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CHAPTER 0 

INTRODUCTION 

This thesis is an investigation of closest-point maps in Banach 

spaces,, Our primary intent here is to relate the properties of the 

closest-point maps to the geometrical structure of the unit ball of the 

space, and in so doing we place particular emphasis on the relationship 

between the structure of the unit ball and the behavior of the product 

of two of these closest-point maps. The following is a very brief 

abstract of some of the results contained in the text. 

In Chapter I, we discuss briefly some characterizations of inner-

product spaces which prove useful in the sequel. From some well known 

characterizations, we derive others which apparently are not so well 

known 0 In particular, we show that, for n > 3, an n-dimensional normed 

linear space admits an inner product if and only if every k-dimensional 

subspace admits a projection of unit norm for some k, 2 < k < n-1. This 

seems to be a non-trivial extension of Kakutani *s well known theorem 

which states that this fact is true for k = 2. We use this result to 

show that if for some k, 0 < k < n, the closest-point map shrinks 

distance for every k-dimensional subspace in an n-dimensional strictly 

convex normed linear space with n > 3, then the space is an inner-product 

space 0 

In Chapter II, we let P^ denote the closest-point map on the 

subspace A, and we consider the sequence of iterates f ( P A P o ) n ( x ) l 
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between two subspaces, A and B. We show that E i s a complete inner-

product space i f and only i f these mappings are defined and the sequence 

verse of a theorem due to von Neumann. We also invest igate the behavior 

of th i s sequence in f inite-dimensional s t r i c t l y convex normed l inear spaces, 

and show that every such sequence converges to a point in A f] B i f and 

only i f the space i s smooth. We further show that the i t erates always 

converge in two- or three-dimensional spaces, and we give an example to 

show that they do not always converge in infinite-dimensional spaces. 

In Chapter I I I , we continue our invest igat ion of the i t erates of 

the product of two c losest -point maps; however, here we do not r e s t r i c t 

ourselves to subspaces. We consider the c losest -point maps defined for 

arbi trary convex s e t s , and we show that if A and B are two closed 

convex s e t s , with at most one point in common, in a f inite-dimensional 

normed l inear space and P and P their respective c losest -point maps, 

whose distance from B i s equal to the distance between A and B i f 

e i ther A or B is compact and either i s s t r i c t l y convex. We also 

show that if Ky j = 1,...,N, are closed convex sets in a complete 

inner-product space and at l eas t one of these sets i s compact, then the 

sequence of i t era tes { (P, . . . . P ) n ( x H converges for a l l x. These 
1 K l KN J 

resu l t s extend some ideas introduced by Cheney and Goldstein in their 

short note [ 3 ] . 

In Chapter IV, we prove, for any s t r i c t l y convex, smooth, f i n i t e -

dimensional normed l inear space E, that 

converges to P A O B (x) for every x in E. We thereby prove the con-

then the sequence of i terates converges to a point in A 
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lim (I - P A )(I - PB) . . . (I - P A )(I - P B)(x) = ( I - P A + B ) ( x ) 

for every x E E and for every pair of subspaces A and B„ This answer 

negatively a question, raised by Hirschfeld eight years ago, which has 

been the subject of some recent investigation by Klee [ 1 3 ] . 

In Chapter V, we investigate an unsolved problem posed by Cheney: 

Let A be a subspace of n-dimensional Euclidean space E_, and let x 

be any element of E • If x is the point in A closest to x in the 7 n p r 

1 norm, then Cheney has asked what can be said about the convergence 

of the sequence £x j . We show that when A is either one-dimensional 

or a hyperplane, the sequence converges, and thus answers his question in 

the three-dimensional case. 

Throughout this thesis, we tacitly assume that all spaces are 

taken over the real f ield; however, in many cases the corresponding 

result follows easily when the field is complex by considering the real 

restriction of the space. 
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C H A P T E R I 

CHARACTERIZATIONS OF INNER-PRODUCT SPACES 

I n this chapter, wo mention briefly some o f the better known and 

more useful methods of characterizing inner-product spaces, and we oive 

two characterizations which apparently are not quite so well known. Our 

intent here is, for the most part, to familiarize the reader with s o m e 

basic techniques for analyzing the structure of Banach spaces^ These 

techniques will allow him to more fully appreciate later developments: 

The first of our characterizations is due to Jordan and von Neumann [ l l ] : 

I t states that a normed linear space admits an inner product if and only 
2 2 2 if the norm satisfies the equality ||x+y|| + l l x ~ v ! | = 2(||x|| + 

jjy|| ) for all x and ye This of course implies that a normed linear 

s p a c e admits an inner product if and only if every two-dimensional sub-

s p a c e does. Several refinements of this idea have been investigated 

(see Day [4]). 

Defi nition. A normed linear space E is smooth if and only if 

each point on the surface of the unit ball S has a unique supporting 

hyperplane. 

Definition» A vector x is orthogonal to a vector y (written 

x ..i y ) if and only if | |x| | £ | |x + ay| | for all scalars a* A vector 

i s orthogonal to a subset i f a n d o n l y i f it is orthogonal to each element 

o f t h e s u b s e t . 

This definition s p e c i a l i z e s t o the u s u a l definition of orthogonality 
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if the space is an inner-product space. 

Birkhoff [2] showed that a normed linear space which is smooth 

admits an inner product if and only if orthogonality is symmetric, i 0 e 0 , 

x orthogonal to y implies y orthogonal to x. James [9] removed 

the restriction of smoothness and gave several other useful and related 

characterizations of inner-product spaces. This concept of orthogonality 

was investigated by Day [ 5 ] in two-dimensional spaces. 

The third and final characterization that we mention is the well-

known theorem of Kakutani (see [12]) which states that if every two-

dimensional subspace of a normed linear space E, whose dimension n 

is greater than or equal to three, admits a projection of norm one, 

then E is an inner product space. We discuss this characterization 

more fully than the others and prove the following: 

Theorem 1.1. If for some k, 2 < k < n-1, every k-dimensional 

subspace admits a projection of unit norm, then E is an inner-product 

space when n > 3. 

Proof. According to the Jordan-von Neumann representation just 

mentioned, we need only show that every (k+1)-dimensional subspace is an 

inner-product space. Let E^ be any (k+1)-dimensional subspace and 

let H by any hyperplane in E^. H is k-dimensional and by hypotheses 

there must be a projection P of unit norm mapping E onto H. Let 

P^ be the restriction of P to E^. Then P^ is a projection of norm 

one of E^ onto H. Let x be any element of E^-H, and let 

z = x - P(x). If h is any element of H, we will show that h is 

orthogonal to z, i.e., | | h + a z | | > ||h|| for all scalars a. Write 
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h = (h + az) - az and apply P to both sides of this equation. Noting 

that | |P| | = 1, we have | |h| | = | |P(h) | | = | |p(h + az) | | < | |h +az | | 

as required. Therefore, every hyperplane in is orthogonal to some 

non-zero element of E^. James has shown ([9 , Theorem 4]) that if every 

hyperplane is orthogonal to some non-zero element in a space of at least 

three dimensions, then the space is an inner-product space. Hence Ê  

admits an inner product, and, since Ê  is an arbitrary (k+1)-dimen­

sional subspace of E, E must be an inner-product space. 

The preceding proof also shows that if for some k, 1 < k < n-2, 

every subspace of deficiency k admits a projection of unit norm, then 

E is an inner-product space. This of course is useful in the infinite-

dimensional case. 

Definition. A closed convex set in a normed linear space is 

strict ly convex if and only if i ts boundary contains no line segment, 

and a normed linear space is strict ly convex if and only if its unit 

ball S = { x : | | x | | < l } is strictly convex. 

Definition. If K is a subset of E, let p

K ( x ) = { y E K: 

| | x - y| | = inf Mx - k||l. If P is single valued for each x, we 
keK J K 

will call i t the closest-point map on K. 

Noting that the closest-point map is well-defined for each sub-

space of a strict ly convex finite-dimensional space and using Kakutani's 

characterization of inner-product spaces, one can show that if for some 

k, 0 < k < n-1, every k-dimensional subspace has a linear closest-

point map, then the space is an inner-product space. This was shown 

directly by Rudin and Smith in [ 1 9 ] . 
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Definition. A mapping P shrinks distance if and only if 

| |P(x) - P(y ) | | < | | x - y | | for all x and y. 

Phelps [18] has shown that if the closest-point map, P, shrinks 

distance for all one-dimensional subspaces of a space which is at least 

three-dimensional, the space is an inner-product space. The proof is 

evident because this hypothesis implies, immediately, that orthogonality 

is symmetric - - a condition which is sufficient according to the Birkhoff-

James characterization just mentioned. Hirschfeld [8] has shown that the 

same conclusion can be drawn if the closest-point map on all two-dimen­

sional subspaces shrinks distance. However, these are only special cases 

of the following: 

Theorem 1.2. Let E be strict ly convex and n-dimensional with 

n > 3. If for some k, 0 < k < n, the closest-point map on every 

k-dimensional subspace shrinks distance, then the space E is an inner-

product space. 

Proof. If k > 2, let Ê  be a (k + 1)-dimensional subspace of 

E and H a k-dimensional subspace of E^. Let x be any element in 

Ê  - H, and let z = x - P^(x). Then all vectors in Ê  orthogonal to 

H are scalar multiples of z by Lemma 2 .2 .2 . Hence P̂  is a linear 

mapping, and, therefore, a projection of Ê  onto H. Since the closest-

point map shrinks distance, I | P U | I < 1. Hence every k-dimensional 
H 

subspace of Ê  admits a projection of unit norm, and, by Theorem 

1.1 , Ê  must be an inner-product space. Since every (k+1)-dimensional 

subspace of E is an inner-product space, E must be too. For k = 1, 

the result follows from the previous discussion. 
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The interested reader should consult Klee's review of [19] for 

additional information. 
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CHAPTER II 

CLOSEST-POINT MAPS AND THEIR PRODUCTS 

2.0 Introduction. Let A and B be subspaces of a normed 

linear space E and let PA and Pn be their respective closest-point 

maps. In this chapter, we attempt to show a relation between the struc­

ture of the unit ball of E and the convergence of the sequence 

^(P A Pg) n (x) | . In Section 2.1 we give the definitions and background basic 

to our development. In Section 2 .2 we show that the closest-point map is 

well defined for every subspace and lim (PAPg) n(x) = p

A p | g ( x ) f ° r 

every A , B , and x if and only if E is a complete inner-product space. 

