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SUMMARY

The efficiency and operating envelope of rotorcraft are constrained by the speed of the

rotor. Most helicopters operate at a constant rotor speed. Varying the speed of the rotor

based on the operating condition could significantly improve the rotor’s performance. In

this study, a hingeless rotor model with elastic blades is built in Dymore to study various

aspects of Variable Speed Rotor (VSR) technology. The rotor blades are modeled as one-

dimensional beams using state of the art beam theory known as the geometrically exact

beam theory (GEBT). An unsteady aerodynamics model with dynamic stall and finite-state

dynamic inflow is used to obtain the aerodynamic loads acting on the rotor. The power

savings that can be achieved at various advance ratios by varying the speed of the rotor

is evaluated. Maximum power savings of 41.47% was achieved at µN = 0.2. However,

changing the rotor speed leads to vibration issues when a rotor passes through a resonance

point. A methodology to identify the important resonance points for a given flight condition

and rotor speed transition is also provided. The forces acting on the rotor blade during

resonance crossings at different advance ratios is evaluated. It is found that the amplitude

increase during resonance crossing is strongly dependent on the amplitude of the cyclic

pitch angles during resonance.

Load reduction studies were carried out by varying the transition time, structural damp-

ing, and lag stiffness of the blade. The longer the rotor took to traverse a resonance re-

gion, the greater were the resonance loads. However, there were torque limitations on how

quickly a rotor can pass through resonance. Increasing the structural damping was a very

effective way of reducing the resonance loads. Increasing the lag stiffness of the rotor

blade deteriorated the torque response due to 4/rev crossings. Combination studies were

performed by combining the ideal transition times with 7% lag damping. A moving mass

system called as the Anti-Resonance System (ARS) was conceptualized and modeled in

Dymore. The ARS system was able to effectively move the resonance points out of the

rotor operating range.

xxx



CHAPTER 1

INTRODUCTION

1.1 Motivation

Rotorcraft’s efficiency and operating envelope is limited by constant speed of the main

rotor. Most of the engine power is utilized in spinning the main rotor. Optimizing the ro-

tor speed for different flight conditions could significantly reduce the power consumption.

Changing the rotor speed during flight could lead to aerodynamic, control and predomi-

nantly vibration problems. Care should be taken while varying the rotor speed as it should

not affect the aerodynamic performance profoundly otherwise it could lead to loss of alti-

tude and speed. Stability of the helicopter should also be maintained and vibratory loads

should be minimized during rotor speed change to increase the fatigue life of the blade and

other helicopter components.

Historically, Variable Speed Rotor (VSR) technology has been implemented and tested

in a few aircraft to achieve different performance goals. V-22 Osprey has a tilt rotor system

which allows the aircraft to switch between helicopter mode and airplane mode, as shown

in Figures 1.1 1 and 1.2 2, respectively. The rotor speed during airplane mode, 333 RPM, is

about 19% lesser than in helicopter mode, 413 RPM.3 In the airplane mode the rotors are

slowed down as lift is provided by wings and the rotors are only needed to overcome the

drag force of the aircraft.

Sikorsky’s XH-59, shown in Figure 1.3 4, utilized the VSR technology to achieve high

forward speeds. XH-59, which made its first flight in 1973, had two coaxial counter-

rotating main rotors. This main rotor configuration primarily utilized the advancing sides to

1https://en.wikipedia.org/wiki/Bell Boeing V-22 Osprey
2https://www.youtube.com/watch?v=hUNJTAybCQQ
3https://www.globalsecurity.org/military/systems/aircraft/ostr.htm
4https://en.wikipedia.org/wiki/Sikorsky S-69
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Figure 1.1: V-22 Osprey in helicopter mode. Figure 1.2: V-22 Osprey in airplane mode.

provide the necessary lift during high speeds, eliminating the limitations due to retreating

blade stall that are common in conventional rotors. Hence, this was called the Advancing

Blade Concept (ABC) rotor system. The aircraft had auxiliary turbojet engines to provide

the required forward thrust so that the rotors can be used only for generating lift. The rotor

could be slowed to a minimum of 78% of its nominal speed, 345 RPM, to prevent the air

velocities from reaching transonic speeds on any part of the rotor. This combination of

turbojets and slowed rotor allowed the aircraft to achieve high forward speeds. According

to Ref. [1], slowing the rotor down further was not possible due to high loads on the rotor

head.

Figure 1.3: XH-59 demonstrator aircraft built for the U.S army.

2



Another experimental VSR helicopter, which was based on the XH-59 design, was the

Sikorsky X2 demonstrator [2]. X2, Figure 1.4 5, used the same ABC rotor system concept

from XH-59 while the turbojets were replaced by a single pusher propeller to provide thrust.

Rotor speed was varied from 446 RPM to 360 RPM at speeds in excess of 200 knots. X2

was able to achieve a record speed of 250 knots (290 mph or 460 km/h) in level flight. The

slowed rotor ensured that the rotor tip speed was maintained below a Mach number of 0.9.

Figure 1.4: Sikorsky X2 demonstrator.

Lockheed’s XH-51A, which took its first flight almost seven years before XH-59, also

varied the main rotor speed in modest quantity. XH-51A was also a compound helicopter

with a single main rotor, a tail rotor, wings for additional lift and a jet engine for additional

thrust. XH-51 is shown in Figure 1.5 6. The rotor speed variation was limited between

90% and 100% of nominal rotor RPM [3]. With the slowed rotor, the helicopter was able

to achieve a level flight speed of 223 knots (257 mph or 413 km/h).

Eurocopter, now known as Airbus Helicopters, also built a compound helicopter with

variable speed rotor. This experimental helicopter was called X3. X3 has no tail rotor, the

main rotor torque is countered by two tractor propellers with different pitch settings. The

propellers are fitted at the end of small wings placed between the main rotor and passenger

5http://www.blueskyrotor.com/performance/datasheet/Sikorsky/X2-X2
6https://alchetron.com/Lockheed-XH-51
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Figure 1.5: Lockheed’s XH-51A compound helicopter.

cabin as shown in Figure 1.6. The rotor speed was reduced by 15% to achieve high speeds.

This compound helicopter achieved a speed of 255 knots (293 mph or 472 km/h) in level

flight, breaking the previous record set by X2.

Figure 1.6: Eurocopter X3 in flight.

Apart from achieving high speeds, VSR technology has also been used to reduce heli-

copter noise. Bell offers a ’quiet cruise’ option for its modified 407 models. During this

mode, the main rotor is slowed down to 92% 7 rotor rpm using a control system during

cruise to keep the noise level down. This was done to mitigate the noise level while flying

7https://www.ainonline.com/aviation-news/business-aviation/2012-10-30/bell-delivers-two-407gxs-tourist-operations
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over urban areas, national parks and other noise restricted zones. Barlow et al. [4] describe

an experimental OH-6A helicopter, predecessor of MD 500, which was shown to have re-

duced noise levels in hover and forward flight when the main rotor speed was reduced to

67%. Airbus H135, H145, H175 and H160 helicopters also have a control system that

lowers the speed of the main rotor as they fly close to the ground.

Besides the above stated speed and noise advantages, significant power savings can also

be achieved using VSR as mentioned at the beginning of this chapter. Very few technology

demonstrators have been built as proof of concept. Of which, A-160T was the most signif-

icant and popular one, Figure 1.7 8. A-160T was an autonomous unmanned aerial vehicle

helicopter. A-160T uses Optimum Speed Rotor concept [5] where the rotor angular speed

is varied until an optimum blade loading is achieved for a given flight condition. This opti-

mum blade loading scenario minimizes the power required to operate the rotor and hence,

improving the performance efficiency. The rotor speed could be varied from 140 RPM to

350 RPM using a two-speed transmission system. A-160T was able to hover out of ground

effect at an altitude of 20, 000 ft (3.78 miles or 6.09 km) and demonstrated long endurance

flights up to 18.7 hours.

Figure 1.7: A-160T UAV helicopter with optimum speed rotor.

Carter PAV is a compound helicopter which has demonstrated the power advantages of

8https://en.wikipedia.org/wiki/Boeing A160 Hummingbird
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a slowed rotor [6, 7]. Carter PAV helicopter, shown in Figure 1.8, takes off with a pow-

ered rotor operating at 370 RPM until it attains enough forward speed. Once the helicopter

reaches enough forward speed, the rotor is declutched from the engine, tilts back and op-

erates as an autogyro at 100 RPM. Most of the lift is then produced by the wings. The

company claims to have achieved considerable power savings by slowing the rotor. Carter

PAV is set to be modified as an electric vehicle for urban air mobility.

Figure 1.8: Carter PAV.

Hence, variable speed rotors can be used to attain considerable noise, speed and power

improvements in helicopters. However, varying the speed of the rotor comes with its own

set of problems. Rotors are usually designed to operate far away from their structural

resonance frequencies to ensure safe operation and long fatigue life. However, changing the

speed of the rotor means that the rotor might be needed to operate through these resonance

conditions. Significant vibration and stability problems could occur when a rotor natural

frequency coincides with the rotating angular frequency (or an integer multiple of angular

frequency) of the rotor leading to a resonance condition, which is usually associated with

an increase in amplitude of deflections and forces. Understanding the characteristics of

such resonances while varying the rotor speed is vital in mitigating their effects. Therefore,

this study involves building a comprehensive rotor blade model that can capture the physics

of a variable speed rotor accurately, carefully analyze the problems associated with varying

the rotor speed and provide solutions to the identified problems.
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1.2 Literature Survey

1.2.1 Variable Speed Rotor (VSR)

Literature survey showed that only a few studies have been done to show the advantages of

a variable speed rotor. Patent by Karem [5] explains the concept of optimum speed rotor

and power advantages it provides. This patent explains the construction of rotor blade that

is suitable for wide rotor speed change without running into vibration issues. The patent

claims that having a very stiff lightweight rotor removes any structural issues that could

arise from operating at or close to rotor excitation frequencies. CAMRAD II was used to

analyze the power benefits that could be obtained for two weight cases, 1400 lbs and 2600

lbs. A maximum of 70% and 45% power savings were evaluated at low speeds for low

and heavy weight cases, respectively. However, the results of vibration analysis were not

shared in this patent. Rotor speed was varied from 40% to 100% of maximum rotor speed

in this study.

