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“Active Touch refers to the exploratory action of touching, whereas Passive Touch 

describes a stimulation of the skin brought about by some outside agent [31].”[72] 

 

I am defining a Proprioceptively Displayed Interface PDI as an interface, which is not 

only on-body, but also easily self-referenced.  A user should be able to touch and interact 

with a PDI without looking, just as a user should be able to touch their nose without 

looking. 
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Summary 

 
With the advent of commercially available heads-up-displays and other mobile 

information systems, there arises a need for on-body interfaces that can be used 

accurately and quickly without visual attention. In this dissertation, I examine methods 

for creating textile-based interfaces supporting effective on-body interaction and robust 

manufacturing techniques. 

 

Using these textile interface techniques I created prototypes to explore the human factors 

and constraints surrounding methods for interacting with electronic textile touch input. 

Specifically I looked at how the structure of the textile interfaces can take advantage of 

the human body’s active touch and passive touch capabilities. 

 

In one study I examined how the addition of raised embroidery affords greater 

opportunities for active touch interactions. I helped test raised embroidery with both 

multitouch and single touch interactions to improve accuracy and speed of use. 

 

In a second larger study of 104 participants, I explored how the addition of active touch 

and passive touch affect the accuracy and time-to-touch of the on-body textile-based 

prototype. This study shows that the combination of active touch and vibro-tactile passive 

touch improves the accuracy (by almost 9% overall and 17% in the center of the 

interface) and time to touch for non-visual on-body interfaces. 
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Chapter 1 

Introduction 

1.1 Motivation 

 

Wearable technologies are of increasing interest for many companies and researchers 

excited by the potential of computing working on and with a user’s body. Researchers 

are developing the necessary technology to bring such systems to market and are 

exploring human computer interaction HCI topics such as the best on-body locations 

for the interfaces [3] and their social acceptability [20].  

 

There is an under-explored aspect of sensing that the body affords that could be very 

beneficial to the use of wearable devices. Because wearable technology systems are 

used on the body, it is imperative that researchers and designers endeavor to use the 

body’s full potential for interface interaction. This potential could include the 

information gathered by the skin (passive touch) underneath a wearable interface; a 

concept  I am calling Proprioceptively Displayed Interfaces (PDIs). For my purposes, 

I am defining proprioception as the human body’s natural ability to understand where 

one part of the body is in relation to another part of the body through kinesthetic 

sense and the body’s sense of touch. A Proprioceptively Displayed Interface PDI 

would consist of a vibro-tactile display, such as an array of vibration motors, placed 

beneath an on-body interface at the location and in the pattern of the selection points 

on the interactive surface of the interface. PDIs should display information about the 
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interface’s on-body location, referencing and calibrating its location on the body with 

respect to the wearer’s proprioception, and the interface interactions against the body 

using tactile sensation. Other researchers are exploring tactile feedback; however, 

many open research questions remain. Are interfaces placed on and easily referenced 

on the body more efficient and usable than interfaces simply worn without any 

display of on-body location? What is the most appropriate way to design an on-body 

interface to take advantage of the human body’s proprioceptive nature? Currently, 

there are no systematically developed, evidence-based guidelines that researchers and 

designers can reference when building PDI wearable systems. Such knowledge is 

critical to the advancement of this domain for the full potential of wearable interfaces 

to be realized.  

 

Therefore, one of the goals of this research is to combine and create guidelines for 

designing PDIs. I am defining a Proprioceptively Displayed Interface PDI as an 

interface, which is not only on-body, but also easily self-referenced. A user should be 

able to touch and interact with a PDI without looking, just as a user should be able to 

touch their nose without looking. I quantify the differences in access time and 

accuracy between static electronic textile on-body interfaces and PDIs, including use 

without visual attention.  
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Figure 1 - This is an example of a conductive thread embroidered interface. This interface 

demonstrates what a Proprioceptively Displayed Interface might look like as a commercial product. 

 

Potential Applications of Proprioceptively Displayed Interfaces (PDIs) 

PDIs could have a wide range of applications, from emergency responders and 

pilots/astronauts, to smart phone users accessing information as they move through 

the world, and even assistive technology. The inherent tactile nature and body-

reference aspects of on-body interfaces could prove helpful in any environment where 

the user must focus their visual attention on other tasks or is unable to see or hear an 

interface due to disability or environment. PDIs can also be unobtrusive; the textile-

based interaction points on garments do not need to draw unwanted attention; and the 

embroideries used to create these interfaces could double as aesthetic embellishments.   
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Visual Disability 

In past work, I interviewed a visually impaired PhD student and researcher at Georgia 

Tech about PDIs and their potential applications for visually impaired users.  He 

presented several scenarios of use and described simple problems he is seeking to 

ameliorate through his research.  He stated, “It has been very cold here in Atlanta for 

the past couple of days (single digit temperature). While walking across campus, my 

fingers are gloved or become numb, and I am unable to feel tangible interfaces easily 

with my fingers. If the interface I was using included vibration displayed on my arm 

and let me know where my finger was on top of the interface, I could probably still 

use the interface even though my fingers were numb.” He then explained, “It seems 

ridiculous, but one of the hardest things for me to do on my smartphone is to make a 

telephone call. My favorite contacts are always full and changing because it is so hard 

to dial on the touch screen, and voice commands are not always the best solution,” 

(quoted with permission).  He agreed that the quicker access time of a wearable is a 

benefit, but he hypothesized that a PDI could make it more robust and still be usable 

for visually impaired users. 
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Figure 2 – People with visual impairments trying out an electronic textile based on-body input 

interface, and giving qualitative feedback. 

 

Proprioceptively Displayed Interfaces have the potential to act as an accessible 

interface for all users. The materials and methods for construction allow designers to 

create interfaces that would work for everyone, and allow everyone to use the 

interface without visual attention. This type of universal design means that wearable 

technology designed with PDIs could have the added benefit of not having to be 

retrofitted with other technology to make the interfaces accessible to people with 

visual impairments. 
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Mainstream Applications 

PDI research could also have an impact in the consumer electronic arena. With the 

advent of commercially viable heads-up displays such as Google Glass, it seems the 

perfect time to increase the amount of research regarding on-body interfaces. There is 

the potential for on-the-go interactions that might be more natural for input than 

interacting with the head mounted display itself. Wearable input interfaces allow 

users to access controls, such as raising or lowering the volume of music, by simply 

touching their clothing. Levi’s Commuter X Jacquard By Google jacket is a good 

example of such an interface although the Commuter jacket uses gestural interaction 

rather than a selection point interaction [44]. Other studies suggest [3] on-body 

interfaces should have better access time than reaching into a pocket to pull out and 

unlock a carried mobile device . Also, with the addition of PDIs in garments, the 

interface could move across the skin of the body (in an action where the interface 

might be on a looser woven shirt for example) and still be easily referenced due to its 

ability to calibrate its orientation to the body through vibro-tactile display and 

defining its precise location before use.  
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Figure 3 - Proprioceptively Displayed Interfaces could be used in conjunction with heads-up 

displays as a quicker more natural interface compared to interacting with the display itself or a 

carried peripheral device. 

 

Using a touch based input interface is more convenient than speech based commands 

in many scenarios. With a connection to a smart phone and blue tooth headsets, the 

possible applications of PDIs are numerous. A user could accept or decline a call 

without removing a phone or looking at the interface, thus making on-the-go 

interactions a real possibility. These types of non-visual input interactions also open 

up a user to real experiences, rather than walking through a city with their head down 

staring at a phone screen. 
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1.2 Thesis Statement, Research Question and Hypothesis 

 

Most, if not all, wearable technology interface research has focused on the body 

location of the interface or the surface interaction with user’s hand. One contribution 

of this research is to take this wealth of research, organize it, and make it accessible to 

designers creating wearable technology. The PDI research in this dissertation goes 

beyond previous research to gain an understanding of how the body underneath the 

interface might be able to gather interaction information as well. By using both the 

Active Touch (or investigative touch) [31, 59] sensation from the hand and Passive 

Touch (touch felt by the body) from the body underneath, interfaces could increase in 

robustness, resolution of use, and ease of use through faster access times and non-

visual interactions. The resulting body of knowledge from this research informs those 

developing wearable interfaces in a wide range of applications, allowing them to 

apply tactile interfaces appropriately and effectively. 

 

Hypothesis 

My hypothesis is that an active touch / passive touch Proprioceptively Displayed 

Interface will be easier to find and use than an on-body textile interface without a 

Proprioceptively Displayed Interface. These benefits should include decreased time of 

touch, improved accuracy, and decreased workload. 
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To investigate and answer my hypothesis I created electronic textile based on-body 

input interfaces with varying levels of active touch and passive touch affordance. To 

create these input interfaces I utilized methods including both materials and 

techniques testing to make sure the textile input systems worked reliably at 

recognizing and registering touches to the fabric. I also employed user studies to find 

how well participants were able to use the systems. This research addresses three 

main research questions that address my hypothesis. 

 

Research Questions  Detailed Research Chart APPENDIX A 

• What are effective techniques to create and design on-body textile-based 

interfaces that are robust, reliable and accurate? 

 

• Can active touch affordances aid in making on-body textile interfaces more 

accurate and quicker to interact with than interfaces without such affordances? 

 

• Can combining active and passive touch techniques aid in making on-body 

textile interfaces easier to locate and use, more accurate, and quicker than 

interfaces without such affordances? 

 

The research described in the following dissertation addresses these three research 

questions. In investigating and responding to the research questions, I answer my 

hypothesis and validate my thesis.  
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Thesis Statement 

Through the combination of active and passive touch in the form of Proprioceptively 

Displayed Interfaces PDIs, wearable textile-based on-body input interfaces will be 

faster in access time, more accurate, and easier to use than interfaces without such 

affordances. 

 

In addition to providing substantial evidence to support this thesis, I have also 

organized my findings into a short set of guidelines and considerations for designers 

interested in creating Proprioceptively Display Interfaces. These guidelines can be 

found in Chapter 7. The results and contributions from my research to demonstrate 

this thesis range from material tests, to manufacturing methods, sensing techniques, 

and finally user studies.    
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1.3 Results and Contributions 

Detailed Research Chart APPENDIX A 

The contributions of this dissertation include: 

• A set of validated techniques and processes for creating embroidered 

interfaces for on-body touch based interactions that create a foundation for 

active touch / passive touch interfaces. (Chapter 3) 

 

• Prototype textile interface artifacts such as the Electronic Textile Interface 

Swatch Book, The Hood (e-textile garment music controller), and Le Monstré 

(an interactive participatory performance garment). (Chapter 4) 

 

• An assessment through usability studies as to whether active touch and 

proprioceptive display of on-body interface PDI location through vibro-tactile 

stimulation aids in finding and using interfaces on the body, allowing 

designers to create designs with quicker and more accurate interactions. 

(Chapter 4 “Is it Gropable Study”, Chapter 5 Preliminary Active Touch / 

Passive Study, Chapter 6 Final Active Touch / Passive Touch Study) 

 

• Design considerations, guidelines and descriptions for producing textile based 

interfaces for on-body wearable technology interactions. (Chapter 2 Body 

Maps and On-Body Location Considerations, Chapter 7 Design Guidelines for 

Proprioceptively Displayed Interfaces)  
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Chapter 2 

Where and Why: Considerations in 

On-Body Location for Active / Passive Touch  

Wearable Input Interfaces 

When it comes to Proprioceptively Displayed Interfaces on-body for on-body input 

(most of which are meant to be used in a mobile condition), there are some clear 

human factor considerations for usability. For a touch based input system reachability 

is a key factor, along with body sensitivity at different locations. Active touch and 

passive touch sensitivity at different on-body locations is especially important to my 

research. I am hoping that through the addition of active and passive touch 

affordances to the interface, I can show in accuracy of use and a decrease in time to 

touch of interactions. The size, weight, and interference with mobility are other 

human factors that can have a great impact on a wearable system. When designing a 

wearable technology system it is also important to consider the social acceptability of 

interactions (even within a laboratory setting). 

 

The set of body maps and design guidelines described in this chapter directly relate to 

on-body location selection for proprioceptively displayed interfaces. This information 

comes from a larger more inclusive literature review of human body affordances and 

current technology capabilities that has been synthesized in to graphical 

representations of what types of technology work best on what parts of the body 

(body maps) [111, 113]. Some of the design guidelines presented here help start to 
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create one of my research contributions as guidelines and descriptions for producing 

textile based interfaces for on-body wearable technology interactions. 

 

2.1 Related Work and Human Factors 

The first consideration for a study of Proprioceptively Displayed Interfaces is to 

decide where on the body to locate the interface. In fact, one of the first questions any 

researcher or designer of wearable technology has to answer in the design process is 

where on the body should the device be worn. It has been almost 20 years since 

Gemperle et al. wrote “Design for Wearability” [29] and although much of her initial 

guidelines on humans factors surrounding wearability still stand, devices and use 

cases have changed over time. I have collected literature and created an updated set of 

design considerations and reasons for on-body location depending on the use of the 

wearable technology and the affordances provided by the body at different locations. 

I have also included design considerations for each subject relating to wearable 

technology and on-body location. 

 

I synthesized design considerations outlined in this chapter from a literature review. I 

also took the information from the literature and graphically presented the regions on 

the body that work best for each consideration. I call these body maps. While it is not 

necessary to go through many of the considerations here (ones having to do with 

biometrics, for example) the full collection of body maps with references and design / 

accessibility considerations can be downloaded for use [106, 111]. 
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An important place to start, for my purposes, will be the human body’s capability to 

feel and sense touch. My hypothesis takes the assumption that through a combination 

of active touch and passive touch a user might be able to find and interact with a 

wearable interface more effectively.  

 

2.1.1 Tangible / Tactile / Haptic Feedback (passive touch) 

 

Many wearable devices use tangible feedback, or haptic feedback through the use of 

vibration motors, and sometimes other means such as electrical stimulation [26]. 

“Active touch refers to the exploratory action of touching, whereas passive touch 

describes a stimulation of the skin brought about by some outside agent [31]”[72]. 

Vibration can be felt better on some locations on the body than others. If more than 

one tactor (or haptic stimulator) is used to create a pattern, it is also helpful to 

understand the body’s sensitivity to how close stimuli can be to each other and still be 

detected as separate stimuli.  Knowing the level of sensitivity local to each area of the 

body can help designers develop meaningful haptic stimulations. This is especially 

true if aiming to represent discrete on-body locations through the display of vibro-

tactile stimulation at those points on the body. 

 

Understanding the body’s level of sensation can have major impact on the choice of 

body-location for wearable devices using haptic feedback, or haptic displays. 

Schiffman’s text book “Sensation and Perception” also does a great job of explaining 

skin sensations [81]. A popular test to determine each individual’s level of skin 
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sensitivity to passive touch is the “two point discrimination test” [68]. Mancini et al. 

[61] have a great overview of whole body two-point discrimination data, that 

“compares 2-point discrimination (2PD) for touch, as measured by Weinstein [108], 

by Weber [107], with Mancini’s study. Both Weinstein and Weber used simultaneous 

stimuli. In the Mancini’s study, they used both simultaneous and successive stimuli.” 

[61] . Body Map 1 uses Mancini’s findings of two point discrimination distances to 

present the information graphically.  

 

 

BODY MAP 1 – Body Sensitivity to Passive Touch - Average distance in two-point discrimination 

sensitivity test on body locations. 

 

Aside from sensitivity with regards to static on-body location there are other factors 

to consider when designing wearable devices with haptic feedback. Vibration stimuli 

have “extra parameters” including rhythm, roughness, intensity, and frequency that 

can all be altered to aid in correct vibro-tactile display designs [8]. Pasquero outlines 

some of these factors in “Survey on Communication Through Touch” [72]. Jan van 

Erp also details pitfalls in the use of vibrotactile displays which can be very helpful in 
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the development of my research [22]. I will outline some of the key concepts that 

pertain to my research, and will help in the design of a Proprioceptively Displayed 

Interface that uses vibration to help locate discrete points on the body for input. 

 

Vibro-tactile Masking 

Masking describes when presentation of stimulus is habituated to over time. This is 

seen both with static and vibro-tactile stimuli. Masking can also occur when the 

stimulus is presented in succession and is mitigated by the extending the time 

between presentations. Craig and Cholewaik also describe this effect [13, 15–17]. For 

my purposes I am mainly interested in masking as it pertains to the dulling of 

sensation at a discrete on-body location thus making it hard to precisely find. 

Masking can also have the effect of making vibrations (of different strengths or 

patterns) harder to distinguish from one another [18, 102], however this type of 

masking can be avoided by using different locations or different frequencies 

[11].  

Vibro-tactile Adaptation 

Adaptation is different from masking in that it is not about habituation to stimuli, but 

misunderstanding stimuli. Certain combinations of vibration, frequency, location and 

timing can make a vibration display harder for the user to understand. For instance 

feeling a very intense vibration and then one that is less intense can have an effect on 

the perception of the actual intensity of those vibrations [7, 100, 101]. Another 

adaptation that can happen regards the effect of presenting two stimuli at the same 

time, if they are close to each other in body location they can have the effect of being 
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perceived as one location rather than two separate locations [30]. Another example of 

this type of adaptation may occur if the two separate stimuli are present in close 

succession, where the presentation of the stimuli has the perception of a moving 

vibration [47, 88]. “Yet another is the tactual rabbit, in which a number of taps at 

distinct locations A and B results in a percept of a continuously hopping stimulus 

from A to B” [28]. 

 

When it comes to passive touch, there is also evidence that vibration applied to the 

fingers and tongue (while localized and descriptive on the individual finger and the 

tongue) may not help in describing the overall position of the finger or tongue. 

Benedetti’s research shows that the vibration on a finger may not aid in describing 

where that finger is in respect to the other fingers [5]. For the purposes of the study I 

am designing, this information is helpful. An interface that uses passive touch to aid 

in interaction, should be placed on surface of the body that articulates and gesticulates 

with less variability to the rest of the body. For instance the hand and fingers would 

not be a good place for a Proprioceptively Displayed Interface. 

 

The Contextual Computing Group at the Georgia Institute of Technology has shown 

how the use of vibro-tactile motors through a combination of body placement (on the 

hand) and vibration styles and techniques and work quite effectively as a passive 

haptic learning tool [43, 63]. This is akin to haptic guidance for training motor skill, 

but is completed passively rather than actively [24]. Markow found that through the 

use of the wearable vibro-tactile passive learning piano gloves in the Mobile Music 



 
 

18  

Touch project, spinal injury patients were able to advance their rehabilitation (gaining 

more feeling and dexterity after they otherwise would have stopped improving). Seim 

picked up the Mobile Music Touch project and began researching the best way to use 

the technique for teaching braille typing [83–86]. Seim describes the process for 

determining where to place the vibrating tactors and how to display multiple 

vibrations near each other on the hand through a wave pattern of vibration [85]. She 

also describes what she found as the usefulness of LRA and ERM vibration motors. 

 

Types of haptic stimulators: 

 

• ERM Eccentric Rotating Mass Vibration Motors – The intensity of 

vibration is tied to the frequency of vibration. [1] 

 

• LRA Linear Resonant Actuator ‘Vibration Motor’ – The intensity of 

vibration is not tied to the frequency, but intensity can be controlled 

more precisely and thus LRAs are very useful for haptic applications. 

[2] 

 

• Electro-tactile / Electrical Stimulation – Electricity can also be used in 

low voltage to create the sensation of vibration by activating the 

muscles under the stimulator. This requires very good conductive 

connection with the skin, as the voltage needed from a resistive 
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connection can cause the pain threshold to be met before the electricity 

is felt as a vibration.[53, 56] 

 

 

In many vibro-tactile displays the forearm seems to be a desired location, but the 

sensitivity of the forearm does not allow for very precise display [71]. Designs and 

evaluations have also been conducted for vibro-tactile displays placed on the 

shoulders [98].  

 

 

Design Considerations for Tangible / Tactile / Haptic Feedback (passive touch) 

 

• When designing haptic displays for wearable devices, the sensitivity of the on-

body location where the wearable is placed is very important. 

 

• Vibro-tactile displays should be programmed to account for masking and 

vibro-tactile adaptation. 

 

• Tangible/Haptic Feedback is an important part of a multimodal display 

system. Multimodal feedback is important; designers need to create wearable 

devices that can prompt users with a variety of different abilities. Vibration 

and haptic alerts can aid those with visual impairments when acoustic 

feedback is inappropriate. 
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• Vibration and haptic feedback have been seen to provide added benefit in 

rehabilitation of injuries (such as spinal injuries) where sensation has been 

degraded. Mobile Music Touch has shown that rehabilitation with the 

vibrating piano gloves not only taught participants to play piano, but also 

improved their sensation and dexterity [63]. 

 

2.1.2 Touch (Active Touch) 

 

“Active touch represents the exploratory action of touching, which is generally 

involved with kinesthetic movement of the body.” [56] In other words active touch is 

how a person investigates the world through touch. When asked to turn on a light 

switch in the dark, a person would use their hands and fingers to feel for the switch to 

find it and understand its position. This “feeling for” or “groping” is the act of active 

touch investigation. 

 

“Kinesthesia relates to the relative positioning and movement of body parts with 

regard to muscular effort while touching or manipulating objects. When tactile 

perception, which includes skin stretch, vibration, pressure, and contact force, is 

combined with kinesthetic perception, the result generally conveys a felt object’s 

properties such as shape [58, 59]. In this paradigm, passive touch is associated with 

cutaneous or tactile sensation, whereas active touch implies proprioception or haptic 

sensation.”[56] 
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“When we examine an object using the sense of touch, there is nothing in our 

experience that would indicate the operation of two distinct sensory subsystems, each 

with its own functional properties. These two subsystems are the cutaneous and 

kinesthetic senses. In functional terms, the cutaneous sense provides an observer with 

information about stimulation of the skin surface; whereas, kinesthesis provides static 

and dynamic information about the relative positioning of the head, torso, limbs and 

effectors used in touching. While J. J. Gibson [31] acknowledged these two 

components of the sense of touch, he believed that analysis of the touching process in 

terms of them lost sight of the purposive nature of touch. In addition, he disdained the 

idea prevalent at the time and promoted by the then current research on cutaneous 

sensibility that perception was based on sensations. Rather, he believed that the 

perceiver seeks the invariant aspects of sensory stimulation over time and space that 

correspond to the properties of objects in the spatial field. Thus, he preferred to stress 

the function of the two subsystems working in concert.”[59] 

 

“Many approaches to augmenting tactile perception focus on translating stimuli 

through a bulky protective garment using an array of protruding stiff elements 

embedded in a flexible textile.” [105] Thad Starner and team also looked at using 

vibration to aid firefighters in sensing heat through their gloves by vibration when 

using active touch to investigate doors in burning buildings [103].  
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Designing interfaces made to be “easy to find” through active touch is a tenant of 

human factors. Norman talks a great deal about mapping associated with physical 

interfaces [70], but the shape of buttons and levers offer affordances as well, and our 

hands find a way of using them through active touch. A cylinder with a grip on the 

sides affords turning the cylinder just as a textile design with raised embroidery 

affords active touch investigation [48].  

