
Submitted to MathMod Vienna, Feb. 2-4, 1994, Vienna, Austria.

Integrated Modeling, Simulation, and Animation
of

Rigid Arms and Vehicles
through

Object-Oriented Programming

Paul R. Schmitt John E. Hogan Jonathan M. Cameron Wayne 1. Book

Georgia Institute of Technology
The George W. Woodruff School

of Mechanical Engineering
Atlanta, GA 30332

USA

Abstract. This paper describes an object-oriented system, "MBSIM" (MultiBody SIMulator), that models,
simulates, and animates the kinematics and dynamics of robotic arms and vehicles. This system creates a three
dimensional graphical environment which can be used as a tool in robotic design and control.

1. INTRODUCTION

A motivation for developing MBSIM arises from an inspection task in the nuclear industry. This task requires
vehicles to move safely along narrow aisles to inspect drums of low-level radioactive waste. Safe motion
requires sensor-based motion control to avoid collisions with walls and obstacles. Given the difficult nature of
the environment involved, a simulation system is necessary for the development and testing of motion planning
and control algorithms.

We desired MBSIM to be a convenient and flexible tool for studying the motions of various mechanisms
including vehicles, robotic arms, and combinations of the two. Our simulation integrates the kinematics,
dynamics, sensors, and graphics of mechanisms into a modular environment. Each mechanism consists of a
series of links. The mechanism's kinematics and dynamics are determined from the relative kinematics and
mass properties encapsulated in each link. Sensors can be attached onto each link object as desired. These
sensors are useful for path generation and control routines. Mechanism graphics are constructed from graphics
descriptions associated with each link object.

The types of systems that MBSIM can model involve physical objects such as robots, vehicles, and obstacles,
objects that share many characteristics. An object-oriented approach is appropriate for modeling these systems.
Common characteristics such as position and geometric shape can be developed once and reused appropriately
via object inheritance and inclusion. The reSUlting software objects reflect the modularity of the world and can
be dealt with intuitively. In fact, one of the important benefits of the object-oriented approach is the ability to
think of software objects in the same way as we do real objects. MBSIM utilizes object-oriented inheritance to
construct new types of links from existing links. To illustrate some benefits of the object-oriented approach,
this paper includes a case study that outlines the steps taken as well as the time involved in modeling and
simulating a mobile platform.

2. SOFT\v ARE DESIGN

Our system is implemented using the object-oriented C++ language [4]. C++ is an object-oriented
programming language that directly supports inclusion (using user-created objects as data) and inheritance

(designing objects which inherit previously developed data structures and code from more basic object
defmitions).

In MBSIM, each mechanism is constructed as a series of links. Each link incorporates the joint kinematics that
connect it to the preceding link. In other words, each link "knows" how to move itself with respect to the
previous link. This general joint paradigm allows holonomic and non-holonomic constraints to be treated
similarly. This paradigm also facilitates modeling and simulation of the kinematics and dynamics of multibody
mechanisms with a wide variety of link types. The links contain graphic objects which describe the physical
shape of the link and sensors which provide feedback of the environment.

3. KINEMATICS

Following the joint paradigm, each link contains functions to compute its angular and linear velocity and
acceleration relative to the preceding link. These functions are pure virtual functions in the generic link class
and therefore must be defmed in every specific link sub-class. This ensures a uniform interface to each specific
link that can be used to cal~ulate velocities and accelerations of any link. The velocities or accelerations are
calculated by propagating the velocity out from the base link to the link of interest. This propagation from link
to link requires the uniform interface so that the velocities or accelerations can be. calculated for mechanisms
composed from any number and types of links.

Each specific link also contains functions which enable velocity or acceleration joint variables to be integrated
to yield the mechanism motion. These velocities or accelerations would be commanded from control schemes
such as obstacle avoidance and path planning. These control schemes would generally be implemented in the
simulation to make use of sensor feedback and dynamic characteristics of the system. The commanded velocity
or acceleration may be output to an external file for further analysis or for future replays. If needed, this also
enables data from external control schemes to be read and tested with the simulation. These integration
functions in each link, one for velocities and one for accelerations, contain equations which relate joint velocity
variables to joint position variables and joint acceleration variables to joint velocity variables, respectively.
Inside these functions, constraint or auxiliary equations may be used to determine the specific behavior of the
link, as in a non-holonomic link. The mechanism calls the integration function of each link in the same manner,
whether the link is holonomic or non-holonomic.

4. INVERSE DYNAMICS

The inverse dynamics of the system is calculated using an iterative Newton-Euler dynamic formulation similar
to the one found in [2]. The inverse dynamics yields the forces and torques that each link's actuator would need
to generate motion based on each link's positions, velocities, and accelerations. This is useful to determine
whether the desired velocity or acceleration commands are feasible for a particular actuator. Many control
schemes such as those found on a Denning robot produce velocity or acceleration commands rather than forces
or torques. The consistent velocity and acceleration interface contained within each link enables only one
function at the mechanism level to calculate the dynamics for each link in any mechanism in any configuration.
Once again, by embedding the specific characteristics of a link inside the specific link class and using consistent
interfaces to each link, general functions c.an be used to yield desired quantities regardless of the mechanism
being studied.