Prouty [8] discusses the benefits a VSR could provide with regards to hovering out of

ground effect (HOGE), maximizing endurance, maximizing range and attaining maximum

speed using full engine power. A quantitative analysis was carried out for the example he-

licopter in his textbook [9] with VR-7 airfoil. Maximum Figure of Merit value, which is a

measure of rotor efficiency in hover, was found to be located at different rotor RPM values

for different altitudes. Specific endurance, hours per pound of fuel, was computed using

the fuel flow rate for the engine at different forward speeds, rotor RPM and altitudes. Max-

imum specific range, nautical miles per pound of fuel, was computed and these rotor RPM

values were found to be considerably higher than the maximum specific endurance rotor

RPM values. Significant improvements in the maximum forward speed with the available

power was also demonstrated by changing the rotor speed, especially at high altitudes. The

author also discusses why a rotor dynamics engineer would be frustrated with the idea of

changing the rotor speed. Rotors are typically tuned to operate at a safe distance from their
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resonance frequencies. Varying the rotor speed would force them to operate through these

resonance frequencies, which could lead to an increase of vibrations in the rotor and other

helicopter components.

Steiner et al. [10, 11] have investigated the main rotor power reduction that could be

obtained for a rotor similar to UH-60 Black Hawk helicopter from ±15% variation in rotor

RPM. The study models a four-bladed fully articulated rotor system with rigid rotor blades

having only flap degree of freedom. Rotor speed change was assumed to be achieved by

changing the engine speed and not through transmission mechanism. Hence, the rotor

speed variation was assumed to be only within ±15% from the baseline of 260 RPM. It

is mentioned that large RPM variations could be achieved through a variable transmission

mechanism.

Aerodynamic loads were evaluated from blade-element theory including Prandtl tip-

loss correction. Three different gross weights, 16, 000 lbs, 18, 300 lbs and 22, 000 lbs, and

four different altitude conditions, sea level, 4000 ft, 8000 ft, and 12, 000 ft, were considered.

For a given gross weight and altitude, the vehicle was trimmed as a function of airspeed,

altitude and rotor RPM using iterative procedure and power required was estimated. At sea

level, changing the rotor speed to 220 RPM from base line of 260 RPM led to a maximum

main rotor power reduction of 17% for 18, 300 lbs gross weight. This maximum power

reduction was achieved for a forward speed between 100 − 120 knots. Power reduction

decreased with increase or decrease of forward speed and with increase in altitude. Only

5.5% maximum power reduction was achieved at an altitude of 12, 000 ft. For a lower

gross weight of 16, 000 lbs, 18% reduction at sea level and 8.5% reduction at 12, 000 ft was

achieved. A higher gross weight of 22, 000 lbs only had 8% reduction at sea level and 1%

at 8000 ft. Low gross weight case was shown to have higher power reduction potential than

high gross weight case. The power reduction also reduced with increase in altitude. High

gross weight of 22, 000 lbs did not have any power reduction at 12, 000 ft, but an increase

of rotor RPM from the baseline allowed flight at forward speeds which were not possible
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with the baseline RPM. Hence, [10] also demonstrated the flight expansion capability of

VSR.

Mistry and Gandhi [12] studied the effect of performance improvement that can be

obtained from VSR and variable radius rotor combination. Earlier research on variable

radius rotor technology is discussed in [13]. Linden et al.[13] examined a telescoping rotor

with jack-screw mechanism, an in-plane folding rotor and a thin rolling rotor blade designs

to achieve variable radius. The authors of [12] assume that the rotor radius could be varied

by an actuated jack screw mechanism or through spring extension based on centrifugal

force [14, 15]. A section of the rotor blade is stowed inside a fixed section which has a

longer chord than the stowed section. The stowed section could slide out using one of the

mechanisms described by the authors. The rotor radius and RPM are varied independently.

The rotor RPM is varied ±11% from baseline RPM, and rotor radius is changed +17%

to −16% from the baseline. The rotor used in this study is similar to UH-60A helicopter

rotor model used in [10]. Power definitions used here are taken from [16]. Total power

required is a combination of induced power, profile power and parasite power. Reducing

the rotor RPM could increase the induced power, but it also reduces the profile power and

hence, providing an overall decrease in total power. Parasite power plays a minimal role

according to the authors.

The power reductions obtained through VSR alone are similar to the results obtained

in [10] discussed previously. Varying the radius alone led to a maximum of about 8%

power reduction for a gross weight of 16, 000 lbs between 100 knots and 140 knots. This

was achieved by reducing the rotor radius 10.5% below baseline at sea level. The power

reduction for the same gross weight dropped to a maximum of 3% at 12, 000 ft and the

rotor radius was increased by 6% to achieve this. The power reductions were dropped

further for a gross weight of 18, 300 lbs. However, for a high gross weight of 24, 000 lbs

a maximum of 20% power reduction was obtained with 12% increase in rotor radius at

12, 000 ft. Higher power reductions were achieved with a combination of variable speed
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and variable radius rotor. A maximum power reduction of about 14%, 16% and 30% were

achieved for 16, 000 lbs, 18, 300 lbs and 24, 000 lbs, respectively, at various altitudes. This

study showed that combining VSR with other technologies could prove to be beneficial in

improving helicopter’s performance.

DiOttavio and Friedmann [17] performed studies specific to A-160T to quantify the

benefits of an optimal speed rotor. The rotor speed was varied from 100%, 395 RPM, to

56% in this study. Two vehicle weights, 5000 lbs and 3000 lbs were considered. Minimum

RPM reduction of 56% was achieved for 3000 lbs vehicle at hover, which provided 30%

reduction in power required. While a 5000 lbs vehicle only allowed for 70% reduction

in RPM and 13% reduction in power at hover. Hence, lower weights allowed for greater

power reduction, which was also seen in previous studies. Increasing the forward speed

and altitude also limited the RPM change to ensure that the rotor doesn’t stall completely.

Improvement in specific range and endurance due to VSR was also shown in this paper.

The specific range and endurance were increased by 20% and 32%, respectively, for the

low weight vehicle. Optimum rotor speed also increased the HOGE ceiling. Both vehicles

saw an increase in their maximum HOGE altitudes; 8% for 3000 lbs and 15% for 5000 lbs.

However, this study doesn’t include any comprehensive blade model or trim procedures.

As mentioned earlier, VSR system comes with its own set of challenges. Vibration

problems being a major concern. One of the first comprehensive study on VSR vibration

was carried out by Han and Smith [18]. In this paper, the authors analyzed the resonance

crossing of a flexible rotor blade during angular speed change. The study considered a four-

bladed hingeless rotor with uniform cross-sectional properties. Moderate deflection beam

theory [19] with flap, lead-lag and torsional deformation was used for structural modeling

of the rotor blade. Quasi-steady blade element theory with three-state dynamic inflow was

used for aerodynamics modeling. In order to study the resonance crossing, the rotor speed

was changed from 180 RPM to 240 RPM. During this speed change, the first lag frequency

of the rotor coincides with the second multiple of rotor angular frequency, 2/rev resonance.
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This led to a sharp increase in lead-lag bending moment amplitude at the rotor root. The

rotor torque showed an increase in peak amplitude during resonance crossing. The study

showed an increase of lead-lag moment with increase in flap deflection due to Coriolis

effect. The time taken to cross this resonance region had a significant effect on blade forces

and moments.

The authors showed that a dissimilar rotor blade, with mass distribution 5% less than

the regular blade in a small segment of length, could drastically increase the peak torque

of the rotor during resonance crossing. In an effort to reduce the loads during resonance

crossing, the structural damping of the rotor blade was increased from 1% to 5%. The lead-

lag peak to peak moment was decreased by 64.9% due to this increase. Even though this is

a comprehensive study, there are several factors that the authors have not considered. The

resonance crossing point and direction were chosen arbitrarily. The resonance loads study

was performed only at an advance ratio of 0.3. The direction of resonance crossing, i.e.,

180 to 240 RPM or 240 to 180 RPM, could have an effect on resonance loads according to

Nayfeh and Mook [20] if non-linear resonances are involved, which was not investigated

here.

Additional efforts were made by Han et al. [21] to reduce the loads during resonance

crossing. A fluidlastic damper was used here to reduce the lead-lag moment of a stiff in-

plane rotor. The damper was placed close to the tip of the rotor blade as stiff in-plane

blades have low deformations at the root. The parameters of the fluidlastic damper, such

as the tuning mass, tuning frequency, primary mass, tuning port area ratio, and loss factor,

were chosen to reduce the lead-lag loads during the 2/rev resonance crossing. The damper

was embedded chord-wise at the blade tip. Based on the assumptions made by the author,

a maximum lag damping of 8% was obtained using this damper. Lead-lag moment loads

were reduced by 65% by tuning the damper to 2/rev frequency. Han and Smith [22] also

describe an embedded chord-wise damper to reduce lead-lag loads. However, the damper

used in [22] was a simple mass-spring-dashpot system and no variable rotor speed was
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taken into consideration. Most of the initial work by Han et al. on variable speed rotors is

summarized in a technical report by DeSmidt et al. [23]. The report also talks about the

design of a transmission system for variable speed rotors.

Han and Barakos [24] studied a variable speed tail rotor in association with a variable

speed main rotor. Tail rotors were noted to consume 10 − 20% of total power historically.

Previous studies have shown that varying the main rotor speed changes the rotor torque.

An increase in rotor torque needs an increase in tail rotor thrust to trim the helicopter. If the

tail rotor speed follows the main rotor speed, then the power savings obtained were found

to be limited in this study. Lower tail rotor speeds were also found not to provide enough

thrust needed to trim, especially in hover. Changing the tail rotor speed independently of

the main rotor proved to be more effective. A maximum power saving of 30% over the

baseline tail rotor power was evaluated in cruise condition.

Wind-tunnel testing of a variable speed rotor was performed by Berry and Chopra [25]

to quantify the performance improvements and vibratory loads of a four-bladed rotor with 6

ft diameter. A maximum advance ratio of 0.64 was achieved by reducing the rotor speed by

35%. The vertical and longitudinal fixed-frame hub loads were measured. The 4/rev loads

were found to be dominant and were seen to reduce with decrease in rotor speed. Bowen-

Davies and Chopra [26] performed power, trim and load analysis of a UH-60A helicopter

rotor system using UMARC, a rotorcraft comprehensive analysis code. The power savings

obtained were similar to previous studies. The vertical hub loads were observed to decrease

with reduction in rotor speed while the in-plane loads increased. The study claims that this

is due to increase in stall region due to decrease in rotor speed.