 

Active touch happens almost exclusively with the hands. It is where the human body 

is the most sensitive, and the part of the body which humans use the most to 

investigate their surroundings through touch. The feet and the mouth might also be 

used for active touch, but less so than the hands. 

 

 

BODY MAP 2 – Body Used for Active Touch - Active touch represents the exploratory action of 

touching. 
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Design Considerations for Active Touch 

 

• Following good human factors and industrial design standards when creating 

physical interfaces will aid in a person’s ability to use active touch to interact 

with objects and controls. This is also true for interfaces on the surface of 

wearable devices. 

 

• Certain shapes contain certain affordances. Concavities on top of buttons 

might lend themselves to a pushing type active touch investigation. Ridges on 

the circumference of cylinders might lend themselves to turning. Expenditures 

at an angle to a plane might afford a flick or leverage. Dreyfus lays out shapes 

and sizes for controls in his book [97]. 

 

• It is important to remember that each person has a different ability to feel or 

sense tactile sensation. Thus, interfaces should be designed with robust 

multisensory feedback. Whereas one person might feel a click of a button 

through tactile means, others who cannot might require an audio cue or a 

visual cue to know that a selection has been made. 

 

2.1.3 Reach-ability 

 

In terms of reach-ability, it is important to know which parts of the body, and 

therefore wearable devices placed on those parts of the body, are reachable by a 
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person’s hands. One way to start to qualify reachability is by looking to clothing, 

specifically the location of garment closures for self-donning and doffing [105]. We 

place buttons in the front of a shirt because we can reach them and use them, whereas 

dresses with back zips need long pulls or a helping hand to aid in closure. When it 

comes to reach-ability, there are easy to reach locations (where your hand can reach 

without any body movement), reachable locations (where you can move a part of 

your body to your hand to be able to reach it), and hard to reach locations (such as 

your center back). 

 

For my purposes, I want to test interfaces in a place that is easy to reach. This means 

that the interface will have to be symmetrical and the same for right-handed and left-

handed users. 

 

 

BODY MAP 3 – Map of Ease of Reach of Body Locations – Right Arm - When it comes to reach-

ability there are easy to reach locations (where your hand can reach without any body movement), 

reachable locations (where you can move a part of your body to your hand to be able to reach it), 

and hard to reach locations (such as your center back). 
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BODY MAP 4 – Map of Ease of Reach of Body Locations – Left Arm 

 

Design Considerations for Reach-ability 

 

• Wearable Devices should be placed in easy to reach on-body locations, 

especially for interfaces, but also for donning and doffing. 

 

• Reachability is very personal as people have different physical abilities with 

respect to body movement.  

 

• It is best to design a wearable device that does not cater to a dominant body 

side (right / left) and also is easy to reach with the hand’s extension. 
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• Some people who spend most of their time in a seated position might be able 

to reach their upper thighs to their knees more readily. It might be better 

however to design wearable devices useful to everyone in the same way. 

 

2.1.4 Visible Feedback 

 

While I don’t study visible feedback in this dissertation, it is important and will have 

an effect on future devices designed for on-body interactions. For this reason, it is 

important to consider when choosing an on-body location for the study. 

 

When designing a wearable device with a visual display, it is important to consider 

where a person can see visual feedback emitting from the body most effectively. 

 

Chris Harrison developed such a study to find out where to locate wearable displays 

[39]. Participants wore devices with LED lights and were asked to press the button on 

the device when the LED blinked. The devices were placed in seven different body 

locations to see if reaction time would change depending on where the light was 

signaled. He and his colleagues found that the wrist and arm had the least average 

reaction time of around 20 seconds. 

 

Harrison furthered his work in on-body visual displays with OmniTouch [38] and 

other projects [40], using the body as a projection surface. The projection surface he 
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uses is the hand and wrist, which seems obvious given his findings in on-body visual 

cue reaction time. 

 

The body map for reaction time to visible feedback observes body areas from a first-

person perspective also takes into account Harrison’s reaction times; therefore, the 

map is more representative of where a designer should locate a wearable visual 

display rather than just locations where a user can see it. 

 

 

BODY MAP 5 – Visible Body Areas Map - Average reaction time to visible feedback 

 

Design Considerations for Visible Feedback 

 

• When designing a wearable device with a display or visual signal, it is 

important that the device be placed on a part of the body where the display 

can be seen, and also a place on the body where it will be noticed easily. 
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• Visual displays should be accompanied by non-visual signals for those with 

visual impairments. 

 

• The visibility of on-body locations might change from person to person 

depending on their mobility and means of mobility. Wheelchairs or other 

mobility devices might occlude some on-body locations which would 

otherwise be acceptable for a visual display. 

 

2.1.5 Networking on the body 

 

Networking on the body (specifically from the on-body to off-body) is important for 

my user study as my prototype use WIFI to transmit data and for console control. 

When mobile and communicating with an off-body network, the choice of signal and 

the body location of the antenna can affect data transfer. 

 

In 2001 Thad Starner listed Networking as one of the major challenges for Wearable 

Computing: For wearable computers, networking involves communication off body to 

the fixed network, on body among devices, and near body with objects near the user. 

Each of these three network types requires different design decisions. Designers must 

also consider possible interference between the networks. [92] 

 

When considering on-body location, designers need to consider the location of the 

antenna that communicates with the off-body fixed network. The mass 
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(water/muscle/tissue) of the body can block many of the lower powered high 

frequency wireless network signals we use for communication [36]. At a higher 

power, such frequencies could have the potential to cause tissue damage, which is 

unacceptable for wearable devices. “Wireless Body Area Networks WBANs 

experience high path loss due to body absorption that must be minimized through 

heterogeneous and multi-hop links with different types of sensors at various locations. 

Additionally, change in operational conditions may lead to error-prone and 

incomplete sensor data relative to inherent sensor limitation, human postures and 

motions, sensor breakdown and interference” [66]. There is a balance, and many 

people have researched the application of WBANs for medical and other wearable 

sensing systems [37, 73, 99].  

 

While I am interested in how networking decisions can effect on-body placement, 

tables and content within Patel et al’s 2010 work can be very useful in understanding 

wireless network options (including signal strength and distance) with respect to 

wearable technology and body area networks. 
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BODY MAP 6 – Networking From the Body Map - This body map shows the areas on the body 

where a network antenna (to communicate to the fixed off-body wireless frequencies) could be 

placed to have the least chance of signal interference by the mass of the body. 

 

Design Considerations for Networking 

• Antennas for wearable devices should be placed on the periphery of the body 

to have the best chance of having an unobstructed (by the body) connection to 

the fixed off-body network. This could mean the outer arms, shoulders or the 

head. Because of the strength and abundance of fixed off-body wireless 

network signal, this is not as much of a problem as it would have been in 

2001. 
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• Body Area Networked devices using low powered wireless connections 

between devices on the body should also try to avoid obstruction by the body 

between devices. If one device on the front torso for example needs to 

wirelessly communicate via low powered signal to a device on the back, a 

third relay might be needed on the side of the body. 

 

• All body mass compositions are unique. Outside of the general guidelines, 

wearable systems using wireless communication should be tested thoroughly 

on a variety of people and in a variety of settings. 

 

• Health monitors or wearable sensing devices use Body Area Networks. Some 

people might have many different monitors all using different frequencies. It 

is important when designing a new device that it does not interfere with 

wearable health devices such as heart monitors or pace makers. It is also 

important that it does not interfere with wireless hearing aids and other 

assistive devices. Adding a new signal to a series of signals requires some 

standards, research, and testing. 
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2.1.6 Manufacturing for Garments 

 

Understanding how garments are designed and constructed can aid tremendously in 

designing wearable technology, especially if it is to be integrated into clothing. This 

knowledge can help in making decisions about sensor location and the location of 

wired connections to a component placed across the body. Conversely, if a sensor 

needs to be placed on a specific body part, the clothing pattern can be designed to 

accommodate for that [45, 46, 104, 105]. 

 

While most wired connections do not stretch, most fabric does extend. Wires for 

connections can also be heavier than the fabric that supports them (this is especially 

true for light weight fabrics).  These characteristics, along with the addition of rigid 

components, cause the hand of the fabric and the drape of a garment to alter in 

unwanted ways. If a garment has stretch, it is usually around the body horizontally. 

Designers should avoid horizontal wires connecting components and instead opt for 

vertical or diagonal traces. Seams are where fabric panels are sewn together to create 

a garment. Because seams are an edge condition and have double fabric, they are the 

perfect place to incorporate leads and wires if necessary. Some seams are sewn 

horizontal across the body and these are a better place to put horizontal traces. 

However, some seams are sewn in a specific way to allow stretch, so a designer 

should pay attention to if the fabric is a knit (stretchy) or woven (tend to not stretch) 

and if elastic is used to create a stretch seam. Fabric holds its own weight when cut 
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and sewn into a garment. If components are to be sewn onto the fabric, it is important 

to pick a fabric which can hold these components appropriately, both for function and 

for the aesthetic appeal and drape of the garment. Sometimes wires and leads can be 

used to support the weight of components if drape is considered during the garment 

design process. 

 

 

Figure 4 – With proper diagonal and vertical placement, wires like these (sometimes necessary in 

early prototypes) can act as structural support for the garment and the components they service. 

 

Some textile manipulation techniques can lend themselves to fabric interfaces [110], 

and some couture sewing techniques might sometimes be used for the hand work 
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necessary in creating some wearable technology [87]. Many times, the type of fabric 

manipulation used in creating an interface might work better on some parts of the 

body than others. For instance, the interface in Figure 5 works by reading resistance 

changes in conductive materials, which touch each other. The interface Figure 5 

would not work on a body location that has pressure applied to it when not in use. If a 

user sat on this interface, it would activate. It then also needs to be placed in a 

location where bending and wrinkling will not cause a false activation. 

 

 

Figure 5 – A knife pleat fabric manipulation is turned here into an interactive rosette scroll wheel. 
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BODY MAP 7 – Typical Seam Locations and Other Garment Construction Locations 

 

Design Considerations for Garment Manufacturing 

 

• Wires and leads should be incorporated into seams when possible. 

 

• Wires and leads should almost always run vertical (up and down) the body 

and not horizontal (around) the body. 

 

• Look to fabric manipulation, old world textile techniques, and couture sewing 

techniques as inspiration for designing electronic textile fabric interfaces and 

sensors. 
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• Some garments are specifically designed to be donned and doffed by people 

with mobility issues [104, 105]. Designing wearable systems for incorporation 

with these garments should follow the same strategies as any other garment. 

However, if redesigning seams and closures to afford the wearable technology 

incorporation, it is important not to impede the donning and doffing 

functionality of the accessible garment. 

 

2.1.7 Social Acceptability 

 

A wearable product can function perfectly, but if a wearer feels socially awkward 

using the device, then the technology will become a failure. This is even true among 

health and medical devices. Wearable technology has to be socially acceptable. For 

this reason, it is important to consider the social acceptability of how and where I test 

user study interfaces as well. How people present themselves to society is a huge part 

of a person’s identity, and is also how others are able to relate to them. Goffman 

would say that it is the presentation of ourselves that gives others cues as to how to 

interact with us [33].  He goes on to explain that most people take this inferential 

information as a fact of whom one is and act accordingly:  “The others find, then, that 

the individual has informed them as to what is and as to what they ought to see as the 

‘is’,”[33]. In 1999, Starner et al. found that wearable computers or wearable 

technology in general was viewed by others (interpreted by others) to be medical 

devices [93]. 
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Use of wearable technology and body placement has a great deal to do with the social 

acceptability of a wearable system. Google Glass had an issue with its beta release 

because of public misunderstanding about the forward facing head mounted camera 

[119]. This led to a difficult release even though designers had factored in privacy by 

design, and there are a number of features on the device which alert the user to active 

filming. Other devices on the market can video and film with much more discretion, 

but the location of the camera on the face of the wearer (visible and noticeable during 

face to face social interactions) made the camera of Google Glass a touch point for 

discussions related to privacy [20].  

 

The gestures and touches users make with wearable technology to interact and control 

devices can also cause uncomfortable situations. Social touch (a use of passive touch) 

can also reinforce social connections, and add social cues to digital and wearable 

systems [23]. The placement of interactive textiles, interfaces, and the types of 

gestures used to control interfaces sensed through motion detection can make a 

wearer/user as well as bystanders feel awkward. “For wearable devices, the social 

perception and comfort of worn artifacts often extends beyond the “static” aesthetic 

variables of the artifact (worn on the body, but not interacted with) into the social 

aesthetics of interacting with a body- worn device,” [21]. Profita et al. look 

specifically at body placement of interactive electronic textiles, and how third-party 

viewers deem interactions socially acceptable when placed on different parts of the 

body [79]. Given the information collected in these studies, I have developed a body 
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map with regions of socially acceptable locations for wearable technology interaction 

and forward-facing displays of technology. 

 

 

BODY MAP 8 – Social Acceptability Body Map - Social acceptability of on-body touch based 

interactions. 

 

Design Considerations for Social Acceptability 

• Body placement of wearable technology can drastically affect the social 

acceptability of the wearable device. In general, avoid touch-based 

interactions and displays within regions of the body associated with sex or 

elimination of body waste. An exception would be if the wearable device is 

specifically designed to aid in sexual stimulation. 
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• In general, it is also advisable to avoid the breast and an interaction location 

for wearable technology (except for wearable devices specific to cis-gender 

males, but there are still more socially acceptable places on the body which 

could work better). An exception would be products designed to work with 

the breast (e.g. a breast milk pump). 

 

• Sometimes users want assistive technology to be conspicuous so that others 

know about their needs. Other times users want assistive technology to be 

inconspicuous so they can go about their daily life without a disability being 

the focus. Designers should work with users to allow for wearing technology 

in ways that can throttle the visibility of wearable assistive technology. 

 

• Wearable assistive technology should conform to the same social acceptability 

standards as other wearable technology. Assistive devices do not have to look 

like medical devices. 

 

2.1.8 Proxemics (human perception of size) 

 

Proxemics becomes important for the on-body location of wearable technology when 

the size of the items being placed on the body exceed the body’s natural 

understanding of its perceived size. The interfaces used in the study in Chapter 6 do 

not cause any proxemics issues in the task the participants are asked to perform, but it 
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is good to understand the human body’s limitations. Humans naturally have a slightly 

enlarged sense of their size to help them navigate the world without bumping into 

obstacles around them. When a young football player first puts on shoulder pads and 

bumps into the door on the way out to practice, this is a great example of a wearable 

object’s size reaching beyond the body’s perceived size. The distance from our actual 

skin we still perceive to be our size differs on different parts of the body. A designer 

might be able to place a larger object on the waist than on the wrist and it still feel 

natural to the wearer. 

 

The concept of self-size awareness might not be as important as other design 

guidelines because from casual observation it seems that humans can adjust their self-

size awareness. A person with a huge diamond ring might snag the ring as they reach 

into pockets or bags at first, but over time they account for it. The value of the ring is 

more important than the initial change in self-size awareness. The same might be true 

for a person who needs a wheel chair, navigating the world incorporating the 

extension of the chair into one’s self-size. However, if designers are to create 

wearable technology for the general public striving for Weiser’s [109] idea of 

seamless, or invisible computing, then containing the shape of wearable tech within 

the aura of self-awareness might be a good start. 
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Figure 6 – Symbol Ring Scanner (photo by Maria Wong Sala) 

 

A great example of proxemics becoming a design issue is the development process 

for the Symbol Ring Scanner [95] used to scan boxes in a shipping hub. Because the 

device (see figure 6) extended beyond the self-perceived size of wrist / lower arm the 

key pad housing constantly rubbed against corrugated boxes during trial use in a 

shipping center. Constant abrasion caused the softer abs plastic to rub away and 

expose the internal electronics. Because of this, the whole system had to be 

‘ruggedized’ for normal wear and tear. This could have been avoided if the device 

were smaller and within the user’s proxemics (at the time this device was built, 

technology would have prevented this). 

 

Gemperle talks about proxemics as a consideration for “Design for Wearability” [29], 

and Edward T. Hall discusses large aspect of humans’ relationship to the space 

around them in The Hidden Dimension [35]. Gemperle uses Hall’s definition of 
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intimate space at 0-5 inches to develop an aura around the body of self-perceived 

size. 

 

I take that aura and segment it into zones on the Body Map. Using these zones, I can 

make suggestions of where to place wearable technology based on the distance that 

tech extends from the body. I also use the clothing corrections guide from Henry 

Dreyfuss Associates “The Measure Of Man and Woman” as a proxemics minimum 

guide as most humans wear clothing [97]. 

 

 

BODY MAP 9 – proxemics map – Proxemics, as defined here, is a human’s perception of self-size. 

The distance from the body portrayed on this body map indicates how far from the body a wearable 

device might extend and still be naturally considered part of the person’s self-size awareness. Items 

extending beyond this distance from the body might take a period of time for a person to adjust and 

account for the object within their personal self-size envelope. 
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Design Considerations for Proxemics 

 

• If a wearable device or garment extends beyond the wearer’s self-perceived 

body size, then the device or garment will obstruct natural movement within 

the environment. There will be a period of adjustment (through continued use) 

before the wearable device is incorporated into a person’s perceived size of 

self. 

 

• Some parts of the body can accommodate larger wearable devices without the 

protrusion from the body extending beyond a person’s perceived size of self. 

 

• Someone with a body limitation that requires the use of a wheel chair (or other 

assistive device) may have a much different self-perceived size that would 

include their assistive device and normal posture. 

 

• Attachments to a required assistive device will also affect proxemics, and 

should be viewed as a “wearable.” 
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2.1.9 Weight Distribution (where to carry weight and how much) 

 

Weight does not hamper the design of my test interfaces for the study in Chapter 6 

because all of the components I use are very lightweight. It is important to understand 

why weight maters in wearable design though, and in the case I have to use heavier 

test equipment for usability studies, I should make choices of where to place this 

weight on the body with consideration. 

 

As a general rule, I can start with Gemperle’s advice: 

“The weight of a wearable should not hinder the body’s movement or balance. The 

human body bears its own extra weight on the stomach, waist and hip area. Placing 

the bulk of the load there, close to the center of gravity, and minimizing as it spreads 

to the extremities is the rule of thumb.” [29]  

 

Figure 7 – Google Glass Pack Prototype (photo by Maria Wong Sala) 
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When designing the original beta Google Glass (a head mounted display /wearable 

computer), designers and engineers focused first on what types of features would 

make the device useful [119]. Early prototypes rapidly created were somewhat heavy 

(Figure 7) and hard to wear all day [96]. As the team worked and because of the 

importance of weight and comfort a separate but parallel prototype called ‘Lennon’ 

developed (Figure 8). The Lennon prototype started with a set maximum weight that 

the team believed a user would wear comfortably all day (45 grams), and only added 

features up to that weight. Lennon was the first Google Glass prototype that could be 

worn on the head all day without undue fatigue. 

 

 

Figure 8 – Google Glass Lennon Prototype. (photo by Maria Wong Sala) 

 

Weight of wearable objects matters, and heavier items can be carried by the body 

better in some locations than others. Watkins details how Scribano, Burns, and Baron 

were tasked with developing a system in the 1970’s for finding load thresholds for 

discomfort in aiding to design body armor for the US Army [82, 104]. In doing so, 

they also described the weight thresholds for discomfort for the torso of a male. 
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In general, the army found that the fleshy parts of the body were more able to 

tolerate the pressure of weight than the bony ones, and that pressure on major 

nerves, arteries, and veins, particularly those that supply the brain, can affect 

coordination, and produce fatigue. [104] 

 

Taking this information into account, I created a body map for possible load 

thresholds of discomfort. This will aid in developing wearable systems where weight 

can be distributed and minimalized where appropriate across the body. 

 

 

BODY MAP 10 – Weight Distribution Map - This body map shows the amount of weight or pressure 

that can be placed on the area before the pressure becomes a discomfort. 
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Design Considerations for Weight Distribution 

 

• Weight, load, or the pressure of weight should be placed on the fleshy but 

non-sensitive parts of the body, avoiding boney areas. 

 

• The lower waist is a good area for heavy loads. 

 

• Weight should be balanced across the body evenly, and aligned to the center 

of gravity is possible. 

 

• Heavy items should not be placed on the body’s extremities for long periods 

of time. 

 

• Batteries for a wearable device tend to be the source of most of the weight. If 

a device needs a large battery (to last a long time or because it needs large 

amounts of power to function), place the large battery on the waist. If the 

wearable needs to be located on a different part of the body for use then 

consider distributing the power from the area of use. Finally consider 

distributing battery cells instead of using one large battery. 
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• From a design perspective, weight also has a visceral quality. Density or 

heaviness compared to size in combination with other material aspects such as 

metallic textures are perceived to be luxurious. Donald Norman explains, 

“Physical objects have weight, texture, and surface. Physical feel matters. We 

are after all, biological creatures, with physical bodies, arms, and legs.” [69] 

Use weight where appropriate to create a positive experience with the 

wearable technology object or garment. 