5. SENSOR MODELING

To model a mechanism in an unknown or partially known environment, we require sensor feedback of the
surroundings. Our system currently incorporates an idealized rangefinder model. As previously mentioned the
link sensor file holds the positions and rotations of each sensor on the link. This file is flexible, allowing the
user to place an arbitrary number of sensors in any position or orientation on any link.

When activated, the sensor currently scans through all objects in the environment to determine whether the
objects' enclosing spheres lie on the sensor's line of sight. Once this rough reading has been determined, the

(i'

object's actual geometric characteristics are tested for intersection with the sensor's line of sight. This two-stage
method reduces computational overhead.

6. IMPLEMENTATION

The MBSIM hierarchy, as developed above, is
implemented into four main parent classes:
Mechanism, Link, Sensor, and
Graphics_Object. The partial class structure in
Fig. 1 shows their inheritance and inclusion
relationships. These classes are constructed
from script files external to the program. These
files are read at run-time so additions and
modifications of a wide variety of mechanisms
can be made without having to re-compile
MBSIM.

Sample of 0 r""7'i.m=::>
Multi-Body Simulator i

Class Structure I --+- Pointa to Base Class
(b)

·····a Has a Member of
the Tj1>C Below
(I·r"")

The Graphics_Object class encapsulates all Fig. 1. MBSIM class· structure sample.
graphics library function calls. The system
initially utilized SPRIGS, a public domain software library for 3-dimensional graphical display [3]. (SPRIGS is
a simplified implementation of the well known 3-dimensional graphics protocol, PRIGS.) This encapsulation
facilitates improvements to the graphics library.

7. CASE STUDY

A nuclear industry testbed vehicle is
driven by two parallel wheels on a
fixed axis with independent velocity
control. The vehicle, as shown in Fig.
2 is equipped with twenty-four
ultrasonic sensors.

The following steps were taken to
simulate this vehicle. The manual
derivation of the vehicle's kinematic
and dynamic link equations required
one hour. These equations were
incorporated into a new class derived
from the parent Link class, requiring a
second hour. The vehicle took shape
as its dimensions were set into a
graphics description file requiring a
half hour. Next, sensors were added to
the vehicle through a sensor '-______ F_ig;;,.._2_._S_im_u_Ia_t_ed_cas_e_s_tu_d;;,.y_v_e_h_ic_le ______ -I

description file. Positioning and orienting the twenty-four sensors took an hour. Another hour was needed to
develop a routine to test the accuracy of the above files and code. The total time required to develop this new
link and tailor it to a specific vehicle was about four and one half hours.

8. CURRENT WORK

Current work is focused on extending the flexibility of MBSIM. These areas include forward dynamics, sensor
modeling, sensor data mapping, and graphics library improvements.

Forward dynamics can be determined by putting special values into the iterative Newton-Euler routine to
determine the mass matrix and the non-linear Corio lis, centrifugal, and gravity terms. Once found, one can then

use these matrices to solve for joint accelerations given joint torques. Velocity and position are then obtained
by integrating acceleration.

An ultrasonic sensor is being modeled. Where appropriate, noise will be added to the returned data to more
accurately simulate real sensor data.

An intelligent sensor data storage array map is being developed to handle sensor input. Histogramic in-motion
mapping will be used mainly to record levels of obstacle existence evidence [1]. The map updates data from
new readings and will be used to create and evaluate obstacle avoidance paths.

Currently, the graphics routines limit the performance of our system. This is due to our hardware and the simple
nature of the SPRIGS graphics library. While excellent for our initial learning phase, SPRIGS does not have
the performance of commercial graphics libraries. We are upgrading our hardware and implementing a more
advanced and efficient graphics library.

9. CONCLUSION

MBSIM, an object-oriented three-dimensional robotic simulator, has been introduced. This simulation
integrates the kinematics, dynamics, sensors, and graphics of mechanisms into a modular environment. A case
study that outlines the steps taken and time involved in modeling and simulating a particular mobile was
presented to demonstrate the system's flexibility. Current work will enhance the system's performance,
flexibility, and sensing the environment.

10. ACKNOWLEDGMENTS

This work was partially supported by subcontract 92006 to the Educational Research and Development
Association (ERDA) of Georgia Universities under contract with Westinghouse Savannah River Plant.

11. REFERENCES

[1] Borenstein, Johann and Koren, Yoram, Histo~amic In-Motion Mapping for Mobile Robot Obstacle
Avoidance, IEEE Transactions on Robotics and Automation, vol. 7, no. 4, August 1991, pp. 535-539.

[2] Craig, John, Introduction to Robotics: Mechanics and Control, 2nd Ed., Addison-Wesley Publishing,
1989.

[3] Foley, van Dam, Feiner, and Hughes, Computer Graphics - Principles and Practice, Addison-Wesley
Publishing, 1990.

[4] Stroustrup, Bjarne, The C++ Programming Language, 2nd Edition, Addison-Wesley Publishing, 1991.

