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CHAPTER 1

INTRODUCTION

1.1 Motivation

Geometric quality characteristics of wafers, such as BOW and WARP, are critical in their
applications. A large variation of these quality variables reduces the number of
conforming products in the downstream production. Therefore, it is important to reduce
the variation by modeling the variation propagation, and further by developing the
variation reduction methodology. However, a wafer manufacturing process is a very
complex process involving mechanical and chemical operations on wafers. Typical
operations include slicing, lapping, chemical etching, chemical vapor deposition, and
polishing. There are no engineering models available to model the multistage variation
propagation. On the other hand, with the rapid development of sensing technology,
massive observational data may be obtained from the wafer manufacturing processes.
These observational data characterize the wafer manufacturing processes by providing
quality, process and material property measurements. This data-rich environment
provides opportunities to advance the research in quality control methodology, while it
poses the challenges including the high dimensionality and heterogeneity of the data, and
effectiveness in complex manufacturing process modeling. To address these challenges,
a unified variation modeling, analysis and control methodology is developed for

multistage wafer manufacturing processes (MWMPs).



1.2 State-of-the-art

In a multistage manufacturing process, there are different ways to model the variation
propagation and improve the quality. One methodology is called Stream of Variation
(SoV), which is developed based on state space models (Jin and Shi, 1999; Shi, 2006; Shi
and Zhou, 2009). The SoV approaches are capable of reducing the variation through
control (Djurdjanovic and Zhu, 2005; Izquierdo et al., 2007; Jiao and Djurdjanovic,
2010). However, the variation reduction performance of this type of approaches depends
on the validity and accuracy of state space models. Other methodologies are developed
based on regression models, such as Robust Parameter Design (RPD) based feedforward
control (Joseph, 2003) and DOE-based automatic process control (APC) (Jin and Ding,
2004; Zhong et al., 2010). These regression models are estimated from the experimental
data, which may be too expensive to obtain in a production system with many potential
factors. Moreover, the single regression model strategy can not address complex
situations in a multistage manufacturing process when the data structure is nonlinear.
Therefore, there is a pressing need to develop advanced models from the data with high
dimensionality and heterogeneity.

To develop advanced models based on the observational data, it is important to
obtain important quality features for a wafer more quickly. Fast and accurate
measurements of those features are crucial for variation reduction and feedforward
control. Due to the advancement of sensing technology, these quality features may be
measured as highly spatial correlated profile data, such as geometric profiles in wafer
manufacturing processes. However, current wafer profile measurement scheme is time

consuming, which is essentially an off-line technology and hence unable to provide quick



assessment of wafer quality in a timely manner. It is desirable to develop a measurement
strategy to select the representative samples and develop models for the profile data.
There are different ways to select the representative samples, such as grid spacing
approaches in spatial statistics (Curran and Williamson, 1986; Curran 1988; McBratney
and Webster, 1983a; McBratney and Webster, 1983b; Atkinson ef al., 1992; Atkinson et
al., 1994; Wang et al., 2005; Xiao et al., 2005; Anderson et al., 2006), Sequential Monte
Carlo methods (Liu and Chen, 1998; Doucet et al., 2000; Doucet et al., 2001; Guo and
Wang, 2004) and design of computer experiments (Schonlau et al., 1998; Williams ef al.,
2000; Park et al., 2002; Kleijnen and Beers, 2004; Huang et al., 2006). However, these
approaches have limitations in linking the local variability directly with the sample
locations, or the computation is too intensive to be used for online measurement. It is
highly desirable to develop methodology to reduce the measured sample size, while
achieving required accuracy for online applications.

Based on the observational data and developed models to link the quality
variables with process and material property measurements, a quick detection of changes
in a multistage manufacturing process is also important for quality assurance and
improvement.  The conventional statistical process control (SPC) (Lowry and
Montgomery, 1995; Woodall and Montgomery, 1999) monitors the final product quality
without consideration of the inter-stage relationships. Thus, it is difficult to identify the
stages with assignable causes. Regression model based risk-adjusted approaches
(Hawkins, 1991, 1993; Shu et al., 2004a; Zhang, 1985, 1992; Shu et al., 2004b) and
engineering model based risk-adjusted approaches (Xiang and Tsung, 2008) monitors the

residuals and the covariates, thus distinguishing the process change at the current stage or



that from the upstream stages. However, these approaches assume only one baseline
model under normal conditions, which may not be true in a complex manufacturing
process, such as a MWMP. It is important to develop monitoring methodology to
monitoring such a manufacturing process with multiple baseline models linked in

multistage, which we call a multistage multimode process (MMOP).

1.3 Research Objectives
The objectives of this research are:

¢ identifying the unique characteristics of the observational data and extracting
pertinent knowledge about wafer manufacturing systems for quality control by
the integration of statistics, domain knowledge, and control;

e developing control strategy with the consideration of intermediate quality
measurements and sensing noise for variation reduction of wafer geometric
variables;

e developing efficient measurement strategy for the modeling of wafer geometric
profile data;

e studying the monitoring of a multistage multimode wafer manufacturing

process considering the modeling uncertainty.

1.4 Organization of the Thesis
This thesis presents variation modeling, analysis and control for multistage wafer
manufacturing processes in a multiple manuscript format. Chapters 2, 3, 4 and 5 are

written as research papers. The relationship among these chapters is shown in Figure 1.1.



Observational Data with High
Dimensionality and Heterogeneity

v

Chapter 4 Sequential
Measurement Strategy

v

. Chapter 3 Recopﬁgured Chapter 5 Monitoring of
Chapter 2 Intermediate Piecewise Linear . .
—> . —» a Multistage Multimode
Feedforward Control Regression Tree Process
Modeling and Control

Figure 1.1: Thesis chapters

In Chapter 2 (Jin and Shi, manuscript), a group of regression models is used to
capture the stage-to-stage variation. An intermediate feedforward control strategy is
developed to adjust and update the control actions based on the online measurements of
intermediate wafer quality measurements. The control performance is evaluated in a
MWMP to transform ingots into polished wafers.

In Chapter 3 (Jin and Shi, 2011), piecewise linear regression tree (PLRT) models
are used to address nonlinear relationships in MWMP to improve the model prediction
performance. The obtained PLRT model is further reconfigured to comply with the
physical layout of the MWMP for feedforward control purposes. The model complexity
is further reduced by merging the leaf nodes with satisfied control accuracy. The
procedure and effectiveness of the proposed method is shown in a case study of a
MWMP.

In Chapter 4 (Jin et al., 2011), a sequential measurement strategy is proposed to
reduce the number of samples measured in a wafer, yet to provide adequate accuracy for

the quality feature estimation. A Gaussian process model is used to estimate the true



profile of a wafer. The predicted profile and its variance serve as guidelines to determine
the measurement locations, thus to improve the sensing efficiency.

In Chapter 5 (Jin et al., manuscript), we study the monitoring problem of a
MMOP. We propose to use PLRTs to inter-relate the variables in a MMOP. A unified
charting system is developed based on the PLRTs for process monitoring. Because of the
challenges to capture the baseline models to represent multimode processes, we further
study the run length distribution, and optimize the control chart system by considering the
modeling uncertainties. Finally, we compare the proposed method with the risk
adjustment type of control chart systems based on global regression models, for both
simulation study and a MWMP.

Finally, Chapter 6 concludes the thesis, summarizes the original contributions and

discusses the future research directions.



CHAPTER 2
INTERMEDIATE FEEDFORWARD CONTROL IN MULTISTAGE

WAFER MANUFACTURING PROCESSES

2.1 Introduction

Wafer manufacturing is a very complicated process involving mechanical and chemical
operations on wafers. A typical process involves multiple operations to transform a
silicon ingot into polished wafers with thin films deposited on one side of the wafers.
Typical operations include slicing (wire sawing), lapping, chemical etching, chemical
vapor deposition (CVD), and polishing. Therefore, the process is called a “multistage
wafer manufacturing process (MWMP)”. In a MWMP, the first manufacturing stage is to
slice an ingot into wafers with rough surfaces through a wire sawing operation. Then
lapping and chemical etching processes are used to improve the surfaces of wafers
through by removing the mechanical cracks and reduce the roughness of the wafers’
surfaces. After the cleaning process, thin films such as polysilicon or silicon dioxide may
be deposited on the surfaces of wafers, typically completed in low pressure chemical
vapor deposition (LPCVD) chambers or belt type conveyers. After the thin film
deposition, the wafers are polished to achieve mirror-like surfaces.

In a MWMP, the geometric quality variables, such as BOW and WARP, are very
important quality indexes to measure the surface roughness and flatness for downstream
productions of wafers. The smaller the geometric quality variables are, the better the

quality of the wafers are. A large variation of the quality variables will increase the



nonconforming products in the downstream stage. Therefore, the quality of wafers needs
to be improved during the production to reduce energy and material wastes. In a
MWMP, the quality of wafers is changed by its potential factors in a complex
mechanism, not only in material removal processes, but also by the stress of thin films.
Important factors that introduce variation in geometric variables are the process variables
and the material property of wafers. To improve the geometric quality at the final stage,
these important factors should be set or adjusted at different stages.

There are three typical methods to set or adjust the important factors: Robust
Parameter Design (RPD), Stream of Variation (SoV) and Design of Experiment based
Automatic Process Control (DOE-based APC). The RPD (Taguchi et al., 1989) builds
linear regression models based on the experimental data. Then it determines the optimal
settings of controllable variables off-line by solving the nominal-the-best or the smaller-
the-better problems. These settings are used to reduce the sensitivity of controllable
variables to the noise factors. This approach provides a robust performance in a
manufacturing process with fixed settings of controllable variables during operation.

The second typical method, i.e., the SoV method, uses a state space model to
characterize the variation and its propagations in an MMP. In this method, the
controllable variables minimize the deviation or variation of the final quality variables
(Jin and Shi, 1999; Djurdjanovic and Zhu, 2005; Izquierdo et al., 2007). These
approaches successfully identify the control actions considering the physical specification
and intermediate quality measurements. However, the SoV usually assumes a Markov

property of stages. It may also require engineering knowledge in model construction.



When the Markov property is insufficient or the engineering knowledge is
inadequate, the third typical method, i.e., the DOE-based APC, builds regression models
from the experimental data. It adjusts the controllable process variables automatically
during the production. Different types of variables and variation sources are considered,
such as controllable variables, and measurable and immeasurable noise variables. For
example, the reaction time in CVD process is a controllable variable; the sensor noise of
WARP is a measurable noise variable; and the slurry distribution during the lapping
process is an immeasurable noise variable. A cautious control strategy addresses the
sensing and modeling errors in nominal-the-best problems (Shi, 2006; Jin and Ding, 2004;
Shi et al., 2005; Zhong et al., 2009). A DOE-based APC has much better performance in
variation reduction than the traditional offline RPD. However, it is difficult to directly
implement the DOE-based APC in an MMP because it models an MMP with a single
regression model. Furthermore, the DOE-based APC is not applicable for the cases
where online control actions are needed during intermediate stages of an MMP.

In addition to the three typical methods used for variation reduction, one uses
regression models to identify the variation sources distributed at different stages, and
model the variation propagation in an MMP (Lawless et al., 1999; Agrawal et al., 1999).
In this method, a quality variable at the k™ stage 1s predicted by the quality variable at the

(k-1)" stage and covariates at the k™ stage, shown as

Y=o+ LY +rz + & (2.1)
where Y, | and Y, are the quality variables at the (k-1)" stage and the k™ stage,
respectively; z, are the covariates at the k™ stage; @, , S, and y, are the corresponding

parameters; &, is the residual. This model is successful in variation analysis. However,

9



there are two limitations in this method: (1) One assumes the quality variables have
Markov property, i.e.,Y, is independent of Y, .Y, ,....,Y, , conditioning on Y _,. Some
manufacturing processes do not hold the Markov properties. We illustrate one example
in the case study in Section 2.3. (2) Another limitation is that the covariates z, may not

include the controllable variables, thus, we may not use these models in a control
application.

This chapter proposes an integrated modeling and control strategy for variation
reduction in an MMP, which is an extension based on Equation (2.1) by further
considering process variables and the controllability of process variables. Here, we
assume that the same quality variables can be measured repeatedly after each
manufacturing stage. A group of regression models is constructed from the observational
production data. These models predict the downstream quality variables stage-by-stage
with the data obtained in their upstream process. With the help of the model group, we
determine the control actions by solving constrained optimization problems. The
proposed approach is based on the following three assumptions:

e A group of regression models describes the process and predicts the
intermediate and final quality of future production with acceptable prediction
error.

e The intermediate quality specifications and controllability of process variables
can be presented as inequalities in the optimization problems.

e The control optimization problem at each controllable stage is solvable to

minimize the final quality variation.

10



Based on the assumptions, the rest of the chapter is organized as follows: we
propose the methodology for the wvariation propagation models and intermediate
feedforward control in Section 2.2. We further use a five-stage MWMP as a case study
to illustrate the modeling and control procedure in Section 2.3. Finally, we draw the

conclusions in Section 2.4.

2.2 Intermediate Feedforward Control Strategy
We call our proposed method “intermediate feedforward control strategy”, since we
adjust the control actions at intermediate stage based on a group of regression models. In
this section, we first provide an overview of the methods. Then we introduce in detail the
regression modeling, intermediate feedforward control strategy formulation, and control
action determination. Finally, we discuss the impact of sensing noise on the control
objective function, since the quality measurements are important to adjust the control

actions.

2.2.1 Overview of the Proposed Methods

To show the intermediate feedforward control strategy, we illustrate the procedure in
Figure 2.1. First, we observe the initial quality variables and material property variables
at the beginning of the production. Once the production starts, we identify if the next
stage is controllable, i.e., the stage has controllable variables. If the stage is not
controllable, we go to the next stage. Otherwise, we optimize the predicted final quality
by determining a set of optimal control actions at all downstream stages. From the set of
optimal control actions, we only take the control actions at the current stage. After taking
the control actions, the intermediate quality measurements of the current stage become

available. If we need additional adjustment of the control variables at the downstream

11



stages, we further use the intermediate quality measurements to update the downstream
control actions in iterations. Otherwise, the control ends when there are no additional

control actions to be determined.

Observe Initial Quality & Implement Control Action
Property Variables At the Current Stage
I Go to Next Stage I : I Observe Intermediate Quality I

Controllable? <
Optimize Predicted

Final Quality End
1

Figure 2.1: Intermediate feedforward control procedure

2.2.2 Regression Model Group

In the intermediate feedforward control, a regression model group predicts the final
quality in the optimization problem. This model group also describes the variation
propagation in a MMP. Figure 2.2 shows a layout of an MMP with N stages. Four types

of variables describe the process, including the quality measurements at the k™ stage (

Y(k) € R™"), the continuous online controllable variables at the k™ stage (U, € R*™"),
the offline setting variables at the k™ stage (X, eR"™), and the material property
variables independent of stages (M € R™'). Furthermore, u, is the i™ continuous online

controllable variable at the k™ stage (i=1,-- -,k ); and x, is the i™ offline setting variable

at the k' stage (1=1,---,m ).
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Y(k-1) Y(k)

M
w0 [} O[O+ —fEma
! 1 f !

U, X, U, X,

Figure 2.2: A layout of an MMP
To model the variation propagation, we predict Y(k) (k=12,---,N) by the
quality and the process variables measured in all upstream stages, and the material
property variables. In this way, even if the MMP does not have Markov property, the

MMP can still be modeled by a group of regression models. Denote
Y =[O YO - YO'[, U =[ur U7 - U], and X =[X" XT - X[ ¢
[=1,---,N), the prediction model is:

Y(K); = DB 0, +w (B U +w (BLHX, + & (22)
where Y(k), is the j" quality variable at the k" stage ( j=12,...m );
® =[1 Y U X My, =[1 Y M'T; By, BLYY and LYY are the
corresponding coefficient matrices in the regression model with proper dimensions; and

&, is the residual. The term (I)Eﬁf;’,f(l)k is the contribution of the observed information

up to the k™ stage. The terms \I’E(BH’U)Uk and y, (Bf;’,‘l‘("x)Xk are the contribution of the

control actions at the current stage k. In practice, we select the predictors by using both
the engineering knowledge and statistical method to further reduce model complexity.
The final model structure is determined by 10-fold cross validation using mean sum of
square error.

In this way, we use Equation (2.2) to predict each quality variable before the

operation takes place. In an MMP involving multiple quality variables, multiple

13



regression models forms a regression model group to predict these variables. The quality
variables are predicted sequentially from the first stage to the last stage. When the
intermediate quality variables are not available, we substitute the predicted values of the

intermediate quality variables to predict the final quality variables.

2.2.3 Feedforward Control Strategy

Once we can predict the final quality variables, we determine the controllable variables to
reduce the predicted final quality variation before the operations take place, illustrated in
Figure 2.3. Figure 2.3 shows the procedure of intermediate adjustment between the (k-

)™ stage and the k™ stage. When the operations at the (k-1)" stage finish, the

intermediate quality measurements Y(k-1) become available. Due to the prediction

error or uncertainties in an MMP, deviations exist between the predicted quality Y(k -1)

at the last iteration and the actual measurements \A((k-l). Therefore, the controllable
variables of the downstream stages (from the k™ stage to the N® stage) need adjustments
in the following steps: (1) we first collect @, , the quality, process, and material

information of all upstream stages; (2) then we predict the downstream quality variables
sequentially using Equation (2.2); (3) by solving a constrained optimization problem

shown in Equation (2.3), we update the control actions of the downstream stages; (4) we
implement the optimized U, and X, , the control actions at the k™ stage; and (5) we

move to the next stage for control action updating, until the last stage N is achieved.
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Intermediate Feedforward Control
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Figure 2.3: The procedure of adjustment between two stages

In Step (2), the constrained optimization problem uses the-smaller-the-better
control objective in MWMPs. When the operations at the (k-1)" stage finish, the

optimization problem between the (k-1)" stage and the k™ stage is:

min J(U,,X, )=_§1 ¢ E(Y(N|k)J?) (2.3)
i=

Ul ,Xl U=k, k+1,-- )N e T U T I
s.t. Y(l)j =D, B;l D, +vy, (B;y U, +vy, (ﬁ”’ )X, + &y
g(Y(s);) <Ly,
u5 <uy, < uiI,J,Vi
x; € {xy},Vi

I=kk+1-,N
s=12,---N

where the objective function J(U,,X,) is a weighted summation of the second moment
of m quality variables at the final stage N; c; is the weight of the ™ variable, determined
by domain knowledge or requirements, such as the cost due to the inferior quality
performance; and the decision variables are all downstream control variables U, and X,

(/=k,k+1,---N ). In the optimization problem, we also formulate three types of

constraints. The first type of constraints is the group of regression models to predict the

quality variables at downstream stages. The second type of constraints represent
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intermediate quality specifications, modeled as g(Y(s);) <L, for the i™ quality variable

at the s™ stage (s=1,2,...,N). In these equalities, g(-) is a quality statistic and L is the

specification limit. As an example in a MWMP, the thickness of wafers should be within
certain specifications in the lapping process. The third type of constraints describes the

controllability of the process variables, i.e., the feasible range of control variables. These

. . .. L U . .
constraints form a group of inequalities u; <u, <u, for continuous variables, or a subset

of possible values x; € {x,} for the discrete variables. As an example in a MWMP, the

locations of wafers in a LPCVD chamber should be within a limited region.

2.2.4 Determination of the Control Actions

At each stage, we determine the control actions by minimizing the objective function of
the predicted final quality variables. The decision variables can be continuous, or
discrete, or a mixture of them. The multiple types of decision variables make the
optimization problem difficult to solve. Here solutions are provided for three scenarios.

If the decision variables are continuous variables, we determine the optimal

solutions by setting the partial derivative % - o for the quadratic objective function. If

the solutions do not violate the constraints, then we find the optimal solution; otherwise
the algorithm searches on the boundaries of constraints (Pierre, 1986).

If the decision variables are discrete variables, we treat the optimization problem
as a combinatorial optimization problem. We use the Iterated Local Search (ILS)

algorithm (Stutzle, 1998) to solve this optimization problem.

16



Table 2.1: Iterated local search procedure with both U, and X,

Stepl.
Step2.

Step3.

Step4.

StepS.

Step6.

Step7.