 

• Watkins states: “One aspect of Load Analysis to consider is that even though 

these tests provide data on pressure levels, not all individuals or areas of the 

body respond in the same way to pressure. Age, sex, medical conditions and 

other factors may affect the way in which pressure affects mobility.” [104] 

 

• Of course, it is easy to assume that designers want the most light-weight 

wearable technology anyway, but it is also good to remember that being light 

weight can make the wearable technology useful to broader communities 

(elderly, arthritic patients, children, etc.) 
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2.1.10 Body Mechanics and Movement 

 

The human body moves. As such, any wearable technology we place on the body 

must not impede on this movement. I have already discussed proxemics where the 

added size a wearable device might impede movement with the environment. In this 

section, I will discuss body placement of wearable objects with respect to hindering 

regular motion of body parts. “Consider the many elements that make up any single 

movement. Elements include the mechanics of joints, the shifting of flesh, and the 

flexing and extending of muscle and tendons beneath the skin.” [29] 

 

Again, let’s start with Gemperle’s observations [29]. She starts a discussion about 

body movement by explaining areas on the body do not actually move that much 

relative to the rest of the body. These areas are good locations to place wearable 

technology, as they will not likely obstruct body movement. The outer upper arm for 

instance is a better location to place an object than inside the elbow. If I designed a 

wearable for inside the elbow with any bulk or rigidity at all, it would hinder the 

arm’s ability to bend.  

 

Roebuck ran into the problem of hindering body movement when helping develop the 

Space Suit for NASA in the 1960s [80]. To aid in his endeavor, he created a system 

for annotating body movement built on what he called linkages. These linkages were 

joints or combinations of joints that allow the body to bend or move at a point. This 

simplified and codified way of finding movement points can help a designer today 
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know where to avoid placing wearable technology objects which might hinder 

motion. 

 

Henry Dreyfuss and Associates also created charts with the standard range of motion 

of most humans. These charts also help describe in visual detail areas where larger, 

bulky, or rigid objects might get in the way of human motion [97]. 

 

I have combined the areas selected by Gemperle, the linkage areas described by 

Roebuck, and the range of motion charts developed by Dreyfuss Associates to create 

a third body map of locations appropriate for more rigid wearable objects. 

 

 

BODY MAP 11 – Zones of Motion Impedance - This body map shows the best places to put 

wearable devices on the body: where they will be the least obtrusive and cause the least amount of 

body motion impedance. 
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Other aspects of a wearable technology device affect body movement and prospective 

placement: the flexibility of the item, the bulk, and the weight work together in 

helping dictate proper on-body location. A more flexible device will have more 

options of body location without impeding normal movement. Watkins does a great 

job of describing and relaying garment construction techniques to accommodate for 

flexible construction [104].  Skin also stretches from motion, even within the zones 

where there is minimal movement and attachment of wearable devices to the body 

need to allow for the skin to stretch. 

 

Design Considerations for Body Motion 

• Large, bulky, or rigid objects should not be placed on the inside of joints, or 

the concave areas where the body bends. 

• Rigid objects or flexible but non-elastic objects should be adhered to the 

outside of joints in a way that hinders the skin on the outside of the joint from 

stretching. 

• Smart garments, clothing, or e-textiles should have ample room, or flexible 

and elastic properties to allow all parts of the body to move effectively. 

• Larger or rigid objects should be located in zones on the body with relatively 

limited movement or linkages. 

• All body movement criteria should apply the same to individuals of impaired 

self-movement, unless the wearable is specifically designed to stabilize the 

body for medical purposes. 



 
 

52  

• Individuals may be unable to feel or move parts of their body, but these body 

parts still have the capability of movement from outside sources. This means 

that a discomfort from an inappropriately placed wearable device will not be 

felt, and could cause harm from extended wear. 

 

 

2.2 Choosing On-Body Location for Active / Passive Touch On-Body 

Interactions, and Subsequent User Studies 

I can apply the knowledge gained from the robust literature review and creation of the 

body maps to decide where to place my interfaces on the body for testing. I divided 

the body into on-body locations relative to the needs surrounding wearable 

technology. I can do this by overlaying all the body maps I have created, and finding 

the distinct segments currently important for wearable on-body technology. 
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Figure 9 – Female form with combined body map overlays. The simplified intersections of all the 

overlays will produce a segmented map of the body for wearable technology locations. 
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Figure 10 – Male form with combined body map overlays. The simplified intersections of all the 

overlays will produce a segmented map of the body for wearable technology locations. 
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BODY MAP 12 – Map of Body Locations 

Each consideration listed has a corresponding body map (along with other body maps 

created but not relevant to my thesis) created from synthesizing the affordances found 

in literature. The full collection of body maps with references and design 

considerations can be downloaded for use [106, 111]. A description of how the body 

maps and accessibility considerations might be used in the design process is also 

available [113]. Overlaying all of the individual body maps illuminates the areas on 

the body where a designer should most likely place a wearable device (Body Map 

21). Body map 21 only shows where a device should be located if all design 

considerations are given equal weight. The body map shows that the most likely 

locations for wearable technology to be successful are the hand, wrist, forearm, upper 

arm, upper chest above the breast, forehead, ear, and mid-thigh. Of course, specific 

use cases and designs will place more weight on some considerations than others. For 

my interest, there are some locations that work better than others. 
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2.2.1 On-Body location needs for Active / Passive Touch PDI Interface 

 

• Easy to reach. For active touch interfaces where investigation of the interface 

by the dominant hand is important. 

 

• Easy to be felt. For passive touch to be effective it is important that the 

interface be located at a place on the body with some level of high sensation. 

 

• Socially acceptable. The placement of the interface needs to be socially 

acceptable and aesthetically pleasing (or at least not ugly or embarrassing as 

perceived by the wearer). The placement of the interface can also not cause 

awkward moments during user gestures or interactions.  

 

• Light weight and does not get in the way. The interface should not cause 

discomfort. 

 

After a review of the requirements I have chosen the Forearm as the on-body 

location for my future user studies surround the creation and use of PDIs. The 

forearm seems like a likely location for future commercial devices as well, when 

viewed against all the requirements, body maps, and design considerations.  

  



 
 

57  

Chapter 3 

Constructing Electronic Textile-Based 

On-Body Input Interfaces 

 

This chapter describes effective techniques to create and design on-body textile-

based interfaces that are robust, reliable and accurate. These are a set of validated 

techniques and processes for creating embroidered interfaces for on-body touch 

based interactions that create a foundation for active touch / passive touch interfaces. 

(contribution).  

There are some specific necessities for successful on-body electronic textile-based 

input interfaces. First, for touch based input the textile must be able to recognize 

touch.  Second, the textile interface must withstand use, and possibly washing, for the 

interface to be feasible. Third, the interface and technology need the ability to be 

incorporated through methods similar and familiar to garment manufacturing. 

 

3.1 Related Work on Wearable Technology and 

Electronic Textiles 

Post and Orth introduced the wearable computing community to interfaces 

embroidered using conductive thread [76]. Touches to the conductive thread 

interfaces could be sensed using simple capacitive circuits. Soon many other textile 

interface widgets like keyboards and sliders were explored [77]. Their design for the 

Firefly Dress used organza fabric with metal woven in for aesthetic effect but also 
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provided conductive properties. This gave way to embroidery and prints made from 

conductive materials, which then allowed designers to create interfaces on the fabric. 

Post recently has even looked at using conductive materials to harvest static 

electricity produced by fabrics for use in powering LEDs [78]. Marculecu et. al 

describe electronic textiles as a platform for pervasive computing, and in doing so, 

outline a number of methods for producing e-textiles [62]. Jayaraman and colleagues 

also worked on incorporating technology with fabric to produce their “wearable 

motherboard” smart t-shirt [34]. This t-shirt was created originally to detect injured 

solders in the battlefield and relay vital signs and GPS coordinates. 

 

Buechley has focused much of her e-textile work on the democratization of 

technology within education, and using wearable tech as a way to make inroads with 

typically non-tech-enthusiast communities [9]. Buechley’s work has led to the very 

popular Lilypad Arduino microcontroller, making designing and working on wearable 

technology easier and more inviting (Buechley and SparkFund.).  

 

3.2 Construction Techniques for  

Electronic Textile-Based On-Body Interfaces 

Much of my research has focused on creating and testing electronic textile interface 

construction techniques [10, 48, 55, 115, 117, 118]. These textile interface techniques 

include both sensing and manufacturing techniques. I use these techniques to create 

the on-body interface prototypes for usability testing, interaction research, and for 

case studies about their design and acceptability. I used conductive thread, materials, 
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and some of these construction techniques to create the prototype for my final study 

detailed in Chapter 6. 

 

3.2.1 Hybrid Resistive-Capacitive Sensing Technique 

 

Part of my early work helped to develop and test techniques to create conductive 

thread touch sensors using a hybrid capacitive resistive sensing techniques which 

allowed me and other designers to place the microprocessor for the sensing some 

distance from the sensing location and maintain accurate touch readings. This 

technique allows the sensing of a discrete touch on a specific location on the fabric, 

such as a touch point. 

 

The microprocessor sensed by detecting leakage current across the textile finger pads. 

This was done by charging up the capacitor formed between ground and one side of 

the touch pad, examining the time taken for it to discharge through a known resistor. 

By driving the other side of the touch pad to ground or power, the leakage current 

through a finger would vary the time needed for the capacitor to discharge. Thus, by 

measuring the discharge time twice, we can use the difference in times to determine 

the leaked current through the fingertip. Any constant capacitance in the pad gets 

canceled out. Once the microprocessor had determined how much current was able to 

leak through the touch pad, it then relayed this value to the palmtop computer via a 

USB-to-RS232 converter, where the software could process the data. [48] 

 



 
 

60  

 

 

Figure 11 - Hybrid resistive-capacitive sensing method used on embroidered touch pads to improve 

accuracy of selections. When the fingertip is not present, t1 = t2 (left). Otherwise, t2 > t1 (right). 

 

This is the sensing technique used to sense touches on the embroidered touch points 

in the testing prototypes in Chapter 6. 
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3.2.2 Thread and Materials 

There two main types of conductive thread used for the interactive embroideries: A 

silver coated thread and a 2 ply stainless steel and polyester thread [89]. The 

advantage of the silver coated thread is that it can be sewn over itself creating more 

conductive surface area and lowering the resistance of traces. The silver coated thread 

is also somewhat more durable than the 2-ply thread after it is sewn. The drawback is 

that the 2-ply thread works much better with the embroidery machine’s tensioning 

system and has less thread breakage during manufacture. 

 

As mentioned aside from being able to sense the touches, the materials used must also 

stand up to some use and perhaps washing. To determine the robustness of materials I 

am using to create my testing prototype I developed and ran a wash durability test of 

the electronic textile techniques [115]. Washing and drying might be the the greatest 

durability challenge to an interactive textile, so this is the test I decided to run. 

 

For the purpose of the wash test I decided to use a standard upright agitator washing 

machine GE Spacemaker Model WSM2700 HAWWW and a standard detergent. One 

ounce of All 2x Ultra detergent is used each wash cycle. By using the same water fill 

level and same cycle time, I tried to standardize the mechanical aspects of the 

washing cycle as much as possible. All washes were made in warm water, at medium 

load, and a regular wash cycle. I chose to wash on the warm cycle because I wanted to 

use a harsher condition, hoping that if the conductive materials withstood a warm 
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wash cycle they would be more likely to withstand a cold wash cycle. I also chose the 

regular agitation and wash cycle because these would be harsher conditions than a 

gentle cycle. 

 

I tested two types of conductive threads; the first is a coated conductive thread. The 

Shieldex size 33 thread is completely conductive on the outside surface of the thread 

and is very useful when embroidering interfaces because, as the thread sews over 

itself, it increases the conductive surface and lowers electrical resistance. One 

downside to the Shieldex size 33 thread is that the conductive coating on the thread 

makes it hard to regulate the tension of sewing and embroidery machines properly, 

and it is more difficult to use within industrial machines. I the second type of 

conductive thread I tested is Shieldex’s size 40 thread, which is a 2 ply mixed yarn 

consisting of both conductive and nonconductive polyester. The advantage of the 

Shieldex size 40 yarn is that it runs much better through sewing and embroidery 

machines, but it cannot be sewn over itself to reduce resistance. As I also wished to 

explore how to best combine conductive ink and conductive embroidery to create the 

most robust interfaces, I also tested the effects of washing on combinations of 

conductive materials. 

 

Each test condition was applied onto a cotton twill swatch. The swatches were 

washed for 10 wash cycles. The graph (Figure 13) shows the average resistance 

change from each test condition over 10 wash cycles. Where the test condition lines 

on the graph terminate indicate that at that wash cycle either the trace was broken or 



 
 

63  

the resistance became so high as to effectively render the trace useless. As this is an 

average graph, some traces might still have been working, but the majority of the 

traces failed where the lines terminate.  

 

 I examined the following 12 test conditions: 

 

Less Conductive Thread (Shieldex size 40 22/7 PET sewing thread)  

1. Single trace*  

2. Double trace** 

3. Single trace under conductive ink (sewn first and ink printed on top of trace 

and then cured)  

4. Single trace on top of conductive ink (ink printed first and thread sewn on 

top of cured ink)  

5. Double trace under conductive ink  

 

More Conductive Thread (Shieldex size 33 117/17 sewing thread)  

6. Single trace  

7. Double trace  

8. Single trace under conductive ink  

9. Single trace on top of conductive ink  

10. Double trace under conductive ink Conductive Ink  

11. Ink alone  

12. Ink covered with Plastisol***  

 

* Single trace = A single straight sewn line of thread  

** Double trace = A single straight sewn line of thread double back over   

    itself 

*** Plastisol Ink is a standard type of screen printing ink. It is a pigment   

     suspended in a binder which cures into a plastic after being heated. 

 

Figure 12 - Example of printed traces after wash test. With and without blue plastisol coating. 
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Figure 13 – Averaged results of resistance changes on 10 traces of each type over each of ten wash 

cycles. Red X denotes where the trace failed or the resistance became so high to render the trace 

ineffective. [115] 

 

Aside from this wash test there are some other observations I can make from using 

these conductive threads for the past 10 years. I have found that the 2 ply thread also 

oxidizes and fails much faster than the coated thread. I chose to use coated thread 

embroidery for my final testing prototype. I did this for a couple of reasons. Printing 

on top of stitching is not a normal garment manufacturing technique and the 2 ply 

thread is too fragile, not standing up to oxidation over time. It is important to note that 

even though I used the coated thread, that between every day of testing, the final 

prototype sleeves in Chapter 6 were stored in an air tight plastic bag with “silver 

saver” sacrificial oxidation paper. This step I thought would be important to keep that 

resistance of the traces close to the same over the course of the final study. 
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3.2.3 Textile Interface Construction Techniques 

 

Sometimes it is necessary to run long traces on fabric across the body using 

conductive thread to connect a textile interface to the microcontroller that runs the 

sensing. With body movement, large amounts of capacitive change can be produced 

along a pair of parallel conductive traces. To combat the noise generated in such a 

long trace, I created a textile based twisted pair ribbon [55, 118]. The creation and 

subsequent testing of the textile twisted pair ribbon also allows for the conductive 

leads to be incorporated into clothing through methods similar and familiar to 

garment manufacturing. As described in Chapter 2 a good place to run leads from one 

part of the body to another is within the seams of the garment. The twisted pair ribbon 

I designed can also act as bias tape. Bias tape is a material used in clothing 

construction to seal the edges of seams. The twisted pair ribbon is also very flexible 

and when placed at the seams of a garment it has much less effect on the drape of a 

design than wires would.  
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Figure 14 - Conductive Thread Twisted Pair Ribbon and three test conditions used to evaluate 

different methods of running capacitive sensing lines across textiles, along with data collected from 

a test apparatus. Each was tested for response to proximity near the sensing line and near the 

intended conductive pads at the end of the sensing line. 
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I also aided in developing some interesting fabric based interfaces using simple 

circuit closures and a knowledge of old world textile manipulation techniques. The 

knife pleat interface is a good example. 

 

This sensing is performed by embroidering several rows of conductive thread 

between the pleats. The first electrode is sewn as rows on the base piece of cloth 

between the pleats. These rows are electrically connected as a single electrode. 

Importantly, the conductive thread we use has a noticeable resistance which increases 

as the embroidered path gets longer. Another electrode is sewn onto the left side of 

each pleat. All the left sides of the pleats are electrically connected in this fashion. 

Finally, a third electrode is sewn on the right-hand side of each pleat. All right sides 

of the pleats are electrically connected as one electrode.   

 

Note that since the pleats are sewn on to the base fabric with a 180-degree twist, the 

pleats stand up distinctly and avoid shorting either the left or right sides of the pleats 

with the electrode on the base cloth. However, as the user runs his finger along the 

pleats left to right, the right side of the pleats short against the base electrode. Thus, a 

computer or consumer electronic device hooked to this interface senses that the user 

is stroking the pleats left to right. Since the circuit’s resistance increases with the 

length of conductive thread, the system also detects the nearest pleat being de- 

pressed at any given moment. If the user strokes the pleats right to left, the left side of 

the pleats makes electrical con- tact, and, again, the sensed resistance indicates which 

pleat is being depressed. Since the left facing and right facing conductive threads 
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form distinct circuits, a pinch gesture (e.g. where the thumb moves right across the 

surface and the index finger moves left) can also be sensed precisely. 

 

Note that the circuit required is relatively simple, consisting of the 3 electrodes, a 

microcontroller with analog to digital converters (or the construction of several 1-bit 

capacitive DACs), and a few known resistors for a variation of a Wheatstone bridge 

to compare the sensed resistance values in the circuit precisely. [32] 

 

 

Figure 15 - Pleat: This knife-edge pleat is constructed with three electrodes. Depending on in which 

direction the pleat is crushed, different circuits are completed [32] 

 

It is also important to note that I explored creating touched based interfaces with other 

traditional textile methods outside of embroidery. I designed and created printed 

versions of some of the e-textile embroidery using silver ink and a screen printing 

process (Figure 16 & 17). The inks available at the time could not stand up to 
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repeated washing, and were also not flexible enough to bend with a fabric substrate 

without cracking (and thus breaking trace lines). For my purposes printed interfaces 

also do not afford a raised surface for active touch investigative interactions. I did 

find that using normal screen printing plastisol ink worked quite well as an insulator, 

and this made it into some of the durability techniques I tested in the wash test. 

 

 

Figure 16 - Silver Ink Printed Interface. 
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Figure 17 - Conductive screen printing process. 
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3.3 Impact of Electronic Textile Interface Construction Techniques 

 

The research here makes progress toward answering my first research question. What 

are effective techniques to create and design on-body textile-based interfaces that 

are robust, reliable and accurate? 

 

Using these validated techniques and processes for creating embroidered interfaces 

for on-body touch based interactions (contribution from research) I created an 

embroidered electronic textile on-body interface to test the potential of 

Proprioceptively Displayed Interfaces as outlined in Chapter 6.  
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Chapter 4 

Active Touch Electronic 

Textile-Based Interfaces 

 

This chapter details how active touch aids in making on-body textile interfaces more 

accurate and quicker to interact with than interfaces without such affordances. The 

description of both a user study centered around using active touch afforded input 

interfaces and prototype textile interface artifacts such as the Electronic Textile 

Interface Swatch Book, The Hood (e-textile garment music controller), and Le 

Monstré (an interactive participatory performance garment) (contribution) support 

the use of active touch affordance in on-body input interface design. 

 

4.1 Related Work in Active Touch  

Electronic Textile-Based Interfaces 

There is a clear description of active touch in Chapter 2.1.2 Touch (active touch) [31]. 

All physical interfaces use active touch interactions for interfacing with systems (be 

they mechanical or digital). Both trusted industrial design standards [97] and trusted 

HCI principles such as Fitts’ law [25, 60, 90] stem from human ability to reach out 

and touch objects. Our use of active touch to investigate and manipulate the world 

around us is so great that there are research efforts to figure out how to make flat 

touchscreen interfaces more tangible for interaction [8, 41, 52, 54] 
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One application of aiding active touch is Thad Starner and team’s research into using 

vibration to aid firefighters in sensing heat through their gloves by vibration when 

using active touch to investigate doors in burning buildings [103]. These types of 

active touch aids could also be very beneficial for wearable robot control. Konyo et al 

presented a paper entitled Tactile Feel Display for Virtual Active Touch at the 

International Conference for Intelligent Robots and Systems in 2003. This paper 

outlined methods and usability tests of those methods for creating a haptic system to 

aid in remote active touch investigation virtually [49–51].  

 

For making and testing on-body textile based input interfaces, where the interaction 

happens on the body, this type of active touch enhancing research is interesting but 

perhaps not as useful as the design standards of physical interfaces. I am more 

interested in how an input interface can afford active touch (rather than how 

augmenting a hand can aid in active touch investigation). This type of information 

can come from ergonomic and industrial design standards such as the “The Measure 

of a Man and Woman” [97] that outlines shapes and textures of interfaces for input 

interaction. 

 

When thinking about how on-body interfaces might help with our everyday 

interactions, it is also important to think about how we interact with our most 

ubiquitous computer: the mobile phone.  Patel et al. examined people’s perceptions 

about how often they have their mobile phone nearby. Their data show that people 

routinely overestimate the physical availability of their mobile phones [74]. Even 
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when the mobile phone is with its user, it may not be quickly accessible. Cui et al. 

found that 40% of women and 30% of men miss phone calls simply due to the 

manner in which they carry the mobile phone on their person [12, 19]. Similarly, 

Starner et al. found correlations between an individual’s decision to use or not use a 

mobile scheduling device (such as a day planner or PDA) and the amount of time and 

effort required to access and make ready the device [94]. Together, these studies 

suggest that the time required to access a device might be an important property 

affecting mobile use. 