In Section 2 . 3 we assume that E is strict ly convex and finite-dimensional 

and show the following: (l) If A and B are subspaces of E and E 

is smooth, there exists a constant k, 0 < k < 1, such that 

| |P A P B (x) - p

B ( x ) | | < k| |P f i(x) - x | | for every x e A. ( 2 ) The sequence 

{ ( P

A

P Q ) n ( x ) } converges to a point in A f]B for all A, B , and x 

if and only if E is smooth. ( 3 ) If the' dimension of E is less than 

or equal to three, the iterations (P.P n ) n (x) either converge to a point 

in the intersection of A and B or repeat after two steps. In Section 

2 .4 we show that there is at least one case where the iterates 

(PAPg) n(x) do not converge. This is in the infinite-dimensional space 

V 
2 .1 General. In the following, we let E denote a normed linear 

space, and we use the notation introduced in the previous chapter. 
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Using the weak compactness of S in a reflexive space, we see by 

a direct proof that p ^ ( x ) i-s non-empty for all subspaces A. Phelps 

[17, p 0 253] has shown the converse: If p ^ ( x ) i-s non-empty for al l x 

and for all subspaces, then the space is reflexive. If E is both 

reflexive and strict ly convex, we see immediately, from the definition of 

strict ly convex, that p ^ ( x ) must consist of exactly one point. We will 

assume the above facts in the sequel, and also assume, unless otherwise 

stated, that A is a subspace whenever we write P .̂ 

If E is a complete inner-product space, then P̂  is well 

defined, shrinks distance, and is linear for every subspace A. This is 

true because P̂  is the orthogonal projection of E on A. Unfortunately 

P̂  is not so well-behaved in general. As we mentioned in Chapter I , 

Phelps [18, Theorem 5.4] has shown that if PA shrinks distance for all 

one-dimensional subspaces A of E, and E is at least three-dimensional, 

then E is an inner-product space; and Hirschfeld [8 , Theorem 2] has 

shown the following: 

Lemma 2 . 1 . 1 . If E is strictly convex, at least three-dimensional, 

and Pj^(x + y) = P L ^ X ) + P L ^ V ^ f ° r E V E R Y one-dimensional subspace L , 

then E is an inner-product space. 

2.2 Inner-product spaces. The main result of this section is a 

converse to the following theorem of von Neuman [16, p. 475], (Theorem 

2.2.1 has also been proved by Weiner [24, p. 101] and generalized by 

Halperin in [ 7 ] . ) A proof of this theorem appears in Chapter I I I . 

Theorem 2 . 2 . 1 . (von Neumann). If E is a complete inner-product 

space, then P is single-valued for every subspace A and 
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lim (PAPB . . . PAP B)(x) = P A n B ( x ) 

for all x in E. 

The reader, at this point, should recall the definition of 

orthogonality made on page 4. 

Lemma 2.2.1 (James [10, Theorem 2 . 1 ] ) . Let A be a subspace 

of E. Then x l A if and only if there is a continuous linear func­

tional x' such that | x ' ( x ) | = | | x ' | | 9 | | x | | and X ' [ A ] = 0. 

Lemma 2 . 2 . 2 . If H is a hyperplane containing the null vector 

and E is strict ly convex, there is at most one linearly independent 

vector orthogonal to H. 

Proof. Suppose x , y _ L H and | |x| | = | |y| | = 1. By Lemma 2 . 2 . 1 , 

there are unit vectors x' ,y' in the conjugate space such that 

x'(x) = y'(y) = 1 and X ' [ H ] = y * [ H ] = 0. X ' [ H ] = y ' [ H ] = 0 and 

ll x ' l l =
 IIY'II = 1> together, imply that x' = py' for some scalar 

p with |p| = 1; so x , (p" 1 y) = 8y' (B _ 1 y ) = 1. But this means that 

||x'(ax + (1 - a ) p _ 1 y ) | | = 1, and so | |ax + (l - a ) p _ 1 y | | = 1 for all 

a, 0 < a < 1. Since E is strict ly convex, this implies that x = p V 

Theorem 2 .2 .2 . If E is a strictly convex space of dimension 

greater than two such that lim(PAPB . . . P AP g)(x) = p
A p | g ( x ) f ° r 

every X e E and for every pair A, B of two-dimensional subspaces, 

then E is an inner-product space. 

Proof. According to Lemma 2 . 1 . 1 , we need only show that P^(x+y) 

= P^(x) + Pj^y) f ° r every one-dimensional subspace L. Let x,y and 

L be given. Suppose the span M of x,y,L is a three-dimensional 
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subspace. Then the span of x,L and the span of y,L, denoted by A 

and B respectively, are each two-dimensional. Because the distance 

in M is inherited from E, we see that lim ( p

APg • • • P

A

P B ^ X ^ = 

P A f l B ( x ) = P L ( x ) , and that lim (PAPB . . . PAP B)(y) = p

A f | B

( y ) = P L ( y ) < 

Moreover, since A and B are hyperplanes in M and M is strictly 

convex, Lemma 2 . 2 . 2 implies that there is at most one linearly indepen­

dent vector b, in M , orthogonal to B. Therefore, M can be written 

as the direct sum of A and scalar multiples of a, and P̂  is linear; 

and a similar argument shows that P̂  is linear. Hence 

( P A P B • • • P A P B ' ( x + y) = ' < P A P B • • • P A P B ) ( X ) + ( P A P B ' ' • P A P B > ' 

Taking limits and using the above relations, we get P^(x + y) = P^x) + 

P L (y ) . 

Suppose the dimension of M is less than three. If M is one-

dimensional, then P L(* + y) = P L ^ X ) + P L ^ Y ^ holds tr ivial ly . If M 

is two-dimensional, we need only select a third linearly independent 

vector z and repeat the previous argument with A the span of x,y,L 

and B the span of z,L to show that P̂  is additive. 

The analogue of Theorem 2 . 2 , 2 does not necessarily hold if E 

is two-dimensional. In fact, Theorem 2 . 3 . 2 implies that every strictly 

convex, smooth, two-dimensional space satisfies the hypotheses of this 

theorem. 

It is of some interest to note the behavior of the iterates in 

spaces other than inner-product spaces. Generally speaking, this is a 

very diff icult task; however, we can examine the iterations in three-

dimensional 1 , p > 1 , spaces when both subspaces are two-dimen­

sional . 
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Let A and B be two two-dimensional subspaces in a three-dimen­

sional space, and let A and B be given by their outward normals 

a = (a^,a 2 ,ag) and b = ( b ^ , b 2 , b 3 ) . According to Fortet [ 6 ] , any ele­

ment (x,y,z) orthogonal to A in the 1 sense must satisfy 
P 

|x |P" 2 w , 1 * . |y|P" 2 ya^-H |z |P" 2 za 1 - 0 

and 

• ,p-2 2 ^ , ,p-2 2 ^ , ,p-2 2 _ 
| x | K x a ! + M Y a

2

 +
 l z l

 z a 3 = 0 

where (a^ta^,a^)f j = 1,2, are two linearly independent vectors in 

A. This implies that 

( | x | P - 2 x , | y | P - 2 y , | z | P - 2 z ) 

is a scalar multiple of the vector ( a ^ , a 2 , a 3 ) , i . e . , for some k / 0, 

| x | p 2 x = ka^ 

| y | p _ 2 y = ka 2 

| z | P 2 z = ka 3 . 

Assuming, without loss of generality, that k = 1, we find that 

x = (sign a ^ l a j 1 / ^ " 1 5 

y = (sign a 2 ) | a 2 | l / ( p - l } 

z = (sign a 3 ) | a 3 | l / ( p - l ) 

with analogous formulas holding for elements orthogonal to B. As we 
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saw in the proof of Theorem 2 . 2 . 2 , al l iterates between the spaces A 

and B remain in a plane. By our previous discussion, we see that 

the outward normal of that plane must be 

(sign < A 2 B 3 ) | A 2 B 3 1 1 / ( p " 1 ) - sign ( a ^ ) | a 3 b 2 | l / ( p " l } , 

sign ( a 3 b 1 ) | a 3 b 1 | 1 / ( P " 1 ) - sign ( a ^ ) | A ^ L , 

sign ( A 1 B 2 ) | A 1 B 2 | 1 / ( P - 1 ) - sign ( a ^ ) | 1 1 / ( P " 1 } ) . 

From this , i t is clear from Theorem 2 .3 .2 that whenever a.b. = 0 or 

1 for all j , k , the iterates converge to the same point in A fl B for 

all p > I . 

Theorem 2 . 2 . 3 . Suppose E is at least three-dimensional. If 

PA is single-valued for every subspace A, and lim ( p
A
p
B • • • p

A
p g ^ x ^ = 

PA QB(X) for all A, B, and x, then E is a complete inner-product 

space. 

Proof. If PA is single-valued for every one-dimensional sub-

space, then E is strictly convex. Therefore, by Theorem 2 . 2 . 2 , i t is 

only necessary to show that E is complete. Let F be the completion 

of E and x any element of F. Let H = £y : y e F, (y,x) = OJ and 

let H q = H fl E. Then H and H q are hyperplanes in F and E res­

pectively. Let z e (E - H ) . By hypotheses, there exists an element 

P u (z) in H such that | | z - P„ ( z ) | | = inf I|z - h | | . Clearly 
Ho 0 H o heHQ 

(z - P„ (z)) X H and (z - P u ( z ) , h ) = 0 for every h e H . By H o H ' o 7 o o 7 

o o 

continuity of the inner product and by the fact that E is dense in F, 
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(z - P̂  (z) ,y) = 0 for every y e H. Because F is strictly convex, 
o 

there is at most one linearly independent element orthogonal to H. 

Thus x = a(z - Pu (z)) for some scalar a. Hence x e E and, 
n 

O 

therefore, E is complete. 

We would like to mention that Hirschfeld [8] has posed a problem 

which, on account of the relation of orthogonal complements in a complete 

inner-product space, can also be considered a converse of Theorem 2.2 .1; 

If P̂  exists and is single-valued for every subspace A and 

lim (I - P A ) (I - PB) . . . (I - P A )(I - P B )(x) = (I - P A + B ) ( x ) 

for all A, B and all x e E, is E necessarily an inner-product 

space? Klee [13] showed that this conjecture is not true in two-dimen­

sional spaces, and we show in Chapter IV that i t is not true in any 

finite-dimensional space. 

2.3 Smooth spaces. This section will be devoted to showing 

that if E is finite-dimensional, strictly convex, and smooth, the 

iterates (PAPg) n(x) always converge to a point in the intersection 

of A and B. 

If x is a non-zero vector in a smooth space, Lemma 2.2.1 

implies that there is at most one hyperplane H containing the zero 

vector with x _L H. James [10] has shown that E is smooth if and 

only if x X (y + z) whenever x l y and x X z - - a fact which is 

geometrically evident. Other characterizations of a smooth space are 

given by Day [ 4 ] . 

