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Abstract. This paper describes an object-oriented system, "MBSIM" (MultiBody SIMulator), that models, 
simulates, and animates the kinematics and dynamics of robotic arms and vehicles. This system creates a three
dimensional graphical environment which can be used as a tool in robotic design and control. 

1. INTRODUCTION 

A motivation for developing MBSIM arises from an inspection task in the nuclear industry. This task requires 
vehicles to move safely along narrow aisles to inspect drums of low-level radioactive waste. Safe motion 
requires sensor-based motion control to avoid collisions with walls and obstacles. Given the difficult nature of 
the environment involved, a simulation system is necessary for the development and testing of motion planning 
and control algorithms. 

We desired MBSIM to be a convenient and flexible tool for studying the motions of various mechanisms 
including vehicles, robotic arms, and combinations of the two. Our simulation integrates the kinematics, 
dynamics, sensors, and graphics of mechanisms into a modular environment. Each mechanism consists of a 
series of links. The mechanism's kinematics and dynamics are determined from the relative kinematics and 
mass properties encapsulated in each link. Sensors can be attached onto each link object as desired. These 
sensors are useful for path generation and control routines. Mechanism graphics are constructed from graphics 
descriptions associated with each link object. 

The types of systems that MBSIM can model involve physical objects such as robots, vehicles, and obstacles, 
objects that share many characteristics. An object-oriented approach is appropriate for modeling these systems. 
Common characteristics such as position and geometric shape can be developed once and reused appropriately 
via object inheritance and inclusion. The reSUlting software objects reflect the modularity of the world and can 
be dealt with intuitively. In fact, one of the important benefits of the object-oriented approach is the ability to 
think of software objects in the same way as we do real objects. MBSIM utilizes object-oriented inheritance to 
construct new types of links from existing links. To illustrate some benefits of the object-oriented approach, 
this paper includes a case study that outlines the steps taken as well as the time involved in modeling and 
simulating a mobile platform. 

2. SOFT\v ARE DESIGN 

Our system is implemented using the object-oriented C++ language [4]. C++ is an object-oriented 
programming language that directly supports inclusion (using user-created objects as data) and inheritance 



(designing objects which inherit previously developed data structures and code from more basic object 
defmitions). 

In MBSIM, each mechanism is constructed as a series of links. Each link incorporates the joint kinematics that 
connect it to the preceding link. In other words, each link "knows" how to move itself with respect to the 
previous link. This general joint paradigm allows holonomic and non-holonomic constraints to be treated 
similarly. This paradigm also facilitates modeling and simulation of the kinematics and dynamics of multibody 
mechanisms with a wide variety of link types. The links contain graphic objects which describe the physical 
shape of the link and sensors which provide feedback of the environment. 

3. KINEMATICS 

Following the joint paradigm, each link contains functions to compute its angular and linear velocity and 
acceleration relative to the preceding link. These functions are pure virtual functions in the generic link class 
and therefore must be defmed in every specific link sub-class. This ensures a uniform interface to each specific 
link that can be used to cal~ulate velocities and accelerations of any link. The velocities or accelerations are 
calculated by propagating the velocity out from the base link to the link of interest. This propagation from link 
to link requires the uniform interface so that the velocities or accelerations can be. calculated for mechanisms 
composed from any number and types of links. 

Each specific link also contains functions which enable velocity or acceleration joint variables to be integrated 
to yield the mechanism motion. These velocities or accelerations would be commanded from control schemes 
such as obstacle avoidance and path planning. These control schemes would generally be implemented in the 
simulation to make use of sensor feedback and dynamic characteristics of the system. The commanded velocity 
or acceleration may be output to an external file for further analysis or for future replays. If needed, this also 
enables data from external control schemes to be read and tested with the simulation. These integration 
functions in each link, one for velocities and one for accelerations, contain equations which relate joint velocity 
variables to joint position variables and joint acceleration variables to joint velocity variables, respectively. 
Inside these functions, constraint or auxiliary equations may be used to determine the specific behavior of the 
link, as in a non-holonomic link. The mechanism calls the integration function of each link in the same manner, 
whether the link is holonomic or non-holonomic. 