 

An important predecessor to the study described in Chapter 6 is one completed in our 

lab on the impact of mobility and on-body placement to access time.  This earlier 

study on access time compared these conditions using the same mobile phone carried 

or attached to the body in different locations. It did not compare different interfaces 

such as a textile based interface with a hardware based interface.  The findings from 

this study show that the access time from a body mounted wrist location is much 

better than the access time from a carried position in the pocket [3].  I build on this 

information with study in Chapter 6 to look at access time, among other metrics, 

compared against differing interfaces which are textile based. 
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4.2 Making and Testing Active Touch Wearable and  

Gropable Electronic Textile-Based Interfaces 

 

To test the advantages of active touch affordances designed within an interface I and 

my colleagues developed a user study. The study tested the ability of using a 

conductive thread embroidered interface to make selections while seated and walking 

[48]. The premise being that when thread is embroidered with a raised surface from 

the face of the fabric, the user will be able to feel or grope the interface and interact 

with it without visual attention. I created the initial embroidery for this ‘gropability’ 

study using a domestic one-needle embroidery machine; however, I have replicated 

the embroidery using a 15-needle commercial embroidery machine. The commercial 

embroidery machine used to create the current embroidered textile swatches is an 

automated machine and runs from computer designs I create on embroidery software.  

The designs are embroidered with a coated conductive thread [89], and polyester 

thread used for both insulation to cover traces and to create raised mounds of thread. 
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Figure 18 - Conductive thread used to create touch sensors could be sewn flat to the surface of the 

fabric, but with an embroidered non-conductive thread acting to raise the surface of the touch point, 

it can more easily be found without looking at the fabric. Illustration by Nicholas Komor 

  

 

Figure 19 - The previous study on gropability [48] utilized audio prompts to ask for specific touch 

pad selections 

 

Using these embroidery techniques and sensing techniques described in Chapter 3, I 

oversaw a study to compare multi-touch and single touch interactions when prompted 

with an audio cue.  Capacitance in an on-body system can change drastically due to 

the movement of the lead threads required to connect the textile touch points.  Instead 

of using just capacitance, I used a hybrid resistive-capacitive sensing method (Figure 

11) allowing sensing at the location of the touch point rather than the changes in the 
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system due to body movement. I also used this hybrid technique to create the 

embroidered textile interfaces for the on-body prototypes used in Proprioceptive 

Interface Displays study detailed in Chapter 6. The study was structured as a 2 x 2 

within-subjects design. The researcher presented the participants two mobile 

conditions (seated and walking) and two embroidered tactile fabric interfaces (one 

with an anchor pad and one without). With each trial lasting approximately 10 

minutes, the entirety of the study took about one hour to complete. The sessions were 

separated by a brief two minute break to enable the participants to rest and prepare for 

the next trial. Each trial consisted of 30 selections (ten for each position). The order 

of conditions was randomized across participants as was the order of the 30 selections 

within a trial. The participants were compensated at a rate of $10/hour rounded to the 

nearest half hour for their time. 16 individuals participated in this study. the 

participants ranged in ages from 18 to 36 with an average age of 23. Seven 

participants were female and five were left–handed. Before the first session, each 

participant was given verbal instructions explaining the task and goals of the 

experiment. The researcher described the two different prototypes and the mobile 

conditions to the participants. The participants were instructed to respond as quickly 

and as accurately as possible to the voice commands which indicated which position 

to touch. The participants were then led through a series of training exercises in 

which they interacted twice with each target on both the three-button and four-button 

prototype. They performed this training exercise while seated and again while mobile.  
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The experimental software was implemented in Python on a Sony Vaio palmtop 

running the GNU/Linux operating system. During each condition, the operation of the 

software was the same. At random intervals between 10 and 20 seconds (selected 

from a uniform random distribution), the software generated a synthetic audio voice 

prompt instructing the participant to touch either the “top,” “middle,” or “bottom” 

button. To respond to the prompt, participants felt (used active touch) the interface, 

located the touch points, and attempted to press the touch point indicated by the alert. 

If the participants were in a 3-touch point condition, they simply had to press and 

hold the indicated button. If they were in a 4-touch point condition, they needed to 

press and hold both the “anchor” pad and the indicated button. The software waited 

for the user to press a button for 2 seconds and played an audio tone through the 

headset. In the event that the participant was not successful, the software would 

timeout a trial at the end of six seconds. At this point the trial was complete and a 

timer was set to generate the next voice prompt. The software logged the timestamps 

of each prompt, as well as every touch event that occurred during a trial. No feedback 

was given to the participants to indicate if a trial was a success or a failure. The sound 

simply indicated the conclusion of one trial and the beginning of the next. 

 

The 16 participants engaged in 480 total trials (30 trials per participant or 10 trials per 

button per participant) resulting in 80 trials per button on each interface. The 

participants on average pressed the correct button on either the 3-touch point or 4-

touch point interface over 23 times while stationary and over 25 times while mobile. 

There was no statistically significant difference in the number of correct touch point 
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selections between the prototypes while stationary or while mobile. The time required 

to press the correct pad was longer for the 4-touch point interface for both the mobile 

and stationary situation (p<0.01). Figure 20 shows the dwell time needed to ensure 

acceptable selection accuracy in the various conditions. 

 

The 4-touch point prototype had slightly better accuracy (due to the addition of the 

multitouch anchor) than the 3-touch point design but required more time for selection. 

However, examining Figure 20 reveals that the 4-touch point design requires less 

hold time than the 3-touch point design when mobile to get the maximum accuracy. 

Interestingly, accuracies fall with longer hold times for all conditions, but the 4-touch 

point interface accuracy decays less than the 3-touc point. Accuracy seems to peak at 

approximately a third of a second dwell time for all conditions. 

  

Figure 20 - Hold time versus selection accuracy (30 trials) 
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4.3 Designing and Using Active Touch  

Wearable Electronic Textile-Based Interfaces 

 

4.3.1  Designing Active Touch Wearable Electronic Textile-Based Interfaces 

 

A good portion of my work has been exploring ways to help transdisciplinary design 

teams work more effectively together on wearable technology. Research exploring 

how policy and imagining futures can help create more inclusive and productive 

project teams [4, 27]. The disparate distant disciplines and varied skills needed for 

true innovation in wearable computing means it is sometimes difficult for project 

team members to understand one another and work together. Martin et al. speak to 

both the need for transdisciplinary teams while working on wearable technology 

projects and the nature of the current educational system producing engineers and 

designers: “Practitioners in these fields gain their interdisciplinary team experience 

by trial-and-error and sheer luck, if at all. The deeply disciplinary nature of 

universities does not prepare students for working on the types of design teams that 

are required for successful wearable computing systems,” [64]. 
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Figure 21 – Electronic Textile Interface Swatch Book. 

 

In this vein I directed the creation of the Electronic Textile Interface Swatch Book 

(ESwatchBook) to help teams work together around an artifact that provided a talking 

point and shared meaning [32, 75, 112]. The ESwatchBook was also a prototype 

mechanism for developing textile-based active touch interfaces for exploration and 

observation. The set of swatches initially created were variations on embroidered 

touch surfaces. Some of these surfaces used single raised ‘selectors’ mimicking the 

interface used in the “Is It Gropable” study. Other designs incorporated ridges and 

valleys made with non-conductive polyester thread used to guide the fingers to 

conductive touch points (Figure 22).  
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Figure 22- Notice the center touch area on this ‘rocker switch interface’ has valleys for the fingers 

to fall into place. 

 

The ESwatchBook development was also useful for testing types of interactions. 

Starting by imitating interactions used by other interfaces and graphical user 

interfaces, the research also looked at how to expand beyond these types of touch 

interactions. A good example of this exploration was with the familiar jog-wheel 

interfaces. The embroidered jog-wheel incorporated both an inner and outer jog 

which could vary the speed or resolution of scrolling items, while tapping and 

swiping could be useful for start stop and single skip functions. 
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Figure 23 - Iterations of embroidered jog-wheel interfaces for the ESwatchBook and interaction 

styles explored for using the textile interface. 

 

4.3.2 Using Active Touch Wearable Electronic 

Textile-Based Interfaces, Collaboration Case Studies 

 

While I was simultaneously using the ESwatchBook as a rapid prototype mechanism 

to explore types of textile interface interaction, I was also facilitating using it and 

other e-textile input interfaces to display this technology to designers and artists in a 

non-threatening form factor. These explorations and case studies were an important 

step for me to understand how the communities of practice that might design PDIs in 
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the future would respond to textile input interfaces. Part of this effort was undertaken 

with a series of workshops at design and arts universities and conferences [75, 112]. 

The participants in the workshops consisted of both faculty and student designers 

leading to rich discussion about how the ESwatchBook could be used and improved, 

and also about the use of textile-based on-body interfaces within the arts.  

 

While three of the four completed workshops dealt solely with academia, the Smart 

Fabrics Conference workshop had many participants from industry. Some industry 

participants even inquired about having a workshop at their respective companies. 

This is exciting because it hopefully shows that when electronic textile input 

interfaces are presented in a familiar way to industry and this information is backed 

up with knowledgeable workshop facilitators, industry professionals may as one 

participant stated, “see the possibility to get ideas about new applications”. 

 

One of the facilitators of the workshops explained: “It was important for me to 

convey to the fashion designers (people who had never explored this technology 

before) what was possible so they were not limited by lack of knowledge. In the 

beginning, I think it helped to stretch the limits of our ideas, and then scale it back 

down for feasible execution. The ESwatchbook gave them some indication of the 

types of technology they could work into the garment, but once they had their concept 

down they relied on group knowledge to implement their design.” 
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Recently, I have used the ESwatchBook and other items as boundary objects for 

wearable technology transdisciplinary teams [14, 114]. In this way, the ESwatchBook 

acts a design tool, and also illuminates interest from fashion designers, artists, and 

other skill based disciplines in working with textile-based on-body active touch 

interfaces. 

 

 

Figure 24 – Rho wearing the “Hood” developed through an transdisciplinary team using the 

ESwatchBook. 

 

One such project focused on the creation of a wearable musical instrument. Over the 

course of one week, an Italian musician named Rhò, an architect, a computer 

scientist, a fashion designer, an engineer, and a digital media expert came together to 

create one wearable musical instrument: “the Hood”. There were communication and 

ideation challenges to overcome in a team with such diverse skill sets. Wearable 

technology is a unique working space, allowing for, and often requiring, diverse 
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participants who may have fundamental differences in their formal training. A fashion 

designer has a different thought process, product goals, and even vocabulary than a 

computer scientist. A musician has a very creative process and his or her time scale 

for creation might diverge from all other design fields. On top of disciplinary 

differences, there are also cultural (American and Italian) variances in process, which 

this multicultural team also highlights. These conflicts must be reconciled for true 

collaboration to take hold. It cannot be expected that everyone on the team learn the 

skills of the other team members, especially over such a short time frame. I used the 

ESwatchBook framed as disciplinary boundary object allowing for discussion and 

shared understanding, leading to a productive creative team process. “This is an 

analytic concept of those scientific objects which inhabit several intersecting social 

worlds and satisfy the informational requirements of each of them. Boundary objects 

are objects which are both plastic enough to adapt to local needs and the constraints 

of the several parties employing them, yet robust enough to maintain a common 

identity across sites” [91]. 

 

The Hood was also an opportunity to test our active touch sensing techniques in a real 

world, high stakes scenario. Benford et. al discuss “why work on performance led 

research in the wild”. “The public deployment of artworks offers a test-bed for putting 

emerging technologies into the hands of users in a “realistic” situation, meaning a 

situation in which the technology needs to be made to work and is treated in some 

sense a professional product - this is the “in the wild” aspect of the approach.” [6] 
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The hardware designed and field tested in collaboration with Rhò uses some of the 

same sensing techniques outlined in Chapter 3 and used in my final study prototype in 

described Chapter 6. The hardware consists of a microcontroller to drive the system, 

and a Bluetooth module to communicate with a laptop. On the front of the garment, 

‘smart LEDs’ were included for visual feedback, sewn-in wiring was used to make 

touch points for discrete input, while a proximity sensor was included for continuous 

input. The entire system runs from a rechargeable lithium-ion battery, charged via 

USB. Thin un-insulated wire is used to create interlacing touch points much like the 

pattern for selection points chosen in Komor et al.’s “is it gropable” study [48] only at 

a much larger scale. The wire was chosen over conductive thread used in the 

ESwatchBook because the ‘Hood’ needs to be made more robust for performance. 

The wire was hand stitched onto yarn and fabric and then sewn down with a domestic 

sewing machine. Enameled magnet wire was chosen for leads to the touch points due 

to its size and malleability as compared to other insulated wiring, thus interfering less 

with the drape of the garment. The leads were soldered to a connector so that the 

micro controller and battery could be removed easily from the garment. Because the 

collaborative team decided to incorporate LED display of interaction this means this 

performance prototype cannot be washed or submerged in water. The Hood is to be 

worn on the outermost layer only during performance so wash-ability was not a 

priority. 

On looking back over the process Rhó states: “My time on the project was exciting 

and inspiring, but also hard. It stressed me in a way, when I got here I did not know 

how to deal with the guys (engineers / computer scientist), I thought they were really 
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talented people, so I had to prepare myself to learn. When I met them, I had to deal 

with a new language, new stories, with a new environment, which is not a usual one 

for a musician. It’s not only about using one software or another, but it’s how to 

translate a process, something artistic, to people who come from technology, and how 

to transform a technology process in to music.” This is as I would expect, but there 

was continued interest from Rhò in collaboration and the creation of wearable music 

controllers after this initial encounter. This continued interest reinforces the 

sentiments expressed by designers and artists from earlier workshops in the 

legitimacy of these types of electronic textile input interfaces as an option for on-

body interaction. 

 

I learned quite a bit from the actual performance with the garment. There was a 

moment when the garment lost Bluetooth connection and had to be reset before the 

show. Because of this disconnection in future performance (and user studies) I 

switched to using Wi Fi connection. There was also an issue with calibrating the 

capacitance of the Hood, and eventually I found that if the calibration was performed 

while the wearer was touching (the metal) laptop it effected the grounding of the 

system. I remembered both of these “lessons learned” when I created the prototype 

for the PDI study outlined in Chapter 6. 

 

Another recent project that I tested aspects of e-textile interaction “in the wild” was 

called Le Monstré [116]. Le Monstré is a responsive performance garment, changing 

the sound and projection of the performance space through audience interaction. As 
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the audience is invited to investigate the garment through touch and pull, capacitive 

and resistive strain sensors relay the interaction as WiFi MIDI signals. The garment 

was designed as an investigation into the technology and arts collaborative design 

process. The performance garment is constructed of many different textures. Some of 

these textures include conductive materials, which act as capacitive sensors 

recognizing touch. Other portions of the garment contain ribbons that are attached to 

stretch sensors. Each of the sensing textures are designed to be explored through 

touch. Within the larger context of the performance’s theme of connectedness through 

media, Le Monstré explores physical connectedness, and how that affects media. 

 

 

Figure 25 - Interacting on stage with Le Monstré garment. Photograph by Saftey Third Productions. 
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4.4 Impact of Active Touch Wearable Electronic 

Textile-Based Interfaces. 

 

The research in this chapter answers my second research question. Can active touch 

aid in making on-body textile interfaces more accurate and quicker to interact with 

than interfaces without such affordances. The “Is It Gropable” study gives insight 

directly into these metrics with respect to textile-based on-body active touch 

interfaces. In this chapter I have described the design of active touch textile based 

interfaces and techniques for creating [32, 48, 115, 118] I have also shown how active 

touch interfaces can be useful in real world performative settings, including how 

sample interfaces themselves can be used in a collaborative transdisciplinary design 

process. [4, 10, 14, 20, 21, 27, 79, 112, 114, 119, 120]. 

 

Using prototype textile interface artifacts such as the Electronic Textile Interface 

Swatch Book, The Hood (e-textile garment music controller), and Le Monstré (an 

interactive participatory performance garment) (*contribution) I have described 

ways that textile-based on-body interfaces using active touch are of interest to 

designers, artists, dancers, and musicians. These prototypes have also been shown to 

work “in the wild” with case studies and descriptions of use published in academic 

conferences [114, 116]. My assumption is that these types of collaborations will 

become even more rich with research and development surrounding Proprioceptive 

Display Interfaces.   
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Chapter 5 

Passive Touch / Active Touch Preliminary Study 

 

Building on my work in textile-based on-body active touch interfaces I am interested 

in the effect of combining active touch and passive touch. To test the human factors 

surrounding the combination of active touch and passive touch for use with PDI 

location of on body interfaces, I ran a preliminary study. This study begins to answer 

my third research question. Can combining active and passive touch techniques aid 

in making on-body textile interfaces easier to locate and use, more accurate, and 

quicker than interfaces without such affordances? The preliminary study 

investigates a person’s accuracy of finding a point on the body (the forearm) without 

visual attention with and without the addition of passive touch (and to a small extent 

active touch). 

 

5.1 Methods and Participants 

Methods 

The preliminary study consisted of a short survey and physical touch test. The short 

survey questioned the participants use of technology and wearable technology. The 

questionnaire also asked generic demographic questions such as age and gender 

identification. 

 



 
 

92  

The physical human factors test began by asking the participant to wear a white jersey 

knit long sleeve tee shirt. After the shirt was donned a binder clip was used to make 

sure that all the participants sleeves fit similarly (snug) around the forearm. The 

sleeve was gathered around the arm and held by the binder so that the sleeve touched 

the top (back of hand side) of the forearm. The participants arm could turn inside the 

sleeve without turning the sleeve. For example, with the arm outstretched if the 

participant moved his hand from palm down to palm up the arm moved beneath the 

fabric. 

 

Before the touch trials began, the participants were asked to close their eyes and 

touch their nose with both hands, like in a sobriety test. All participants were able to 

complete this task which is some indication that their proprioceptive and kinesthetic 

abilities were within a normal range. The researcher then used a permanent marker to 

make a quarter inch touch target dot at about 3/4 distance from the wrist to the elbow. 

Care was taken not to press the skin beneath the sleeve while making the touch target 

dot, in order to prevent inadvertent learning. 

 

Touch Target Trials 

The participants were asked to try to touch the target dot on their forearm with the 

index finger of the opposite hand, while their eyes were closed. They were asked to 

use only their index finger with one touch. 
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Before each trial the participant was allowed to look at their whole body in a mirror 

including the target dot on their forearm (they were not allowed to touch the dot at 

this time however). The participants were then asked to close their eyes and to 

perform the following with their eyes closed: raise hand above head, turn around in a 

circle, put their arms down by side, raise arms palm up out to sides, move arms to 

front, turn palms down, place arms by side. At this point, the researcher notified the 

participants that they would place the participants’ finger in non-toxic children’s 

washable finger paint (blue). While the participants kept their eyes closed, they were 

asked to touch the where they believed the target dot to be located on their forearm. 

The participants were then allowed to open their eyes and look in the mirror again. 

This process was repeated 4 more times for a total of five touch target trials.  

 

After five trials, the researcher created a small incision in the fabric at the location of 

the dot and inserted a fabric cord nub cufflink (Figure 26). This produced a nub both 

below the fabric (against the skin) and a nub above the surface of the fabric. The 

participant was then asked to perform five more touch target trials with orange finger 

paint. 

 

Figure 26 – Fabric nub cufflinks 
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A photo was taken after each of the 10 touch target trials to making it easier to 

distinguish the order of the touches after the participant has finished. When the touch 

target trials were done, the binder was removed from the sleeve and the participant 

was asked to remove the shirt while being careful not to disturb the finger paint touch 

marks. 

 

Before the participants left, they were asked to record anything they noticed about 

their experience on the back of the questionnaire they took before the touch target 

trials. 

 

I then measured the distance of the touches from the target dot to determine if there 

was a difference between the touches with and without the sensation of the nub 

against the skin. 

 

Participants 

Participants were recruited through word of mouth and were not paid to be a part of 

this study. There were six participants in my preliminary study (three identified as 

female and three identified as male). Five of the participants were right handed and 

one was left handed. The age of the participants ranged from 26 to 42 years old. All 

of the participants owned a smart phone and had the phone with them, from the 

questionnaire I can assume that the participants were all familiar with wearable 

technology even if they did not own or wear any on a regular basis. 
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5.2 Results 

The results of the study show that the average distance of a touch from the target dot 

without the nub against the skin of the arm is 1.63” as compared to .55” with the 

additional passive touch sensational reference of the nub against the skin. The 

average farthest distance from the target dot also is reduced from 2.55” to 1.25” as 

seen in Table 1. 

 

Table 1 - Distance in inches from touch to target dot in Touch Target Trials. 

Trials P1M P2M P3F P4M P5F P6F Average 

T1 no nub 1.25 2 1 3 1.5 1.75  

T2 no nub 2.5 2 2.75 0 0 2  

T3 no nub 1 1.25 2.75 0.5 2 0.75  

T4 no nub 0.75 1 1.5 0.5 0 0.75  

T5 no nub 1 1.25 3 1.5 0.5 1  

Average 

Distance 

1.3 1.5 2.2 1.1 0.8 1.25 1.35 

Largest 

Distance 

2.5 1.25 2.75 3 1.5 1.75 2.13 

 

Trials P1M P2M P3F P4M P5F P6F Average 

T1 with nub 1.25 0.75 0 1.5 0 1  

T2 with nub 0.75 0 0 1.5 1.5 0  

T3 with nub 0 0 0 0 0 0  

T4 with nub 0.25 1.25 0.25 0 0 0.5  

T5 with nub 0 2 0.25 0 0.5 0.5  

Average 

Distance 

0.45 0.8 0.1 0.6 0.4 0.4 0.46 

Largest 

Distance 

1.25 2 0.25 1.5 1.5 0.5 1.17 
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The distance was measured from the center of the touch blob where the fingertip 

might have been aiming (seen in Figure 27). 

 

 

Figure 27 – Measuring point from finger paint blobs 

 

 

Figure 28 -  Example of touch target trials from participant 1. 
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Figure 29 – Close up after final touch target trial of participant 1. 
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5.3 Discussion 

In the study described in Chapter 6 I investigate the effect of vibration as a means to 

stimulate passive touch sensation it will be better to produce trials randomly with and 

without sensation. However, because here I was only testing with an addition of a 

fabric nub I decided it was more valid to test everyone first without the nub and then 

with the nub. It would be cumbersome to remove the nub after its addition, and it is 

closer to the final system I envision to test quickly after the addition of the nub. As 

the nub is applied the body will sense it the greatest, and as the body becomes used to 

the sensation through masking [13, 15–17] it will sense the presence of the nub less 

and less. Because all participants received the nub condition second there could have 

been some motor learning effects in the results. 

