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Abstract— This paper presents the application of a piezo-
electric self-sensing technique based on current integration to
robotic tweezers incorporating a rhombus strain amplification
mechanism driven by serially connected piezoelectric stack ac-
tuators. Connecting a shunt resistor in series with a piezoelectric
element and measuring the voltage though the resistor allows
the element to be used simultaneously as an actuator and a
sensor by integrating the current to get the charge generated
by the piezoelectric element. This allows the displacement to
be measured without extra sensors or the loss of actuation
capability. Applying an inverse model of the nested structure
allows the force and displacement at the tip of the tweezers to
be determined. The accuracy of this method is then examined
by experiment for the case of free displacment.

I. INTRODUCTION

Piezoelectric materials generate an electric field when
mechanically deformed, or alternately will deform in the
presence of an electric field. These effects are known as the
direct and converse piezoelectric effects respectively [1], and
they make piezoelectric materials useful as both actuators
and sensors. Piezoelectric materials exhibit high bandwidth
and high force but relatively small displacement. Prior work
has developed strain amplification mechanisms to create
useful amounts of displacement [2]. By nesting rhombus
mechanisms within each other exponential strain amplifica-
tion is achieved while reducing the force. The method is well
suited to piezoelectric actuators because of their relatively
high force but low displacement characteristics.

Based on this idea a piezoelectric tweezer-style end effec-
tor was developed with force and displacement characteris-
tics suitable for use in robotic assisted surgery [3]. Robotic
assisted surgery has many benefits including being mini-
mally invasive. The surgeon can also be guided by imaging
technologies such as MRI. Force and displacement sensing
in this application is critical to provide haptic feedback to
the surgeon as well as avoiding injuring the patient. This
sensing capability was achieved by using five actuators in
series with one being used passively as a sensor and four
being used as actuators. An inverse model for the force and
displacement at the tips was developed, allowing those values
to be calculated based on the induced voltage in the sensor
unit and knowledge of the tip conditions as fixed or free.

In this paper a simple self-sensing technique based on cur-
rent integration will be presented that allows a piezoelectric
unit to be used as a sensor and an actuator simultaneously.
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This eliminates the need to use one unit as a pure sensor
which wastes its actuation capability. The piezoelectric self-
sensing bridge circuit developed by Dosch et. al. is well
known but has several drawbacks [4]. The circuit requires
exact capacitive matching of the piezoelectric actuator, which
can prove difficult in practice due to variations in capacitance
caused by change in temperature. Attempts at improving
this aspect of the circuit by placing capacitances in series
or parallel with the piezoelectric actuator have met with
some success [5], but the circuit is not well suited to static
measurements due to the fact that all measuring devices
contain an inherent resistance. The output of the circuit
depends in part on the voltage generated by the piezoelectric
actuator due to strain. It should be noted however that a
piezoelectric material is not an ideal voltage source but
rather generates a dipole moment when strained. Indeed,
the induced voltage will decay over time even if a high
resistance such as a measuring device or op amp is connected
between the electrodes of a piezoelectric device. As such, a
piezoelectric material can be thought of as generating some
amount of energy when deformed but no power. The self-
sensing technique proposed in this paper takes this property
into account when modeling the system, giving it the ability
to take static measurements. Static measurements are im-
portant for a surgical application, where the device could
conceivably be required to maintain a force or displacement
for an extended period of time while holding an object or
body part.

Another technique has been proposed by Cui et. al. using
current integration [6]. However, this method still relies on
a matching element in the circuit which must be manually
tuned. Further, the method is only applicable to displacement
sensing since the authors assume no external stress at the start
of the derivation of their equations. The method presented
in this paper is simpler, requiring no matching element, and
easily extendable to simultaneous force and displacement
sensing. Another attempt at observing induced charge was
made by Ohta et. al. [7] but the method relies on charge
amps to sense induced charge and is therefore poorly suited
to static measurements. The method proposed in [8] uses a
modified charge amp as a current integrator and is similar
to the one proposed in this paper. However, the method in
[8] is reliant on high quality components and is sensitive
to changes in ambient temperature. The method proposed
in this paper uses numerical integration to find the charge
generated by the actuator, reducing the components required
for the self-sensing circuit to a single resistor. This increases
the robustness of the method as well as decreasing the cost.
While the numerical integration was done in post-processing



Fig. 1. Rhombus strain amplification principle

Fig. 2. Cedrat APA35XS Piezoelectric Actuator Module [9]

for this paper, it could be implemented on a microprocessor
for applications where real time sensor output is required.