Datta et al. [27] conducted a full-scale testing of a UH-60A rotor system. The tests were

carried out in a 40×50 ft wind tunnel at 100%, 65% and 40% rotor speed. The tests revealed

that the unsteady loads or dynamics loads acting on the rotor blades are significantly larger

on the slowed rotor than on nominal speed rotor at high forward speeds. However, these

load increases were not revealed by only looking at the hub loads. Nonetheless, the 4/rev
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hub loads reduced by at least 50% for lower rotor speeds, which is consistent with previous

studies.

In order to improve performance of VSR and reduce rotor loads, Han et al. [28] com-

bine VSR with active twist blades. The twist of the blades was changed based on flight

condition. This study was performed for a four blade articulated rotor similar to UH-60A

and a rigid rotor blade model was used. The rotor speed was varied only 10% from base-

line and blade twist was varied from 0 deg to −16 deg. Varying the rotor speed was shown

to have higher power saving capabilities than varying the blade twist. However, combin-

ing these two technologies provided a maximum power saving of 20.9% at cruise speed

as opposed to 17.8% using only variable speed rotor. Flap and lag loads at the blade root

followed the subsequent trend. Reducing the rotor speed decreased the 1/rev and 4/rev

loads while increasing the 2/rev and 3/rev loads. On the other hand, increasing the blade

twist reduced the 2/rev and 3/rev loads while increasing the 1/rev and 4/rev loads. How-

ever, all torsional loads increased with decrease of rotor speed. Reducing the blade twist

reduced the torsional loads in general. Hence, with the combination of variable rotor speed

and twisted blades the authors believe that load reduction could be achieved. Resonance

transition studies were not performed here.

In [29], an isolator was used to reduce the loads transferred to the pitch link. The 4/rev

pitch link load was seen to increase with increase in forward speed and reduction in rotor

speed. The author in this study describes a variable frequency fluidlastic isolator that can

change its tuning frequency based on the rotor speed. Using this isolator the 4/rev pitch

loads were reduced by 87.6% when the rotor speed was reduced by 16.7%.

1.2.2 Rotor Blade Modeling

Rotor blades are slender structures that have one dimension larger then the other two.

Hence, they are usually treated as one-dimensional beams for modeling purposes. Beam

models vary in complexity based on the kinematic and kinetic assumptions, which deter-
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mine the accuracy of results.

Euler-Bernoulli beam theory [30] is a classical beam theory that dates back to 1750.

This theory assumes that the cross-section remains perpendicular to the reference line upon

deformation. Even though shear deformations are not taken into consideration, the theory

provides good approximations to many engineering problems. Hence, it is widely used for

preliminary calculations. However, Euler-Bernoulli beam theory over estimates the natural

frequencies and the kinematic assumptions do not hold good for non-slender beams.

Rayleigh beam theory [31] builds on the Euler-Bernoulli assumptions by taking into

account the rotation of the cross-section. The natural frequency prediction was greatly im-

proved by including the rotary inertia effects. Timoshenko [32, 33] included shear defor-

mation in addition to the rotary inertia effect in his beam theory. A significant improvement

in accuracy was observed for non-slender beams and also for natural frequencies of higher

modes. Formulations for all the above mentioned beam theories, their solution techniques

and difference in results are discussed in detail in [34]. A detailed history of developments

in beam theory is given by Love in his famous book on elasticity [35].

However, helicopter rotor blades undergo significant deformation in flight due to the

aerodynamic loads. Rotor blade aeroelasticity is a well known non-linear problem and

appropriate blade models should be used to capture the non-linearities. Hence, more so-

phisticated models are required than the simplistic beam models described above. Signif-

icant amount of work has been done since the 1950s on developing beam models that are

suitable for both isotropic and composite rotor blades. The response of a helicopter rotor

blade could also coupled between axial, bending and torsional deformations. Therefore,

blade models should also permit such behavior in their formulations. The rotorcraft blade

models developed over half a century also vary in their ability to capture large deformations

accurately. If we were to classify popular rotor blade beam theories based on their ability to

capture deformation, one could classify them into pre-moderate-deflection beam theories,

moderate deflection beam theories and large deflection beam theories. These theories will
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be introduced at appropriate locations in this section. Any theory introduced before moder-

ate deflection theories should be considered under pre-moderate-deflection beam theories.

Both the moderate deflection theories and large deflection theories were used to analyze

isotropic and composite beams in various studies across literature.

In a NACA report published in 1957, Houbolt and Brooks [36] formulated the equations

of motion for an initially twisted rotating beams under arbitrary air loads. The beams were

assumed to be made of isotropic materials, in line with the propellers and helicopter blade

designs of that time. The significance of this study was the consideration of coupling effects

due to centrifugal forces. The neutral axis, mass center and elastic axis of the beam were not

assumed to be coincident. Galerkin and Rayleigh-Ritz solution techniques were used here

to demonstrate the significance of centrifugal coupling in this report. Importance of inertial

coupling on the flap-lag stability of stability characteristics of a hingeless rotor was shown

by Ormiston and Hodges [37]. The authors modeled the rotor as rigid blades with springs

at the root. Effects of pre-cone, pitch-lag coupling, elastic coupling and aerodynamics

coupling on stability were studied in detail. Similar stability and coupling studies were

performed in [38] and [39]. Huber [38] uses a rigid blade model, whereas Hodges and

Ormiston [39] use a torsionally rigid cantilever beam model.

Inclusion of geometric non-linearities in addition to inertial non-linearities, i.e., iner-

tial coupling, was also found to be crucial for rotor blade aeroelasticity. Friedmann and

Tong [40] derived the general non-linear equations of motion for an elastic hingeless rotor

blade. The rotor blade was elastic for flap-lag motion throughout the blade and elastic in

torsion only at the root. Third order non-linear terms were neglected in the flap-lag equa-

tions while they were retained in the torsion equations. These formulations were used to

estimate the divergence and flutter stability boundaries of the blade in hover. Non-linear

beam formulations are often accompanied with order reduction schemes where higher or-

der terms are assumed to be small and neglected. These ordering schemes led to varying

degree of non-linearities in the final formulations.
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As mentioned earlier, helicopter rotor blades undergo considerable deformation due

to aerodynamic and inertial loads. Hodges and Dowell [19] developed the first moderate

deflection beam theory that mathematically treats the finite sectional rotations and mod-

erately large deflections of a beam appropriately. In these formulations, a clear distinc-

tion was made between undeformed and deformed beam configurations. This distinction

was not made in the pre-moderate deflection beam theories. Transformation relation be-

tween the triads of the undeformed and deformed co-ordinates were derived and non-linear

strain-displacement relations were computed. However, strains were assumed to be small

and the cross-section was still assumed to remain plane and perpendicular to the neutral

axis. Hence, shear strains were neglected. The final formulations were obtained from both

Hamilton’s principle and Newton’s approach in [19]. This theory was also an extension

of the work carried out by Hodges [41]. These formulations are valid for twisted, non-

uniform, isotropic beams under going moderate deflections.

Rosen and Friedmann [42] also developed a similar moderate deflection beam theory

with lesser non-linear terms in the strain formulations. A version with additional non-linear

terms was given in [43]. Non-linear fully elastic beam theories applicable to non-uniform

twisted wind turbine blades and helicopter rotor blades were also developed by Kaza and

Kvaternik [44, 45] contemporarily. Moderate deflection beam theories utilize an ordering

scheme that decides the level of non-linearity present in the theory. Several non-linear

terms in the final beam formulation affect the stability of a rotor blade. Effect of these

non-linear terms on aeroelastic stability boundaries are discussed in [46, 47, 48].

The above mentioned theories may be sufficient for blades made of isotropic material.

However, most of the modern rotor blades are made of composite materials. Some of the

assumptions that were made for slender isotropic beams may not still hold good for com-

posite beams. Out of plane deformation of the cross section, known as warping, and shear

deformations of the blade might no longer be negligible. Elastic couplings that arise due to

anisotropic material properties should also be taken into account in the beam formulations.
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Rehfield and Atilgan discusses the high level of extension-twist and bending-shear cou-

pling in a single-celled composite beam analyzed theoretically in [49]. Response of the

beam to static lift, torsion and extension loads were determined. Torsional warping and

shear deformations were also found to be significant for the composite beams used in this

study. This analysis was further extended to multi-cell composite beams in [50]. The com-

posite beam theories developed by Rehfield were validated using finite element results and

experimental data. A single-celled beam was modeled using shell elements of NASTRAN

by Hodges et al. [51] and a composite circular tube was tested by Nixon [52]. A good

correlation was found between the theoretical, finite element and experimental results.

Usually, the three-dimensional beam analysis is divided into a 2-D cross-sectional anal-

ysis and a 1-D beam analysis [53]. The 2-D cross-sectional analysis was supposed to handle

the warping behavior of a beam, which was then implicitly included in 1-D beam analysis.

Several such cross-sectional studies will also be discussed here.

Worndle [54] derived the displacement formulations of a prismatic composite beam

made of monoclinic materials. In addition to the torsional warping, warping deforma-

tion of the cross-section under bending loads were also considered in his formulations. A

two-dimensional finite element analysis was performed to solve for the warping functions,

which were then used to compute the shear center and stiffness properties of the beam. For-

mulations developed in this study were applicable to any arbitrarily shaped cross-section as

long as they are made of monoclinic materials. Kosmatka and Friedmann [55, 56] further

extended the composite beam formulations to fully anisotropic materials of any arbitrary

cross-section. The beam was still assumed to be prismatic and the warping functions were

solved using a 2-D finite element method. However, only torsional warping was considered

in these analyses. The warping function was integrated into the strain terms of a moderate

deflection beam theory to estimate the natural frequencies of a curved, pre-twisted propeller

with swept tips.

Giavatto et al. [57] used a finite element method to compute the cross-sectional prop-
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erties of an anisotropic prismatic beam with inhomogeneous cross-section. Absence of

homogeneity in the cross-section was thought to increase the inter-laminar stresses. The

formulations from this study were used to develop HANBA2, which is a computer pro-

gram for cross-sectional analysis. Influence of boundary effects on the sectional properties

were also taken into consideration. Unlike previous studies, warping functions for all three

force and moment directions were computed in this study. The results were validated with

analytical and experimental data. In [58], Bauchau analyzed transversely isotropic beams

assuming that the cross-section remains rigid in its own plane but free to deform out of

the plane. Warping displacements were evaluated in terms of orthonormal eigenwarpings

expansions. Only thin-walled box beams were analyzed in this paper. A later study [59]

expanded the analysis to general orthotropic materials.