 

I chose to create a standard tightness in the sleeve against the skin where the sleeve 

could still move across the skin. I made this choice because this is how people 

comfortably wear clothes. If the test garment were very tight (which might aid in 

passive touch testing) it would not act as a realistic application of how a garment 

might be worn in everyday life. 

 

Through observation of the trials with the nub, many participants adjusted their 

touches instantaneously if they detected the nub on the edge of their finger. This 

active touch correction was spontaneous and unprompted. This reinforces earlier 

finding of the “is it gropable” study [48]. 
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One issue that arose during the study was that the finger paint wet through the shirt. 

This produced a wet feeling against the skin. As the study progressed I had to ask the 

participants to ignore the wet feeling. Explaining to them that they were trying to hit 

the dot not the wet feeling. After each trial before the addition of the nub, some 

participants tried to reference against the wetness on their skin (which is still an 

attempt to use passive touch to aid in locating the touch target). One participant stated 

“without the nub I had to guess based on memory where the dot was, and with the 

nub I could slightly feel on my arm where the dot was, so vectoring was easier”. 

Another participant stated that “the visual reference of the dot prior to the test was 

almost no help in locating the dot on the arm. The nub was initially more accurate but 

became more difficult to locate after some tries”. This last testimonial is consistent 

with the concept of masking over time. This study mainly looks at change in distance 

from touch target of initial land-on touch with the addition of passive touch. The 

outcomes of this study suggest that this will improve accuracy, access time of an 

interface, but I created a more sensitive test system (described in Chapter 6) to 

understand these metrics. 

 

This simple preliminary study seems to show there is evidence that passive touch can 

aid in non-visual interactions with an on-body interface. The participants even used 

their sense of active touch to self-correct when they felt the nub on the edge of their 

finger.   
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Chapter 6 

Textile-Based On-body 

Proprioceptively Displayed Interface 

Interaction Usability Study 

 

Following the study described in Chapter 5, I developed a more robust study to 

investigate the effect of combining active touch and passive touch, including the 

addition of vibrotactile stimulation. This much larger study is an effort to complete 

the answer to my third and final research question: Can combining active and 

passive touch techniques aid in making on-body textile interfaces easier to locate 

and use, more accurate, and quicker than interfaces without such affordances? 

 

6.1 Metrics for Textile-Based On-body Interaction 

Usability Study 

 

Throughout this usability study, I compared different on-body textile interfaces with 

an audio display while in a mobile (walking) condition. The metrics I employ to 

quantify the differences between the interfaces are time to touch, accuracy, and 

workload. 
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Accuracy 

My goal was to find which interfaces are the most accurate using the audio cues to 

prompt for different types of selections.  If I were to have five selections 1, 2, 3, 4 & 

5 as an example, I would prompt for each equally and randomly to look for how often 

the study participants correctly answered. Accuracy included the Accuracy of overall 

Task Completion, which will include instances of insertions (false positive), deletions 

(false negative), substitutions, and true positives. 

 

Time to Touch 

To measure access time, I used the wearable device (a study prototype to collect 

wearable interaction information) to record the time it takes from each audio prompt 

to the first recognizable touch activation interaction with the interface; however, this 

does not necessarily mean the first correct interaction.   

 

Workload 

To place a value on the workload required to operate the different interfaces, I 

administered a NASA TLX survey [67] to each participant. 
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6.2 Active Touch / Passive Touch Combination Usability Study 

Design 

 

6.2.1 Body Location: (Forearm) 

 

From the results of the extensive literature review (just as in the Chapter 5 study) I 

have chosen to focus my usability study on the forearm. Research conducted by 

Francine Gemperle [29] and Paul Holleis [42] on designing for wear-ability helped 

narrow down body locations for testing.  Even though my study focuses on 

interactions and selections rather than displays and notification, my selection of the 

forearm is also informed by Chris Harrison’s research on wearable display location 

[39]. Other research in the social acceptability of wearable interactions also supports 

the decision to place the primary physical interface on the forearm [21, 79]. While the 

interface using passive and active touch will be located on the forearm, the 

microcontroller and networking components are located around the neck.  
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6.2.2 Textile-Based On-Body Physical Interface Style and Ability Comparison 

 

To examine whether adding passive touch to an active touch interface aids in 

operating on-body textile based interfaces, I created four test conditions.  

 

Condition 1 participants operated an interface with surface stitched touch points, thus 

an almost flat fabric interface (Figure 30). This type of stitching is a flat stitch much 

like a sewing machine would produce. The design of the touch points is round with an 

inner conductive trace (connected to ground) and an outer conductive trace acting as a 

lead for individual capacitive sensors. Participants could touch any part of the touch 

point to make an activation as long as they touched both the inner and outer 

conductive traces. 

 

Condition 2 participants interacted with a raised embroidered interface (Figure 30), 

thus increasing the active touch of the interface. I sewed the embroidery over thin 

craft foam. The foam remained under the embroidery (between the fabric and the 

thread) making the sewn elements stand up higher from the surface of the fabric. This 

method of construction is a common a technique used by embroiderers. Condition 2 

closely resembles the type of embroidery used in the “is it gropable” study [48].  
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Condition 3 participants worked an interface with the same embroidery that also 

incorporated metal snaps (“nubs”) under the fabric to give passive touch sensation 

against the forearm (Figure 31).   

 

Condition 4 used the same interface as condition 3 but with the addition of 

vibrotactile stimulation.  

 

The pattern of the interface was the same for each of the conditions and contained 

five touch points (Figure 32). The touch points were spaced 1.5” apart as measured 

from the center of the touch point. This distance between touch points was derived 

from the literature review for the passive touch body map (Chapter 2). The sleeve was 

symmetrical and could be placed on either arm making the system usable for right-

handed and left-handed participants. I also designed the sleeve to fit a large variety of 

forearm circumferences so that a close to uniform tightness against the arm could be 

maintained across different participants by using hook and loop (Velcro) strips and 

elastic (Lycra) mesh fabric. (Figure 32). The fabric for the outer layer of the sleeve 

was a medium weight woven polyester twill, chosen for its non-absorptive properties 

as well as its color. The choice in color was important so that the embroidery and 

conductive thread would not stand out visually in contrast to the fabric. I wanted the 

tactile nature of the interface to be the focus of the study, rather than the visual nature 

of the interface. This is not to say that a visually contrasting interface wouldn’t help 

in usability, but that is not what I was researching. 
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The weight and drape of the sleeve is similar wearing a shirt and outerwear garment, 

such as a long sleeve knit tee with a sports coat. It was important that the feeling of 

the sleeve compare to wearing traditional clothing so that participants did not feel 

uncomfortable, either physically or socially while using the prototype. I also hope that 

this study become applicable to the garment industry where drape and weight are 

important. 

 

 

 

Figure 30 -These are the four interface interaction conditions. Condition 1 is made with just sewing 

machine stitched conductive thread on the surface of the fabric. Condition 2 adds a raised surface 

for active touch feel. Condition 3 adds a metal nub projected against the skin of the forearm. 

Condition 4 creates vibration before a touch is prompted. 
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Figure 31 - Face of fabric and back of fabric with regards to condition.  

The inner and outer conductive thread traces are used to sense the presence of a finger 

touch through hybrid capacitive resistive sensing. The user just needs to touch both 

traces, but any portion of the traces will do. 

 

 

Figure 32: Interface layout and sleeve fit.  
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In condition 4  each touchpoint is vibrated in a specific sequence before an audio 

prompt is given. Triggering the vibration before the audio prompt more closely 

parallels what might happen with a system in a real world scenario. A user of such a 

commercial system would probably feel a vibration notification before a decision is 

made about how to interact with the system. The goal is to indicate with vibration the 

location of all touch points prior to a selection being made. So every touch point 

vibrates before each audio prompt. I conducted a small vibration preference study 

with 14 people (separate from the 104 study participants) to allow individuals to feel 

different vibration patterns and comment on which ones might help them locate touch 

points. One pattern vibrated the touch point in sequential order 1, 2, 3, 4, 5 separated 

by a time delay of 130 milliseconds. Individuals commented that this pattern “felt like 

a vibrating phone being dragged across their arm”. This is consistent with research 

about vibro-tactile adaption and the perception of vibration patterns space closely in 

location and time (as described in Chapter 2). A second pattern vibrated in an order of 

1, 3, 5 and then 2, 4 with a delay of 130 milliseconds. I also tried single tap and 

double tap vibrations for each sequence. Because of the larger distance and non-

sequential order, participants in the vibration preference study said that this second 

pattern felt more like individual points of vibration. It also seemed to help to have a 

combination of single tap and double tap. The final vibration pattern used in the study 

was: 1, 3, 5 single tap , and 2, 4 double tap vibrations with a 130 millisecond delay. 
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6.2.3 Touch Target Trials 

After consent procedures, the study session began with each participant donning the 

wearable system. I gave the participants a short training session to make sure they 

knew how to interact with the wearable system, and also to make sure the system was 

working properly. Training included a single audio prompt from the system and 

corresponding touch for each of the touch points. During the testing session, the 

system prompted the participant with an audio prompt via headphones. The cues 

denoted which touch point the participant should touch:  “one”, “two”, “three”, “four”, 

or “five”, in English using the voice and pronunciation from translate.google.com. 

After the system recognizes a touch, it emits a feedback beep to notify a selection has 

been made. During training I told the participants which touch points corresponded 

with each number, and  instructed participants to touch with the pad of the finger 

rather than the very tip. The pad of the finger allows more contact with the 

touchpoints making it easier for a selection. Participants were asked to directly aim 

for the touch point they were trying to activate rather than feel or grope [48] along the 

surface for the touch point. If they were unable to hit the touch point by aiming, they 

were instructed to then feel for the nearest touch point. They were asked to make sure 

they received a confirmation selection beep for each audio prompt.  The system gives 

the same confirmation beep response for every selection and does not alert the 

participant if the selection is correct or incorrect. Correctness of selection was 

purposefully withheld to mitigate learning effects during the target touch trials. The 

instructions and training session took approximately four minutes to complete. 
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Before the test sessions of the study started (after the training session and while 

wearing the interactive system) I led the participants through a walking track set up in 

a laboratory environment. The participants then walked around the track five times to 

learn the path through the walking track. This process took about 5 minutes and 

varied per participant’s pace. As the study began, participants were asked to make 

selections as quickly and accurately as possible. Each participant was told to “please 

make selections as if you are in an important meeting and your phone begins to ring 

and you need to silence it.” The participants were also asked to walk naturally with 

their hands by their sides until prompted to touch. 

 

There were two interaction rounds to the study for each participant. In round 1, the 

participant was allowed to glance at the interface and activate using visual attention. 

In round 2, the participant wore blinders, and could not see their interactions (Figure 

33). In each condition half of the participants started without blinders (round 1) and 

the other have started with blinders (half of the participants started with round 2). 

 

For the study, there were 26 unique touch target scripts (to be used in each condition), 

one for each participant in the four interface conditions, prompting each of the touch 

points ten times for a total of 50 prompts. Each script had a random order of prompts. 

The time between prompts was also randomized between 10 and 20 seconds so that 

participants would not be able to anticipate a prompt. Each script lasted 13 minutes. 

Individual participants completed the same touch target script twice, once with visual 

attention, and once without visual attention. Each condition used the same 26 scripts. 
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The time of the audio prompts and all touches on a touch point were recorded by the 

system. 

 

  

Figure 33: Blinders used for non-visual interaction round in all conditions 

 

 

6.2.4 System Technical Description 

With help I designed the study system from off-the-shelf components pre-mounted on 

printed circuit boards, a hardware expert combined the components to work to my 

specifications and tolerances needed for the study. These boards are mounted on a 

larger carrier board with point-to-point soldered connections.  I created a custom 

pouch (Figure 34) to hold the system around the participant’s neck for ease in donning 

and doffing the system. 
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Figure 34: Technical system in neck pouch. 
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Figure 35: Technical components of wearable system. 

 

      Functionality Component 

1    Main Processor Cypress STM32F205 core 

2    802.11 WIFI communications Cypress WICED module 

3    MP3 Playback VLSI Solutions VS1053B 

4    I2C Multiplexer (1 to 8) Phillips TCA9548A 

5    LRA Driver Texas Instruments DRV2605L 

6    LRA Actuator Engineering Acoustics Tactor 

7    Accelerometer ST Micro LSM9DS1 

 

The capture software is a multi-threaded architecture utilizing queues for inter-thread 

communication.  The data is captured utilizing timed interrupts for reliable data 
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acquisition. The system recorded touch selections through capacitive sensing techniques 

on conductive thread traces very similar to those used in the Komor et al. study [48]. The 

accelerometer incorporated a 32 sample FIFO for local buffering. The accelerometer was 

worn on the touching finger of the participant. These are critical to capture data without 

dropping samples while simultaneously serving the WiFi subsystem and SD card reading 

and writing. This architecture supports a capture rate of 100sps from both the touch 

points and the accelerometer. The system control is operated through a terminal window 

on a laptop and WiFi connection. I could change the script, and add condition flags and 

participant identification numbers to the data files. A WiFi connection is necessary for 

the start and stop of the study scripts, but once a study script is started if the WiFi is 

disconnected from the device it will continue to prompt and record data to the SD card 

until the end of the script. Raw data of the touch interactions was collected from the SD 

card at the end of each day. 

 

The system recognizes a relative capacitive value (from the system) above a threshold of 

10 for five contiguous samples as a touch selection for the purposes of delivering a 

feedback beep to the participant. The system must have a capacitive value below the 

threshold for five contiguous samples before it will recognize another touch (so that it 

will not make multiple selections when a participant lingers on a touchpoint). This touch 

identification method was used only for the purposes of system interaction by participants, 

raw data of all system capacitance changes were used to analyze results. 
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Figure 36 details a touch that started at about 111.5 seconds in response to an audio 

prompt which began at 110 seconds. Notice that there is some noise from the other touch 

point sensors but it is clear that only a single touch point is being activated. Figure 36 

denotes a touch selection on a prompt without vibration. 

 

 

 

Figure 36: Example of a single touch target trial showing the raw capacitive data change over time, 

without vibration. The dot indicates the start time of the audio prompt. The five different color lines 

denote the five different touch point sensors. 
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Figure 37: Accelerometer magnitude data from the touching finger for the same touch target trial as 

figure 36. 

 

 

Figure 38: Accelerometer 3 axis data from the touching finger for the same touch target trial as figure 

36. 
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Figure 39: Gyroscope 3 axis data from the touching finger for the same touch target trial as figure 36. 

 

Figures 36 through 39 show additional data that was acquired by the accelerometer / 

gyroscope attached to the participant’s touching finger. Figure 37 clearly shows the 

magnitude of the impact of the participant’s touch. Figure 38 shows the change in force 

by directional axis during the motion to a touch and returning to the rest state of a 

participant’s arms by their side. The gyroscope and accelerometer data are not as clear 

because this study was a mobile study and there was a great deal of noise created by 

participants swinging their arms. Due to this noise and the fact that the touch data was so 

clear I have decided that the accelerometer data was not needed to determine the outcome 

for my thesis. 
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Figure 40: Example of a single touch target trial showing the raw capacitive data change over time, with 

vibration. The five different color lines denote the five different touch point sensors. The numbers 

(1,3,5,2,4) represent  the order and timing of vibration motors associated with those touchpoints on the 

arm, graph shows that the vibration has an effect on the capacitive sensors in the system. 

 

Interestingly Figure 40 shows the vibration’s effect during a target touch trial on the 

capacitance of the system. For the purposes of understanding when a participant made a 

touch this effect does not interfere with our data, but in other scenarios where the 

vibration might be stronger and happen during a touch this is an important effect to note. 

 

6.2.5 Facilities 

 

I conducted the study in a walking condition. Participants were instructed to walk at a 

normal pace around a track constructed in our laboratory (see figure 45). The track is 

approximately 25.2 meters long and is denoted with pairs of flags hanging from the 
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ceiling with their tips 0.75 meters apart. Each flag is hung so the tip is approximately 1.6 

meters above the floor. The lab chose to use hang flags from the ceiling to ensure that 

participants are engaged in a head-up task. If the participants follow a path laid out on the 

ground, a head-down condition would have ensued, which I considered to be 

inappropriate given the nature of the study (as walking around, head down, is not typical 

behavior).  In an effort to accurately calculate the speed and distance traveled by the 

participants, a set of motion sensors is mounted in the ceiling of a testing room between 

each pair of flags (see figure 41). The sensors are connected to a computer in the 

laboratory via Bluetooth.  Every time a participant walks between a pair of flags, the 

sensor records the instance and sends that information to the computer. In this way, I can 

calculate the instantaneous and average speed of and total distance traveled by each 

participant as they walk from flag to flag along the track.  

 

 

Figure 41: (A) The path participants will walk, starting at flag 1 and proceeding either clockwise or 

counterclockwise. (B) The flag and sensor configuration that comprises our walking track.  
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6.2.6 Participants 

Table 2: Participants 

Condition Average Age Male Female 

1 24.03 14 12 

2 25.62 15 11 

3 26.31 14 12 

4 24.42 13 13 

 

There were 104 individual participants in this between-subjects study, 26 in each 

condition. The age of the participants ranged from 18 to 61 with an average age of 25.32 

years. The participants self-identified as 48 female and 56 male. Four of the participants 

were left-handed (one in each condition) and the other 100 were right-handed. Within 

condition 1 the average age was 24.03 and there were 12 females. Within condition 2 the 

average age was 25.62 and there were 11 females. Within condition 3 the average age 

was 26.31 and there were 12 females. Within condition 4 the average age was 24.42 and 

there were 13 females.  
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6.3 Active Touch / Passive Touch Combination Usability Study  

Results and Discussion 

 

6.3.1 Results 

I measured accuracy as the number of correct touches (touching the touch point that was 

prompted) out of total touches collected. A small number of touch samples were 

discarded due to system error at the time of touch. This error showed up as sample 

overruns, or the system collected no data for a number of seconds (even when there is not 

a touch there should be data collected). Time to touch indicates the time from the 

beginning of the audio prompt to a touch on the interface. The average accuracy for the 

first round an individual participated in (including visual and non-visual interaction) was 

88.99% and the average accuracy for the second rounds was 90.84%. This result suggests 

that there was very little, if any, learning between the first and second round of the study. 

As expected the accuracy is much better for visual interactions at 99.1% as opposed to a 

non-visual accuracy of 81.01%. The average time to touch from the audio prompt in the 

visual condition is 1.34 seconds and in the non-visual condition is 1.65 seconds. It can be 

expected that it would take longer to find the touch point in the non-visual condition. 
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Figure 42: The accuracy across conditions with and without visual attention. 

 

I determined the time to touch and touch point with the following algorithm: 

1. Starting at the beginning of the audio playback time until 5 seconds after, look for 

the largest peak in all button channels that exceeds a relative capacitive value 

threshold of 4. This threshold is smaller than the threshold of 10 used for audio 

feedback during the touch trials, but after viewing the data this was the lowest 

threshold that accurately determined a touch from the data, thus letting me capture 

touches that were performed but might not have received a feedback beep. As an 

example, if someone touched the system lightly once and the relative capacitive 

value reached 6, but then touched it harder and it reached 15, I would want to 

count the initial touch for accuracy and time-to-touch. 

2. The maximum value found across all touch point channels indicates the selected 

touch point. 

3. In the selected touch point channel, step backwards until the time is found where 

the channel crosses the threshold. 
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Figure 43: This graph shows that the difference in the four conditions observed in this study both in 

accuracy and time to touch. 

The results this study as illustrated in Figure 43 show that the addition of the passive 

touch static nubs in condition 3 did not have the anticipated effect. The accuracy and time 

to touch for each of the first three conditions are very close and within a standard 

deviation of each other. The average accuracy of non-visual interactions in condition 1 is 

78.92%, condition 2 is 79.39%, and condition 3 is 77.58%. The average time to touch of 

non-visual interactions in condition 1 is 1.87 seconds with a standard deviation of .68 

seconds, condition 2 is 1.60 seconds with a standard deviation of .47 seconds, and 

condition 3 is 1.70 seconds with a standard deviation of .59 seconds. It is important to 

note that these times are the start from the beginning of the audio prompt and end at the 

touch interaction. What is promising is that the accuracy of condition 4 (with vibration) 

jumps to 86.76% and the time to touch shortens to 1.46 seconds with a standard deviation 

of .42 seconds. Some participants might have moved their hand towards the interface at 
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the start of the prompt, while others may have waited until the full word had been 

pronounced before moving to make an interaction. The reported times to touch would 

indicate that the addition of the passive touch static nubs did not help participants locate 

the interface touch points any quicker or with better accuracy. However the addition of 

vibration before the audio prompt seems to have helped the participants move to the 

touch point faster and with greater accuracy. 

 

Table 3: Accuracy of Participants with Non-visual Interaction with Respect to Condition. 

Condition Mean Variance Standard Deviation 

1 0.78929 0.01223 0.11059 

2 0.79385 0.016612 0.12889 

3 0.77577 0.030627 0.175 

4 0.8676 0.006426 0.08016 

 

The means and standard deviation of the accuracy of participants using the system with 

non-visual interaction can be found in Table 3. I used a 4 way ANOVA to measure the 

significance of the change in of overall accuracy including both visual and non-visual 

interactions between conditions (4 conditions, with 26 participant in each condition ,with 

100 samples per participant) and found significance with a p-value .04. The p-value for 

the change in accuracy between conditions of just the non-visual interactions across 

conditions is .052 (4 conditions, with 26 participant in each condition ,with 50 samples 

per participant). 
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Figure 44: This graph shows the non-visual accuracy of each touch point by condition. 

One predictable, but also interesting finding shows the change in accuracy based on the 

position of the individual touch points in the interface (Figure 44). The touch points on 

the edge of the interface (1 and 5) have much better accuracy than those in the middle of 

the interface. The middle touch point (3) has the worst average accuracy across all 

conditions at 63.11% (in conditions 1,2 and 3). However although condition 4 has better 

accuracy on all touchpoints, it has over a 17 percentage point advantage in accuracy on 

the middle touch point at 80.47%. 

