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About This Document

This resource contains curriculum for the distance education version of a course offered at the Georgia Institute of Technology,
Math 1502, in Fall 2014. This distance education course explored linear algebra, infinite series, and differential equation concepts
during lectures and recitations. Recitations are synchronous sessions that offer students an opportunity to apply and review course
concepts, which they have been exposed to in lectures. Contained in this curriculum are materials for 26 recitations, available in PDF
and presentation slide formats. The slide format is offered for teaching assistants to import directly into web-conferencing software.
Slides contain activities that students would solve during recitations. The associated notes contain solutions to corresponding
activities and are available in PDF format. A similar version of this work, that corresponds to activities conducted in the Spring 2014
semester is available through SMARTech at https://smartech.gatech.edu/handle/1853/52896

Copyright

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

For Further Information

Questions regarding this document can be directed to Greg Mayer (gsmayer@gmail.com), who would be happy to hear your
suggestions on how to improve this document.



The following table presents a list of topics that were explored in the recitation activities. Numbers in brackets correspond to section

Schedule of Activities

numbers in the course textbook (Lay, D., Linear Algebra and its Applications, Fourth Edition).

Week Recitation Topics Chapters Format

1 1 Introduction to Math 2401, Vector Parametric Representations of Curves 13.1 PPT
2 Quadratic Surfaces, Vector Parametric Representations of Curves 12.6, 13.1 PPT

5 3 Quadratic Surfaces, Vector Parametric Representations of Curves 12.6, 13.1 PPT
4 Projectile Motion, Path Length 13.2,13.3 PPT

3 5 Projectile Motion, Path Length 13.2,13.3 PPT
6 Curvature & Normal Vectors, Tangential & Normal Components of Acceleration 13.4,13.5 PPT

4 7 Quiz 1 Review Review PPT
8 No Recitation - Quiz 1 NA
9 Domain of Multivariable Function, Limits 14.1,14.2 LaTeX

S 10 Limits, Partial Derivatives, Chain Rule 14.2,14.3,14.4 LaTeX
11 The Gradient 14.5 LaTeX

6 12 Tangent Planes, Absolute Min/Max 14.6, 14.7 LaTeX
13 Quiz 2 Review Review LaTeX

! 14 No Recitation - Quiz 2 NA

8 15 Lagrange Multipliers 14.8 LaTeX
16 Lagrange Multipliers, Taylor Approx, Derivatives with Constrained Var 14.8,14.9, 1410 LaTeX
17 Integration over General Regions 15.2,15.3 LaTeX

o 18 Integration over General Regions 15.2,15.3 LaTeX

10 19 Quiz 3 Review, Integration with Polar Coordinates 15.4 LaTeX
20 No Recitation - Quiz 3

11 21 No Recitation — Spring Break
22 No Recitation — Spring Break

12 23 Triple Integrals in Rectangular Coordinates, Moments of Inertia and Mass 15.5,15.6 LaTeX




24 Integration in Cylindrical and Spherical Coordinates 15.7 LaTeX
13 25 Quiz 4 Review, Change of Variables 15.8 LaTeX
26 No Recitation - Quiz 4
14 27 Line Integrals; Vector Fields and Line Integrals, Work, Circulation, Flux 16.1, 16.2 PPT
28 Vector Fields and Line Integrals, Work, Circulation, Flux; Path Independence 16.2, 16.3 PPT
15 29 Vector Fields and Line Integrals, Work, Circulation, Flux; Path Independence 16.2, 16.3 PPT
30 Green's Theorem, Surface Area 16.4, 16.5 PPT
16 31 Surface Area, Surface Integrals 16.5, 16.6 PPT
32 Final Exam Review, Stokes Theorem, Divergence Theorem 16.7, 16.8 PPT










RO1

Recitation 01: Welcome Back!

Today: Course Organization, Vector Representations of Curves (13.1)
Thursday: Quadratic Surfaces (12.6)

Start-of-Term Survey
Please fill out if you haven’t already:

Graded Recitation Activities This Semester
 details sent via email

e group work, in Adobe Connect, count towards your pop quiz grade

WebEx and Adobe Connect
1. WebEx for first two weeks

2. online survey to determine if we want to continue using WebEx
3. Adobe Connect for graded group work activities and pop quizzes

Other Announcements

. Piazza isn’t set-up yet

Tegrity is set-up, can view yesterday’s lecture (let me know if you can’t)
e Two MML HWs due Monday



Quiz and GRA Dates

Tentative Quiz Dates

* Quiz 1: Thursday, January 29
 Quiz 2: Thursday, February 19
* Quiz 3: Thursday, March 12
 Quiz 4: Thursday, April 9

GRAs: Tuesdays before quizzes

* Tuelan 27
e TueFeb17
e TueFeb 10
* TueApr7/

We may have additional GRAs.

Final Exam Exemption and Quizzes
* no mention of exemption in syllabus or course calendar
* the most difficult material in this course is at the end of the semester



ROT
3 Obijectives

Throughout this course we find parametric
- representations of motion and use them to
characterize motions.

Today’s Learning Objectives

Characterize the two (or three) dimensional
motion of an object, in parametric form, in terms
of its

* velocity and acceleration

* unit tangent vector

Later in this course we’ll use parametric representations of curves to
calculate curvature, path length, momentum, and other ways of describing
a motion.

I’m assuming you’ve seen parametric representation of curves in lecture.



ROT
4 Parametric Representation

Find a parametric representation of the counterclockwise motion that travels along
the curve 4x? + 9y? = 36. Sketch the motion.



ROT

. Wolfram Alpha Syntax

This is the syntax you would use for plotting parametric curves in WolframAlpha.

#WolframAlpha Rnonionge engine

[ plot x(t) = 3cos(t), y(t) = 2sin(t) B8 ]

B P a o = Examples =>2 Random

Input interpretation:

x(t) = 3 cos(t)
plot

y(t) = 2sin(t)

Parametric plot:

(t fromO0to 2x)
x(t)




EOI Position, Velocity and Acceleration
The position of an object is given by the curve r(t) = sin(t)i + cos(t)j, for all t.
a) Sketch the curve.
b) When are the position and velocity vectors perpendicular?
c) When do the position and acceleration vectors have the same direction?
d) Calculate the unit tangent vector for all t.



ROT " .
. Position and Velocity

The position of a particle is given by r(t). Describe situations where the following is
true for all values of t.

dr
r( ) E_O



RO1 . .
. Parametric Vector Representation

Find a parametric vector representation, r(t), of the curve that satisfies the following
equations, and y increases when x is positive. Sketch the motion.

Z=AX 4y, y=x



RO1 . .
, Parametric Vector Representation

Find a parametric vector representation, r(t), of the curve that satisfies the following
equations, and z decreases when x is positive. Sketch the motion.

Z=\/4—x2—y2, y+x°=2y=0



RO2

Recitation 02

Today: Vector Representations of Curves (13.1), Quadratic Surfaces (12.6)

Start-of-Term Survey
Please fill out if you haven’t already:

Last Recitation

* Find parametric representations of given curves

* Characterize motion of an object, in parametric form, in terms of its
o velocity and acceleration
o unit tangent vector

Today
* Identify and sketch quadratic surfaces given their algebraic equations

Don’t Forget

Evidence of inappropriate behavior will be forwarded to the course instructors, and possibly also to the chair of the School
of Mathematics and High school facilitators. Evidence will be reviewed to determine if further action is required. Such
action could either result in the Georgia Tech's Office of Undergraduate Admissions being made aware of student behavior,
and/or all students from a particular school moved to another section where interactions between students from different
schools is not possible. Behavior is inappropriate if it can interpreted as hurtful or disrespectful. Students can request to be

moved to another section at any time. Questions can be directed to the students teaching assistant and/or the course
instructors at any time.



RO2 ,
, Quadratic Surfaces (12.6)
Sketch and describe the surface 5x? + 2y? — z?2 = —10.



R

302 Quadratic Surfaces (12.6)

Sketch and describe the surface 5x2 + 2y2 — z2 = —10.

#WolframAlpha‘“ computetional.

[ plot 5xA2 + 2yA2 — 6242 = —10 = ]

B P B D = Examples ~2 Random

Input interpretation:

plot 5x*+2y*-6z°=-10

Surface plot:

© Enable interactivity

Geometric figure:

two-sheeted hyperboloid



R

02 .
. Quadratic Surfaces

The textbook should list and describe every quadratic surface that you need to be familiar
with (but the online textbook currently doesn’t work). Wikipedia also has a page that lists
and describes every possible quadratic surface (for our course):
http://en.wikipedia.org/wiki/Quadric

Below are four surfaces:

Ellipsoid s Hyperbolic paraboloid

Elliptic hyperboloid of
Elliptic paraboloid g one sheet

liptic .
. X"y ~ \ ﬁ 2 2 2
\ =0 / ) - =]

a




RO2 .
. Quadratic Surfaces

Identify the correct answer.
The set of all points whose distance from the z-axis is 4 is the:

a) sphere of radius 4 centered on the z-axis

b) line parallel to the z-axis 4 units away from the origin
c) cylinder of radius 4 centered on the z-axis

d) planez=4



RO2 . . .
. Parametric Vector Representation and Quadratic Surfaces

Find a parametric vector representation of the curve, r(t), that satisfies both
quadratic surfaces. Sketch r(t) and both surfaces.

z2=x"+y>, 5=x"+y’



502 Quadratic Surfaces (12.6)

Consider the surface z = Ax? + By?, where A and B are constants. ldentify all
possible surfaces for the following cases.

) A=B=0

i) AB>0



RO2 . . .
. Parametric Vector Representation and Quadratic Surfaces

The following surfaces intersect along a curve, C. Find a) the projection of C onto
the xy-plane and b) the parametric vector representation of the projection.

z=x"+y", 7=2y+3



R0O3
1 Recitation 03

Today: Group Work on Vector Representations of Curves, Quadratic Surfaces

Hello from San Antonio! Your instructor and | are at a large annual math
conference. | hope the wifi is going to hold up for our recitation this morning,
many apologies if it doesn’t. In case you’re interested, this the conference
website:

Textbook: technical issues should be resolved now

Start-of-Term Survey
Please fill out if you haven’t already (survey closes Wednesday at midnight):

Today: Quadractic Surfaces and Parametric Vectors
* Find parametric representations of given curves
* Characterize motion of an object, in parametric form, in terms of its velocity

and acceleration, unit tangent vector
* |dentify and sketch quadratic surfaces given their algebraic equations



RO3
2

Group Work Questions

Complete each problem in small groups. The first four questions are from old Math 2401
quizzes (2013 and 2014).

1) Consider the twisted cubic r(t) = ti + t?j + t3k and the plane x + 2y + 3z = 34.

2)

3)

4)

5)

a) Where does the cubic intersect the plane?

b) Find the cosine of the tangent to the curve and the normal to the plane.
Find the intersection of the surface x?> + 2y? = z and the plane x -y =5. A
parameterization would be fine.

Conisder the surface x2 —6x + 4y + y2 + 8z — 22 = 4.

a) Find the center of the surface.

b) Name the surface.

c) Draw a picture of the surface, labelling the center and axes.

Conisder the surface 9x? — 18x — 16y + 4y — 472 = 11.

a) Find the center of the surface.

b) Name the surface.

c) Draw a picture of the surface, labelling the center and axes.

Create a vector function, r(t), on the interval [0, 2mt], that satisfies the conditions
r(0) = ai, and as t increases from 0 to 2m, traces out an ellipse b2x? + a?y? = a%b?, twice
in a counterclockwise manner.



RO3" 1) Consider the twisted cubic r(t) = ti + t3j + t3k and the plane x + 2y + 3z = 34.
3 a) Where does the cubic intersect the plane?
b) Find the cosine of the tangent to the curve and the normal to the plane.



RO3 " 2) Find the intersection of the surface x2 + 2y2 = z and the plane x-y = 5. A
4 parameterization would be fine.



RO3 " 3) Conisder the surface x2 — 6x + 4y + y2 + 82 — z2 = 4.
5 a) Find the center of the surface.
b) Name the surface.
c) Draw a picture of the surface, labelling the center and axes.



RO3 4) Conisder the surface 9x2 — 18x — 16y + 4y2 — 4722 = 11.
6 a) Find the center of the surface.
b) Name the surface.
c) Draw a picture of the surface, labelling the center and axes.



RO3  5) Create a vector function, r(t), on the interval [0, 2mt], that satisfies the conditions
7 r(0) = ai, and as t increases from 0 to 2m, traces out an ellipse b?x? + a?y? = a%b?, twice in a
counterclockwise manner.



RO4

.(\//,

Recitation 04
Today: Displacement, Velocity, Acceleration (13.2), Path Length (13.3)

Homework: Due Tonight and Monday

Learning Obectives for Today: Characterize motion of an object, in

parametric form, in terms of its unit tangent vector, acceleration,
path length (aka arc length).




RO4  Particle Motion
2 Let r(t) = x(t)i + y(t)j + z(t)k.
a) How is the unit tangent vector, T(t), defined mathematically?
b) Suppose x=t% y=1t3 z=1t?% and t>0. Then what is the unit tangent vector
when t =07



RO4  Differential Equation
3 Solve the following initial value problem.

F(t)=mi"(t)=ti +t2], F(0) =1, v(0) =k.



RO4 " velocity and Acceleration
4 What constant acceleration must a particle experience if it is to travel from (1,2,3) to

(4,5,7) along the straight line joining the points, starting from rest, and covering the
distance in 2 units of time?



RO4  Velocity and Position

5 r(t) is the position of a moving particle.
a) Describe, in words, what r’ is parallel to.
b) Show that | |r(t)]| | is constantiffr L r’



RO4  The Hanging Cable
6

The hanging cable, also referred to as a , has the shape:




RO4 A cable is suspended between two poles that are 10 m apart. Find the length of the cable, if
7 the cable’s shapeis y(x) = k [cosh(x/k) —1].



R0O5
. Recitation 05

Today’s Topics
* Projectile Motion (13.2)

» Path Length and Tangential Vector (13.3)
* Curvature & Normal Vectors (13.4)

Today’s Learning Obectives
* Apply vector function integration to determine path of projectiles

* Characterize motion of an object, in parametric form, in terms of its arc
length and its tangential, normal and binormal vectors



ROS
2

Announcements

Survey Results: students want to collaborate, have trouble with technical issues and not
knowing how to solve problems in group work. So lets use Adobe Connect, keep group size
to 4 to 6, use group work on stuff covered from last assignments.

Thursday Recitation: 13.4, 13.5, Adobe Connect

Graded Recitation Activity: Next week during Tuesday recitation, question coming soon
HW Due Tomorrow: 13.4, 13.5

Quiz 1: Thur Jan 29

Office Hours: 7:30 pm — 8:30 pm, Wed Jan 21, Wed Jan 28
https://georgiatech.adobeconnect.com/distancecalculusofficehours

Send Your TA an Email
Explain, in an email, using your own words, what the following quantities represent:

* the unit tangent vector, T(t)
* the curvature, K

Try to send this email by the end of the day today. If you send your TA an email with a
description of what these quantities represent, you will get a reply.



R
305 Helpful Formulas

Ideal Projectile Motion: 7() = (v, cosa)ti + ((vo sina)t -

V, is the ,and a is the
2 - 2 .2
vy sin2a : v, sin” o
max range: R=-"2—"=— max height: 2——
g 28
Unit tangent vector T=
Principle unit normal vector N =

Binormal vector B=




RO5 1) Ball Rolling off of a Table (Projectile Motion, 13.2)

4 A ball rolls off a table 1 meter high with a speed of 0.5 m/s.
a) At what speed does the ball strike the floor?
b) Where does the ball strike the floor?

2) Golf Ball (Projectile Motion, 13.2)
A golfer can send a golf ball 300m across a level ground. From the tee in the figure, can the

golfer clear the water?
Tee 310 m

@

20m

3) Arc Length, Normal and Binormal Vectors (13.3, 13.4)

Consider the surfaces x2+vy2+z2=4,and z2=x2+y2forz > 0.

a) Find a parameterization for the intersection curve, r(t), of the two surfaces.

b) Sketch the two surfaces and their intersection.

c) Calculate the length of r(t).

d) Find the unit tangent, normal, and binormal vectors for r(t) at the point
(sqrt(2), 0, sqrt(2)).

e) Add the three vectors to your sketch.



RO5 1) Ball Rolling off of a Table (Projectile Motion, 13.2)
5 A ball rolls off a table 1 meter high with a speed of 0.5 m/s.
a) At what speed does the ball strike the floor?



RO5 1) Ball Rolling off of a Table (Projectile Motion, 13.2)
6 A ball rolls off a table 1 meter high with a speed of 0.5 m/s.
b)  Where does the ball strike the floor?



RO5  2) Golf Ball (Projectile Motion, 13.2)
7 A golfer can send a golf ball 300m across a level ground. From the tee in the figure, can the
golfer clear the water?

Tee 310 m

20m



RO5  3) Arc Length, Normal and Binormal Vectors (13.3, 13.4)
8 Consider the surfaces x2 + y>+z2 =4, and z2=x?>+y2 for z > 0.
a) Find a parameterization for the intersection curve, r(t), of the two surfaces.
b) Sketch the two surfaces and their intersection.
c) Calculate the length of r(t).
d) Find the unit tangent, normal, and binormal vectors for r(t) at the point
(sqrt(2), 0, sqrt(2)).
e) Add the three vectors to your sketch.



RO5  3) Arc Length, Normal and Binormal Vectors (13.3, 13.4)
9 Consider the surfaces x2 + y>+z2 =4, and z2=x?>+y2 for z > 0.
c) Calculate the length of r(t).



RO5  3) Arc Length, Normal and Binormal Vectors (13.3, 13.4)

10 Consider the surfaces x> + y2 + z2=4, and z2 = x> + y?> for z > 0.
d) Find the unit tangent, normal, and binormal vectors for r(t) at the point
(sqrt(2), O, sqrt(2)).
e) Add the three vectors to your sketch.



R0O6
! Recitation 06

Today’s Topics:
Curvature & Normal Vectors (13.4)
Tangential and Normal Components of Acceleration (13.5)

Veocity and Acceleration in Polar Coordinates (13.6)

Today’s Learning Obectives

1. Given a motion of an object, in either parametric form or as a function
of a single variable, calculate the

e curvature
* tangent, normal, and binormal vectors

* acceleration (tangential and normal components)
* torsion

2. Calculate the osculating, normal, and rectifying planes for a given
curve r(t) at a given value of t



RO6

, Helpful Formulas
principle normal vector: N = ‘T ‘
curvature: K——‘T (t)‘
n
X
curvature: K = |f ( )|2 5
1+ (1)
acceleration: @ = a, T +a,N x' oy z
. =i‘_}| xH yH Z”
r dt xm ym Zm
= torsion: T =
ay = [a[+|a| P
Notes:

* One of the above equations has an error, where is it?
* There are alternate expressions for these formulas. Above are the formulas that
the textbook uses.



506 Normal, Rectifying, and Osculating Planes

The geometry of the three planes determined by vectors T, N, and B, for curve r(t), at r(t,).

B r(t)

normal plane
rectifying plane

osculating plane

If a motion, r(t), lies completely in a plane, then the binormal vector is




R0O6
4

Announcements

Graded Recitation Activity: Next week during Tuesday recitation, question sent
HW Due Tomorrow: 13.6

Quiz 1: Thur Jan 29

Office Hours: 7:30 pm — 8:30 pm, Wed Jan 28
https://georgiatech.adobeconnect.com/distancecalculusofficehours

Send Your TA an Email
Using your own words, describe

e the relationship between the curvature and the normal plane
* the relationship between the torsion and the osculating plane

Try to send an email with your answers by the end of the day today. If you send your
TA an email with an answer to these questions you will get a response.
Hint: these relationships are described in the textbook.



RO6
5

Group Work Activity: Part (a)

There are four parts to the following question. Solve them in groups of 3to 5
students.

Consider r(t) = sin(t)i + cos(t)j + k, t = -t/ 2.

a) Find T, N, and B at the given value of t. Is B constant for all values of t?



RO6
6

Group Work Activity: Parts (b) and (c)

Consider r(t) = sin(t)i + cos(t)j + k, t = -1/ 2.
b) Sketch r for [0, 2] and indicate the direction of motion.
c) Sketch T, N, and B at the given value of t.



RO6
.

Group Work Activity: Part (d)

Consider r(t) = sin(t)i + cos(t)j + k, t = -1/ 2.

d) Find the equation of the normal plane at t = -1t/2.

Message your TA when you've finished this question. Move on to the remaining
questions dfter this if there is time.



RO6
. lrue or False

a) Curvature is a scalar and can be any real number.

This statement is because:

b) Torsion is a scalar and can be any real number.

This statement is because:

c) If r(t) = x(t)i + y(t)j, then the normal vector, N, is given by N=n/|n]|,
where n = -x(t)i + y’(t)j.

This statement is because:




RO/
! Recitation 07

Today’s Topics: Quiz 1 Review, Graded Recitation Activity 1

Quiz 1 Topics

12.6 Quadratic Surfaces

13.1 Vector Parametric Representations of Curves
13.2 Quadratic Surfaces

13.2 Projectile Motion

13.2 Path Length

13.3 Curvature & Normal Vectors

13.5 Tangential & Normal Components of Acceleration



RO7
, Quiz 1 Learning Objectives

You should be able to do the following for Quiz 1.
* l|dentify and sketch quadratic surfaces given their algebraic equations
* Develop parameteric representations of curves
* Integrate vector functions to determine projectile motion
» Characterize a motion, given in either parametric form r(t), or as a continuous function
f(x), using:
* vectors: velocity, acceleration, tangent, binormal
* scalars: curvature, torsion, tanential & normal components of accel, arc length

* planes: tangential, rectifying,

r(t)

- normal plane
rectifying

plane



RO7
s Interpretations of Curvature and Torsion

B

r(t)

o normal plane
rectifying

plane

plane

Cuvature is the rate at which the turns.

Torsion is the rate at which the turns.




"7 Helpful Formulas

2
Ideal Projectile Motion: 7 (¢) = (VO COS oc)ti + ((vo sin a)z — %) j
2 - 2 -2
max range: R = M max height: Yo oI &
8 28
principle normal vector: N = T'(t)/ ‘T '(t)‘ acceleration: @ = a, T +a,N
binormal vector: B = N'(t)/‘ﬁ'(t)‘ Qr=__
a, =

curvature: K = T'(t)‘/|‘7|

IS

X y Z
x” yH Z”
x!H y||| ZH!

torsion: T =

~ 2
v xal



RO/

Graded Group Work Activity

Instructions

* Every student in your group needs to write their name or initials on the board.

* You have to answer the questions below.

* For full marks, show for each question.

* Answer each question on a different slide.

e All students in the same group receive the same grade.

* Please do not share computers: every student should log in on their own computer.
* You do not need to simplify your answers

* You can use c = cos(t) and s = sin(t)

1) Tangential & Normal Components of Acceleration (4 points)
Let r(t) = 2ti + tj + 2t?k be a motion. Compute the tangential and normal components of
the acceleration.

2) Arc Length (2 points)
Find the arc length, from 0 to t, of the curve r(t) = etcos(t)i + e'sin(t)j + 5etk.



RO/ 1) Tangential & Normal Components of Acceleration (4 points)
6 Let r(t) = 2ti + tj + 2t’k be a motion. Compute the tangential and normal components of
the acceleration.



RO7  2) Arc Length (2 points)
7 Find the arc length, from 0 to t, of the curve r(t) = etcos(t)i + etsin(t)j + 5etk.

Message your TA when you've finished both questions., then move on to the remaining questions.



R .
%" Curvature and Torsion

This question has 4 parts. Consider the surfacesz=x?>+y?andy =2, forz>0.
A) Find a parametric vector representation for their intersection.
B) Sketch the intersection and the 2 surfaces.



