of integration our integral becomes

2

∫ 2π

0

∫ R

0

r
√
R2 − r2drdθ

Alternatively, we can use symmetry and use the limits 0 ≤ θ ≤ π, and
0 ≤ r ≤ R, so the integral becomes

4

∫ π

0

∫ R

0

r
√
R2 − r2drdθ
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Graded Recitation Activity 3

Instructions

I Every student in your group needs to write their name or initials on the
board.

I You have 10 minutes to answer the question below.
I For full marks, show at least one intermediate step.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Question (5 points, from last year’s quiz)
Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Recitation 19, Slide 5



GRA3

Suppose we wanted to locate all the minimums and maximums of x2y2 subject
to (x2 + y2)2 + xy2 = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.
Solution: a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates

Convert to a double integral in polar coordinates (from 2014 Quiz 2).∫ 2

0

∫ √4−(x−2)2

0

xydydx

Solution: the 1st part of a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 2nd part of a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 3rd part of a screen capture of hand-written solutions are below.
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 4th part of a screen capture of hand-written solutions are below.
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Additional Exercise: Normal Distribution

Evaluate

I =

∫ ∞
0

e−x
2

dx

Solution

I2 =

∫ ∞
0

e−x
2

dx ·
∫ ∞
0

e−y
2

dy

=

∫ ∞
0

∫ ∞
0

e−x
2−y2dxdy

= lim
a→∞

∫ π/2

0

∫ a

0

re−r
2

drdθ

= lim
a→∞

∫ π/2

0

−1
2
e−r

2
∣∣∣a
0
dθ

=
−1
2

lim
a→∞

∫ π/2

0

(e−a
2

− 1)dθ

I2 = π/4

I =
√
π/4
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Additional Exercise: Integration in Polar Coordinates

Sketch the rose curve r = 2 cos(2θ) and find the area of one petal.
Solution: a screen capture of hand-written solutions are below.
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Recitation 23

R23 Topics
15.5 Triple Integrals in Rectangular Coordinates
15.6 Moments of Inertia and Mass

R23 Learning Objectives

I Construct a triple integral that represents the area of a region bounded by
a set of given curves in Cartesian or cylindrical coordinates

I Change the order of integration of a triple integral
I Set-up integrals that represent moments of inertia and centres of mass of

solids

Today’s Questions

1. Set-up a triple integral that represents the volume bounded by the
following surfaces. Set-up the integrals in at least two different ways.

1.1 y2 + z2 = 1, and the planes y = x, x = 0, and z = 0.
1.2 z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0.

2. Consider the region inside the curve r = 2 + sin(θ). Set up the three
integrals you need to find the x and y coordinates of the centroid of the
region, assuming its density is δ(x, y). Express these integrals in polar
coordinates. This is a question from a 2014 quiz.

Recitation 23, Slide 1



Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Triple Integrals, Example 1

Set-up a triple integral that represents the volume of the region bounded by
y2 + z2 = 1, and the planes y = x, x = 0, and z = 0. Set-up the integral in at
least two different ways.
Solution: dzdydx
We could choose the integration order dzdydx. The solid is shown below.

We chose to integrate wrt x last, so x ∈ [0, 1].
Then, for any given value of x in [0, 1] , y ∈ [x, 1].
Then, for any y ∈ [x, 1], z ∈ [0,

√
1− y2].

The volume of the solid, V, is equal to the triple integral

V =

∫ 1

0

∫ 1

x

∫ √1−y2

0

dzdydx.
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Triple Integrals, Example 1 (continued)

Solution: dxdzdy
We could also use the integration order dxdzdy.
We decided to integrate wrt y last, so y ∈ [0, 1].
Then, for any given value of y in [0, 1] , z ∈ [0,

√
1− y2].

Then, for any z ∈ [0,
√

1− y2], x ∈ [0, 2].
The volume is the triple integral:

V =

∫ 1

0

∫ √1−y2

0

∫ y

0

dxdzdy

Note:

I Using only Cartesian coordinates, there are six integration orders that can
be considered (dxdydz, dxdzdy, dydxdz, dydzdx, dzdxdy, dzdydx).

I Regardless of how we set up our integral, we should obtain the same value
for V , which in this case happens to be 1/3.

I WolframAlpha syntax for evaluating the above triple integral is

\int_0^1 \int_0^{\sqrt{1-y^2}} \int_0^y dxdzdy
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Triple Integrals, Example 2

Set-up a triple integral that represents the volume of the region bounded by
z2 = y, and the planes y + z = 2, x = 0, x = 2, and z = 0. Set-up the integral
in at least two different ways.