After the touch interaction portion of the study, I asked the participants to fill out a 

NASA Task Load Index worksheet for the non-visual interactions. The NASA TLX is a 

worksheet with six Likert scale (1-20) questions. Low is 1 on the scale and 20 is high on 

the scale for all questions except for performance where 1 is perfect and 20 is failure. Our 

participants were asked to rate their confidence in their performance as they did not have 

access to their actual touch data results. 
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Figure 45: NASA Task Load Index survey data by condition for non-visual interactions. 

 

6.3.2 Discussion 

Part of my hypothesis was that the addition of the passive touch static nubs (without 

vibration) would aid in the accuracy and time to touch of interacting with the touch 

points. I found this part of the hypothesis to be false. I based this hypothesis on the results 

of the earlier preliminary study using a fabric nub against the skin (Chapter 5). That study 

shows that the addition of the nub aids in locating the touch point, and that people are 

able to touch closer to the target with the addition of the nub. There are some major 

differences in how this study was designed which might explain the different outcome.  

 

First, I found that individuals have widely varying kinaesthetic and proprioceptive 

abilities, or at least they have different ranges of ability to touch a specific on-body 

location without visual attention. Some people were exceptional when it came to 
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accurately interacting with our system, and some people were not very good at all. The 

accuracy of non-visual interactions in our study ranged from around 31% to 96% within 

the first three conditions. This variation of ability did not have any correlation to age, as 

shown in Figure 46, or gender.  Even though the average accuracy for the first three 

conditions condition are very close to each other, the vastly different ability of 

individuals in the conditions combined with the fact that this is a between subjects study 

cause our p-values to be very high when only looking at the first three conditions. 

 

Figure 46: This scatter plot indicates the accuracy of non-visual interaction had little correlation to age. 
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Figure 47: This histogram shows the variance in participants ability to accurately select the correct 

touch point when prompted. 

 

It is also interesting to note that during the study, the system was more responsive 

(capacitive sensing) to some people, and less responsive to others. Those who had 

problems activating the sensors were asked to wipe their hands with a wet towel and this 

helped the system recognize their touches. This capacitive sensitivity issue might be 

easily resolved with system self-calibration, but is an important point to raise if this type 

of sensing were to be used in a commercial product. 

 

Outside of individual’s varying abilities, another major difference which I believe caused 

a different outcome to the earlier preliminary study (Chapter 5) is the amount of time the 

participants were wearing and interacting with the interface. In that study, the participants 

were asked to touch the target almost immediately after the addition of the passive touch 
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nub. In this study, the participants were wearing the interface with the nubs for almost 9 

minutes before the study began collecting data. The fact that the presentation of the nub 

stimuli is constant means that the participant’s body is probably masking, or habituating 

to, its effect. “Masking is a phenomenon by which the performance at identifying a target 

stimulus is decreased by the prior or subsequent presentation of a masker stimulus” [13, 

15–17]. The masking effect might have also been heightened because of the nubs in this 

study were metal. Because the metal nubs conduct temperature better (than fabric) they 

would quickly acclimate to the participants body temperature making them harder to 

notice. The texture of the metal snaps was also smooth, and thus might have made 

habituating to the presence of the metal snaps easier than a rougher surface. Because of 

this masking there is no benefit added by the passive touch metal static nub. In fact, as 

the sleeve was removed after the study, many of the participants had very distinctive 

impression marks made by the metal snaps, and most were surprized by the marks even 

making comments about the fact that they did not feel the metal snaps (nubs). 

 

In regards to the effect of adding active touch embroidery to the accuracy and time to 

touch, again I see very little if any improvement in the second and third condition from 

the results of this study. This result is partly expected because the participants were asked 

to aim for the touch point rather than feel for the touch point. If they did not hit the touch 

point they were then asked to feel in the local area until they made a selection. This might 

account for the slight decrease in time to touch for conditions 2 and 3, as they had 

embroidery that was easier to feel. If this study were set up as Komor et al.’s study had 

been [48], where participants were asked to feel the interface, the addition of active touch 
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embroidery could have had a greater impact on accuracy. Because of this, I still believe 

that the active touch embroidery (or raised touch points) is helpful in the design of an 

industry/commercial wearable device to increase the accuracy of use.  

 

To develop a prototype and method of study to record the effects of the addition of vibro-

tactile stimulation I also found it necessary to use Engineering Acoustics Tactors which 

are much larger than normal LRA vibration motors. I first created the system with 

smaller LRA motors (which might be found in smart phones today), but these motors did 

not create the amount of vibration needed for the study, and test participants said they 

hardly felt the vibration. The larger Engineering Acoustics Tactors worked well but the 

tradeoff is that they were heavier and larger ( about 1.5”) across. The vibrating section of 

the tactor is focused and was attached to the metal snap nub. The weight and size of the 

tactor motors would have also made the gropability of the vibrating sleeve system very 

different from the other sleeves, this is another reason why the participants were asked to 

aim (instead of grope) for this study. In the future vibrating motors or other forms of 

localized stimulation might advance which would enable a better test prototype. 
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Table 4: The non-visual interaction mean accuracy and mean time to touch across conditions. 

Condition Mean Accuracy 

Standard 

Deviation of 

Accuracy 

Mean Time 

to Touch in 

Seconds 

Standard 

Deviation of 

Time to Touch 

1 78.91% 11.06% 1.8718 0.68191 

2 79.44% 12.89% 1.5993 0.4673 

3 77.61% 17.50% 1.7 0.5879 

4 86.76% 8.02% 1.4625 0.41886 

 

The accuracy of participants is over 9% better with the addition of vibro-tactile 

stimulation in condition 4. The accuracy of the edge touch points (1&5) is up to 33% 

better (condition 3) than the accuracy of the middle touch points (2,3,&4) (Figure 51). 

This is a predictable outcome, but it manifests so dramatically in the results that I can 

make some suggestions about interface design for on-body interactions. The center of the 

interface is also where I see the biggest improvement from the first three conditions to 

condition 4. It seems the addition of vibro-tactile stimulation displaying the location of 

the interface before an interaction improved the accuracy of the middle touch point by 

almost 17% the comparison of the accuracy of just the middle button also has a 

significance p-value of .019. When designing a textile-based on-body interface, aside 

from including vibro-tactile stimulation, it would also be prudent to locate frequently 

used, and important selections at the edges of the interface rather than in the middle of 

the interface.  
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Table 5: Distance by Touch Point of Incorrect Selections 

 1 Away 2 Away 3 Away 4 Away Total Wrong  

Cond 1 247 16 5 13 281 

Cond 2 261 13 0 9 283 

Cond 3 280 13 0 1 294 

Cond 4 171 2 0 0 173 
 

There is another way to look at the accuracy of using the system as it changes from 

condition to condition, and that is how wrong was a wrong answer. When calculating 

accuracy I only observed whether the answer was correct or incorrect, but by showing the 

distance by touch point I find that not only were there less wrong touch selections in 

condition four, but when the touch selection was wrong it was closer to the right touch 

point. Table 8 shows the number of wrong touch selections by how many touch points the 

selection was away from the prompted touch point. In condition 1 there were 281 wrong 

selections, of those 247 were only one touch point away from the correct selection (if 

touch point 1 was prompted then the participant touched touchpoint 2), 16 were 2 touch 

points away (if touch point 1 was prompted then the participant touched touchpoint 3), 5 

were 3 touch points away, and 13 were 4 touch points away. In contrast condition 4 had 

no incorrect touches more than 2 away from the correct touch point. This trend suggests 

that as active touch  and passive touch stimuli were added to the system the distance by 

touch point from the correct touch point became smaller. This finding is important 

because even if the participants were selecting wrong answers, they were closer to the 

right answer. If a potential system were designed to allow for time to investigate with 

active touch, the use of passive touch vibro-tactile stimuli aiding in closer to correct 
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initial land-on of the interaction will improve the time to touch and accuracy of such a 

system. 

 

When looking at the results from the NASA Task Load Index worksheet, the median 

scores were very close across conditions. Mental, Physical, and Temporal demand range 

from 3-7 which is on the low side of the scale. Effort to use the system ranges from 6-8 

across the conditions and frustration ranges from 5-7. These results indicate that 

participants perceive the system to not demand too much in its operation. The results for 

performance range from 7-10 across conditions. This result would suggest that the 

participants had mixed feelings about the confidence of the accuracy of their performance 

in their non-visual interactions (leaning towards confident) (Figure 45).  

 

There are some suggestions that I can now make about methods used to research a 

person’s proprioceptive ability to interact with an on-body interface, and the effects of 

adding additional tactile sensation (in active or passive touch). I wrongly assumed that 

individuals would have similar proprioceptive abilities. Perhaps a within-participant 

study would help to mitigate the effects of variance on the scientific significance of 

findings. 
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6.3.3 Limitations of Study 

This study was heavily informed by past research including research into active touch 

afforded interfaces [48] as described in Chapter 4. If a potential system were designed to 

allow for time to investigate with active touch it seems clear the use of passive touch 

vibro-tactile stimuli would aid in closer to correct initial land-on of the interaction, 

improving the time to touch and accuracy of such a system. However, designing a study 

to test for all of these variables at the same time is difficult, and thus I focused my efforts 

on investigated the addition of passive touch affordance through metal nubs and vibro-

tactile stimulation. Even though I was not able to examine all of these variables within 

the scope of this one study I was able to glean new insights into areas I could improve if I 

were to run this study again. 

 

In this final study I decided it would be hard to fully measure the effects of active touch 

while also measuring the effects of passive touch. Because I already conducted a study on 

active touch gropability, I focused more heavily on the effect of adding passive touch to 

an input system. I did this by asking participants to aim for the correct touch. Point 

instead of “feeling” or groping for the touchpoint. As in the preliminary study described 

in Chapter 5, the addition of raised embroidery would still have some effect in aiding 

interaction if the participant missed a touchpoint when aiming, thus being able to find the 

nearest touch point. This interaction however is different from being able to feel along 

the surface of the fabric for the correct touch point. The textile itself also only senses 
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touch at the touch point, so when the participant moves across the surface of the fabric 

only the touches that land on a touch point are collected with time stamps in the data. 

 

There are some also limitations that come with conducting a between participant study. It 

is hard to validate the results of the NASA Task Workload Index survey as the 

comparison in conditions are from answers between participants. NASA TLX surveys are 

really meant to be used in within subject comparison, where a single participant is asked 

the difference in workload between conditions. Even though it is hard to validate the 

outcomes of the surveys in this case, they are still helpful to provide some insight. 

 

Also if I were to run this study again I would collect more physical data about the 

participants. For example forearm length and circumference would have been interesting 

to know per participant to see if there was any correlation in arm size to accuracy of 

interaction. One participant was 6’9” and the sleeve only took up half the distance from 

his wrist to his elbow. This participant’s non-visual interaction accuracy was 72%. Was it 

the scale difference in regards to the participant’s body that led to this lower accuracy?  

 

Aside from physical body data, if I were to run the study again I would also collect more 

qualitative data as well, such as work life and leisure activities. During conversations 

with participants I could see were performing with better accuracy in real time through 

the WIFI connection I anecdotally noticed that some of these participants played musical 

instruments (guitars). For example participant ID30 played a number of stringed 

instruments and keyboard, he is 31 years old and had a non-visual accuracy of 88%. It 
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would be interesting to perhaps see if involvement in occupations or hobbies that utilize 

non-visual proprioceptive skills lead to transferring those skills to on-body interfaces like 

the one I was using for our research 

 

Another limitation of the study comes in the form of learning. It seems that participants 

who had the visual interaction round first did somewhat better on their non-visual 

interaction round (Table 6). 

 

Table 6: Accuracy of Interactions of Non-Visual Interaction Rounds 

Condition Non-Visual 1st Round  Non-Visual 2nd Round  

1 78.01% 79.71% 

2 77.46% 81.03% 

3 74.88% 80.02% 

4 85.42% 87.78% 

 

I tried to minimize the effect of participants learning to use the system by not giving 

feedback about the correctness of the selections made. This seems to have worked. 

Figures 48 and 49 show that across conditions there seems to have been little to no 

learning during the non-visual interaction rounds. Another way of describing this is that 

participants did not get better while using the system without visual attention. 
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Figure 48: This graph shows the accuracy of non-visual first round interactions. Colors denote 

conditions. Each bin is a group of 10 touch interactions starting with the earliest interactions moving to 

the last interactions. 

 

Figure 49: This graph shows the accuracy of non-visual second round interactions. Colors denote 

conditions. Each bin is a group of 10 touch interactions starting with the earliest interactions moving to 

the last interactions. 
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Figure 50: This graph shows the accuracy of visual first round interactions. Colors denote conditions. 

Each bin is a group of 10 touch interactions starting with the earliest interactions moving to the last 

interactions. 

 

 

Figure 51: This graph shows the accuracy of visual second round interactions. Colors denote conditions. 

Each bin is a group of 10 touch interactions starting with the earliest interactions moving to the last 

interactions. 
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It is hard to tell if participants got better during the visual condition, because interactions 

in the visual condition are consistently near perfect (Figures 48 and 51). Because second 

round non-visual interactions are better than first round interactions I can assume that 

participants did learn while interacting with the system visually. Even though the system 

does not give a correct response feedback during the visual condition the participants can 

visually confirm they have selected the correct response. For the first round visual 

participants the visual confirmation coupled with the motor repetition of interacting 

correctly with the touchpoints over 50 interactions likely helped them learn to use the 

system better before their non-visual round. 

 

6.3.4 Lessons Learned 

I learned some valuable lessons for future research while conducting the experiment 

described in this chapter. 

 

• PDIs using vibro-tactile stimulation do increase the accuracy of using an on-body 

electronic textile interface system, and when the vibration is presented right 

before it also makes the time to touch quicker as well. 

 

• Individuals’ sense of kinaesthetic proprioception is drastically different from one 

person to the next. For the purpose of designing studies researching 

proprioception, it would be better to study fewer conditions as a within-subject 

study. For the purpose of designing PDI wearable interfaces, designers cannot 

rely on every individual to have a great sense of proprioception. 
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• Because of the increased accuracy of touch points at the edge condition of 

wearable on-body interfaces, designers might want to place the most used and 

most important interaction points at the edges. Conversely, “dangerous” 

interactions with more severe consequences for accidental activations should be 

mapped to middle touch points.  

 

• Metal static nubs are not effective for aiding in passive touch location of wearable 

interfaces, because the body habituates to the sensation of the nub against the skin 

and masks its effect. The fabric nubs in the preliminary were more successful, 

perhaps a study should be completed about the texture of the static nub and its 

effects. 

 

• Users believe that fabric based interfaces have low mental, physical, and temporal 

demand. They also seem to believe that they don’t take too much effort, and are 

not that frustrating to use. However, they are only somewhat confident in the 

accuracy of their non-visual interactions.  
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6.4 Impact of Active Touch / Passive Touch Combination Usability Study 

 

The research study in this chapter answers my third research question. Can combining 

active and passive touch techniques aid in making on-body textile interfaces easier to 

locate and use, more accurate, and quicker than interfaces without such affordances? 

 

This was an assessment (through usability studies) as to whether proprioceptive display 

of on-body interface PDI location through vibro-tactile stimulation aids in finding and 

using interfaces on the body, allowing designers to create designs with quicker and more 

accurate interactions. (*contribution). I found that only adding static passive touch metal 

snap nubs was not as effective as adding a vibro-tactile display before interaction. 

Proprioceptive display of on-body interface location through vibro-tactile stimulation 

does aid in finding and using interfaces on the body. The addition of active touch and 

passive touch with vibration creates an almost 8% improvement in accuracy as it also 

reduces time to touch by an average of almost .4 seconds (22% faster) over a flat fabric 

interface. 
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Chapter 7 

Design Guidelines for Textile-Based On-Body Interfaces 

 

What follows is a distillation of the information provided in this dissertation into a 

concise set of guidelines and considerations for producing textile based interfaces for 

on-body wearable technology interactions (*contribution) for designers to use as a 

reference in their design process for on-body interfaces. 

 

• Proprioceptively Displayed Interfaces (PDIs) that present passive touch 

vibro-tactile stimulation at the location of touch interaction points aid in 

accuracy of using the on-body interface and the time to touch (access time). 

This guideline is derived from the active touch / passive touch combination study 

presented in Chapter 6. 

 

• Vibration used in Proprioceptively Displayed Interfaces to locate touch 

points should be temporally spaced between touch point vibration. In the 

study presented in Chapter 6 the vibration was spaced by 300 milliseconds. 

Vibrating motors should not temporally overlap in vibration. Participants in a 

vibro-tactile preference study had a more difficult time distinguishing between  

touch points if more than one motor was vibrating at the same time. This finding 

is also reinforced in academic literature reviewed to make the Passive Touch 

Body Map in Chapter 2. 
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• Including different vibration patterns for different touch points aids in 

distinguishing between touch points. Participants in a vibro-tactile preference 

study said they felt like they could distinguish between touch point locations 

better when all the vibration patterns were not identical. 

 

• Passive touch metal ‘nubs’ or static (non-vibrating) projections against the 

skin do not seem to produce a lasting sensation against the skin. The human 

body habituates to the presence of these ‘nubs’ and masks the sensation. The 

masking or habituation of the sensation of the nub is expected as revealed from 

academic literature reviewed to make the Passive Touch Body Map in Chapter 2. 

The study in Chapter 6 also showed that after some time the presence of the nub 

against the skin did not help improve the accuracy of using the system. 

 

• The edge selections of on-body interfaces (in this case touch point 1 and 5) 

have better non-visual accuracy of use than selection points in the middle of 

an interface. Perhaps place more frequently used selections and those 

selections with a tendency to be used with non-visual attention for a system in 

these locations. This guideline is derived from analyzing the data collected from 

the final study in Chapter 6. Touch points on the edges of the interface were more 

accurately selected when prompted, touch points in the center or middle of the 

interface had the worst accuracy in non-visual conditions. 
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• Raised embroidery or other raised surfaces on an on-body electronic textile 

interface can aid in active touch investigation. Active touch can produce a 

higher accuracy in using an interface when a user is given time to feel across the 

surface of the interface. In such cases a dwell time of 400 milliseconds is 

recommended for a touch point selection. This research on active touch (gropable) 

embroidered additions to on-body textile-based interfaces can be found in Chapter 

4. [48] 

 

• Multi-touch interfaces, or those on-body interfaces that include an anchor 

(using the thumb to hold on a touch point for activation) have better 

accuracy of use. This research on active touch (gropable) embroidered additions 

to on-body textile-based interfaces can be found in Chapter 4. Part of the “Is it 

gropable” study was to compare multi-touch interfaces with single touch 

interfaces. [48] 

 

• On-body location of electronic textile interfaces can be a complicated choice 

involving many factors specific to the intended use of the interface. I created 

an extensive resource simplified and synthesized for designers called Wearable 

Technology Body Maps and it is available to help in choosing on-body location 

when working through a design process. [111, 113]. A selection of the Wearable 

Technology Body Maps specific to Proprioceptively Displayed Interfaces can be 

found in Chapter 2. 
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Chapter 8 

Conclusion and Future Work 

 

     8.1 Conclusion  

In conclusion I believe I have shown my thesis that through the combination of active 

and passive touch in the form of Proprioceptively Displayed Interfaces PDIs, 

wearable textile-based on-body input interfaces will be faster in access time, more 

accurate, and easier to use to be true. I have done so by answering three main research 

questions.  

 

I have demonstrated effective techniques to create and design on-body textile-based 

interfaces that are robust, reliable, and accurate by using these tested techniques and 

processes for creating embroidered interfaces for on-body touch based interactions 

(*contribution) 

 

I have also shown that active touch embroidery aids in making on-body interfaces more 

accurate and quicker to interact with than interfaces without such affordances. I have 

done this through user studies and by using prototype textile interface artifacts such as 

the Electronic Textile Interface Swatch Book, The Hood (e-textile garment music 

controller), and Le Monstré (an interactive participatory performance garment) 

(*contribution) I have shown that textile-based on-body interfaces using active touch are 
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also of interest to designers, artists, dancers, and musicians. These prototypes have also 

been shown to work “in the wild” with case studies and descriptions of use published in 

academic conferences [114, 116] 

 

I have also confirmed that combining active and passive touch techniques aid in making 

on-body textile interfaces easier to locate and use, more accurate, and quicker than 

interfaces without such affordances.  I did this by conducting an assessment (through 

usability studies) as to whether proprioceptive display of on-body interface location 

through vibro-tactile stimulation aids in finding and using interfaces on the body, 

allowing designers to create designs with quicker and more accurate interactions. 

(*contribution).  

 

Finally I created a concise set of guidelines and considerations for producing textile 

based interfaces for on-body wearable technology interactions (*contribution). 

 

8.2 Future Work 

8.2.1 Possible Applications 

There are many potential uses for PDIs outside of the initial motivating applications of 

mainstream commercial products and accessible interfaces for people with visual 

impairments as outlined in Chapter 1. I thought it might be useful to highlight some areas 

where I would be very interested in seeing the research from this dissertation being 

applied. 
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Emergency Responders 

Emergency responders such as fire fighters are a group that would benefit from PDIs, as 

the interface could be controlled without seeing the interface.  If a fire fighter within a 

building needs to relay information to a counterpart outside the building without voice 

contact, in noisy and low visibility situations, an on-body interface could be a life-saving 

tool. [102] The addition of vibration within the PDI could aid the firefighter in accurately 

making selections even while wearing gloves. 

 

G-Force and Zero Gravity 

Yet another application of PDIs could be in-flight suits for both pilots and astronauts. It 

could prove easier for an astronaut or pilot to slide their hand up against their own body, 

instead of reaching out against the force of launch to reach a specific button on a vehicle-

mounted interface. The textile-based interfaces I have researched might also have a 

greater resistance to the vibration created in launches. The on-body interfaces will surely 

be lighter than their hard-cased environment mounted counterparts, which is also a great 

cost benefit when sending these interfaces into space. In a microgravity scenario, pushing 

against oneself would be much easier than pushing against another object as it is an 

internal force.  
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Figure 52 - Astronauts have to deal with opposite extremes of force against the body, from lift off to 

microgravity.  Proprioceptively Displayed Interfaces may be easier to interact with in such situations 

rather than a vehicle mounted interface. (photos used from NASA.gov are not copyrighted) 

 

Gravity also helps us interact with objects: without gravity to help rest hands against a 

keyboard, the muscles in the arms and hands must work harder to stay in the correct 

position to type [65]. Without gravity to hold our feet against the ground, microgravity 

also creates a circumstance where a person’s orientation with their environment is always 

in question. Having a PDI solves many microgravity problems. It would always be within 

reach and easily found through the body proprioception and the affordances offered 

through the PDI. 
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8.2.1 Future Research 

There are a number of directions I am interested in exploring stemming from the work in 

this dissertation.  