Step8.

Generate an initial feasible solution U? , x? (I=k,k+1,---,N)

Local search x;,_for every i to optimize the objective function until no

more improvement is obtained, denote the local optimal solution as
loc,opt
X

Substitute x*°°"", set the partial derivative ~{"

=0 and search the

loc,opt

constraints for the constrained local optimal solution u

loc,opt

Modify the local optimal solution x - x" by interchanging

certain percentage of the solutions randomly

Local search x; for every i to optimize the objective function until
no more improvement is obtained, denote the local optimal solution

aloc,opt

as x

aJ(U)

Substitute x*°“™", set the partial derivative =~ =0 and search the

aloc,opt

constraints for the constrained local optimal solution u

aloc,opt

If v and x*°“”" has better objective value, then accept u

aloc,opt - loc,opt aloc,opt loc,opt Ua loc,opt

and x ,le., x X ,U

If the termination conditions are met, terminate the optimization
procedure; otherwise, go to Step 4

If the decision variables contain both continuous and discrete variables, we solve
the optimization problem in an ILS framework, shown in Table 2.1. In this framework,
Step 2 and Step 5 are “local search”, which find a local optimal solution from an initial
solution. Step 4 is “perturbation”, which generates a new initial solution in iterations and
prevents a solution trapped in a local optimal solution. A usual way of perturbation
interchanges certain values of decision variables.
interchange results in easier escape from the current local optimal solution, but may take
longer time in finding a new local optimal solution, vice versa. The optimization process
terminates when the optimal value is not improved for certain number of iterations. In

the literature (Stutzle, 1998; Intellektik ef al., 1999; Lourenco et al., 2002), one discusses
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the choice of local search algorithm, interchange approach, and termination conditions,

which will not be repeated in this chapter.

2.2.5 The Control Performance with Quality Sensing Noise

In the intermediate feedforward control strategy, the online quality measurements are the
key factors in updating the control actions for downstream stages. However, the sensing
noises may contaminate the online quality measurements. The “optimized” the control
actions with quality sensing noise may not be the true optimal ones in variation reduction.
Therefore, it is important to understand the impact of the sensing noise of quality
variables on the control performance, thus to infer if the sensing noise is negligible or
not.

In the quality and process relationship, we predict the final quality variables

Y(N); using Equation (2.2) stage-by-stage. Without loss of generality, the model to
predict the final quality variable Y(N); can be re-written as :
Y(N); = @ B3Py + Wi (BN Uy + Wi (B Xy + 6
=Bn +BY 4B UN + B XN +ByM + (Y ) B U +
Y BX"+ (Y)Y BM+M'CU +M'C,X" +¢,  (24)
where YN, U™ and X" are denoted as the same as those in Equation (2.2); and Bons
By, By, Bx, By, B, (i=123) and C, (i=1,2) are corresponding parameters with

. . : : . . T
proper dimensions. We further assume the interaction terms of (Y™ ')'Y ™', UN UV,

XN'XN, UV'XY and M™ are insignificant in Equation (2.4). This assumption is
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based on the fact that the interaction of the quality variables and process or material
variables are more important in variation reduction through feedforward control in the
MMP, than other interaction terms. The assumption is also verified by data driven
variable selection in the case study.

To analyze the impact of sensing noise to the control objective, we further make
two assumptions:

e The online observers provide unbiased sensing noise in the intermediate quality

o N 1 ON- N-1 -
measurements, denoted as YN '=Y "'+ YY" where Y"'is the true value,

Y"! is the observed value and Y"' is the sensing noise.  Here

EYN' YY) =0 and cov(YN'|Y ")=%_.,. In addition, the sensing

noises of the quality variables are independent, i.e.,
2 2 2 2 2 2
.. )

o | 2 . K
z?”" - dlag(O'?(o)l ’O-?(O)z’ TYM), 2T Y (), ’O-S?(N—l)l > Y(N-1), ’O-?<N—1)m

e The sensing noise Y™ is independent of &y .

Thus, based on Equation (2.4), the control objective for the jth quality variable is a

summation of a bias term and a variance term considering the sensing noise as follows:

E(Y(N))) = (E, y(Y(N), | Y)* + Var, , (Y(N), | Y)
=[Bon +BYY N B UN + B XN + By M+ (YN ) B UM +
(YYNYBXN (YN BM+M"C,UY + M"C, X ] + ol +

(B, +B,U" +B,X"+BM)'Z_. (B, +B,U" + B, X" +B.M) (2.5)

?N—l
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In the control action determination, Equation (2.5) is treated as the optimization

objective function. When the quality measurement has sensing noise, i.e., Loy, is a non-

zero matrix, the optimized control actions using the objective control function in
Equation (2.5) may become different as those without sensing noise. The impact of the
sensing noise of quality variables to the control objective in the optimization problem

consists of two parts: (1) the direct impacts of the sensing noise on the current control

actions, through term (B, +B,U" +B,X"+B.M)'Z_. (B, +B,U" +B,X" +B;M) in

Equation (2.5); and (2) the indirect impacts of the sensing noise on the implemented

control actions in upstream stages.
In the optimization at the k™ stage, Zow. has a direct impact on the control

A

objective. The quality variables Y™ are decomposed as the measured ones Y*! and

the predicted ones Y*V', where Y*' =[\A((0)T Y()' - Y(k—l)T]T are measured
quality variables up to the (k-1)" stage and
2 2 2 2 T

YN = [Y(k)T Yk+1D" - Y(N- I)T} are the predicted quality variables

substituted in the prediction models to predict the final quality variables. Therefore,

Zw,l represents both the sensing noise of Y*'and the uncertainty of Y N1 Here the

uncertainty of Y&N1 s contributed by the prediction errors and the sensing noise of Y<!,

Beside the direct impact, the sensing noise of the quality variables also has
indirect impacts on the control objective through the implemented control actions. Here
we  decompose  the  control  actions U= [(Uk'l)T (U"’N)T]r and
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XN = [(Xk'l)T (Xk’N)T]T, where U*"and X*' are implemented control actions before

the k™ stage; and U = [UE U, - UE]Tand XN = [XE Xe,, XIE]T are the

unimplemented control actions, i.e., the decision variables in the control optimization of

the k™ stage. Because of the sensing noise before the k™ stage, the implemented control
actions U*" and X*' may not be optimal to minimize the control objectives. The

deviation of the control actions will further impact on the control optimization at the k™
stage.

By combining the effects from both the direct and indirect impacts of the sensing
noise, the final implemented control actions may be different from the optimal ones
without sensing noise, thus to degrade the variation reduction performance. Depending
on the stage and magnitude of sensing noise, we expect different kinds of impact on the

control objective. We study the impact of sensing noise in the case study.

2.3 Case Study
To show the performance of the intermediate feedforward control strategy, we conduct a

case study in a MWMP with five major stages shown in Figure 2.4.

CTRRES CTRTHK1 CTRTHK2 CTRTHK3 CTRTHK4 CTRTHKS
RESGRAD BOWI BOW2 BOW3 BOW4 BOW5
WARPI WARP2 WARP3 WARP4 WARPS
Slicing Lapping CVD Si CVD SiO2 Polishing _’é
LB CVDB PolishB
LD CVDbt Cplate
LDP

Figure 2.4: The layout of MWMP in the case study
In Figure 2.4, the slicing stage represents the slicing and cleaning process; the

lapping stage represents lapping process, chemical etching and cleaning process; and
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CVD polysilicon stage and CVD silicon dioxide stage consist of CVD process and their

cleaning processes.

Table 2.2: Measured variables in a MWMP

Variable | Variable Discrete / | Measured Physical Meanines
Type Name Continuous Stage Y £
. . Lapping batch, representing
LB Discrete Lapping processing time with 15 levels
. . Lapping disk, representing pulley
LD Discrete Lapping discs with 5 levels
LDP Discrete Lapping | Positions in lapping with 6 levels
. .| CVD batch, representing different
Process CVDB Discrete CVD Si tubes with 5 levels
Variables . . CVD boat, representing wafers’
CVDbt Discrete CVD Si position in CVD tube with 4 levels
. . o Polishing batch, representing age
PolishB Discrete Polishing of slurry and pad with 12 levels
Ceramic plate, representing the
Cplate Discrete | Polishing | alignment of ceramic plate holders
with 4 levels
Material | CTRRES | Continuous Na Central resistivity of wafers
property } . .
Variables | RESGRAD | Continuous Na Resistivity gradient of wafers
Qualit BOW Continuous All Local warp at the center of a wafer
Valrliabl}e,s WARP Continuous All Maximum local warp
CTRTHK | Continuous All Central thickness of wafer

In this MWMP, we measured three types of variables to describe the
manufacturing process, including quality variables, discrete offline setting variables, and
material property variables. We summarize the detail definitions of these variables in
Table 2.2. The number in the name of a quality variable represents the stage where it is
measured, from Stage 1 to Stage 5. In the production, the objective is to minimize the
magnitude of WARPS and BOWS after polishing stage. In the case study, we collect a
total of 373 wafers of the observational data from a real production.

We split these wafers into training data set (250 wafers) and testing data set (123

wafers). Following the procedure in Section 2.2, we first construct the regression model
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group based on the training data set, and then evaluate the control performance on the

testing data set.

WARP 1 1Bow | |
; : . 0 ; . :
0 W/O Ctil. Ctrl. Reg. Ctrl. Int. W/O Ctrl. Ctil. Reg. _Ctrl. Int.
(a) WARP5 (b) [BOWS|
50 F— —
1 WIO Ctrl.
LB IEE Ctrl. Reg.
0 I Ctrl. Int.

2 3 4 45 B 7 8 9 10 M 1213 14 15
a0

LD
UJII_DILDII Hn L)
100
CVD gl II
N | T
1
100 F ‘ ' '
CVDbtsot
B D s I IO

(c) Uncontrolled vs. controlled process variables

Figure 2.5: Uncontrolled vs. controlled final quality and process variables

In this process, the quality variables do not have Markov property. For example,
an important factor to change BOWS is the stress of polysillicon thin film on one face of
the wafers, which is changed by both the CVD polysillicon and the polishing process,
1.e., the BOWS is correlated with the BOW3 given the BOW4. Many MMPs without

Markov property may use the proposed modeling method to obtain an adequate
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prediction model. By using the regression models in Equation (2.2), we identify four
significant controllable variables: LB, LD, CVDB and CVDbt to predict both WARPS5
and BOWS.

By using these controllable variables, we further determine the optimal settings of
these variables in the control optimization. Without loss of generality, we set C; =1 in

the control objective function in Equation (2.3). The intermediate quality specifications
are the ranges of the wafer thickness. The controllability of the four significant
controllable variables is the possible settings of these variables.

After implementing the intermediate feedforward control strategy, we compare
the WARP5 and BOWS in three scenarios as shown in Figure 2.5: (1) the quality
performance without control (“W/O Ctrl.”); (2) the quality performance using
feedforward control based on a single regression model (“Ctrl. Reg.”); and (3) the quality
performance using the intermediate feedforward control based on the regression model
group (“Ctrl. Int.””). In Scenario (2), we solve a similar control optimization problem as
Scenario (3) based on a single regression model.

Figure 2.5 (a) and (b) show the box plots of WARPS and BOWS for the testing
wafers. In this figure, the controlled quality variables have smaller mean and variance
than the uncontrolled quality variables. The proposed method (“Ctrl. Int.”) has similar
control performance in WARPS, but provides better control performance with smaller
mean of BOWS, comparing to the feedforward control based on a single regression
model (“Ctrl. Reg.”). Figure 2.5 (¢) shows the histograms of the final implemented
process variables. The horizontal axis represents different settings; the vertical axis

represents the counts of wafers set to certain value; and the left bar, the middle bar and
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the right bar represent the counts for “W/O Ctrl.”, “Ctrl. Reg.” and “Ctrl. Int.”,
respectively. It is clear that some of the controlled process variables concentrate to a
subset of settings to achieve better final quality, such as LB=15, CVDB=2 and CVDbt=4.
The result indicates that these settings are better than others to reduce final variation of

WARPS5 and BOWS.

460

—+— Cfrl. Int.

e —s— Ctil. Reg.

440
430
Opt. 420
Obj.
410
400

350

380

370

Simulation runs

Figure 2.6: Control objective values of 50 simulation runs
To further evaluate the two types of controlled performance, we conduct 50 runs
of control simulations, shown in Figure 2.6. In Figure 2.6, both control strategies yield
better quality performance with smaller control objectives than the uncontrolled objective

value 1027.54. To evaluate the control improvement, the Quality Index (QI) is defined as

Jw/ octrl _ yw/ctrl
OF =" > 100% (2.6)
where J"'*"" is the uncontrolled objective value; and J"'“" is the mean of the controlled

optimal objective values. In this case study, QI is 63.34% for the intermediate

feedforward control, which is a significant reduction of the objective value. Moreover,
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the proposed intermediate feedforward control (stars) has better control performance than
the control based on a regression model (circles) in most of the simulation runs. A few
spikes show in the optimal objectives, since the ILS algorithm may not obtain global

optimal in limited iterations.

Table 2.3: Optimal control objectives under different sensing noise scenarios
. Min. Opt. .
Scenarios YO | YO | YO | Y@ | YO Ctrl. Obj. Ctrl. Obj
1. No Noise 0 0 0 0 372.72 381.08+11.23
2. Slicing oy 0 0 0 379.00 394.52+29.00
3. Lapping 0 oy |0 0 0 372.44 386.50+28.14
4 Slieimg& 1 o2 g2 1o o |0 [379.00 | 394.52429.00
Lapping
5. All Stages oy oy | oy | oy | oy |37842 392.36+32.30

In addition to the control performance comparison, we further analyze the impact
of the sensing noise to the control optimization objectives. We show that (1) the sensing
noise with same variance but from different stages may impact the final quality
performance differently, and (2) quality performance becomes worse as the variance of
the sensing noise increases. We use the result to conclude that the sensing noise in the
case study is negligible to control objective.

In the simulation, we assume the distribution of sensing noise for each quality

variables at the same stage follows the same distribution, and the maximum variance of

the sensing noise is the largest modeling error o, from the regression model group used
.. . . 2 2 2
for prediction, which is oy =0, =3.13 um”.
To evaluate the sensing noise from different stages, we assume the sensors at
certain stages have the same noise distribution following N (0, O'é) , classified into five

scenarios: without sensing noise, sensing noise at slicing stage, sensing noise at lapping
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stage, sensing noise at both slicing and lapping stages, and sensing noise at all stages. In
the case study, there are no further control actions to adjust after the lapping stage,
therefore, it is not necessary to simulate the impact of sensing noise at downstream stages
of lapping stage. For each scenario, we conduct 50 simulation runs and summarize the
result in Table 2.3.

When there is no sensing noise (Scenario 1), the minimal control objective in
these 50 simulation runs is 372.72, and the mean and standard deviation is 381.08 &+
11.23. By comparing the control objectives in different scenarios, we find that (1) the
sensing noise at the slicing stage (Scenario 2) changes the control objective, and the
sensing noise at the lapping stage (Scenario 3) does not influence the control objective
significantly. Therefore, the sensing noise at both slicing and lapping stages (Scenario 4)
has similar contribution to the control objective as that in Scenario 2. (2) With sensing
noise (Scenario 2~5), the standard deviations of control objectives increase, which
indicates the ILS algorithm need more iterations to obtain the global optimal solutions.
And (3) the sensing noise after the last controllable stage (lapping stage) will have no
impact on the control performance.

Based on the simulation result, the sensing noise of the intermediate quality
measurements from lapping to polishing has less impact on the control objectives.
However, it does not indicate that these online quality measurements are insignificant.
This is because the simulation is conducted by assuming the maximal sensing noise is
bounded by the largest prediction error of the regression models. When the sensing noise
is very large or the prediction performance is inferior, the control objective will be

significantly changed.
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Figure 2.7: Optimized quality performance with sensing noise by stages

To evaluate the impact of sensing noise variances, we assume the sensing noises
have the same variance for all intermediate and final quality variables, with result shown
in Figure 2.7 and Figure 2.8. In Figure 2.7, we compare the quality performance with
different variance of sensing noise stage-by-stage in one simulation run. The quality
performance (vertical axis) is the summation of squared WARP and squared BOW of
each wafer. We group the box plots of the wafer quality by stages. Within each stage,

there are six box plots representing the wafer quality without sensing noise, and with

040

max ?

0.60 0.80  and o

max ? max max ?

sensing noise standard deviation as 0.2c from

max >
the left to the right. In Figure 2.7, because the sensing noise may exist in quality
measurements, the optimized control actions may be different when the sensing noise
variance varies. Thus, the quality with sensing noise at each stage becomes worse
comparing to the one without sensing noise (the leftmost one within each stage).
Moreover, the variance of quality performance is increasing as the variance of sensing

noise becomes larger.
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Figure 2.8: Optimal control objectives with different variance of sensing noise

In addition to impact of sensing noise at each stage, it is important to understand
the relationship of sensing noise and final quality performance to evaluate if sensing
noise is negligible. Figure 2.8 shows such a relationship. In Figure 2.8, the horizontal
axis represents the sensing noise, from standard deviation 0 to o,,,. The vertical axis
represents the optimal objective values in the box plots. Each box plot accounts for the
optimized control objectives of 50 simulation runs. It is clear that when the sensing noise
is small, such as that the standard deviation is smaller than 0.20,, =0.354xm in this
case study, the optimal control objective is comparable to the one without sensing noise.
When the sensing noise becomes larger, the final quality performance becomes worse. In
the case study, the sensing noise to measure the quality variables is 0.1 #m based on the
gauge precision. Therefore, the sensing noise is negligible and the final optimized

control actions will not degrade the control performance in this case study.
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2.4 Conclusion
It is very important to reduce variation of wafer quality in a MWMP, because the wafer
quality variables are important quality specifications for downstream process, such as
solar cell manufacturing, or integrated circuit fabrication. Large variation would result in
huge lost in both energy and materials. It is also a challenge task for variation reduction.
The challenges not only lie in the complexity of a typical MWMP, but also the variation
propagation among different stages.

In this chapter, we first propose a group of regression models to model the
variation propagation of quality variables based on observational production data. Then,
we develop an intermediate feedforward control strategy by solving a sequence of
constrained optimization problems. In the control strategy, we use the intermediate
quality measurements to update the control actions. The modeling and control procedure
is demonstrated in a typical MWMP to improve BOW and WARP. By implementing the
proposed method, the quality of wafers is significantly improved by 63.34%. Moreover,
we use simulation to study the impact of the sensing noise of quality variables to the
control objective, from different stages and of different variances. The sensing noise is
negligible to the control objective in the case study.

In the future research, we will improve the control performance by developing
models with higher prediction accuracy, such as advanced statistical model from data
mining. The engineering knowledge within each stage will be used to construct better

model for control.
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CHAPTER 3
RECONFIGURED PIECEWISE LINEAR REGRESSION TREE FOR

MULTISTAGE MANUFACTURING PROCESS CONTROL

3.1 Introduction

A multistage manufacturing process (MMP) refers to a manufacturing system consisting
of multiple units, stations, or operations to finish a final product. In most cases, the final
product quality of a MMP is determined by complex interactions among multiple stages.
The quality characteristics of one stage are not only influenced by the local variations at
that stage but also by the propagated variations from upstream stages. A MMP presents
significant challenges, as well as opportunities, for quality engineering research. Two of
the common challenges are how to model the variation and its propagations along the
production stages, and how to further use the model to reduce the final product variation.

Various methodologies have been developed for modeling and control of system
variability in MMPs. The feedforward control is one of the commonly adopted
methodologies for such purposes. There are three typical feedforward control strategies
reported in the literature based on the models used to represent a MMP.

One methodology is called Stream of Variation (SoV) based on a state space
model (Jin and Shi, 1999; Shi, 2006). A SoV model is typically obtained from
engineering knowledge, such as design information and physical laws of the process.
Studies of feedforward control under the SoV framework includes the adjustment of the
fixture position and the tool path in a machining process (Djurdjanovic and Zhu, 2005),

and variation reduction in an assembly process when taking the controllability and
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measurement noises into account (Izquierdo et al., 2007). In recent years, a new control
strategy is developed based on a one-step ahead optimal criterion. The control actions
are updated iteratively as the operations move on (Jiao and Djurdjanovic, 2010). The
control performance of this type of approaches depends on the validity and accuracy of
the state space model. The SoV based feedforward control may not be applicable (1) if
the SoV model cannot be obtained based on the physics and engineering knowledge due
to the system complexity; and (2) there are strong nonlinear relationships among process
variables and quality variables in a complex MMP. In this situation, an effective data-
driven modeling method is desirable to address nonlinear properties of the observational
data.