RO/ .
Curvature and Torsion

This question has 4 parts. Consider the surfacesz=x?>+y?andy =2, forz>0.
C) Calculate the curvature and identify on your sketch whre the curvature is maximized.



RO/
10

Curvature and Torsion

This question has 4 parts. Consider the surfacesz=x?>+y?andy =2, forz>0.
D) Calculate the torsion of the intersecting curve and explain your answer.



Recitation 09

R09 Topics
14.1 Functions of Several Variables
14.2 Limits and Continuity

R09 Learning Objectives
By the end of today’s session you should be able to

» Identify and sketch the domain of a function of several variables.

» Determine whether or not limits of functions of several variables
exist.

While We’re Waiting to Start
Consider the function

NEa!

g(z,y) = m

For g(z,y) to be defined and a real-valued function, what values of
and y can we allow?

Recitation 09, Slide 1



Domain of a Function of Two Variables

Identify and sketch the domain of

Vy+1

X = —- Q.
9(z,y) P

Recitation 09, Slide 2



Limits of a Function of Two Variables
Consider the function of two variables

z(r —1)3 4 ¢?

f(xyy):m~

We want to evaluate

lim  f(x,y)

(z,9)—(1,0)

What strategies might we try to evaluate the desired limit?

Recitation 09, Slide 3



Limits of a Function of Two Variables, Example 1
Evaluate

. x(r —1)% + ¢?
lim —~ 2 7
(z,9)—(1,0) 4(x — 1) 4 9y3

Recitation 09, Slide 4



Limits of a Function of Two Variables, Example 2

In groups of 3 to 5 students, evaluate the limit
2

lim L.
(2,y)—(0,0) 2 + y*

Recitation 09, Slide 5



Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use the definition of limit.

The limit of f(x,y) as (x,y) aproach (a,b) is L if for every number
€ > 0, there is a corresponding § > 0 such that

|f(z,y) — L| <e when 0 < \/(z —a)2+ (y—b)2 <6

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x,y) to (a,b) sufficiently small.

Recitation 09, Slide 6



An Epsilon Delta Example

Evaluate, or show that the following limit does not exist.

. 322y
hm —_—.
(2,y)—(0,0) 2 + 2

Recitation 09, Slide 7



An Epsilon Delta Example

Recitation 09, Slide 8



An Epsilon Delta Example

Recitation 09, Slide 9



An Epsilon Delta Example

Recitation 09, Slide 10



Conclusions: Evaluating Limits of Multivariable Functions

Suppose we need to evaluate a limit of a function of two variables

lim z,Y).
ey sty V)
If we know that f(z,y) is continuous at (a,b), we can evaluate the limit
with direct substitution. If we don't know that f(z,y) is continuous at
(a,b), we can either

» evaluate the limit along curves (y = mz, for example) to see if the
limit does not exist, or

» we can use the definition of limit to prove that the limit does exist
and determine what the limit is equal to.

Notes:

> evaluating a limit along curves cannot tell us that a given limit
exists, it can only tell us whether it doesn't exist

> |I'm assuming you're familiar with continuity for a function of several
variables, but if you aren't it's on the next homework and isn't a
diffcult concept.
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Recitation 11

R11 Topics
14.5 The Gradient

R11 Learning Objectives
By the end of today’s session you should be able to do the following.

» Compute gradients and directional derivatives.

> Provide geometric interpretations of gradients and directional
derivatives.

» Describe the relationship between gradients and level curves.

While We're Waiting to Start

Consider f(z,y) = y?e?®.
1. Find the direction of steepest ascent at P(0,1) and at Q(0, —1).
2. Sketch the level curves of f, and the gradient vectors at P and Q.
3. Find the rate at which f is increasing in the direction @ = i — j at P.
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The Gradient and Directional Derivative

Consider f(z,y) = y?e?®.
1. Find the direction of steepest ascent at P(0,1) and at Q(0, —1).
2. Sketch the level curves of f, and the gradient vectors at P and Q.
3. Find the rate at which f is increasing in the direction @ = i — j at P.
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The Gradient and Directional Derivative
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Wolfram Alpha’s Plots

Input

soyte

3D plot

5 10 -05 00 05 10 15

.
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of f(z,y)

In case it helps see what is going
on, to the left are plots of our
function, y2e*, that
WolframAlpha produces.

Notice that the contour plot
gives a set of level curves.



Level Curves

If C'is in the of f(x,y), then the curve C' = f(z,y)
is a level curve of f(xz,y). For functions of two variables, we can think
of level curves as curves of constant height (analogous to topographic
maps, that have curves of constant elevation).

In other words, a level curve is an intersection between f(z,y) and the
plane z = C. Level curves are a useful view of the overall behavior of a
function.

Banaba Island image under a CCBY2.0 license, available from https://www.flickr.com/photos/evsmap
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Level Curves and the Gradient

This following helps explain why the gradient is L to level curves.

Let C = g(x,y) be a level curve of g(z,y). Show that Vg is always
perpendicular to the level curve.
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A Conceptual Question: The Gradient

At which point does the gradient vector have the largest magnitude?
Draw the gradient at this point.

e
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the directional derivative of f = z1n(x/y) at (1,1,2) towards
the point (2,2, 1) and provide a geometric interpretation of your
answer.

2. For z = 3zy — x> — >, find the points where the gradient vector is
the zero vector. Provide a geometric interpretation of your answer.

3. Suppose F = V f(x,y) = (2 + siny)i + (z cos(y) — 2y)j. Find
fz,y).
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Question 1: A Directional Derivative

Find the directional derivative of f = zIn(z/y) at (1,1,2) towards the
point (2,2,1). Provide a geometric interpretation of your answer.
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Question 2: Zero Gradient

For z = 3zy — 23 — 2, find the points where the gradient vector is the
zero vector. Provide a geometric interpretation of your answer.

Recitation 11, Slide 10



Question 3: Constructing a Function From its Gradient
Suppose F' = V f(x,y) = (2x + siny)i + (x cos(y) — 2y)j. Find f(z,y).
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Recitation 12

R12 Topics
14.6 Tangent Planes and Differentials
14.7 Absolute Min/Max

R12 Learning Objectives
By the end of today’s session you should be able to do the following.

» Find equations of tangent planes and normal lines of surfaces.
» Apply tangent planes and differentials to make approximations.

> Locate and classify critical points of surfaces.

Example 1
Consider the surface z2 + 4% = 22.

1. Find the equation of the tangent plane at P(3,2,5).

2. Find the equation of the normal line at P, and identify where the
normal line intersects the xy-plane.

3. Sketch the surface and the normal line.
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Example 1: Part 1

Consider the surface 22 + 4y? = z2. Find the equation of the tangent
plane at P(3,2,5).
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Example 1: Part 2

Consider the surface 22 + 4y? = 22. Find the equation of the normal line
at P(3,2,5), and identify where the normal line intersects the xy-plane.
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Example 1: Part 3

Consider the surface 2 + 4y% = 22. Sketch the surface and the normal
line.
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Tangent Planes and Differentials (14.6)

For a function of one variable, y(z), we define the differential dy as

dy
—d
dx s

dy =
where dy is the change in height of the tangent line.

For a function of two variables, z(z,y), we define the differential dz as
dz=____ |
where dz is the change in height of the .|

The equation of the tangent plane to z = z(z,y) at the point 7 is

The vector ¥ — 7 is a vector in the tangent plane.
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A Quick Calculation: Tangent Plane Approximation

Suppose z;(3,4) =5, zy(3,4) = —2, and 2(3,4) = 6. Assuming the
function z is differentiable, what is the best estimate for z(3.1,3.9) using
this information?

1. 63
2.9
3.6
4. 6.7
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Estimating Change in Volume

Estimate, using the tangent plane approximation, the change in volume
of a cylinder if its height is changed from 12.0 to 12.2 cm and the radius
is changed from 8.0 to 7.7 cm. How much does the volume actually
change?
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Second Derivative Test (14.7)
Suppose f has continuous 2"¢ order partial derivatives around some
point P(xg,y0), and that V f(xo,y0) = 0. Let

_ ey ( 0f )2
— 0z2 Oy? Oxdy

If D =0, then
If D <0, then P is a saddle pomt
If D >0, then P is a maximum if f,, < 0 and a minimum if f,, > 0.
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Optimization

Find the critical points of f(z,y) = y + zsin(y) and determine whether
they correspond to local or absolute minimums or maximums of f(z,y).
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Surface Plot of f(z,y) =y + xsin(y)

Recitation 12, Slide 10

[ ploty+xsin(y)

o o=

Input interpretation:

plot ¥+ xsin(y)

30 plot:




Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Consider the function f(x,y) = 3zy — 2® — y3.
1.1 Find the points where the gradient vector, V f(z,y), is the zero
vector.
1.2 Find the points where the tangent plane is horizontal.
1.3 Find the critical points of f(z,y). Classify these points as min, max,
or saddle points.

2. Find an equation of the tangent plane and normal line to
z = (2% +y?)? at P(1,1,4).
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Question 1.1: Zero Gradient

For f = 3zy — 23 — 4>, find the points where the gradient vector,
V f(x,y), is the zero vector.
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Questions 1.2 and 1.3

Consider the function f(z,y) = 3zy — 2> — y®. Find the points where
the tangent plane is horizontal. Find the critical points of f(x,y).
Classify these points as min, max, or saddle points.
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Question 2

Find an equation of the tangent plane and normal line to z = (2% + y?)?
at P(1,1,4).
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Recitation 16

R16 Topics

14.8 Lagrange Multipliers

14.9 Taylor's Formula for Two Variables

14.10 Partial Derivatives with Constrained Variables

R16 Learning Objectives
» Derive the least squares equations to fit the plane Az + By + C to a set
of given points (14.8).
» Calculate a cubic approximation to a function of two variables at a
specified point (14.9).
> Apply the chain rule to compute partial derivatives with intermediate
variables (14.10).

While We’re Waiting to Start
Let L = f(U,V,S), and S = 3UV. Calculate or derive expressions for the
following derivatives.

N (), B o
oL oL
9 (5v), D) (W)S,U
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The Chain Rule with Intermediate Variables, Parts A and B

Let L = f(U,V,S), and S = 3UV. Calculate or derive expressions for the
following derivatives.

Y Grle P oW
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The Chain Rule with Intermediate Variables, Parts C and D

Let L = f(U,V,S), and S = 3UV. Calculate or derive expressions for the
following derivatives.

9 (5v). D) (57)s
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Taylor Approximation (14.9)

Calculate the cubic approximation to f(x,y) = 4z cos(y) near the origin.
Complete this question in group work. Note: this was a pop quiz in 2014.

Recitation 15, Slide 4



Approximation Error (14.9)

Use your results from the previous problem to find the quadratic approximation
to f(z,y) = 4x cos(y) near the origin. Then estimate the error in the
approximation if || < 0.5 and |y| < 0.1.
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Least Squares (14.8)

The plane z = Az + By + C is to be fitted to a given set of points,
(Zn, Yn, 2n). Derive the linear system of equations that, when solved, minimizes

N
FE = Z(A:cn + By, + C — zn)z.

n=1
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Least Squares (continued)

Recitation 15, Slide 7



Least Squares (continued)
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Recitation 17

R17 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R17 Learning Objectives
» Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

» Change the order of integration of a double integral (Cartesian
coordinates).

Today’s Questions

1. Sketch the region bounded by the given curves and construct a double
integral that represents its area.

a) y =+, y=25
b) z=5—-y, x=2y—1,y=1.
) y=2x2—-6,y%>=u.

2. Change the order of integration for the following integrals.

0 Vy+T 1+e In(z—1)
o [ 7wy v [T fadyds
—1J—\yF1 2 0

Recitation 17, Slide 1



Announcements, WolframAlpha Syntax

GRA3, Next Tuesday (5 points)

Suppose we wanted to locate all the minimums and maximums of z2y? subject
to (2 + y?)? + 23® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: One Week from Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We'll see.

Wolfram Alpha Syntax for Double Integrals
You may want to use Wolfram Alpha to check your answers while completing
your HW. Suppose that we want to determine the value of

/ / “ y)dydz

The syntax we could use to compute this particular integral is the following.

integrate x"{2C}+y, x from -2 to -1 and y from 0 to (x-1)
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1a) Area of a Region

Sketch the region bounded by y = v/, y = 2® and construct a double integral
that represents its area.

Recitation 17, Slide 3



1b) Area of a Region

Sketch the region bounded by x =5 —y, x =2y — 1, y = 1, and construct a
double integral that represents its area.
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1c) Area of a Region

Sketch the region bounded by y = = — 6, y? = x, and construct a double
integral that represents its area.
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2a) Changing the Order of Integration

2a) Change the order of integration for the following integral.

0 Vy+1
/ / dxdy
-1/ vyt
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2a) Changing the Order of Integration (continued)
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2b) Changing the Order of Integration

Change the order of integration for the following integral.

1+e pln(z—1)
[ [ sy
2 0
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3) Evaluating an Integral (if time permits)

Evaluate the following double integral.

4 a4,
/ / e’ dxdy
0 Jy
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Recitation 18

R18 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R18 Learning Objectives

» Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

» Change the order of integration of a double integral.
> Calculate the average value of a function of two variables.

Today’s Questions
1. Change the order of integration.

0 NOESY 1+e In(z—1)
o [ 7wy v [T fadyds
—1J—\yF1 2 0

2. Construct a double integral that represents the volume of the solid
enclosed by the cylinder 2 + y? = 1, the planes z =y, £ =0, z =0, in
the first octant.

4 4 g2
3. Evaluate [ fy e” dzdy.
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Announcements

GRA3, Next Tuesday (5 points)

Suppose we wanted to locate all the minimums and maximums of z2y? subject
to (2 + y?)? + 23® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: Next Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We'll see.
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The Average Value of a Function (15.3)

The average value of a function, f(z,y), over a region R, is given by

Average value of f over region R = _ // f(z,y)dA
areaof R J Jp

This definition can be used to find the value of some double integrals quickly.

Example

Region R is the unit circle /22 4+ y2 < 1. The definite integral of f =2 + 1
over R is equal to:

a) 0
b) 1
o7
d) 7/4
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Conceptual Question Related to Double Integrals

Let region R be the square —1 <z <1, —1 < y < 1. The definite integral of

x> over region R is equal to:

a) a positive number
b) a negative number
c) zero

d) a function of x
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1a) Changing the Order of Integration

Change the order of integration.

0 Vy+1
/ / dxdy
-1 —vFT
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1a) Changing the Order of Integration (continued)
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1b) Changing the Order of Integration

Change the order of integration.

1+e pln(z—1)
[ [ sy
2 0
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2) Volume of a Solid

Construct a double integral that represents the volume of the solid enclosed by
the cylinder 22 + 3% =1, the planes z =1 —y, © = 0, z = 0, in the first octant.
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3) Evaluating a Double Integral

Evaluate the following double integral.

4 a4,
/ / e’ dxdy
0 Jy
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Additional Exercises
1. Set up an integral that represents the volume of the solid enclosed by the

planes = = 1, y = 3, the three coordinate planes, and z? + 23> + z = 1.

2. Find the volume of the solid enclosed by z = 2% + 3%, y = 2 and = = y°.
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Recitation 19

R19 Topics
15.4 Double Integrals in Polar Coordinates
Quiz 3 Review

Quiz 3 Topics

>

vyVvyVvyVvYyVvyy

14.08 Lagrange Multipliers

14.09 Taylor's Formula for Two Variables

14.10 Partial Derivatives with Constrained Variables
15.01 Iterated Integrals over Rectangles

15.02 Double Integrals over General Regions

15.03 Area by Double Integration

15.04 Double Integration in Polar Coordinates

Office Hours
I'll hold additional office hours and a review session:

>

>

Quiz 3 Review Session V Math 2401 students: Tue 5:30 - 7:00 pm, at
https://georgiatech.adobeconnect.com/dcp-online-drop-in-tutor-center-2014-fall
Quiz 3 Review Session V QH8 students: Wed: 7:30 - 8:30 pm at
https://georgiatech.adobeconnect.com/distancecalculusofficehours
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Quiz 3 Learning Objectives

You should be able to do the following for Quiz 3.

>
>

Solve constrained optimization problems using Lagrange multipliers (14.8).
Calculate a Taylor approximation to a function of two variables at a point
(14.9).

Apply the chain rule to compute partial derivatives with intermediate
variables (14.10).

Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian or polar coordinates (15.1 to 15.4).
Change the order of integration of a double integral (15.1 to 15.4).
Calculate the average value of a function of two variables (15.3).
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Volume of a Sphere

Identify the expressions that represent the volume of a sphere of radius R.

™ R
1) 4/ / rv R? — r2drdf
o Jo
27 R
2) / / vV R? —r2drdf
o Jo
27 R
3) 2/ / rv/ R? — r2drdf
o Jo
or  R/2
4) / rv/ R? — r2drdf
o Jo
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Volume of a Sphere (continued)
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Graded Recitation Activity 3

Instructions

» Every student in your group needs to write their name or initials on the
board.

You have 10 minutes to answer the question below.

For full marks, show at least one intermediate step.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Question (5 points, from last year's quiz)

Suppose we wanted to locate all the minimums and maximums of z?y? subject
to (z? + y?)? + zy® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.
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GRA3

Suppose we wanted to locate all the minimums and maximums of z%y? subject
to (2 +y?)? + 2y® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.
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Converting Double Integral to Polar Coordinates

Convert to a double integral in polar coordinates (from 2014 Quiz 2).

2 py/A—(z—2)2
/ / rydydz
o Jo
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Converting Double Integral to Polar Coordinates (continued)
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Additional Exercise: Normal Distribution

b 2
= / e ¥ dx
0

Evaluate
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Additional Exercise: Integration in Polar Coordinates

Sketch the rose curve r = 2 cos(26) and find the area of one petal.
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Recitation 23

R23 Topics
15.5 Triple Integrals in Rectangular Coordinates
15.6 Moments of Inertia and Mass

R23 Learning Objectives

» Construct a triple integral that represents the area of a region bounded by
a set of given curves in Cartesian or cylindrical coordinates

» Change the order of integration of a triple integral

> Set-up integrals that represent moments of inertia and centres of mass of
solids

Today’s Questions

1. Set-up a triple integral that represents the volume bounded by the

following surfaces. Set-up the integrals in at least two different ways.
1.1 y2 422 =1, and the planes y =z, x =0, and z = 0.
1.2 22 =y, and the planesy+2=2,2=0,x =2, and 2z =0.

2. Consider the region inside the curve r = 2 + sin(#). Set up the three
integrals you need to find the x and y coordinates of the centroid of the
region, assuming its density is d(xz,y). Express these integrals in polar
coordinates. This is a question from a 2014 quiz.
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

» Every student in your group needs to write their name or initials on the
board.

You have 15 minutes to answer both questions below.

For full marks, show at least two intermediate steps.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Questions (5 points each, both questions are from old quizzes)
1. Set-up a triple integral that represents the volume of the ellipsoid
2?4 (y/2)* + (2/9)® = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Triple Integrals, Example 1

Set-up a triple integral that represents the volume of the region bounded by
y? + 22 =1, and the planes y = z, =0, and z = 0. Set-up the integral in at
least two different ways.
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Triple Integrals, Example 1 (continued)
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Triple Integrals, Example 2

Set-up a triple integral that represents the volume of the region bounded by
2% =y, and the planes y + 2z =2, £ =0, & = 2, and z = 0. Set-up the integral
in at least two different ways.
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Triple Integrals, Example 2, Continued
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Triple Integrals, Example 2, Continued
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Centroid

Consider the region inside the curve r = 2 + sin(6). Set up the three integrals
you need to find the x and y coordinates of the centroid of the region,
assuming its density is §(x, y). Express these integrals in polar coordinates.
This is a question from a 2014 quiz.
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Recitation 24

R24 Topics
15.7 Integration in Cylindrical and Spherical Coordinates

R24 Learning Objectives

» Construct a triple integral that represents the area of a region bounded by
a set of given curves in cylindrical or spherical coordinates
» Change the order of integration of a triple integral

The Spherical Coordinate System

Fill in the blanks.

x = pcosf
y = psiné
z=p
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

» Every student in your group needs to write their name or initials on the
board.

You have 15 minutes to answer both questions below.

For full marks, show at least two intermediate steps.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Questions (5 points each, both questions are from old quizzes)
1. Set-up a triple integral that represents the volume of the ellipsoid
2?4 (y/2)* + (2/9)® = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Spherical Coordinates

Provide a geometric interpretation the surfaces psin¢ =1 and pcos¢ = 1.
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1) A Triple Integral in Cylindrical Coordinates

Use cylindrical coordinates to set-up an integral that represents the volume of
the solid bounded by 2? + * + 22 = 1, and 2% = 3(2? 4 ¢?).
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2) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid bounded by z = 0, 2% + 3% =4, and z = 2/22 + ¢2.

Recitation 24, Slide 5



3) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid in the first octant, between the surfaces 22 4+ y? = 22 and

z=1+/2— (22 +y?).
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4) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by
z = 2 4+ y2, and the plane y = z. Use cylindrical coordinates.
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Recitation 25

Quiz 4 Topics
15.3 to 15.8

Quiz 4 Learning Objectives
» Construct a triple integral that represents the area or volume of a region in
Cartesian, polar, cylindrical, or spherical coordinates
» Change the order of integration, or coordinate system, for a triple integral
» Construct integrals that represent moments of inertia and centres of mass
» Identify a suitable transformation for a triple integral, and use that
transform to find the area or volume of a given region

GRA4
1. Set-up a triple integral that represents the volume of the ellipsoid
2% 4 (y/2)* + (2/9)? = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Graded Recitation Activity 4

Instructions (same as before)

» Every student in your group needs to write their name or initials on the
board.

You have 15 minutes to answer both questions below.

For full marks, show at least two intermediate steps.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Questions (5 points each, both questions are from old quizzes)
1. Set-up a triple integral that represents the volume of the ellipsoid
2?4 (y/2)* + (2/9)® = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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GRA4.1

Set-up a triple integral that represents the volume of the ellipsoid
2% 4 (y/2)* + (2/9)% = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
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GRA4.2

Set-up a triple integral that represents the volume of the solid bounded by the
hyperboloid of two sheets —z:2 — y? + 22 = 4, the plane z = 8 and the plane
z = 10. Do not evaluate.
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Change of Variables

> After completing HW 15.8, you might be familiar with computing an
integral, if you are given a transform.

> But if we were given an integral over a complicated region, and were not
given a suitable transform, how could we find one?

» The basic idea is to find a transform that converts a complicated region
into a simple one, such as a square, or a circle
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1) Change of Variables

Show that the area of the ellipse (x/a)® + (y/b)? = 1 is mab.
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2) Change of Variables

Set-up an integral that represents the area of a region bounded by z +y =0,
r+y=1L,z—-—y=0,z—y=2.
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2) Change of Variables (continued)
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3) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by

0<z<1,0<y<+V1-—22 and /z2+y?2 <2< 2— (22 +y?).

Recitation 25, Slide 9



4) Cylindrical

Set-up a triple integral that represents the volume of the solid bounded by
z = 2 4+ y2, and the plane y = z. Use cylindrical coordinates.

Recitation 25, Slide 10



5) Triple Integral

Set-up a triple integral that represents the volume of the solid bounded by
1 = a2 + 12, above 2% + y% + 422 = 36, and below by z = 1.

Recitation 25, Slide 11



5) Triple Integral (Alternate Solution)

Set-up a triple integral that represents the volume of the solid bounded by
1 = 2% + 92, above 22 4+ y? + 42% = 36, and below by z = 1.