The composite beam theories discussed above divide the beam analysis cross-sectional

analysis and one-dimensional beam analysis. The sectional properties computed from 2-D

analysis is fed to the 1-D beam model. This approach decouples the cross-sectional prop-

erties evaluation from beam analysis. However, formulations developed by Stemple and

Lee [60] incorporated the warping displacements into the beam formulations and the entire

problem was solved for warping displacements along with the beam response. Warping

nodes were included in the finite element model in addition to the translation and rotation

nodes of the beam. Static and free vibration analysis of composite beams undergoing large

deflection were studied using the formulations developed [61]. However, this approach was

found to be computationally more expensive than the decoupled approach.

Aeroelastic analysis of a composite rotor blade was carried out by Hong and Chopra us-

ing moderate deflection beam theory [62]. Material stress-strain coupling eventually leads

to stiffness coupling in a beam. Hence, coupling terms that arise due to such material prop-

erties were found to have a significance influence on the aeroelastic stability of a hingeless

rotor blade in hover. Sensitivity of aeroelastic stability to fiber orientation and layup se-

quence was also investigated by the authors. Hong and Chopra [63] extended this analysis
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to bearingless rotor blades. Shear deformations were neglected in both of these references

as moderate deflection beam theory [19] developed for isotropic materials were used. Also,

rotor blade cross-section was treated as a box beam. A later study by Smith and Chopra

[64] extended these formulations to include shear strain in the plane of the cross-section

and torsional warping. Aeroelastic stability of composite blades in forward flight was also

studied by Smith and Chopra in [65] and by Panda and Chopra in [66]. Song and Li-

brescu [67] developed a moderate deflection theory for anisotropic beams including shear

and warping deformation. The developed formulations were used to estimate the natural

frequencies of thin-walled composite beams with closed cross-section.

As mentioned earlier, non-linear beam theories, such as moderate deflection beam the-

ories use ordering schemes to neglect the higher order terms relative to lower order terms.

The ordering scheme used for a particular formulation depends on the author’s good engi-

neering judgment, which introduces ad hoc assumptions into the formulations. It was also

mentioned in Refs. [68] and [69] that moderate deflection theories with ordering schemes

don’t produce consistent formulations when stiffness in one direction is much smaller than

the other directions. Also, moderate deflection theories don’t correlate well with exper-

imental results when beams undergo large deformations [70, 71]. Rosen and Friedmann

[71] introduced correction terms into the formulation to match with experimental data.

Hence, there was a need to develop new beam theories that accounts for large deflection,

removes ad-hoc ordering schemes and provide mathematically elegant formulations. Such

large deflection beam theories are discussed in the reminder of this section.

Hodges et al. [72, 69] developed a new beam theory in which the ordering scheme

that limits the beam deformation to moderate rotations was no longer required. The trans-

formation matrix between the undeformed and deformed beam triads was based on beam

deformation quantities in moderate deflection beam theory. In this new method, Tait-Bryan

orientation angles and Rodrigues parameters were used to describe the rotation. This ap-

proach allowed for the rotations to be captured exactly and allowed for large deforma-
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tions to be captured accurately. Although shear deformations were not considered in [72],

Hodges [69] provided the necessary material to incorporate shear into the final formula-

tions. The strains were still assumed to be small in this theory.

Simo and Vu-Quoc [73] developed a three dimensional finite element formulation for

beams undergoing large deformations. The transformation matrix here was based on Ro-

drigues formula as shown in [74]. The final formulations were found to be computationally

simple. Borri and Merlini [75] also developed a similar theory using Lagrange technique

to account for rotations. They extended the work on composite rotor blades in [57] to in-

clude large displacements and sectional rotations. The warping functions evaluated were

included in a non-linear one dimensional beam analysis. Latter studies by Borri et al. [76]

extended this theory to curved and twisted beams.

Large deflection beam theories were also developed by Bauchau and Hong [77, 78, 79]

for initially curved and twisted composite beams. Isoparametric three-dimensional beam

elements that can capture shear and warping deformations were used in the finite element

formulations of [77]. Static and vibration analyses of composite blades were carried out

and the results were found to be in good agreement with analytical and experimental data.

Ref. [78] utilized one-dimensional finite element beam model based on Euler angles instead

of 3-D finite element model and the computation time was reduced by a factor of 20. A

slightly modified version of the original theory with a few modifications in the order of

strain assumptions was provided in [79].

Minguet and Dugundhi [80] developed a composite beam theory based on Euler angles

that accounts for large deformation without use of ordering scheme. Structural coupling

that arise due to composite material properties were considered but the shear and warping

deformations were ignored. The results were validated for thin cantilevered beams made of

graphite and epoxy. Static and vibration experiments [81] were carried out to compare with

the analytical data. Pai and Nayfeh [82] also developed a composite beam theory that takes

into account the large sectional rotations and warping deformations. Three dimensional
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beam formulations were developed to study small or large-amplitude vibrations, elastic

and geometric couplings in anisotropic beams. An ordering scheme was utilized here to

obtain a third order elastic non-linear equation of motion.

Danielson and Hodges [83] provided a generic beam formulations for initially curved

and twisted beams based on mixed variation principle using rotation tensors. The the-

ory accounted for large displacements and rotations while assuming that the strains are

still small. The rotation tensor was decomposed into pure rotation tensor and stretch ten-

sor, which simplified the beam’s kinematic relations. The theory was applicable to both

isotropic and composite beams. All the elastic couplings, shear and warping deformations

were treated in this theory and was valid for both open and closed cross-section. A general

version of this theory was presented in [84]. In this paper, two sets of formulations were

presented. An explicit version with generalized displacements in its formulations and an

intrinsic version without any displacements in its formulations. Only static formulations

were obtained in both [83] and [84].

Hodges [85] provided an intrinsic beam formulations for dynamics of a twisted and

curved beam in a moving frame. A finite element formulation based on mixed variational

principles was also presented here. Fulton and Hodges [86] studied the stability charac-

teristics of a composite hingeless rotor blade using the developed intrinsic formulations.

Bending-shear coupling and extension-twist coupling were found to be important in ana-

lyzing the aeroelastic response of a composite rotor blade. The cross-sectional properties

for the beam analyses were computed from the formulations developed by Borri et al.

In large deflection beam theories, the transformation between deformed and unde-

formed configuration is based on rotation parameters. Hence, these beam formulations are

also called as ’geometrically exact’ beam theories as the global rotations and displacements

are captured exactly. Most of the geometrically exact large deflection theories discussed so

far make a kinematic assumption in their formulations to include warping deformation.

However, the warping deformations are not included explicitly in the one-dimensional
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beam analysis. Warping is considered only for the cross-sectional properties evaluation,

which is performed separately, and fed into the non-linear beam model as elastic laws.

Usually, this evaluation is based on a different set of formulations i.e., it is not obtained

from the global geometrically exact formulations framework.

Atilgan et al. [87, 88] provided a unified framework for analyzing composite beams.

A three-dimensional geometrically non-linear theory of elasticity was used to obtain both

the 2-D cross-sectional formulations and 1-D beam equations. The warping displacements

were assumed to be small compared to the cross-section dimensions. Strains and local ro-

tations,an additional degree of freedom in some large deformation theories, were assumed

to be small compared to unity. Warping displacements were computed from 2-D analysis

to evaluate the stiffness constants of the beam. The authors acknowledge that the stiffness

values could change due to large deformation of the beam but the influence of large defor-

mations on these constants were noted to be not significant. Hence, justifying splitting the

beam analysis into 2-D and 1-D analysis. Large deformation intrinsic formulations were

used to analyze isotropic and composite beams in this study. Results were found to be in

good agreement with experimental data.

Another method that came into prominence for analyzing composite beams was the

variational-asymptotic method (VAM) [53]. In this method, the three-dimensional strain

energy of a beam was reduced to one-dimensional beam energy asymptotically. Hodges

et al. [89] utilized the asymptotic method to derive the cross-sectional formulations for an

anisotropic beam along with the one-dimensional geometrically exact beam theory from

the same framework. An order approximation was performed on the strain energy which

also provided the necessary conditions for the linear cross-sectional analysis to be valid.

The stiffness properties were evaluated using a finite element computer code, which later

developed into VABS (Variational Asymptotic Beam Section). Some of the stiffness values

evaluated were found to be quite different from the values obtained from classical meth-

ods. The composite beam properties computed from this new method were found to agree
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closely with experimental data. The formulations were extended to initially twisted and

curved anisotropic beams by Cesnik and Hodges [90, 91]. The stiffnesses obtained from

these formulations are extensively validated in [92]. A summary of the formulations that

went into VABS and its capabilities are provided in [93]. The nonlinear geometrically exact

beam formulations that are obtained through VAM framework have to be solved numeri-

cally. Static and free vibration analyses of curved composite beams based on mixed finite

element method was carried out by Hodges et al. in [94]. Cross-sectional properties of

a composite beam including obliqueness, where the reference line is not perpendicular to

the cross-section, and trapeze effect, increase of torsional rigidity with axial force, were

evaluated by Cesnik et al. in [95]. Popescu and Hodges [96] describe trapeze effect as a

non-linear phenomenon and hence, it was treated using non-linear cross-sectional analysis

as opposed to the usual linear cross-sectional analysis.

Volovoi et al. [97] developed formulations to include the Vlasov effect, also known as

end effect, in anisotropic beam analysis using asymptotic method. Vlasov effect was found

to be significant in open cross-section thin-walled beams. Later works by Yu et al. added

shear deformation to 1-D beam models [98] and introduced Vlasov correction [99] to im-

prove the accuracy of existing asymptotic models. Other composite beam theories based on

ad-hoc assumptions were also developed simultaneously. Anisotropic beam theories were

developed in [100], [101] and [102] to study the response and cross-sectional properties

of thin-walled composite beams. A comprehensive ad-hoc beam theory was developed by

Jung et al. [103], which had the capabilities to analyze both thick and thin-walled compos-

ite beams.

Bauchau and Kang [104] implemented a large deflection beam theory into a multi-body

formulation to analyze helicopter rotor blades. In [104], a generic formulation was devel-

oped using rotation vectors that would allow for modeling complex multi-body configura-

tions. The authors analyzed several rigid body problems and a ground resonance problem

of a rotor system. The results were found to be in good agreement with analytical values.
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These formulations became the precursor to DYMORE, a multi-body dynamics code [105].

[106] and [107] provide a discussion on the numerical techniques that were used to solve

flexible multi-body problems.

Carrera et al. [108, 109, 110] developed a new approach to formulate beam equations

using axiomatic method. The displacement field was assumed to be a polynomial series

function with unknown coefficients, which were solved using a finite element approach.