Other methodologies are developed based on regression models, such as Robust
Parameter Design (RPD) based feedforward control (Joseph, 2003) and DOE-based
automatic process control (APC) (Jin and Ding, 2004). DOE-based APC determines the
control actions by minimizing the predicted control objective function from a global
regression model. The certainty equivalence control or cautious control strategies are
employed in the APC context (Jin and Ding, 2004). Recently, Zhong et al., (2010) has
also investigated the impacts of model uncertainties and sensing errors on the control
performances. The DOE-based APC approach yields better performance for variability
reduction than the traditional RPD does. However, the DOE-based APC approach has
two limitations: (1) the global regression model predicts the final quality variables when
information at all stages are known. Thus, it cannot be used to control at an intermediate

stage when only its upstream stage information is available; (2) The single regression
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model strategy can not address complex situations in a MMP when the data structure is
nonlinear.

With abundant observational data available in a modern MMP, there are timely
information provided about the process variables, material properties, and intermediate
quality measures. With the help of these data, data mining techniques can be used to
model the interrelationships among those variables. The regression tree models are one
of effective approaches to model nonlinear data structure with high prediction accuracy
and explicit interpretation of predictors. Therefore, the regression tree models are
adopted in this chapter to model the variation and its propagations in MMPs.

There are three typical methods to model a regression tree, which are greedy
search, Bayesian tree, and statistical test. In general, the greedy search approaches are
biased in splitting variable selection and computational intensive, such as AID algorithm
(Morgan and Sonquist, 1963) and Classification and Regression Tree (CART) (Breiman
et al., 1984). To improve the computation efficiency, Bayesian tree is developed by
proposing the priors distributions for both tree structure and parameters (Chipman et al.,
1998, 2002; Dennison et al., 2002). The MCMC method is used to determine the
posterior distributions. Another type of approaches uses statistical tests to determine
splitting variables, such as Smoothed and Unsmoothed Piecewise-polynomial Regression
Trees (SUPPORT) (Chaudhuri et al., 1994) and Generalized, Unbiased Interaction
Detection and Estimation (GUIDE) (Loh, 2002; Kim ef al., 2007). In these approaches,
the residuals of piecewise models are tested with better computational efficiency.

In this chapter, piecewise linear regression trees (PLRTSs) estimated by GUIDE

are adopted to model MMPs for process control. The reasons for selection of the PLRTs
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from GUIDE are: (1) A PLRT from GUIDE has a better prediction accuracy for
nonlinear data structure than a global regression model (Loh, 2002; Kim ef al., 2007; Loh
et al., 2007). (2) The interpretation of the PLRT is explicit. The predictors in the tree
structure are explained as important factors under different scenarios or splitting
conditions. (3) GUIDE has several superior properties over other estimation methods.
For example, both categorical and continuous predictors can be assigned to different
roles, such as splitting only, regression only, or both. It also alleviates the selection bias
and investigates the local pair-wise interactions. Therefore, it is an effective way to link
the process, material property, and quality variables in MMPs.

A PLRT from GUIDE performs well for quality “prediction” in MMPs but not
for “variation reduction”. There are two major limitations that prohibit using a PLRT
directly in feedforward control for variation reduction: (1) In a MMP, the temporal orders
are determined by the design of a manufacturing system. However, the splitting order in
PLRTs is prioritized according to the data structure and nonlinear relationships.
Therefore, the splitting order in PLRTs may not reveal the same temporal sequence of a
MMP. Thus, it is not feasible to select the potential models for the prediction of the final
product quality at an intermediate stage based on the data only available in the upstream
stages, since the downstream variables may be needed to make the prediction. This
limitation results in that a control or adjustment decision cannot be made at an
intermediate stage to reduce process variation in a MMP. (2) A PLRT model is usually
used to predict a single response. Examples of multiple responses can be found in Segal
(1992), Larsen and Speckman (2004), and Lee (2006), but not in a nested structure, i.e.,

one response becomes a predictor to another response. In a variation reduction problem,

34



an intermediate quality variable may be a response as well as a predictor to the
downstream process. In a typical MMP, multiple variables need to be predicted for
quality control purposes. However, it is difficult to evaluate the splitting conditions from
multiple trees, which limits the capability to make a control or adjustment decision to
achieve optimal performance of multivariate responses.

This chapter develops a unified modeling and control methodology for MMP
based on a reconfigured PLRT model. The engineering design knowledge is used to
reconfigure the model to an engineering complied, yet statistical equivalent model for
feedforward control purposes. Furthermore, the model complexity is reduced by merging
the splitting structures while satisfying the specified control accuracy requirement.
Finally, a control strategy with an intermediate variable adjustment based on this
reconfigured PLRT is proposed to reduce the variation of quality variables at the final
stage.

The rest of the chapter is organized as follows. In Section 3.2, we show the
overview of proposed methodology in modeling and control. In Section 3.3, we propose
the methodology for modeling and reconfiguration of PLRTs. Then we develop the
method to reduce model complexity in Section 3.4. Based on the PLRT with reduced
model complexity, we develop the feedforward control strategy in Section 3.5. We
further use a multistage wafer manufacturing process (MWMP) to illustrate the procedure

of modeling and control in Section 3.6. Finally, the conclusion is made in Section 3.7.

3.2 Overview of the Proposed Methodology in Modeling and Control
The proposed method to model and control a MMP with reconfigured PLRT is an

engineering knowledge enhanced statistical method, as illustrated in Figure 3.1.
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Figure 3.1: Overview of proposed methodology

In Figure 3.1, the observational data of the process, material property, and quality
variables are measured from a MMP. Based on these data, PLRTs are estimated by using
GUIDE to predict all intermediate and final quality variables. Then the tree models will
be reconfigured to an engineering complied structure with a statistically equivalent
property. Based on the final quality specifications of the MMP, the reconfigured PLRT
model structure is further adjusted to find the simplest model that satisfies the accuracy
requirements. In the reconfigured PLRT, a group of potential prediction models are used
to predict the final product quality, as the multistage operations move from the upstream
stages to the downstream stages. Therefore, a feedforward control strategy with
intermediate process variable adjustment is used to take advantages of the temporally
ordered layers in predicting quality variables. The control actions are iteratively
determined by solving optimization problems with product and process constraints,

which are conducted to improve the final product quality in the MMP.
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3.3 Engineering-driven Reconfiguration of PLRTs
The engineering-driven reconfiguration ensures the feasibility of PLRTs in a feedforward
control strategy. The advantage of PLRTs in prediction accuracy is also preserved in

control because the reconfiguration does not re-estimate the local models.

3.3.1 Multistage Manufacturing Process Modeled by PLRTs
PLRTs model the nonlinear data by partition and local fitting. Figure 3.2 (a) shows an

example of a PLRT estimated from GUIDE, which consists of three leaf nodes. In this
tree structure, Z, (i =1,2) are splitting variables; Th, (i=1,2) are splitting boundaries;
and f; () (i =1,2,3)are local regression models. When the splitting condition holds, the
tree goes to the left branch. The sample space of the PLRT is illustrated in Figure 3.2 (c),
where f; (-) (i =1,2,3) are marked in their corresponding sub-regions.

Table 3.1: Variable notations
Y(k) e R : Quality variables with noise at the k-th stage

Y(0) : Initial quality vector before entering the manufacturing process
U, e : Continuous online controllable variables at the k-th stage

Uy, : The 1-th variable at the k-th stage, which can be adjusted during the

operations at the k-th stage
X, e : Offline setting variables at the k-th stage

Xy : The 1-th variable at the k-th stage, which can be adjusted between the

(k-1)-th stage and the k-th stage
M e R™ : Material property variables independent of stages

In a typical layout of MMP shown in Figure 2.2 in Chapter 2, a stage is defined as
a series of operations applied to a product to complete a manufacturing task. The
intermediate quality variables are measured at each stage for modeling. A discrete part or

a batch of products is processed. In this MMP, the variables can be classified as quality
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variables, process variables, and material property variables. Based on the controllability

and variable types, variables are further classified and summarized in Table 3.1
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Figure 3.2: Re-ordered model from a PLRT at one stage

To model the variable relationship, a PLRT is adopted by conducting regression

of the quality variables on their upstream variables. A general form of the model with 7

leaf nodes and L distinct splitting variables
) (3.1)

y=fm= Zf; (11,- )I(gi (Zl seees
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In this model, y could be any quality variable at any stage; if y is a quality

variable at the k-th stage, then m={Y(0),Y(k),U X ,M} (k =12,..k-1 ;

k, =1,2,...k) represents the known information at the k-th stage; 7, (-) and n, represents
the local models and the covariates in the i-th leaf node; /(-)is an indicator function,

which is 1 if g, (-) is non-negative, or 0 otherwise; g, (-) is the combination of conditions

leading to the i-th leaf node; and Z,,...,Z, are splitting variables for the tree structure.

Furthermore, the 7(g; (-)) can be decomposed as a product of the indicator functions of

L
the individual splitting variables, i.e.,I(g, (Z, ..., Z,)) =] [ 1(g,,(Z,)), Where g; () is the

k=1

splitting condition of the k-th variable for the i-th leaf node. For example, in Figure 3.2

(a), the splitting conditions leading to f, (-) are Z, >Th and Z, <Th,, which can be
written as 1(g(Z,,2,))=1(Z, =Th))I(Th, - Z,).

In the PLRT model estimation, there are three important issues to be addressed:
splitting variable selection, splitting boundary estimation, and tree structure
determination. In this chapter, we follow the procedures in GUIDE, which recursively
partitions the sample space, selects the splitting variables by contingence table test, and
determines the splitting boundaries by minimizing the prediction errors. When a large
tree grows, the 10-fold cross validation error is minimized to prune the tree structure.
There are comprehensive discussion on splitting variable selection, splitting boundary
estimation and pruning in the literature (Loh, 2002; Kim et al., 2007; Loh et al., 2007),

which will not be repeated in this chapter. This chapter uses those methods to estimate a
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PLRT model from observational data. This estimated PLRT model will be used as a
basis for later model reconfiguration and feedforward control design.

To explain the relationship of nodes in the tree structure, the /layer of nodes in a
tree is defined.
Definition 3.2.1 The i-th layer of nodes: The i-th layer of nodes in a tree is a set of nodes
with depth i, i.e., the nodes which have (i-1) splits from the root of the tree, including leaf
nodes and splitting nodes.

Definition 3.2.1 is illustrated with Figure 3.2 (a). There are three layers because

the deepest leaf node from the node is reached by two splittings from the root of the tree:

The splitting node of Z, <Th, is the root node, which forms the first layer of the tree;
Leaf node f, (-) and splitting node of Z, <Th, form the second layer of the tree; Leaf

nodes f, (-) and f; (-) form the third layer of the tree.

3.3.2 Reconfiguration of PLRTSs
The engineering knowledge of MMPs used for the reconfiguration is the temporal order
and the inherent relationship among the variables, i.e., the quality at the current stage is
only influenced by the upstream stages rather than the downstream stages. When there is
insufficient Markov property of the quality variables, prediction by all upstream variables
may also improve the prediction accuracy, comparing to the modeling by only regressing
on the quality at last stage.

Assuming there are L splitting variables, these splitting variables belong to certain

stages of the MMP with temporal order. This chapter uses notations “<"”, “~” or “<~"

of variables marked by * in the superscript to describe the temporal order. Table 3.2
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summarizes the temporal relationship of these variables, and Z, (i=1,2;) is used for
denoting Z, in a temporal order. In MMPs, such a kind of temporal order of the quality
and process variables at the (k-1)-th stage and the k-th stage can be presented as: X .
<~Uy s < Y((k-1D*) < X <~ U < Y(k*).

Table 3.2: Notations of temporal orders
Z.<Z,: Z, 1s temporally prior to Z, ;

Z.~Z,: Z, and Z, have the same temporal order;
Z,. <~ Z,. Z, 1s temporally prior or the same as Z, .

With the temporal order of the splitting variable, the original PLRT is re-ordered
into a temporally complied tree, which is defined below for further analysis.
Definition 3.2.2 Temporally complied tree: A tree is temporally complied if the splitting

variables in the tree is temporally ordered, which is defined by the MMP layout, i.e., if

Zy<~Z,, then Z, is in a closer layer or the same layer as the root compared to the

location of Z T

The reconfigured PLRT should have three appealing properties for the
feedforward control purpose: (1) the reconfigured PLRT should be a temporally
complied tree; (2) several PLRTs are estimated to predict the intermediate and final
quality, which should be combined into a single decision structure; and (3) the
reconfigured PLRT should be statistical equivalent to the PLRT models with high
prediction accuracy.

The reconfiguration of PLRTs consists of two steps: (1) each PLRT is
reconfigured according to the temporal order of the splitting variables, called re-ordering;
and (2) a group of PLRTs is combined as a reconfigured PLRT called combining.
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3.3.2.1 Re-ordering

Assuming the splitting order in a PLRT is not consistent with the temporal order as
Ly =~2, <~..=<~Z,., the procedure to re-order a PLRT is proposed in the Algorithm

1 in Table 3.3.

Table 3.3: The algorithm for the re-ordering

Algorithm 1.
Step 1. Convert the PLRT to a summation of f, () andg, (-) as Equation (3.1)

Step 2. Partition the region of g, (-) w.r.t all splitting variables into the decomposed sub-
regions

gi‘f(’) (] =L...D, )’ i'e"y :Zfz M)I(g; (£, ... 2,)) = ZZJ[I ( )I(gij(Zl NNA))

i=l j=I
Step 3. Merge the sub-regions g/(-) and f, (n.)for z, (i=1,..,L) fromz, to z.,if the
Merge Condition [ is satisfied The final re-ordered model

DN AUBERCANAS)

Step 4. Formulate the layers into temporal complied tree based on the re-ordered model

In Algorithm 1, all splitting variables Z, (Vi) are considered in partitioning the
regions in Step 2; g/(-) are the decomposed sub-regions of g, (-) , where D, is the total

number of sub-regions considering all possible splits of Z. (Vi). In Step 3, if the Merge

Condition I (defined below) is satisfied, the sub-regions will be merged; otherwise, no

further merging is needed.

The Merge Condition I for Z, in any two decomposed sub-regions j, and J, in
leaf nodes i, and i, is: gi{"k(Zk) = gjz'{k(zk) (Vk#i)andf (n )is the same model as

fn) . Here the splitting conditions of the decomposed regions are

b b

1g! [ ]1e!(2) and Ig"Z N[ ]Il Z) - f,(n) and f () are the

Vk#i Vk#i

42




associated local regression models. After the merging process, the splitting condition for

the newly merged leaf node is H I( gl{ " (Z,)) (or H I( g},;,k (Z,)))-

Vk#i Vk#i
To illustrate the Merge Condition I, the tree in Figure 3.2 (a) is re-ordered as an

example. Following the procedure of Algorithm 1, there will be four partitioned sub-
regions as shown in Figure 3.2 (d) after Step 2. In Step 3, assuming Z,. > Z,. Z,. should
be merged first. Considering the merge in the dashed rectangular in Figure 3.2 (b), their
splitting conditions are I(Th —Z,)[(Th, —Z,.) and I(Z.—Th )I(Th,—Z,.) . 1In this
example, 1(g,,(Z,.))=1(g,,(Z,.))=1(Th, — Z,.), but f,.(-)and f,.(-) are not the same.
Therefore, the Merge Condition I is not satisfied and these two leaf nodes cannot be
merged. Once the re-ordered model is obtained, we can formulate Z,. in the first layer,
then Z,. in the second layer.

Statement 3.1 Statistical equivalence in re-ordering: The original PLRT is statistically
equivalent to the re-ordered temporally complied tree in prediction, i.e., y=y".

The proof of Statement 3.1 is in the Appendix. To illustrate the equivalence,

Figure 3.2 (c¢) and (d) are compared. By given a new sample, the local prediction models
f; () (i=12,3) in Figure 3.2 (¢) and f..(*) (i =1,2,3) in Figure 3.2 (d) are identical, since

the re-ordering does not re-estimate the local regression models.

3.3.2.2 Combining

After re-ordering, multiple PLRTs are combined as a single reconfigured tree to predict

multiple quality variables. If there are N, re-ordered PLRTs, with Tn* leaf nodes and L;
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splitting variables in the n-th tree (n=1,2,...,N,), the general form of these re-ordered

models are denoted as
T
Vo= 2 S (Z e 2 ) (3.2)
i=l
where all notations are similarly denoted as Equation (3.1) except “n” for the n-th tree.
Furthermore, Z,.,...,Z,. are the splitting variables in all these trees, with temporal order

Ly <~ 2Ly <~...<~Z,.. The procedure to combine the re-ordered models is proposed in

the Algorithm 2 in Table 3.4.

Table 3.4: The algorithm for the combining

Algorithm 2.
Step 1. Obtain the re-ordered structure for the models in the form of Equation (3.2)

Step 2. Decompose the g/'(+) into g*/(-) using the same approach of Step 2 in
Algorithm 1 considering all splitting variables in different PLRTs, i.e.,
T, 7, D, ,
Vo= D QL ZE ) = 2D LG (Zyern Z,))
i=1 i=1 j=1
Step 3. Merge the decomposed sub-regions g/ () using the similar procedure of Step

3 in Algorithm 1 if the Merge Condition II is satisfied The final combined
model is

-
yi= > frIE(Z, s Z,)) (n=12,.,N))
i=1

Step 4. Formulate the layers into temporal complied ones in the tree

In Algorithm 2, all splitting variables in these re-ordered trees are considered in

the decomposition in Step 2. D:’,. is the total number of decomposed sub-regions

considering all possible splits of Z,. (Vi) from the i-th leaf node in the n-th tree. In Step
3, if the Merge Condition II is satisfied, the sub-regions will be merged, and a group of
N, regression models for multiple responses is formed. Otherwise, no further merging is

needed.
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The Merge Condition Il for Z,. in two decomposed sub-regions j, and j, in leaf
nodes i, and i, is: I(g;’i‘* (Z,:’*)):I(glﬁ”;* (Z/.)), (vk*=i*) and f7(n") is the same

model as f'(n.). Here the splitting conditions of the two decomposed sub-regions are

1g2h i) [ Hei(zny) and 1(g2hzo) T izt - fia)) and f£2(n:) are

Vk*#i* Vk*#i*

the associated local models. After the merging process, the splitting condition for the

newly merged leaf node is H 1 (g:;cl (Z)) (or H I( g:f (Z))).

Vk*£i* Vik*£i*
To illustrate the Merge Condition II, two trees in Figure 3.2 (b) and Figure 3.3 are

combined as an example, assuming 74, <Th,. In this case, the local models f.(:) (
i=1,2,3) in Figure 3.2 (b) becomes f.(-)(i=1,2,3) to distinguish the models in Figure
3.3. There are three distinct splitting variables in these trees: Z., Z,., and Z,, .
Following the procedure of Algorithm 2, all possible splits are generated in Step 2. In
Step 3, assuming Z,. < Z,, < Z,., Z,. should be merged first. Considering the merger of

two leaf nodes that are marked by the dashed rectangular in Figure 3.4 (a), the splitting

conditions are I(Thy = Z,)I(Th, - Z,)I(Th, — Z,) and
I(Th, —Z,.)I(Th, - Z,)I(Z,.—Th,) . In this example,
I (gl",il Z.)=1 (gg;l‘ (Z)=1(Th, -Z,.) for n=1, 2, and

1(g2(Z,,))=1(g55(Z,.))=1(Th, = Z,.) .  The local models are also identical.