Recitation 25, Slide 12
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! Recitation 27

Today’s Topics
16.1 Line Integrals (brief review)

16.2 Vector Fields and Line Integrals, Work, Circulation, Flux

Learning Objectives

16.1 Set-up and evaluate a line integral to calculate the mass of a thin wire

16.2 Set-up and evaluate a line integral that represents total work



R27

2

16.1: Mass of a Thin Wire (a review of lecture material?)

How To Calculate Mass of a Wire \A
e position on wire given by parameterization, r(t)
» density of wire is 6 = 6(r(t)) d
* |ength of a small piece of wire is As(r(t))
e we can approximate the total mass with:
M =
O

In the limit as As tends to zero,

To compute total mass, we can show that:

M=




R27
, 16.1: Mass of a Thin Wire

Compute the total mass of a wire whose density is given by 6 = 3x> — 2y, and
whose shape is given by the line segment from the origin to the point (2,4).



R27
. 16.2: Work (a review of lecture material?)

Work is the transferred to or from an object by

means of a acting on the




R27
16.2: Work Over a Straight Line Path

Force F is applied to an object as it moves from x = a to x = b along the x-axis.

A
y
| >
a b X
Applied Force Work
Casel F=4i =
Case 2 F=4i-2j W =

we need to extend this concept to curved paths in R3



R27
s« 16.2: Force Over a Curved Path

Force F applied to an object as it moves from r(u) to r(u + h) along curve C.

Work done by force F from r(u) to r(u+h)
is W(u + h) — W(u).

Applied Force Work

Case 3 F = F(r(u)) W(u + h) = W(u) =




R27
;16.2: Calculating Work

Set up an integral that represents the total work.

a) F=(x+2y)i+(2x+Yy)j, pathisy=x?from (0,0) to (2,4).

b) F=(x-y)i—xyj, along theline from (2,3) to (1,2).

c) F=xyi-2j+4zk, along the circular helix r = cos(u)i + sin(u)j + uk, from
u=0tou=2m.



R28

Recitation 28

Today’s Topics
16.2 Vector Fields and Line Integrals, Work, Circulation, Flux
16.3 Path Independence

Learning Objectives

16.2 Set-up, evaluate, and interpret integrals to calculate circulation and flux
16.3 Determine whether a vector field is conservative

Circulation

Cicrulation is a measure of the flow along a curve C, or net velocity along C.

a

circulation = F=f\7(17)°d17 =fb17(f(t))°17'(t)dt
C



R28 _ _
, 16.2: Circulation

Sketch the velocity field for v, and calculate the circulation over curve C, where C
is the circle of radius R.

f

_ 2i, R<y<R
Vo= 3 ’ Y
0, else
A
y
‘>
X
For part a), the circulation is because

For part b), the circulation is because




Application of Circulation

The circulation of a vector field V around a directed closed curve is

circulation = I = f v (17 ) - dr
C

y
¥y
.

_

* Note the cross-sectional profile of the wing
* Take C to be a path around the wing, on its surface
* Upward lift force 1s proportional to circulation, I'



R2
4

8
16.2: An Application of Circulation

Take C to be a closed path around the wing on its surface

B EEENR

WriteI'as I =1 + T

upper lower

I ypper @nd L'y have opposite signs

the magnitude of V along the upper surface of the wing is greater than
along the lower surface: net circulation is non-zero



R28
s 16.2: Flux Across a Closed Plane Curve

Suppose we have a curve Cin the xy plane, and a flow field v = M(x,y)i + N(x,y)k.
We want to measure the net flow through C.

2 1 * ks the unit vector parallel to the z-axis
 Tisthe tangent vector
~ * N is the outward pointing unit normal vector of C
C y
. R
x ﬂux=g§ V°th=§ﬁ M dy - N dx
N=Txk C C

counterclockwise motion

Note that:
 for a clockwise motion, we would instead use k x T
e later on, we will make a connection between flux and Green’s theorem



R2

8
s 16.2: Flux

Calculate the flux over curve C, where C is the circle of radius R.

~

Zi,RsysR

0, else

Vo= 3

.

X

Therefore: the flux is because




R28 _ .
- 16.2: Circulation and Flux

1) Sketch the velocity field for v = - Xi - yj, and calculate the circulation and flux
over curve C, where C is the circle of radius R.

Therefore: the circulation is because

Therefore: the flux is because




R28 _ .
s 16.2: Circulation and Flux

2) Sketch the velocity field for v = - yi + Xj, and calculate the circulation and flux
over curve C, where C is the circle of radius R.




R28
o 16.3: Conservative Vector Fields

Recall the Pipe example.

a) Why was the circulation zero?

b) For any path that starts and ends at point A, and stays inside “the pipe”, the

circulation is

c) For all paths that starts at A and ends at point B, the integral

is the same.

In general: if v is a conservative vector field (or is path independent), then there
exists a scalar field, S, s.t.
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Recitation 29

Today's Topics
16.2 Vector Fields and Line Integrals, Work, Circulation, Flux
16.3 Path Independence

Learning Objectives

16.2 Set-up, evaluate, and interpret integrals to calculate circulation and flux
16.3 Determine whether a vector field is conservative and apply the FTLI

Circulation and Flux
Circulation is a measure of

Flux is a measure of

b

circulation = T'= [%(7)-drF = [ 5(F (1)) () ds

flux =4§C\7°th =C§I§CMdy—Ndx



R29
, 16.2: Circulation and Flux (review)

1) Sketch the velocity field for v = - Xi - yj, and calculate the circulation and flux
over curve C, where C is the circle of radius R.

Therefore: the circulation is because

Therefore: the flux is because




R29
» 16.3: Conservative Vector Fields

In general: if F is a conservative vector field (or is path independent), then there
exists a scalar field, f, s.t. , and

Example: Calculate total work from the force F = (x?-y)i + (y? — x)j, over the path
r = a cos(t)i + b sin(t)j, where 0 <t < 2m.



R29
. 16.3: Conservative Fields

Group work activity: determine whether the following fields are conservative
1)v=—Xi—Y]
2)v=—yi + Xj



R29 _ .
- 16.2: Circulation and Flux

Group work activity: sketch the velocity field for v = - yi + Xj, and calculate the
circulation and flux over curve C, where Cis the circle of radius R.




R29 .
s Conclusions

a) Circulation measures flow

b) Flux measures the flow

c) Ifaflow is conservative, the line integral

circulation

velocity field
equation

field name

path C.
of C.

is the same for any path C.

isv
conservative?

ipe v = 2i for
PP —R <y < +R,
v = 0 otherwise

V=-Xi-Vj

V=-yi+Xj
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Recitation 30

Today's Topics
16.4 Green's Theorem
16.5 Surfaces and Areas

Learning Objectives

16.4 Apply Green’s theorem to calculate area, flux, and circulation
16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically

Green’s Theorem

If R is a region that is ,and M and N are
scalar fields that are differentiable on R, and C is the boundary of R, then:

flux =

circulation =



R30
, Green’s Theorem Example (from an old quiz)

Below are five regions. For which regions can we apply Green’s Theorem?

B (YOS



R30
s Green’s Theorem Example (from an old quiz)

Find the circulation AND flux for the fieldF = 3x°y?i + 2x° v 3
around therectangle 0 < x s 2, 0 s y s 3. UseGreen' s Theorem.



R30
. Green’s Theorem Example (from an old quiz)

Let R be the region in the plane, inside the cardiodr = 1+ cos () ,
and C its boundary Consider the line integral

Jw dx - xy?dy. Use Green' s theorem toconvert toandouble integral,
C

and express this as a double integral in polar coordinates with limits.



R30
s Additional Green’s Theorem Example

0 e o 3m/2 2m
X

The curve traced by a point on a rolling wheel is

X(t) = t —sin(t)
y(t) =1 — cos(t)



R30
s Additional Example: Green’s Theorem

Find the area under one arch of the cycloid:
X(t) =t —sin(t), y(t) = 1 — cos(t)




R30
, Additional Example: Green’s Theorem

a) Evaluate icyz dx+2xydy, C 1s one loop of r=2s1n260

b) Change the integral so that it represents the area of one loop.



R30
¢ 16.5 Surfaces and Areas

Surface area for a parameterized surface:

Your textbook has formulas for calcuatling the surface area for
implicit and explicit surfaces, we probably won’t have time to
work on these in recitation.



R30
o 16.5 Surfaces and Areas

a) What properties does a parametric representation of a surface
need to have?

b) Find a parametric representation for the part of the planez=x + 2
in the first octant and inside the cylinder x? + y? = 1.



R31
1 Recitation 31

Today's Topics
16.5 Surfaces and Areas
16.6 Surface Integrals

Learning Objectives

16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically
16.6 Calculate outward flux through a surface

16.6 Calculate the total mass and centroid of a thin surface (if time permits)

Course Logistics

1. Has a final exemption cutoff been announced?

2. What is the cutoff?

3. When is your final exam?



R31
, 16.5 Surfaces and Areas

Surface area for a parameterized surface:

Your textbook has formulas for calcuatling the surface area for
implicit and explicit surfaces, we probably won’t have time to
work on these in recitation.



R31
s 16.5 Surface Area Example

Set up an integral that represents the surface areaof z=y?, for0<x<a,0<y<h.



R31
. 16.5 Surface Area Example

Calculate the surface area of the part of the plane x + 2y + z = 4 that is inside the
cylinder x? + y? = 4.



16.6 Surface Integrals

Suppose we want to characterize 3D flow through a pipe.
To calculate 2D flux across a curve, we used: flux = fﬁ-ﬁdu - fMdy—Ndx
C (&

If our flow field, v, is 3D, we calculate flux across a surface.

T




R31

s 16.6 Flux Through a Surface

A fluid has velocity field v = yi + j + zk. Set up an integral that represents the flux
through the paraboloid z = 9 — (x2 + y2)/4, if x2 + y? < 36.



R31
,16.6 Surface Integrals (this was a 2014 pop quiz question)

Set up a double integral that represents the flux of flow F = xi + zk thorugh the surface
z(X,y) =x2-y2 where0<x<1, -1sy<1.



R31
s 16.6 Centroid of a Thin Surface (if time permits)

The mass density at any point on a thin surface z? = x* + y2, 0 <z < 1, is proportional to
its distance to the z-axis.

a) Find the total mass of the surface.

b) Find the centroid of the surface.



R31

16.5 Surface Area Parameterization (additional example)

Find parametric representations for the following surfaces.
a) the upper half of 4x2 + 9y2 + z2 = 36
b) the part of the plane z = x + 2 inside the cylinder of x? + y2 = 1



R32

1 Recitation 32

Today's Topics

Final Exam Review

16.7 Stokes Theorem

16.8 The Divergence Theorem

Learning Objectives
16.7 Use Stoke’s theorem to calculate either work, or circulation over a curve
16.8 Calculate flux through a surface using the divergence theorem

Final Exam Logistics
Review session: information sent via email
Questions during final: information sent via email



R32

Studying for the Final Exam

There are two prep-finals available on T2. Each of them have five
qguestions that focus on specific areas of our textbook.

Chapter 13 Chapter 14 Chapter 15 Chapter 16
Prep-Final A P1 P2, P3, P4, P5
Prep-Final B P1 P2 P3 P4, P5

Ways you may want to study:

» solve prep final questions

* re-do quizzes 1 through 4

* re-do MML problems

 memorize formulas (especially from Chapters 13 and 16)



R32 . .
5 PrepFinal Question Al

Find the speed, the tangential acceleration and the normal acceleration
for the motion r = (t,t2,t2). Compute also the curvature of the
corresponding curve as a function of t.



R32 .
. PrepFinal Question A2

Find the moment of inertia with respect to the x axis of a thin shell of
mass 0 that is in the first quadrant of the xy plane and bounded by the
curve r2 = sin 26.



R32 . .
s PrepFinal Question A3

Compute the center of mass of a thin shell that is formed by the cone
(z-2)2=x2+y2, 0<z<2.



R32
s PrepFinal Question A4

Compute the line integral of the vector field F = (xyz + 1, x°z, x%y)ex?
along the curve r(t) = (cost,sint,t), 0 <t <.



R32
; PrepFinal Question A5

Use the divergence theorem to compute the outward flux of the vector
field F = (x? , y?, z?) through the cylindrical can that is bounded on the
side by x2 + y2 = 4, bounded above by z = 1 and below by z = 0.



R32 . .
s PrepFinal Question B1

Find the parametric equations of the line that is tangent to the curve
r(t) = (et, sint, In(1 - t)), att = 0.



R32 . .
o PrepFinal Question B2

Find the minimum cost area of a rectangular solid with volume 64 cubic
Inches, given that the top and sides cost 4 cents per square inch and the
bottom costs 7 cents per square inch. Just set up the equations using
Lagrange multipliers, you do not have to solve them.



R32 . .
o PrepFinal Question B3

Compute the average of the function x* over the sphere centered at the
origin whose radius is R > 0.



R32 ) .
+  PrepFinal Question B4

Compute the flux ISF-ndo, S where S is the hemisphere x2 + y2 + z2 = 4,
z 2 0, n points toward the origin and F =(x(z-y), y(x-z), z(y—Xx)).



R32 . .
» PrepFinal Question B5

Compute the line integral |_F-dr where C is the curve given by the
intersection of the sphere x2 + y2 + z2 = 4 and the plane z = -y,
counterclockwise when viewed from above, and F = (x2 +y, x +y, 4y? — z) .



R32
3 16.7 Stokes’ Theorem

Curl describes the tendency a fluid has to at a specific
point. Stokes’ Theorem states that:

Note that curve C must be

Stokes’ theorem can be used to calculate and

Historical note: Stokes’ theorem is named after Sir George Stokes, but was discovered by Sir
William Thomson.



168 What is Divergence?

Divergence describes the tendency a fluid has to

Water is (appro‘w)iim‘ately) an incompressible fluid. If you place your thumb at the end of a hose,

the speed of the water Y , because , Or because




R32
s 16.8 The Divergence Theorem

The divergence theorem states that



16.8 The Divergence Theorem: Archimedes Principle

Upward buoyant force =

o e
x.

s




R32
- 16.8 Prove Archimedes Principle



R32 .
s 16.8 Electric Charge

E = electric field. Then, Gauss’s Law states that:
total charge = (g,)(flux of E through closed surface )

Find the total charge contained in a solid hemisphere if E = xi + yj + zk.



Recitation 01: Welcome Back! Jocker Rop cesod@tns (31D

Today: Course and Recitation Organization, VeleeityandAcceteration (42767
“AThursday: Quadratic Surfaces (12.6)

Start-of-Term Survey
Please fill out if you haven’t already:

Graded Recitation Activities This Semester

» details sent via email
« group work, in Adobe Connect, count towards your pop quiz grade

WebEx and Adobe Connect .
1. WebEx for first two weeks

2. online survey to determine if we want to continue using WebEx
3. Adobe Connect for graded group work activities and pop quizzes

Other Announcements

. Piazza is set-up, link in T-Square

e  Tegrity is set-up, can view yesterday’s lecture
e  Two MML HWs set-up, due Monday



Objectives

Throughout/tQis course we find parametric
representatis of motion and use them to
character motiong,

1 Today’s Learning Objectives

Characterize the two (or three) dimensional
motion of an object, in parametric form, in terms
of its

* velocity and acceleration

e tangent vector

Later in this course we’ll look at curvature, path length, momentum, and |
other ways of describing a motion.

I’'m assuming you’ve seen parametric representation of curves in lecture.




ROT . i
Parametric Representation

Find a parametric representatlon of the counterclockwise motion that travels along the
curve 4x2 + 9y2 =36, WANT® T (&) = 0% + yld}

CURVE , = L 36
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RO1 .. : .
Position, Velocity and Acceleration
The position of an object is given by the curve r(t) = sin(t)i + cos(t)j, for all t.

a) Sketch the curve.

b) When are the position and velocity vectors perpendicular?

c) When do the position and acceleration vectors have the same direction?

d) Calculate the unit tangent vector for all t. £20
r in‘z = | o ? 'é'mas a cﬁ-c/e
= et ult wto““v"‘”\'m s )5
a) x5 (8= { dockanise, )
n N M

&a) vi) = et =5)
2 (st o) (el i) 2o @ perpatida ¥ 4.

vy

5 foc cirenlin wobiny , FLY ¥ L.
du . 2 o adimperalel Mt o nE G poms oivect.n.

A

Y
__—\,j\l__ L I
) I = B A




ROI

Position and Velocity

The position of a particle is given by r(t). Describe situations where the following is true
for all values of t.

dr
7’() —d_t_o

\\ CLRCUULAR, ATl

A CE
_'_\ FAIRKUI ALy gRTECT (jo T T (e



RO1

Parametric Vector Representation

Find a parametric vector representation, r(t), of the curve that satisfies the following
equations, and y increases when x is positive.

e —

=

\Z=\/x2+y2,y=x g ;’Q

T 1) L ylt), 2(t) et faﬁﬁ% {i .

o ————

Wa W‘A. T L
T\" . X - £ . Jo \j:‘?(:«‘fi/ = q}ﬁ T —'\E(JC/'
o ey

THE BATH r(H) IS THE
INTER JECTIpN  op  PLANME ‘9=5<

AND  CoNE 4.*—'\&"7—?




ROI1

Parametric Vector Representation

Find a parametric vector representation, r(t), of the curve that satisfies the following
equations, and z decreases when x is positive. Sketch the-motion—

“ﬁﬂg;&z’iﬂfg?l;o
¥ X
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Recitation 02

Today: Vector Representations of Curves (13.1), Quadratic Surfaces (12.6)

Start-of-Term Survey
Please fill out if you haven’t already:
https://www.surveymonkey.com/s/Math2401-2015

Last Recitation

e Find parametric representations of given curves

« Characterize motion of an object, in parametric form, in terms of its
o velocity and acceleration
o unit tangent vector

Today
 Identify and sketch quadratic surfaces given their algebraic equations

While Waiting to Start: Sketch and describe the surface 5x? + 2y? — z2 = -10.




RO2

Quadratic Surfaces (12.6)

Sketch and describe the surface 5x? + 2y? — z2 = —10. ¢ urfece o’“éff’; ;:f‘f‘f‘f
o / So (e
j,\ Yhe %") ’ ka) ’%"’O, gxl *’L"C’:'lO 2) mcwﬂﬂl“d'/‘ QP-/
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RO2

Quadratic Surfaces (12.6)

Sketch and describe the surface 5x2 + 2y? — z2 = —10.

WolframAlpha sz
knowledge srging

|[ plot Sx~2 + 2y~2 - 6272 = -10 i = | Jll

=T O I == 4 = Examples == Random

lnput interpretation:

plot 5x*+2y*-62°=-10

Surface piot:

© Enable interactivity

Geomelric figure:

two-sheeted hyperboloid



ROZ2

Quadratic Surfaces

The textbook should list and describe every quadratic surface that you need to be familiar
with (but the online textbook currently doesn’t work). Wikipedia also has a page that lists

and describes every possible quadratic surface (for our course):

http://en.wikipedia.org/wiki/Quadric

Below are four surfaces:

Vrsag - Ezlllpsozld 2
\k) x2+y2+22—1
a- b” c

Elliptic paraboloid
. 2 2
.‘— 1 ¥ x y

.x'f ——+""_Z=O

a2 2

Hyperbolic paraboloid

2 yz Z‘
ZE-I-?-'-?:Q

Elliptic hyperboloid of
one sheet




RO2 :
. | Quadratic Surfaces

|dentify the correct answer.
The set of all points whose distance from the z-axis is 4 is the:

a) sphere of radius 4 centered on the z-axis

b) line parallel to the z-axis 4 units away from the origin
cylinder of radius 4 centered on the z-axis

d) planez=4

s a‘[ﬂtw'\ff& 7[ro*h orijr% ot L‘f’

, Looh A (-}
kg\ (¢ a sulet of pMs 0

| e 1y Y
A\ 7o et of ‘wfvﬂ“ ﬁ e 1 SO

s Wt get of ol 3 v



RO2 . . .
. | Parametric Vector Representation and Quadratic Surfaces

Find a parametric vector representation of the curve, r(t), that satisfies both
quadratic surfaces. él/gqtch r(t) and both surfaces.

Ll Suface
\We neel rﬁ'x“"? 4‘/}(‘%‘}‘3 v’(k\,ﬁ 5(\'{“; Y. Ll Suefaces
Tyn: xld) < \T‘gcvs%!
\ ) ?

w(t) 2 5 Y
(W 2(¥) v w@,S_

L WARE "’\J-S,C‘_St
::> ) (\%; ~ | B sn |

—

TE © CAN ALSe CHeosE % ()= 4 siat
N° N \0{(}: 4‘3"5-;5%




RO2

. | Quadratic Surfaces (12.6)

Consider the surface z = Ax? + By?, where A and B are constants. Identify all
possible surfaces for the following cases.

i) A=B=0
ii) B>0
7
. - § _ ez A WY psECIT Lode Like THS w
R Gy (e el AR
. AR R FenTIVE * 2 must B Pos(TvE ?’ﬁ ‘ g(f,’,;e/ "
Ll

<mup‘nf— Mllkw,om) X a
ATIVE i 2 pust pf NEGATVE &
AR B NES pusT e ,



RO2

Parametric Vector Representation and Quadratic Surfaces
The following surfaces intersect along a cuﬁVe?Ei"hd a) the projection of the curve

rd

onto the xy-plane and b) its parametric vector representation.

2 2
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Recitation 03
Today: Group Work on Vector Representations of Curves, Quadratic Surfaces

Hello from San Antonio! Your instructor and | are at a large annual math
conference. | hope the wifi is going to hold up for our recitation this morning,
many apologies if it doesn’t. In case you're interested, this the conference
website: http://iointmathematicsmeetings.org/imm :

Textbook: technical issues should be resolved now

Start-of-Term Survey
Please fill out if you haven’t already (survey closes Wednesday at midnight):

https://www.surveymonkey.com/s/Math2401-2015

Today: Quadractic Surfaces and Parametric Vectors

* Find parametric representations of given curves

* Characterize motion of an object, in parametric form, in terms of its velocity
~and acceleration, unit tangent vector

* |dentify and sketch quadratic surfaces given their algebraic equations



RO3
2

Group Work Questions

Complete each problem in small groups. The first four questions are from old Math 2401
quizzes (2013 and 2014). '

1)

2)

3)

4)

gy

S)

Consider the twisted cubic r(t) = ti + tj + t3k and the plane x + 2y + 3z = 34.

a) Where does the cubic intersect the plane?

b) Find the cosine of the tangent to the curve and the normal to the plane.
Find the intersection of the surface x> + 2y?2 =z and the planex-y=5. A
parameterization would be fine.

Conisder the surface x2—6x + 4y + y> + 82— 22 =4,

a) Find the center of the surface.

b) Name the surface.

c) Draw a picture of the surface, labelling the center and axes.
Conisder the surface 9x2 — 18x — 16y + 4y?> —4z? = 11.

a) Find the center of the surface.

b) Name the surface.

c) Draw a picture of the surface, labelling the center and axes.

How do-the surfaces-in-questions-3-and-4-compare? How-are-they-different?-

Create a vector function, r(t), on the interval [0, 2rt], that satisfies the conditions

' r(0) = ai, and as t increases from O to 2m, traces out an ellipse b?x? + a%y? = a%b?, twice

in a counterclockwise manner.



RO3 1) Consider the twisted cubic'?(t) = ti + tj + t?k and the plane x + 2y + 3z = 34.