II. PIEZOELECTRIC TWEEZER-STYLE END EFFECTOR
BASED ON NESTED RHOMBUS STRAIN AMPLIFICATION

TECHNIQUE

A. Rhombus Strain Amplification Mechanism

While piezoceramics generate high force they generate
extremely small strain. To amplify this strain to a usable
level the rhombus strain amplification mechanism is used
[2], shown in Fig. 1. Using this mechanism a tweezer-type
end-effector was developed with three levels of strain ampli-
fication [3]. Five Cedrat APA35XS piezoelectric actuators in
series, each consisting of a Lead Zirconate Titantate (PZT)
stack actuator and an amplification mechanism, constitute
the first layer of amplification, seen in Fig. 2. This layer is
surrounded by another rhombus strain amplification mech-
anism, shown in Fig. 3. Finally, the arms of the tweezers
provide another layer of amplification. The entire tweezer
assembly is shown in Fig. 4. The tweezers produce 1.1 N
of static piniching force in the blocked case or 9 mm of
displacement in the free case between the tips when 150V
is supplied to all five actuators.

Fig. 3. Five Cedrat Actuators within second strain amplification layer [3]

Fig. 4. Piezoelectric Tweezers [3]

A Rhombus strain amplification mechanism can be mod-
eled by a lumped parameter model, shown in Fig. 5 [2].
Based on this model we obtain the following equations [3],

fpzt + kBI(∆xc −∆xpzt)− kpzt∆xpzt (1)

akBO(a∆xc −∆x1) + kJ∆xc + kBI(∆xc −∆xpzt) (2)

f1 = kload∆x1 = kBO(a∆xc −∆x1) (3)

where a is the amplification leverage; fpzt and ∆xpzt are the
force and displacement applied from a internal PZT stack
actuator; kBI , kJ , and kBO are spring constants from the
lumped parameter model; kload is the compliance of the load;
∆x1 is the amplified displacement; f1 is the force applied to
the load; and ∆xc is the displacement between the springs
and the leverage. Note that ∆xc has no physical meaning
and is simply a mathematical construct necessitated by the
model. Solving (1) for ∆xc we obtain

∆xc =

(−fpzt
kBI

+ ∆xpzt

(
1 +

kpzt
kBI

))
(4)

Substituting (4) into (2) then yields an expression for ∆x1



Fig. 5. Lumped parameter model of strain amplification mechanism [3]

in terms of ∆xpzt, fpzt, and constants.

∆x1 =

(
a+

kJ + kBI

akBO

)(−fpzt
kBI

+ ∆xpzt

(
1 +

kpzt
kBI

))
−kBI∆xpzt

akBO
(5)

It can now be seen that f1 is a function of ∆xpzt and fpzt
as well since it is a linear combination of (4) and (5).

The second layer of strain amplification can also be
modeled by the lumped parameter model and is therefore
described by equations of the same form. Let a2, kBI2,
kBO2, kJ2, kload2 and kpzt2 be the constants describing the
second amplification layer, while ∆x2 and f2 are the force
and displacement of that layer. Note that kpzt2 is the stiffness
of the five APA35XS actuator modules in series while kpzt
is the stiffness of the interior PZT stack actuator itself. The
following equations give the force and displacement after the
second amplification.

∆xc2 =

( −f1
kBI2

+ 5∆x1

(
1 +

kpzt2
kBI2

))
(6)

∆x2 =

(
a2 +

kJ2 + kBI2

a2kBO2

)( −f1
kBI2

+ 5∆x1

(
1 +

kpzt2
kBI2

))
−5kBI2∆x1

a2kBO2
(7)

f2 = kload2∆x2 = kBO2(a∆xc2 − 5∆x1) (8)

A multiplier of five is included with ∆x1 to account for the
five actuators in series at the previous level.

B. Tweezer Structure

Fig. 6 shows a schematic diagram of the tweezer structure.
The force and displacement after the second layer rhombus
are f2 and ∆x2, and the force and displacement at the tip
can be written as [3]

ftip =
∆x2 −Q1f2

Q2
(9)

Fig. 6. Schematic of tweezer structure

∆xtip = Q3f2 +Q4ftip (10)

Where
Q1 =

(
CA2

2EI1
+

CA4

2EI3

)
(11)

Q2 =

(
CA1

2EI1
+

CA3

2EI3

)
(12)

Q3 =

(
CB2

2EI1
+

CB5

2EI3

)
(13)

Q4 =

(
CB1

2EI1
+

CB3

2EI2
+

CB4

2EI3

)
(14)

E is the Young’s Modulus of phosphor bronze, and I1, I2,
and I3 are the second moment of area. CA1 → CA4 and
CB1 → CB5 are coefficients obtained using Castigliano’s
Theorem and modeling the tweezer structure as Bernoulli-
Euler beam [3].