Therefore, the Merge Condition II is satisfied and these two leaf nodes should be merged,

shown in Figure 3.4 (b).
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(a) Before merge (b) After merge

Figure 3.4: Merging leaf nodes in combining
Statement 3.2 Statistical equivalence in combining: A group of re-ordered models from
PLRTs is combined into a single statistically equivalent model using Algorithm 2.
The proof of Statement 3.2 is shown in the Appendix. To illustrate the

equivalence, the local models in the re-ordered trees (Figure 3.2 (b) and Figure 3.3) are

compared with the reconfigured tree (Figure 3.4 (b)). For example, if Z.<Th ,

Z,.<Th, and Z,. > Th,, the local models for prediction are f..(-) and f+(-), which are

the same as the models with the same splitting conditions, circled by dashed circle in
Figure 3.4 (b).
After the reconfiguration, the splitting variables are re-ordered into different

layers, which map to the temporal order of the manufacturing stages, as shown in Figure
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3.5. The splitting conditions are combined, which lead to different model groups to
predict the intermediate and final quality variables stage-by-stage. This reconfigured

PLRT is preferred over the original PLRT for the purpose of the feedforward control.

Stage 1 Stage k-1  Stage k Stage N

—~

i Selection of:model group I |
! E-lp kL
! ! ST A (ST 4 O R

A Ak
1

,.______

Figure 3.5: Reconfigured PLRT for a MMP

3.4 Reconfigured Model Complexity and Control Accuracy
The PLRTs from GUIDE are pruned by cross validation to minimize the predicted SSE
(Loh, 2002). After the reconfiguration, the reconfigured model yields the best prediction
accuracy due to the statistical equivalency. However, the reconfigured PLRT may be
very complex with many leaf nodes and many potential local models, which increases
computational efforts in the control optimization. On the other hand, there is an
engineering tolerance for the controlled objectives, which can be further transferred to the
needs of the model precision used in the feedforward control. In other words, the model
used for control purpose may not have the same level of high precision requirement as
the prediction obtained from the original PLRT. Therefore, the model complexity can be
reduced, while the model still satisfies the control accuracy requirements. The reduction

of the model complexity is achieved by assuming that there are limited numbers of
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variables having nonlinear relationship with the response. Detail discussions on how to
further simplify the reconfigured PLRT with fewer leaf nodes is provided below.

In a reconfigured PLRT, the control performance can be evaluated by the
accumulative errors of all PLRT model errors at different stages. However, different
model groups may be selected in control according to the splitting conditions. Thus, it is
difficult to estimate the control accuracy for every possible path used in control. In this
chapter, the largest prediction variance is proposed to evaluate the control accuracy of

this leaf node, shown as follows:

or;=  max  Var(Y(N),) (3.3)

st X, €43, ), uy <uy <uy,V1,Vk
where U,i ;18 the maximum prediction variance of the j-th quality variable in the &-th leaf
node, obtained by enumerating all control actions; Y(N);is the predicted final quality
variable; the optimization constraints are the controllability of the process variables,
where {x, } is the set of all possible settings ofx, , and u,,u, represents the lower and

upper bound of the feasible range for u, .

The control accuracy of the overall structure is evaluated by the pooled variance
of these leaf nodes. Assuming there are equal numbers of products in different leaf nodes
in control, thus, the pooled variance is the average of the control accuracy of all leaf

nodes, shown as follows:

1 T
O = ;;aﬁj (3.4)
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where T is the number of leaf nodes in the reconfigured PLRT; and oﬁew’ represents the
control accuracy for the j-th quality variable. In this way, the control accuracy is

evaluated by O'éec.,j .

3

Identify Current & éac i

[

Merge in Each PLRT & Re-construct the
) ) 2 )
Identify min O, ; Reconfigured PLRT

1

Select the Merging w/

L2
min Ty, ;

Use Current Reconfigure
Model in Control

Figure 3.6: The procedure to reduce model complexity

To reduce the model complexity, the leaf nodes should be merged. With less leaf
nodes, the prediction performance will be degraded because the PLRTs are pruned to
minimize the predicted SSE in the cross validation. There are two issues to be addressed
to balance the model complexity and the control accuracy: (1) which leaf nodes should
be merged, and (2) when the merging process should be stopped?

The leaf nodes with the least important splitting structure should be merged first
because it would result in the smallest decrease in the prediction accuracy. Although the
control accuracy is evaluated based on the reconfigured PLRT, the temporarily complied
splitting variables no longer provide information on the importance of splitting structure.
Nevertheless, the original PLRTs preserve the importance of the splitting variables for
prediction in splitting orders from the more significant ones to the less significant ones.
Therefore, reducing the number of leaf nodes will merge the nodes in the deepest layer in

the original PLRTs. The merging process is stopped when the control accuracy of the
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reconfigured PLRT exceeds the pre-determined control accuracy requirement.  The

merging process is completed in an iterative way shown in Figure 3.6.

In Figure 3.6, the control accuracy of the current reconfigured PLRT oﬁec"j is
estimated first. Then different deepest leaf nodes in the original PLRTs are merged once

at a time. In this way, a set of new control accuracy estimates O‘ﬁec”j of the final
reconfigured PLRTs is obtained. We choose the minimal Gﬁec_,j and compare it with a
pre-determined threshold O'ij for the j-th quality variable. One concludes that the model

. .. 2 . o, - 2 .
with minimal Oy, ;is acceptable if it is smaller than o7 ;. In this case, we reconstruct

the reconfigured PLRT in the next iteration. Otherwise, the control accuracy of the
current model does not satisfy the control accuracy requirement, thus the merging should
be stopped. After this procedure, the reconfigured model has reached a balance between

the model complexity and the control accuracy.

3.5 Feedforward Control Strategy of Reconfigured PLRTs

The engineering-driven reconfiguration has made it possible to develop a feedforward
control strategy by actively adjusting the process variables and compensating the quality
variable for variation reduction. The overall strategy is shown in Figure 3.7. The basic
idea to achieve a feedforward control based on the reconfigured PLRT models is
presented below.

At each controllable stage, several potential model groups are determined based
on the splitting conditions. If the splitting variables are measured at previous stages or
layers, a model group in a leaf is selected when the splitting conditions are satisfied.

Otherwise, several branches and leaves may be selected, which form a cluster of potential
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model groups. In this case, the splitting conditions are formulated as constraints in the

optimization problem.

Observe Imitial Quality *
& Property Variables
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s

Optimize Pred. T Based On
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Figure 3.7: The overall feedforward control strategy

The control optimization at the k-th stage is formulated as the-smaller-the-better

problem:

min  J(U,X)=3 ¢,E(Y(N) ?) (3.5)
i=k,N =1
st. Y(N); = fi(m)

WY(s),)<H,

x; € {5}

Uq: X2
li’"1i,

“1% <uy < ”1?
I(g,(Z,,..,Z,))>0
s=12,---,N;i=k,---,N.

where the objective function is the weighted summation of the second order moment of m

predicted final quality variables; Y(N); is the j-th final quality variable predicted from

the k-th stage; c; is the weight of the importance of the j-th quality variable. The

decision variables are the process variables from the k-th stage to the N-th stage. In the
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constraints, faf (1)is a potential model group for the quality prediction determined by the
splitting conditions; A(Y(s);) < H  represents the quality specification for the j-th quality

variable at the s -th stage (s=12,---,N); u <u, <y and x, €{x,} (i=k,--,N)
represent the feasible ranges as described in Equation (3.3). The optimization problem is

solved by Iterated Local Search Algorithm (Stutzle, 1998).

3.6 Case Study
A case study in a multistage wafer manufacturing process (MWMP) is conducted to
illustrate the procedure of modeling and control based on the reconfigured PLRTs. A
comparison study of the feedforward control strategy based on a reconfigured PLRT and
regression model groups is conducted to show the effectiveness of the proposed

approach.

3.6.1 Wafer Manufacturing Processes

A MWMP is a complex MMP involving chemical and mechanical process to transform a
silicon ingot into a wafer with uniform thickness, fine surface roughness, and good
overall geometric shape for future processing. The process in this case study consists of

five major manufacturing stages as shown in Figure 2.4, including slicing, lapping,
chemical vapor deposition (CVD) of polysilicon, CVD of Si0O,, and polishing. Each

stage is a combination of multiple operations with quality measured at the end of the
stage.
In a MWMP, the overall geometric shape is a critical geometric quality index of a

wafer. BOW and WARP of a wafer represent the overall shape of a wafer, which is used
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as the quality improvement objective in the case study. In general, smaller absolute
values of these variables indicate better quality of the wafer.

In this case study, observational data of three types of variables (quality, process,
and material property) were collected in a real production environment. Those variables
are summarized in Table 2.2 in Chapter 2. In this table, the CTRRES represent the
position of wafers in an ingot. In the case study, the central thickness of a wafer is
measured in each stage, which is used in the selection of settings of downstream process
parameters. Therefore, the central thickness of wafer is treated as a predictor rather than

quality variables. The initial quality vector Y(0) in this process is assumed to be a zero

vector.

In this process, some intermediate quality specifications of wafers need to be
satisfied. For example, the thickness of a wafer in certain lapping batch should be within
a specified range; otherwise, the wafer will be broken during the lapping. These
intermediate quality specifications are formulated as constraints in the optimization
problem. Overall, data of 373 wafers are obtained in production for the case study. The
PLRTs are constructed based on the training data set (250 wafers) and the control

performance is evaluated based on the testing data set (123 wafers).

3.6.2 PLRT Models of the MWMP

The PLRTs for this MWMP are estimated and shown in Figure 3.8. In Figure 3.8, there
are four splitting structures to predict BOW2, BOWS5, WARP2, and WARPS5, while the
models for other quality variables are regression models without splitting structures. In
each leaf node, there is a local regression model, where “B” or “W” represents the quality

variable BOW or WARP respectively. The PLRTs have explicit interpretations. For

53



example, material property CTRRES at different segments of ingot yield different
prediction models to predict BOW2 (Figure 3.8 (a)). This shows that the prediction of
BOW?2 is influenced by the material heterogeneity of wafers at the tail and the head of the

ingot. Similar interpretations are obtained for BOWS5, WARP2, and WARPS.

@®®® DISEND

(a) Model BOW2 (b) Model BOWS5 (c) Model WARP2 (d) Model WARPS5

Figure 3.8: PLRTs in MWMP

Since GUIDE does not consider the interactions in estimating the local regression

models, the regression model of f*(), f**(), () and f"*() is re-estimated

considering the interactions of predictors to further reduce the predicted SSE.

3.6.3 Reconfiguration of PLRTSs

Based on the PLRT from GUIDE, a reconfigured PLRT is obtained in Figure 3.9. In
Figure 3.9, the temporal order of the splitting variables is CTRRES < CVDB < CVDbt ,
which is re-ordered into different layers of the reconfigured PLRT from the root. In this
example, CTRRES is split into three sub-regions in the first layer of the model, which are
based on the splittings in the original models to predict BOW2 and WARP2. In the
second and the third layer of the model, CVDB and CVDbt are split as the same as the
original model. In this way, 12 regression model groups are generated, which will be

selected by the splitting conditions. The overall structure clearly represents the sequence
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of manufacturing from the root to the leaf nodes, and predicts multiple intermediate and

final quality variables.

CTRRES 14.000==
CTRRE3

=14.525

Figure 3.9: Reconfigured PLRT for MWMP

3.6.4 Reduce Model Complexity

To reduce the model complexity, the control accuracy of BOWS and WARPS are
evaluated in different reconfigured models. Figure 3.10 (a) shows control accuracy of 11
models from regression group (Reg. G.) with the worst control accuracy to the
reconfigured PLRT (Rec. T.) with the best control accuracy. The number of nodes is
marked for each model. In this figure, the control accuracy varies as different model
complexities are adopted. Such an analysis provides guidelines to select a model with
appropriate complexity that satisfies the control accuracy requirement. In this case study,
the control accuracy requirement of BOWS and WARPS are 0.5 and 2.5 (horizontal
dashed lines). The model with splits in BOWS and WARPS (B5W5) has the minimal

number of leaf nodes to satisfy the requirement, which has only two significant splitting

55



variables and four leaf nodes retained for control optimization, shown in Figure 3.10 (b).

By comparing the “Rec. T.” model, the model complexity has been significantly reduced.
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Figure 3.10: Control accuracy and model complexity

3.6.5 Simulation Study of Feedforward Control

To compare the feedforward control strategy, a total of 50 simulation runs were
conducted based on three different models: “Reg. G.”, “B5W5” and “Rec. T.”. In the
simulation, the “Reg. G.” model is a global regression model without using splitting

variables. The “B5SW5” and “Rec. T.” models use the reconfigured PLRT models for
prediction. Without loss of the generality, we set ¢; =1in Equation (3.5).

Figure 3.11 (a) shows the controlled WARPS in one simulation run. The
horizontal axis represents the performance without control and with control based on
different models. The control based on the reconfigured PLRTs yields better
performance in reducing mean and variance of the final quality than regression group
models. Here the control based on the regression group models is the same result in the

intermediate feedforward control strategy (Jin and Shi, manuscript). Moreover, there is
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no significant increase in mean and variance of the controlled quality when using the
“B5SWS5” model verses the “Rec. T.”. This indicates that there is no significant loss in
control performance when merging some of the splitting structures. Figure 3.11 (b)

shows controlled performance of the absolute value of BOWS with similar

interpretations.
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Figure 3.11: Controlled quality performance in a simulation run

Table 3.5: Controlled objective values in simulations

Reg. G. B5W5 Rec. T.
Mean | 383.80 340.68 307.05
St. Dev. | 35.63 7.64 15.20

The values of the optimal objective function of 50 simulation runs are
summarized in Figure 3.12. The values of the optimal objective function based on “Reg.
G.” are larger than those based on reconfigured PLRT in most of the simulation runs, i.e.,
a better control performance is obtained with the reconfigured PLRT model. The “Rec.
T.” model has a better controlled performance than the “B5W5” model. However, a

more complex model structure leads to a higher demand on computational efforts. The

proposed reconfigured PLRT with reduced model complexity has less leaf nodes and

57



sacrifices the control accuracy, but it still sufficiently meets the control requirements

from an engineering perspective.

600

—— Reg G.

| —— B5WS

—=— Rec.T.

500+

Opt.
Oby. *°r
\'aluesdDD |

350+
o

300

250 1 L L L L 1 1 L L
0

Sunulation Runs
Figure 3.12: Comparison of control performance based on different models
The mean and standard deviation of the optimal values are summarized in Table
3.5. There is an average of 11.24% and 20.00% reduction in objective value for the
“B5W5” and “Rec. T.” compared to “Reg. G.”. The standard deviation of the values of
the objective function is also reduced for the proposed “B5W5” model. The study
indicates that the reconfigured PLRT is more effective in variation reduction than the

standard regression model group based on the proposed control strategy.

3.7 Conclusion
It is a challenging task to model the variations and their propagations in MMPs,
especially when the relationships among process parameters and product quality variables
are nonlinear. In this case, a PLRT model can be adopted that has high prediction
accuracy and explicit interpretation in describing nonlinear data structure. However, it
fails to illustrate the temporal order and inherent relationships among variables in a

MMP.
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This chapter bridges the gap between the needs for advanced models for MMP
variation reduction and the limitations of PLRT. An engineering-driven reconfiguration
of the PLRT is proposed to convert the original model into an engineering compliant
model. The reconfigured PLRT not only has the high prediction accuracy of the original
tree structure, but also provides a feasible solution in determining the potential prediction
models sequentially as the operations move from the upstream stages to the downstream
stages. This sequential model selection procedure enables its capability in active
compensation by implementing a feedforward control strategy. The model complexity is
also reduced by analyzing the control accuracy of the models. A case study has been
conducted in a real MWMP, which demonstrates better control performance by using the

reconfigured PLRT model compared to that using a standard regression model.
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CHAPTER 4

SEQUENTIAL MEASUREMENT STRATEGY FOR WAFER

GEOMETRIC PROFILE ESTIMATION

4.1 Introduction

In semiconductor manufacturing, the geometric shape of wafers is an important index to
evaluate wafer quality. For example, the profiles could be used to estimate quality
variables defined by the Semiconductor Equipment and Materials International (SEMI) as
industrial standards, such as Total Thickness Variation (TTV), Bow and Warp. These
variables are not only used for quality measures of the final wafer product, but also for
identifying root cause of surface imperfections (Pei ef al., 2003; Pei et al., 2004; Zhu and
Kao, 2005) during a production. Moreover, the geometric profiles of wafers are modeled
for optimal design of process variables in wafer manufacturing processes (Zhao et al.,
2011), which requires timely online measurements of the wafer geometric profiles.

In order to provide effective process control of wafer manufacturing processes, it
is desirable to quickly obtain wafer geometric profile measurement with adequate
accuracy. However, current measuring procedure is time consuming and unable to
provide wafer profile information in a timely manner. For example, the existing wafer
measurement technology, such as a touching probe type of sensors, takes more than eight
hours to measure one typical batch of wafers (e.g. 400 wafers in one production run).

Time consuming measurement prohibits the implementation of advanced process
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monitoring and diagnosis technologies for quality improvement. Therefore, the objective
of this research is to develop an efficient and systematic measurement strategy to reduce
the measurement time through sequential sampling and modeling. In this chapter,
because of the limitations of evaluating the measurement time on the real sensor system,
we propose to minimize a composite index based on the measured sample size and times

of model fittings as the efficiency improvement index:

Comp.Index = T—2L__ 4 (1 — T)& (4.1)

max (N¢otal) max (Itotal)

where nq, 1S the total sample size measured for a wafer; I, 1S the total times of model
fittings in the measurement strategy; 7 is a weighting coefficient to evaluate the
measurement time for each point and the computation time; and max (n.,) and
max (Iyora1) are the maximum of the total sample size and total times of model fittings for
a batch of wafers, which are used to normalize the effects of sample size and number of
model fittings. When reaching the same accuracy with smaller composite index, we
consider the measurement strategy has better efficiency.

In the wafer manufacturing processes, high definition samples of each wafer are
measured as geometric profiles. There are different methods to model the geometric
profiles from different perspectives in the literature. From the engineering perspective,
physical analytical models, such as finite element analysis or partial differential
equations, are adopted to model the geometric profiles (Zhang and Kapoor, 1990; Abburi
and Dixit, 2006; Ozcelik and Bayramoglu, 2006; Huang and Gao, 2010). A major
limitation in these methods is that they require a sophisticated understanding of the
profile formation. Another limitation is that these methods are usually used to model a

deterministic profile with limited capabilities in modeling the randomness of the profile
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errors or the random filed effects. Some other approaches, such as methods in computer
graphics, use Spline (Forsey and Bartels, 1988; Lee et al., 1997; Sederberg et al., 2004),
or wavelet analysis (Schroder, 1996; Valette and Prost, 2004) to model the profile data.
In most cases, the potential factors to the shape or characteristics are not considered for
the profile in modeling.

In this chapter, a Gaussian Process (GP) model is used to characterize the spatial
correlated geometric shape of a wafer, including the profile mean, correlated variability
and measurement noise. One of the advantages of GP model is that the correlated
variability can be further decomposed into the global variability and local variability
components with nice interpretations. The former one represents the trend of variation
over the whole wafer, while the latter one captures the variation only within a relevant
neighborhood to the measurement locations.

In order to implement sampling strategy based on GP models, several efforts
have been reported for optimal sampling scheme in a most economic way. In the spatial
statistics, researchers have employed the grid spacing determination approaches to reduce
the sample size. By maximizing the grid space, the sampling cost will be minimized in
an optimal sampling scheme under the constraints of an allowed maximum error variance
(Curran and Williamson, 1986; Curran 1988). Others extend the previous work to
determine the optimal grid spacing designs for sampling multiple variables by conditional
kriging variance based on cross-correlations among variables (McBratney and Webster,
1983a; McBratney and Webster, 1983b; Atkinson et al., 1992; Atkinson et al., 1994).
Moreover, relationships between estimation accuracy of the response variable and

required sample size are explored and investigated (Wang et al., 2005; Xiao et al., 2005).
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However, a major limitation of the aforementioned sampling strategies is that the local
spatial variability of the response variable is neglected, which may vary from location to
location. To attack these limitations, variable grid spacing approaches are developed
based on the local variability (Anderson et al., 2006). In the region with a higher local
variability, a smaller grid space is determined, which is equivalent to measuring more
samples in the neighborhood, vice verse.

There are different measurement strategies by sequentially allocating the samples
based on prior information. One type of strategies is widely used in optimal sensor
selection or allocation problem. Another type of strategies is developed in computer
experiments (CEs).