< a) Where does the cubic intersect the plane?
b) Find the cosine of the tangent to the curve and the normal to the plane.
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RO3 " 2) Find the intersection of the surface x2 + 2y? = z and the plane x -y =5. A
4 parameterization would be fine.
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RO3  3) Conisder the surface xX2—6x + 4y +y2 + 82— 22 =4,
5 a) Find the center of the surface.
b) Name the surface.
c) Draw a picture of the surface, labelling the center and axes.
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RO3  4) Conisder the surface 9x2 — 18x — 16y + 4y2 — 472 = 11.
6 a) Find the center of the surface.

b) Name the surface.
c) Draw a picture of the surface, labelling the center and axes.
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RO3 ) Create a vector function, r(t), on the interval [0, 2r], that satisfies the conditions
8 r(0) = ai, and as t increases from O to 2r, traces out an ellipse b?x? + a2y? = a2b?, twice in a

counterclockwise manner.
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Recitation 04
Today: Displacement, Velocity, Acceleration (13.2), Path Length (13.3)

Homework: Due Tonight and Monday

Learning Obectives for Today: Characterize motion of an object, in
parametric form, in terms of its unit tangent vector, acceleration,
path length (aka arc length).

Photo by Wikimedia Commons user Kreuzschnabel




RO4 Particle Motion
2 Let r(t) = x(t)i + y(t)j + z(t)k.
a) How is the unit tangent vector, T(t), defined mathematically?
b) Supposex=t%,y=1t3z=1% andﬁ%-neahmmber Then what is the unit tangent

vector when t =0? e,
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RO4 Differential Equation
3 Solve the following initial value problem.
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RO4  yvelocity and Acceleration
Q-|- What constant acceleration must a particle experience if it is to travel from (1,2,3) to

(4,5,7) along the straight line joining the points, starting from rest, and covering the
distance in 2 units of time?
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R04 Velocity and Position

E r(t) is the position of a moving particle.
a) Describe, in words, what r’ is parallel to.
b) Show that | |r(t)| | is constantiffr L r’
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24 The Hanging Cable S‘T“DEN;—;;‘:!%& YFJ"' *;fi’T SteEV }
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The hanging cable, also referred to as a Ca‘f-ﬂrna}'u , has the shape:
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RO4 :
A cable is suspended between two poles that are 10 m apart. Find the length of the cable, if
:P the cable’s shape is y(x) k [cosh(x/k) —1]. Dongt NTggepTE, |
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ROS -
1 Recitation 05
Today’s Topics
* Projectile Motion (13.2)

« Path Length and Tangential Vector (13.3)
e Curvature & Normal Vectors (13.4)

Today’s Learning Obectives
 Apply vector function integration to determine path of projectiles

e Characterize motion of an object, in parametric form, in terms of its arc
length and its tangential, normal and binormal vectors



ROS
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Announcements

Survey Results: students want to collaborate, have trouble with technical issues and not
knowing how to solve problems in group work. So lets use Adobe Connect, keep group size
to 4 to 6, use group work on stuff covered from last assignments.

Thursday Recitation: 13.4, 13.5, Adobe Connect

Graded Recitation Activity: Next week during Tuesday recitation, question coming soon
HW Due Tomorrow: 13.4, 13.5

Quiz 1: Thur Jan 29

Office Hours: 7:30 pm — 8:30 pm, Wed Jan 21, Wed Jan 28
https://georgiatech.adobeconnect.com/distancecalculusofficehours

Send Your TA an Email
Explain, in an email, using your own words, what the following quantities represent:

 the unit tangent vector, T(t)
* the curvature, K

Try to send this email by the end of the day today. If you send your TA an email with a
description of what these quantities represent, you will get a reply.



’205 Helpful Formulas

Ideal Projectile Motion: 7(r) = (v, cosa )i + ((VO sina)z - 5

v is the __initidl W(OC"JW}\ ,and ais the c{‘rﬂ(e from :}rvwrv(
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RO5 1) Ball Rolling off of a Table (Projectile Motion, 13.2)

4 A ball rolls off a table 1 meter high with a speed of 0.5 m/s.
a) At what speed does the ball strike the floor?
b) Where does the ball strike the floor?

2) Golf Ball (Projectile Motion, 13.2)
A golfer can send a golf ball 300m across a level ground. From the tee in the figure, can the

golfer clear the water?
Tee 310m

3) Arc Length, Normal and Binormal Vectors (13.3, 13.4)

Consider the surfaces x2+y2+2z2=4,and 22 =x>+y*forz2 0.

a) Find a parameterization for the intersection curve, r(t), of the two surfaces.

b) Sketch the two surfaces and their intersection.

c) Calculate the length of r(t).

d) Find the unit tangent, normal, and binormal vectors for r(t) at the point
(sqrt(2), 0, sqrt(2)).

e) Add the three vectors to your sketch.



58

R0O5 1) Ball Rolling off of a Table (Projectile Motion, 13.2)
5 A ball rolls off a table 1 meter high with a speed of 0.5 m/s.

a) What speed does the ball strike the floor? ~——3-«;--»-~w~o--—~ﬂ;’(
b) Where does the ball strike the floor? b
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RO5 2) Golf Ball (Projectile Motion, 13.2)
6 A golfer can send a golf ball 300m across a level ground. From the tee in the figure, can the

golfer clear the water?
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RO5 3) Arc Length, Normal and Binormal Vectors (13.3, 13.4)

7 Consider the surfaces x2+y2+22=4,and 22 =x2+y*forz20.
a) Find a parameterization for the intersection curve, r(t), of the two surfaces.
b) Sketch the two surfaces and their intersection.
c) Calculate the length of r(t).
d) Find the unit tangent, normal, and binormal vectors for r(t) at the point

(sqrt(2), 0, sqrt(2)).

e) Add the three vectors to your sketch.
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Recitation 06

Today'’s Topics:
« Curvature & Normal Vectors (13.4)

Tangential and Normal Components of Acceleration (13.5)
< Aeocity-and Accelération in Pelar Goordinates-(13.6).

Today’s Learning Obectives

1. Given a motion of an object, in either parametric form or as a function
of a single variable, calculate the

e curvature

* tangent, normal, and binormal vectors

* acceleration (tangential and normal components)
e torsion

2. Calculate the osculating, normal, and rectifying planes for a given
curve r(t) at a given value of t




RO6

5 Helpful Formulas
v_T'®
principle normal vector: N = m
t
1 T
curvature: K = | IIT (t)‘
%
|f”(X)|
curvature: K = 373
| 2
()]
acceleration: d = a,T +a,N xy z
g o4 x!l yH Z"
r xl" yIH ZIH
_ torsion: T =
Ay [V x d|2
Notes:

 One of the above equations has an error, where is it?

» There are alternate expressions for these formulas. Above are the formulas that
the textbook uses.



RO6

Normal, Rectifying, and Osculating Planes

The geometry of the three planes determined by vectors T, N, and B, for curve r(t), at r(t).

| normal plane
rectifying plane |

If a motion, r(t), lies completely in a plane, then the binormal vector is CONS—U*NT ;



RO6

Announcements

Graded Recitation Activity: Next week during Tuesday recitation, question sent
HW Due Tomorrow: 13.6

Quiz 1: Thur Jan 29

Office Hours: 7:30 pm — 8:30 pm, Wed Jan 28
https://georgiatech.adobeconnect.com/distancecalculusofficehours

Send Your TA an Email
Using your own words, describe

e the relationship between the curvature and the normal plane
* the relationship between the torsion and the osculating plane

Try to send an email with your answers by the end of the day today. If you send your
TA an email with an answer to these questions you will get a response.
Hint: these relationships are described in the textbook.



RO6

Group Work Activity: Part (a)

AN
There are thﬁe'e parts to the following question. Solve them in groups of 3 to 5
students.

Consider r(t) = sin(t)i + cos(t)j + K, t = -m/2.

a) Find T, N, and B at the given value of t. e (., \a—\
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RO6

Group Work Activity: Parts (b) and (c)

6
Consider r(t) = sin(t)i + cos(t)j + k, t = -1t/2.
b) Sketch r for [0, 2] and indicate the direction of motion.
c) Sketch T, N, and B at the given value of t.
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RO6

Group Work Activity: Part (d)

Consider r(t) = sin(t)i + cos(t)j + kK, t = -m/2.
d) Find the equation of the normal plane at t = -t/2.
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RO6

»9

True or False

a) Curvature is a scalar and can be any real number.

This statement is F because: X 2 D 50 K can '{' Lé’/
dAn 13 e o({ Al L-P/\

b) Torsion is a scalar and can be any real number.
/\\ | II.!
This statement is : because: {n Srom (S OWS réea' Aomio

c) If r(t) = x(t)i + y(t)j, then the normal vector, N, is given by N =n/|n|,
where n = -x'(t)i + y'(t)j.

This statement is F because:
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Recitation 07

Today’s Topics: Quiz 1 Review, Graded Recitation Activity 1

Quiz 1 Topics
12.6 Quadratic Surfaces
13.1 Vector Parametric Representations of Curves
——13:2-Quadratic-Surfaces
_~13.2 Projectile Motion
\%’{1—3‘2 Path Length
\a¥*133 Curvature & Normal Vectors

13.5 Tangential & Normal Components of Acceleration
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Quiz 1 Learning Objectives

You should be able to do the following for Quiz 1.

Identify and sketch quadratic surfaces given their algebraic equations
Develop parameteric representations of curves
Integrate vector functions to determine projectile motion
Characterize a motion, given in either parametric form r(t), or as a continuous function
f(x), using:
* vectors: velocity, acceleration, tangent, binormal
» scalars: curvature, torsion, tanential & normal components of accel, arc length

* planes: tangential, rectifying, 95CULATWNG

.. (@ | normal plane
rectifying = |

plane

oscuw AT plane
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Helpful Formulas

2
Ideal Projectile Motion: 7(¢) = (v, cosa)ti + ((vo sinor)t - %) j
2 - 7 )
max range: R = M max height: Yo S @
g 28
principle normal vector: N = T'(t)/ |T'(t)| acceleration: d = a,T +a,N
binormal vector: B = N'(t)/|]V'(t)| ar=______

curvature: K = T'(t)|/|17| “=

32

curvature: K = f"(x)Vll"‘(f'(x))Z]

x? yl Z'F
x" yH ZH
x!" yHI ZH!

torsion: T =

- 12
|vxa|
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Graded Group Work Activity

Instructions
« Every student in your group needs to write their name or initials on the board.
* You have 20 minutes to answer the questions below.

e For full marks, show at least three intermediate steps for each question.
* Answer each question on a different slide.

e All students in the same group receive the same grade.
« Please do not share computers: every student should log in on their own computer.

1) Tangential & Normal Components of Acceleration (4 points)
Let r(t) = 2ti + tj + 2t2k be a motion. Compute the tangential and normal components of
the acceleration.

2) Arc Length (3 points)
Find the arc length, from O to t, of the curve r(t) = etcos(t)i + e'sin(t)j + 5etk.



RO7 1) Tangential & Normal Components of Acceleration (4 points)
5 Let r(t) = 2ti + tj + 2t2%k be a motion. Compute the tangential and normal components of

the acceleration. __,_\_r_) = @-J ‘) 6_: _ E%:X) \\7\" ,\lz::\,.,* ‘éeﬂj
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v
RO7  2) Arc Length (§ points)
6 Find the arc length, from O to t, of the curve r(t) = etcos(t)i + etsin(t)j + 5e'k.

TE-FY - coresl et
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e sTec | 5 fmE=S
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Message your TA when you've finished both questions., then move on to the remaining questions.



R .
9 curvature and Torsion

This question has 4 parts. Consider the surfacesz=x?+y?andy =2, forz2 0.
A) Find a parametric vector representation for thelyintersection. O'F He jurfﬂtes

B) Sketch the intersection and the 2 surfaces.
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R .
% curvature and Torsion

This question has 4 parts. Consider the surfacesz=x?+y?andy =2, forz>0.
C) Calculate the curvature and identify on your sketch whre the curvature is maximized.
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RO7

Curvature and Torsion

This question has 4 parts. Consider the surfacesz=x*+y?andy =2, forz> 0.
D) Calculate the torsion of the intersecting curve and explain your answer.
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Recitation 09

R09 Topics
14.1 Functions of Several Variables
14.2 Limits and Continuity

R09 Learning Objectives
By the end of today’s session you should be able to

» Identify and sketch the domain of a function of several variables.

» Determine whether or not limits of functions of several variables
exist.

While We’re Waiting to Start
Consider the function

NEa!

g(z,y) = m

For g(z,y) to be defined and a real-valued function, what values of
and y can we allow?

Recitation 09, Slide 1



Domain of a Function of Two Variables

Identify and sketch the domain of

vVy+1
g(a:,y) =

a2y +ay?

Solution

For g(x,y) to be defined, its denominator cannot be zero. This implies
that 0 # 2%y + 2y? = zy(z +y). Thus, 2 # 0, y # 0, and y # —x. The
numerator of g(x,y) also cannot be complex, which implies that
y+12>0, or that y > —1. The domain is the set

i

'
N
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Limits of a Function of Two Variables

Consider the function of two variables

z(x —1)3 + y2
flany) = 22DV
4(x —1)2 49y
We want to evaluate
lim x,
(z,y)—>(1»0)f( 2

What strategies might we try to evaluate the desired limit?

Solution

When we evaluate f(x,y) at the limit point, we find f(1,0) is an
indeterminant form of type 0/0. It may be that f is not continuous at
the point (1,0). In one dimension, we would use I'Hopsital’s rule, or
algebraic manipulation, to evaluate such a limit. But I'Hospitals rule only
works for functions of one variable. So for this limit, we will try
approaching the limit point along curves that pass through the limit
point. In this case, we can try evaluating the limit along y = m(z — 1).
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Limits of a Function of Two Variables, Example 1

Evaluate
. xz(x — 1)3 + y2
lim kS A
(z,y)—(1,0) 4(x — 1)2 + 93

Solution

Choose a function, y(x), that passes through the given limit point (1,0).
We can try y = m(z — 1), which passes through (1,0), and see what

happens.
lim z(x—17°+y* - z(z —1)3 +m?(z — 1)?
() (1,00 4(x — 1)2 4+ 9y3  (2,9)>(1,0) 4(x — 1)2 + 9Im3(z — 1)3
. (x —1) +m?
= lim ——
(z,y)—(1,0) 4 + 9m3(z — 1)
4

Because the value of the limit depends on the path of approach, the limit
does not exist.
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Limits of a Function of Two Variables, Example 2

In groups of 3 to 5 students, evaluate the limit

l‘y2

lim _
(2,y)—(0,0) 22 + y?

Solution
Along the path y = mx, we obtain

Iyz xm2:1:2 m2x

li —_— = i —_— = i —_— =
(z,y)lin(0,0) 2 4+ gyt (z,y)lin(0,0) 22 + miaxt (x,y)lin(0,0) 14+ miaz2

We might be tempted to believe that this limit exists. But along the path
z = my?, we find

xy? my* m
lim —_— = lim =
(@)—00) 22 +y*  (@y)—0,0) m2yt +yt m24+1

Because the value of the limit depends on the path of approach, the limit
does not exist.
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Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use the definition of limit.

The limit of f(x,y) as (x,y) aproach (a,b) is L if for every number
€ > 0, there is a corresponding § > 0 such that

|f(z,y) — L| <e when 0 < \/(z —a)2+ (y—b)2 <6

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x,y) to (a,b) sufficiently small.
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An Epsilon Delta Example

Evaluate, or show that the following limit does not exist.

. 322y
hm —_—.
(2,y)—(0,0) 2 + 2

Solution
Along the path y = mx, we obtain

3x2y B . 3m?2a3 B

il R | i
()5 (0.0) 72+ 12 (@a)s(0.0) 22(1 + m?)

Along the path y = ma, the limit is zero. We can also show that along
the path y = ma?2, that the limit is also zero. So we are starting to
suspect that this limit exists and that L = 0. Let ¢ > 0. We want to find
a § > 0 such that

|f(z,y) — L| <e when 0 < \/(z —a)2+ (y —b)2 <6

We will do this on the next few slides.
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An Epsilon Delta Example

We want to find a § > 0 such that

\f(z,y) =Ll <e when 0<+/(z—a)2+(y—0b2<§

The limit point is (0,0), so a = b = 0. And we think the limit might
equal zero, so we can try L = 0 and see what happens.

32
‘ﬂ—0’<e when 0<vVa2+y? <o

22 + y?
However,
322y 32|y
EE
.732 _|_y2 332 _|_y2
< 3@+ )yl
2+ 32

= 3jy| = 3P < 3T TP

This result will suggest that we choose § = ¢/3. We see why on the next
slide.
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An Epsilon Delta Example

We have found that
3
)~ Il = | 220 0| <3/
Choosing 6 = ¢/3, and letting 0 < /22 + 32 < §, we obtain
|f(z,y) — LI <36 =3(e/3) = ¢

Thus, given any €, choosing 6 = €/3, and 0 < \/22 4+ y2 < & = ¢/3, we
can guarantee that |f(z,y) — L| <e.

Therefore, the limit exists and is equal to 0.
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Conclusions: Evaluating Limits of Multivariable Functions

Suppose we need to evaluate a limit of a function of two variables

lim z,Y).
ey sty V)
If we know that f(z,y) is continuous at (a,b), we can evaluate the limit
with direct substitution. If we don't know that f(z,y) is continuous at
(a,b), we can either

» evaluate the limit along curves (y = mz, for example) to see if the
limit does not exist, or

» we can use the definition of limit to prove that the limit does exist
and determine what the limit is equal to.

Notes:

> evaluating a limit along curves cannot tell us that a given limit
exists, it can only tell us whether it doesn't exist

> |I'm assuming you're familiar with continuity for a function of several
variables, but if you aren't it's on the next homework and isn't a
diffcult concept.
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Recitation 10

R10 Topics

14.2 Limits and Continuity
14.3 Partial Derivatives
14.4 The Chain Rule

R10 Learning Objectives
By the end of today’s session you should be able to
» Determine whether or not limits of functions of several variables
exist by evaluating the limit along paths or by using the formal
definition of limit.
» Compute partial derivatives of multivariable functions using the
chain rule.
While We’re Waiting to Start
Calculate f,(1,—2,—1) for f(z,y,z) = 2%ye¥/*.
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A Partial Derivative

Calculate f,(1,—2,—1) for f(z,y, z) = 2?ye¥/.

Solution

fy = %( 2yey/z)

_ 22e0/% 4 g2yevl (62 y)

y z

2 z

_2euls | Tye”
z

Thus, f,(1,-2,—1) = (1)2e2 4 Q22 _ 32
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A Conceptual Question

Select all options that are correct.

Given a function f(x,y), to evaluate % at the point (1,3), we can:
1. Differentiate f with respect to x and then set x =1,y = 3.
2. Set x = 1,y = 3 and then differentiate f with respect to x.
3. Set z = 1 and then differentiate f with respect to z.
4. Set y = 3 and then differentiate f with respect to z.

Solution
The first option is acceptable and is the usual approach.

The second and third options would result in an answer of zero: we
should differentiate with respect to the prescribed variable, x, and then

set the variable equal to its value.

The fourth option is acceptable, because variables other than the one
that we are differentiating are treated as constants.
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Recall: Definition of Limit

Evaluating limits along paths will not show that a given limit exists. To
show that a limit exists, we can use its formal definition.

The limit of f(x,y) as (x,y) approach (a,b) is L if for every number
€ > 0, there is a corresponding § > 0 such that

|f(z,y) — L| <e when 0 < \/(z —a)2+ (y—b)2 <6

In other words, the distance between f and L can be made arbitrarily
small by making the distance from (x,y) to (a,b) sufficiently small.
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Epsilon Delta Definition of Limit

Use the definition of limit to show that the following exists and is equal
to 0.

lim  f(z,y) = im Ty
(z,4)—(0,0) (z,y)—(0,0) T2 + 1

Solution
To apply the definition of limit, we start with | f(z,y) — L|, and work
towards an expression that involves \/(z — a)2 + (y — b)2. We know are
given that the limit is equal to zero, so we can use L = 0. We also know
that the limit point is (0,0), so we can also use a = b = 0.

Tty

’f(m’y)_L‘ - ’x2+1
_ =ty
2% +1]
<zl
- 1
= |z +yl
< l|z|+ |y| by the triangle inequality

_0‘

because 22 +1 > 1
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Epsilon Delta Definition of Limit

[ F@) = L] < Jal + 1y
:’/1'2+ /y2
< Va2 2+ Va+ 2

= 2v/2? + y?

This result suggests that we choose § = ¢/2. By choosing § = ¢/2, and
letting 0 < /22 + y2 < §, we obtain

|f(z,y) — L] <2va? +y? <20 =2(e/2) =€

Thus, given any ¢, choosing 6 = €/2, and 0 < /22 + y2 < § = €/2, we
can guarantee that |f(z,y) — L| <e.

Therefore, the limit exists and is equal to 0.
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Group Work Activities

Solve the following in groups of 3 to 5 students.
1. Evaluate the following limit, or show that it does not exist.
2,2 .2
lim r-y — =
(2,y,2)—(0,0,0) 2 + Y2 + 22
2. Evaluate the following limit, or show that it does not exist.
. ry
lim ———.
(@,9)—(0,0) 72 + y?
3. Calculate du/dt given that u = 22 — y?,  =t? — 1, and
y = 3sin(xt). Simplification is not necessary.
4. The radius of a cylinder is decreasing at a rate of 2 cm/s while its

height is increasing at a rate of 3 cm/s. At what rate is the volume
changing when the radius is 10 cm and the height is 100 cm?

5. Create a function, f(z,y), that satisfies the following

0f@.y) _ oy ana 2 @0)
) ay

_.3
ox =yt
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Question 1: Limits

Evaluate, or show that the following limit does not exist.
lim 2?2 —y? — 2?2
(2,y,2)—(0,0,0) 2 + y2 + 22

Solution
Along the z-axis, y = z = 0, and the limit becomes

lim 22-0-0
(€,y,2)— (000)x2+0+0

Along the y-axis, x = z = 0, and the limit becomes

. 0—192 -0
lim —_—
(a:yz)%(OOO)O‘f'y +0

Depending on which path we approach the limit point, we arrive at
different values. Therefore the limit does not exist (DNE).
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Question 2: Limits

Evaluate, or show that the following limit does not exist.
. Ty
hm —.
(2,9)—(0,0) 22 + 2

Solution
Along the line y = ma, the limit becomes

rmax me m

i —_— = i = .
(z,y)lgl(o,o) 22 4+ m2x2 (z,y)lin(o,o) 22(14+m2) 14 m?

Depending on which path we approach the limit point, we arrive at
different values. Therefore the limit does not exist (DNE).
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Question 3: The Chain Rule

Calculate du/dt given that u = 22 — y?, x =2 — 1, and y = 3sin(7t).
Simplification is not necessary.

Solution
We can approach this in two different ways. We can use the chain rule,
as follows.
ou_oudr  oudy
ot Oz dt Oydt
=2z - 2t + (—2y) (37 cos(mt))
= 4t(t? — 1) — 6sin(rt) - 37 cos(7t)

An also substitute our known values for x and y first, and then
differentiate.

%= D) = (2 -1 - Bsin(r)))

= 2(t* — 1)(2t) — 67 sin(nt) - 3 cos(nt)
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Question 4: The Chain Rule

The radius of a cylinder is decreasing at a rate of 2 cm/s while its height
is increasing at a rate of 3 cm/s. At what rate is the volume changing
when the radius is 10 cm and the height is 100 cm?

Solution

V =7R*H
OV _OVdR oV dH
ot  OR dt OH dt
O(rR?H) O(rR*H)
= (24—
ar At =5y (3)
=27RH(-2) + (7R?)(3)

= —47RH + 37 R?
When R = 10 and H = 100, we have

oV
2L = —4x-10- 100 + 37(10)% = —40007 + 3007 = —37007.

ot
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Question 5: Partial Derivatives

Create a function, f(z,y), that satisfies the following

of (x, of (z,
flz,y) — 224y, and fz,y) Pt
ox dy
Solution
A function whose derivative with respect to x is 2% + y is
$3

[ =% +zy+C(y), where C is some function of y. Differentiating with

respect to y gives us f, = 0+ + C'(y). Thus, by comparison, C’ = 33,
and C' = %. Thus

3 3 4

_ _ T v
[z, y) = 3 +xy + C(y) 5 tayt
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Recitation 11

R11 Topics
14.5 The Gradient

R11 Learning Objectives
By the end of today’s session you should be able to do the following.