Solution
If we were to choose dzdydx, then we would need to break up our volume into
two regions. The curves z = 2− y and z = y2 are shown below, along with
regions R1 and R2.
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Triple Integrals, Example 2, Continued

Volume of Region R1 with dzdydx
We chose to integrate wrt x last, so x ∈ [0, 2].
Then, for any given value of x in [0, 2] , y ∈ [0, 1].
Then, for any y ∈ [0, 1], z ∈ [0,

√
y].

Volume Region R2 with dzdydx
We chose to integrate wrt x last, so x ∈ [0, 2].
Then, for any x in [0, 2] , y ∈ [1, 2].
Then, for any y ∈ [1, 2], z ∈ [0, 2− y].

Thus, the total volume is the sum of the two triple integrals:

V =

∫∫∫
R1

dV +

∫∫∫
R2

dV

=

∫ 2

0

∫ 1

0

∫ √y
0

dzdydx+

∫ 2

0

∫ 2

1

∫ 2−y

0

dzdydx
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Triple Integrals, Example 2, Continued

Solution: dydzdx

With the integration order dydzdx, we do not
need to break up the solid into two regions.
We are integrating wrt x last, so x ∈ [0, 2].
Then, for any x in [0, 2] , z ∈ [0, 1].
Then, for any z ∈ [0, 1], y ∈ [z2, 2− z].

Thus, the total volume is the triple integral:

V =

∫ 2

0

∫ 1

0

∫ 2−z

z2
dydzdx

Note:

I Regardless of how we set up our integral, we should obtain the same value
for V , which in this case happens to be 7/3.

I WolframAlpha syntax for evaluating the above triple integral is

\int_0^2 \int_0^1 \int_{z^2}^{2-z}dydzdx
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Centroid

Consider the region inside the curve r = 2 + sin(θ). Set up the three integrals
you need to find the x and y coordinates of the centroid of the region,
assuming its density is δ(x, y). Express these integrals in polar coordinates.
This is a question from a 2014 quiz.

Solution

A plot of the curve is
shown below.

The mass of the solid, m, is

m =

∫ 2π

0

∫ 2+sin(θ)

0

δ(r, θ) rdrdθ

The coordinates (x̄, ȳ) of the center of
mass of the region are

mx̄ =

∫ 2π

0

∫ 2+sin(θ)

0

δ(r, θ) r2 cos(θ)drdθ

mȳ =

∫ 2π

0

∫ 2+sin(θ)

0

δ(r, θ) r2 sin(θ)drdθ
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Recitation 24

R24 Topics
15.7 Integration in Cylindrical and Spherical Coordinates

R24 Learning Objectives

I
Construct a triple integral that represents the area of a region bounded by

a set of given curves in cylindrical or spherical coordinates

I
Change the order of integration of a triple integral

The Spherical Coordinate System

Fill in the blanks.

x = ⇢ cos ✓

y = ⇢ sin ✓

z = ⇢
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

I
Every student in your group needs to write their name or initials on the

board.

I
You have 15 minutes to answer both questions below.

I
For full marks, show at least two intermediate steps.

I
All students in the same group receive the same grade.

I
Please do not share computers: every student should log in on their own

computer.

I
You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid

x

2
+ (y/2)

2
+ (z/9)

2
= 1 in the 1st octant (x,y,z non-negative). Do not

evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by

the hyperboloid of two sheets �x

2 � y

2
+ z

2
= 4, the plane z = 8 and the

plane z = 10. Do not evaluate.
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Spherical Coordinates

Provide a geometric interpretation the surfaces ⇢ sin� = 1 and ⇢ cos� = 1.

Solution: Below is a screen capture of a previous year’s handwritten notes.
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1) A Triple Integral in Cylindrical Coordinates

Use cylindrical coordinates to set-up an integral that represents the volume of

the solid bounded by x

2
+ y

2
+ z

2
= 1, and z

2
= 3(x

2
+ y

2
).

Solution: Below is a screen capture of a previous year’s handwritten notes.
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2) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of

the solid bounded by z = 0, x

2
+ y

2
= 4, and z = 2

p
x

2
+ y

2
.

Solution: Below is a screen capture of a previous year’s handwritten notes.
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Recitation 25

Quiz 4 Topics
15.5 to 15.8 (I think)

Quiz 4 Learning Objectives

I Construct a triple integral that represents the area or volume of a region in
Cartesian, polar, cylindrical, or spherical coordinates

I Change the order of integration, or coordinate system, for a triple integral
I Construct integrals that represent moments of inertia and centres of mass
I Identify a suitable transformation for a triple integral, and use that

transform to find the area or volume of a given region

GRA4

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Graded Recitation Activity 4

Instructions (same as before)

I Every student in your group needs to write their name or initials on the
board.