In the optimal sensor selection or allocation problem, posterior distributions based
on prior measurements are used for sensor location determination to maximize the
information gain. When it is difficult to evaluate an exact posterior distribution,
Sequential Monte Carlo (SMC) method is used for numerical approximation. The SMC
method has shown a powerful ability to solve both the sophisticated statistical problem
and engineering applications (Liu and Chen, 1998; Doucet et al., 2000; Doucet et al.,
2001). The Bayesian SMC method is also proposed to solve the optimal sensor selection
and fusion in target tracking and localization applications (Guo and Wang, 2004).
However, the performance of these methods depends on proper parametric form of the
Bayesian model, and they are generally computational intensive for posterior
calculations.

The sequential design in CE is another stream of sampling strategies, which has

been well developed to find the optimum of inputs (Schonlau et al., 1998; Williams et al.,
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2000; Park et al., 2002; Kleijnen and Beers, 2004; Huang et al., 2006). One of the
objectives of sequential design is to reduce the experimental runs to reach the optimal
solution, which refers to minimum or maximum of the response. A sequential
measurement design strategy is proposed to sequentially allocating more sampling points
at the locations with a higher expected improvement (EI) to quickly reach the minimum
of the investigated surface (Williams et al., 2000). In their work, a larger expected
improvement is defined as the locations with a smaller predicted value or a larger
predicted variance for the minimization type of problem.

Other than focusing on minimizing the required experimental runs to obtain the
optimal solution, there are other GP-based sequential sampling works, which focus on
how to sample sequentially in order to obtain a better model fitting, conditional on the
new pair of sample points. These models are usually obtained from the posterior
distributions via MCMC. Different thrifty criterions based sequential sampling problem
could be found in MacKay, 1992; Cohn, 1996; Muller et al., 2004. Some sequential
applications can be shown to approximate static optimal designs, see Seo et al. 2000;
Gramacy and Lee, 2009.

The optimal sampling schemes and sequential designs provide effective ways in
reducing the sample size by solving a set of optimization problems. However, some have
limitations in computations, and others may not be applicable for online measurement
tasks. For grid spacing determination, the chosen sample locations are not directly
associated with the locations with higher local variability within each grid. And for the
sequential design, some methods target on optimization objectives, which is not the same

as online measurement. Moreover, most of the sampling schemes and existing sequential
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measurements involve computational intensive optimization procedure to determine
additional samples.

This chapter continues the stream of sequential design in CE to measure samples
sequentially, called “sequential measurement strategy”, but differs in the following ways.
First, the proposed sampling scheme is aimed at considering both the global variation
trend and the local variability pattern simultaneously to achieve more accurate prediction
ability. Second, the prior engineering knowledge of input-output relationship is taken
into account to determine the initial measurement samples. By combining these two
aspects, the proposed sequential measurement strategy enhances the wafer quality profile
prediction performance with a higher efficiency. Although the proposed framework is
similar to the sequential design, the innovation of this chapter lies in two proposed
empirical distributions for initial measurements and sequential measurements, which will
be discussed in details later.

The rest part of the chapter is organized as follows. The GP-based sequential
measurement strategy is described in detail in Section 4.2. A real case study is provided
in Section 4.3 to evaluate the proposed measurement strategy for wafer thickness profile
estimation in a slicing process. Finally, the conclusion and future work are summarized

in Section 4.4.

4.2 GP Model based Sequential Measurement Strategy

4.2.1 Overview of the Sequential Measurement Strategy

The framework of the proposed sequential measurement strategy is shown in Figure 4.1.
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Figure 4.1: A framework of sequential measurement strategy

In the proposed methodology, all measurement locations are determined by
sampling empirical distributions.  The empirical distributions are the estimated
probability density functions evaluated at discrete potential measurement locations. The
sequential measurement strategy starts to sample an empirical distribution obtained from
the engineering knowledge, then fits a GP model based on the initial measurements. In
the estimation, the measured locations are partitioned into a training sample set and a
testing sample set. A GP model is estimated based on the training sample set and the
model accuracy is evaluated based on the testing sample set. If the stopping rule is
satisfied, the iterative measurement procedure stops; otherwise, additional samples are
measured to further improve the estimation performance. In this approach, the magnitude
of gradient and the predicted Mean Squared Error (MSE) from the previous GP model are
used to determine the sequential measurements. By iteratively taking the samples and re-
fitting the model, the GP models are expected to better approximate the true wafer profile

closely.

4.2.2 Measurement Locations and Data Format
The gauge used in this wafer measurement study is a touching probe type of sensor,
which has minimal distance of allowable movement and the maximum measuring range.

The specification of the gauge defines a potential measurement zone, denoted as D for
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the set of potential measurement locations. In a continuous measuring scheme, there is a
position calibration mechanism such that all wafers are measured at the same locations.
For each potential measurement location, there are several quality features to be
measured. In the wafer example, wafer thickness, flatness, and local warp are interested
quality features. Each of these quality features forms a highly spatially correlated data

profile, called a “wafer geometric profile”.
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Figure 4.2: Potential measurement points and measurement result
Figure 4.2 shows an example of the potential measurement locations for a wafer
and the measurements of wafer thickness profile. In Figure 4.2 (a), the solid curve
represents the edge of the wafer, and the inner rings formed by stars represent the
potential measurement locations in D. The line segment at the top of a wafer is the

reference edge. The total number of potential measurement locations is usually a large
number in practice, which 1s denoted as n,,. For example, n,, is larger than 5000 for a

6-inch wafer. In Figure 4.2 (b), the thickness readings of wafers are taken at the potential
measurement locations of Figure 4.2 (a), which form the wafer thickness profile. The
grey scale represents the thickness of the wafer in different ranges. And the thicknesses

of unmeasured locations are estimated by interpolating the measured points. It is clear
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that there is thickness variation in the wafer as the left up corner is thinner. Similar

format of data can be obtained from the measurement gauge for other geometric profiles.

4.2.3 Determination of Initial Measurement Samples

The determination of the measurement samples is equivalent to select a subset of the
overall potential measurement locations. When there is no prior knowledge regarding the
profile distribution, there are two typical ways to determine the initial samples. One is to
use random measurement strategy, i.e., to measure the samples with randomly selected
locations; the other way is to view the initial measurement samples as a design in CE and
then incorporate Latin Hypercube Design (LHD) or uniform design with space filling
criterions to define sample locations (Santner ef al., 2003).

The random measurement approach is straightforward and easy to be
implemented, but a major limitation of this approach is that any two chosen initial
samples may be too close to each other. Since the wafer profile is spatially correlated,
the samples within the neighborhood not only have high correlation and hence contribute
little information towards better fitting, but also may lead to singularity when inversing
the correlation matrix in model estimation (Santner ef al., 2003).

The space filling design in CE has advantages over the random sampling strategy
by increasing the pairwise distance in an initial design. However, some typical forms
may be difficult to implement in the regions with irregular shapes, such as the circles of
the potential measurement points for a wafer. Other typical forms of space filling design
choose the design points mainly based on the distance among the input variables, which
ignore the relationship between response (profile) and input variables (locations). In this

case, the design may be inefficient, especially when the input-output relationship is
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available from engineering knowledge. More advanced techniques may use this input-
output relationship in design with a more complicated way (Santner et al, 2003).
Therefore, this chapter proposes a computationally efficient approach by sampling a
weighted empirical distribution from engineering knowledge.

To efficiently determine the measurement samples, the local variability of a wafer
profile is first defined as:
Definition 4.2.1 Local variability of a wafer profile: the local variability of a wafer
profile at location x is the sample variance of the profile values at the measured locations

within a neighborhood region 9t(x):
() = = Tyenp (Y (X) = F(x))? (4.2)
where X' is a location within the neighborhood of x; Y (x')is the sample mean of the

profile values in the neighborhood; and 7  is sample size in that neighborhood. The

neighborhood N(x) is defined as the k-th nearest neighborhood. Generally speaking, & is
chosen to be at least 25 in a usual case so that a good estimation of variance could be
guaranteed.

To determine efficient initial measurement samples, the regions with potentially a
higher local variability should have more samples taken in these regions, as shown in the
grid spacing determination approach (Anderson ef al., 2006). In the wafer manufacturing
process, the ideal wafer profile has uniform thickness. The observed thickness deviate

from the ideal profiles, which have a set of potential root cause factors, denoted as
U(x) = {u; (X),...,u,(x)} . Here, u; (x)(i =1,2,---,q ) are the potential factors associated

with wafer locations, such as the contact span at x. The local variability of the profile
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has a proportional relationship of its potential factors from the engineering perception and
verified by the data, shown as:

t.
M2, ' ®

q t

o2 (x) « -
jear+1 s ®

(4.3)

where H?:llufi(x) i1s the product of factors proportional to the local variability of the

profile; H;L ot u;j (x) is the product of factors inverse proportional to local variability of

the profiles; there are q; proportional factors and (¢ — q;) inverse proportional factors;

and #, and ¢; are parameters in the power for each factors.

Table 4.1: The procedure to determine the initial measurement locations

Step 1. Obtain the proportional relationship of the local variability of the
wafer profile with its potential factors in Equation (4.3)

Step 2. Estimate the empirical distribution for the initial measurement
using Equation (4.4)

Step 3. Determine the sample size n, and allocate the sample sizes to

circles, which is proportional to the summation of the probability
of the points on that circle

Step 4. Sample the points from the outmost circle to the innermost circles.
For each circle, points are sampled for G times, and the samples
are selected to have max-min distances to the samples on the
circles outside

Step 5. Measure the wafer profile at the locations determined in Step 4

Based on the proportional relationship in Equation (4.3), the initial measurement
points are determined by sampling an empirical distribution defined as

t.
1 M w'®

t .
C1 q ]
Mjzgy 413 ®

Pr(x) = (4.4)

where ¢, is the corresponding normalizing constant.

By sampling the empirical distribution defined in Equation (4.4), the sample
locations with larger local variability will have a higher probability to be selected as the
initial measurements. A detailed procedure is summarized in Table 4.1. In this
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procedure, we use stratified sampling and a max-min criterion to determine initial

measurements from the outmost circle to the innermost circles. The max-min criterion is

Vxlénc‘?r’f_,{?ierlcir2||xl'x2|| ) (4.5)

where Cir;and Cir, are the sets of locations of the outer circles and the inner circles in

Step 4 of Table 4.1.

4.2.4 GP Models for Wafer Geometric Profiles
Based on the measurements, a GP model is adopted to model a wafer geometric profile as
Y&) =fTX)B+2Z(x) +¢ (4.6)
where fT(x)B represents the mean part of the wafer profile; in general, the basis
functions fT(x) = [f1 ), ---,fp(-)] are known; = [,81, IO ﬂp]T is the regression
coefficient vector; Z(x) is a Gaussian process with mean 0 and covariance function g2;
02 is the variance of the covariance function, which represents the wafer profile
fluctuation caused by manufacturing error; and ¢ is the uncorrelated noise term follows
normal distribution NID (0, 52) , which represents the measurement noise. Note that the

correlation function applied is a commonly used anisotropy Gaussian correlation

function:

Y(x;,xx) = exp(— X0, di(xij — xix)?) 4.7
where ¢;is the scale parameter associated with the i-th predictor; ® = [(]51, ., qbp]; and
p is the dimension of the input variables. In the wafer profile estimation problem, X; is
the j-th location on the wafer with coordinate(X,j,X;;), and p=2. To be more specific,

Xy; 1s the axis parallel to the reference edge of a wafer, and x,; is the axis perpendicular

to the reference edge of a wafer. The origin is at the geometric center of the wafer.
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In the wafer profile estimation problem, we use an ordinary kriging model to fit
the wafer geometric profile:

Y(X) = By + Z(x) (4.8)
where B, is the constant mean part. This simplification is based on the fact that (1) the
GP model with a constant mean part is adequate to model the wafer profile; and (2) the
measurement noise of the wafer profile € is negligible compared with the profile accuracy
requirement.

This model is obtained in the following way. We partition the measured samples

nTr

. .o . T T
into a training sample set {x;, ¥;}1=;, and a testing sample set {x;, ¥;}" Tt

imnTT 41" Based on
the training sample set, the predicted profile at an unobserved location X is obtained by
the ordinary kriging predictor as:

Y =B + PO (Y - fo1) (4.9)

where 1 is an’” x 1 vector with all elements equal to 1; p(x)T = [P(x — x;) P(x —

X3) - Y(X =X, 7r)]; W is a matrix with elements lp(xj - xk) in the row j and column

kY=|"Y, .. YnTTJT ; and By = 1"™W-lY/1TW-11 . The Y(x)is the best linear
unbiased estimator which interpolates all the measured locations (Santner ef al., 2003).

In the parameter estimation, the scale parameter ® is estimated by maximum
likelihood estimation (MLE), denoted as ®@. Then ® is plugged in Equation (4.9) to
calculate B, (Santner et al., 2003). In this way, a predicted profile is obtained by
changing X in Equation (4.9). When there are additional samples collected in new
iterations, the unknown parameters will be re-estimated, and new profile at interested

locations can be predicted with the updated ordinary kriging model.
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4.2.5 Determination of Sequential Samples

The samples are proposed to be measured sequentially, so that the samples
collected at later measurement iterations can be appropriately selected based on the prior
information from the GP model. If the stopping rule is not satisfied, the measurements of
the (i+1)-th iteration is required based on the GP model in the i-th iteration. We propose
to sample an empirical distribution, weighted by the magnitude of gradient and predicted
Mean Squared Error (MSE) of the GP model.

Denote the predicted GP response as Y!(x) in the i-th iteration, the gradient of
the predicted GP as dY#(x) with the magnitude |dY?(x)|, and the MSE at any location X

aPYi(x)

as Err;(x), then we have dYi(x) = P
10X2..0Xp

, and Erry(x) = 622(1 + ATy (x) —

DTAP D) T ATP 1P (x) — 1) — Ppx)TW'P(x)) (Lophaven er al., 2002). Then
the samples of the (i+1)-th iteration are sampled from the following empirical

distribution:

Pr(x) = {0 (LE0) 4 (1 - (B} (4.10)
where A is a weighting coefficient, which is a tuning parameter; c, is a normalizing
constant for the distribution; c; and c, are the maximum values of the magnitude of
gradient and prediction error, respectively, which are used to standardize the magnitude
of gradient and prediction error. In Equation (4.10), the first part represents the area with
large fluctuation, and the second part represents the area with larger prediction
uncertainty. More samples in these two types of local areas should be measured to

reduce the prediction error. Note that the prediction accuracy in a local region can be

improved by taking additional measurements. This is because the ordinary kriging model
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interpolates these extra measurements. Recall that when two sampled locations are closer
to each other, their correlation may become higher. In addition, when larger sample size
is affordable, the maximum distance between any two sampled locations could be
reduced. In this way, higher prediction accuracy could be achieved, when there are more
samples measured in the neighborhood of that location.

In practice, the distance between measurements should be larger than a minimal
distance to avoid singularity problem when computing the inverse of the correlation
matrix. In other words, the new samples from sampling locations will not be measured if

they are too close to previous ones.

4.2.6 Stopping Rule

The sequential measurement strategy takes samples sequentially until a stopping rule is
satisfied to achieve the required estimation accuracy. In most cases, the root mean sum
of prediction error (RMSPE) of a profile can be adopted to evaluate the overall profile

prediction accuracy, which is defined as:

RMSPE = [11L,(V(x) — 7))’ (4.11)

where Y (x;) is the predicted profile at the location X; from the estimated GP model; and
n is the number of measurements compared.

It is ideal to evaluate the RMSPE of samples, which are not used in modeling. In
order to estimate the RMSPE of the overall wafer profile, we compute the testing error
based on the testing sample set collected in each measurement iteration to determine if

the measurement stops. The measurement will stop if

RMSPE}®st < \[Th,2 (4.12)
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where Th,2 is a pre-determined estimation variance, representing the profile accuracy
requirement. In this chapter, it is determined from the tolerance of the quality variables
or quality profiles. RMSPEF®t is the root mean sum of the testing sample set in the i-th

measurement iteration.

4.2.7 Parameter Estimation

In the proposed method, there are several parameters to be determined: the initial sample
size n, , the sequential sample size n;, and the weighting coefficient A in Equation (4.10).
In this chapter, these parameters are selected before the sequential measurement strategy
is implemented online, based on a “golden” profile. The “golden” profile is regarded as a
representative profile to a batch of the profiles. In the wafer example, the wafer profiles
from the same batch are assumed to follow the same distribution due to the similarity of
the process conditions. A “golden” profile is selected from one of the representative
wafers, where the measurements at all possible potential measurement locations are
obtained. The parameters are determined when estimating of the “golden” profile by the
sequential measurement strategy.

The initial sample size n,y is firstly determined by manipulating n, and
comparing RMSPEs in the “golden” profile. More specifically, we draw n, samples
using Equation (4.4) from D in the “golden” profile for N times, denoted as
[x™0, Y™0]1, [x™0, Y™0]2 ... [x"0, Y™]N  Based on these samples, N GP models are
estimated and their RMSPEs of the unmeasured samples are calculated. We accept the
initial sample size as the minimal sample size with Mgy spp < Tm , where Mppyspg
is the median of the RMSPEs of N GP models. T is a properly selected constant to have a
reliable initial GP model for additional samples. If T is large, ny, will be small. The
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estimated initial GP model may have large variation in estimation, and the additional
samples may not be reliable for quick approximation of the geometric profile. IfT is
small, ny will be large. It may take much time to measure many samples to ensure the
unnecessary initial accuracy.

After n, is determined, n; and A are determined to minimize the composite
index defined in Equation (4.1). Here, we assume the additional sample sizes n; are the
same in all measurement iterations. Following the sequential measurement strategy, we
estimate the composite index for different combinations of n; and A based on the
“golden” profile. In the strategy, we applied the same Th,2. Therefore, the combination
of n; and A with the smallest composite index yields the best measurement efficiency,

and it will be selected as the parameters for the sequential measurement strategy.

4.3 Case Study
A real case study is conducted to predict the wafer thickness profiles in a slicing process.
Detail procedures are provided in this section to illustrate the effectiveness of the

proposed sequential measurement strategy.

4.3.1 Wafer Slicing Processes

A slicing process is used to transform the silicon ingot into wafers with rough surface and
non-uniform thickness. Figure 4.3 (a) shows a set up of wafer slicing process. The ingot
is mounted to a fixture and pressed against multiple tensioned and equally spaced wires.
The wires are moving back-and-forth with the given speed V, while the slurry sprinkles
onto the cutting edge. Figure 4.3 (b) is an illustration of cutting edge and the contact

span interaction. In the slicing process, the ingot is pressed against the wires such that
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there is a bow angle @ formed between the wire and the horizontal level. The length that
silicon material has contact with the wire is called contact span, defined as L. During the
slicing process, the slurry thin film is formed between the wire and ingot, in which the

abrasives remove the silicon material.

/é% 1
Fixture V\A Ingot

LY
L1

Wires

"\

(a) An ingot in slicing processes (b) Cutting edge and contact span
Figure 4.3: Slicing processes

The sliced wafer determines the initial geometric quality in a wafer production.
The profile is significant for wafer monitoring and root cause diagnosis in slicing
processes as well as downstream stages. One important wafer quality feature is the
thickness profile, which represents the thickness over the wafer disks. The thickness
profile data set is further used to estimate the TTV of the wafers, i.e., the difference
between the maximum and the minimum of the thickness profile.

In this case study, a 6-inch ingot with over 400 wafers is sliced in a HCT wire saw
system. Several steps are taken into actions to ensure the representativeness of the wafer
profiles collected as the normal production: (1) the ingot is sliced with another 6-inch

ingot with the same technology specification and very similar length, as the normal
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production. The wafers in one ingot are measured for the case study. (2) The system is
checked for the wires, guide wear and other maintenance check points to avoid abnormal
machine statuses. And (3) the slurry characteristic is measured and checked to ensure a
satisfied slicing efficiency.

After the slicing process, the thickness profiles are measured using a gauge with a
touching probe. First, the wafers are loaded to a conveyer belt sequentially. Each wafer
will pass through a measurement area, where the readings of thickness at all possible
locations in D are recorded. The measurement time for each wafer is over 60 seconds,
and it will take over 8 hours to measure all 400 wafers. Therefore, 71 wafers are selected
from the whole ingots for this case study. For each wafer, the wafer thickness profile is
stored in a three column matrix, where the first and the second columns represent the
coordinates of the measurement locations, and the third column represents the wafer

thickness.