 

Analyzing accelerometer data that was collected for this study, but not needed to prove 

the thesis, is a clear next step in investigating how people use PDIs and on-body 

interfaces. Could how a person moves to interact with the system affect time and 

accuracy? With additional funding and a collaboration with a machine learning expert 

there could be interesting insights to still come from data already collected. 

 

There are also other interesting topics to be investigated through user studies with regards 

to PDIs such as: 

• What types of vibration patterns work best for signifying touch point location 

through passive touch? 

• What effect does body shape (body mass index, length of arm, muscle tone) have 

on vibro-tactile stimulation when used to locate touch points? 

• What effect does training and practicing with musical instruments or other 

devices that are used with non-visual interaction have on an individual’s ability to 

interact non-visually with a PDI. 

 

Aside from the human factors user studies that could be an extension of this work, I feel 

that there could be some more qualitative studies about people’s experiences using PDIs. 

As one of my motivating applications was to create PDIs in a way to make them useful 
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for people with visual impairments, I think that I should let people with visual 

impairments use a PDI and give feedback. Another study could incorporate both people 

with visual impairments and sighted individuals to understand if the public might view 

the use of PDIs as an assistive device, or just a piece of wearable technology. 

 

Also I believe the body maps and design guidelines could be reconfigured as a web 

application. Such a web application could serve as an entryway for designers to create 

appropriately placed wearable technology, while also utilizing research in their design 

process. I imagine an interface that would build a heat map of on-body location as 

designers made choices specific to the use of their device. This web application could 

also be built to study the types of disciplines interested in designing wearable technology, 

and how this type of tool might help transdisciplinary collaboration. 
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APPENDIX A: RESEARCH CHART 

 
 

Research Questions Lab Tests / Designs Active Touch Swatch Book Design Work 
Passive Touch 
Preliminary Study

Active Touch / Passive 
Touch Final Study

R1 - What are the 
techniques to create and 

design on-body textile-
based interfaces that are 
robust, reliable and 
accurate? Chapter 3.

Embroidery vs print tests. 
Thread and Machine tests 
including new tension arms 
etc.. Wash tests

Designing prototypes for 

study initiates textile work, 
making a conductive thread 
interface an interactive 
system.

Helped create new 
sensing technique best 
for on-body interactions..

Designed new textures, and 
used new materials for added 
robustness needed in 
performance

Methods

In lab material tests for 

viability. Design iterations.

In lab material tests for 

viability. Design iterationsI

In lab material tests for 
viability. Design 

iterations.

In lab material tests for 

viability. Design iterations.
Assessments Working prototypes Working study equipment Working prototype Working prototypes Working prototypes

Contributions

Durability results of 
construction methods / Multi-
layer embroidered 
connections, printing 

methods for etching piezo 
electric material for use in 
textiles, embroidery and 
embellishment combination 
for sensing movement / 

validation of knitted 
techniques.

Papers

"Can I Wash It" Zeagler et al. 
2013 // "Textile Interfaces" 
Zeagler 2012 et al. // 

"Etextile Knee Sleeve" Byrne 
et al. 2013 / / "Sensor for Tilt 
Angle" Lee et al. 2016 Patent

R2 - Can active touch aid in 
making on-body textile 
interfaces more accurate 
and quicker to interact with 
than interfaces without such 
affordances? Chapter 4

Study specific to answer if 
the gropability of textiles 
aids in non visual interaction 
(active touch)

Designs and workshops 
showing the use of 
embroidered textiles by 
designers

Using the swatch book and 
textile techniques gained 

working with designers to 
validate usefulness //  Also 
social acceptability study to see 
how to design interactions for 
public. Investigating on-body 
location of interfaces.

Methods User study

In lab test and 
qualitative observation / 
feedback

Qualitative from design case 
studies. Literature review and 
synthesis User study User study

Assessments Data from user study

Proof of concept 

usability testing / 
feedback from 
participants.

Observations from 
preliminary study. Data from user study.

Contributions

Human factors study that 
shows improved accuracy 
with multi touch 
embroidered interfaces, and 
the ability to use an Active 
Touch embroidered 

interface using specific 
current leakage sensing 
technique.

Variation of 
embroidered interfaces 

using active touch and 
designed for interactions 
mimicking known GUI 
interfaces. Feedback 
from designers about 
interfaces, building an 

understanding of how to 
present this work to the 
design community.

Use case scenarios using design 
tools (ESwatchBook) developed 

to aid in creating textile on-body 
interfaces, and framing 
interdisciplinary wearable tech 
work within HCI concept of 
boundary objects / Design 
process development for 

wearable technology / New 
tools for designers to help in 
aiding on-body location 
decisions developed from 
synthesis of literature, including 
passive and active touch / Social 

acceptability of on-body 
interactions at different body 
locations.

Papers
"Is it Gropable" Komor et al. 
2009

"Textile Interface 
Swatch Book" Gilliland 

et al. 2010 // "Electronic 
Textile Interface 
Workshop" Zeagler et al. 
2013

"In Harmony" Zeagler et al. 
2017 // "Policy Design 
Framework" Baker et al. 2015 

// "Imagining Futures" Gandy et 
al. 2016 //  Body Maps Zeagler 
2017a // "Where to Wear It" 
Zeagler 2017b // "Don’t' mind 
me touching my wrist" Profita 
et al. 2013 // "Social Comfort of 

Wearable Tech" Dunne et al. 
2014 // "The Assistive 
Wearable: Inclusive by Design" 
Zeagler et al. 2018

R3 - Can combining active 
and passive touch 
techniques aid in making on-
body textile interfaces 
easier to locate and use, 

more accurate, and quicker 
than interfaces without such 
affordances? Chapter 5 & 6.

On-body simple touch 

target testing with and 
without passive touch 
stimulation

On-body touch target 
testing between four 
conditions  with 104 
participants. Testing 
prototype was 

developed using 
techniques learned in 
R1 and R2.

Methods User study User study
Assessments Data from user study Data from user study

Contributions

Results from 
preliminary study show 
that non-visual target 

touching of an on-body 
location is more 
accurate with the 
addition of passive 
touch (non-vibrating nub 
against the skin).

Results from study 
show that non-visual 
target touching of an on-
body location is more 

accurate with the 
addition of active and 
passive touch including 
vibro-tactile display. 
Design Guidelines 
Chapter 7

Papers



 
 

151  

REFERENCES 
 

[1] AB-004 : UNDERSTANDING ERM VIBRATION MOTOR 

CHARACTERISTICS: https://www.precisionmicrodrives.com/application-

notes/ab-004-understanding-erm-vibration-motor-characteristics. Accessed: 

2017-02-06. 

[2] AB-020 : UNDERSTANDING LINEAR RESONANT ACTUATOR 

CHARACTERISTICS: https://www.precisionmicrodrives.com/application-

notes/ab-020-understanding-linear-resonant-actuator-characteristics. Accessed: 

2017-07-02. 

[3] Ashbrook, D.L., Clawson, J.R., Lyons, K., Patel, N. and Starner, T. 2008. 

Quickdraw: the impact of mobility and on-body placement on device access time. 

Proceedings of CHI 2008. (2008), 219–222. 

DOI:https://doi.org/10.1145/1357054.1357092. 

[4] Baker, P.M.A.P.M.A., Gandy, M. and Zeagler, C. 2015. Innovation and Wearable 

Computing: A Proposed Collaborative Policy Design Framework. IEEE Internet 

Computing. 19, Sept.-Oct. 2015 (2015), 18–25. 

DOI:https://doi.org/10.1109/MIC.2015.74. 

[5] Benedetti, F. 1988. Localization of tactile stimuli and body parts in space: two 

dissociated perceptual experiences revealed by a lack of constancy in the presence 

of position sense and motor activity. Journal of experimental psychology. Human 

perception and performance. 14, 1 (1988), 69–76. 

DOI:https://doi.org/10.1037/0096-1523.14.1.69. 

[6] Benford, S., Greenhalgh, C., Crabtree, A., Flintham, M., Walker, B., Marshall, J., 

Koleva, B., Egglestone, S.R., Giannachi, G., Adams, M., Tandavanitj, N. and Farr, 

J.R. 2013. Performance-Led Research in the Wild. ACM Transactions on 

Computer-Human Interaction. 20, 3 (2013), 14:1-14:22. 

DOI:https://doi.org/10.1145/2491500.2491502. 

[7] Bensmaia, S.J., Leung, Y.Y., Hsiao, S.S. and Johnson, K.O. 2005. Vibratory 

Adaptation of Cutaneous Mechanoreceptive Afferents. Journal of 

Neurophysiology. 94, 5 (2005), 3023–3036. 

DOI:https://doi.org/10.1152/jn.00002.2005. 

[8] Brown, L.M., Brewster, S. a. and Purchase, H.C. 2006. Multidimensional Tactons 

for Non-Visual Information Presentation in Mobile Devices. Proceedings of the 

8th conference on Human-computer interaction with mobile devices and services - 

MobileHCI ’06. 159, September (2006), 231–238. 

DOI:https://doi.org/10.1145/1152215.1152265. 



 
 

152  

[9] Buechley, L. 2006. A Construction Kit for Electronic Textiles. 2006 10th IEEE 

International Symposium on Wearable Computers. (Oct. 2006), 83–90. 

DOI:https://doi.org/10.1109/ISWC.2006.286348. 

[10] Byrne, C.A., Rebola, C.B.C.B. and Zeagler, C. 2013. Design research methods to 

understand user needs for an etextile knee sleeve. Proceedings of the 31st ACM 

international conference on Design of communication - SIGDOC ’13. (2013), 17. 

DOI:https://doi.org/10.1145/2507065.2507085. 

[11] Capraro, A.J., Verrillo, R.T. and Zwislocki, J.J. 1979. Psychophysical evidence for 

a triplex system of cutaneous mechanoreception. Sensory Processes. 3, (1979), 

340–352. 

[12] Chipchase, J., Persson, P., Piippo, P., Aarras, M. and Yamamoto, T. 2005. Mobile 

essentials: field study and concepting. DUX ’05 Proceedings of the 2005 

conference on Designing for User eXperience. (2005), 57. 

[13] Cholewiak, R.W. and Collins,  a a 1995. Vibrotactile pattern discrimination and 

communality at several body sites. Perception & psychophysics. 57, 6 (1995), 

724–737. DOI:https://doi.org/10.3758/BF03213276. 

[14] Cochran, Z., Zeagler, C. and McCall, S. 2015. Addressing Dresses: User Interface 

Allowing for Interdisciplinary Design and Calibration of LED Embedded 

Garments. ISWC ’15 Proceedings of the 2015 ACM International Symposium on 

Wearable Computers (2015), 61–64. 

[15] Craig, J.C. 2002. Identification of scanned and static tactile patterns. Perception & 

psychophysics. 64, 1 (2002), 107–20. DOI:https://doi.org/10.3758/BF03194560. 

[16] Craig, J.C. 1983. Some Factors Affecting Tactile Pattern Recognition. 

international journal of neuroscience. 19, 1–4 (1983), 47–57. 

[17] Craig, J.C. 1985. Tactile pattern perception and its perturbations. The Journal of 

the Acoustical Society of America. 77, 1 (1985), 238. 

DOI:https://doi.org/10.1121/1.392265. 

[18] Craig, J.C. and Evans, P.M. 1987. Vibrotactile masking and the persistence of 

tactual features. Perception & psychophysics. 42, 4 (1987), 309–317. 

DOI:https://doi.org/10.3758/BF03203085. 

[19] Cui, Y. and Roto, V. 2008. How people use the web on mobile devices. 

Proceeding of the 17th international conference on World Wide Web. (2008), 905. 

DOI:https://doi.org/10.1145/1367497.1367619. 

[20] Dunne, L., Profita, H. and Zeagler, C. 2014. Social Aspects of Wearability and 

Interaction. Wearable Sensors: Fundamentals, Implementation and Applications. 

E. Sazonov and M. Neuman, eds. Elsevier Inc. 25–43. 



 
 

153  

[21] Dunne, L.E.L.E., Profita, H., Zeagler, C., Clawson, J., Gilliland, S., Do, E.Y. i 

L.E.Y.-L. and Budd, J. 2014. The social comfort of wearable technology and 

gestural interaction. Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society. I (2014), 4159–4162. 

[22] van Erp, J.B.F. 2002. Guidelines for the Use of Vibro-Tactile Displays in Human 

Computer Interaction. Proceedings of Eurohaptics. (2002), 18–22. 

DOI:https://doi.org/10.1016/j.ajodo.2008.04.017. 

[23] van Erp, J.B.F. and Toet, A. 2015. Social touch in human-computer interaction. 

Frontiers in Digital Humanities. 2, 2 (2015), 1–14. 

DOI:https://doi.org/10.3389/fdigh.2015.00002. 

[24] Feygin, D., Keehner, M. and Tendick, R. 2002. Haptic guidance: experimental 

evaluation of a haptic training\nmethod for a perceptual motor skill. Proceedings 

10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator 

Systems. HAPTICS 2002. March (2002), 40–47. 

DOI:https://doi.org/10.1109/HAPTIC.2002.998939. 

[25] Fitts, P.M.P. 1954. The Information Capacity of the Human Motor System in 

Controlling the Amplitude of Movement. Journal of experimental psychology. 47, 

6 (1954), 381–391. DOI:https://doi.org/10.1037/h0055392. 

[26] Gallace, A., Tan, H.Z. and Spence, C. 2007. The Body Surface as a 

Communication System: The State of the Art after 50 Years. Presence: 

Teleoperators and Virtual Environments. 16, 6 (2007), 655–676. 

DOI:https://doi.org/10.1162/pres.16.6.655. 

[27] Gandy, M., Baker, P.M.A.P.M.A. and Zeagler, C. 2016. Imagining futures: A 

collaborative policy/device design for wearable computing. Futures. 87, (2016), 

106–121. DOI:https://doi.org/10.1016/j.futures.2016.11.004. 

[28] Geldard, F.A. and Sherrick, C.E. 1972. The cutaneous “rabbit”: a perceptual 

illusion. Science. 178, (1972), 178–179. 

[29] Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M. and Martin, R. 1998. Design 

for wearability. Digest of Papers. Second International Symposium on Wearable 

Computers (1998). 

[30] Gescheider, G.A., Bolanowski, S.J., Verrillo, R.T., Arpajian, D.J. and Ryan, T.F. 

1990. Vibrotactile intensity discrimination measured by three methods. The 

Journal of the Acoustical Society of America. 87, 1 (1990), 330–338. 

DOI:https://doi.org/10.1121/1.399300. 

[31] Gibson, J. 1962. Observations on active touch. Psychological review. 69, 6 (1962), 

477–491. DOI:https://doi.org/10.1037/h0046962. 



 
 

154  

[32] Gilliland, S., Komor, N., Starner, T. and Zeagler, C. 2010. The textile interface 

swatchbook: Creating graphical user interface-like widgets with conductive 

embroidery. Proceedings - International Symposium on Wearable Computers, 

ISWC (2010). 

[33] Goffman, E. 1959. The presentation of self in everyday life. 

[34] Gopalsamy, C., Park, S., Rajamanickam, R. and Jayaraman, S. 1999. The 

Wearable MotherboardTM : The First Generation Responsive Textile Structures 

Medical Applications. (1999), 152–168. 

[35] Hall, E.T. 1990. The Hidden Dimension. 

[36] Hall, S.P. and Hao, Y. 2006. Antennas and propagation for body centerric wireless 

communication. Proceedings EuCAP 2006 (Nice, France, 2006). 

[37] Hanson, M.A., Powell, H.C., Barth, A.T., Ringgenberg, K., Calhoun, B.H., Aylor, 

J.H. and Lach, J. 2009. Body Area Sensor Networks: Challenges and 

Opportunities. Computer. 42, 1 (2009), 58–65. 

DOI:https://doi.org/10.1109/MC.2009.5. 

[38] Harrison, C., Benko, H. and Wilson, A.D. 2011. OmniTouch. Proceedings of the 

24th annual ACM symposium on User interface software and technology - UIST 

’11. (2011), 441. DOI:https://doi.org/10.1145/2047196.2047255. 

[39] Harrison, C., Lim, B.Y., Shick, A. and Hudson, S.E. 2009. Where to Locate 

Wearable Displays? Reaction Time Performance of Visual Alerts from Tip to Toe. 

Proceedings of the 27th Annual SIGCHI Conference on Human Factors in 

Computing Systems. (2009), 941–944. 

DOI:https://doi.org/10.1145/1518701.1518845. 

[40] Harrison, C., Ramamurthy, S. and Hudson, S.E. 2012. On-body interaction: armed 

and dangerous. Proceedings of TEI 2012. (2012), 69–76. 

DOI:https://doi.org/10.1145/2148131.2148148. 

[41] Hoggan, E., Brewster, S.A. and Johnston, J. 2008. Investigating the Effectiveness 

of Tactile Feedback for Mobile Touchscreens. Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems (CHI ’08). (2008), 1573–

1582. DOI:https://doi.org/10.1145/1357054.1357300. 

[42] Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A. and Häkkilä, J. 2008. 

Evaluating capacitive touch input on clothes. MobileHCI ’08. (2008), 81–90. 

DOI:https://doi.org/10.1145/1409240.1409250. 

[43] Huang, K., Starner, T., Do, E., Weinberg, G., Tech, G., Kohlsdorf, D., Ahlrichs, C. 

and Leibrandt, R. 2010. Mobile Music Touch : Mobile Tactile Stimulation For 

Passive Learning. (2010), 791–800. 



 
 

155  

[44] Jacquard by Google: https://atap.google.com/jacquard/. 

[45] Jones, S.J. 2005. Fashion Design. Watson-Guptill Publications. 

[46] Joseph-Armstrong, H. 2000. Pattern Making for Fashion Design. Prentice Hall. 

[47] Kirman, J.H. 1974. Tactile Apparent Movement: the Effects of Number of 

Stimulators. Journal of Experimental Psychology. 103, 6 (1974), 1175–1180. 

DOI:https://doi.org/10.3758/BF03205819. 

[48] Komor, N., Gilliland, S., Clawson, J., Bhardwaj, M., Garg, M., Zeagler, C. and 

Starner, T. 2009. Is It Gropable?–Assessing the Impact of Mobility on Textile 

Interfaces. International Symposium on Wearable Computers, ISWC (2009), 71–

74. 

[49] Konyo, M. 2005. A tactile synthesis method using multiple frequency vibrations 

for representing virtual touch.pdf. (2005), 1121–1127. 

[50] Konyo, M., Akazawa, K., Tadokoro, S. and Takamori, T. 2003. Tactile Feel 

Display for Virtual Active Touch. Proceedings of the 2003 IEEE/RSJ Intl. 

Conference on Intelligent Robots and Systems (2003), 3744–3750. 

[51] Konyo, M., Tadokoro, S. and Takamori, T. 2000. Artificial Tactile Fell Display 

Using Soft Gel Actuators. Proc. of the 2000 IEEE International Conference on 

Robotics & Automation. April (2000), 3416–3421. 

[52] Koskinen, E., Kaaresoja, T. and Laitinen, P. 2008. Feel-good touch: finding the 

most pleasant tactile feedback for a mobile touch screen button. Proceedings of the 

10th international conference on Multimodal interfaces. (2008), 297–304. 

DOI:https://doi.org/10.1145/1452392.1452453. 

[53] Kruijff, E., Schmalstieg, D. and Beckhaus, S. 2006. Using neuromuscular 

electrical stimulation for pseudo-haptic feedback. Proceedings of the ACM 

symposium on Virtual reality software and technology - VRST ’06. (2006), 316. 

DOI:https://doi.org/10.1145/1180495.1180558. 

[54] Kyung, K.U., Lee, J.Y. and Park, J. 2008. Haptic stylus and empirical studies on 

braille, button, and texture display. Journal of Biomedicine and Biotechnology. 

2008, 1 (2008). DOI:https://doi.org/10.1155/2008/369651. 

[55] Lee, H.S., Shin, H.C., Starner, T.E., Gilliland, S.M. and Zeagler, C. 2016. Sensor 

for measuring tilt angle based on electronic textile and method thereof. US Patent 

9316481. 2016. 

[56] Lee, S. 2012. Buzzwear: Supporting multitasking with wearable tactile displays on 

the wrist. 



 
 

156  

[57] Lilypad Arduino: https://www.arduino.cc/en/Main/ArduinoBoardLilyPad. 

[58] Loomis, J.M. and Lederman, S.J. 1986. Tactual Perception. Handbook of 

Perception and Human Performance. 

[59] Loomis, J.M. and Lederman, S.J. 1984. What utility is there in distinguishing 

between active and passive touch? presentation at Psychonomic Society meeting 

(1984). 

[60] MacKenzie, I.S. 2009. Fitts’ Law as a Research and Design Tool in Human-

Computer Interaction. Human–Computer Interaction. 7, 1 (Nov. 2009), 91–139. 

DOI:https://doi.org/10.1207/s15327051hci0701_3. 

[61] Mancini, F., Bauleo, A., Cole, J., Lui, F., Porro, C.A., Haggard, P. and Iannetti, 

G.D. 2014. Whole-body mapping of spatial acuity for pain and touch. Annals of 

Neurology. 75, 6 (2014), 917–924. DOI:https://doi.org/10.1002/ana.24179. 

[62] Marculescu, D. and Marculescu, R. 2003. Electronic textiles: A platform for 

pervasive computing. Proceedings of the IEEE. 91, 12 (2003), 1995–2018. 

[63] Markow, T., Ramakrishnan, N., Huang, K., Starner, T., Schooler, C. and Tarun, A. 