» Compute gradients and directional derivatives.

> Provide geometric interpretations of gradients and directional
derivatives.

» Describe the relationship between gradients and level curves.

While We're Waiting to Start

Consider f(z,y) = y?e?®.
1. Find the direction of steepest ascent at P(0,1) and at Q(0, —1).
2. Sketch the level curves of f, and the gradient vectors at P and Q.
3. Find the rate at which f is increasing in the direction @ = i — j at P.
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The Gradient and Directional Derivative

Consider f(z,y) = y?e*®
1. Find the direction of steepest ascent at P(0,1) and at Q(0, —1).
2. Sketch the level curves of f, and the gradient vectors at P and Q.
3. Find the rate at which f is increasing in the direction @ = i — j at P.

Solution
The direction of steepest ascent at any point is given by the gradient.

B f 2y262z
Vf - |: f 2y62x
The direction of steepest ascent at P and Q are:

V(0,1) = [ 5 } Vf(0,-1)= [ _9 }

The level curves are obtained by setting f(z,y) = C, where C' is a value
in the range of f. C' = y?e~2* implies y = +v/Ce~*. We will plot the
curves on the next slide.
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The Gradient and Directional Derivative

The gradient vectors at points
P(0,1) and Q(0,—1) should be
perpendicular to the level curves
(apologies for the rough
drawing).

The rate at which f(z,y) is increasing at P in the direction @ =i — j is
given by the dot product:

st [ ]3] [ ] -2

Thus, the rate of change of f in the direction of 4 is zero. Vector u
points in the direction of a level curve of f(z,y).
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Wolfram Alpha’s Plots

Input

soyte

3D plot

5 10 -05 00 05 10 15

.
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of f(z,y)

In case it helps see what is going
on, to the left are plots of our
function, y2e*, that
WolframAlpha produces.

Notice that the contour plot
gives a set of level curves.



Level Curves

If C'is in the of f(x,y), then the curve C' = f(z,y)
is a level curve of f(xz,y). For functions of two variables, we can think
of level curves as curves of constant height (analogous to topographic
maps, that have curves of constant elevation).

In other words, a level curve is an intersection between f(z,y) and the
plane z = C. Level curves are a useful view of the overall behavior of a
function.

Banaba Island image under a CCBY2.0 license, available from https://www.flickr.com/photos/evsmap
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Level Curves and the Gradient

This following helps explain why the gradient is L to level curves.

Let C = g(x,y) be a level curve of g(z,y). Show that Vg is always
perpendicular to the level curve.

Solution

Let 7(t) be a parameterization of the curve g(x,y) = C. A vector that is
parallel to the curve at any ¢ is ¥(t) = 7 (t). We will show that the
gradient is perpendicular to ¥(t) for all ¢t.

Because of our parameterization, C' = g(x,y) = g(z(t), y(t)), and by the

chain rule,
dg ~ Ogdxr Odgdy | g, dx/dt | o
at 0% vt Tayar | g || dyjae | TV90

Thus, the gradient is always perpendicular to the level curve C = g(z,y).
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A Conceptual Question: The Gradient

At which point does the gradient vector have the largest magnitude?
Draw the gradient at this point.

e

Solution
The magnitude of the gradient is [V f| = |/ f2 + f2. At (6, —2), the

contour lines are most closely packed: f is changing most rapidly at that
point. The gradient points in the direction of steepest ascent and is
perpendicular to the level curve at (6, —2), so V f points to the right.
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Find the directional derivative of f = z1n(x/y) at (1,1,2) towards
the point (2,2, 1) and provide a geometric interpretation of your
answer.

2. For z = 3zy — x> — >, find the points where the gradient vector,
Vz(z,y), is the zero vector. Provide a geometric interpretation of
your answer.

3. Suppose F = Vf(z,y) = (2z + siny)i + (zcos(y) — 2y)j. Find
fz,y).
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Question 1: A Directional Derivative

Find the directional derivative of f = zIn(z/y) at (1,1,2) towards the
point (2,2,1). Provide a geometric interpretation of your answer.
Solution

For clarity, I'm writing out more steps than are needed. We're using the
Chain Rule a few times in this problem.

Vf= é%(zln(ar/y))i + a%/(zln(a:/y))j + %(zln(x/y))l%

= s Wg)i + 2 Infe /)] + e/9) 5 ()

1 9 .19 . )
_ 10 .10 o
v 5y (&/Y)i+ 2Ty 0y (x/y)J + In(z/y)k
=2 St n(a/y)k
T Yy
Vf(1,1,2) = 2i —2j + 0k

On the next slide we will find the directional derivative and provide a
geometric interpretation.
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Question 1: A Directional Derivative (Continued)

Let the vector pointing from (1,1,2) to (2,2,1) be @. The desired
directional derivative is the dot product Vf - 4.

2 2-1 2 1
VFL1,2)-d=| -2 | -|2-1|=|-=2|-| 1 |=0
0 1-2 0 ~1

Therefore, the directional derivative, at the point (1,1,2), in the
direction pointing towards (2,2, 1), is zero. Geometrically, this means
that the value of the function f is not changing in the specified direction.
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Question 2: Zero Gradient

For z = 3zy — 23 — 2, find the points where the gradient vector,
Vz(z,y), is the zero vector. Provide a geometric interpretation of your
answer.

Solution
o) 2
|l a2 | | 3y—3z
Vz= { 6@:2' } o [ 3z — 3y? }
The gradient vector has zero magnitude when

0= 3y — 322
0 = 3z — 3y°

Rearranging these equations yields the two curves y = 22 and z = 2.
These curves intersect at two points, (0,0), and (1,1). Geometrically,
these points correspond to points where the function z(z,y) is flat. In
other words, where its tangent plane is horizontal. These points could
also indicate local minima/maxima.
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Question 3: Constructing a Function From its Gradient
Suppose F = Vf(z,y) = (22 +siny)i + (x cos(y) — 2y)j. Find f(z,y).

Solution

A function whose derivative with respect to x is 2z + siny is
f=a%+xsiny + C(y), where C is some function of y. Differentiating
with respect to y gives us fy, =0+ zcosy + C’'(y). Thus, by
comparison, C' = —2y, and C = —y?. Thus

f(z,y) = 2® + zsiny + C(y) = 2% + zsiny — >
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Recitation 12

R12 Topics
14.6 Tangent Planes and Differentials
14.7 Absolute Min/Max

R12 Learning Objectives
By the end of today’s session you should be able to do the following.

» Find equations of tangent planes and normal lines of surfaces.
» Apply tangent planes and differentials to make approximations.

> Locate and classify critical points of surfaces.

Example 1
Consider the surface z2 + 4% = 22.

1. Find the equation of the tangent plane at P(3,2,5).

2. Find the equation of the normal line at P, and identify where the
normal line intersects the xy-plane.

3. Sketch the surface and the normal line.

Recitation 12, Slide 1



Example 1: Part 1

Consider the surface 22 + 4y? = z2. Find the equation of the tangent
plane at P(3,2,5).

Solution

The surface may be represented by the function

f(x,y,2) =22+ y* — 22. A normal vector at any point on the surface is
given by the gradient V f(z,y, 2).

3@ 2 6
Vf(z,y,z)= aif =| 8y = Vf(3,25) =] 16
%f —2z —10

The equation for the tangent plane is the dot product between a normal
vector and a vector in the tangent plane.

-3
0=Vf(3,2,5)- | y—2 | =6(xr—3)+16(y —2) —10(z — 5)
zZ—95

This simplifies to 3z + 8y — 5z = 0.
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Example 1: Part 2

Consider the surface 22 + 4y? = 22. Find the equation of the normal line
at P(3,2,5), and identify where the normal line intersects the xy-plane.

Solution

Recall that the scalar parametric equations for a line are given by
7(t) =70 + d_;f where 77 is a point on the line, d is a direction vector.
But V[ is parallel to the normal line. So the normal line is given by

3 3t
F=fo+Vit=|2 |+ | 8t
5 —5t

If you prefer, we could also write the normal line as:
r=3+4+3t, y=24+8, z=5-—05t
The line intersects the xy-plane when z = 0, or when ¢ = 1. Substituting

t =1 into the above equations yields the point (6,10, 0).
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Example 1: Part 3

Consider the surface 22 + 4y? = 22. Sketch the surface and the normal
line.

Solution
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Tangent Planes and Differentials (14.6)

For a function of one variable, y(z), we define the differential dy as

dy
—d
dx s

dy =
where dy is the change in height of the tangent line.

For a function of two variables, z(z,y), we define the differential dz as
dz=____ |
where dz is the change in height of the .|

The equation of the tangent plane to z = z(z,y) at the point 7 is

The vector ¥ — 7 is a vector in the tangent plane.
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A Quick Calculation: Tangent Plane Approximation

Suppose z;(3,4) =5, zy(3,4) = —2, and 2(3,4) = 6. Assuming the
function z is differentiable, what is the best estimate for z(3.1,3.9) using
this information?

1. 6.3

2.9

3.6

4. 6.7
Solution
The correct answer is 6.7.
Since we are moving .1 units in the x direction, the function increases
from 6 to approximately 6 + .1 x5 = 6.5. By similar reasoning, when we

move in the y direction, the height is approximately
6.5+ (—.1)(=2) =6.7.
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Estimating Change in Volume

Estimate, using the tangent plane approximation, the change in volume
of a cylinder if its height is changed from 12.0 to 12.2 cm and the radius
is changed from 8.0 to 7.7 cm. How much does the volume actually
change?

Solution
Using V =mR?H, R=8, H =12, dR = —0.3, dH = 0.2, we obtain

ov ov
dv = @dR + a—HdH

= (2nRH)dR + (7R*)dH

= 27(8)(12)(—0.3) + 7(8)%(0.2)
= —44.87

~ —140.74

The estimate gives us a decrease in volume of about 140.74 cm3. The
actual change in volume is V(12.2,7.7) — V(12, 8) which, plugging
everything into a calculator, is roughly 140.31 cm?.
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Second Derivative Test (14.7)
Suppose f has continuous 2"¢ order partial derivatives around some
point P(xg,y0), and that V f(xo,y0) = 0. Let

_ ey ( 0f )2
— 0z2 Oy? Oxdy

If D =0, then
If D <0, then P is a saddle pomt
If D >0, then P is a maximum if f,, < 0 and a minimum if f,, > 0.
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Optimization

Find the critical points of f(z,y) = y + zsin(y) and determine whether
they correspond to local or absolute minimums or maximums of f(z,y).

Solution
The critical points are points where V f = 0.

0=V/f(z,y) =sinyi+ (14 zcosy))

But siny = 0 implies that y = N7, where N is any integer. But
cos(Nw) = (—=1)", so z = £1. The stationary points are located at the
points (—1,27N) and at (1,27(N +1)).

To determine whether these points correspond to local min/max, we use
the second derivatives test.

D = foxfyy — iy =0- (cos(Nw))2 =-1<0

All of the critical points correspond to saddle points. A plot of the
surface, shown on the next slide, helps us see that this is the case.
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Surface Plot of f(z,y) =y + xsin(y)

Solution

Notice how there are no local |_plty +xsiny)
min/max at the points = e E
(=1,27N), (1,27(N +1)).

Input interpretation:

In fact, the function has no local plot | y+xsin(y)

min/max values at all.
30 plot:
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Group Work Activities

Solve the following in groups of 3 to 5 students.

1. Consider the function f(x,y) = 3zy — 2® — y3.
1.1 Find the points where the gradient vector, V f(z,y), is the zero
vector.
1.2 Find the points where the tangent plane is horizontal.
1.3 Find the critical points of f(z,y). Classify these points as min, max,
or saddle points.

2. Find an equation of the tangent plane and normal line to
z = (2% +y?)? at P(1,1,4).
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Question 1.1: Zero Gradient

For f = 3zy — 23 — 4>, find the points where the gradient vector,
V f(x,y), is the zero vector.

Solution
Note: this question was explored in the previous recitation.

[ 3y —3a?
VI= { 3x—3y2]

The gradient vector has zero magnitude when

0 = 3y — 322
0 = 3z — 3y°

Rearranging these equations yields the two curves y = 22 and x = 2.
These curves intersect at two points, (0,0), and (1,1). These are the
only two points where the gradient is zero.
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Questions 1.2 and 1.3

Consider the function f(z,y) = 3zy — 2> — y®. Find the points where
the tangent plane is horizontal. Find the critical points of f(x,y).
Classify these points as min, max, or saddle points.

Solution
The tangent plane is horizontal at points where Vz(z,y) is the zero
vector. We found these points to be (0,0), and (1,1).

These two points (0,0), and (1, 1) could also indicate local
minima/maxima. We use the second derivative test to tell us if they are.

D = foafyy = fay = (92)(9y) — (3)(3) = 8lay — 9

At (0,0), D is negative, so we have a saddle at (0,0).
At (1,1), D is positive, so we have a local maximum at (1,1) because
fzz is also positive.
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Question 2

Find an equation of the tangent plane and normal line to z = (22 + y?)?
at P(1,1,4).

Solution

Set f(x,y,2) = (22 +9?)? — 2.

%f 4a(z? + y?) 8
Vi@yz)=| 5f | =| w@®+y?) | > Vf(1,1,4) =] 8
9y 1 1

Thus, the tangent plane is given by 8(z — 1) + 8(y — 1) — (z — 4) =0,
which simplifies to 8x + 8y — z = 12. The normal line is given by the
parametric equations

r=1+4+8t, y=1+8, z=4-t.
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Recitation 13

R13 Topics
GRA2, Quiz 2 Review

Quiz 2 Covers These Topics

13.6 Velocity and Acceleration in Polar Coordinates
14.2 Limits and Continuity

14.3 Partial Derivatives

14.4 The Chain Rule

14.5 Directional Derivatives, the Gradient

14.6 Tangent Planes, Differentials

14.7 Absolute Max/Min

Office Hours
I'll hold the usual additional office hours and drop-in session (same times and
URLs as last quiz).

While We’re Waiting to Start

Find the dimensions of a rectangular box of maximum volume such that the
sum of its 12 lengths is a constant L.
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Dimensions of a Rectangular Box

Find the dimensions of a rectangular box of maximum volume such that the
sum of its 12 lengths is a constant L.

Solution
Letting the dimensions be a, b, and ¢, then V' = abc. To incorporate the length
constraint, we will eliminate ¢ by using 4a +4b+4c= L, orc=L/4 —a —b.
The volume is

V = abc = ab(L/4 — a — b) = abL/4 — a*b — ab®

Vo =0bL/4—2ab—b"=0=2a+b=L/4

Vi =aL/4—a® —2ab=0=2b+a=L/4
Solving these two questions yields a = b = L/12. Not surprisingly, ¢ = L/12.

From the geometrical nature of this problem, this critical point corresponds to
a maximum.

Thus, the rectangular box is a cube with sides of length L/12.

Note that another approach to this problem would be to use Lagrange
Multipliers, but we haven’t explored that method yet in our course.
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Quiz 2

Quiz 2 Learning Objectives
For Quiz 2, you should be able to do the following.

>

Determine whether or not limits of functions of several variables exist by
evaluating the limit along paths or by using the formal definition of limit.

Compute partial derivatives of multi-variable functions using the chain rule.
Compute gradients and directional derivatives.

Provide geometric interpretations of gradients and directional derivatives.

Describe the relationship between gradients and level curves and surfaces.

Apply the gradient to find equations of tangent planes, normal lines and
tangent lines of surfaces.

Apply tangent planes and differentials to make approximations.

Locate and classify critical points of surfaces.
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Graded Recitation Activity 2

Instructions

» Every student in your group needs to write their name or initials on the
board.

> You have 20 minutes to answer the questions below.

> For full marks, show at least two intermediate steps for each question.
» Answer each question on a different slide.

> All students in the same group receive the same grade.

> Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

Question 1 (3 points)
Consider the surface mQyz +xy — y2z2 = —927.

1. Find an equation of the tangent plane to the surface at the point (1,3,2).
2. Find a parameterization of the normal line at the point (1, 3,2).

Question 2 (2 points)
Consider the surface z = 3y — z?y*. Find a normal vector to z at (2,1, 4).
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GRA2, Question 1 Part 1

Consider the surface z2yz + 2y — y?2? = —27. Find an equation of the
tangent plane to the surface at the point (1, 3,2).

Solution
Let F(xz,y,2) = ?yz + zy — y?2°. A vector that is perpendicular to this
surface at any point is VF.

%F 2zyz +y 15
VF(z,y,2)=| 5 F | = 22z 4+ x — 2y2? = VF(1,3,2)=| -21
iF 2’y — 2%z —33

We now have a vector that is normal to the surface at (1,3,2). The dot
product between this vector, and any vector in the plane, is going to be zero.

rz—1 15 r—1
0=VF(1,3,2)- | y—=3 | =| -21 |-| y—3
z—2 —-33 z—2

Thus, the tangent plane is given by 15(z — 1) — 21(y — 3) — 33(z — 2) =0,
which simplifies to 15z — 21y — 33z = —114.
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GRA2, Question 1 Part 2

Consider the surface zyz + 2y — y?2® = —27. Find a parameterization of the
normal line at the point (1, 3, 2).

Solution
The normal line is given by the parametric equations

z=1+15t, y=3—21t, 2=2— 33t
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GRA2, Question 2

Consider the surface z = 3y — z?y*. Find a normal vector to z at (2,1, 4).

Solution

Let F(z,y,2) = 2y — #?y® — 2. Then the surface z has a normal vector given
by the gradient VF'.

B%F 3y — 2xy>
VF(z,y,z) = (f F | = x> — 222y

éIF -1

oz

3(2)%(1) — 2(2)(1)? 8
VF(2,1,4) = 23 —2(2)2(1) =] 0

A vector that is normal to the surface is [8,0, —1]. Another normal vector is
[—8,0,1].
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Tangent Line

Find an equation for the tangent line to the curve of intersection of the
surfaces z = 2% + ¢ and 4% +¢y* + 2% =9 at (—1,1,2).

Solution

Let f =z —2? —y? and g = 42 + 3° + 2% — 9. Then the tangent line is
perpendicular to both V f and Vg. Vector ¥ = V f x Vg is parallel to the
desired tangent line (the textbook explains why in Section 14.6).

—2x 2
Viy,2z)=| -2y |, Vf(-1,1,2)=| -2
1 1
8 -8
Vy(z,y,z)=| 2y |, Vg(-1,1,2)=] 2
2z 4
i ik —-10
Vf(-1,1,2) x Vg(-1,1,2) =| 2 -2 1 |=| 16
-8 2 4 12

Parametric vector equations for the tangent line at (—1,1,2) are

r=-1-10t, y=1—16t, 2z=2— 12t
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Absolute Max/Min

Find the absolute maximum and minimum of the function
f(z,y) = 4ay® — x*y® — 2> in the closed triangle bounded by the lines 2 = 0,
y=0and y=6—x.

Solution
We will first consider the boundaries of the triangular region, and then
investigate the interior.

The Boundaries of the Triangular Region
There are three boundaries we must consider.
» Everywhere along x = 0, f(0,y) = 0.
» Everywhere along y =0, f(z,0) = 0.
» Along y = 6 — x, and f(z,6 — ) = —2x(x — 6)>. Taking the derivative
and setting the result to zero gives us
0= fu(zx,6 —x) = —6(2* — 8z +12) = —6(x — 2)(x — 6). This suggests
that z = 2 and = = 6 could be min/max, so we can evaluate f at these
points f(2,4) = —64, and f(6,0) = 0.

On the next slide, we will look at the interior of the region.
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Absolute Max/Min

The Interior of the Region

» = 4y? — 22y — ¢y = 0 implies that either y =0 or y =4 — 2z. But y =0
is not in the interior (it is along the boundary, which we've already looked at).
fy = 8xy — 222y — 3xy® = 0 implies that either y = 0 or 8z — 22% — 32y = 0.
By substitution,

0 =8z — 2% — 3zy = 8z — 22° — 3x(4 — 2z) = da(x — 1)

Thus, x =0 or x = 1. Again, x = 0 is not in the interior of our region. When
x=1,y=4—2(1) = 2. So for the interior, we need only consider the point
(1,2), and f(1,2) =4

Putting everything together, we have:

f(0,y)=0
F(z,0)=0
£(2,4) = —64
f(1,2) =4

The absolute maximum is f(1,2) = 4 and the absolute minimum is
£(2,4) = —64.
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Recitation 15

R15 Topics
14.8 Lagrange Multipliers (LM)

R15 Learning Objectives

» Solve constrained optimization problems using LM.

» Compare LM to other approaches that solve constriained optimization
problems.

While We’re Waiting to Start
A wire in the shape of a circle of radius 1 has temperature T'(x,y) = zy.

1. Sketch the level curves of T'.

2. Based on your sketch, where are VT', and the normal vector to the wire,
parallel?

3. Find the hottest and coldest points on the wire using LM.

4. Describe another method of finding the hottest and coldest points, and
why it may not work in more complex situations.
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Constrained Temperature Optimization

A wire in the shape of a circle of radius 1 has a temperature of T'(z,y) = zy.
1. Sketch the level curves of T
2. Based on your sketch, where are VT', and the normal vector to the wire,
parallel?
Solution
The level curves have the form C' = zy, or y = C/xz, for constant C. The plot
below shows the level curves for positive temperatures in red, negative in blue,

and the wire in black. The four points where VT looks parallel to Vg are also
shown.

It would seem from our sketch that
the hottest points occur at the
points (1/v/2,1/+/2) and
(=1/v/2,—1/+/2), and the coldest
points occur at (—1/v/2,1/4/2) and
(1/v/2,—1//2). It is at these
points that V1" seems to be parallel
to Vg, where g(z,y) = z? + > — 4.
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Constrained Temperature Optimization

A wire in the shape of a circle of radius 1 has a temperature of T'(z,y) = zy.
Find the hottest and coldest points on the wire using LM.

Solution

Let the constraint be g(z,y) = 2> + 3% — 1 = 0. The coldest and warmest
points correspond to where the two gradients are parallel: VI' = AVg. The
constant A is an unknown parameter. Calculating the gradients gives us:

y | | Az
z | | A2y
Substitution yields y = 2X(2\y) = 4%y, which has the solutions y = 0 or

A==1/2. If y =0, then z = 0, which is not a point on the wire. Thus, A
must be £1/2, which means y = tz.

The constraint 2% + y? = 1 implies we have four solutions, (1/v/2,1/+/2),
(“UVE,~1/V3), (173, ~1/¥3), and (~1/3/3, 1/v/3).

Since T is positive in the first and third quadrants and negative in the other
two, the first two points are the warmest points, and the other two are the
coldest points on the wire.
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Constrained Temperature Optimization

Describe another method of locating the hottest and coldest points, and why it
may not work in more complex situations.

Parametric Representations

The constraint is specified by the unit circle, so we can identify a parametric
representation of the constraint curve, with z(¢) = cost, y(¢t) = sin¢. Then
g = 0 is satisfied, and T'(z,y) = T(x(t), y(t)). We can find the warmest and
coldest points by solving 0 = 7' = < (costsint). This approach works for
the given problem. But for more complicated constraints, g(x,y), it may not
be possible to find a parametric representation.