4.3.2 Parameter Determination in the Case Study

The profile data of the 71 wafers are used to evaluate the sequential measurement
strategy. The measurement strategy will be used to select a subset of the data on each
profile to fit GP models, which mimic the measurement procedure in practice. The
thickness at each location in D and the TTV for each wafer will be predicted by the final
GP model when the stopping rule is satisfied. These predicted values will be treated as
real measurements if the accuracy requirement is satisfied. Since both the thickness and
the TTV of each wafer are also measured, the predicted thickness and TTV by GP models

will be compared with the measured thickness and TTV to evaluated measurement
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strategies. For these 71 wafers, one wafer is selected as the “golden” profile and the rest
70 wafers are used for evaluation.

There are many potential factors for thickness variation, such as slicing speed V,
contact span L and bow angle @, as marked in Figure 4.3 (b) (Zhu and Kao, 2005). From
engineering knowledge and data collected, a partial proportional relationship is obtained
among those variables, which shows a larger variation of thickness profile when the

contact span is shorter or the location is nearer to the edge of a wafer, denoted as

t
o2 (X) Zt—gg (4.13)

where 7 is the radius from the location X to the center of the wafer; L is the contact span

of the location x ; and this case study assumes t; = t; = t. The unknown parameter 7 is

estimated from the local variability of the “golden” profile by MLE, which is £ = 1.97.

Local variability

Smaller
A

iliN

v

Larger

(a) Local variability (b) Fitted proportional relationship
Figure 4.4: Local variability (nearest 25 points) and fitted proportional relationship
Figure 4.4 (a) shows different local variability patterns estimated from the wafer
profiles by Equation (4.2). It is clear that there is a large variation at the location where

the contact span is short or the radius is large. Based on these common characteristics,
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we use the proportional relationship in Equation (4.13) to capture these variation patterns,
and use the “golden” profile to calibrate the parameter ¢, as shown in Figure 4.4 (b).
Following the procedure in Section 4.2.7, we determine the parameters based on
the “golden” profile. In this case study, we choose 7=3 to determine the initial sample
size ny. In this case, ng = 100. Then we obtain the composite index versus the A and n;
by analyzing the “golden” profile. In this case study, we choose 7 = 0.5 by assuming the
measurement time for a batch of samples and model fitting time for these samples are
comparable in iterations. Thus, when n; =70 and A = 0.8, the composite index is

minimized. These values will be used for the simulation in the case study.

4.3.3 Performance Analysis and Comparison

After the parameters are determined, a series of GP models is estimated and the samples
are determined in iterations. Figure 4.5 shows the intermediate results of sequential
measurement procedure for the thickness profile prediction. The initial sampling

distribution is weighted by radius and contact span, shown in Figure 4.5 (a). Based on
the initial sample distribution, n, =100 initial samples are measured, whose locations are

shown in Figure 4.5 (b), marked as stars. In iterations, we partition all of the measured
data into a training sample set (75%) and a testing sample set (25%). A GP model is
estimated based on the training sample set (75 samples for the initial model fitting). In
this model, the mean of the thickness profile is removed before the modeling. Figure 4.5
(c) shows the measured thickness profile (solid lines) and the estimated profile by the GP
model (“+” lines), and the GP model is:

Y(x) = —0.3011 + Z(x) (4.14)
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where ® = [5.95 2.50]; 62 = 2.79; and RMSPE}®st is 0.8662 [micron]. From Figure
4.5 (c), the GP model provides a nice approximation of the overall wafer profile.
However, a larger prediction error can be observed at some locations (marked by a
dashed circle), the prediction is not accurate enough. Additional samples may be needed
to further reduce the prediction errors.

When additional measurements are needed, the magnitude of gradient and
predicted MSE are estimated based on the GP model in Equation (4.14), shown in Figure
4.5 (d) and (e), respectively. Finally, the empirical distribution for sequential samples is
obtained in Figure 4.5 (f). Additional n; = 70 points are measured by sampling this
empirical distribution. During the sampling, the Euclidean distance of any two
measurement points is calculated. If the distance is smaller than a pre-determined
threshold, the new samples will not be measured such that any two samples are not too
close to each other. In this case study, the distance threshold is 3 [mm].

Once additional samples are determined, all measured 170 samples are randomly
partitioned into a training sample set (75%) and a testing sample set (25%) again. The
GP model is updated based on the training sample set as:

Y(x) = —0.4808 + Z(x) (4.15)
where ® = [4.20 5.00]; 02 = 4.96; and RMSPEE®St is 0.8389 [micron]. In this way,
the GP model is improved as the sample size increases.

The sequential samples are measured iteratively until the accuracy of the
estimated quality variables satisfies the stopping rule. In this chapter, Th,z = 0.04, i.e.,
the requirement in the standard deviation is 0.2 [micron]. This accuracy requirement is

an engineering specification of design in wafer manufacturing processes.
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Figure 4.5: Intermediate results of sequential measurement strategy
Once the stopping rule is satisfied, the TTV can be estimated as:
TTV = max(¥(x)) — min(¥ (x)) (4.16)
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To evaluate the sequential measurement performance, the thickness profiles of 70
wafers are measured based on three different measurement strategies: random
measurement strategy (denoted as “Rand.”), sequential measurement strategy with space
filling initial measurements (denoted as ‘“Space-seq.”), and sequential measurement
strategy with initial measurements from engineering knowledge (denoted as “Eng.-seq.”).
In the random measurement strategy, the measurement locations are randomly selected
following a discrete uniform distribution. The Euclidean distances of samples are
calculated to reject samples in close neighborhood. The sampling process of random
measurement is also completed in a sequential way with the same sample size and
stopping rule employed.

The “Space-seq.” measurement strategy is different from the “Eng.-seq.”
measurement strategy in initial measurements. In the “Eng.-seq.” measurement strategy,
an Engineering driven initial empirical distribution is used to determine the initial
samples. In the “Space-seq.” measurement strategy, n, space filling initial
measurements are measured. Then additional samples are measured using the same way
as the “Eng.-seq.” measurement strategy. Because some of the typical designs, such as
LHD, may not be directly used in an irregular region, the initial measurements of the
space filling design are determined in the following way: (1) the sample size is allocated
to circles, which is proportional to the radiuses of the circles; (2) the samples on the
outmost circle are selected as equally spaced samples; (3) the samples on the second
outmost circle are also equally spaced, but a max-min criterion is applied to maximize the
minimal distance to the samples on the circles outside; and (4) repeat Step 3 for the

circles with smaller radiuses, until all samples are selected.
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Based on these three measurement strategies, the results are summarized in Figure
4.6. Here the RMSPE refers to the RMSPE of all unmeasured locations, i.e., the
locations not selected by measurement strategies. The RMSPE of the unmeasured
locations are used to quantify how well the GP models approximate the profile. Figure
4.6 (a) and (b) represent the box-plots of RMSPE and TTV deviation for 70 sliced wafers
using those three strategies. The TTV deviation refers to the deviation between the
calculated TTV based on the final GP models and the measured TTV of the wafers.
Since the stopping rule sets the same standards in the estimation accuracy of the profile,
we have comparable accuracy performance for three strategies in the RMSPE and TTV
deviation. However, to achieve the comparable estimation accuracy of the profile, both
“Space-seq.” measurement strategy and “Eng.-seq.” measurement strategy use less
samples, as shown in Figure 4.6 (c), and they have smaller composite indexes as shown
in Figure 4.6 (d).

Moreover, the RMSPEs with different sample sizes are compared in Figure 4.6
(e). It is clear that the RMSPEs of both “Space-seq.” measurement strategy and “Eng.-
seq.” measurement strategy yield better estimation performance than the random
measurement strategy. The “Eng.-seq.” measurement strategy has better estimation
performance when sample size is small, but quickly converges to the similar performance
as the “Space-seq.” measurement strategy does. This result indicates that the initial
empirical distribution provides useful information to obtain a reliable initial GP model for
sequential measurements. The sequential measurement strategy performs well, even if
the initial engineering knowledge is not available and the space filling initial

measurements are used instead.
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4.4 Conclusion
Wafer geometric profiles are important quality features in semiconductor manufacturing.
In most cases, the measurements of wafer profile are not available during the production,
since it is time consuming to measure profiles of a large batch of wafers.

This chapter proposes an efficient sequential measurement strategy to
approximate the thickness profile by estimated GP models. New empirical distributions
are proposed to determine measurement locations, include both the initial distribution
from engineering knowledge, and the sequential measurement distribution from the
estimated GP models. In this chapter, the case study indicates that proposed sequential
measurement strategy requires smaller sample size to achieve comparable estimation
accuracy than the random measurement strategy. Moreover, the initial empirical
distribution contributes in obtaining a reliable initial GP model, when comparing with the
space filling measurement strategy.

In the GP model estimation, the computation complexity is intensive when the
training sample size becomes larger, and the inversion of the covariance matrix may
easily become ill-conditioned. In future research, computationally more efficient meta-

models will be studied to develop new measurement strategies.
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CHAPTERS
MULTISTAGE MULTIMODE PROCESS MONITORING BASED
ON A PIECEWISE LINEAR REGRESSION TREE CONSIDERING

MODELING UNCERTAINTY

5.1 Introduction
A multistage manufacturing process (MMP) consists of multiple operations at different
stages to produce one product. The variation of the product quality is introduced by the
operations at the current stage as well as those propagated from upstream stages. The
accumulation of variation may result in nonconforming products at the end of the MMP.
Therefore, a quick detection of changes in a multistage process is important for quality
assurance and improvement.

The monitoring of a multistage process is a challenging problem, because the
variables and stages are interrelated. The output of a stage becomes the input of the next
stage. The conventional statistical process control (SPC) cannot be directly applied in
this case, because it monitors the final product quality without consideration of the inter-
stage relationships. Thus, it is difficult to identify the stages with assignable causes.
More discussions on the topic can be found in the review papers of Lowry and
Montgomery (1995), and Woodall and Montgomery (1999).

Considering the variable relationship, a regression based risk-adjusted approaches
(Hawkins, 1991, 1993; Shu et al., 2004a) and cause-selecting methods (Zhang, 1985,
1992; Shu et al., 2004b) are developed. In principle, both types of approaches use

regression models to predict the quality variables at the current stage, but differ in the
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following way: The risk adjustment method regresses the quality variables on the
process and upstream quality variables. It monitors the residuals and the covariates, thus
distinguishing the process change at the current stage or that from the upstream stages.
The cause-selecting method predicts the quality variables based only on the quality
variables at the previous stage. By monitoring the residuals, a process change is
identified for the current stage.

Beyond the statistical model based adjustment, multistage process monitoring is
also developed based on engineering models (Xiang and Tsung, 2008). In this approach,
a state space model is estimated using EM algorithm to model the stream of variation (Jin
and Shi, 1999; Shi, 2006). The one-step-ahead prediction error of quality observations is
monitored using a “group EWMA chart.”

The existing approaches for multistage process monitoring are successful to
quickly detect the process change by assuming only one operational mode or one baseline
model under normal conditions. However, this may not be true in a complex
manufacturing process. A process may involve different incoming material properties,
production flows, machines, process settings, etc. Due to the active compensation
capability of the process, the manufacture produces conforming product, indicating an in-
control process, but the variation propagation differs in path to realize the conforming
final product under the normal conditions. The multimode shows different clusters of
data at each stage, with multiple variation propagation patterns among stages using
different baseline models.

In recent years, process monitoring problem with multiple clusters under normal

conditions becomes important. In general, these clusters are identified first and then the
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monitoring is carried out within each cluster. When multiple operational modes are
observed in the variable space, Hwang and Han (1999) developed a hierarchical
clustering and a super PCA model for real time process monitoring. Similarly, when the
time-ordered clusters are observed, Harnish et al. (2009) used a modified agglomerative
clustering approach to identify multiple change points along the time index; Jobe and
Pokojovy (2009) proposed a distance based clustering method in the transformed space,
and charting individual clusters. Furthermore, Zhang and Albin (2007) proposed a scale-
based clustering with dummy dimension to identify the number of clusters.

The aforementioned process monitoring approaches with multimode provide great
opportunities when the clusters have already been identified in either variable space or
time domain. However, these approaches focus on monitoring variables with clusters at a
single stage and ignore the variable relationship in a MMP. When the variables are
interrelated in a MMP, monitoring all variables simultaneously may not effectively detect
process changes at certain stages. Moreover, multiple operational modes essentially
determine different propagation patterns among stages, which is not modeled nor
monitored in the existing approaches. Therefore, there is a gap between current
methodologies and the monitoring of a multistage multimode process (MMOP).

A MMOP is commonly encountered in practice. For example, in a wafer
manufacturing process, wafers are lapped to improve thickness uniformity, coated with
thin films in the chemical vapor deposition (CVD) process, and polished to achieve
mirror-like surfaces. Figure 5.1 shows the real measurements of the wafer thickness from
two ingots after lapping, CVD, and polishing operations. The left box plot at each stage

refers to Ingot 1, and the right box plot at each stage refers to Ingot 2. The circles and
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crosses represent the means of the thickness for these two ingots. In this wafer
manufacturing process, the lapped wafers have different thickness for those two ingots,
and the polishing process adjusts the process setting variables, such as pressure, rotation
speed, or time, to compensate incoming thickness variation and achieve conforming
wafers in the end. In this case, the thickness of wafers evolves in different paths as the

operations move on, which forms a MMOP.
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Figure 5.1: A multistage multimode wafer manufacturing process

In this chapter, we propose a piecewise linear regression tree (PLRT) based risk
adjustment method to address the monitoring problem in a MMOP. By partitioning the
variable space into several sub-regions, local regression models of PLRTs are used to
represent different propagation patterns related to the quality, process, and material
property variables stage-by-stage (Loh, 2002; Kim ef al., 2007; Jin and Shi, 2011). The
objective is to monitor the mean shift of the residuals for these local models. The
proposed approach is based on the following assumptions: (1) the multimode operations
are revealed by multiple baseline models in variable spaces; (2) the variation propagation

under different operational modes is well approximated by piecewise linear models; and
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(3) during the process monitoring, the operational modes remain stable, and there are no

changes in modes nor baseline model structures.
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Figure 5.2: An overview of proposed method

An overview of the proposed method is shown in Figure 5.2. In this framework,

we model the MMOP by the PLRTSs and reconfigure the trees into engineering compliant

model based on the Phase I data (Jin and Shi, 2011). In the process monitoring, we use

the Shewhart charts to monitor the residuals of every local models in the PLRTs, which

form a control chart system. We study the impact of the model uncertainty to the run

length distribution, and further optimize the control chart system. We remove out-of-

control samples with assignable causes iteratively, until no more out-of-control samples
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show up in the finalized control chart system. At this moment, the control chart system is
used to monitor the future samples, and the control chart performance is compared with
other benchmark control charts.

The rest part of the chapter is organized as follows. After the introduction,
Section 5.2 discusses the modeling procedure of the PLRTs for MMOPs. Section 5.3
presents the development of the control chart system for risk adjustment based on local
models. In Section 5.4, we analyze the run length distribution considering modeling
uncertainty for the control chart system optimization. Section 5.5 presents the case
studies of simulation models and a real example in a multistage wafer manufacturing
process to demonstrate the control chart performances. Finally, the conclusion is

provided in Section 5.6.

5.2 Piecewise Linear Regression Tree for Multistage Multimode Process Modeling
In a MMP with N stages, the operations of a product is completed stage-by-stage, shown
in Figure 2.2 in Chapter 2. Typical variables to describe a MMP are the product quality
variables, process setting variables, and material property variables, defined in Table 3.1
in Chapter 3. In this process, some of the quality variables are measured repeatively at
the end of each stage.

The discovery of multimode in a multistage manufacturing process is a
challenging task. This is not only because both number of modes and mode conditions
are unknown, but also because the variables are interrelated to form different baseline
models. The proposed PLRT is assumed to have a good match of the MMOP in the
following three aspects: (1) the number of leaf nodes of a PLRT reveals the number of

modes in a multistage process; (2) the splitting conditions for each leaf nodes represent
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the mode conditions; and (3) the local regression models in different leaf nodes of a
PLRT are the baseline models of different modes.

By using PLRTs, we identify the number of modes by the number of leaf nodes,
quantify the mode conditions by the splitting conditions, and determine the model
structures and parameters in the local models. Figure 5.3 shows an example of a PLRT
and its partitioned variable space (redrawn from Jin and Shi, 2011). There are three leaf

nodes in Figure 5.3(a) and corresponding sub-regions in their variable space in Figure
5.3(b). Two splitting variables Z, (i =1,2) and corresponding splitting boundaries 7%,
(i =12) quantify these leaf nodes. The selection of model goes to the left branch if the
splitting condition is satisfied. In each leaf node, a local regression model f; (-)

(1 =1,2,3) predicts the response.

Multimode in a MMP is usually defined from an engineering perspective, either
by different raw material, operational conditions, or production flows. In this chapter, we
use a data driven approach to identify multiple baseline models to describe variable
relationships. In this way, we monitor the process changes from the baseline conditions
characterized by the statistical models. After the PLRT is constructed, we may compare

the operational modes with splitting variables to explain the scenarios. For example, in

Figure 5.3, we treat f, () (1=L23) as three baseline models in the variation

propagation. When Z, < Th, , the mode with baseline model f, (-) represents the current

scenario of production.There are different types of methods to construct a tree model,
such as Classification and Regression Tree (CART) (Breiman et al., 1984), Bayesian

Tree (Chipman et al., 1998, 2002; Dennison et al., 2002) and Smoothed and Unsmoothed
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Piecewise-polynomial Regression Trees (SUPPORT) (Chaudhuri et al., 1994). This
chapter uses Generalized, Unbiased Interaction Detection and Estimation (GUIDE) (Loh,
2002; Kim et al., 2007) because of its advantages in splitting, prediction, selection bias

alleviation and interaction detection.
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Figure 5.3: A PLRT and its splitting variable space
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Figure 5.4: Multiple baseline models in variation propagation

To model a MMOP, we adopt the same procedure for modeling and

reconfiguration as that used by Jin and Shi (2011). The i -th local model £(") is
identified to predict the Y(k),,, the j-th quality variable at the & -th stage for the sample

index ¢ as
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k,j kj\T k.j
Y(k)j,z = :Bi,o] + (Bi,lj) N, + ei,tj (5.1)
where the model is estimated based on the centralized data; ,Bl.’f(’)j and Bf."’lj are regression

coefficients; 1, is the covariates vector for the #-th sample with dimension p, x1, where

p, is the number of the covariates; el.]f ;j are the residual errors in fik’j (); and ¢ is the

sample index. e;;” follows an i.i.d normal distribution with mean 0 and variance ofk‘ ;-

Figure 5.4 shows multiple baseline models in the variation propagation after the
reconfiguration where the baseline models are represented as arrows. In each stage, the
variable space is partitioned into different regions with different data clusters, such as

circles, crosses, and squares in Figure 5.4. To predict the quality variables at the k-th
stage, there may be different baseline models f; (-) (i =1,2,...,T) representing different

variation propagation patterns. In this way, a PLRT quantifies the multimode of variation

propagation among multiple stages.

5.3 Design of a PTO Control Chart System
After we obtain the PLRTs, we propose a risk adjustment type of control chart system to
monitor the MMOP. We call the control chart system as “Piecewise linear regression
Tree based control chart system with Optimized type I error” (PTO). We discuss the
structure of the PTO control chart system in this section.
The regression based risk adjustment approaches detect a mean shift in a MMP by
charting the residuals (Hawkins, 1993). When a PLRT is constructed to model the

variation propagation, multiple local regression models are developed. Therefore, a
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group of Shewhart control charts is constructed for the residuals of each local model.