4. INVERSE DYNAMICS 

The inverse dynamics of the system is calculated using an iterative Newton-Euler dynamic formulation similar 
to the one found in [2]. The inverse dynamics yields the forces and torques that each link's actuator would need 
to generate motion based on each link's positions, velocities, and accelerations. This is useful to determine 
whether the desired velocity or acceleration commands are feasible for a particular actuator. Many control 
schemes such as those found on a Denning robot produce velocity or acceleration commands rather than forces 
or torques. The consistent velocity and acceleration interface contained within each link enables only one 
function at the mechanism level to calculate the dynamics for each link in any mechanism in any configuration. 
Once again, by embedding the specific characteristics of a link inside the specific link class and using consistent 
interfaces to each link, general functions c.an be used to yield desired quantities regardless of the mechanism 
being studied. 

5. SENSOR MODELING 

To model a mechanism in an unknown or partially known environment, we require sensor feedback of the 
surroundings. Our system currently incorporates an idealized rangefinder model. As previously mentioned the 
link sensor file holds the positions and rotations of each sensor on the link. This file is flexible, allowing the 
user to place an arbitrary number of sensors in any position or orientation on any link. 

When activated, the sensor currently scans through all objects in the environment to determine whether the 
objects' enclosing spheres lie on the sensor's line of sight. Once this rough reading has been determined, the 
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object's actual geometric characteristics are tested for intersection with the sensor's line of sight. This two-stage 
method reduces computational overhead. 

6. IMPLEMENTATION 

The MBSIM hierarchy, as developed above, is 
implemented into four main parent classes: 
Mechanism, Link, Sensor, and 
Graphics_Object. The partial class structure in 
Fig. 1 shows their inheritance and inclusion 
relationships. These classes are constructed 
from script files external to the program. These 
files are read at run-time so additions and 
modifications of a wide variety of mechanisms 
can be made without having to re-compile 
MBSIM. 
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The Graphics_Object class encapsulates all Fig. 1. MBSIM class· structure sample. 
graphics library function calls. The system 
initially utilized SPRIGS, a public domain software library for 3-dimensional graphical display [3]. (SPRIGS is 
a simplified implementation of the well known 3-dimensional graphics protocol, PRIGS.) This encapsulation 
facilitates improvements to the graphics library. 

7. CASE STUDY 

A nuclear industry testbed vehicle is 
driven by two parallel wheels on a 
fixed axis with independent velocity 
control. The vehicle, as shown in Fig. 
2 is equipped with twenty-four 
ultrasonic sensors. 

The following steps were taken to 
simulate this vehicle. The manual 
derivation of the vehicle's kinematic 
and dynamic link equations required 
one hour. These equations were 
incorporated into a new class derived 
from the parent Link class, requiring a 
second hour. The vehicle took shape 
as its dimensions were set into a 
graphics description file requiring a 
half hour. Next, sensors were added to 
the vehicle through a sensor '-______ F_ig;;,.._2_._S_im_u_Ia_t_ed_cas_e_s_tu_d;;,.y_v_e_h_ic_le ______ -I 

description file. Positioning and orienting the twenty-four sensors took an hour. Another hour was needed to 
develop a routine to test the accuracy of the above files and code. The total time required to develop this new 
link and tailor it to a specific vehicle was about four and one half hours. 

8. CURRENT WORK 

Current work is focused on extending the flexibility of MBSIM. These areas include forward dynamics, sensor 
modeling, sensor data mapping, and graphics library improvements. 

Forward dynamics can be determined by putting special values into the iterative Newton-Euler routine to 
determine the mass matrix and the non-linear Corio lis, centrifugal, and gravity terms. Once found, one can then 



use these matrices to solve for joint accelerations given joint torques. Velocity and position are then obtained 
by integrating acceleration. 

An ultrasonic sensor is being modeled. Where appropriate, noise will be added to the returned data to more 
accurately simulate real sensor data. 

An intelligent sensor data storage array map is being developed to handle sensor input. Histogramic in-motion 
mapping will be used mainly to record levels of obstacle existence evidence [1]. The map updates data from 
new readings and will be used to create and evaluate obstacle avoidance paths. 

Currently, the graphics routines limit the performance of our system. This is due to our hardware and the simple 
nature of the SPRIGS graphics library. While excellent for our initial learning phase, SPRIGS does not have 
the performance of commercial graphics libraries. We are upgrading our hardware and implementing a more 
advanced and efficient graphics library. 

9. CONCLUSION 

MBSIM, an object-oriented three-dimensional robotic simulator, has been introduced. This simulation 
integrates the kinematics, dynamics, sensors, and graphics of mechanisms into a modular environment. A case 
study that outlines the steps taken and time involved in modeling and simulating a particular mobile was 
presented to demonstrate the system's flexibility. Current work will enhance the system's performance, 
flexibility, and sensing the environment. 
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