Definition. A normed linear space E is uniformly convex if 
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and only if given any number e > 0, there exists a number 6(e) > 0 

such that | | x + y | | < 2(1 -6 ( e ) ) whenever | | x | | = | | y | | = 1 and 

| | x - y | | > e . 

The continuity of the norm and compactness of the unit ball 

imply immediately that any finite-dimensional strictly convex space is 

uniformly convex. Of course any uniformly convex space is strictly 

convex. 

The following lemma is stated without proof by Klee in [ 1 4 ] . 

Lemma 2 . 3 . 1 . If K is any closed convex set of a uniformly con­

vex Banach space E, then P̂ , is a continuous function. 

Proof, Let K be a convex set which does not contain the zero 

vector, and suppose pj<(0) = x with | | x | | = 1. Let ^ x

n "} ke a sequence 

of vectors with limit 0, and let { P i < ( x

n ) } ke their closest points 

in K. There exists a hyperplane H supporting K and S at x, and 

we assume that x and 0 are on the same side of H. By the contin-n 7 

uity of the distance function, lim Jjx - P „ ( x ) | | = 1, and so there 7 ' 1 ' n K n ' 1 ' 

is a sequence | e with l ime^ = 0 such that | | x - P j < ( x

n ) | | = * + e

n ' 

Each P j < ( x

n ) n a s norm greater than one, and, since I L P j < ( x

n ) M 1 * + E

N

 + 

llx II and lim x = 0 , liml | P w ( x ) I I = 1. If « P „ ( x ) \ does not 1 1 n1 ' n ' 1 ' K n 1 1 1 K n J 

converge to x, we can assume there is some e > 0 such that 

| | P K ( x n ) - x | | > e. Noting that ( L / 2 ) ( P K ( x ) + x) l ies on the side 

of H opposite 0, and that l i m | | p

K ( x n ) - [ L / | | P

K ( X

N ) I I ] ( P

K ( X

N ) ) I I = ° -

we see that 1im | | l / 2 ( P ^ ( X

N ) / | I P

K ( x

n ) | | + x ) | | = 1 ; and this contradicts 

the uniform convexity of E. 

Lemma 2 .3 .2 . Let x ^ be a sequence of unit vectors in a 

uniformly convex space E, and let {^ n ^ ^ e a sequence of hyperplanes 
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such that H supports the unit ball S at x . If y e H and n r n n n 

lim I ly I I = 1 , then lim (x - y ) = 0. n ' n 7n 

Proof. The essential ideas needed for this proof are contained 

in the proof of Lemma 2 . 3 . 1 , and, therefore, will be omitted here. 

Lemma 2 . 3 . 3 . Let E be a normed linear space and ^ x

n "} a 

sequence of vectors convergent to x. If each x̂  is orthogonal to a 

subset A of E, then x is orthogonal to A. 

Proof. Since x j _ A, llx I I < | | x + ay|1 for all a and n ' 1 1 n1 1 - 1 1 n 7 1 1 

for all y e A. By continuity of the norm, | | x | | < | | x + a y | | also 

holds for all a and for all y e A. 

Lemma 2.3.4. If A is any subspace of E, then aP^(x) = P^(ax) 

for all scalars a. 

Proof. P

A ( X ) satisfies | | x - P^(x)| | < | | x - y | | for every 

y e A. By multiplying both sides of this inequality by | a | , we see 

that | |ax - aP^(x) | | < | |ax - ay| | holds for every y e A. If a = 0, 

the result is tr iv ia l ; if a / 0, the last inequality is equivalent to 

| |ax - aPA(x) | | < | |ax - z | | for all z e A. Hence PA(ax) = aP A (x) . 

Theorem 2 . 3 . 1 . Let E be finite-dimensional, strictly convex, 

and smooth. Given any two subspaces, A and B, there exists a number k 

0 < k < 1, such that | |P A P B (x) - Pg(x) | | < k||Pg(x) - x | | for all xe A. 

Proof. Assume, without loss of generality, that A and B span 

E. Since x e A and p

A

P 3 ^ x ^ ^ s the point in A closest to Pg(x), | | x -

P g ( x ) | | > M P

A

P B ^ x ^ " Pg(x) | | . Furthermore, since the space is strictly 

convex, either x = PAPg( x) or | | x - P 0 ( x ) | | > | |P A P B (x) - P Q ( x ) | | . 

If x = PAPg(x), there are two distinct possibil i t ies . Either 

x = Pg(x) or x / Pg(x). If x = Pg( x ) , P

A

P

B ( X ) = P

B ( X ) a n d w e m a Y 

choose k arbitrarily. If x / P R (x) , x -P R (x ) is a non-zero vector 
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orthogonal to both A and B. Since E is smooth, Lemma 2.2*1 implies 

there is a unique hyperplane H containing the zero vector such that 

(x - PD(x))_L H. Since x - P D(x) is orthogonal to A and to B, 

both of these subspaces must be contained in H. Hence E, being the 

span of A and B, must be contained in H and this is impossible. 

Therefore, if the theorem is not true, there exists a sequence 

{x "j of elements in A such that 

Let 

A 
n V X N > " P A P B ( V 

then 

1 |P_(x ) - P . P D ( X ) I I | LA P A P D (X ) - A P D ( X . . B n A B n 1 1 . . 1 1 n A B n n Bv n . lim —— - — — = lim — • — — . = 1 
X - P N ( X ) A X - A P D ( X , 1 ' n Bv n 1 1 1 1 n n n B n 

Because the closest-point map is homogeneous (Lemma 2 . 3 . 4 ) , this is 

equivalent to 

I |P.P N (A X ) - P D (A X ; 1 1 A B n n B n n lim — = 1 
L A X - P„(a X 1 n n B n n 

It follows from Lemma 2 .3 .2 that 

lim { [ P A P D ( A x ) - P D (A x ) ] - [A x - P D (A x ) ] ) = 0 . 
L L A Bv N N Bv N N J L N N Bv N N J J 
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Moreover, each point in the sequence 

(p AP D ( a x ) - P D (a x )") l A B n n B n n j 

is orthogonal to A, and each point in the sequence 

fa x - P D (a x ) ) \ n n Bv n n J 

is orthogonal to B. Therefore, since we may assume without loss of 

generality that each of these sequences converges because of the finite 

dimensionality of E, Lemma 2 .3 .2 and Lemma 2 . 3 . 3 , together, imply 

that their common limit is a non-zero vector orthogonal to both A 

and B. As before, this is impossible. 

If Theorem 2.3.1 were true in infinite-dimensional spaces, we 

could handle the convergence problem there. This is not the case 

however. To see this, we give the following simple example in the com­

plete inner-product space lg. 

Let A be the subspace spanned by (1, l / 2 , 0 , . . . ) , 

( 0 , 0 , 1 / 3 3 , 1 / 4 , 0 , . . . ) , . . . , ( 0 , . . . , 0 , l / ( 2 n + l ) ( 2 n + 1 ) , l /(2n + 2) , 0 , . . . ) , 

and let B be the subspace spanned by ( 0 , 1 / 2 , 0 , . . . ) , ( 0 , 0 , 0 , l / 4 , 0 , . . . ) , . . . „ 

Selecting an element ( 0 , . . . , 0 , l / n n , l / ( n + l ) , 0 , . . . ) from A and project­

ing orthogonally to B and then back to A, we observe that we come 

back to a scalar multiple of ( 0 , . . . , 0 , l / n n , l / ( n + l ) , 0 , . . . ) . Thus, by 

normalizing these vectors and performing this operation for large 

integers, one can see, from the following argument that Theorem 2.3.1 

cannot apply in 1^, Let x and y be any two unit vectors situated 

at the origin in E , and let C denote the smaller angle between 
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them. If we project orthogonally from x to y and then back to the 

line generated by x, we find that the ratio of Py(x) - x to PxP^(x) 

- Py(x) is l/cos C whose limit as C approaches zero is one0 

To simplify notation, we will use the following in the sequel. 

For x e E, let 

x x = PB(x) 

x 2 = PAPB(x) 

X2n-1 PB^X2n-2^ 

X2n " V x 2n-1^ ' 

Theorem 2 .3 .2 . If E is strictly convex and finite-dimensional, 

the sequence of iterates converges to a point in A Pi B for every 

x e E and for every pair of subspaces A and B if and only if E 

is smooth. 

Proof. Suppose E is smooth. According to Theorem 2 . 3 . 1 , there 

exists a k, 0 < k < 1, such that kllx , - x I | > I I x . , - x J I for » - » <i n-1 n 1 1 - 1 1 n+1 n' 1 

n > 1. If m > n, 

x - x < x • x I + . . . + I x • x 
n m'1 - 1 1 n n+1 1 1 M n+1 m'1 

S b n " ^ I I I I 4 - 4 - U m ~ 2 I I 

< k x~ - x 2 1' ' 1 - k " 

Hence •[ x

n ] is a Cauchy sequence whose limit must be in both A and 

B. 
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Conversely^, if E is not smooth, there exists some unit vector 

x and two hyperplanes, H^, H^, each supporting S at x 0 It will 

be shown that there is a vector z whose iterates do not converge to 

a point in the intersection of the subspaces A and B , where 

A = - x and B = - x are the translates of and res-

pectively 0 Since E is strictly convex and A and B are hyperplanes, 

any vector orthogonal to either A or B is a scalar multiple of x 

by Lemma 2.2.2. Thus, if z is any point in A but not in B , both 

P R(z) - z and p
A

P B ( Z ) " P B ^ a r e s c a- l- a r multiples of x. This 

implies that p
A

p g ( z ) = Z o 

At this point, we note that many questions arise naturally; e.g., 

are there necessary or sufficient conditions which, when imposed upon 

a space of arbitrary dimension, will insure convergence? In particular, 

will the iterates always converge when the space is both uniformly con­

vex and smooth? Will they always converge in a finite-dimensional 

strictly convex space? We are unable to answer these questions, but 

the following discussion suggests that we might expect convergence if 

the space is finite-dimensional and A f] B = f o } . 

Theorem 2.3.3. Suppose E is finite-dimensional and A and B 

are subspaces satisfying A fl B = {^}* For every positive number m, 

there exists some number M such that ||x||, ||y|| < M whenever 

x e A, y e B, and ||x - y|| < m. 