An order reduction was performed on the series to suit the desired level of accuracy. This

method was known as Carrera’s Unified Formulation (CUF). Yu and Blair [111] developed

an analysis tool called GEBT (Geometrically Exact Beam Theory) based on the large de-

flection beam formulations developed by Hodges and his co-workers. GEBT uses a mixed

formulation approach as opposed to a fully intrinsic or a fully displacement formulation.

Yu et al. [112] and Gupta [113] also made improvements to VABS analysis tool.

Bauchau and Han used Hamiltonian formalism in [114] to obtain cross-sectional formu-

lations for composite beams from three-dimensional elasticity. The authors claim that this

new approach was more accurate as no truncation terms were involved. Han and Bauchau

[115] also derived geometrically exact beam equations from this new approach. Response

of highly curved composite beams was also presented in [115].

Rotor blade modeling in this study is carried out using a large deflection beam the-

ory described in [116], which has been implemented in DYMORE by Bauchau and his

co-workers. Large deflection beam theories are also known as geometrically exact beam

theories for the reasons mentioned previously. The theory used in this study permits warp-

ing deformation and shear deformation. Strains and local rotations are assumed to be small.

The formulations of this theory will be provided in the following chapter. Application of

this beam theory to multi-body systems is discussed in [117] and [116]. A large deflec-

tion beam theory has never been applied to study the variable speed rotor problem before.

However, non-linear large deflection theories have been applied to analyze other aeroe-

lastic problems [118, 119, 120, 121, 122]. More information on rotorcraft beam theory
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developments is provided in Refs. [123], [124], [125], and [126].

1.2.3 Aerodynamics and Rotor Trimming

In addition to blade structural modeling, aerodynamics modeling also has to be refined

enough to appropriately treat the rotary wing aeroelasticity problem. The helicopter blade

undergoes oscillatory motion due to harmonic pitch control input and also due to elastic na-

ture of the blade. Hence, unsteady aerodynamic theories are required to accurately predict

the air loads acting on the rotor system.

Theodorsen [127, 128] gave one of the first analytical expression to predict the loads

acting on an oscillating airfoil. Theodorsen’s theory assumes that the flow is two-dimensional,

inviscid and incompressible. The airfoil is assumed to be thin and undergoing a simple har-

monic oscillation with only pitch and heave motion. The terms in lift and moment are

divided into ’apparent mass’ terms (non-circulatory) and ’circulatory’ terms. Circulatory

terms account for the shed wake behind the airfoil using Theodorsen’s function, C(k).

Theodorsen’s theory assumes that the free stream velocity is constant, which makes the

theory not applicable where lead-lag motion is involved. Greenberg [129] extended the

theory to include pulsating free stream. The angle of attack was also assumed to vary

harmonically about a mean value in Greenberg’s theory similar to helicopter blade’s pitch

input. One of the important characteristics of helicopter aerodynamics is the presence of

wake beneath the rotor disc, which is absent in fixed wing. The two theories mentioned

so far do not consider the downward wake effects. Loewy included the downward wake to

estimate the aerodynamic loads acting on an airfoil undergoing sinusoidal oscillation in a

2-D flow [130]. Formulations developed in this study were valid only for hover with low

inflow. Loewy’s theory was extended to forward flight by Shipman and Wood to study rotor

blade flutter [131].

The theories discussed so far assume that the blade undergoes harmonic oscillations,

and hence are in the frequency domain. However, blades close to stability boundaries
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could undergo arbitrary motions. Therefore, it is necessary to obtain air loads in the time

domain that can handle this arbitrary motion. Efforts were made to transform Theodorsen,

Greenberg and Loewy theories from frequency domain to time domain [132, 133, 134].

One of the widely used time domain unsteady theory is the dynamic inflow model

initially developed by Peters [135]. The inflow velocity was assumed to vary both radially

and azimuthally across the rotor. Inflow was expressed in terms of a first order variation

in radius, first harmonic variation along the azimuth and a steady portion. The formulation

developed in [135] has been used widely to analyze helicopter rotor blades and become the

basis for more advanced inflow models. Flap-lag stability and damping of a rotor blade

in forward flight were studied using the developed formulations by Goankar and Peters in

Refs. [136] and [137], respectively. The model was further improved by Pitt and Peters

[138].

Peters et al. [139, 140] developed finite state unsteady induced flow models where

the inflow expression was no longer limited to first order. The rotor was assumed to be

a disc with a pressure jump across the disc. Pressure distribution and induced velocity

across the rotor disc is assumed to be series expansion with Legendre functions. This

generalized formulations allowed for the rotor disc to be at any angle of attack. Wake

effects were also considered with a skewed cylindrical wake assumption for forward flight.

Expressing these formulations in frequency and eigenvalue domain were also possible.

However, convergence was noted to be a bit slow, and hence requiring several terms in the

series assumption.

Another unsteady aerodynamics phenomenon that plays an important role in rotary

wing aeroelasticity is the dynamic stall effect. As the rotor moves through the azimuth, the

pitch angle varies to balance the loads from the advancing and retreating sides of the blade.

The pitch angle is decreased in the advancing side and increased on the retreating side. At

high speeds, the difference in pitch angle could be large and some sections of the blade

could see a large change in angle of attack which could lead to flow separation and stalling
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of the airfoil. This phenomenon is known as dynamic stall. The flow reattaches once the

blade section crosses this region. The loads acting on the airfoil during this phenomenon

has been studied by various researchers. One of the popular dynamic stall models is the

ONERA model [141, 142]. The model has parameters that needs to be computed empir-

ically to accurately predict the air loads acting on an airfoil before-stall, during-stall and

post-stall regions. Application and comparison of this model to experimental results is dis-

cussed in [143]. ONERA model was further improved by Rogers [144] and Peters [145].

Some of the initial assumptions were modified to make the theory consistent with other un-

steady theories such as Greenberg’s for small angle of attack and Theodorsen’s for steady

free stream. Beddoes [146, 147] developed a more detailed version of dynamic stall model

which was further extended by Leishman [148, 149]. Leishman-Beddoes model [150] is

capable of calculating unsteady lift, pitch and also drag forces acting on an airfoil. Com-

pressibility effects are also treated rigorously in this model. Further literature on rotary

wing aerodynamics is provided in [151] and [152].

In order to perform any aeroelastic analysis of rotor blades, rotor needs to be trimmed to

the given flight condition. Trim is described as the correct adjustment of aircraft controls,

attitude and cargo in order to obtain a desired steady flight condition [153]. There are

several types of trim procedures and several methods of performing rotor trim analysis.

Peters and Barwey [153] provide a detailed account on types of trim and trim solution

procedures. Moment trim, propulsive trim and six-degree-of-freedom trim are mentioned

as some of the common trim types. In [153], moment trim is described as a type of trim in

which a rotor with a fixed hub is trimmed to a specific thrust, pitching moment and rolling

moment. The controls are provided by collective and cyclic pitch inputs. In propulsive

trim the hub is allowed to tilt forward to provide a force equilibrium for the fuselage drag.

Power requirement was also included in trim in some cases. Six-degree-of-freedom trim is

trimming of the three forces and three moments by collective pitch, cyclic pitches, tail rotor

pitch, body pitch and roll angles with yaw defined. Commonly used solution techniques,
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such as harmonic balance, Newton-Raphson iteration, periodic shooting, finite elements in

time and Auto-pilots are discussed in this study.

Friedmann and Shamie [154, 48] describe wind tunnel trim, also called as moment trim

here, as a trim procedure in which the rotor is treated like it is placed in a wind tunnel.

Fuselage drag forces are neglected in this trim procedure and as a result, horizontal and

vertical force equilibrium is not considered. Rolling and pitching moments are enforced to

be zero and hub is allowed to tilt here. Advance ratio, collective pitch and hub tilt angles are

specified and thrust, cyclic cosine and sine angles are computed. Propulsive trim procedure

was described as trimming the rotor like it is in actual forward flight. The weight of the

aircraft is balanced by the thrust and force equilibrium is achieved in all directions. Roll

and pitch moments are maintained to be zero. Advance ratio and weight is specified for

an arbitrary hub tilt to compute collective and cyclic pitch angles iteratively from the force

and moment balance equations. Friedmann et al. [155] provide a detailed set of trim results

for a hingeless rotor in forward flight using harmonic balance technique, which is useful in

validating numerical results.

Peters and Morillo solved a trim problem with unknown and unsteady rotor speed us-

ing harmonic balance [156]. Peters and Kim [157, 158] used an automatic feedback control

system that monitors the hub loads continuously and corrects the control inputs to match

the specified trim state. This technique was found to be superior to other trim techniques for

systems with moderate damping. Peters and Li [159] discuss an auto-pilot controller which

trims a rotor system during time marching of equations of motion. Auto-pilot controllers

require a Jacobian matrix that is obtained from perturbing the initial control guesses. Con-

trol values are updated after one period based on the error, Jacobian and gain values.

In the present study, an auto-pilot controller will be used to trim the rotor system. De-

tails about the auto-pilot controller and the Jacobian matrix computation will be provided

in the subsequent chapters.
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1.3 Objectives of the Present Study

Based on the literature review, it was found that the structural aspects of a variable speed

rotor has not been addressed adequately. In this work, resonance behavior of a variable

speed rotor blade will be treated elaborately. The objectives of the current study are stated

below.

• Build a rotor blade aeroelasticity model using large deflection beam theory to analyze

variable speed rotors.

• Trim the rotor using an auto-pilot controller to the desired flight conditions.

• Analyze the performance improvements that can be achieved by changing the rotor

speed of a hingeless rotor blade.

• Identify the resonance crossing points of a hingeless rotor blade from performance

studies.

• Analyze the loads acting on a rotor blade during resonance crossings. Examine the

characteristics of resonance crossing at different flight conditions and explore any

non-linear resonance behaviors described by Nayfeh and Mook [20].

• Explore methods of reducing additional vibratory loads on the rotor hub during res-

onance crossings. Influence of transition time and blade’s structural properties on

load reduction will be studied.

The rotor model used in this study is one of the most comprehensive models used to

study variable speed rotors to date.
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CHAPTER 2

ROTOR BLADE FORMULATIONS

Helicopter rotor blades are slender structures that could undergo large deformations in

flight due to aerodynamic and inertial loads. Rotor blade aeroelasticity requires appropriate

blade and unsteady aerodynamics modeling to accurately capture the blade response. Rotor

blades are usually modeled as one-dimensional beam structures as discussed in the previous

chapter. Aeroelastic response of the blade is also a non-linear problem and hence, the

non-linear beam and aerodynamics formulations are used in the present work. A non-

linear geometrically exact beam theory is used to model the rotor blade. The Peters et al.