The residuals and their estimated variance after the risk adjustment can be computed as

e =Y (k),, - B - (BT »
{ it ( )]vt ﬂﬂ() (Bl,l) rlk,t l]p ](glka](zl 3"'9ZL)):1 (5.2)

6':*;, = var(é;’)

where g//(Z, ,...,Z,) is the splitting condition based on splitting variables Z, ,...,Z,; L
is the number of splitting variables; and /(x) is an indicator function, which is
I ifx=0
I(x)= f (5.3)
0 ifx<0

In Equation (5.2), the coefficients of the regression model ,6’,k0’ , Bﬁ}'i and Ujk‘,. are

. i Bk ) . .
unknown in most cases, and £/, B;;’ and ijr ; are the corresponding estimates based on

m, training samples, 1.e., £ =1,2,...,m, .

1

Without loss of generality, we choose the sample size for process monitoring as 1.

I\k,j
Thus, we monitor the standardized residual —2— (i = 1,2,..7; ;) and compare it with the
Ok,
control limits as
uCL=z,,
CL=0 if 1(g"(Z,,...Z,))=1 (5.4)
LCL=-z,,

where z,,, is the 100(1 -« /2 )-th quantile of a standard normal distribution. When the

control chart for the 7 -th model signals, we conclude that there is a mean shift in the

residuals, i.e., E(e;/) = A = 0.
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When using the PTO control chart system to monitor a process, only one local
model will be selected as the risk adjustment model for a sample based on the splitting
conditions. Therefore, we have different concepts of run length in both the individual
control chart and in the control chart system. Here we refer “a run in a control chart” as a
sample that enters one individual control chart, given that this sample satisfies the
splitting conditions. And we refer “a run in a control chart system” as a sample that
enters the control chart system, without specifying the splitting conditions.

Two concepts of runs refer to monitoring at an individual control chart level and a
control chart system level. Taking a PLRT with two leaf nodes in a MMOP as an

example, the probability that a new sample satisfies the splitting conditions to the first

and the second leaf node is ¢, and ¢, , respectively. When there are m runs in the

control chart system, there are mq, and mgq, expected runs in these two control charts.

Therefore, the conversion of the run length in a control chart to that in a control chart

system depends on the probability to select the control chart in the PLRT.

5.4 Model Uncertainty Analysis for Control Chart System Optimization
In the regression based risk adjustment methods, the regression parameter estimation has
an impact on the monitoring performance (Shu et al., 2004). This is because that the
parameters are estimated from a training data set, involving uncertainties from sensing
noise, sampling strategy, or natural variability of the process. The uncertainties of the
estimates will impact the control chart performance, such as excessive false alarms.
Similar to the risk adjustment methods based on a single regression model, the PLRT
based control chart system also suffers performance degradation considering modeling

uncertainty, but in a more complicated way.
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There are two types of modeling uncertainties involved to change the Average
Run Length (ARL) performance in a PLRT based control chart system: (1) different
training data sets may result in different partitions of the sub-regions in the variable
space, including both the splitting variable selection and splitting boundary estimation;
and (2) parameter estimation has uncertainty within a sub-region.

Moreover, the two types of modeling uncertainties are inter-related with each
other, because the PLRT partitions the sample space and fits the local models recursively.
Given a regression model, the uncertainty of the parameter estimates transfers to the
uncertainty of contingence table tests in splitting variable selection and MSE estimates of
splitting boundaries (Loh, 2002). This newly partitioned variable space further changes
the parameter estimates in each sub-region. The relationship of the two types of
modeling uncertainties makes the assessment of a PLRT uncertainty a very challenging
problem.

Considering the two types of modeling uncertainties, the control chart
performance is degraded, not only because of the parameter estimates in each baseline
model, but also the selection of baseline model for risk adjustment. In the Phase II study,
a new sample near the splitting boundaries may be misclassified for the risk adjustment
based on an incorrect local model due to the estimation uncertainty of splitting
boundaries. From a risk adjustment point of view, the variance of residuals in local
models may be quite different, which results in quite different performance of the ARL.

In order to tackle the mentioned problem, we transfer the modeling uncertainty to
run length distribution by conditioning the splitting uncertainty. That is, we first analyze

the run length performance considering the parameter estimation uncertainty in baseline
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models, conditioning on a baseline model. Then, we try to integrate the splitting
uncertainty into the analysis. This idea is motivated by Bayesian Tree (Chipman et al.,
1998, 2002), which provides a probability framework for both tree structure and
parameter estimates.

In this chapter, our objective is to monitor the mean shift in baseline model
residuals, and the operational modes are assumed to be stable. Therefore, we assume that
the splitting structure, including the splitting variables and splitting orders will not be
changed for a stable MMP, but the splitting boundary may be changed due to the data
uncertainty. Therefore, we consider the effects of uncertainties from both the splitting

boundary estimation and the baseline model parameter estimation.

5.4.1 Run Length Distribution Considering Parameter Estimation
Conditioning on a baseline model, e.g., the i-th model, the analysis of run length
distribution with parameter estimates is similar to that of the run length performance of
regression model based control charts (Shu et al., 2004). In their paper, the effects of
parameter estimation are investigated to monitor the standardized residuals when there is
a mean shift in residuals or a covariate. In this chapter, we follow the same procedure for
the analysis, and further extend their scheme from a single covariate to multiple
covariates.

Based on Equation (5.1), the regression coefficients follow normal distributions as

follows:
> Y(k),, Lo
=izl " I N(ﬂi,éj’m_u) (5.5)

Bl ~ MYN@ () )
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where m, is the training sample size for the i-th local model, and 7, is the data matrix of
covariates with dimension p, xm, .

Based on Equation (5.1) and Equation (5.2), a future observation with a mean
shift E(e/)=A = ac,, in the residuals has
ol = (ﬂlko’ — ,élko’ ) +(Bi’1j —[Aif."’l*" )Tnk,, +el.lf 7/, and the residual is a normal variable given
the baseline model parameter estimates, i.e.,

er | Bl B ~ N(E (), 62) (5.6)
where E@)=A7 +(B5 ~A)+B B, and &5, =B -B)'E, Bl i)+,
Here B, = E(m,,) , the expectation of the covariates with dimension p,x1, and

EH = Cov(m,, ), the covariance of the covariates with dimension p, xp, .

Therefore, the monitoring statistics in a Shewhart chart is

f"’ = [Z, L@ +1+a- Z’”] (5.7)

o ko
where W =——; and Z/ 7 are standardized normal random variables; Z;; is a

5 /:,

O ., i
k.j
€t

. . . _ k,j -
normal random variable with mean as zero and variance as p: m,n;) lun ;and Z; is a
13 k ’

. . . T Ty-1
I xp, normal random vector with mean as zeros and covariance matrix as A" (n,n, ) A

Here A is a p, xp, matrix, such that En =AA". Since Z‘.n is a positive semi-
k k

definite matrix, A=DV"’D" |, where D is the matrix with eigenvectors of X as

Ny
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columns, and V" is the matrix with the square roots of eigenvalues as diagonal

elements. The detailed derivation and definitions can be found in the Appendix.

Because we use a Shewhart chart to monitor the residuals, and the samples are

independent, the probability that the run length in a control chart equals #, is denoted as

g, which is
.

2Pt =1,|Z} . Z L) W i)

_[q)(sz—(a—z.’”/J Z’” o 2, W —(a—Z5 Im, -Z7)

JZE(ZEDT +1 JZEZEDT +1

W—(a-Z /\m; -Z}; —z,,W—(a-Z /\m; -Z};
[1-(1)(2“/2 (a +a( Za/2 (a (5.8)

VZS(ZE)T +1 JZHZEDT +1

where ®(x) is the accumulative density function of a standard normal random variable.

5.4.2 Run Length Distribution Considering Splitting Uncertainty

After the run length distribution is analyzed conditioning on the i-th local model, we
further analyze the impact of the splitting uncertainty to the run length distribution. We
discuss the splitting uncertainty based on the types of the splitting variables, i.e.,
continuous variables and categorical variables.  Furthermore, the conditions of
continuous variables can be classified into two categories: the variable smaller than the

splitting boundaries or the variable larger than the splitting boundaries. In this chapter,

we denote / € Set A, if Z, is a continuous variable smaller than the splitting boundaries;
leSet B, if Z, is a continuous variable larger than the splitting boundaries; and

[ € Set C, 1if Z, is a categorical variable.
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Assuming the splitting order is Z,,Z,,...,Z,, 1.e., given a splitting variable Z, ,

all variables split prior to Z, have a smaller /, the corresponding splitting boundaries for

[ € Set Aor [ € Set B are

Th | 5 (Z,)ses g (Z,) = Thy +Th, 1 =1,...,L (5.9)
where T h, is the splitting boundary estimates from GUIDE, conditioning on the previous
splits; Th, is the true boundary for the baseline models; T h, is the estimation error; and
gf /() is the splitting condition of the splitting variable.

Here, we further assume E(Th, | g/ (Z, ), gl (Z,.)) = Th, .

When Z, is observed and 7h, is estimated from the data, for /e Ser A ,
gl.’f (Z)=Th, —Z, , and the probability that a new sample satisfies the condition is
denoted as p, , which is

=P, <y | 8(Z).- 81 (Z ) =Pr(E, <Th +Th | g}/ (Z))....811(Z,))

=Pr(Th >~} (Z,)| 8 (Z))8l1(Z,)) (5.10)

For [ € Set B, g/ (Z,)=Z, —Th, , and the probability that a new sample satisfies
the condition is denoted as p,”, which is

P AP, > Th | 82,82 ) =PrE, > Th +Thy | 5 (Z)...-8(Z,)

=Pr(Th, <g[j/(Z)| 8/ (Z))nglis(Z1) (5.11)

For I € Set C, the splitting conditions are set operations, i.e., Z, € C, , where C,

is a subset of its all possible values of Z, as {c,s}f’:l. When there is no estimation
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. S . P
uncertainty of C, , we treat C, as a fix subset of {c,s }S’Zl When there is estimation

uncertainty of C, , denoted as C , » when Z, is observed, then the probability that a new

sample satisfies the condition is denoted as v, , which 1s

v, = Pr([(gik,}j (Z,))>0] gik,ij (Z,),-.., ik,}il (Z,)= ZPr(Zz =¢,0,€C | gl‘lfij(zl )a-'~9gz'li;{l(zl—l))

Ve

=Y Pr(Z, =c,)Pr(c, €C, | Z, =c;, 87 (Z, ) g171(Z,2)) (5.12)

Ve,
where Pr(Z, =c,) is the probability that the splitting value of a new sample is ¢, ;
Pr(c, €C, | Z, =¢,, gl.]f IZ, )y gl.]f /.(Z,))) is conditional probability that ¢, belongs to
the true splitting conditions, given that a new sample’s splitting value is ¢, , and the
previous splitting g/ (Z, ),....g/7\(Z,,) .

Based on a PLRT with splitting uncertainty, the i-th baseline model is selected,

L
when the splitting condition is satisfied, ie., /(g (Z...Z,)=][1(g}/(Z))=1.
I=1

Therefore, the probability to select the i-th baseline model is the product from Equation

(5.10) to Equation (5.12), denoted as g, , based on the types of variables and conditions:
L k,j k,j k,j

g, 2P [1(eli (2, ) =D =Pr(g}i(Z,)>0,....g[} (Z,) > 0)
1=1

=P1(g{(Z))>0)Pr(g}; (Z,)>0| g5 (Z)>0)..Pr(g)/ (Z,) >0l g/ (Z)>0,...g,(Z,.,) > 0)

- [T [1» v 6.13)

leSet A leSet B leSet C
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By integrating the parameter estimation uncertainty and splitting uncertainty
based on Equation (5.8) and Equation (5.13), we have the run length distribution
considering both types of uncertainties:

Pr(t =1, |25, 2\ 2. W) = 3 q, 4, (5.14)

where g and ¢, are denoted in Equation (5.8) and Equation (5.13), respectively. Here

the run length refers to that in a control chart.

5.4.3 Estimation of Modeling Uncertainty

In order to evaluate the run length distribution of the control charts, there are several
unknown random variable distributions to estimate, such as W, T h, and c,. In this

chapter, we use the cross validation to estimate the distributions of these random
variables, then evaluate the run length performance based on these distributions. We
discuss the random variables one by one.

First, we obtain the cross validation residual variances, and use the pooled

. . . . 1 & .o oem .
variance as the variance of residuals, 1.e.,oj, ;= —Zofm , where M is the number

m=1

(-m

. . ) ) . . . . .
of cross validations; and o, is the estimate of residual variance in the m-th cross
it

validation. Due to the recursive splitting procedure, this variance estimate is conditioning
on the previous splits and models. Therefore, we can obtain an empirical distribution of

W by calculating the following:

(5.15)
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and the empirical distribution of ¥ is denoted as A (w).

M
Second, since E(Th, | g'(Z,),....g';'\(Z,_))) =Th, , we have Th, =$ZTh}’"> ,

el
where fh,(_m) is the estimate of splitting boundary in the m-th cross validation. We further
calculate the difference between the 7’ h, and Th, as:
Th™™ =Th™™ —Th, (5.16)
Based on Equation (5.16), we can estimate the probability p, and p, from the empirical
distribution of Th™ .
Third, for the splitting conditionZ, € C,, we need to estimate Pr(Z, =¢,) and
Pr(c, €C, | Z, :c,s,gl.lfij(Z1 ),...,gf;fl(Z,_l)) for Equation (5.12). Pr(Z, =c¢,) can be
estimated from the empirical distribution of the training samples.
Pr(c, €C, | Z, =¢,, gl.lf IZ, )y gl.lf /(Z,)) is estimated using the empirical distribution

from the M-fold cross validation as

M=

m ‘
. . - €€y
Pr(c, €C, | Z, = cls’gilfij (Z) )55 gilfl,il (Z.)= lj\}l— (5.17)
m .
; Z;=¢)5i
where m, . is the sample size when samples’ splitting values equal to ¢, in the i-th
1 =Cs 1 s

iteration of cross validation; and m__ . . is the sample size when ¢, is an element in C,
Is

€Cy i

in the i-th iteration of cross validation, i.e., ¢, satisfies the splitting condition Z, € C, .
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By substituting the distributions of W, T) h, and ¢, into Equation (5.14), we

obtain the run length distribution considering both estimation uncertainties and splitting

uncertainties.

5.4.4 Optimization of the Control Chart System

By using multiple control charts to monitor a system, there may be excessive false alarm
by using the Type I error o without Bonferroni correction. The Bonferroni charts
assume the control charts have similar run length performance and divide the overall
Type I error by the number of control charts. The control limits are shown as follows,

based on the charting system proposed in Equation (5.4):

UCL = Z4120)
CL=0 if (g (Z,,...Z,)) =1 (5.18)
LCL= ~Z,/20)

where a/(2D) is the Type I error for each control chart; and D is the number of quality

responses in the PLRTs for risk adjustment.

In the Bonferroni correction of multiple control charts, the total Type I error of
the overall charting system is equally allocated to each control chart. This allocation of
the Type I error is conservative. Moreover, the uncertainty analysis of the PLRTs may
indicate different type of model estimation uncertainty in risk adjustment. Thus, equal
assignment of the overall Type I error may result in sub-optimal performance on the
overall ARL.

In order to improve the ARL performance of the control chart system, we
consider the modeling uncertainty when designing the control chart. In a multistage

manufacturing process, one considers the optimization of the control chart systems by
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minimizing the out-of-control ARL given that the in-control ARL is larger than a pre-
determined threshold (Wu et. al, 2004). The Type-I errors for all the control charts are
the decision variables in this optimization problem. In this framework, Shewhart charts
are used to monitor the quality variables without risk-adjustment. We extend the
formulation to the optimization of the control chart system for MMOPs with risk

adjustment by solving the following optimization problem:

min ARLY
ayn=1,..,T (5.19)

where ARL]' and ARLY" are the ARL of the overall control chart system, where the run

length refers to that in a control chart system; ¢, is the Type-I error for the control charts
in the n-th control chart, when there are total of 7' control charts in a PLRT; and y is the

minimal ARL of the overall control chart system, which indicates the upper bound of the

Type-I error of the control chart system.
For the in-control ARL of the control chart system ARL] , i.e., « = 0 in Equation

(5.7), the ARL for the n-th control chart is:

ARLy =E(0)= 1,24, 4, (5.20)

t i

To convert the above run length in a control chart to the run length in a control

chart system, we integrate the probability to select the control chart:

ARL) =E(t") = £® (5.21)

n

where ¢ is the run length in the control chart system.
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Because of the Shewhart type of independence for the individual control chart and

control chart system, the probability F, that the control chart system has a false alarm is

T
B, =1-]J(1-1/ARLY) (5.22)

n=1
and

ARLY =1/P, (5.23)
Similarly, for the out-of-control ARL of the control chart system ARL"I" , 1.e.,

a # 0 in Equation (5.7), the ARL for a group of control charts in the /-th PLRT is:

ARL; = E() = Y1, 2.4, 4 (5-24)

ty 1

After conversion of the run length from a control chart to a control chart system:

ARL =E(t") = £® (5.25)

n

where ¢ is the run length in the control chart system.

Then the probability B, that the control chart system has a miss-detection is

T
P =1-]J(/ARLY) (5.26)

n=1

and

T
ARLY' =1/1-P, )= JARLY (5.27)

n=1
By substituting from Equation (5.23) to Equation (5.27) into Equation (5.19), we

may solve for ¢, using a similar way as in Wu et. a/ (2004). In this chapter, the overall

optimization procedure is illustrated in Figure 5.5.
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Estimate the empirical distribution of W, Th, , ¢, and

Initialize a,, (n = 1,2,...,T)

v

Calculate ARL3"

v

\ 4

AR > y?
No

\ 4
Decrease the largest a,,

Generate data based on Equation (4.6) with a mean shift and
update empirical distributions

v

Search a,, for a smaller ARL3! until ARL3! > y is bounded

1
1
I
1
1
1
I
1
1
1
I
1
Local Search |
1
I
1
1
1
I
1
1
1
I
1
1
I

Set current a, (n = 1,2, ..., T) as the optimal solution

v

Use the iterated local search algorithm to find the optimal «,,
until the stopping rule is satisfied.

Figure 5.5: Optimization flow chart
It should be pointed out that the proposed method is easy to be implemented. A
software package, named “PTOMonitor”, has been developed following the procedure
shown in Figure 5.2. Once a training set of samples is collected, the PTOMonitor will

automatically construct the control chart system with optimized Type I errors.
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5.5 Case Study

To evaluate the ARL performance of the proposed method, we use two data sets: one of
the data sets is generated from simulation models, and the other data set is collected from
the real production in wafer manufacturing processes. We compare the performance with
other two types of benchmark control chart systems: (1) the conventional risk adjustment
control chart system based on global regression models with the Bonferroni correction,
denoted as “GB”, and (2) the PLRT based risk adjustment control chart system with the
Bonferroni correction, denoted as “PTB”.

In the GB control chart system, the quality variables are predicted by global
regression models of their upstream variables, without considering multimode. We
monitor the residuals of regression models, where the Type I error is allocated to each
Shewhart chart using the Bonferroni correction.

In the PTB control chart system, the quality variables are predicted by PLRTs,
and the standardized residuals are similarly monitored as a PTO control chart system.
Similar to the Bonferroni correction, the overall Type I error is equally allocated to each
Shewhart chart, but further improved by solving the optimization in Equation (5.19) with
an additional constraint such that the Type I errors for individual control charts are the
same. This can be regarded as an improvement of the Bonferroni correction. The
proposed PTO control chart system has the optimized Type I error by considering the
modeling uncertainty. A comparison of the three types of control chart systems is

provided in Sections 5.5.1 and 5.5.2.
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5.5.1 Performance Comparison based on Simulation Models
The simulation models are developed based on a two-stage manufacturing process

illustrated in Figure 5.6, where Y(k) (k =1,2) are the quality variables at the k-th stage,
where Y(1) = [Y(l)l Y(l)z][ - [yn )ﬁz]r , Y(2)= [Y(2)1 Y(2)2Ir - [J’21 J’zzr 3 X (
k=1,2.) are the process variables, and X, = [x11 xlzr, X, = [x21 xzzr; and M is the

material property variable.