Based on (4) through (10) it is seen that ftip and ∆xtip
are linear combinations of fpzt and xpzt. Theoretically,
one could predict ftip and ∆xtip by choosing the right
constants for the lumped parameter model. While this is
technically possible, in practice it proves easier to use a
multiple regression to determine an appropriate combination
of fpzt and ∆xpzt.

III. PIEZOELECTRIC SELF-SENSING

A. Piezoelectric Constitutive Equations

It has been shown that ftip and ∆xtip can be determined
if fpzt and ∆xpzt are known. Now, a self-sensing tech-
nique to measure those values will be described. Let us
begin by examining the piezoelectric constitutive equations.
Piezoelectric materials are characterized by the direct and
converse piezoelectric effects, described in tensor notation
by equations (15) and (16) [1]

Di = εTijEj + dijkTjk (15)

Sij = dijkEk + sEijklTkl (16)

where Di is electric displacement, ε is permittivity, E is
electric field, T is stress, S is strain, s is compliance, and
dijk and dijk are the piezoelectric constants. Superscripts
E and T indicate that the relevant value is measured at a
constant electric field or stress respectively. In this case, it
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Fig. 7. Schematic diagram of piezoelectric crystal with conventional
direction numbering

can be assumed that stress and electric field only occur along
the poling direction, since this is the actuation direction of
the PZT stack. The constitutive relations then reduce to two
scalar equations,

D3 = d33T3 + εT3 E3 (17)

S3 =
1

ypzt
T3 + d33E3 (18)

As is common when dealing with piezoelectric materials, the
subscript is now written in the compact Voigt notation. The
subscript 3 indicates that the quantity is measured along the 3
axis, which by convention is parallel to the polling direction,
shown in Fig. 7. The piezoelectric constant d33 describes
the coupling of electric phenomena in the 3 direction to
mechanical phenomena in the 3 direction. ypzt is the Young’s
modulus of the PZT stack. Now (17) and (18) are multiplied
by the length of the PZT stack in the 3 direction, l. Realizing
that

S3l = ∆xpzt (19)

vpzt = E3l (20)

Cpzt =
εT3 A

l
(21)

and
D3 =

q

A
(22)

where vpzt is the voltage across the PZT stack, q is the free
charge on PZT stack, Cpzt is the equivalent capacitance of
the PZT stack, and A is the cross sectional area perpendicular
to the 3 axis, (17) and (18) become

∆xpzt =
T3l

ypzt
+ d33vpzt (23)

q

Cpzt
=
d33T3A

Cpzt
+ vpzt (24)

It will be seen that these forms of the equations are in terms
of useful quantities for self-sensing.

Fig. 8. Piezoelectric self-sensing circuit
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Fig. 9. Response of induced charge and current to a trapezoidal input. vc
is scaled by 10−6 to show its shape in relation to charge and current

B. Self-sensing Technique Based on Current Integration

Consider the circuit shown in Fig. 8 with five PZT
actuators. Four actuators are connected in parallel with the
driving voltage souce. One actuator is connected in series
with a shunt resistance to the voltage source for current
sensing. By Kirchoff’s loop law we have the following

vpzt = iR− vc (25)

where i is the current in the loop, R is the resistance, and
vc is the command voltage that drives the PZT actuator.
Since the current is the same through all elements of the
loop, integrating the current will yield the charge flowing
through the PZT actuator. When the piezoelectric material



Fig. 10. Experimental Setup
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Fig. 11. Calibrated self-sensed displacement with laser sensor data for a
trapezoidal input

is deformed, the extra charge produced by strain will be
immediately discharged through the resistor and will appear
as a transient increase in current through the loop. By
substituting (25) into (24) and realizing that i = q̇, a
differential equation for T3 in terms of q is obtained as
follows

T3 =
−q̇RCpzt + q + vcCpzt

Ad33
(26)

Multiplying (26) by A gives an expression for the force
generated by the actuator

fpzt =
−q̇RCpzt + q + vcCpzt

d33
(27)

Equation (26) can be substituted into (23) yielding

∆xpzt =
l

ypztAd33
(−q̇RCpzt + q + vcCpzt)

+d33(q̇R− vc) (28)
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Fig. 12. Calibrated self-sensed displacement vs. laser sensor data
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Fig. 13. Same calibration applied to a lower amplitude sine input

Now ∆xpzt and fpzt are known in terms of vc, q, and q̇, or i.
i is easily found by measuring the voltage across the resistor
and dividing by R per Ohm’s law. Integrating i then gives
q. Fig. 9 illustrates the response of the charge and current to
a trapezoidal input.