Proof. Let R^ = |x e A : | |x - y| | < m for some y e Bj 

and R2 = [x £ B : ||x - y|| < m for some y e A^. It suffices (see 

Banach [l, p. 80]) to show that for any linear functional f, 
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sup | f ( x ) | < °° 0 Let f be in A 0 , the annihilates of A. Then if 
X E 
y e R 2 , x e A, and | | x - y | | < m, | f ( y ) | = | f ( x - y ) | < | | f | | m and 

sup | f ( y ) | < 0 0 . A similar argument shows that sup | f ( x ) | < 0 0 if 
ye R2 xeR^ 

f e B°, the annihilator of B. Since A fl B = the span of 

A° U B° is E*, the conjugate of E. Thus, there exists a finite 

number of linear functionals f̂ , k = 1 , . . , , r , with 

f, e A° or f, e B° such that any linear functional f may be written 

r f - I V k • 

k = l 

Let X E R , y E B, and | J X - y | | < m. Then 

f ( X ) - I A k f K ( X ) 
k = l 

s 

= I a k . f k . ( x -
j - i J J 

where E B° for j = l , . . . , s . Hence 
j 

| f ( X ) | < I | A K I | | f 
K . L R L L X - y| 

j= l 3 3 

r 

< m I | a k | | | f k 

k=l 

and, therefore, sup | f ( x ) | < 0 0 . Similarly, sup | f ( y ) | < 0 0 . 
xe Rx ye R 2 
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With our usual notation for the sequence of iterates {_x

n"}j 

llx - x ,. II < I |x„ - x. II for all n > l . Thus, Theorem 2.3 .3 ' 1 n n+1 2 1 ' 

implies that the sequence {x

nj i s bounded whenever A f| B = {o}. 

Hence, if the iterations do not converge when E is strictly convex, 

finite-dimensional and Ap|B = ̂ o}> a direct proof, using Lemma 2 .3 .1 , 

shows that there must be at least two linearly independent vectors 

orthogonal to both A and B. However, much more than this can be 

said. In fact, if the sequence { x

n } does not converge, we can show 

that the set C of limit points of the sequence | x2n"} m u s ' t ke a 

continuum, and hence, that there are uncountably many vectors, any two 

of which are linearly independent, orthogonal to both A and B. The 

set C is closed and bounded. If C is not connected, it is the 

disjoint union of two non-empty compact sets and C ^ , respec­

tively. Since U contains all limit points of £ x 2 n } > ^ l ^ ^2 

contains al l but a finite number of points from the sequence ^ x 2 n } • 

But this contradicts the fact that an infinite number of these points 

have to l ie in both D. and D 0 and that lim ||x0 - x̂  , - | | = 0. 
1 2 1 1 2n 2n+2' 1 

Hence C must be a continuum. 

Since each point of C is a fixed point of PA

pg a n c l since 

j|c - P Q ( C ) | | is constant for all c e C , in the case under discussion 

there must be an uncountable number of unit vectors orthogonal to both 

A and B. 

Definition. Let x be a point on the surface of the unit ball 

S. If there is exactly one supporting hyperplane for S at x, then 

x will be called a smooth point. If the intersection of all hyperplanes 



24 

containing x and supporting S is x, then x will be called a 

vertex of S. 

Theorem 2 .3 .4 . Let E be strictly convex and finite-dimensional 

and suppose A 0 B = { o j . If each point x on the surface of the unit 

ball S is either a smooth point or a vertex, then the sequence of 

iterates { ( P A P B ^ X l } c o n v e r 9 e s « 

Proof. The remarks following Theorem 2.3 .3 imply that there are 

an uncountable number of points on S which are not smooth points. 

Since S can have at most a countable number of vertices (see Valentine 

[23, Theorem 11 .2 ] ) , the sequence must converge. 

If E is a normed linear space and B a subspace of E, let 

E/C represent the quotient space modulo B , i . e . , the normed linear 

space consisting of all equivalence classes [x] with | | [ x ] | | = 

inf J J x + c | | . 

ceC 

Theorem 2 . 3 . 5 . Let B and C be subspaces of a strictly 

convex Banach space E, and let B contain C. Then B/C is a sub-

space of E/C, and, if xe E and p

B ( x ) = y> then P B / C ^ X - ^ = 

where [•] indicates an element of E/C. 

Proof. It is clear that B/C is a linear manifold of E/C, and 

by Lemma I I .1 .1 of [ 4 ] , a quotient space of a complete space is complete. 

This implies that B/C is closed in E/C and, hence, a subspace. 
Suppose xe E and P 0(x) = y. Then | | [ x ] - [ y ] | | = | | [ x - y ] | | 

= inf | | (x - y) + c | | . Since x - y is orthogonal to C, | |[ x] - [y] | | 
ceC 

l | [ x - y] | | • If z is any element of B, then | | [ x ] - [ z ] | | = 

l l [x - yll = inf | | ( x - z ) + ell = inf | | x + (c - z ) I I > inf | | x - b | | = 
1 1 7 1 1 ceC ' ' ceC " 1 1 - beB 1 1 M 
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| | x - y | | , and inf | | x + (c - z ) | | = | | x - y | | if and only if z - c = 
ceC 

y for some c e C since E is strictly convex. This proves the 

theorem. 

Using ideas similar to those used in Theorem 2 .3 .5 , we can easily 

prove the following: 

Theorem 2 .3 .6 . If every two-dimensional quotient space is strictly 

convex, then E is strictly convex. If E is reflexive and strictly 

convex, then E/C is strictly convex for all subspaces C of E. 

Proof. If E is not strictly convex, there are elements x and 

y in E such that 0,y e P^y(x) (R denotes the set of real numbers). 

Since x JL y, there exists a hyperplane containing 0 and y 

such that x J_ H .̂ Let be any hyperplane such that y _J_ H ,̂ and 

let C = 0 H^. Then C has deficiency two, and this implies that 

the quotient space E/C is two-dimensional. Since x _L C and x_LH^, 

||[x] - C O ] I I = i n f ||x + c | | - ||x||, ||[x] - [ y ] | | = i n f | |(x - y ) + 
ceC ceC 

c l l = l l x ~ y | | = I l x l l > a n c l I | [ x ] " Q [ y ] I I = inf | | ( x - a y ) + c | | > 

ceC 
inf | | x - h | | = | | x | | for all scalars a . These relations show that E/C 

is not strict ly convex. 

Suppose that E/C is not strictly convex for some subspace E. 

Then there are two vectors [ x] and [y] in E/C such that | | t x ] | |
 = 1 > 

| | x | | = 1, [x]_L R[y], and | | [ x] - a [ y] | | = 1 for all a , 0 < a < 1. 

Since E is reflexive, there exists a point C q in C such that 

| | x + ( c - y ) | | = inf | | x + ( c - y ) | | = l 9 If a is any number between 
0 ceC 

zero and one, then | |x + a ( c - y) j j > 1 because a(y - c ) e a [y ] , 
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and, since S is convex, | | x + a(c - y ) | | < 1, for all such a; 

therefore, | | x + a ( c - y ) | | = l if 0 < a < l and E is not 

strict ly convex0 

We now prove the dual of Theorem 2 .3 .6 . 

Theorem 2,3*7. If A is a subspace of a smooth reflexive space 

E , then E / A is smooth. If the quotient space E /A is smooth for 

every subspace of deficiency two, then E is smooth. Thus, if 

every two-dimensional quotient space is smooth, E is smooth. 

Proof. It is well known that smoothness and strict convexity of 

the conjugate space E imply the dual property in the space E , and 

that these two properties are actually dual properties in a reflexive 

space ( [4 , p. 112]) . Furthermore, the conjugate space ( E / A ) * is 

linearly isometric to E * f\ A 0 ( [4 , p. 25] ) . Therefore, if E is 

* * r\ o smooth, E is strictly convex. This implies that E | | A is strictly 

convex. Because ( E / A ) * is linearly isometric to a strictly convex 

space, it too must be strictly convex. Therefore E /A is smooth. 

o * Let A be any two-dimensional subspace of E , and let A be 

the null space of A ° , i . e . , A = ^x e E : x'(x) = 0 for every x ! e A ° } 

Then A has deficiency two and A ° is the annihilator of A. Since 

( E / A ) is linearly isometric to A ° and E /A is reflexive, A ° must 

be strictly convex. Since every two-dimensional subspace of E is 

strict ly convex, E is strictly convex. This implies that E is 

s m o o t h o 

Theorem 2 .3 .8 . Let E be a uniformly convex Banach space, let 

A be a subspace of E , and let A . = fx s E : | | x | | = 1 , x J_ A J . 



27 

Then Aj_ is homeomorphic to the surface of the unit ball of the 

quotient space E/A. 

Proof. If [x] e E/A and ||[x]|| = 1, there exists a unique 

element a , of A, such that I|x - a I I = 1 . Since ||x - a|| > 1 x 7 ' 1 1 x 1 1
 1 1 I i _ 

for all a e A, (x - a x) is orthogonal to A. Let h be the mapping 

of the surface of the unit ball of E/A into Aj_ such that 

h([x]) = x - a x for each [x] e E/A. Clearly h is onto; for if p 

is any unit vector orthogonal to A, then [p] is an element of E/A 

with unit norm and h([p]) = p. Suppose h([y]) = h([x]). Then 

y - a^ = x - a^, y - x = a^ - a, and so [y] = [x]. Hence h is a 

one-to-one mapping of the unit ball of E/A onto Aj_. It is imme­

diately evident that h * is continuous. To see that h is continuous 

and hence complete the proof, let ^ [ x ^ j j , l l x

n l l = >̂ be a sequence 

on the surface of the unit ball of E/A such that lim [x ] = [x] and 

| J x | | = 1. Let y^ be the unique element in [x ] such that l l x ~ Y n 

is the distance from the point x to the linear variety [ x
n]° 

Then lim ||x - y^|| = 0, and so lim | | y^ | | = 1. Since E is uni­

formly convex, Lemma 2.3.2 implies that lim i I x

n " Y n l I = ^ # This of 

course implies that lim x^ = x. It follows immediately that h is 

continuous. 

If E is strictly convex, finite-dimensional, and C = A P i B, 

we see by applying Theorem 2.3.3 to the quotient space E/C that 

there exists some number M such that inf l lx - x || < M for all n. 
I I n i i _ 

Theorem 2.3.9. Let E be a strictly convex finite-dimensional 

normed linear space and let either A or B be a hyperplane. With 
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the previous notation, the sequence of iterates ^ e i t h e r converges 

to a point in A 0 B or repeats after two steps. 