[139] unsteady aerodynamics model is used to obtain the aerodynamic loads along with

the Pitt-He [140] finite state inflow model. The beam formulations and the aerodynamics

formulation are presented in this chapter.

2.1 Geometrically Exact Beam Formulations

A curved beam in its reference and deformed configuration is shown in Figure 2.1 [116].

Reference configuration is the undeformed configuration of the beam. The beam is initially

curved and twisted with a length of L and a cross-sectional area of A. The dotted blue line

in Figure 2.1 is the reference line of the undeformed configuration, which is perpendicular

to the cross-section. A curvilinear coordinate α1 is used to measure the length along the

beam’s reference line. The beam moves in an inertial reference frame I with origin O and

an orthogonal Cartesian basis (i1, i2, i3). Point B is at the intersection of the reference

line and the cross-sectional plane. A frame B0 is defined in the reference configuration at

point B with orthogonal basis (b1, b2, b3). Basis vector b1 is tangent to the reference

line at point B. Vectors b2 and b3 are in the plane of the cross-section. Basis vectors of I
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and B0 are related through a rotation tensor as b i = R
0
(α1)i i, whereR

0
is a rotation tensor

resolved in I basis and the subscript i takes the values 1, 2 and 3. The position vector of

point B along the reference line is given as x0(α1).

Figure 2.1: Beam in reference and deformed configuration.

Point P, which is a material point on the cross-section, has a position vector as given

in equation (2.1).

x(α1, α2, α3) = x0(α1) + α2b2 + α3b3 (2.1)

where α1 and α2 are the coordinates of point P along b2 and b3 unit basis vectors, respec-

tively.

When the beam deforms, all the points on the cross-section move to a new position.

The motion of the beam can be divided into three parts. One, the rigid translation of the

beam cross-section which is given by the displacement vector u(α1) of point B. Two,

the rigid rotation of the beam cross-section defined by the rotation tensor R which brings

the B0 frame to the B frame in the deformed configuration with basis (B1, B2, B3) i.e.,

B i = R(α1)b i. Three, the warping displacement of the cross-section w(α1 , α2 , α3 ). The
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warping displacement includes both in-plane and out-of-plane deformations of the cross-

section and is given as

w(α1 , α2 , α3 ) = w1B1 + w2B2 + w3B3 (2.2)

where w1 , w2 and w3 are the magnitudes of warping displacement in B1, B2 and B3

directions, respectively. The position vector of point P in the deformed configuration is

now given as follows.

X (α1, α2, α3) = x0(α1) + u(α1) + α2B2 + α3B3 + w1B1 + w2B2 + w3B3 (2.3)

Since, B i = RR
0
i i. The above equation becomes

X (α1, α2, α3) = x0(α1) + u(α1) +RR
0
(w + α2 i2 + α3 i3) (2.4)

Warping displacements are usually computed from a two-dimensional finite element

formulation and hence, only the resultant cross-sectional properties will be used for the

one-dimensional beam analysis. Therefore, warping will not appear explicitly in rest of the

formulations.

Sectional strains for a beam with shallow curvature are defined as follows.

e =

εκ
 =

x
′
0 + u′ − (RR

0
)i1

k +Rk i

 (2.5)

where ε has the axial and shear strain terms and κ has the bending curvature and twist terms.

k = axial(R′RT ) is the sectional curvature vector in I basis and k i are the components of

the curvature vector in the beam’s reference configuration. A derivative with respect to α1

is denoted using (.)′ notation. The operator axial is defined as axial(A) = (A−AT )/2 for

any second-order tensor A. The strain equation (2.5) is obtained by taking the difference
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between the basis vectors of the reference and deformed configuration and their spatial

derivatives. This technique is explained in detail in [116] and [126]. In the deformed

configuration, B, the strain can be expressed as

ε∗ = (RR
0
)T ε (2.6)

κ∗ = (RR
0
)Tκ (2.7)

The notation (.)∗ denotes that the components of a vector or a tensor is in the B basis.

If N∗ and M∗ are the beam’s sectional forces and moments, respectively, then the

sectional constitutive law can be written asN
∗

M∗

 = C∗

ε
∗

κ∗

 (2.8)

where C∗ is the 6 × 6 sectional stiffness matrix that is obtained from the beam’s cross-

sectional as discussed previously. Using the strain equations and the constitutive law, the

principle of virtual work for the static case can be written as

∫ L

0

(δε∗
T

N∗ + δκ∗
T

M∗)dα1 = δWext (2.9)

where δ is the variation operator. Taking variation of the strain in equation (2.6) we get

δε∗ = δ(RR
0
)T ε+ (RR

0
)T δε (2.10)

δε = δ(x′0 + u′0)− δ(RR
0
)i1 (2.11)

Variation of a vector between two frames has a relation that is similar to the time derivative

relation between two frames. Here, the angular velocity term is replaced by the virtual

rotation vector δψ. Let’s consider two frames A and B as an example. The variation
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relation [126] is given as

δ(vector) = Aδ(vector) = Bδ(vector) + δψ × (vector) (2.12)

The above equation could also be written as

δ(vector) = Aδ(vector) = Bδ(vector) + δ̃ψ (vector) (2.13)

where (̃) represents a skew-symmetric matrix with the vector components. The virtual

rotation vector is related to the rotation matrix R by the following relation,

δψ = axial(δRRT ) (2.14)

or

δ̃ψ = δRRT (2.15)

Using the relationships given in the equations (2.12 — 2.15) in equation (2.11) and simpli-

fying the variation of strains we get the following relations

δε∗ = (RR
0
)T [δu′ + (x̃′0 + ũ′)δψ] (2.16)

δκ∗ = (RR
0
)T δψ′ (2.17)

Hence, the virtual work relation (2.9) can now be written as

∫ L

0

{[
δu′

T
+ δψT (x̃′0 + ũ′)T

]
(RR

0
)N∗ + δψ′

T
(RR

0
)M∗

}
dα1 = δWext (2.18)

Now we define N = (RR
0
)N∗, M = (RR

0
)M∗ and δWext =

∫ L
0

[
δuTf + δψTm

]
dα1.

f and m are the externally applied forces and moments, respectively, per unit span of the
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beam. Substituting these definitions in the equation (2.18) we get

∫ L

0

{[
δu′

T
+ δψT (x̃′0 + ũ′)T

]
N + δψ′

T
M
}

dα1 =

∫ L

0

[
δuTf + δψTm

]
dα1 (2.19)

On integrating by parts and using the relation (x̃′0 + ũ′)T = −(x̃′0 + ũ′), the above equation

can be simplified as

∫ L

0

δuT
[
−N ′ − f

]
dα1 +

∫ L

0

δψT [−M ′ − (x̃′0 + ũ′)N −m] dα1

+NδuT
∣∣L
0

+MδψT
∣∣L
0

= 0 (2.20)

Hence, the governing equation of the beam for a static case is as follows.

N ′ + f = 0 (2.21)

M ′ + (x̃′0 + ũ′)N +m = 0 (2.22)

Dynamic governing equations can be obtained by including the kinetic energy of a beam

in the virtual work equation and taking a variation of the kinetic energy like the static case.

Before we dive into it, some of the relations that would be needed for our derivation are

provided below.

Velocity of the material point P can be obtained by taking the time derivative of equa-

tion (2.4) in inertial frame without the warping displacement.

v = Ẋ = 0 + u̇(α1) + Ṙ R
0
(α2 i2 + α3 i3) (2.23)

where (̇) denotes derivative with respect to time. Let s∗T = {0, α2, α3}. The relation

between angular velocity, ω, and angular rotation tensor is given as ω̃ = Ṙ RT . Using these
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equations in equation (2.23) we get

v = u̇+ (RR
0
)ω̃∗s∗ = u̇+ (RR

0
)s̃∗

T

ω∗ (2.24)

where ω∗ = (RR
0
)Tω. Velocity in the material B0 frame is given as

v∗ = (RR
0
)Tv = (RR

0
)T u̇+ s̃∗

T

ω∗ (2.25)

If ρ is the material density in the reference configuration, then the kinetic energy of the

beam is

K =
1

2

∫ L

0

∫
A
ρ v∗

T

v∗ dA dα1 (2.26)

Substituting equation (2.25) in the above equation we get the following equation.

K =
1

2

∫ L

0

∫
A
ρ
[
u̇T (RR

0
) + ω∗

T

s̃∗
] [

(RR
0
)T u̇+ s̃∗

T

ω∗
]

dA dα1 (2.27)

Let’s define m =
∫
A ρ dA, η∗ = 1

2

∫
A ρs

∗ dA and %∗ = 1
2

∫
A ρs̃

∗s̃∗
T dA. m is the mass

per unit span of the beam, η∗ is the position vector of the sectional center of mass with

respect to point B and %∗ is the sectional tensor of inertia per unit span. Substituting these

definitions in the kinetic energy equation and on simplifying we get a one-dimensional

integral equation.

K =
1

2

∫ L

0

[
mu̇T u̇+ 2mu̇T (RR

0
)η̃∗

T

ω∗ + ω∗
T

%∗ω∗
]

dα1 (2.28)

To make the above equation compact, let us define the following variables.

M∗ =

mI mη̃∗
T

mη̃∗ %∗

 (2.29)
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V∗ =

(RR
0
)T u̇

ω∗

 =

(RR
0
)T 0

0 (RR
0
)T


u̇ω
 = (RR

0
)T V (2.30)

where I is an identity matrix and

V =

u̇ω
 , RR

0
=

(RR
0
) 0

0 (RR
0
)

 (2.31)

If h∗ and g∗ are the sectional linear and angular momentum, respectively, in the material

frame, then the momentum vector P∗ is

P∗ =

h
∗

g∗

 =M∗V∗ (2.32)

The kinetic energy can now be written in a compact form as

K =
1

2

∫ L

0

V∗TM∗V∗ dα1 (2.33)

Variation of kinetic energy is

δK =

∫ L

0

δV∗TM∗V∗ dα1 (2.34)

where δV∗T =

[
δ(u̇T (RR

0
)) δω∗

T

]
. Using the relationships between the rotation ten-

sor, virtual rotation vector and angular velocities, it can be shown that δ(u̇T (RR
0
)) =(

δu̇T + δψT ˙̃u
T
)

(RR
0
) and δω∗T = ˙δψ

T
(RR

0
). Hence, using these relations and equa-

tion (2.32) the variation of K becomes

δK =

∫ L

0

[(
δu̇T + δψT ˙̃u

T
)

(RR
0
) ˙δψ

T
(RR

0
)

]h
∗

g∗

 dα1 (2.35)
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If h = (RR
0
)h∗ and g = (RR

0
)g∗, then the above equation becomes

δK =

∫ L

0

[
δu̇Th+ δψT ˙̃u

T
h+ ˙δψ

T
g
]

dα1 (2.36)

Using Hamilton’s principle and equation (2.9) we get

∫ tf

ti

[
δK −

∫ L

0

(δε∗
T

N∗ + δκ∗
T

M∗)dα1 + δWext

]
dt = 0 (2.37)

On performing integration by parts on the term
∫ tf
ti
δK dt, we obtain the following form.