Cross Product of the Gradients
The cross product of two parallel vectors is the zero vector. Knowing that we
need points where V1" and Vg are parallel, we can instead solve

ik ) )
O=|Te T, 0 |=(Togy—Tygo)k = (y* —2°)k
9z gy O

The rest of the solution is straightforward. This method is efficient because we
have functions of two variables and did not need to introduce A. But if we had
functions of 3 variables, the resulting algebra could be tedious.
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A Definition of the Method of LM

If point (z0,y0,20) —a function f(z,y, z), subject to
g(z,y,2) =0, then Vf and Vg are parallel at (xo,yo, 20), and there exists a
constant A, such that

V f(zo0, Y0, 20) = AVg(zo, Yo, 20)

The scalar A is called a Lagrange multiplier.

Note also that the above definition applies to when there is only one constraint,
g- Your textbook also describes an approach for when there are two constraints:
if we wish to minimize/maximize f subject to g and to h, then we solve

Vf=AVg+uVh

In this case, we have two Lagrange multipliers, A and p.

Solution
minimizes or maximizes
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Test Your Understanding of LM

Where is the absolute maximum value of f(z,y) = x + y, subject to zy = 9,
located?

1. (3,3)

2. (3,3) and (-3,-3)

3. (3,3), (-3,3), (3,-3), and (-3,-3)

4. There is no absolute maximum value.

Solution
There is no absolute maximum value of f subject to the given constraint. If we
were to use LM, we would solve V f = AVg, along with xy = 9. Calculating

the gradients gives us
1 Yy
L)

If 1 = Ay, then A # 0. And if Az = Ay, then we can divide by A to obtain
xz =1y. Thus,

=9 = =9 = gz=43.

Thus, we have two points where the gradients are parallel, (3,3) and (-3, —3).
But we need to find the absolute maximum of f(z,y). This problem is
continued on the next slide.
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Test Your Understanding of LM (Continued)

We have two points where the gradients are parallel, at (3,3) and (-3, —3).
But what do these points correspond to? Are they local minima? Local
maxima?

Maximizing f(z,y) along the curve zy =9
implies that we are interested in values of f
along y = 9/x. Along this curve, our
function becomes f = z + 9/z, shown to the
right. This function has critical points at i 0 0
x =3 and at z = —3. We can also see that
(—3, —3) corresponds to a local maximum,
and (3, 3) corresponds to a local minimum.

But there is no absolute maximum, because f — oo as z — oo along the curve
ry = 9.

Conclusion: LM only gives us points where gradients are parallel. Extra work is
needed to determine if these points are local/absolute min/max.
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Group Work Activities

Solve the following in groups of 3 to 5 students.
1. Find the distance from the point P(0, 1) to the curve z? = 4y.

2. The volume of a cylindrical tank with hemispherical ends must be 100
cubic meters. What dimensions of the tank minimizes its surface area?
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Distance From a Point to a Curve
1) Find the minimum distance from the point P(0,1) to the curve x® = 4y.
Solution

We can minimize the square of the distance, d(z,y) = x? + (y — 1), subject
to the constraint curve g(z,y) = z® — 4y = 0.

Vi) = |yt | Vo= | 2]

The minimum must occur where Vd is parallel to Vg. We can proceed by
either solving Vd = AVg, or by using a cross product.

Solve Using Vd = AVg
We must solve the equations

2x = 2z
2(y — 1) = —4x

The first equation implies that either z = 0 or A = 1. If z = 0, then from our
constraint curve, y = 0. If A =1, then y = —1 but y can’t be negative
(because z° = 4y). We therefore have the point (0,0). And d(0,0) = 1.
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Distance From a Point to a Curve

Alternate Solution: Cross Product
The cross product of parallel vectors is zero, and we are looking for points
where two vectors are parallel. We can also use a cross product to solve this

problem.

2z 2z
0= 2w—1) | x| —4
0 0

i ki k

=|2zx 2y-1) 0

2z —4 0
= (78m74az(y7 1))k

= (—4az — day)k

Thus, —4x — 4zy = 0, or z(y + 1) = 0. As before, y can’t be negative, so
2 = 0. And since 2* = 4y, = y = 0. The distance is d(0,0) = 1.
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Minimizing Surface Area of a Tank

2) The volume of a cylindrical tank with hemispherical ends must be 100 cubic
meters. What dimensions of the tank minimizes its surface area?

Solution

We want to minimize S = 47R? + 27 RL, subject to

V= %ﬂ‘RS + mR?L = 100. We could substitute one expression into the other
to obtain a function of one variable which we can minimize, or we can use LM.
To use LM, we set g = g(R, L) = 37R® + 7R’L — 100. Then VS = AVyg
yields

VS = AVV
8tR+2rL | _ | 47R* + 2 RL
2R - TR?
Thus, A =2/R, and
87R+ 27L = (2/R)(47R> + 27 RL)
4R+ L =4R +2L

1/3

Thus, L = 0, the volume constraint gives R = (75/7) and

S = 4n(75/7)%/3.
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Recitation 16

R16 Topics

14.8 Lagrange Multipliers

14.9 Taylor's Formula for Two Variables

14.10 Partial Derivatives with Constrained Variables

R16 Learning Objectives
» Derive the least squares equations to fit the plane Az + By + C to a set
of given points (14.8).
» Calculate a cubic approximation to a function of two variables at a
specified point (14.9).
> Apply the chain rule to compute partial derivatives with intermediate
variables (14.10).

While We’re Waiting to Start
Let L = f(U,V,S), and S = 3UV. Calculate or derive expressions for the
following derivatives.

N (), B o
oL oL
9 (5v), D) (W)S,U
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The Chain Rule with Intermediate Variables, Parts A and B

Let L = f(U,V,S), and S = 3UV. Calculate or derive expressions for the
following derivatives.

oS ds
A (7) B) 2
) oV /u ) dVv
Solution
A) The notation (3—5) implies that V and U are independent variables, and
U

that S is a dependent variable. Using S = 3UV, we obtain

v
B) The derivative dS/dV implies that S is a dependent variable, and V' is an
independent variable. U is not identified as either an independent or as a

dependent variable, and so we must assume that U is an intermediate variable
(U could be a function of V). Using the equation S = 3UV, we obtain

s _ d
dv — dV

(8S)U - %(wv) —3U

3UV) = SV% +3U =3VU' +3U
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The Chain Rule with Intermediate Variables, Parts C and D

Let L = f(U,V,S), and S = 3UV. Calculate or derive expressions for the
following derivatives.

o (5v), D (50
Solution

C) V and U are identified as independent variables. S is an intermediate
variable and could be a function of V, so

oL\  Of . 0f S
(5v).

ov/)u oV ' 8Sov
_9f _of
=av T a5V

D) V, U, and S are independent variables, so

(o) o
oV/su OV
If you want to check your results for parts C and D, it may help to substitute a

function for f(U,V, S) and see what happens, such as f = 4U?V S. It may
also help to use more familiar variables, so that S = 3zy and L = f(z,y, 2).
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Taylor Approximation (14.9)

Calculate the cubic approximation to f(z,y) = 4z cos(y) near the origin.
Complete this question in group work. Note: this was a pop quiz in 2014.
Solution (below is a screen capture of my notes from 2014)

L‘ET C:C”Slﬁjg: KMj
Find the cubic approximation of f(x, y) = 4x cos(y) near the origin.
Delh\m‘mi_ t\mwaﬂ KT
£ = kc t ]
- -% 0] s
" . " o) e *\fnf&w B
‘fw - O O “\,S‘ ) 0 -}3&\:\
4)(‘,) = =45 £ 5™
\»'\
I"? :-Uxc | \ K%
fex = O e
£ xy = O ] O
'(1\1‘:’ Sle \P P-L‘—
= Yxs ., O
am ae
T 3
520+ (qwog + 5ot *0*7*0»6) + Bﬁ (oxi}o;ﬁ—jvw %Ouﬂ
= ¥ = 2xy”
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Approximation Error (14.9)

Use your results from the previous problem to find the quadratic approximation
to f(z,y) = 4x cos(y) near the origin. Then estimate the error in the
approximation if || < 0.5 and |y| < 0.1.

Solution

Taylor’s formula for a quadratic approximation is

f(z,y) = £(0,0) + (zfs + yfy) + %(w2fzz + 2y foy + y2fyy)

Using our results from the previous problem, our quadratic approximation is
f = 4x. The maximum error of this approximation is given by the next term in
the expansion, which is

1 p
|E(z,y)| < ’g(x;}frm + 3$2?mey + 3xy2fmyy + ydfyyy)

1

= 5’(.%3 S0+ 32%y -0+ 3zy” - (—4) +9° 0)‘
1

= 5| (12097 = 2laly®.

Therefore, the desired error estimate is

|E(0.5,0.1)] < 2(0.5)(0.1)* = 0.01.
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Least Squares (14.8)

The plane z = Az + By + C is to be fitted to a given set of points,
(Zn, Yn, 2n). Derive the linear system of equations that, when solved, minimizes

N
= Z(A:cn + Byn + C — z,)%.
n=1

Solution

We must find an expression that, given a set of data points, returns the values
of A, B, and C that minimizes E. To minimize E, we take the derivatives of
E with respect to the independent variables A, B, and C, and set these 3
equations to zero. In doing so, we can treat ., yn, and z, as constants.

0= 95 _ 2

N
oA —AZ (Azn + Byn + C = z)"

N

2l

But 3 (A:cn + Byn + C — z,,) = xn, because ﬂ(Byn +C —2z,)=0.

Remember that we are treating x,, yn, and z, as constants.
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Least Squares (continued)
We will also divide both sides of the equation by 2 to obtain the following.

9

aA(Al'n"_Byn"_C_Zn)

N
0:—:22(142:”+Byn+0—zn)
n=1

N
= QZ(Amn + By, + C — zn)zn

1\771 1 N N N
= Axpxn + Z Bypxn + C Z Ty — Z ZnTn
N n:lN n=1N njvl n=1
Zznxn = AZ(xn)2 + BZynxn + C’an
n=1 n=1 n=1 n=1
N N N A
[ L@ Tow S|l B
n=1 n=1 n=1 C

In the last step above we expressed our sum as a vector product. A similar
process for the derivatives Ep and E¢ yields equations on the next slide.
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Least Squares (continued)

Calculating the partial derivative Ep and setting it equal to zero gives us

N N N , X A
Z ZnYn = |: Z TnYn Z (yn) Z Yn :| B
el n=1 n=1 n=1 C

Likewise, Ec = 0 gives us the following.

N N N N A
}:zn=[2xn > 21} B
n=1 n=1 n=1 C

n=1

N
Note that Y 1 = N. Putting our three vector product equations together

n=1
gives us the linear system of equations that we were asked to find.
> ZnTn S(@n)? S Tuyn D Tn A
> ZnYn = | X TnYn Z(yn)2 2 Un B

> %n Yrn o Dyn N C
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Recitation 17

R17 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R17 Learning Objectives

» Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

» Change the order of integration of a double integral (Cartesian
coordinates).

Today’s Questions
Sketch the region bounded by the given curves and construct a double integral
that represents its area.

a) y =z, y=2"
b)z=5—-y,z=2y—1,y=1.
) y=x—6, y*> ==
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Announcements, WolframAlpha Syntax

GRA3, Next Tuesday (5 points)

Suppose we wanted to locate all the minimums and maximums of z2y? subject
to (2 + y?)? + 23® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: One Week from Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We'll see.

Wolfram Alpha Syntax for Double Integrals
You may want to use Wolfram Alpha to check your answers while completing
your HW. Suppose that we want to determine the value of

/ / “ y)dydz

The syntax we could use to compute this particular integral is the following.

integrate x"{2C}+y, x from -2 to -1 and y from 0 to (x-1)
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1a) Area of a Region

Sketch the region bounded by y = v/, y = 2® and construct a double integral
that represents its area.

Solution
Yy 4 ,LEL") We can either integrate with respect to
J y /“ (wrt) z first, or wrt y first. Either
//_41;/7 s, approach will let us express the area with
o A one double integral.

Integrating wrt y first: the region of integration is the set of all points, (z,y),
suchthat 0 <z <1, and 2® <y < Vz. A double integral that represents the

area of the region is
1 vz
/ / dydzx.
0 3

Alternatively, integrating wrt x first, we can express the region of integration as
the set of all points, (z,), such that 0 <y <1, and y* <z < y*/3. A double
integral that represents the area of the region is

1 pyl/3
/ / dxdy.
0 y2
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1b) Area of a Region

Sketch the region bounded by x =5 —y, x =2y — 1, y = 1, and construct a
double integral that represents its area.
Solution

The shape of the region suggests that if
we integrate wrt x first, then we can
express the area with a single integral.

X
The region of integration is the set of all points, (z,y), such that 1 <y < 2,
and 2y — 1 <z <5 —y. A double integral that represents the area of the

region is
2 5—y
// dxdy.
1 J2y-1

Alternatively, we could also integrate wrt y first. This approach would require

two integrals,
3 prfl 4 po5—u
// dydx—!—// dydzx.
1 1 3 1
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1c) Area of a Region

Sketch the region bounded by y = = — 6, y? = x, and construct a double
integral that represents its area.

Solution

Finding the intersection points requires solving 4> = y + 6, which yields
y=—2and y =3.

The shape of the region suggests that we integrate wrt x first. A double
integral that represents the area of the region is

3 y+6
/ / dxdy.
-2 yz

Alternatively, we could also integrate wrt y first. It would require two integrals,

14 vz 9 5w
/ / dydx + / / dydzx.
0o J-vz 4 1
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Recitation 18

R18 Topics
15.2 Double Integrals over General Regions
15.3 Area by Double Integration

R18 Learning Objectives

» Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian coordinates.

» Change the order of integration of a double integral.
> Calculate the average value of a function of two variables.

Today’s Questions
1. Change the order of integration.

0 NOESY 1+e In(z—1)
o [ 7wy v [T fadyds
—1J—\yF1 2 0

2. Construct a double integral that represents the volume of the solid
enclosed by the cylinder 2 + y? = 1, the planes z =y, £ =0, z =0, in
the first octant.

4 4 g2
3. Evaluate [ fy e” dzdy.
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Announcements

GRA3, Next Tuesday (5 points)

Suppose we wanted to locate all the minimums and maximums of z2y? subject
to (2 + y?)? + 23® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.

Quiz 3: Next Thursday
Quiz 3 may cover 14.8 to 14.10, and 15.1 to 15.4. We'll see.
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The Average Value of a Function (15.3)

The average value of a function, f(z,y), over a region R, is given by

Average value of f over region R = _ // f(z,y)dA
areaof R J Jp

This definition can be used to find the value of some double integrals quickly.

Example

Region R is the unit circle /22 4+ y2 < 1. The definite integral of f =2 + 1
over R is equal to:

a) 0
b) 1
o m
d) w/4
Solution
The answer is ¢). The area of R is w. The average value of 1 + z over R is 1.

1:%//}{(1%)(1.4 N //R(l—i-as)dA:ﬂ.

Calculating this double integral by hand would have required many more steps.
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Conceptual Question Related to Double Integrals

Let region R be the square —1 <z <1, —1 < y < 1. The definite integral of

x> over region R is equal to:

a) a positive number
b) a negative number
c) zero

d) a function of x

Solution

The answer is zero because the average value of f over R is zero. Alternatively,
we can also argue that the double integral is zero because we are integrating an
odd function (in x) over an interval that is symmetric about the y-axis.

Calculating the integral may help explain what this means.

1 pl 140 1
/ / xgdxdyz/ — dy:/ 0 dy =0.
—1J-1 o1 4l -1

You may remember from integral calculus that for a function of one variable,
the integral of an odd function over a symmetric interval is zero.
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1a) Changing the Order of Integration

Change the order of integration.

0 pvEFL
/ / dxdy
—1J -y
Solution

The inner integral tells us that x € [— Vy+1, Vy+ 1]. We can solve for y
to more easily sketch the region of integration.

—Vytl1l<z<y+1
2 <y+1
Yy > z?—1
The above inequality tells us that we are interested in the region above the
parabola y = x? — 1. The outer integral tells us that —1 < y < 0, so we are

only interested in the region between y = 22 — 1 and the z-axis. The rest of
this problem is on the next slide.
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1a) Changing the Order of Integration (continued)

l\‘ ? ; / 71
\ 7,

Integrating wrt y first requires y € [ — 1,0], and = € [—1,1]. The integral

becomes
0 VUl 1 /0
/ / dxdy = / / dydx
—1J-vyF1 —1Ja2-1
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1b) Changing the Order of Integration

Change the order of integration.

1+e pln(z—1)
[ [ sy
2 0
Solution

The region over which we are integrating f(z,y) is the shaded area below.

I
I
|
|
I
|
1
1 2 e+l X
|
A |
|
|
|

The region is bounded by the lines y = 0, x = 1 + ¢, and by the curve
y = In(x — 1). Integrating wrt y last, values of y range from 0 to 1, and values
of x range from z = eY + 1 to x = 1 + e. The double integral becomes

1 plte
/ / f(z, y)dzdy.
0 e¥Y+1

y
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2) Volume of a Solid
Construct a double integral that represents the volume of the solid enclosed by

the cylinder 22 + 3% =1, the planes z =1 —y, © = 0, z = 0, in the first octant.

Solution
The solid lies under the surface z = 1 — y and above the quarter circle R, with

0<z<1,0<y<+V1—22

v [ fauaa= // y)dydz

Alternatively, we could also integrate with respect to x first.

V= //fxydA // y)dady

In case it helps, sketches of region R and the solid are below.

\\5/\
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3) Evaluating a Double Integral

Evaluate the following double integral.

4 a4,
/ / e’ dxdy
0 Jy

Solution

. 2 . .
The integral of e cannot be expressed in terms of elementary functions.

What can we do to get around this problem?

The given integration region is bounded by the lines y =0, x =4, and y = x.

Changing the order of integration, the double integral becomes
4 4, 4 rx
/ / e’ dmdy:/ / e’ dydx
0 Jy o Jo
/4 22 |V=¢T
0
2

1, e 4 el6
= ze' dr=—| = ————
o 2

dx

y=0

0 2

Changing the order of integration can sometimes make it easier to evaluate

certain integrals.
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Additional Exercises

1. Set up an integral that represents the volume of the solid enclosed by the
planes z = 1, y = 3, the three coordinate planes, and =2 + 2% 4+ z = 1.
2. Find the volume of the solid enclosed by z = z? + y2, y = 2% and z = y2.
Solution

1. The solid lies under the surface z = 1 — 22 — 2y? and above the rectangle
R, with0<z<1,0<y<3.

//R flz,y)dA = /01 /03(1 —2® — 2°)dydx

2. The curves y = 2 and 2> = y intersect at (0,0) and at (1,1).

1 vz 1 Y
// 2+ dyde = / (y;t2 + —)
0J 22 0 3 x

1 3/2 6
_ 5/2 , 74 i)d
/o (x + 3 x 3 X

_ (gx7/2+3$5/2 15 1 7)‘1

\/5
dx
2
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Recitation 19

R19 Topics
15.4 Double Integrals in Polar Coordinates
Quiz 3 Review

Quiz 3 Topics

>

vyVvyVvyVvYyVvyy

14.08 Lagrange Multipliers

14.09 Taylor's Formula for Two Variables

14.10 Partial Derivatives with Constrained Variables
15.01 Iterated Integrals over Rectangles

15.02 Double Integrals over General Regions

15.03 Area by Double Integration

15.04 Double Integration in Polar Coordinates

Office Hours
I'll hold additional office hours and a review session:

>

>

Quiz 3 Review Session V Math 2401 students: Tue 5:30 - 7:00 pm, at
https://georgiatech.adobeconnect.com/dcp-online-drop-in-tutor-center-2014-fall
Quiz 3 Review Session V QH8 students: Wed: 7:30 - 8:30 pm at
https://georgiatech.adobeconnect.com/distancecalculusofficehours
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Quiz 3 Learning Objectives

You should be able to do the following for Quiz 3.

>
>

Solve constrained optimization problems using Lagrange multipliers (14.8).
Calculate a Taylor approximation to a function of two variables at a point
(14.9).

Apply the chain rule to compute partial derivatives with intermediate
variables (14.10).

Construct a double integral that represents the area of a region bounded
by a set of given curves in Cartesian or polar coordinates (15.1 to 15.4).
Change the order of integration of a double integral (15.1 to 15.4).
Calculate the average value of a function of two variables (15.3).
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Volume of a Sphere

Identify the expressions that represent the volume of a sphere of radius R.

L R
4/ / v R2 — r2drdf
o Jo
27 R
/ / vV R2 — r2drdf
0 0
27 R
2/ / rv/ R? — r2drdf
0 0
27 pR/2
4) / rv/ R? — r2drdf
0 0

Solution: (1) and (3) are correct. In Cartesian coordinates, the volume of the
sphere is

RZ_‘%Z
/ / Vv R? — (22 + y?)dydx
A/ R2—22

We multiply by 2 because the integral only represents the upper half of the
sphere, whose height from the xy-plane is R? — (22 4 y?). We must convert
this integral from Cartesian to polar coordinates.
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Volume of a Sphere (continued)

We need to do three things: convert the integrand to polar coordinates,
identify the limits of integration, and change the differential (dxdy) to a polar
representation, rdrdf.

Knowing that z? 4+ y? = 72, the integrand becomes v/R2 — 72,

The projection of the volume onto the xy-plane is a circle of radius R, centered
at the origin. So the points in the region have polar coordinates (r,8) in the
set 0 <0 <2m and 0 <r < R.

Using these limits of integration our integral becomes

27 R
2/ / rv R2 — r2drdf
0 0

Alternatively, we can use symmetry and use the limits 0 < 6 < 7, and
0 < r < R, so the integral becomes

T R
4/ / rv R? — r2drdf
o Jo
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Graded Recitation Activity 3

Instructions

» Every student in your group needs to write their name or initials on the
board.

You have 10 minutes to answer the question below.

For full marks, show at least one intermediate step.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Question (5 points, from last year's quiz)

Suppose we wanted to locate all the minimums and maximums of z?y? subject
to (z? + y?)? + zy® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive.
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GRA3

Suppose we wanted to locate all the minimums and maximums of z%y? subject

to (2 +y?)? + 2y® = 1. Reduce this problem to the problem of solving three
equations in three unknowns. Do not solve the equations you derive
Solution: a screen capture of hand-written solutions are below.

Lot S0m)=x Te

R O

s L wax oceus ot Ale Jc’v*w Tot
W eng

=2
ERpaLar
E"l‘[l‘ﬁ (++ )13 +1><3j
Ou"‘ '{"L\fe" e M‘hms ace.
ey A[) -]
,le [q(.j (:{ -H\ +2X33
o o) xu] =|

n

i
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Converting Double Integral to Polar Coordinates

Convert to a double integral in polar coordinates (from 2014 Quiz 2)

2 py/i—(z—2)2
/ / rydydz
o Jo

Solution: the 1st part of a screen capture of hand-written solutions are below.
we ARE gflzf'd :
X € Eg)l,]
Ye [o,ml

o unDER sTAND  TE §hlE oF TAE REGrex) OF IMNTEGLAT Y,

LeT's wmk wITH oUR Cils  FRY A CONVERT
_ a _J S
A To POUAR. ’;‘:_—‘-‘—*—?:’1 e 0@»«
ofy $YTX-2) VN
o o
Qe s u-k-1% AR Y
< ~ ; LN u"’ ,;"
et e > IR
.;>‘k!*1)4.1j_. . jj QO ;x .......... -
=) Wh-4x '?“"11' €0 , 37/0

D T Yres020, OefoT

:> \Id{cas@ Ge Co\j
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 2nd part of a screen capture of hand-written solutions are below.

\

o

Cff‘")

-

, we onlin neest

we are onk
cirele e
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 3rd part of a screen capture of hand-written solutions are below.