I You have 15 minutes to answer both questions below.
I For full marks, show at least two intermediate steps.
I All students in the same group receive the same grade.
I Please do not share computers: every student should log in on their own

computer.
I You do not need to simplify your answers.

Questions (5 points each, both questions are from old quizzes)

1. Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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GRA4.1

Set-up a triple integral that represents the volume of the ellipsoid
x2 + (y/2)2 + (z/9)2 = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
Solution: Let u = x, 2v = y, 9w = z, then J = 18, and we are integrating
over the unit sphere in the 1st quadrant. From here, we can use Cartesian,
cylindrical, or spherical coordinates. Using spherical coordinates, we have:

V =

∫ π/2

0

∫ π/2

0

∫ 1

0

18ρ2 sinφdρdφdθ

But there are other ways to set this integral up without using a uvw
transformation. In Cartesian, we could use the following.

V =

∫ 1

0

∫ 2
√

1−x2

0

∫ 9
√

1−x2−y2/4

0

dzdydx

The value of the integral is 3π. WolframAlpha syntax for the above integrals
are:

\int_0^{1} \int_0^{2\sqrt{1-x^2}}\int_0^{9\sqrt{1-x^2-y^2/4}} dz dy dx
\int_0^{pi/2} \int_0^{\pi/2} \int_0^1 18 r^2 sin(p) dr dp d\theta
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GRA4.2

Set-up a triple integral that represents the volume of the solid bounded by the
hyperboloid of two sheets −x2 − y2 + z2 = 4, the plane z = 8 and the plane
z = 10. Do not evaluate.
Solution: Below is a screen capture of a previous year’s handwritten notes.
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Change of Variables

I After completing HW 15.8, you might be familiar with computing an
integral, if you are given a transform.

I But if we were given an integral over a complicated region, and were not
given a suitable transform, how could we find one?

I The basic idea is to find a transform that converts a complicated region
into a simple one, such as a square, or a circle
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1) Change of Variables

Show that the area of the ellipse (x/a)2 + (y/b)2 = 1 is πab.

Solution: let u = x/a, and v = y/b, so that we are integrating over the unit
circle, u2 + v2 = 1. We can show that |J | = ab, and the area, A, becomes

A = 4

∫ 1

0

∫ √1−u2

0

abdvdu

Now let u = r cos θ and v = r sin θ.

A = 4ab

∫ π/2

0

∫ 1

0

rdrdθ

= 4ab

∫ π/2

0

r2

2

∣∣∣1
0
dθ

= 2ab

∫ π/2

0

dθ

= 2ab
π

2

= πab
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2) Change of Variables

Set-up an integral that represents the area of a region bounded by x+ y = 0,
x+ y = 1, x− y = 0, x− y = 2.
Solution: The appearance of the terms (x+ y) and (x− y) in the integrand
and in the lines that bound R suggests the transformation

u = x+ y (1)

v = x− y. (2)

In order to compute the Jacobian, we need explicit expressions for u and v. If
we add equations 1 and 2 we find that x = u+v

2
. If we subtract equations 1

and 2 we find that y = u−v
2

. The Jacobian becomes

J =

∣∣∣∣∣∣
1
2

1
2

1
2
− 1

2

∣∣∣∣∣∣ = −1

4
− 1

4
= −1

2
.

We also need to find the limits of integration in the transformed integral. Using
equations 1 and 2 the four lines bounding R in the xy-plane become

u = 0, u = 1, v = 0, v = 1.

The solution is continued on the next slide.
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2) Change of Variables (continued)

The double integral therefore becomes∫∫
R

(
x2 − y2

)
dxdy =

∫∫
R

(x− y)(x+ y)dxdy

=

∫ 1

0

∫ 1

0

uv

∣∣∣∣∣− 1

2

∣∣∣∣∣dudv
=

1

2

∫ 1

0

∫ 1

0

(uv)dudv

We did not need to evaluate the integral, but this works out to be 1/8.
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3) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2, and

√
x2 + y2 ≤ z ≤

√
2− (x2 + y2).

Solution: Below is a screen capture of a previous year’s handwritten notes.
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4) Cylindrical

Set-up a triple integral that represents the volume of the solid bounded by
z = x2 + y2, and the plane y = z. Use cylindrical coordinates.
Solution: Below is a screen capture of a previous year’s handwritten notes.
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5) Triple Integral

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.
Solution: Below is a screen capture of a previous year’s handwritten notes.

Let me know if you catch any typos in the above.
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5) Triple Integral (Alternate Solution)

Set-up a triple integral that represents the volume of the solid bounded by
1 = x2 + y2, above x2 + y2 + 4z2 = 36, and below by z = 1.
Solution: Below is a screen capture of a previous year’s handwritten notes.

In the above, for the upper limit of the innermost integral, we should have used
r2, rather than x2 + y2.
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