Proof. Suppose A is a hyperplane. Then by Lemma 2 . 2 . 2 , there 

is exactly one linearly independent vector, p, orthogonal to A, and 

if x̂  e B, x 2 " x i = a p ^ o r s o m e s c a l a r Consider the ratio 

x - x 
n + 1 n 

n ||x - x . 
1 n n - 1 

If there exists a k, 0 < k < 1 , such that V < k for all n, we 
n -

see from the proof of Theorem 2 . 3 . 2 that { x

n"} must converge to a point 

in A H B. Otherwise, there exists a sequence • [ n j c | of integers such 

that lim V = 1 . By the method used in the proof of Theorem 2 . 3 . 1 , 

k 

we can find a vector which is orthogonal to both A and B. Since all 

vectors orthogonal to A are scalar multiples of p, p _L B. This 

means that x̂  = x^. 

An immediate consequence of Theorem 2 . 3 . 9 is the following: 

Corollary 2 . 3 . 1 0 . If E is strictly convex and of dimension 

less than or equal to three, the iterates | x

n " | either converge to a 

point in A H B or repeat after two steps. 

2 o 4 , A divergent iteration. The following example shows that 

the prescribed iterations do not always remain bounded - - even when the 

subspaces have only the zero vector in common and the mapping is single 

valued at each step. 

Let 1 ^ be the space of sequences x = (x^) with 
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INI = I | x i | < » , 
i=l 

and let A and B be the smallest subspaces containing the sets 

{^el , e 3 , e 5 ' 0 ° °} a n c * { e 2 , e 4 , e 6 > ° *"} ' r e s P e c t i v e l y , where e^ = 

(1 ,l/2,l/3,..o ,l/n,0,.,.). Under these conditions, we will show that 

PB(e2n-l)
 =

 e2n and
 P H i e 2 n ]

 = e2n+l f o r a 1 1 n ° 
Let M be the set of all sequences m = (rru) with | |m| | = 

sup |m. | . It is well known that the conjugate of 1 is isometric to 
i 1 J-

M and that m' is a continuous linear functional on 1̂  if and only 

if there is an m e M such that 

m !(x) = £ m i x i 

i=l 

for all x e 1̂. For any bounded sequence m, we shall denote by m' 

the corresponding linear functional on 1̂. Thus m = (m..) e M, 

j fmJ j = 1, and m'[A]" = 0 if and only if m has the form m = 

(0,-(2/3)01̂ ,nig,-{4fi)m ,̂m ,̂...), with sup |m̂| = 1. Using this fact 

in conjunction with Lemma 2.2.1, we see that a vector a is orthogonal 

to A if and only if it has the form a = ( 0 , 0 , a 3 , 0 , a ^ , 0 , . . . ) . Simi­

larly, a vector b is orthogonal to B if and only if it has the 

form b = ( 0 , b 2 , 0 , b 4 , . . . ) . Thus, because ^ + (0,...,0,1/(2n),0,..„) 
= e2n> e2n £

 PB̂ e2n-l̂ ' B y t h e S a m e r e a s o n i n 9 >
 e2n+l £

 PÂ e2n̂ " Since 

any point in A is the limit of a sequence of finite linear combina­

tions of e , with n odd, any point in A must be of the form 

(a^,a2,(2/3)a2,a4,(4/5)a4,...), and similarly any point in B of the 
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form (b 1,(l/2)b 1,b 3(3/4)b 3,...). If z e P e^ e2n-1^' t h e n z e B a n d 

z = (z 1,(l/2)z 1,z 3,(3/4)z 3,...). Also z = e ^ ^ + (0,b 20,b 4,0,...) 

because all elements orthogonal to B must be of the form (0,b 2,0,b^, 

0,o..). By comparing the coordinates in this last equation, we see 

that z = © 2 n » This means that = PB^ e2 n-l^» a s ^ m i ^ - a r argument 

shows that e 2 n + 1 = p
A ( e 2 n ) • 

It only remains to show that A f\ B = 0. Suppose w e A 0 B, 

Then by our previous characterization of elements of A and B, 

= ( W l,w 2,(2/3)w 2,w 4,(4/5)w 4,...) = (w 1,(l/2)w 1,w 3,(3/4)w 3,.c). Let 

k be the first non-zero term of the sequence { wj^° Equating like 

terms, and assuming k > 1, we see that w^ = ((k-l)/k)w^ ^. Then 

Wk-1 = ^ w n ^ - c n ^ s contrary to our assumption that w^ is the first 

non-zero term. If k = 1, w 2 = (l/2)w , w 3 = (2/3)(1/2)*^,..., 

w n = ((n-l)/n)...(2/3)(l/2)w 1, and w = (l,1/2,1/3,...). But the sum 

oo 

^ l/n diverges, and so w is not in 1^ unless w^ = 0 for all k. 
n=l 

w = 

w 
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CHAPTER III 

CLOSEST-POINT MAPS AND THEIR PRODUCTS, II 

Let A and B be closed convex sets in a complete inner-product 

space E, and let P A and P^ be their respective closest-point maps, 

i 0 e 0 ? for each x e E let P„(x) be the unique point in K such that 

||x - P^(x)|| = inf ||x - k|| for K = A, B. It is well known that 
K keK 

P is a well defined function in E. In [3], Cheney and Goldstein 

showed that the sequence of iterates ^ ( p
A P g ) n ( x ) | converges to a point 

in A which is nearest to B, in the sense that the distance from 

this point to B is the same as the distance between A and B, when­

ever one of these sets is compact or one set is finite-dimensional and 

the distance between the two sets is attained at some point in one of 

the sets. Their arguments were based on properties of closest-point 

maps in inner-product spaces that are even stronger than the well known 

distance shrinking property: 

||P K(x) - P K ( y ) | | < ||x - y||. 

It can be shown (see e.g, [17]) that the closest-point map exists and 

is single-valued for every closed convex set in a strictly convex normed 

linear space if and only if the space is reflexive. Phelps [18] has 

shown that if the closest-point map shrinks distance for every one-

dimensional subspace of a space which is at least three-dimensional, 

the space is an inner-product space (see our remarks in Chapter I ) . 
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Therefore, any serious generalization of the Cheney-Goldstein results 

to more general spaces cannot be based on the distance shrinking property 

of the closest-point map. In this chapter, we generalize their results 

and show that, for any pair, A and B, of closed convex sets in a 

normed linear space, the sequence of iterates {(P^Pg) 0^ x)^} always 

converges when the space is strictly convex and smooth, and P R 

are continuous, one of the sets is compact, one is strictly convex, and 

there is at most one point in their intersection. We also show that 

their requirement of an inner product could easily be replaced by the 

distance shrinking property. We then show that, in a complete inner-

product space, the iterations converge, not only for a pair of convex 

sets, but for any finite number of them when at least one is compact. 

We conclude by giving a short proof that these iterations always converge 

when the convex sets are subspaces. 

In the following;, E will denote a reflexive normed linear space, 

A and B closed convex sets in E, and P. and P_ the closest-
' A B 

point mapping of E onto A and B. 

Theorem 3 . 1 . If either A or B is strictly convex and A 

and B are disjoint, the distance between A and B is attained at 

most at one point. If C and D are closed convex sets in a reflex­

ive space, the distance between them is attained if at least one of 

these sets is bounded. 

Proof. Suppose that B is strictly convex, x,y e A, x f y, 

and m = ||x - P R ( x ) | | = ||y - P R ( y ) | | = inf ||a - b||. For any 
ae A 
beB 

a, 0 < a < 1, | | (aP R(x) + (l - a)P R(y)) - (ax + (l - a)y) | | < a||PR(x)-x| | + 
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+ (l - ct) | I Pg (y) - y| I = m ° Since the distance from A to B is m, 

the equality sign must hold throughout this last inequality. There­

fore, the line segment [P D(x) ,Pr>(y)] must lie on the surface of B. 
D O 

This contradicts the assumption that B is strictly convex and, thus, 

proves the first part of the theorem. 

Suppose that C and D are disjoint and that C is bounded. 

Let {C

NJ A N D {̂NL ^ e s e c l u e n c e s f r o m C and D, respectively, such 
that lim lie - d I J = m, the distance between C and D. Since the 

i i n n 7 

sequences {C

N1 a n d £ c
n ~ d

n"} a r e both bounded and E is reflexive, 

we may assume that they both converge weakly. Since the difference of 

two convergent sequences must converge, the sequence "{d } must also 

converge. Let lim c^ = c and lim d^ = d. By well known properties 

of weak limits, I|c - d| J < lim ||c - d I I = m. Since C and D 
— 1 1 n n' 1 

are closed and convex,they are weakly closed. Hence c e C and d e D, 

and, therefore, m = |JC - d |J . 

Theorem 3.2. Let E be smooth and strictly convex. If A or 

B is strictly convex and A and B have at most one point in common, 

then the sequence of iterates { ^ A ^ B ^ ^ I c o n v e r 9 e s to a point X Q 

in A if any one of the following conditions hold: 

i) A is compact and P D is continuous, 

ii) A and B are compact, 

iii) A is compact and E is finite-dimensional. 

Furthermore, llx - P _ . ( x ) | | = i n f | | a - b | | . 
0 aeA ' 

beB 

Proof. The hypotheses of either i, ii, or iii is sufficient to 

insure continuity of P A and P R. The straightforward proof will be 
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omittedo Thus, we need only prove the assertion when these mappings 

are continuous and when A is compact. 

Since A is compact, the sequence | ^ ( p ^ p
B ) n ( x ) h a s a conver­

gent subsequence, say | x ^ J , Let X q = lim x^. Then by the continuity 

of P A and P B , lim P B ( x k ) = P B ( X q ) and lim P A P B ( x k ) = P A P B ( x Q ) . 

Because and P R are closest-point maps, lim ||x^ - P R ( x k ) | | = 

lim | |Pg( XJ^) - p
A
p g ( x ^ ) ) I 1 1 a nd> therefore, by the continuity of the 

norm, ||P_(x ) - P.P„(x ) I I = J Ix - P 0(x ) | | . Since E is strictly ' ' 1 B o A B o ' 1 M o B o 1 1 

convex, P.P_(x ) = x . ' A B o o 

Suppose that A and B are disjoint. Then P g ( x
Q ) ^ x

0 ° 

d = | | X Q - P R ( X q ) | | , and let = d(S) + X q be a sphere of radius d 

centered at X q . Then f] B = P R ( X q ) . Hence, there is a hyperplane, 

Hgj containing the point p g ( x
Q ) a n <* supporting both B and d ( S ) + x Q 

and, furthermore, separating these two sets. Using a similar argument, 

we see that there is a corresponding hyperplane H^ containing X q and 

separating d(S) + p g ( x
0 ) from K^. Because of the symmetry and smooth­

ness of S, H^ and must be translates of each other. This implies, 

immediately, that ||x - P R(x )j| = inf | Ja - b||. By Theorem 3.1, 
0 D O A 6 A 

beB 

there is at most one point in A at which the distance between A and 

B is attained. Therefore, the above argument proves that the sequence 

J(P APg) n(x)} must converge to X Q . 