IV. EXPERIMENTAL VERIFICATION

A. Comments on Simultaneous Force and Displacement
Measurement

The self-sensing method developed in the previous section
is applicable to both force and displacement measurements
in a piezoelectric actuator. However, due to the flexibility
of the tweezer design the force and displacement cannot
be simultaneously measured because there are multiple tip
forces and positions for each fpzt and ∆xpzt based on
the conditions encountered by the tip, i.e. blocked, free,
or compliant. To achieve simultaneous measurement for a
tweezer device the structure must be approximately rigid,
i.e. the flexure is negligible compared to the displacement



of the tips, or the tip conditions must be known. As such,
in this paper only the displacement in the free case will be
verified experimentally.

B. Experiment

Fig. 10 shows the experimental setup used to measure
displacement. A laser position sensor measured the displace-
ment of the tip for comparison against the self-sensing cir-
cuit. As shown above, ∆xtip is a linear combination of fpzt
and ∆xpzt. The appropriate coefficients can be calibrated
by performing a multiple linear regression against data from
the laser displacement sensor. Fig. 11 shows the calibrated
displacement output plotted with the sensor data in response
to a trapezoidal input. The maximum error was 20% of the
dynamic range. Fig. 12 shows the calibrated displacement
output plotted against the sensor data.The nonlinearity of
the PZT stack is evident, but for many applications a linear
approximation may be sufficient.

For the sensing technique to be truly useful, the calibration
from one set of data should still yield acceptable results when
applied to a different data set. Fig. 13 shows the self sensed
displacement using the same calibration and the sensor data
when the tweezers were given a sinusoidal input with smaller
amplitude. In this case the maximum error was 12% of
the dynamic range. These errors arise from several places.
As noted in [3], piezoelectric ceramics exhibit hysteresis.
Here the charge generation was assumed to be linear with
respect to displacement. Further, the equivalent capacitance
was assumed to be invariant. In reality this value changes
with deformation.

C. Discussion

This measurement technique can accomodate static mea-
surements because it takes the discharge of the PZT actuator
into account. However, the inclusion of a resistor in series
decreases the efficiency of the actuator. Since a portion of
the applied voltage is taken by the voltage drop across the
resistor the actuator in series sees a smaller effective voltage.
This causes the sensor information from the self-sensing PZT
stack to be slightly different than the true force and displace-
ment of the PZT stacks used purely for actuation as well. R
can be decreased to minimize wasted power, but is practically
limited by the fact that a smaller resistance will produce
a smaller and eventually unmeasurable voltage change in
response to the transient current changes. Therefore decreas-
ing R improves the efficiency but decreases resolution. The
technique is also limited by the fact that nonlinearities in
the piezoelectric material can cause the current generated in
the backwards and forwards directions to be different. If this
occurs the sensed displacement will drift away from a zero
minimum. Note the slight drift in the self-sensed data from
Fig. 11 due to these nonlinearities. A compensation method
for this problem would make the technique more robust. Also
note that the shape of the response generally matches the data
from the laser sensor, except for the rounded corner where

the displacement approaches the top of the trapezoid. This
is another source of error that will be investigated in future
research.

V. CONCLUSION AND FUTURE WORKS

In this paper a piezoelectric self sensing technique has
been presented that is well suited to static measurements.
Based on the piezoelectric constitutive equations the force
and displacement of the PZT actuator were written based
on charge on the actuator, its first derivative in time, and
the input command voltage. The technique is limited by
the inherent nonlinearities of PZT which cause drift in
the output signal. Further an increase in the shunt resis-
tance will have negative effects on the efficiency of the
self-sensing actuator. The method was applied to a set of
piezoelectrically driven tweezers using strain amplification
mechanisms. Based on a lumped parameter model of the
strain amplification mechanism and a Euler-Bernoulli beam
model of the tweezer structure, the force and displacement
of the PZT stack can be extrapolated to the force and
displacement at the tips.The self-sensed displacement of the
tips was validated against measurements from a laser position
sensor in the free case. For a rigid tweezer structure or known
tip conditions simultaneous measurements would be possible.
Future work will focus on validating force and displacement
measurements when the condition at the tips is unknown, as
well as minimizing causes of error. A further goal is to extend
the applicability of the tweezers to the MRI environment so
they can be used for MRI guided surgery.
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