Y(1) Y(2)

M —| Stage | T »| Stage 2 —T

1 1

X, X,

Figure 5.6: A two-stage manufacturing process for simulation models

(a) Model for y,, (b) Model for y,,
(c) Model for y,, (d) Model for y,,

Figure 5.7: Multimode structure for simulation models
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The multimode structures for the quality variables are shown in Figure 5.7, where
fik’j (m) is the i-th local model to predict the j-th quality variable at the k-th stage. Taking
the model for y,, as an example, the simulation model fll’l(r]) 1s Y11 =10 + x4 —

2x1, + 20M + 611’1, where 611’1~N(0,1) , and the simulation model le‘l(‘r]) S Y11 =

390 + x11 — 2x1, + M + 621’1, where 821'1~N(0,1). The probability to select the first and
the second local model is 0.3 and 0.7, respectively.

Based on these simulation models, we generate 300 training samples, and then use
them to estimate global regression models and PLRT models. For example, the estimated
global regression model for y;; isy;; = —512.88 4+ 0.92x;; — 1.15x;, + 81.33M —
1.78M? — 0.04x,,M, where the mean square error (MSE) of residuals is 13.23. When
we consider the multimode to estimate the PLRT models, there is a splitting of material
variable M at 20.01, where the estimated probability to select the first and the second
local model is 0.30 and 0.70, respectively. The estimated fll’l(n) model is y;; = 5.12 +
0.95x;; — 2.00x,, + 20.26M, where the MSE of residuals is 0.99; and the estimated
£ M) is $11 = 389.30 + 1.00x;; — 2.00x;, + 1.03M, where the MSE of residuals is
1.02. To compare the modeling performance, we calculate ratio of the standard errors of

the model residuals for the PLRT models and the global regression models in Table 5.1,

where 6,k is the standard error of the global model to predict Y(k);, and 6'e!c,j is the

standard error of the i-th local model to predict Y(k), in the PLRTs. In Table 5.1, a

smaller ratio of the standard errors indicates that the PLRTs are more accurate

considering the multimode in the MMOP.
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Based on the estimated models, we follow the proposed monitoring procedure and
construct the control chart systems for GB, PTB, and PTO control chart systems. In
order to optimize the Type I errors in the PTO control chart system, we assume that there
are one local standard deviation of shifts in residuals in one of the eight local models with
equal probability. The optimized Type I errors are summarized in Table 5.2, while the
Type 1 errors for all control charts in GB and PTB control chart systems are 0.68 x 1073
and 0.72 x 1073, respectively. We expect a smaller ARL3!! for the PTO control chart
systems than that of the other two benchmark control chart systems, if there is a mean
shift in the residuals of the local models with larger Type I error allocated, vice verse.
Taking the control chart for the residuals of fll‘l(l]) as an example, the optimized Type I
error is 1.46x 1073, which is larger than the Type I errors in the GB and PTB control
chart systems. Thus, the control limits becomes tighter and it is easier to detect the mean
shift of the residuals of fll'l(n), with smaller ARL3!

After the optimization of the Type I errors, we compare the ARL performance of
these three control chart systems under different faulty scenarios in the Phase II study,
which is shown in Table 5.3. The ARLY! from the simulation for three control chart
systems are 369.08, 368.00 and 367.47, respectively. The ARL2!! and the standard errors
in the parenthesis are summarized. It is clear that the ARL3" based on PLRT models has a
better performance than that based on global regression models, which ignore the
inherent multimode structures of the simulation models. Moreover, the PTO control
chart system has a comparable ARL2!! as the PTB control chart system in some of the

faulty scenarios, such as the mean shift in all eight models, but performs much better than
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some other faulty scenarios, such as the mean shift in fll’l(n) or mean shifts in

f2 (), £272 (M) and £, (n).

Table 5.1: Ratios of the standard errors of simulation models

0'611,1 O'ezl,l 0'611,2 0'85,2 O'elz,1 0'622,1 0'612,2 0'322,2
531,1 6’81,1 5‘61,2 6‘61,2 6’82,1 5’62,1 532,2 6e2'2
Ratio 0.27 0.28 0.18 0.20 0.10 0.12 0.05 0.08

Table 5.2: Designed PTO control chart system for the simulation models

Control charts | Type I errors of PTO | Control ~ limits  of

x 1073 standardized residuals
Q) 1.46 318 3.8
fort () 0.55 346 3.46
fi2m) 0.61 343 343
£ () 1.20 324 324
£21m) 0.41 -3.53  3.53
£ m) 0.61 343 343
f2m) 1.19 324 324
£ () 0.77 336 3.36

Table 5.3: ARL2" performance based on simulation models (ARL3!! >370)

Mean shift locations Mean shift ARL3'(GB) ARLAY(PTB) ARL2'(PTO)
magnitude  369.08(4.63) 368.00(4.19) 367.47(4.13)

(ARLZ™) (ARLE (ARLA

£ () o 356.95(4.00) 189.42(1.68) 135.98(1.37)

£ () 20 316.52(5.37) 34.35(0.54)  25.59(0.42)

£ m) 30 252.52(4.38) 9.35(0.16)  7.71(0.13)
£22m) o 368.78(6.04) 282.46(5.36) 282.89(5.65)
£22(m) 20 364.33(5.21) 78.86(0.90)  75.85(1.05)

£22 M) 30 359.86(5.02) 16.32(0.21)  15.86(0.19)
R, £, £ () o 349.50(5.08) 91.34(1.27)  75.01(1.14)
£, 52, £ () 20 291.39(3.91) 12.02(0.18)  10.97(0.15)
D, £, £ () 3o 216.50(3.63) 3.34(0.03)  3.21(0.04)
£2 ), £ ), £ () o 359.80(5.70) 80.19(1.09)  59.75(0.86)
£, £22M), £ () 20 340.41(4.50) 10.32(0.11)  8.42(0.09)
£, £22 ), 2 (M) 3o 298.19(4.09) 2.60(0.02)  2.33(0.01)
All eight models o 305.86(3.89) 28.18(0.32)  26.22(0.33)
All eight models 20 191.36(2.75)  3.42(0.05)  3.35(0.05)
All eight models 30 105.01(1.42) 1.23(0.01)  1.23(0.01)
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5.5.2 Performance Comparison in Wafer Manufacturing Processes

We further demonstrate the effectiveness of the proposed PTO control chart system in a
wafer manufacturing process. In this process, there are multiple operations to transform
an ingot into wafers with thin film deposited. These operations include slicing, lapping,
and CVD. The wafer manufacturing process is a very complex process, involving
chemical and mechanical interactions of the wafers. The heterogeneity of the material
property and different process conditions may introduce multimode under the normal
conditions. Therefore, we will monitor the process by setting up the proposed PTO

control chart system.

CTRRES

RESGRAD BOW2 BOW5S
CTRTHK1 T _T
BOWI1 —| Lapping » CVD
WARPI T T

CVDB, CVDbt,
LB, LD, LDP PolishB, Cplate

Figure 5.8: A two-stage wafer manufacturing process

(a) Model for BOW2 (b) Model for BOWS5
Figure 5.9: Estimated multimode structures for the wafer manufacturing process
In this process, the objective is to monitor a geometric quality variable BOW2 and

BOWS, which represents the bending orientation of the overall shape, due to substrate

115



geometric shape after the lapping process, and the residual stress of the thin films
deposited in the CVD process. A two-stage process is shown in Figure 5.8. In this case
study, quality, process, and material property variables were collected in a real

production environment. The descriptions of those variables are summarized in Table 2.2

in Chapter 2.
Table 5.4: Ratios of the standard errors of models in wafer manufacturing process
63132 6‘6232 69{35 56235
0 ,B2 0 ,B2 0 oBs 0 Bs
Ratio 0.81 0.79 0.80 0.51

Table 5.5: PTO control chart system for wafer manufacturing processes

Control charts | Type I errors of PTO Control limits of
x 1073 standardized residuals
22 () 0.72 -3.38 3.38
f22() 1.69 -3.14 3.14
B5() 0.49 -3.49 3.49
B5() 0.85 -3.34 3.34

Table 5.6: ARL2" performance for wafer manufacturing processes (ARL! >370)

Mean shift location Mean shift ARL,(GB) ARL;(PTB) ARL,(PTO)
magnitude 369.30(5.23) 369.75(5.11) 371.68(4.43)

(ARLZY  (ARLYH  (ARLY
F2(m) o 150.53(1.90) 123.24(1.79) 125.47(1.70)
fE2m 20 29.54(0.47) 17.30(0.21) 17.79(0.23)
22 () 3o 7.91(0.09) 4.78(0.05)  4.87(0.05)
£52(n) - 180.01(2.24) 116.93(1.89) 88.38(1.29)
£E2(m) 20 40.44(0.56) 21.63(0.34) 16.00(0.23)
£E2(m) 3o 11.18(0.11)  6.20(0.06)  5.06(0.04)
B2(m), fE5() o 102.19(1.32) 71.03(1.04) 77.03(1.39)
B2, fFE° () 20 17.45(0.21) 9.61(0.12)  10.62(0.14)
FE2(m), £E5 () 3o 4.74(0.04)  2.91(0.04)  3.07(0.04)
FB2(n), 75 () o 148.35(2.54) 57.30(0.64) 48.31(0.56)
22, f25(m) 20 31.72(0.46)  9.44(0.12) 8.10(0.11)
B2, £E5 () 3o 8.94(0.13)  2.94(0.03) 2.68(0.03)
All four - 72.18(1.10) 34.74(0.65) 32.30(0.53)
All four 20 11.69(0.13)  4.96(0.07)  4.79(0.06)
All four 3o 3.25(0.05) 1.64(0.02)  1.60(0.02)
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Overall, there are 373 samples collected during the manufacturing process. By
iteratively removing the out-of-control samples in the Phase I study, as shown in Figure
5.2, 362 samples are used to construct the control chart systems. Similar to the
performance study in Section 5.5.1, we first obtain the global regression models and the
PLRT models, then optimize the control chart systems and compare the ARL
performance. To estimate the PLRT models considering the multimode in wafer
manufacturing process, all upstream quality, process and material property variables of
BOW2 and BOWS are treated as their predictors, respectively. By incorporating
potential variables for multimode conditions in Loh’s method (2002), the variables are
selected and the estimated multimode structure is shown in Figure 5.9, where ;7 and
fB5 (i=1, 2.) are the i-th local model to predict BOW2 and BOWS5. The ratios of the
standard errors of the model residuals for the PLRT models and the global regression
models are summarized in Table 5.4, where 6,52 and G ,ss are the standard errors of the

global models to predict BOW2 and BOWS, and 6,52 and 6 s are the standard errors of

the i-th local model to predict BOW2 and BOWS in the PLRTs. The PLRTSs have better
modeling performance than the global regression models.

Based on the estimated models, we construct the PTO control chart systems
following the procedure shown in Figure 5.2. The optimized Type I errors are
summarized in Table 5.5, while the Type I errors for all control charts in GB and PTB
control chart systems are 1.35 X 1073 and 0.77 X 1073 | respectively. The ARL
performance of these three control chart systems under different faulty scenarios in the
Phase II study is shown in Table 5.6. The ARL3!! from the simulation for three control

chart systems are 369.30, 369.75 and 371.68, respectively. The ARL3" and the standard
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errors in the parenthesis are summarized. Similar to the result in Table 5.3, the ARL3!!
based on PLRT models has much better performance than that based on global regression
models. Moreover, the PTO control chart system has better ARL2!! than the PTB control
chart system, such as the mean shifts in £22(n). This is because the optimized Type I
error of fF2(n) is larger in this MWMP. The PTO control chart system has capability to

adjust the Type I error according to the modeling uncertainty.

5.6 Conclusions
A MMP may have multiple operational modes due to its complex nature and different
variation propagation patterns. The process under different modes represents normal
production conditions. However, existing process monitoring methods usually assume
only one baseline model, or ignore the inter-relationship of variables when they are
clustered in time space or variable space. Therefore, these methods may not be effective
in a MMOP.

In this chapter, we proposed to use a PLRT to capture the variable relations in a
MMOP, where we identify the number of operational modes by the number of leaf nodes,
the mode conditions by the splitting conditions, and the baseline models by the local
regression models. We set up a risk adjustment type of Shewhart control chart system to
monitor the residuals of local models in order to detect process mean shifts in the
residuals. Considering the modeling uncertainty, we study the run length distribution and
optimize the control chart systems based on the modeling uncertainty. The proposed
method has shown a better ARL performance than the risk adjustment based on global
regression models or PLRT based risk adjustment with the Bonferroni correction, in both

the simulation case and the real example in the wafer manufacturing processes.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Original Contributions

In wafer manufacturing processes, the availability of massive observational data provides

opportunities to the advancement of quality control research, while it poses the

challenges including the high dimensionality and heterogeneity of the data, and

effectiveness in complex manufacturing process modeling. This thesis contributes to the

quality control research by developing a unified variation modeling, analysis and control

methodology for MWMPs, which includes the following aspects.

1.

2.

An intermediate feedforward control strategy was developed for variation
reduction by using intermediate quality responses to adjust control actions and
analyzing the impact of measurement noise. This method uses a group of
regression models to capture the stage-to-stage variation in a MWMP. The
intermediate feedforward control strategy adjusts and updates the control actions
based on the online measurements of intermediate wafer quality. The proposed
approach is evaluated on a MWMP that transforms an ingot into polished wafers.
The proposed approach provides better control performance than the feedforward
control based on a single regression model.

A reconfigured PLRT for MMP control was developed to model the nonlinear
data structures by reconfiguring the PLRTs to engineering complied models and

reducing tree complexity. This method proposes a methodology of feedforward

119



control based on piecewise linear models to model the nonlinear data structure.
An engineering-driven reconfiguration method for piecewise linear regression
trees is proposed. The model complexity is further reduced by merging the leaf
nodes with the constraint of the control accuracy requirement. A case study
indicates the proposed method has better control performance than that based on a
group of regression models.

A sequential measurement strategy was developed to measure the wafer geometric
profile data more quickly and more efficiently by integrating the engineering
driven sampling distribution. This method proposes a sequential measurement
strategy to reduce the number of samples measured in wafers, yet provide
adequate accuracy for the quality feature estimation. In the proposed approach,
initial samples are measured first, then a Gaussian process model is fitted to
estimate the true profile of a wafer. The profile prediction and its uncertainty
serve as guidelines to determine the measurement locations for the next sampling
iteration. The measurement stops when the prediction error of the testing sample
set satisfies the accuracy requirement. A case study indicates that the proposed
methods take fewer samples than the random measurement strategy to model the
wafer thickness profile data in slicing processes, while achieving comparable
modeling accuracy.

A monitoring method for a MMOP was developed to detect the mean shift of the
residuals by using PLRT models, analyzing modeling uncertainty and optimizing
the control chart performance. This method uses a PLRT to capture the variable

relations in a MMOP, where it identifies the number of operational modes by the
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number of leaf nodes, the mode conditions by the splitting conditions, and the
baseline models by the local regression models. A risk adjustment type of
Shewhart control chart system is developed to monitor the residuals of local
models in order to detect process mean shifts in the residuals. Considering the
modeling uncertainty, the run length distribution is studied and the control chart
system is optimized. The proposed method has shown a better ARL performance
than the risk adjustment based on global regression models or PLRT based risk
adjustment with the Bonferroni correction, in both the simulation case and the real

example in the wafer manufacturing processes.

6.2 Future Research

There are several potential topics to be explored for further development of the variation

modeling, analysis and control methodology. Here are several examples.

1.

2.

Modeling considering data uncertainty and various model structures. In Chapter
3 of the thesis, the PLRT models are constructed by assuming that the data
uncertainty is negligible. The local models are also assumed to be linear
regression models, and the manufacturing system is a static system. However, the
data uncertainty is commonly encountered in manufacturing environments, which
can be considered in the variation modeling efforts. Besides, the models may also
need to have various forms with local generalized regression models or dynamic
models to model different types of quality responses or system dynamics.

Advancement of control and monitoring methodology. In Chapter 3 of the thesis,
the intermediate feedforward control strategy is developed based the PLRT

models. However, the intermediate feedforward control strategy uses online
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quality measurements, where measurement noise may not be negligible. The
PLRT models also have modeling uncertainties. Therefore, it is necessary to
study the impact of the measurement noise and modeling uncertainty to the
control performance. In Chapter 5 of the thesis, the mean shifts of the residuals
are monitored based on the PLRT models. The monitoring of the variance-
covariance change and mode condition change can be further studied to better
monitor the MMOP.

Other applications of proposed methodology. The increasing complexity and
more abundant data in manufacturing process make the proposed methodology
meet the challenges in this area. The variation modeling, analysis and control
methodology can also be explored in other applications, such as engineered

surface modeling and improvements, and quality control in nano-manufacturing.
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APPENDIX

A.1 Proof of Statement 3.1
The temporal order of the splitting variables is assumed as Z, <=Z2,, <=...<=Z,,. In

the decomposition of the sub-regions of g, (-) into g/ (*)

Y= 2L I Z e Z )= 2D, (e Z e Z) (AD)

=l j=1
Since the decomposed sub-regions involve all splitting variables, the temporally
complied variables can be substituted into g/ () .
r D, '
y=220 &/ (ZynZ,) (A2)
i=1 j=1

Since the splitting variables are temporally complied, the tree can be re-arranged

into a temporally complied tree. Based on this tree, the merge of sub-regions follows the

reverse temporal order. After the merge, sub-region g/ (-)is the j-th region defined by a

subset of {Z..} for f, (-), and there are T leaf nodes left:

Y= foM(gu(Zyrn Z,)) =y (A.3)

i*=1

The original PLRT is statistically equivalent as the re-ordered model in prediction. O

A.2 Proof of Statement 3.2

Without loss of the generality, consider the case when there are two re-ordered models to

.
be combined  together, ~which are y => fi(m.)I(g.(Zy,...Z,.)) and
i=1 ]
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7,
v, =D fiI(gi(Z,.n Z2)) . I g[() is decomposed by all possible splits of the
i=1 ?

splitting variables in both models, then the first model is

Tl* Dl*.i

I A
i=1

i=1 j=1

T Dy _
=22 Sr (g (Z, 1 Z,)) (A4)
i=1 j=I
Similarly, the second model is:
T, Dj; '
¥ =22, LRI (Z, 1 Z,)) (A5)

i=1 j=1
Since all possible splits of the splitting variables in both models are considered,

g'(Z, 2. ) =82 (Z, .. Z,.) (A.6)

By following the procedure in Step 3 of Algorithm 2, these two models can be presented

as:
-
no= 2 L (2, n Z,) (A7)
and
-
Y, = Zﬁf(nf*)l(gffm(zl NVAS) (A.8)

where g2"(Z, ,....7 +)in both models are the same. Therefore, the combined model is
the same as the original two re-ordered models in prediction. o
A.3 Derivation of Equation (5.7)

Based on Equation (5.2), we have
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~Ak,j oAk ok-J ok
&) Oy el —E@) N E(e;’)

= ] (A.9)
O Oy O ks O i
. . A 2 . k’ . 3 . ~ 3 . 3 . ~ 2 . T
By substituting He)=A’ +(ﬂ;‘0] — ﬂ;‘of )+(]3£ / —Bf, D) " and

&, =B —ﬁiij ) z (i —[Aif,’lj )+07,, from Equation (5.6) into Equation (A.9), we have

. ) _ kj _ @kJNT kj _ pksJ 2
ail Oy &)~ E@)) B =BT, B B+, n

it

~ ~
O, O, O, oy
s s iy Cit

kj ki Pk kj  fkJjT
A+ (ﬂi,oj _:Bi,oj)"‘ (Bi,lj _Bi,lj) ll,lk ]

(A.10)
Ge{f;.f
k.j sz()j_ﬂikéj ki (ﬁii'j_ﬁiij)T"n . ([Ai’f;’—[if‘if)TA
Define 7 =~ 528z} = Lzl =R g
o, /Nm ’ oy ’ O
it i, it

~k.j ~kij
ei,t - E(ei,t
ZAk,f = ~
€t o

k,j . k,j -
, Z;jand Z,, are standard normal random variables, Z;{ is a

. . . . T TN-1
multivariate normal random vector with mean as zeros and covariance as A" (q,1,) A,

kj - . . . _
and Z;;' is a normal random variable with zero mean and variance as p. (n,m;) B,
’ k k

based on Equation (5.11) and Equation (5.12). Here, £ = AA", therefore,

N

e —— AR .

= [Z L L) 1+ a - = -7 ] O
A W & i,A i,A il

Ge,’f;j . mi
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