Suppose A and B have exactly one point in common. Let ^ x
n j -

be a convergent sequence of elements from A whose limit is X q . By 

using an argument similar to the one we used in the first part of the 

proof, we see that p
A

p g ( x
0 ) = x

0 ° ^ X q | A f| B, unique parallel 
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hyperplanes H, and PL can be found such that H, contains x and / r ^ 1 2 1 o 

supports A, and H 0 contains PD(x ) and supports B; but this is 
A o O 

impossible because A and B have an element in common. Hence, the 

sequence {^P^g) 1 ^ x ) } must converge to the point contained in both 

A and B. 

Whether all geometric conditions imposed on the unit bal l , the 

separation of the sets A and B, or the strict convexity of at least 

one of the sets is necessary in the hypotheses of Theorem 3.2 is unknown 

to the author. 

In the two-dimensional case, we can prove that the iterations 

behave as expected. We do this in the following theorem. 

Theorem 3.3. Let A and B be any two closed convex sets in 

a two-dimensional strict ly convex normed linear space E. If x is 
any point in E, let x. = P 0 (x ) , x 0 = P.P_.(x), and x = PA(x . ) 7 r ' 1 B ' 2 A B ' n A n-1 

if n-1 is odd or x = P 0(x . ) if n-1 is even. If either A or 
n Bv n-1 

B is compact, then each of the sequences - ^ x

n

: n evenj and ĵ x

n

: n oddj-

converges. 

Proof. Assume that A is compact. Since the sequence jj |x^+^ -

x^| [j is decreasing, i t has a limit, say d. We consider two cases 

depending upon the value of d. 

Case 1. d > 0. Since A is compact, every subsequence of the 

sequence |X2n̂

 n a s a convergent subsequence. If all of these sub­

sequences converge to the same point, a simple argument using the con­

tinuity of Pg will complete the proof. Therefore, suppose {x2n} 

contains two convergent subsequences \^^]

 anc* {/nl* w n o s e l imits, q 
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and r, are not the same. By the continuity of PR, lim Pg(qn) = Pg(q)> 

lim P B ( r n ) = P B ( r ) , and | |q - P B ( q ) | | = | | r - Pg(r) | | = d. We now 

show that the set of limit points of ^ x2n}" f ° r m a continuum. To see 

this , we consider the following modification of Lemma 2 .3 .2 . Given any 

n, there exists a hyperplane containing x 2 n + 2 a n c * s uPP o r" ting 

both A and the set x~ + I |x 0 l 0 - x 0 L 1 | | ( S ) where S is the 
2n+l 1 1 2n+2 2n+l'' 

unit ball of E. Since e A, the line segment ^ T x 2 n

, x 2 n + l ^ m u s"t 

intersect H . Let h denote the point of intersection. Since n n 

lim J|x^ - X

N + ^ I 1 = d > i i m I I n

n ~ x 2 n ^ = ®' ^ e n c e > according to Lemma 

2 . 3 . 2 , lim l l x 2 n + 2 " N

N M = ®' Applying the triangle inequality, we 

HAVE | | X 2 N + 2 - X ^ M < I I X

2 N " H J I + H H

N " x2n+211 * T h u s > l i m 

^ X 2n+2 ~ x 2 n ^ = ^* S e ^ ^ o f ^ m ^ t points of the sequence ̂ x 2 n ^ 

must be closed and bounded. If C is not connected, i t is the dis­

joint union of two non-empty compact sets and C^, and there are 

disjoint closed neighborhoods and containing and C^, 

respectively. Since U contains all limit points of | x 2n}> 

(J D 2 contains all but a finite number of points from the sequence 

{ x 2 n } 9 B u i : ^ n ^ s contradicts the fact that an infinite number of these 

points have to l ie in both and and that lim | | x 2 n ~ x 2n+2^ = ® a 

Hence, C must be a continuum. Now, both the boundary of A and the 

boundary of B are Jordan Curves (or line segments), and, therefore, 

the limit points of the sequence ^ x2 n"} m u s"t form a non-degenerate 

Jordan arc T. By the continuity of the distance function, the distance 

from each point of T to B is d. Furthermore, since the elements 

of the sequence {x2n} a r e d e n s e ^ n ^> "there must be some element, 

say x2k' which l ies in the relative interior of this arc. Therefore 
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' ' X2k ~ x2k+l ~ C' , a n < * iterations terminate which is impossible. 

Case 2: d = 0, Again let ^ x 2 n } D e t n e sequence of iterates 

in A, and suppose that this sequence has at least two limit points. 

Since lim I I x 2 n " x 2 n + 2 ^ = ^' a n a r 9 u m e n t similar to the one used in 

Case 1 shows that the set of all limit points of the sequence ^ x 2 n } 

must be a non-degenerate Jordan arc on the boundary of A. As before, 

some x~, must lie in this arc, and the iterations must terminate at 2k 7 

this point. This completes the proof. 

Because inner-product spaces are the only spaces where closest-

point maps shrink distance for all convex sets, the following theorem 

is only a mild generalization of the corresponding result of Cheney and 

Goldstein, 

Theorem 3.4. Suppose that E is strictly convex and that 

and P R shrink distance. If A or B is compact or if E is finite-

dimensional and the distance between A and B is attained, the 

sequence of iterates ^ P ^ ^ B ^ ^ c o n v e r g e s to a point X q such that 

- P R ( x ^ | = inf ||a - b||. 
ae A 
beB 

o B x o 

Proof. Suppose E is finite-dimensional and the distance between 

A and B is attained at a e A. Using the properties of the closest-

point map, we see that P^PQ^ 3) = a* Since P^ and P g shrink dis­

tance, ||(P APg) n(x) - a|| < ||P AP R(x) - a|| for all n. This implies 

that the sequence { ( P ^ B ^ ^ a s 8 c o n v e r 9 e n t subsequence whose 

limit must be in A because A is closed. This last statement is 

also true if A is compact. In either case, let { x
n ^ ^ e the conver­

gent subsequence and let X q = lim x^. As in the proof of Theorem 3.2, 
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PAPg(xQ) = x q . If the sequence { ( p

A

P 3 ) n ( x ) j * does not converge to x q , 

i t contains a second convergent subsequence whose limit y is not 

equal to x , As was the case with x , P.P 0(y) = y» This leads us M o o' A B 7 7 

to a contradiction. For the distance shrinking property of each of Pft 

and PR implies that we can find disjoint spheres about x q and y 

such that the sequence { ( p

A

p g ) n ( x ) } i £ eventually in each of these 

spheres. 

We now turn our attention to inner-product spaces, and we start 

by proving the following known result. 

Theorem 3 .5 . If K is a closed convex set in a complete inner-

product space E, P is well defined, shrinks distance, and IIP (x) -
IS . IS . 

P K (y)l l = l l x " yll only if | |x - P K ( x ) | | = | |y - P K ( y ) | | . 

Proof. Since i t is known that a complete inner-product space is 

smooth, strict ly convex, and reflexive, our previous discussion of 

Phelp's work implies that the closest-point map exists and is unique 

for each closed convex set. Let x and y be any points in E, and 

let P„(x) and P„(y) be their respective closest-point maps on K. 
I S I s 

Since E is smooth, there are two unique hyperplanes, and H^f 

H. supporting K at P„(x) and H 0 supporting K at P.,(y), whose 

translates through the origin are orthogonal to P„(x) - x and 
is p ^(y) " y> respectively. Since K is convex, the line segment is 

L[ p ^(x) , P^(y)] must be on the side of opposite x and on the 

side of opposite y. By using the symmetry of the inner product 

in a real inner-product space, we see that x must l ie on the side of 

H , the hyperplane containing the point P,,(x) whose translate through 
X K . 
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the origin is orthogonal to the vector P„(x) - P v ( y ) , opposite P,,(y). 
IN. I X IS . 

Similarly, y must lie on the side of H^, the translate of H x 

containing P t,(y), opposite P (x). This implies that llx - yll > 
IN. K 

I|P^(x) - P^(y) I I with equality holding if and only if x e H x and 

y e H . It is now possible to verify that | |Pj^(x) - x| | = | |P^(y) ~ y| 

when the equality holds (an easy method for showing this will be used 

in the proof of Theorem 3.6, and, therefore, will be omitted here). 

Theorem 3.6. Let K^ , I^,... be closed convex sets in a com­

plete inner-product space E, and let P = P., P., ...P., . If for some 
K l K

2 \ 
j , Kj is compact, then lim P n(x) exists and is a fixed point of P. 

If any K. is strictly convex or if, for some j, ||P K (x) - x| | / 

I | P t x (y) " yll for ail x,y, e K , x / y, then the limit is unique. 
j J " 1 

Proof. Suppose, without loss of generality, that is com­

pact. It follows directly from Theorem 3.5 that P shrinks distance, 

and also that ||P(x) - P(y)|| = ||x - y|| only if |\? K ... P (x) 

- P K ... P K (y) | | = | |x - y | | and | |P K .. .P K (x) - P K ...P (x) | | 
j N j N j+1 

= I|P„ ...P,, (y) - P„ ...P u ( y ) I I for all j. Suppose that for 
K j H Kj+1 K N 

some x e , ||P(x) - P (x)|| = ||x - P(x)||. The preceding equalities 

imply that 

P K / . . P K (x) - P
K — P K N

P ( x ) I I = H x " p ( x ) H • 
N 

and that 

...P„ (x) - P ...P„ (x)|| = ||P„ ...P„ P(x) -
Kj+1 

P„ . . . P V P(x, 
Kj+1 \ 
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for all j. 

Consider the quadrilateral whose vertices are x, P„ (x), P(x), 
KN 

and P P(x). The last equalities above imply that ||x - P(x)|| = 
SI 

I | P „ (x) - P P(x)|| and that ||x - P (x)|| = ||P(x) - P P(x)||. 