∫ tf

ti

δK =

∫ tf

ti

∫ L

0

[
−δuT ḣ+ δψT ˙̃u

T
h− δψT ġ

]
dα1dt (2.38)

Combining the above equation with equation (2.20), we get the governing equations of

motion of a beam.

ḣ−N ′ = f (2.39)

ġ + ˙̃uh−M ′ − (x̃′0 + ũ′)N = m (2.40)

Based on the obtained force equilibrium equations, a finite element formulation will be

derived with the linearized force terms. Now, let us define the following terms to build a

compact form of the beam equation.

P =

hg
 , F I = Ṗ +

0 0

˙̃u 0

P , FC =

NM
 (2.41)

FD =

 0 0

(x̃′0 + ũ′)T 0


NM

 =

 0

(x̃′0 + ũ′)TN

 , F ext =

f

m

 (2.42)
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Hence, the equations (2.39) and (2.40) of the beam becomes

F I −FC′ + FD = F ext (2.43)

Dissipative forces are sometimes required in the beam analysis. Let us define the dissipative

forces in the inertial frame as fd = µC ė, where µ is the damping coefficient with unit 1/s

and C = (RR
0
)C∗(RR

0
)T . Time derivative of strain is

ė =

u̇+ Ẽ1ω

ω′

 (2.44)

where Ẽ1 = x̃′0 + ũ′. Let fd
T

=
{
NdT MdT

}
, where Nd and Md are the sectional dissipa-

tive force and moment vectors, respectively, in the frame I. Including the dissipative forces

as non-conservative forces in the Hamilton’s principle leads to two distinct dissipative force

terms as shown below.

FdC = fd =

N
d

Md

 , FdD =

 0 0

ẼT
1 0

 fd =

 0

ẼT
1 N

d

 (2.45)

Including the dissipative terms, the beam equation (2.43) becomes

F I −
(
FC + FdC

)′
+
(
FD + FdD

)
= F ext (2.46)

Finite element formulation for the beam is obtained from a weighted residual method. The

weak form of the beam governing equation can be written as follows.

∫ l

0

NT
[
F I −

(
FC + FdC

)′
+
(
FD + FdD

)
−F ext

]
dα1 = 0 (2.47)

where l is the length of the beam element and N is the displacement interpolation matrix
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containing the shape functions, N =
[
h1(s)I, h2(s)I, h3(s)I

]
. h1, h2 and h3 are the shape

functions and s is a non-dimensional quantity defined along the span of a finite element.

Lagrange polynomials are used as shape functions in this study. On integrating by parts,

equation (2.47) becomes

∫ l

0

[
NTF I +N ′

T (FC + FdC
)

+NT
(
FD + FdD

)]
dα1 =

∫ l

0

NTF extdα1 (2.48)

However, this is a non-linear set of equations. Hence, a linearization process is required for

solving the system of equations. Linearization is carried out by computing the increments,

∆(), of the force terms and its components. All the increments of the force terms are listed

as below.

∆F I = KI ∆q + GI ∆q̇ +M∆q̈ (2.49)

∆FC = S∆q′ +O∆q (2.50)

∆FD = P ∆q′ +Q∆q (2.51)

∆FdC = Sd ∆q′ +Od ∆q + Gd ∆q̇ + Ed ∆q̇′ (2.52)

∆FdD = Pd ∆q′ +Qd ∆q + X d ∆q̇ + Yd ∆q̇′ (2.53)

where ∆qT =
{

∆uT , ∆pT
}

, ∆q̇T =
{

∆u̇T , ∆ṗT
}

and ∆q̈T =
{

∆üT , ∆p̈T
}

. Vector p is

the rotation parameter vector. Rotation is parameterized using Wiener-Milenković parame-

ters. Rotation parameters have the relations ω = H(p) ṗ and κ = H(p) p′. H is the tangent

tensor as defined in [116]. The linearization process for the forces is mathematically in-

volved and is presented in detail in [116]. Expressions for the coefficient matrices KI , GI ,

M, S, O, P , Q, Sd, Od, Gd, Ed, Pd, Qd, X d and Yd in the linearization equations is given
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in [116]. Now, let us include all the increment of the force terms in equation (2.48).

∫ l

0

[
NT (F I + ∆F I) +N ′

T (FC + ∆FC + FdC + ∆FdC
)

+NT
(
FD + FdD

) ]
dα1 =

∫ l

0

NTF extdα1 (2.54)

Now, let us make the following relations using the displacement interpolation matrix.

q(α1) = N q̂, q′(α1) = N ′ q̂, q̇(α1) = v(α1) = N ˙̂q = N v̂ (2.55)

q̈(α1) = a(α1) = N ¨̂q = N â (2.56)

where q̂, v̂ and â are the nodal displacements, velocities and accelerations, respectively.

Substituting equations (2.49—2.53) and the above relations in equation (2.54) we get the

following form of the dynamic equilibrium equation.

M̂ ∆â+ Ĝ∆v̂ + K̂ ∆q̂ = F̂ ext − F̂ (2.57)

where

M̂ =

∫ l

0

NTMN dα1 (2.58)

Ĝ =

∫ l

0

[
NT (GI + X d)N +N ′

TGdN +N ′
T EdN ′ +NTYdN ′

]
dα1 (2.59)

K̂ =

∫ l

0

[
NT (KI +Q+Qd)N +N ′

T

(S + Sd)N ′ (2.60)

+N ′
T

(O +Od)N +NT (P + Pd)N ′
]

dα1 (2.61)

F̂ =

∫ l

0

[
NTF I +N ′

T

(FC + FdC) +NT (FD + FdD)
]

dα1 (2.62)

F̂ ext =

∫ l

0

NTF ext dα1 (2.63)

The aerodynamics forces and moments that will be acting on the rotor blade are formulated
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in the following section. These external loads are included in the beam formulation through

the F̂ ext term.

2.2 Aerodynamic Formulations

An unsteady aerodynamics theory developed by Peters et al. [139] will be used in this

study to obtain the aerodynamic loads acting on the beam. The aerodynamic loads will be

computed at distinct locations along the beam. Airfoils are assumed to be rigidly attached

to the beam elements. Figure 2.2 shows an airfoil attached to the beam element at point

S along the curvilinear coordinate location si. The motion of the airfoil is determined by

the motion of the beam. Each airfoil has an airstation, A, as shown in Figure 2.2, where

the aerodynamic loads are computed. An orthonormal basis Ao = (a1, a2, a3) defines

the orientation of the airfoil. The airfoil lies in a plane passing through the point A and

perpendicular to a1. a2 is along the airfoil leading edge and a3 is along the positive lift

direction. An orthonormal basis E = (e1, e2, e3) is defined at point S, which defines

the orientation of the beam’s cross-sectional plane. Orientation of Ao and E need not

coincide. The cross-sectional plane passes through the point S and perpendicular to e1. e1

is tangent to the curvilinear line. The aerodynamic properties of the airfoil are assumed to

be unaffected by the warping of the cross-section. Also, the airfoil is rigid and does not

contribute any additional inertial properties to the beam.

Figure 2.2: Airfoil and airstation configuration.
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Airstation is typically located at quarter-chord of the airfoil. The kinematics of the

airfoil is obtained by assuming a rigid body motion in the inertial frame as shown in Figure

2.3.

Figure 2.3: Airfoil motion.

The position vector of S and A in the reference configuration is given as us0 and ua0,

respectively. In the reference configuration, the inertial orientation of the cross-section is

given byR
s0

and the airfoil orientation is given byR
a0

. The position vector of the airstation

in reference configuration is

ua0 = us0 + d0 (2.64)

If the point S translates and rotates as specified by us and R
s
, respectively, then the new

position of A is given by

ua = us0 + us + d = us0 + us +R
s
d0 (2.65)

The orientation of Ao basis is given by R
a

= R
s
R
a0

. Since the airfoil is rigid, the angular

velocity of A and S are identical, and so are the angular accelerations. Hence, ω = ωa = ωs

and ω̇ = ω̇a = ω̇s. Therefore, the velocity and acceleration of point A is given as

va = vs + ω̃s d , v̇a = v̇s + ( ˙̃ωs + ω̃sω̃s) d (2.66)
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In order to comply with the aerodynamic convention, the airstation is assumed to be located

at the quarter-chord, coinciding with the aerodynamic center. Relative flow velocity is

usually required for the formulation of unsteady aerodynamic theories. Hence, the relative

velocity of the flow with respect to the airfoil’s quarter chord and mid-chord is given,

respectively, as

v̂qca = V ∞ + λ− va (2.67)

v̂mca = v̂qca − ω̃aη = (V ∞ + λ− va)− ω̃aη (2.68)

where V ∞ is the far field flow velocity, which is of constant magnitude and direction, and

λ is the average inflow velocity over the airfoil. η is the quarter-chord position vector with

respect to the mid-chord as shown in Figure 2.4.

Figure 2.4: Velocity vectors on the air-
foil.

The quarter-chord and mid-chord relative

velocities in the airfoil basis Ao can be written

as

v̂qc∗∗a = RT

a
(V ∞ + λ− va) (2.69)

v̂mc∗∗a = RT

a

[
(V ∞ + λ− va)− ω̃aη

]
(2.70)

where ()∗∗ denotes that the components of a

vector or a tensor is in the Ao basis. The components of the relative velocity in equation

(2.69) can be defined as

v̂qc∗∗a = RT

a
v̂qca =


U1

−U2

U3

 (2.71)

where U1 is the radial velocity component i.e., the velocity along a1. U2 and U3 are shown

in Figure 2.5. The negative sign of U2 is to be consistent with the sign convention used in

aerodynamic theories.