(1}1) ,\,L“_ ver‘(‘ffdl ll;?‘

\,_.,r"

btch\'f'
"'"*‘:ﬁ rcusg ”1— \
0 v ‘
T )
= e \—, f
]

%\ K'L.

o~ T } e T e TN

eec_o:'ﬁ{;l ¢ [T/ii‘ ;T/"l-’]
Z re (',O)‘kc,asf&]

¢ E.IZ’O ? {_059__‘
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Converting Double Integral to Polar Coordinates (continued)

Solution: the 4th part of a screen capture of hand-written solutions are below.

S

e s
Xv\g{lﬁj&, :Sa sinﬁ‘cas@éa(ﬁjg'
.{.

[}

cos? .
Sk ghr st st VQO"’M
% Jo

6
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Additional Exercise: Normal Distribution

b 2
I:/ e ¥ dx
0

12:/ efzzdm«/ efyzdy
/ / v dxdy

Evaluate

Solution

/2 _ a
= lim Lo—"ap
a—oo [q 2 0
_ /2
= - lim ((fa2 —1)do

~
Il
3

~
o~
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Additional Exercise: Integration in Polar Coordinates

Sketch the rose curve r = 2 cos(20) and find the area of one petal.
Solution: a screen capture of hand-written solutions are below.

Sketch the petal curve r = 2cos(26) and find the area of one petal.

ALWAY'S  Seqe Youre o fi.\
s REGNS  OF lNT‘?M—ﬁTIN \|,YI. :\
r \"’\f ; «\ IV HELPS yol Dc'rﬂrjw ‘&J M*\*m
o "

LumiTe eF T RA TN,

—E

0 L. —
e goudDs of WK Bt THETRarFTRETAC Ae

»

" S‘:qglcotlﬁ)L/Q\lote
4§ [rrrest)de ,

n )
2(9+ S :@7‘07 = /,Z_/

iy
5o L5 red®

whyy is flece an P )
( T 4ts whearand 3

"
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Recitation 23

R23 Topics
15.5 Triple Integrals in Rectangular Coordinates
15.6 Moments of Inertia and Mass

R23 Learning Objectives

» Construct a triple integral that represents the area of a region bounded by
a set of given curves in Cartesian or cylindrical coordinates

» Change the order of integration of a triple integral

> Set-up integrals that represent moments of inertia and centres of mass of
solids

Today’s Questions

1. Set-up a triple integral that represents the volume bounded by the

following surfaces. Set-up the integrals in at least two different ways.
1.1 y2 422 =1, and the planes y =z, x =0, and z = 0.
1.2 22 =y, and the planesy+2=2,2=0,x =2, and 2z =0.

2. Consider the region inside the curve r = 2 + sin(#). Set up the three
integrals you need to find the x and y coordinates of the centroid of the
region, assuming its density is d(xz,y). Express these integrals in polar
coordinates. This is a question from a 2014 quiz.
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

» Every student in your group needs to write their name or initials on the
board.

You have 15 minutes to answer both questions below.

For full marks, show at least two intermediate steps.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Questions (5 points each, both questions are from old quizzes)
1. Set-up a triple integral that represents the volume of the ellipsoid
2?4 (y/2)* + (2/9)® = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Triple Integrals, Example 1

Set-up a triple integral that represents the volume of the region bounded by
y? + 22 =1, and the planes y = z, =0, and z = 0. Set-up the integral in at
least two different ways.

Solution: dzdydz

We could choose the integration order dzdydx. The solid is shown below.

%;7

i
We chose to integrate wrt z last, so = € [0, 1].
Then, for any given value of z in [0,1] , y € [z, 1].

Then, for any y € [z,1], z € [0,/1 — y2].

The volume of the solid, V, is equal to the triple integral

1 1 V1-y2
V= / / / dzdydzx.
0 x 0
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Triple Integrals, Example 1 (continued)

Solution: dxdzdy

We could also use the integration order dxdzdy.

We decided to integrate wrt y last, so y € [0, 1].

Then, for any given value of y in [0,1] , z € [0,/1 — y?].
Then, for any z € [0,/1 — y?], z € [0, 2].

The volume is the triple integral:

1 p/1-y2 py
V:// /dwdzdy
o Jo 0
Note:

» Using only Cartesian coordinates, there are six integration orders that can
be considered (dxdydz, dxdzdy, dydxdz, dydzdx, dzdxdy, dzdydx).

> Regardless of how we set up our integral, we should obtain the same value
for V, which in this case happens to be 1/3.

» WolframAlpha syntax for evaluating the above triple integral is
\int_0"1 \int_0"{\sqrt{1-y~2}} \int_0"y dxdzdy
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Triple Integrals, Example 2

Set-up a triple integral that represents the volume of the region bounded by
2% =y, and the planes y + 2z =2, £ =0, & = 2, and z = 0. Set-up the integral
in at least two different ways.

Solution

If we were to choose dzdydx, then we would need to break up our volume into
two regions. The curves z = 2 — y and z = y® are shown below, along with
regions R1 and R2.
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Triple Integrals, Example 2, Continued

Volume of Region R1 with dzdydx

We chose to integrate wrt z last, so z € [0, 2].
Then, for any given value of z in [0,2] , y € [0, 1].
Then, for any y € [0,1], z € [0, \/y].

Volume Region R2 with dzdydx

We chose to integrate wrt z last, so z € [0, 2].
Then, for any z in [0,2] , y € [1,2].

Then, for any y € [1,2], z € [0,2 — y].

Thus, the total volume is the sum of the two triple integrals:

V:/// dV+/// dv

R1 Ro
2 1Y 2 2 p2—y

:/ // dzdydx—!—/ // dzdydx
o Jo Jo o J1 Jo
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Triple Integrals, Example 2, Continued

Solution: dydzdx
With the integration order dydzdx, we do not

Lo need to break up the solid into two regions.
7 Y A We are integrating wrt z last, so = € [0, 2].
MH, N\ Then, for any z in [0,2] , z € [0, 1].

/ ) Y Then, for any z € [0,1], y € [2%,2 — 2].

Thus, the total volume is the triple integral:

2 12—z
V= / / / dydzdx
0o Jo J=z2

» Regardless of how we set up our integral, we should obtain the same value
for V, which in this case happens to be 7/3.

Note:

» WolframAlpha syntax for evaluating the above triple integral is
\int_0"2 \int_0"1 \int_{z"2}"{2-z}dydzdx
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Centroid

Consider the region inside the curve r = 2 + sin(6). Set up the three integrals
you need to find the x and y coordinates of the centroid of the region,
assuming its density is §(x, y). Express these integrals in polar coordinates.
This is a question from a 2014 quiz.

Solution
A plot of the curve is The mass of the solid, m, is
shown below. or  p2tsin(0)
m= / / o(r,0) rdrdd
o Jo
’ The coordinates (Z,y) of the center of

mass of the region are

27 2+-sin(6)
3 UJ mz = / / &(r,0) r° cos()drdd
o Jo

27 2+sin(6)
my = / / 6(r,0) 2 sin(0)drd6
o Jo
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Recitation 24

R24 Topics
15.7 Integration in Cylindrical and Spherical Coordinates

R24 Learning Objectives

» Construct a triple integral that represents the area of a region bounded by
a set of given curves in cylindrical or spherical coordinates
» Change the order of integration of a triple integral

The Spherical Coordinate System

Fill in the blanks.

x = pcosf
y = psiné
z=p
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Graded Recitation Activity 4: Next Tuesday

Instructions (same as before)

» Every student in your group needs to write their name or initials on the
board.

You have 15 minutes to answer both questions below.

For full marks, show at least two intermediate steps.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Questions (5 points each, both questions are from old quizzes)
1. Set-up a triple integral that represents the volume of the ellipsoid
2?4 (y/2)* + (2/9)® = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.
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Spherical Coordinates

Provide a geometric interpretation the surfaces psin¢ =1 and pcos¢ = 1.

Solution: Below is a screen capture of a previous year’s handwritten notes.

Fill in the blanks.

@ X=p coseﬂ Cactosim = Jeoms
) of  sphoucdl
@ y=psing _Sn ! '
'(L\ym» OAL ﬂc}ul ‘I(ar
expeag Chongueet] WtEtme
@ z= Pﬂ_— of (octesn, . X
j\:m )ﬁhe;v}/ﬁ 7(”0%1;5{?@

Provide a geometric interpretation of each expression.

a) psing=1_ Rty = “anp (gt ) O J ,
) p ¢ N V\ :rT,L “‘fé‘ Bt _'&“\4,.,) N X\+I1L:lL=) (,v)llhje*” r,,,/m;{

b) peosp=1 = tu ¢lae ‘t‘l,ﬁwé

/U/\JL )((j /\;(au\g/ i W[«w{ch\ coscd. 15 % (b:T/Q\_; 1[‘”"'7@
oﬂ'H'la va(ue of ﬂt(‘ﬂ\a‘* Je_,‘t\‘ 2 O»)

(Btwuf@ e nee
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1) A Triple Integral in Cylindrical Coordinates

Use cylindrical coordinates to set-up an integral that represents the volume of
the solid bounded by 2® + y* + 22 = 1, and 2% = 3(z? 4 ¢°)

Solution: Below is a screen capture of a previous year’s handwritten notes.
T g ad eme difersect o s 2o ey =3(xhy")
{ -r" = I
#— -;I/L .
P aurfreeg whersedt whow ¥ =% R and
whin 2= 3((0)) =%, o
\N"W'L 2= ‘\F/’A.
e ()D\; + réﬂ“(/l J{@Q{;l ?—!Mfr}'hw‘h,‘)
(913 o[‘tol\”J@ —
ME . -
©e€ C”)'“‘ :S

'\‘ = S S 5 I dz dr d(theta)
(. S EU) 4 {

Vv AT b LBy -
/_%7’6"[773? 3_74_,- e, e I—F M“L‘qﬂﬂ{,’fj V 6 (

=)
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2) A Triple Integral in Spherical Coordinates

Use spherical coordinates to set-up an integral that represents the volume of
the solid bounded by z = 0, 2% + 3% =4, and z = 2/22 + ¢2.

Solution: Below is a screen capture of a previous year’s handwritten notes.
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Recitation 25

Quiz 4 Topics
15.5 to 15.8 (I think)

Quiz 4 Learning Objectives
» Construct a triple integral that represents the area or volume of a region in
Cartesian, polar, cylindrical, or spherical coordinates
» Change the order of integration, or coordinate system, for a triple integral
» Construct integrals that represent moments of inertia and centres of mass
» Identify a suitable transformation for a triple integral, and use that
transform to find the area or volume of a given region

GRA4
1. Set-up a triple integral that represents the volume of the ellipsoid
2% 4 (y/2)* + (2/9)? = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 25, Slide 1



Graded Recitation Activity 4

Instructions (same as before)

» Every student in your group needs to write their name or initials on the
board.

You have 15 minutes to answer both questions below.

For full marks, show at least two intermediate steps.

All students in the same group receive the same grade.

Please do not share computers: every student should log in on their own
computer.

> You do not need to simplify your answers.

vVvyVvyy

Questions (5 points each, both questions are from old quizzes)
1. Set-up a triple integral that represents the volume of the ellipsoid
2?4 (y/2)* + (2/9)® = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.
2. Set-up a triple integral that represents the volume of the solid bounded by
the hyperboloid of two sheets —z? — y? + 2% = 4, the plane z = 8 and the
plane z = 10. Do not evaluate.

Recitation 25, Slide 2



GRA4.1

Set-up a triple integral that represents the volume of the ellipsoid

2% 4 (y/2)* + (2/9)% = 1 in the 1st octant (x,y,z non-negative). Do not
evaluate.

Solution: Let u =z, 2v =y, 9w = 2, then J = 18, and we are integrating
over the unit sphere in the 1st quadrant. From here, we can use Cartesian,
cylindrical, or spherical coordinates. Using spherical coordinates, we have:

/2 pw/2 1
V= / / / 18p” sin ¢pdpdpdo
0 0 0

But there are other ways to set this integral up without using a uvw
transformation. In Cartesian, we could use the following.

1— 12 —y2/4
V= / / / dzdydz

The value of the integral is 3m. WolframAlpha syntax for the above integrals
are:

\int_0"{1} \int_0"{2\sqrt{1-x"2}M\int_0"{9\sqrt{1-x"2-y~2/4}} dz dy dx
\int_0"{pi/2} \int_0"{\pi/2} \int_0"1 18 r~2 sin(p) dr dp d\theta
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GRA4.2

Set-up a triple integral that represents the volume of the solid bounded by the
hyperboloid of two sheets —z:2 — y? + 22 = 4, the plane z = 8 and the plane
z = 10. Do not evaluate.

Solution: Below is a screen capture of a previous year's handwritten notes.

ChRTES Gam D(to{ 4

g w
8 [ C 1
o o0 (o ) e b e l Fe (o 3
reGioN 1 0, ze(_ﬂ,'oj tec(’ﬂu‘— "
— w©
T T R A i

cARTESIAN * ol 2
N

= <
Yy e[o v—wl Y

Pouaks d=drd®
—

et &

Ge (‘ o,Lﬂl evec LEOL?]

7 € [c&jl@l relg,0) Xé{o "{{ ‘*1
For v, sl s -YURETE | R L NE (ot oyt
TS T geont) \= L&& % g dx»)v\f?‘?c
el \ i .

le[‘d‘i-ﬂ‘“ 1“3
v ‘e © dedd®
=7\/ S S AYJ&Q V=5 }% i Jrdo
gm Egmrgv \
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Change of Variables

> After completing HW 15.8, you might be familiar with computing an
integral, if you are given a transform.

> But if we were given an integral over a complicated region, and were not
given a suitable transform, how could we find one?

» The basic idea is to find a transform that converts a complicated region
into a simple one, such as a square, or a circle

Recitation 25, Slide 5



1) Change of Variables

Show that the area of the ellipse (x/a)® + (y/b)? = 1 is mab.

Solution: let uw = z/a, and v = y/b, so that we are integrating over the unit
circle, u? + v2 = 1. We can show that |J| = ab, and the area, A, becomes

1 V1-u?2
A= 4/ / abdvdu
o Jo

Now let ©w = rcosf and v = rsin 6.

/2 1
A= 4ab/ / rdrdf
0 0
/2 .21
:4ab/ L’ df
0 2 1o

/2
:2ab/ do
0

™
— 2ab™
3

= mab
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2) Change of Variables

Set-up an integral that represents the area of a region bounded by z +y =0,
r+y=1L,z—-—y=0,z—y=2.

Solution: The appearance of the terms (z + y) and (z — y) in the integrand
and in the lines that bound R suggests the transformation

u=x+vy (1)

v=u-—y. (2
In order to compute the Jacobian, we need explicit expressions for u and v. If
we add equations 1 and 2 we find that x = “T*“ If we subtract equations 1

and 2 we find that y = “5*. The Jacobian becomes

1
2 2
J= =_

1
2

We also need to find the limits of integration in the transformed integral. Using
equations 1 and 2 the four lines bounding R in the zy-plane become

The solution is continued on the next slide.
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2) Change of Variables (continued)

The double integral therefore becomes

J[ @ =)ty = [[@—)ia+ zay
= /Ol/oluv
= %/Dl/ol(uv)dudv

We did not need to evaluate the integral, but this works out to be 1/8.

— % dudv

Recitation 25, Slide 8



3) Triple Integrals

Set-up a triple integral that represents the volume of the solid bounded by

0<2<1,0<y<VI—22% and /22 +y? <z < /2 — (22 +y?).

Solution: Below is a screen capture of a previous year’s handwritten notes.
Set-up an integral that represents the volume of the solid bounded by

0 1 ’ . -

=x= %C\,]lm»{e‘r X thL 5-'
0=<y=+l-x*

\\lmzszs\/2-(x2+yz)

[ P

QTW\I‘"
T, e (o)
b e (7]
g € Co)mé]

T A

\/:g‘t’i%w U \l}m‘ad ()\}di&"}“@ o L)

\ " p e@~
('\’0‘1&’ jo{h{ CReY ‘%,.qr"ek oA an weschedn U“e‘)
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4) Cylindrical

Set-up a triple integral that represents the volume of the solid bounded by
z = 2 4+ y2, and the plane y = z. Use cylindrical coordinates.
Solution: Below is a screen capture of a previous year’s handwritten notes.

Set up an integral that represents the volume of solid bounded by z= x2+y2 and
z =Y. Use cylindrical coordinates.

2% 'l'“\ s an ellptic TW"‘L |-uL
whicl, tersects 7= -y whons

220 =R W\

T volor feyhdeinal *
T «n@= 'r”
r = ein@

lune

Q Yo glhg

Aol wa 3
\j- Y{o\“‘-{ e ¥ (\AMI 'LJW\

G m agn Y Sul i

% : M W g

& ¥ \}— \ Ss }-MJ@‘
66[05”“"] -

I
re [O fhe 0 o

% ¢ X 1.,] 3 i %r[r rg%ﬁ’]
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5) Triple Integral

Set-up a triple integral that represents the volume of the solid bounded by
1 = 2% + 92, above 22 4+ y? + 42% = 36, and below by z = 1.
Solution: Below is a screen capture of a previous year’s handwritten notes.

Set up an integral that represents the volume of solid bounded by x2+ y2 = 1,
X2+ y2 =4, above by x2+y2 + 422 = 36, and below by z = 1.
l ot T Thetdn Solid, sketd iy plane s )
(\) Hiw‘,g';ﬁztiw‘::xi{u:.r ){ \ ) = A Sl‘d‘{‘ He 2 befire
g} T, (0,03, )

He coordade axe

@ i pads m
soliok s
(H('vl um.lin

e E 36/4 = V(K- At )1 ) ‘‘‘‘‘

,F—( AP me&m@ K TOWTER WS INNEE

Rcmran 1] R
"M iy ) S § e

O‘-"[\ 2 (e (=
Aatancid \/ “*S g g ‘,{,‘,,49‘,'\)( —(—73] S; Sl o(hl\ao*)(

Let me know if you catch any typos in the above.
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5) Triple Integral (Alternate Solution)

Set-up a triple integral that represents the volume of the solid bounded by
1 = 2% + 92, above 22 4+ y? + 42% = 36, and below by z = 1.
Solution: Below is a screen capture of a previous year’s handwritten notes.

Set up an integral that represents the volume of solid bounded by x2+y2 = 1,

2+y2 = by x2+y2 + 472 = 36, and below by z = 1.
fomnct _ppgponcct s PURE JTRVRCS,
o) Pl
Le [, /574 0]

i b ) T
%o S rdedil0 |
| J

(

In the above, for the upper limit of the innermost integral, we should have used

r?, rather than 2% + y2.
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Recitation 27

Today'’s Topics
16.1 Line Integrals (brief review)

16.2 Vector Fields and Line Integrals, Work, Circulation, Flux

Learning Objectives

16.1 Set-up and evaluate a line integral to calculate the mass of a thin wire

16.2 Set-up and evaluate a line integral that represents total work



R27
, |16.1: Mass of a Thin Wire (a review of lecture material?)

How To Calculate Mass of a Wire . \A
 position on wire given by parameterization, r(t) |
* density of wireis & = 6(r(t))

* length of a small piece of wire is As(r(tQ)

* we can approximate the total mass with: r(t)

M=~ £ g(?@&(ﬂfd\)

y wire

In the limit as As tends to zero,

M = choﬂs

To compute total mass, we can show that:

M = g\; CF) T |k




R27 : _
;s |16.1: Mass of a Thin Wire

Compute the total mass of a wire whose density is given by § = 3x? — 2y, and
whose shape is given by the line segment from the origin to the point (2,4).

¥ =4 ALY ch’l tel(o 7’3 7] -
g :—§<?\-. ?p(Z(Jc) = «1”{,3(%)’—’—%% =47
= (T e ar) B =T T



Work is the nona v transferred to or from an object by

meansof a _fence acting on the olo’ oct .




R27

16.2: Work Over a Straight Line Path

Force F is applied to an object as it moves from x = a to x = b along the x-axis.

A
y
l | - >
a b X
Applied Force Work
_—_ P N
Case 1 F = 4i W= F.F = 4L (ba)i ;q(g,q)
A AR
Case 2 F=4i-2j W = ’rf.?‘ = Ly ¢ (Zfa)t L%(B-a)

we need to extend this concept to curved paths in R3
QV\Q/( \/VWL\ iJ a fCa(ol,\ y Ca /C&ﬂ {(,’[‘/'QM (,v‘(+L a F{Q)L/Mfc/{lm:f'



R27

s |16.2: Force Over a Curved Path

Force F applied to an object as it moves from r(u) to r(u + h) along curve C.

Work done by force F from r(u) to r(u+h)
is W(u + h) — W(u).

Applied Force

Work

2_) ‘("GLL li‘mf‘% as ‘\‘)6
) I'n{'Q.(f?_)(‘“#e:

Case 3 F = F(r(u)) W(u + h)—=W(u) = F(F'(u)) o E@L)'? (u )
i h
Z
) olivele btk sules LQL
w'= F(37f

we Ce ) Brdu = § Frdi




R27
» [16.2: Calculating Work

Set up an integral that represents the total work.

a) F=(x+2y)i+(2x+y)j, pathisy=x%from (0,0) to (2,4).

b) F=(x-y)i—xyj, along the line from (2,3) to (1,2).

c) F=xyi-2j+4zk, along the circular helix r = cos(u)i + sin(u)j + uk, from
u=0tou=2m.

B - U ;lm_b\ - .,_-!“"A } F; N l_.":
a) Find T Mi"“p‘g‘“ T Z2usut )2 i [ R L
(A'i'?—k ‘ 1"'\ A g’k | N 10 2 .
\W = g S ’X 04& 5 (_u+2.m)+(u+a {7 .»zu)a/m

\:) ‘A= f\(ﬂx :L—lmw £ 7 [ ]ano( w€ [0,
Lo Dl Lt

) E \ \’Xo(w —& _estore +hu olw = o»rg Budu = B



Recitation 28

Today’s Topics
16.2 Vector Fields and Line Integrals, Work, Circulation, Flux
16.3 Path Independence

Learning Objectives

16.2 Set-up, evaluate, and interpret integrals to calculate circulation and flux
16.3 Determine whether a vector field is conservative

Circulation

Cicrulation is a measure of the flow along a curve C, or net velocity along C.

a

circulation = F=fﬁ(?)-d?=fb\7(F(t))-F'(t)dt
C



R28 . )
, |16.2: Circulation

Sketch the velocity field for v, and calculate the circulation over curve C, where C
is the circle of radius R.

o Zi,RsysR . L
YV = < :5,,.'tJC:'C5‘5
L 3=(5), w00, 7o
A
y P:S’\?o{}

c
SNHEC
"53\7 2smk dt =0

" = %v LsdE * gf'“"&

==+ =0

Mthe circulationis | O because +he circuldin over 00, cancels with Ha

eren lodon oven (’_—W) ’L‘\T] .

SFor part b);the circulationtis .~ because | ™ [~ }\




1 Application of Circulation Saice:

l'f_f-

« Note the cross- sectlonal proﬁle of the ang =
| Zha
» Take C to be a path around the wing, on 1ts surface
* Upward lift force is proportional to circulation, T




R28

16.2: An Application of Circulation

Take C to be a closed path around the wing on its surface

Y YYY

Write Das I' =17 o, + Ligwer
[ ypper @nd Iy, have opposite signs
the magnitude of V along the upper surface of the wing is greater than

along the lower surface: net circulation is non-zero



R28
s |16.2: Flux Across a Closed Plane Curve

Suppose we have a curve C in the xy plane, and a flow field v = M(x,y)i + N(x,y)k.
We want to measure the net flow through C.