We will show that x - P(x) = P„ (x) - P P(x), x - P (x) = P(x) - P„ P(x) 
H H K N H 

and that x - P(x) is orthogonal to x - P (x). Assuming that none of 
KN 

these quantities is the zero vector, we note that P„ (x) is the point 
K N 

in closest to x. Hence there exists a hyperplane H^, whose 

translate at the origin is orthogonal to x - P„ (x), which supports 
KN 

K M at P (x). Clearly x and P P(x) lie on opposite sides of H., 
^ N 

and, by the symmetry of the real inner product, x and P„ P(x) lie 

on opposite sides of the hyperplane H containing PV (x), whose 

translate at the origin is orthogonal to V (x) - P P(x). Similarly, 
KN KN 

P(x) and P (x) lie on opposite sides of the hyperplane H + (P P(x) 
K N S 

- P (x)), the translate of H containing P„ P(x). Since llx — P(x) 

\?V ( x) " p u p ( x ) | | , x and P(x) must lie in H and H + (P P(x) 
K N K N H 

- P (x)) respectively, and this implies x - P(x) = P u (x) - P P(x). 
N N N 

It is also evident from this construction that x - P(x) is orthogonal 

to x - P (x). 
K N 

Continuing this process inductively, we see that, for all j, 

x - p(x) = P„ . ..P,, (x) - p ...P„ P(x), a n d t h a t x - P(x) is 
K j K N K j H 

o r t h o g o n a l t o P,, . ..P,, (x) - P,, . ..P,, (x). 
V l H K j KN 
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This implies that 

x - P ( x ) | | 2 = (x - P(x), x - P(x)) 

= (x - P(x), (x - P (x)) + (P (x) 

KN h 
- P„ P„ (x))+ ... + (P 9...P„ (x) 

KN-1 K N 1 KN 

- P(x))) 

= 0 . 
o 

Therefore, either x = P(x) or ||P(x) - P (x)|| < ||x - P(x)||. 

Since is compact, the sequence ^P N ( X)J has a convergent 
2 

subsequence, say {x^ J . Let X = lim X ^ . Then ||p ( X ) - P ( X ) | | < 

LLX - P ( X ) I I = lim LLX - P ( X ) | | < lim I|P(x J - P 2 ( X 
II 1 1 n n 1• — 1' n-1 n-1 

2 

||P(x) - P (x)||, and, therefore, x = P(x). Thus, any convergent 

subsequence of ^P n(x)j> converges to a fixed point of P. As we saw 

in the proof of Theorem 3.4, this implies that the sequence | p n ( x ) J 

converges. 

If K. is strictly convex, then ||P (x) - P K (y)|| < ||x - y|| 

for all x and y. Hence, the same strict inequality holds for P. 

Since the sequences ^ P n ( x ) | and -|pn(y)j must converge to a fixed 

point of P, their limit must be unique. The other assertions of the 

theorem follow immediately from the proof just presented. 

Definition. A set R is boundedly compact if and only if R f\ nS 

is compact for every positive number n. 

Corollary 3.7. Let K^,...,K^ be closed convex sets in a com­

plete inner-product space E, and suppose that O K. is non-empty and 
j = l J 

that at least one K. is boundedly compact. If P = P., ...P , 
J K l KN 
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lim P n(x) exists for all x in E and, furthermore, the limit point 

i s in K.. 
j = l J 

N 
Proof. Let k e f\ K.. Then k is a fixed point of P and 

j=l J 

||p n(x) - k|| < ||P(x) - k|| holds for all n and all x. This implies 

that the sequence j^Pn(x)} is bounded., Since at least one K\. is 

boundedly compact, Theorem 3o6 implies that lim P n(x) e x i s t S o 

To see that the limit of the sequence | p n ( x ) | is in every K., 
n N 3 

we let x = lim P (x) and we let k e r~\ K.. Suppose x i K 0 Then, o I j o T m ' 
J = l 

by what has been established, in Theorem 3.5, 

x - k|I = I|P(x ) - k| I 

= I |P„ . . . V V (x J - k K V 0 

< l|PK .-.PK (x ) - k|| 
Km+1 K N 0 

< llx - k| I , - 1 1 o 1 1 ' 

and this is impossible. 

A simple, but interesting, result of Theorem 3.6, is that inside 

any acute triangle [a,b,c] we may inscribe a unique triangle [d,e,f] 

such that [d,c] is orthogonal to [b,c], [e,f] is orthogonal to 

[a,c], and [f,d] is orthogonal to [a,b]. The points d, e, and f 

may be obtained by the aforementioned iterations. 

If each K\ is a subspace and E is finite-dimensional, Corol­

lary 3.7 implies convergence of the iterates to a point in their inter­

action. However, the restriction of finite dimensionality is not required 

in this case. This was first shown by von Neumann [16] for two subspaces 
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and later shown by Halperin [7] for any finite number of subspaces,. 

We finish this chapter by giving a short proof (the material 

we cite from Fortet's paper is quite brief) of Halperin's theorem,, 

Let P be any linear operator of norm one in a strictly convex 

reflexive Banach space E. Fortet has shown, by using a very clever 

argument, that every element x of E can be written x = y + z 

where y e A = |x e E : x = P(x)j> and z e B = C l | x : x = y - P(y) 

for some y e EJ, and that the set of elements orthogonal to B is 

precisely A. It follows directly from these facts that the sequence 

{pn(x)j converges for every x in E if and only if lim (P n(y) -
n+1 

P (y)) = 0 for every y e E. Using these facts, we can easily 

generalize von Neumann's theorem and arrive at Halperin's theorem. 

Theorem 3.8. Let A^,...A^ be N subspaces of a complete inner-

product space E, and let P^,...,P^, be their respective closest-point 

maps. If P = P^...P , then the sequence |pn(x)j converges to 
p A , n . . . r u K I

( x ) f o r e v e r v x e E -

1 N 

Proof. According to the previous discussion, it is only neces­

sary to show that lim (P n(y) - P n +^(y)) = 0 for every y e E. Let 
y l = V y ) ' y 2 = P N - l P N ( y ) ' " - ' y N = P l P 2 ' " P N ( y ) ' a n d l 6 t Y n b e 

defined for all positive integers, inductively, in the obvious manner. 

Noting that P^ is the orthogonal projection on Ay and using the 
i 2 i 1 2 i 1 2 

Pythagorean law, we see that | |y^ - Yn+-jJ I + lly
n+ill = I II I f ° r 

all n > 1. Summing, we have 

I l|yn - yn+1ll2 • llyjl - am l|yn 

n=l 
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Since | | P | | < 1, the sequence { l l v

n l ( } ^ s monotonically decreasing, 

and, therefore, has a limit. Thus, lim ||y - Y n + 1 ^ = ^' Since 

||p n(y) - P n + 1 ( y ) | | < | | y n N + 1 - y n N + 2 l l + . . . + I l Y ( n + i ) N + i " y (n+ i )N' ' ' 

lim (P n(y) - P n +^"(y)) = 0 as required. 

We now show that lim P n(x) = P
A Q A ^X/" * F ° R E A C N X * N 

1 " * w 
E , let R(x) = lim P n ( x ) . It is clear that R is a linear operator 

and that ||R|| < 1. Now for each positive integer k, R(x) = 
n k n k lim P (x) = P lim P (x) = P R(x); therefore, taking limits, we see 

2 
that R(x) = R (x) and that R is a projection. Suppose R(x) = x. 

Then lim P (x) = x and so P (x) = x. Hence x e 0 . . . 0 A^. Con-
2 2 versely, if P (x) = x, then R (x) = x. So R is a projection on 

the subspace A ^ 0 ...fl A^. Since R has norm one, the results of 

Fortet mentioned earlier imply that the subspace A^ Pi ... 0 A^ is 

orthogonal to R(x) - x for every x e E . Since orthogonality is 

symmetric in an inner-product space, R must correspond to P . H A 1 

I • • , A N 
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CHAPTER IV 

A SOLUTION TO HIRSCHFELD'S PROBLEM 

This chapter gives a negative answer, for all finite-dimensional 

spaces, to a question raised by Hirschfeld in [8]. Let A be a subset 

of a real Banach space E, and let P
A ( X ) = |y e A : ||x - y|| = 

inf j |x - a | |\ . If A is a subspace and E is strictly convex and 
ae A J 

reflexive, then it is well known that P
A ( X ) consists of exactly one 

point (see Chapter II). It follows directly from [16, Lemma 22] that 

if E is a complete inner-product space and A and B are any two 

subspaces of E, then lim (I - P.)(I - P D) . . . (I - P.)(l - P D)(x) = 
A b A b 

(I - p

A + 3 M x ) f ° r a H x i n E o Hirschfeld [8] asked the following 

question: If E is a strictly convex reflexive Banach space and 

lim (I - P A)(I - P B) . . . (I - P A)(I - P B)(x) = (I - P
A + B ) ( x ) for all 

subspaces A and B and for all x e E, is E necessarily an inner-

product space? Klee [13] proved that this is not necessarily true if 

E has only two dimensions. He did this by displaying a rather exten­

sive class of non inner-product spaces which satisfied Hirschfeld*s con­

ditions. As Klee mentioned, the situation in higher dimensional spaces 

could be markedly different. However, we will show that it is not by 

giving a large class of finite-dimensional normed linear spaces which 

are not inner product spaces but which satisfy Hirschfeld's conditions. 

The solution of this problem in the finite-dimensional case is probably 

indicative of the solution in the infinite-dimensional case, but we do 
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not show this. 

Lemma 4 . 1 . Let E be strictly convex and reflexive, and let 

A be a subspace of E. Then p

A ( a + x ) = a + P A ^ ^ 0 r e v e r Y a e A 

and for every x e E. 

Proof. Since | | (a + x) - p

A ( a + x ) | | = J|x — ( p

A ( a + x) - a) | | = 

inf | | (a + x) - y ) | | = inf | |x - (y - a ) | | = inf | | x - y | | , P (x) = 
ye A ye A ye A a 

PA(a + x) - a0 

Lemma 4 .2 . Any subspace of a strictly convex smooth space is 

strict ly convex and smooth. 

Proof. The strict convexity is immediate and the smoothness 

follows easily from the Hahn-Banach theorem. 

Theorem 4 . 1 . If E is any strictly convex, smooth, finite-dimen­

sional space and A and B are any two subspaces of E, then 

lim (I - P A ) (I - PB) . . . (I - P A ) (I - P f i)(x) = (I - P

A + B ) ( x ) for every 

x e E. 

Proof. The proof will be carried out in two parts. 

Case 1: x not contained in the span of A and B. We may write 

x = (x - P

A + R ( X ) ) + a + b where a e A, b e B, and we may assume, 

without loss of generality, that the span of A, B, and z is E where 

z = x - P

A + 3 ( X ) * Note that this makes the span of A and B a hyper­

plane in E. By our choice of notation, i t is necessary and sufficient 

to show that lim (I - P. ) ( l - PD) . . . (I - P.)(I - P D)(x) = z. First 
A i i A r J 

of a l l , we show that the left hand limit of this last equality exists 

and is a scalar multiple of z. To simplify notation, let 
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= ( I - Pg)(x), X g = (I - p

A ) ( x i ) > a n d x

n °e defined induc­

tively in the obvious manner for the remaining positive integers,, The 

sequence { l l x

n l f } " * s monotonically decreasing and, therefore, has a 

limit. Call this limit d. Let ^ X n^ b e a n y S U D s e c juence °f the 

sequence ^ x

n j » Since the sequence ^ x

n " j i-s bounded, it contains a 

convergent subsequence ^Yn"}» We can select the elements y^ so that 

either they are all orthogonal to A or they are all orthogonal to B . 