2010. Mobile Music Touch : Vibration Stimulus in Hand Rehabilitation. Pervasive 

Computing Technologies for Healthcare (PervasiveHealth) (Munich, 2010), 1–8. 

[64] Martin, T., Kim, K., Forsyth, J., McNair, L., Coupey, E. and Dorsa, E. 2011. An 

interdisciplinary undergraduate design course for wearable and pervasive 

computing products. Proceedings - International Symposium on Wearable 

Computers, ISWC. (2011), 61–68. DOI:https://doi.org/10.1109/ISWC.2011.13. 

[65] Matias, E., Mackenzie, I.S. and Buxton, W. 1996. A wearable computer for use in 

microgravity space and other non-desktop environments. in Companion of the 

Chi’96 Conference on Human Factors in Computing Systems. 69, (1996), 69–70. 

DOI:https://doi.org/10.1145/257089.257146. 

[66] Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D. and Jamalipour, A. 2014. 

Wireless Body Area Networks: A Survey. Ieee Communications Surveys and 

Tutorials. 16, 3 (2014), 1658–1686. 

DOI:https://doi.org/10.1109/surv.2013.121313.00064. 

[67] NASA-TLX Workload: https://humansystems.arc.nasa.gov/groups/TLX/. 

[68] Nolan, M.F. 1982. Two-Point Discrimination Assessment in the Upper Limb in 

Young-Adult Men and Women. Physical Therapy. 62, 7 (1982), 965–969. 

[69] Norman, D. 2005. Emotional Design: Why We Love (or Hate) Everyday Things. 

Basic Books. 



 
 

157  

[70] Norman, D.A. 2013. The Design of Everyday Things. 

[71] Oakley, I., Kim, Y., Lee, J. and Ryu, J. 2006. Determining the feasibility of 

forearm mounted vibrotactile displays. Proceedings - IEEE Virtual Reality. 2006, 

(2006), 74. DOI:https://doi.org/10.1109/VR.2006.49. 

[72] Pasquero, J. 2006. Survey on communication through touch. Center for Intelligent 

Machines-McGill University, Tech. Rep. TR-CIM. 6, August (2006), 1–28. 

[73] Patel, M. and Wang, J. 2010. APPLICATIONS, CHALLENGES, AND 

PROSPECTIVE IN EMERGING BODY AREA NETWORKING 

TECHNOLOGIES. IEEE Wireless Communications. 17, 1 (2010). 

DOI:https://doi.org/10.1109/MWC.2010.5416354. 

[74] Patel, S.N., Kientz, J. a., Hayes, G.R., Bhat, S. and Abowd, G.D. 2006. Farther 

than you may think: An empirical investigation of the proximity of users to their 

mobile phones. in Proceedings of UbiComp 2006: Ubiquitous Computing. (2006), 

123–140. DOI:https://doi.org/10.1007/11853565_8. 

[75] Pobiner, S., Zeagler, C., Profita, H., Gilliland, S., LEE, H.S., Audy, S., Shin, H.C. 

and Starner, T. 2012. The Electronic Textile Interface Workshop: Scaffolding 

Communication Across Disciplines. Designing Interactive Systems DIS (Necastle, 

UK, 2012). 

[76] Post, E.R. and Orth, M. 1997. Smart fabric, or “wearable clothing.” Digest of 

Papers. First International Symposium on Wearable Computers (1997), 167–168. 

[77] Post, E.R., Orth, M., Russo, P.R. and Gershenfeld, N. 2000. E-broidery: Design 

and fabrication of textile-based computing. IBM Systems Journal. 39, 3.4 (2000), 

840–860. DOI:https://doi.org/10.1147/sj.393.0840. 

[78] Post, E.R. and Waal, K. 2010. Electrostatic Power Harvesting in Textiles. Proc. 

ESA Annual Meeting on Electrostatics. (2010), 1–10. 

[79] Profita, H.H., Clawson, J., Gilliland, S., Zeagler, C., Starner, T., Budd, J. and Do, 

E.Y.-L.E.Y.-L. 2013. Don’t mind me touching my wrist: a case study of 

interacting with on-body technology in public. Proceedings of the 17th annual 

International symposium on wearable computers - ISWC ’13. (2013), 89–96. 

DOI:https://doi.org/10.1145/2493988.2494331. 

[80] Roebuck, J. 1968. A system of notation and measurement for space suit mobility 

evaluation. Human Factors. 10, l (1968), 79–94. 

[81] Schiffman, H.R. 2001. The Skin Senses. Sensation and Perception. John Wiley & 

Sons, Inc. 412–449. 

[82] Scribano, F., Bruns, M. and Baron, E.R. 1970. DESIGN , DEVELOPMENT AND 



 
 

158  

FABRICATION OF A PERSONNEL ARMOR LOAD PROFILE ANALYZER. 

[83] Seim, C., Chandler, J., DesPortes, K., Dhingra, S., Park, M. and Starner, T. 2014. 

Passive haptic learning of Braille typing. Proceedings of the 2014 ACM 

International Symposium on Wearable Computers - ISWC ’14. (2014), 111–118. 

DOI:https://doi.org/10.1145/2634317.2634330. 

[84] Seim, C., Estes, T. and Starner, T. 2015. Towards Passive Haptic Learning of 

piano songs. IEEE World Haptics Conference, WHC 2015. (2015), 445–450. 

DOI:https://doi.org/10.1109/WHC.2015.7177752. 

[85] Seim, C., Hallam, J., Raghu, S., Le, T., Bishop, G. and Starner, T. 2015. 

Perception in Hand-Worn Haptics : Placement , Simultaneous Stimuli , and 

Vibration Motor Comparisons. 

[86] Seim, C.E., Quigley, D. and Starner, T.E. 2014. Passive haptic learning of typing 

skills facilitated by wearable computers. Proceedings of the extended abstracts of 

the 32nd annual ACM conference on Human factors in computing systems - CHI 

EA ’14. (2014), 2203–2208. DOI:https://doi.org/10.1145/2559206.2581329. 

[87] Shaeffer, C.B. 2001. Couture Sewing Techniques. The Taunton Press. 

[88] Sherrick, C.E. 1968. Studies of apparent tactual movement. The skin senses. 

(1968), 331–344. 

[89] Shieldex Threads: http://www.shieldextrading.net/products/yarns-threads/. 

Accessed: 2017-03-31. 

[90] Soukoreff, R.W. and MacKenzie, I.S. 2004. Towards a standard for pointing 

device evaluation, perspectives on 27 years of Fitts’ law research in HCI. 

International Journal of Human Computer Studies. 61, 6 (2004), 751–789. 

DOI:https://doi.org/10.1016/j.ijhcs.2004.09.001. 

[91] Star, S. and Griesemer, J. 1989. Institutional Ecology, Translations’ and Boundary 

Objects: Amateurs and Professionals in Berkley’s Museum of Vertebrate Zoology. 

Social studies of science. (1989). 

[92] Starner, T. 2001. The Challenges of Wearable Computing: Part 2. IEEE Micro. 21, 

(2001), 54–67. DOI:https://doi.org/10.1109/40.946683. 

[93] Starner, T., Rhodes, B. and Weaver, J. 1999. Everyday-use Wearable Computers. 

Georgia Tech Technical Report. 

[94] Starner, T.E., Snoeck, C.M., Wong, B. a. and McGuire, R.M. 2004. Use of mobile 

appointment scheduling devices. Extended abstracts of the 2004 conference on 

Human factors and computing systems - CHI ’04. (2004), 1501. 

DOI:https://doi.org/10.1145/985921.986100. 



 
 

159  

[95] Stein, R., Ferrero, S., Hetfield, M., Quinn,  a. and Krichever, M. 1998. 

Development of a commercially successful wearable data collectionsystem. Digest 

of Papers. Second International Symposium on Wearable Computers (Cat. 

No.98EX215). (1998). DOI:https://doi.org/10.1109/ISWC.1998.729525. 

[96] Sullivan, S. 2016. Designing for Wearables: Effective UX for Current and Future 

Devices. O’Reilly Media. 

[97] Tiley, A.R. and Henry Dreyfuss Associates 2001. The Measure Of Man And 

Woman: Human Factors In Design. John Wiley & Sons. 

[98] Toney, A., Dunne, L., Thomas, B.H. and Ashdown, S.P. 2003. A shoulder pad 

insert vibrotactile display. Seventh IEEE International Symposium on Wearable 

Computers, 2003. Proceedings. (2003), 35–44. 

DOI:https://doi.org/10.1109/ISWC.2003.1241391. 

[99] Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., 

Rahman, Z. and Kwak, K.S. 2012. A comprehensive survey of wireless body area 

networks on PHY, MAC, and network layers solutions. Journal of Medical 

Systems. 36, 3 (2012), 1065–1094. DOI:https://doi.org/10.1007/s10916-010-9571-

3. 

[100] Verillo, R.T. and Gescheider, G.A. 1977. Effect of prior stimulation on vibrotactile 

thresholds. Sensory Processes. 1 (1977), 292–300. 

[101] Verrillo, R.. 1985. Psychophysics of vibrotactile stimulation. The Journal of the 

Acoustical Society of America. 77, 1 (1985), 225–232. 

DOI:https://doi.org/10.1121/1.392263. 

[102] Verrillo, R.T. and Gescheider, G. a. 1975. Enhancement and summation in the 

perception of two successive vibrotactile stimuli. Perception & Psychophysics. 18, 

2 (1975), 128–136. DOI:https://doi.org/10.3758/BF03204100. 

[103] Walters, K., Lee, S., Starner, T., Leibrandt, R. and Lawo, M. 2010. Touchfire: 

Towards a glove-mounted tactile display for rendering temperature readings for 

firefighters. Proceedings - International Symposium on Wearable Computers, 

ISWC. (2010). DOI:https://doi.org/10.1109/ISWC.2010.5665862. 

[104] Watkins, S.M. 1995. Clothing: The Portable Environment. Iowa State Press. 

[105] Watkins, S.M. and Dunne, L.E. 2015. Functional Clothing Design: From 

Sportswear to Spacesuits. Bloomsbury Publishing. 

[106] Wearable Technology Affordances Body Maps: 2017. 

http://wcc.gatech.edu/content/wearable-technology-affordances-body-maps. 

Accessed: 2017-11-04. 



 
 

160  

[107] Weber EH. De subtilitate tactus. 

[108] Weinstein S. 1968. Intensive and extensive aspects of tactile sensitivity as a 

function of body part, sex, and laterality. The skin senses. Kenshalo D.R., ed. 195–

222. 

[109] Weiser, M. 1991. The computer for the 21st century. Scientific american. (1991). 

[110] Wolff, C. 1996. The Art of Manipulating Fabric. Krause Publications. 

[111] Zeagler, C. 2017. Where to Wear It : Functional , Technical , and Social 

Considerations in On - Body Location for Wearable Technology 20 Years of 

Designing for Wearability. International Symposium on Wearable Computers 

(Maui, Hawaii, 2017). 

[112] Zeagler, C., Audy, S., Pobiner, S., Profita, H., Gilliland, S. and Starner, T. 2013. 

The electronic textile interface workshop: Facilitating interdisciplinary 

collaboration. International Symposium on Technology and Society, Proceedings. 

(2013), 76–85. DOI:https://doi.org/10.1109/ISTAS.2013.6613105. 

[113] Zeagler, C., Gandy, M. and Baker, P.M.A. 2018. The Assitive Wearable: Inclusive 

by Design. Assistive Technology Outcomes & Benefits. 12, (2018). 

[114] Zeagler, C., Gandy, M., Gilliland, S., Moore, D., Centrella, R. and Montgomery, 

B. 2017. In Harmony: Making a wearable musical instrument as a case study of 

using boundary objects in an interdisciplinary collaborative design process. DIS 

2017 - Proceedings of the 2017 ACM Conference on Designing Interactive 

Systems (Edinburgh, 2017). 

[115] Zeagler, C., Gilliland, S., Audy, S. and Starner, T. 2013. Can I Wash It?: The 

Effect of Washing Conductive Materials Used in Making Textile Based Wearable 

Electronic Interfaces. Proceedings of the 17th annual international symposium on 

International symposium on wearable computers - ISWC ’13 (Zurich, Switzerland, 

2013), 143. 

[116] Zeagler, C., Gilliland, S., Fisher, K., Boyle, S. and Levy, L. 2017. Le Monstré: An 

interactive participatory performance costume. Proceedings - International 

Symposium on Wearable Computers, ISWC (2017). 

[117] Zeagler, C., Gilliland, S. and Presti, P. 2015. Throwing Buddy: Solving Sensor 

Challenges Through Soft-Good Construction , Design , and Fabric Selection. 

Ubicomp/ISWC ’15 (Osaka, Japan, 2015), 1319–1325. 

[118] Zeagler, C., Gilliland, S., Profita, H. and Starner, T. 2012. Textile interfaces: 

Embroidered jog-wheel, beaded tilt sensor, twisted pair ribbon, and sound sequins. 

Proceedings - International Symposium on Wearable Computers, ISWC (2012), 

60–63. 



 
 

161  

[119] Zeagler, C., Starner, T., Hall, T. and Wong Sala, M. 2015. Meeting the Challenge: 

The Path Towards a Consumer Wearable Computer. Georgia Institute of 

Technology. 

[120] Zhao, Y., Salunke, S., Leavitt, A., Curtin, K., Huynh, N., Zeagler, C., Salunke, S., 

Huynh, N., Leavitt, A. and Zeagler, C. 2016. E-Archery: Prototype Wearable for 

Analyzing Archery Release. Proceedings of the 2016 ACM International Joint 

Conference on Pervasive and Ubiquitous Computing Adjunct - UbiComp ’16. 

(2016), 908–913. DOI:https://doi.org/10.1145/2968219.2968577. 

 

 


	DESIGNING TEXTILE-BASED WEARABLE
	A Dissertation
	Clint Zeagler
	In Partial Fulfillment
	Georgia Institute of Technology December 2018
	Copyright ( Clint Zeagler 2018
	DESIGNING TEXTILE-BASED WEARABLE
	For my Nana
	Theola Treado
	Who always told me I could do whatever I set my mind to
	And
	To my Husband
	Delton Moore
	Who loves me because I believed what my Nana said
	Acknowledgments
	Portions of this research were developed under a grant from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR grant number 90RE5025).  NIDILRR is a Center within the Administration for Community Living (ACL...
	I am very lucky to have had the support and advice of amazing faculty and colleagues at Georgia Tech while pursuing the work described in this dissertation. I owe a great deal of gratitude to my advisor Melody Moore Jackson and my committee Elizabeth ...
	I would also like to acknowledge my family. My mother and father set high standards and were behind me from the very beginning and my sister and extended family who have always been very supportive. My chosen family of friends, especially Laura Moody ...
	Table of Contents
	Social Considerations in On-Body Location for
	Wearable Input Technology    12
	2.1 Related Work and Human Factors    13
	2.2 Choosing On-Body Location
	2.2.1 On-Body location needs for
	3.2 Construction Techniques for Electronic Textile-Based
	3.3 Impact of Electronic Textile-Based Interface
	4.1 Related Work in Active Touch Electronic
	4.2 Making and Testing Active Touch Wearable
	4.4 Impact of Active Touch Wearable Electronic
	Proprioceptively Displayed Interface
	Interaction Usability Study
	6.1 Metrics for Textile On-body Interaction
	6.2 Textile-Based On-Body Interaction Active Touch
	List of Tables
	List of Figures
	Figure 1 - This is an example of a conductive thread embroidered interface.   3
	Figure 2 – People with visual impairments trying out an electronic textile based
	on-body input interface, and giving qualitative feedback    5
	Figure 5 – A knife pleat fabric manipulation is turned here into an interactive rosette   34
	scroll wheel.
	Figure 6 – Symbol Ring Scanner (photo by Maria Wong Sala) .    41
	Figure 7 – Google Glass Pack Prototype (photo by Maria Wong Sala).    44
	Figure 8 – Google Glass Lennon Prototype. (photo by Maria Wong Sala).   45
	Figure 12 - Example of printed traces after wash test. With and without blue plastisol coating. 63
	Figure 15 – Knife Pleat Interface.        68
	Figure 16 - Silver Ink Printed Interface.       69
	Figure 17 - Conductive screen printing process.      70
	Figure 20 - Hold time versus selection accuracy (30 trials).     79
	Figure 21 – Electronic Textile Interface Swatch Book.     81
	Figure 22 – Rocker Switch Interface.       82
	Figure 23 - Iterations of embroidered jog-wheel interfaces for the ESwatchBook .  83
	Figure 25 - Interacting on stage with Le Monstré garment.     89
	Figure 26 –Fabric nub cufflinks.        93
	Figure 27 –Measuring point from finger paint blobs.      96
	Figure 28 – Example of touch target trials from participant 1 male.    96
	Figure 29 – Close up after final touch target trial of participant 1 male.    97
	List of Body Maps
	BODY MAP 1 – Body Sensitivity to Passive Touch      14
	BODY MAP 2 – Body Used for Active Touch      21
	BODY MAP 3 – Map of Ease of Reach of Body Locations – Right Arm   23
	BODY MAP 4 – Map of Ease of Reach of Body Locations – Left Arm    24
	BODY MAP 5 – Visible Body Areas Map       26
	BODY MAP 6 – Networking from the Body       29
	BODY MAP 7 – Typical Seam Locations and Other Garment Construction Locations  34
	BODY MAP 8 – Social Acceptability        37
	BODY MAP 9 – Proxemics Map        41
	BODY MAP 10 - Weight Distribution Map       45
	BODY MAP 11 – Zones of Motion Impedance      49
	BODY MAP 12 – Map of Body Locations       54
	List of Abbreviations and Definitions
	PDI- Proprioceptively Displayed Interfaces
	Figure 1 - This is an example of a conductive thread embroidered interface. This interface demonstrates what a Proprioceptively Displayed Interface might look like as a commercial product.
	Potential Applications of Proprioceptively Displayed Interfaces (PDIs)
	Hypothesis
	Thesis Statement
	2.1 Related Work and Human Factors
	2.1.1 Tangible / Tactile / Haptic Feedback (passive touch)
	BODY MAP 1 – Body Sensitivity to Passive Touch - Average distance in two-point discrimination sensitivity test on body locations.
	Design Considerations for Tangible / Tactile / Haptic Feedback (passive touch)
	2.1.2 Touch (Active Touch)
	BODY MAP 2 – Body Used for Active Touch - Active touch represents the exploratory action of touching.
	Design Considerations for Active Touch
	2.1.3 Reach-ability
	BODY MAP 3 – Map of Ease of Reach of Body Locations – Right Arm - When it comes to reach-ability there are easy to reach locations (where your hand can reach without any body movement), reachable locations (where you can move a part of your body to yo...
	BODY MAP 4 – Map of Ease of Reach of Body Locations – Left Arm
	Design Considerations for Reach-ability
	2.1.4 Visible Feedback
	BODY MAP 5 – Visible Body Areas Map - Average reaction time to visible feedback
	Design Considerations for Visible Feedback
	2.1.5 Networking on the body
	Design Considerations for Networking
	2.1.6 Manufacturing for Garments
	BODY MAP 7 – Typical Seam Locations and Other Garment Construction Locations
	Design Considerations for Garment Manufacturing
	2.1.7 Social Acceptability
	Design Considerations for Social Acceptability
	2.1.8 Proxemics (human perception of size)
	Figure 6 – Symbol Ring Scanner (photo by Maria Wong Sala)
	Design Considerations for Proxemics
	2.1.9 Weight Distribution (where to carry weight and how much)
	Figure 7 – Google Glass Pack Prototype (photo by Maria Wong Sala)
	Figure 8 – Google Glass Lennon Prototype. (photo by Maria Wong Sala)
	Design Considerations for Weight Distribution
	2.1.10 Body Mechanics and Movement
	Design Considerations for Body Motion
	2.2 Choosing On-Body Location for Active / Passive Touch On-Body Interactions, and Subsequent User Studies
	BODY MAP 12 – Map of Body Locations
	2.2.1 On-Body location needs for Active / Passive Touch PDI Interface
	Electronic Textiles
	3.2 Construction Techniques for
	Electronic Textile-Based On-Body Interfaces
	3.2.1 Hybrid Resistive-Capacitive Sensing Technique
	3.2.2 Thread and Materials
	3.2.3 Textile Interface Construction Techniques
	Figure 16 - Silver Ink Printed Interface.
	Figure 17 - Conductive screen printing process.
	3.3 Impact of Electronic Textile Interface Construction Techniques
	Textile-Based Interfaces
	4.1 Related Work in Active Touch
	Electronic Textile-Based Interfaces
	4.2 Making and Testing Active Touch Wearable and
	Gropable Electronic Textile-Based Interfaces
	Figure 20 - Hold time versus selection accuracy (30 trials)
	4.3 Designing and Using Active Touch
	Wearable Electronic Textile-Based Interfaces
	4.3.1  Designing Active Touch Wearable Electronic Textile-Based Interfaces
	Figure 21 – Electronic Textile Interface Swatch Book.
	4.3.2 Using Active Touch Wearable Electronic
	Textile-Based Interfaces, Collaboration Case Studies
	4.4 Impact of Active Touch Wearable Electronic
	Textile-Based Interfaces.
	5.1 Methods and Participants
	Methods
	Touch Target Trials
	Figure 26 – Fabric nub cufflinks
	Participants
	5.2 Results
	Figure 27 – Measuring point from finger paint blobs
	Figure 28 -  Example of touch target trials from participant 1.
	Figure 29 – Close up after final touch target trial of participant 1.
	6.1 Metrics for Textile-Based On-body Interaction
	Usability Study
	Accuracy
	Time to Touch
	Workload
	6.2.1 Body Location: (Forearm)
	6.2.3 Touch Target Trials
	6.2.6 Participants
	6.3 Active Touch / Passive Touch Combination Usability Study
	Results and Discussion
	6.3.1 Results
	6.3.2 Discussion
	6.4 Impact of Active Touch / Passive Touch Combination Usability Study
	8.2.1 Possible Applications
	8.2.1 Future Research
	APPENDIX A: RESEARCH CHART
	REFERENCES