2 4 * kis the unit vector parallel to the z-axis
e Tisthe tangent vector
* Nis the outward pointing unit normal vector of C

flux =§ﬁc17°th=4ichy—Ndx

N=Txk

counterclockwise motion

Note that:
e for a clockwise motion, we would instead use k x T
« |ater on, we will make a connection between flux and Green’s theorem



R28

s |16.2: Flux
Calculate the flux over curve C, where C is the circle of radius R.
i 2i, R<y<R
V = 5
0, else
A flux=§ My -Ndlr
M=2, N=0
- x =Re . dx =-Rsdt %teio)g_-w]
2 /Z:‘ il —> %:KS b 0%:@00“:
- — > | 2 2 X Pl .
\, 7&4 g 5 %\‘9( = &o(l)ﬁl.cokt)- (O) (‘RSOH)
= g:vlkcou =0

Therefore: the flux is O because i» qu-ovr > ourf 1[(O’W’




R28 : :
- 116.2: Circulation and Flux

1) Sketch the velocity field for v = - Xi - yj, and calculate the circulation and flux
over curve C, where C is the circle of radius R.

A — ¢ "‘/-E‘M S ’\?\:Ef 'rERL]
Y":@‘X)r’ +Rc¢ i, ~Rs

y S
{
\y N ¢ v . §$0(\r :% /U—(?(q)‘r(&) Jd&
R YA (2 i .
>
2P Y, =Y -%e -R
= 7S~ e x :.S’L K,i][kld’t
A _\'7‘2 T’?r N 8 g g’
Z5 i 1% H
= SO OO(‘&"O

= S:T (4R.c) ( Rcdt) — (%) (-Qs o(JC)
= Sn. -t (c"+s‘) dt = ¥ R .
° 'w' {-0 <
Therefore: the circulationis _ O because £ low a(vwg} :_%*F'”‘"“ af

Therefore: the fluxis -—~T% because af flow 15 el




R28 ; )
¢ | 16.2: Circulation and Flux

2) Sketch the velocity field for v = - yi + Xj, and calculate the circulation and flux
over curve C, where C is the circle of radius R.

. #0a=[5] > 7]~ [3)

=
F\ ?,\\"\\ i we.  felwed ¥l
L&‘LK:J X M e st e itutim, ]22{7{
T



R28
o | 16.3: Conservative Vector Fields

Recall the Pipe example.

a) Why was the circulation zero?
vﬁ’l

F % [Ojﬁl Cah(,e,t(ﬂ-J l,aod r\ N E-ﬂ)

b) For any path that starts and ends at point A, and stays inside “the pipe”, the

circulationis Ha fome

_ _ q = T TN
c) For all paths that starts at A and ends at point B, the integral A - i

is the same. )c

In general: if v is a conservative vector field (or is path independent), then there
exists a scalar field, S, s.t. _9s=%




| O

Recitation 29

Today's Topics
16.2 Vector Fields and Line Integrals, Work, Circulation, Flux
16.3 Path Independence

—}6-4-Greem's—Hieorem

Learning Objectives
16.2 Set-up, evaluate, and interpret integrals to calculate circulation and flux
16.3 Determine whether a vector field is conservative and apply the FTLI

~164 Apply Green’s theorem-to-calculate-area-and-flux— |[ Fond qu_l
‘T_Inc o B ot

Circulation and Flux _ L ine
Circulation is a measure of 4 low’ alpme o ?c,ci’{-\ , | T +%ﬂ"y=a_{5

Flux is a measure of Qo«r ’H’\Youﬂ{r\ Q Y‘Ejfm .

circulation = F=f\7(F)-dF=fbv(F(t))-?'(t)dt
C

a

flux =§ﬁC\7-th=45CMdy—Ndx



R28

» |16.2: Circulation and Flux (review)

1) Sketch the velocity field for v = - Xi - y], and calculate the circulation and flux
over curve C, where C is the circle of radius R.

r"&c‘_ +?‘5J3

' l - ﬂ«rotr-“(x&ukd‘:

Therefore: the circulation is O

» U g
. . \L/<
b
y _
\\

P | ; go"-‘T O o(’c 5
——— — -y
F\ O\ﬁ,\\\h ; & B
0‘2(' Ldt = ~Rsdt

. g (R (Redd) = €35) (—-?\;wc\
B S G
L =R —
| el Fo e

because Hlowr 22 ,fz,maf cu

Therefore: the fluxis =27 because invord Hoyr




R28
s | 16.3: Conservative Vector Fields

In general: if F is a conservative vector field (or is path independent), then there
exists a scalar field, f, s.t. 5= F ,and

S. F.df =S98 = $(5-F(a)

Example: Calculate total work from the force F = (x2-y)i + (y% — x)j, over the path
r = a cos(t)i + b sin(t)j, where 0 <t < 2.

-

F h N )
!!r L,\Mfé ;-? &&r .Eﬂ?_{ ma“’fcfm gg(x “j\ == P Q?m gO r l§
s N j
o A F P = \ len Q‘
d/gxiul,x) ~ f ) onserVa lfy
Q ’ig{‘_gjen‘ha( . é(' . |
| K - C - - e Y
ooy o £ 5 yre o) 5 =t
dm;f ? L’M Cﬁ”“?fﬂ"*}ﬂh, aﬁ%f ‘)c Q\{{r‘t‘f) a“,m{"s
‘Fm w(ﬁ *\“l / XY
=g CemsetV., So vie FTEL S gf,‘;r s §(ar) -fle)= O
e



R28 : .
. |16.3: Conservative Fields

Determine whether the following fields are conservative
1)v=—Xi—Yj
2)v=—Yi+ Xj

P RS o gmireri'ﬁ{lw/
£ Aa(tx)=t

C 1__)' :



R28 .
s |16.2: Circulation and Flux

2) Sketch the velocity field for v = - yi + Xj, and calculate the circulation and flux
over curve C, where Cis the circle of radius R. - . X
A frel P70

— ‘1 - , L7 .‘gAc_
N 6 ’{j‘r i ?\S '.;I — »

]

'y No Feow IV [enT  of RV,

Lux | o BECAUSE THepE |
F ey N QReCT oW OF motol

‘ g > & i
ClRCULATION, T, 15 QoSITWE REcAwe Tuww U
~<LoN G C



R28 _
s | Conclusions

a) Circulation measures flow QA lOT\i\j path C.

b) Flux measures the flow ’Hn roti ?JL\ otle? Y"Ej iov\

TP
c) If aflowis conservative, the line integral %?'&‘r is the same for any path C.
&

field name velocity field circulation R

equation conservative?

ol + . s I (3¢

v = 0 otherwise

* deain” V= Xi- Y] S —7mR" YES

 whiv{poel T oveyieg S o NO




Recitation 30

Today's Topics
|lo 16.4 Green's Theorem
16.5 Surfaces and Areas

Learning Objectives
16.4 Apply Green’s theorem to calculate area, flux, and circulation
16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically |

Green’s Theorem

If R is a region that is close d . S'KVV‘P(Q’ ~and M and N are
scalar fields that are differentiable on R, and C is the boundary of R, then:

flux = @CN\A\S*‘NJY = g ot "’%N{ OW\S |

9 X

circulation = @ Moix*r‘\) OQ{\:J - §§ ,_g“i—( -%)M}
C N N

= A
(:§c F . O(Y j curl F .k ¥ *we da't rd divk cod

at $his pore) buct va il |




R30
» | Green’s Theorem Example (from an old quiz)

Below are five regions. For which regions can we apply Green’s Theorem?

ha‘f’ Sfmple )

S\M\O\L & CKOS‘(‘/OI
D can aPP(j QT

2 Can Q/afxb GT 7’4%’_/
€9-e tw fMLIﬂMIJ

W\ v,
§)/M\"‘o, = ho L\olQJ) anph éo‘w\/‘w} 51 not JQ"(”f“+‘Q'5‘lC_{C“j,}



R30
3 | Green’s Theorem Example (from an old quiz)

Find the circulation AND flux for the fieldP = 3x?yv?i + 2x'v 3
around therectangle 0 s x £ 2, 0 £ v < 3. UseGreen' s Theorem.

x/‘*f-"‘ \

‘ﬂ”‘x:‘%f‘/\o‘-g} ’I\J_obf %3 31\3 a(j \’fo:})b( gg 3x T oy Ok“j |
- © IN J—é:J\_;_\:# fg@xv\ +Qy OKX@ ‘
v - gg E Y 6”}:3 \ = = [3x
2 ¢ 202 ~5 (3] iy
=G0 Gy - Gy A

\ = O ) __"/_/—/

——— e

l\l\

Lo - 5
/ —\/L\m mky’v&) M:%XV\)N/lxj

n



R30
. | Green’s Theorem Example (from an old quiz)

Let R be the region in the plane, inside the cardiodr

= 1+ cos (6) ,
and C its boundary Consider the line integral

ny dx - xy’dy. Use Green' stheorem toconvert toandouble integral,
C

and express this as a double integral in polar coordinates with limits.

| /

- o g S(';ﬁl"‘x\ dxdy

/AVHQ—”“‘JFQ T %de{[\wﬂ - \ﬂ_ase’ 9-
. My = 3% | 2
‘iifﬁw— o «;\ SO (i e rrd
Q4 = o - didy
- (G Ny Xy =

[ ﬂose = \ ———
et gm g (—r e = ‘rc\ rded g —uo
o}

€

o

—



R30
s | Additional Green’s Theorem Example

0 w2 ™ n2 V411
X

The curve traced by a point on a rolling wheel is

X(t) = t —sin(t)
y(t) = 1 — cos(t)



R30
6

Additional Example: Green’s Theorem

Find the area under one arch of the cycloid:
X(t) =t —sin(t), y(t) = 1 — cos(t)

Find the area under one arch of the cycloid:

x(t) = t—sin(t), y(t) = 1 — cos(t)

M. acen D
A= Sg ulvcolﬂ | § ;
- D

‘Je/ Jmf* have 3:\1(@ exr"'ci’r(\:).
W(j\.q,* can wé (J\U?.

Tubroduce MM DN . <7{
WweX, % % A SICE 93)”""’% _S%
Nl =0 2
Ox. ¢ ;fc,io(j,o o | - %cxo{ﬁ’gdz

L



R30
;| Additional Example: Green’s Theorem

a) Evaluate fﬁc y2dx+2xydy, C is one loop of r=2sin26

b) Change the integral so that it represents the area of one loop.
a> U e o Fomalatre o Gowns Ao, oommwe s Ef{{\
$lay = ‘%MGLB ~Ndx = SS gy B 'ﬂ O&Koltﬁggg} 3 (’)éﬂ
( some YoxXhoks wse o c,\&,jAl;\ Ju{mﬁr é«mlm) :M
=) M: Txyy s a%x ) ’L\ﬁ \Lg '\v\‘raym@{ ¢ Rer s, s ansuek it evp
;-U\L , ':%\j - 'hﬁ

A
Fo'c ares , we, hl_avl( 9)( Dr\){vs \ ‘ @ g
E) \‘JL Con C«('W’Se : 2 sl

M = 1757*'3 =7.' MX:??‘j "% PREA = S % Mx*N‘_’\"l""(‘j = g:SDM»JG

W =2 =7
N =4 N‘d 7—3



R30 B
s |16.5 Surfaces and Areas

Tacdofan

g:gg 0(6"7 CCO":\YLAXYV

Your textbook has formulas for calcuatling the surface area for
implicit and explicit surfaces, we probably won’t have time to
work on these in recitation.

Surface area for a parameterized surface:

oku OH"




R30
o |16.5 Surfaces and Areas

a) What properties does a parametric representation of a surface

need to have?
0 Saﬁgf\j g surFace

@ e ~ fo—ona-

3) ot
b) Find a parametric representation for the part of the planez=x+ 2
in the first octant and inside the cylinder x? + y? = 1.

!
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N
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-
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Recitation 31

Today's Topics
16.5 Surfaces and Areas
16.6 Surface Integrals

Learning Objectives

16.5 Calculate the area of a surface given explicitly, implicitly, or parametrically
16.6 Calculate outward flux through a surface

16.6 Calculate the total mass and centroid of a thin surface (if time permits)

Course Logistics
1. Has a final exemption cutoff been announced?

2. What is the cutoff?

3. When is your final exam?




R31
, 16.5 Surfaces and Areas

Surface area for a parameterized surface:

Surface aren =S der o =[n%
S

Your textbook has formulas for calcuatling the surface area for
implicit and explicit surfaces, we probably won’t have time to
work on these in recitation.

? 'S ok ()a%amg\Leri2aJVlw of oun fwﬁ“@) and.

= =
Y“ >~ (:.L/L)/L")

= _ 94§
.= 2
AN
- _ 2
Tv‘gvr
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s 16.5 Surface Area Example

Sey-up an itaqeal ik rafmjc-n‘t(
the surface areaofz=y? for0<x<a,0<y<h.

gURYP*CE f\“}\ = %% \‘Fu* ?v \dmo(‘lr‘

—
We need RARAMETEE KTion , T (M)m') :

AN
%:u, Meco)a] -
- =
M =, v elo,b)
z= v
- -\
WE WNEED |7 Ty | Loy
-_-————__——\ —_ o = A ‘\l & ©
T :R_GX) Y, © 1‘\:&> Yuxry T1lo 1 2y
u 6

CACunte  Sorr, PREA |
Qg\?mx ;—L\ dodv = g\: gj '\Im Adudl (1% \k*o)res‘l'w() Cun «)ef ares wf tuble of ‘Hearal:.)




R31
. 16.5 Surface Area Example

Set up an integral that represents the area of the part of the plane x + 2y + z = 4 that
is inside the cylinder x? + y? = 4.

QUT’FQ(Q QYQOK = ggdf - gg \Rx?v\ Aol

(¢ do = i\ Vo dudn—, W
G

e
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R31
s 16.6 Flux Through a Surface

A fluid has velocity field v = yi + j + zk. Set up an integral that represents the flux
through the paraboloid z = 9 — (x* + y2)/4, if x2 + y2 < 36.

Sl = (e ds =7 )

[ \,\ ro\’-\\, — ]

w - ' > -1 \ r,.xr, =

T P o DR B R
‘1—(u1+v't)/‘rj v

- “ T
Ty $36 implies W rv €36

1(\19( ;SS v (Ru®y) o

o v 1 Y o

"

gg {(N\— ﬁ‘\ 2 RC:?N Au ol

9- (\A"-W'j e A

= = nN—= "‘SIAG"’YS :
?oY \\')«?‘\’S) wse. ’lL-\"COSe-kc,)

Slog = G 0° A(res v #- (rearaE rhd
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R31
. 16.6 Surface Integrals (this was a 2014 pop quiz question)

Set up a double integral that represents the flux of flow F = xi + zk thorugh the surface
z(x,y)=x?-y2 where0=sx<1, -1sy=s1.

L3k B
n = i; = - o i oF 1‘07—U«,5,[L("5
— -~ ' ry = \ w X = . - tLv
Y —(3\{-,’7} S Y ?..LL_\ % v I.'LV 2 % 6 \ -2y \ J
— - -
- gg RN dud
—’W Zk

= g\g] __(/{L_.-’\rz— C/{,'V-O(-M_
a - |



R31
s 16.6 Centroid of a Thin Surface (if time permits)

The mass density at any point on a thin surface z?> = x? + y?, 0 <z < 1, is proportional to
its distance to the z-axis.

a) Find the total mass of the surface.

b) Find the centroid of the surface.

\ M « S0 )M do- ’"W“‘l*ﬂ"(ﬂ k= constact o = [Roiphely

i \; E:’KF}/X > \Fh.“‘;v \\: ’\FI-—.\

'\ Y'W"Vv :\o ([ \

o M= gglg(u%v")éﬁ?o(ma(—r) :'\ﬁL g:“g rdrd® = = -\)_’T'l(.
A

\3 We wewt (?)."{);‘) s but % ‘_v\ =0 L :\)MM%HS,
M= gg 2 Qoue) do = ﬁg \( (= +v) (’\ﬁo(‘uo"u“>
- ﬁl‘gj () x> drdo

.

— At k
’L.(\



R31 |
o 16.5 Surface Area Parameterization (additional example)

Find parametric representations for the following surfaces.

a) the upper half of 4x2 + 9y2 + z? = 36
b) the part of the plane z = x + 2 inside the cylinder of x2 + y2 = 1

- -
a\ di\lid@ \5\5 3( ' i‘ 4 A—_ + — :\ , use Mop{f-['/e,f S*L@'\;C“\

31. 7_1' QL
A =3 csU eV ue[:o)rn]
2 L Siny CosV
\\ § 4V [OJT/L\B
z = € sin v



Recitation 32

Today's Topics

|o Final Exam Review
16.7 Stokes Theorem
16.8 The Divergence Theorem

Learning Objectives
16.7 Use Stoke’s theorem to calculate either work, or circulation over a curve
. 16.8 Calculate flux through a surface using the divergence theorem

Final Exam Logistics '
Review session: information sent via email
Questions during final: information sent via email




R32

Studying for the Final Exam

There are two prep-finals available on T2. Each of them have five
qguestions that focus on specific areas of our textbook.

Chapter 13 Chapter 14 Chapter 15 Chapter 16
Prep-Final A P1 P2, P3, P4, P5
Prep-Final B P1 P2 P3 P4, P5

Ways you may want to study:

» solve prep final questions

« re-do quizzes 1 through 4

* re-do MML problems

« memorize formulas (especially from Chapters 13 and 16)
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3

R332
>

PrepFinal Question A1l

Find the speed, the tangential acceleration and the normal acceleration
for the motion r = (,t2,t2). Compute also the curvature of the
corresponding curve as a function of t.

seeed =PI LGS ¢ ([4]] = vommmr s vimee
ap = O&t l\ﬂ 0’/“ Viveer = z.(lﬁﬁl)—/‘(%tget] = 8{"/4+se*-

. ', = \“
R 0 L _ e Vo — ﬁ-@ﬁ-y g 12
ap =V — ot =(|E]l [ﬁsﬂ = (] -

(e ol bl wceck 0, =

K -G = R el L L:\ +8W\K \\ (1r8e



3L

32

. PrepFinal Question AZ

Find the moment of inertia with respect to the x axis of a thin shell of
mass & that is in the first quadrant of the xy plane and bounded by the
curve r? = sin 20.

NPT cMRVE™
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5 5 G (T (ot rdrde
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‘%&S @ga rd ’ S(z*‘z’) %{s
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232 |
.~ PrepFinal Question A3

Compute the center of mass of a thin shell that is formed by the cone
(z-2P=x2+y?,0=sz=2. % A

We wed (KR bk X =9 =0 by smnedTy) -
_ ) pe = do .
s oMy, M S sde, My = Sie 8l

Assume $= ams ot
Vi % v o{uo('\r’ —ulA
f’\ SSQ\ a _\ \\ 0 M/«f‘\:&:’\//’r“g ? ’
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G §§ A o de = TS 7 S fgam -GN, = E S
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g§(1_mme fs(ar)s =1%

My = & (AT zoludy =

some RS 5 (R = (00 /5)
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232 | ,
. PrepFinal Question A

Compute the line integral of the vector field F = (xyz + 1, x?z, x?y)e** =
along the curve r(t) = (cost,sint,t), 0 st < .

g )
WQ, WC(V[+ g F '04?? . WQ, Cm,q)+ Use_ Cfeenj F\—'/\M) ge¢ g}’tt:gj {’I’U'h)

\be/caus& C,- s no‘}' C(GS%(- p
3

P » B :
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w ck {:zr .X’i’\ % c=cost , S5
% 0‘3""& 5 \L,‘LS/\ \;\ k ?
SRR e

X Liom 5. vern ,,{.-@ka }'\ N v F lS o0 CMSC/\‘M*W?— {\e J we com WS&‘V\)' FTLI.
P SR A 2 LUARTA )

i ‘A ben Cl® = UF 2| %, ‘%ﬂ %ﬂ [ X Thes
:S_{ V)(FQO <H\p|. F s Cmfeyu g Q{lﬁ%-}\)e }%e}f f\ Q'\

f He FTuor, o oo §o \,W.V\U«v( ‘H ‘G"\o{ A @(x)vl;&) (&

F\I CWJQ/FVOI+'V‘- ovol e em “?")
Q4 = 2. Byipedion, 4= 52" Tus, SF AT = glarmonn) - e,
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R32 . .
- PrepFinal Question A5

Use the divergence theorem to compute the outward flux of the vector
field F = (X2, y?, z?) through the cylindrical can that is bounded on the
side by x2 + y2 = 4, bounded above by z = 1 and below by z = 0.

SOt vnf ‘l((b?( - gg??\ de = S\ES T.F dV
S

- (S 2x +7,v\+'L‘J:oW

=" g} gio (‘rc yYro+ ?_)ro&z—l)n(@

6
e AWCI AT
;,lgl‘n&% CC."FS\ + *—Et\li a Jd 6

) Q”(%(wﬂ H\ 40

<



R32 . | _
s PrepFinal Question B1

Find the parametric equations of the line that is tangent to the curve
r(t) = (e, sint, In(1 — t)), att = 0.

~ t 7 . ( \ '\
=1 ] c |\ (.= ce’ € - r (O\ - | o\
r = i \\ J \ o

\ \_.k I_\. L

B ~

. 1
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R32 _ .
o PrepFinal Question B2

Find the minimum cost %’éﬁ’fof a rectangular solid with volume 64 cubic
inches, given that the top and sides cost 4 cents per square inch and the
bottom costs 7 cents per square inch. Just set up the equations using
Lagrange multipliers, you do not have to solve them.

Yy

L

V=64 = LwH )
C = Ylw + 42+ fawl + FLW

\Lw + §LHY 9 WH
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Ve=2\v
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R32 . .
10 PrepFinal Question B3

Compute the average of the function x* over the sphere centered at the
origin whose radius is R > 0.

( L ™ gEUMi .«\ «\/(/\a/*' W \;«wf UGL TV 50’&4 gl\w ot (s Sur'{:mce)
l (v, xduwdr =2 “Qugrace G(“: | olume o-F V)
T openecal | §(C )y (e (v

S
o £or P ?(0(”\% 5

(//;L,.ﬁ?\ )(C(VQ.VO‘TZ-) gfg X ofw(v\)o(%r
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R32 ) .
1 PrepFinal Question B4

Compute the flux |F-ndo, S where S is the hemisphere x2 + y? + z2 = 4,
z 2 0, n points toward the origin and F =(x(z-y), y(x-z), z(y—X)).

ggg fj'f‘ o =355 T Fdl o owe =" dgcawe a5 Yhe inward il
=505 o)+ (x-) +(y-x) oV
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R32 . .
2 PrepFinal Question B5

Compute the line integral | _F-dr where C is the curve given by the
intersection of the sphere x? + y2 + z2 = 4 and the plane z = -y,
counterclockwise when viewed from above, and F = (x2 +y, x +y, 4y? — z) .

Y‘:i ‘FB Q{Fx = <§ @x%’}“/}’:dg") Lv) 5+0LQS Y

S ~
'. 3\51\ \ r’_x"\“ qX):ﬁ: ?X:})
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) ‘VXF‘?L;B =0

/



R32 \
13 16.7 Stokes’ Theorem

Curl describes the tendency a fluid has to _turn at a specific |
 point. Stokes’ Theorem states that:

( S FOM’ . \g * | o’} Y/F@)v\%-}
J e ;
Note that curve C mustbe (' 05ed!
Stokes’ theorem can be used to calculate \wor k and f lu)<

Historical note: Stokes’ theorem is named after Sir George Stokes, but was discovered by Sir
William Thomson.
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R32
s 16.8 The Divergence Theorem

The divergence theorem states that

flux= §CFR oo = (o= al/
. v

V\ :(//11")/ M noi Mﬂ/
VW\?}' - O(W"/w]“"f/@/

S = C(()SQOX KMP‘@Q%
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