Suppose, for definiteness, that each y^ is orthogonal to A. If 

y = lim y , i t is an easy matter (see Lemma 2 . 3 . 3 ) to show that y is 

orthogonal to A. Letting D(r,T) denote the distance from the vector 

r to the set T, we have d < D ( Y n + 1 > A ) < D(y ,B) < D(y ,A) for all 

n. Taking limits and using the continuity of D, we have D(y,B) = 

D(y,A). Therefore, y is orthogonal to B as well as to A. Since 

E is strictly convex and the span of A and B is a hyperplane, y 

must be a scalar multiple of z (see Lemma 2 . 2 . 2 ) . Calling this scalar 

p , we have y = p z where, evidentially, p is non-negative. The above 

argument shows that any subsequence of ^ x

n ~] contains a subsequence 

which converges to a non-negative multiple of z . Since the sequence 

{ l l x

n l j | is monotonically decreasing, each of these convergent sub­

sequences must converge to p z . This, of course, implies that lim x ^ = p z , 

It only remains to show that p = 1 . 

Using Lemma 4 . 1 and the notation introduced above, we see that 

x ^ = z + a - P g ( z + a ) 

x 2 = z - PR(z + a) - PA(z - P B(z + a)) 
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x 3 = z - P A ( z - P B ( z + a)) - P B ( z - P A ( z - P B ( z + a))) 

x 4 = z - P B ( z - P A ( z - P B ( z + a ) ) ) - P A(z - P B ( z - P A ( z - P B ( z + a ) ) ) ) . 

Continuing this process inductively, we note that x^ = z - - a^ 

where a^ e A, and b^ e B. Since the sequence ^ x
n~| i s bounded, the 

sequence (̂ â  + b^j is bounded. Thus, if lim (a^ + b^) f 0, we can 

find a convergent subsequence J^a^ + b^ *| of the sequence 
( an + b n ) 

such that lim (a + b ) = c / 0. Then lim x = z - c. Recalling 
n k n k n k 

that lim x = p z , we see that p z = z - c or c = z(l - p ) . Because 
n k 

c is in the hyperplane spanned by A and B, and z is orthogonal 

to this hyperplane, the last equality implies that p = 1 and c = 0. 

This is a contradiction: therefore, lim (a + b ) = 0 and lim x = z. 
n n n 

Case 2: x is contained in the span of A and B. This assump­

tion, of course, implies that all x^ are contained in the span of A 

and B. We assume that E is the span of A and B. Since (I - P
A + R ) (x) 

= 0, we need only show that lim x^ = 0. 

Let A x = ^y e E : y i A and | |y| | = lj and let Bj_ = 

|y E E : yj_ B and | |y| | = lj . Since E is smooth (by Lemma 4.2) and 

x is contained in the span of A and B, A ^ f l B ^ is the empty set. 

Furthermore, both Aj_ and Bj_ are compact-both of these sets being 

closed by Lemma 2.3.3. Hence there exists a number k, 0 < k < 1, 

such that D(y,B) < k for all y e Aj_ and D(y,A) < k for all 

y e Bj_. By Lemma 2.3.4, P A and P B are homogeneous. Therefore, 

for any scalar a, ||(I - Pg)(ay)|| < k||ay|j for every y e Aj_ and 

||(I - P ))ay)| | < k | | a y | j for every y e B . This implies that 
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| | x

n + 2 N 1 K I I X

N I I * Since 0 < k < 1, lim = 0 as required. 

The above method is not directly applicable to the analogous 

infinite-dimensional problem. The main obstacle seems to be the lack 

of weak continuity of the distance function D. However, it seems 

likely that one can circumvent this difficulty and show that all uni­

formly convex smooth Banach spaces satisfy Hirschfeld's conditions. 
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CHAPTER V 

ON CHENEY'S PROBLEM 

In [15], Cheney asked the following question: If A is a sub-

space of finite-dimensional real Euclidean space E^ (the space of all 

real n-tuples) and is the best approximation of some vector x in 

A in the 1 norm, i.e., llx — x IF = inf I J x - a|| , what can be 
P 1 1 P M P asA P 

said about the sequence { Xpj? * n t n e following, we show that this 

sequence always converges when A is either a hyperplane or a line as 

well as when the 1 O T approximation is unique. The fact that the sequence 

always converges for hyperplanes and lines implies, immediately, that 

all of these sequences converge in E^. 

Theorem 5.1. Let A be any subspace in E^ and x any element 

in E^. If XP is the best approximation of x in A, then x^ is 

a continuous function of p for 1 < p < °°. 

Proof. Let p^ be any real number greater than one, and let 

j p ^ be any increasing sequence with limit equal to p Q . Since p^ < p Q , 

J I x - x || > I Ix - x || > I Ix - x || > I Ix - x || . From 11 p 1 ip _ 1 1 p 1 ip _ 1 1 p 1 ip _ 1 1 p 1 ip 
*o k r k "K ^k *o ^ 0 o 

the definition of the 1 norm, it is clear that lim I J x - x || = 
P P 0 " P k 

I Jx - x || . Hence, these inequalities imply that lim | Ix - x | J 
I I P 1 ip ~» R ' ' I p, 'p 

•o *o *K r o 
I 1x - x I I . Noting that the unit ball in 1 is strictly con-1 1 p 1 (p p 

^o * 0 r O 

vex, we see by Lemma 2.3.2 that lim x = x . Now suppose that 
P k p o 

.fp^ is a decreasing sequence with limit p Q , and that fx \ is 

the corresponding sequence of best p-th approximations. Since 
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1 1 X - X 1 1 ™ < l l x _ x I I < l l x _ X

1 I L > l l x I L < l l x " x T I I I + I lxl L > 
I I p i l o o — i i p l i p _ _ l i 1 1 1 1 7 I I p i l o o — I 1 M 1 I I I l o o » 

and, therefore, the sequence " J is bounded,, Thus suppose, without 

loss of generality, that the sequence J ^ x ^ " J converges. Noting that 
| I X - X | | > I I X - X | | > I J X - X |L > I I X - X | | > 

Pk Po P o p o - p o p k - p k p k -
I I x - x || for r > p^, we see, by taking limits and letting 

^k r 

lim x = y, that llx — yll > I l x - X I I > I f x - y|| . Letting p. 7 7 1 ' p — p 1 'p - 1 ' 7 M r r 

*K K o K o *o 
r approach p , we have | | x - y | | = | | x - x || . Again the 

0 1 0 o ^o ^o 
strict convexity of 1 implies that y = x . The above discussion, 

^o ^o 

combined with the fact that the set of best approximations is bounded, 

implies that the mapping is continuous. 

Theorem 5.2. If H is a hyperplane in E , then lim x exists, 
" n p - * o o P 

Proof. Let a = (a.,...,a ) be the outward normal of H. Fortet 1' 7 n 

[6] showed that any vector y = (y^y•»»yY^) orthogonal to H, in the 

1 sense, must satisfy 
P 

T l Y k l P " 2 Y k

a

k

J = 0 f°r j = l , . . . , n - l 
k=l 

where a J = ( a ^ , . . . , a ^ ) , j = l,...,n-l, are any n-1 linearly indepen­

dent vectors spanning H. Since any solution of the linear homogeneous 

system 

must be a scalar multiple of the vector a, 
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! y k ' P ~ 2 y k = m a k f o r k = l > " a > n 

for some constant m. Assuming that m = 1, and solving, we see that 

y k = (sign a
k) I a

k Î "̂̂  • 

From this, it is clear that lim y, = (sign a.) lim |a. ^ , and 
p c o K P ~* 0 0 

that lim y, exists. The theorem follows directly from this and the 
p 0 0 K 

fact that the lengths of the vectors x - x^ approach a common limit 

in the 1̂  norm. 

We remarked earlier that we would prove that the sequence ^x ĵ 

always converges when the 1 approximation, x^, is unique. Since 

we have indicated in Theorem 3 .1 that the sequence £x^j is bounded, the 

convergence of £x "j follows, immediately, from the fact that 

I lx " *J loo < I lx ' xpl loo < I lx " x

pl lp < I lx " >U lp and that 
1im I lX - >U L = I lX - *J loo' p -> 0 0 H 

Theorem 5.3. If A is a one-dimensional subspace of E , then 

lim x exists, 
p -» 0 0 P 

Proof. Instead of the stated problem, we consider the equivalent 

problem of approximating the zero vector in a linear variety B which 

is a translate of A, and we assume, without loss of generality, that 

min ||b|| = 1. The proof will be by induction. For n = 1, the result 
bsB 

is trivial. In E ^ , the problem is easily handled; for either the set 

| X p | consists of a single point or x^ is unique, and, if x^ is 

unique, the remarks preceding this theorem imply that lim x exists. 
p - » o o P 
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Suppose the theorem holds in E, , k = l,...,n-l. Let S , 1 < k < n 
K p 

and 1 < p < °°, denote the unit 1 ball in E, , and let d = - - p k p 
inf jjbj| . If B H S n consists of a single point, lim x exists, 
be B D °° p ->°° P 

If not, B must lie in a linear variety, C, generated by one of the 

faces of S J 1 . C must be of the form C = £(a^,...,a ) : for each k, 

1 < k < n, is either identically one, identically minus one, or 

takes on all real valuesj. Let 1^ = |k: = lj and - | l , c , n j 

- I p and let the dimension of C be c, Then it is easy to verify 

that (d S ) Pi C is a multiple of the unit ball S centered about p p y p 

the n-tuple p = ( p 1 , . . . , p n ) , p.. = 1 if j E I } and Pj = 0 i f 

j e I ^ T and tangent to B. Conversely, if dS^ is any multiple of 

the unit 1^ ball in C which is centered at p and tangent to B, 

dS is the intersection of (d S ) with C. Therefore, the sequence 
P P P 

jx^j of best approximations of zero, in B, in the n-dimensional space 

E^, is the same as the sequence of best approximations of p, in B, 

in the c-dimensional space C. Since c is less than or equal to 

n-1, our induction hypothesis implies that this latter sequence con­

verges, thereby, completing the proof. 

Combining Theorem 5.2 and Theorem 5.3, we have the following: 

Theorem 5.4. In two- or three-dimensional real Euclidean space, 

lim x exists. 
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