44



Figure 2.5: Relative velocity with respect to the quarter-chord.

The relative flow acceleration at the quarter chord is obtained by taking the time deriva-

tive of equation (2.71). Therefore, âqc∗∗a = ˙̂vqc∗∗a = RT

a
ω̃T v̂qca +RT

a
˙̂v
qc

a = ω̃∗∗
T
v̂qc∗∗a −RT

a
v̇qca .

It is assumed that ˙̂v
qc

a ≈ −v̇qca as far field velocity and average inflow are assumed not

to change significantly. The components of acceleration vector in Ao basis is given as

(âqc∗∗a )T = {A1, −A2, A3}. Also, the radial velocity is ignored as the unsteady theory

used here focuses on the flow components in the airfoil plane. Hence, the acceleration

component A3 is given as A3 = ω∗∗2 U1 + ω∗∗1 U2 − v̇∗∗a3 ≈ ω∗∗1 U2 − v̇∗∗a3. Therefore, the

magnitude of the resultant velocity is given as

V =
√
U2

2 + U2
3 (2.72)

The angle of attack α shown in Figure 2.5 is defined by the equations

U2 = V cos(α) , U3 = V sin(α) (2.73)

2.2.1 Unsteady Aerodynamics

Once the velocities over the airfoil are defined, the loads are computed from the unsteady

aerodynamics theory developed by Peters et al. [139]. The expressions for circulation over

the airfoil and the pressure drop across the airfoil is given in detail in [139] and [105].

The final expressions for loads acting on the airfoil will be provided here. Since we are

analyzing a rotor, the inflow is computed from the finite state three-dimensional induced

inflow model developed in [140]. This inflow model will be discussed in the later part of

this chapter. For a thin rigid airfoil in a two-dimensional inviscid and incompressible flow,
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the steady loads are given as

Ls = a0ρabU2U3 (2.74)

Ds = a0ρabU
2
3 (2.75)

M s = a0ρa
b2

2
U2U3 −

b

2
Ls = 0 (2.76)

where Ls, Ds and M s are the steady lift, drag and moment about the quarter chord, respec-

tively. Ls is along a3, Ds is along a2 and nose-up moment is positive. a0 is the slope of the

lift curve, ρa is the density of air and b is half the chord length. The unsteady components

of load are given as

Lus = a0ρab
2U2ω1 − a0ρa

b2

2
v̇a3 (2.77)

Dus = 0 (2.78)

Mus = −a0ρa
b4

16
ω̇1 −

b

2
Lus (2.79)

where ω1 is the pitch rate of the airfoil about a1 axis, nose-up rotation is assumed to be

positive. Since the Peters et al. unsteady aerodynamic theory is obtained for a thin airfoil in

an inviscid, incompressible flow, the results are approximate in nature. Hence, these results

could be improved by introducing correction terms from wind-tunnel experiments (or CFD

results). An airfoil test set-up to obtain steady loads in a wind tunnel is shown in Figure

2.6. Lwt is the force normal to the flow direction, which has the expression

Lwt = c`(α,M) ρabV
2 (2.80)

where c` is the experimental lift coefficient, which is a function of angle of attack α and

Mach number M. The steady lift and drag loads from the unsteady theory can be rewritten
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as follows.

Ls = a0ρabU2U3 = ρabV
2 a0

U3

V

U2

V
= ρabV

2 (a0 sin(α)) cos(α) (2.81)

Ds = a0ρabU3U3 = ρabV
2 a0

U3

V

U3

V
= ρabV

2 (a0 sin(α)) sin(α) (2.82)

From the Figure 2.6, it is seen that

Ls = Lwt cos(α) (2.83)

Ds = Lwt sin(α) (2.84)

Figure 2.6: Airfoil with wind tunnel lift. Figure 2.7: Airfoil with wind tunnel drag.

If c`(α,M) = a0 sinα, then the theoretical value and experimental measurement are

one and the same. If a table of c` is given for an airfoil, then the corrected lift and drag

loads can be computed. If the steady state moment about the quarter-chord is measured,

then

Mwt = cm(α,M) 2ρab
2V 2 (2.85)

where cm is the experimental moment coefficient. Therefore, including the correction terms

equations 2.81, 2.82 and moment can be written as

L̂s = c`(α,M) ρabV U2 (2.86)

D̂s = c`(α,M) ρabV U3 (2.87)

M̂ s = cm(α,M) 2ρab
2V 2 (2.88)
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Peters unsteady theory assumes that the flow is inviscid and hence, viscous drag forces are

neglected. Once again, wind tunnel test data is used to include drag correction terms into

the formulation. If Dwt is the drag force measured in the wind tunnel as shown in Figure

2.7, then

Dwt = cd(α,M) ρabV
2 (2.89)

where cd is the experimental drag coefficient. The components of the drag force S2 and S3,

also shown in Figure 2.7, can be written as

S2 = cd(α,M) ρabV
2 cos(α) = cd(α,M) ρabV U2 (2.90)

S3 = cd(α,M) ρabV
2 sin(α) = cd(α,M) ρabV U3 (2.91)

Next, we try to estimate the skin friction drag acting on the airfoil. If there is flow along the

blade in a1 direction, then the magnitude of the resultant velocity of U1 and U2 components

is defined as VR =
√
U2

1 + U2
2 . Contribution to skin friction drag from U3 component is

assumed to be small, and therefore neglected. Let cd0 be the skin friction drag coefficient,

which is estimated to be equal to the cd value at zero lift condition. Skin friction drag force

is defined as

Dsf = cd0(M) ρabV
2
R (2.92)

The components of skin friction drag are Ssf1 = cd0 ρabVRU1 and Ssf2 = cd0 ρabVRU2. On

carefully adding these terms to equations (2.90) and (2.91), we get the total drag expres-

sions as

S1 = Ssf1 = cd0(M) ρabVRU1 (2.93)

S2 = cd(α,M) ρabV U2 − cd0(M) ρabU
2
2 + cd0(M) ρabVRU2 (2.94)

S3 = cd(α,M) ρabV U3 (2.95)
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The second term in equation (2.94) is to ensure that the skin friction drag is not double

counted from the other two terms in the equation.

2.2.2 ONERA Dynamic Stall

Another aerodynamic phenomenon that needs to be accounted for analysis of helicopter

rotor blades is the dynamic stall effect. Dynamic stall affects the loads acting on the air-

foil. ONERA dynamic stall model will be used in the current work. This model is based

on the delayed dynamic stall and the second-order linear differential equation to compute

circulation Γ, the circulation per unit span of the blade.

d2Γ

dt2
+ ηV̄

dΓ

dt
+ ω2V̄ 2Γ = −V ω2(V̄ 2 ∆C + eV̄

d∆C

dt
) (2.96)

The differential equation for lift, drag and moment is obtained by replacing Γ by ΓL, ΓD

and ΓM , respectively. ∆C is the difference in aerodynamic coefficient between its linear

static value extrapolated in the stalled region and its actual value at the angle of attack

considered [105]. ∆C is replaced by ∆CL, ∆CD and ∆CM based on the equation being

solved and V̄ = V/b. More details of the derivation are provided in [141, 142]. The

parameters ω, η and e are defined as

ω = ω0 + ω1∆C2
L, η = η0 + η1∆C2

L, e = e0 + e1∆C2
L (2.97)

The parameters ω0, ω1, η0, η1, e and e1 are specific to a given airfoil and depend on the

Mach number of the flow. The range of values for these parameters is provided in [105].

On solving the governing differential equation, the dynamic stall loads are given as

LDS = ρaV bΓL (2.98)

DDS = ρaV bΓD (2.99)

MDS = 2ρaV b
2ΓM (2.100)
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2.2.3 Inflow Model

The inflow model used in this study was developed by Peters and He [140]. It is a finite-

state three-dimensional generalized dynamic wake theory. The formulations are based on

quasi-steady potential flow with small perturbations. Starting with the continuity and mo-

mentum equations, a general solution for pressure potential is obtained. The potential, Φ,

written as a Fourier expansion is

Φ(ν, η, ψ, t̄) =
∞∑
m=0

∞∑
n=m+1,m+3

Pm
n Qm

n (iη) [Cm
n (t̄) cos(mψ) +Dm

n (t̄) sin(mψ)] (2.101)

where Pm
n and Qm

n are the Legendre functions of the first and second kind, respectively,

and Cm
n and Dm

n are the unknown coefficients. ν, η and ψ are the ellipsoidal coordinates

and t̄ is the non-dimensional time variable, time variable multiplied with rotor speed. The

rotor is assumed to be disk with a pressure jump across the disk. The rotor lift can be

expressed as the pressure difference between the upper and lower surface of the disk. The

above equation can written at η = 0 in terms of the azimuth angle ψ and non-dimensional

radial location r̄ as

P(r̄, ψ, t̄) =
∞∑
m=0

∞∑
n=m+1,m+3

P̄m
n (ν) [τmcn (t̄) cos(mψ) + τmsn (t̄) sin(mψ)] (2.102)

r̄ is non-dimensionalized with respect to rotor radius. Also,

ν =
√

1− r̄2 (2.103)

P̄m
n (ν) = (−1)m

Pm
n

ρmn
(2.104)

(ρmn )2 =
(n+m)!

(2n+ 1) (j −m)!
(2.105)

τmcn (t̄) = (−1)m+1 2Qm
n (i0)ρmn C

m
n (2.106)

τmsn (t̄) = (−1)m+1 2Qm
n (i0)ρmnD

m
n (2.107)
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Analogously, the induced inflow velocity normal to the disk, w, is also assumed to

have a Fourier series form. The series is also in terms of the azimuth angle ψ and non-

dimensional radial location r̄.

w(r̄, ψ, t̄) =
∞∑

r=0

∞∑
j=r+1,r+3

Ψr
j(r̄)

[
αr
j(t̄) cos(rψ) + βr

j(t̄) sin(rψ)
]

(2.108)

Ψr
j should be a complete set of linearly independent functions in terms of r̄. Ψr

j is assumed

to be

Ψr
j = φr

j(r̄) =
1

ν
P̄ r
j(ν) (2.109)

The function φr
j is given as

φrj(r̄) =
√

(2j + 1)H r
j

j−1∑
q=r,r+2

r̄q
(−1)(q−r)/2(j + q)!!

(q − r)!! (q + r)!! (j − q − 1)!!
(2.110)

where

H r
j =

(j + r− 1)!! (j − r− 1)!!

(j + r)!! (j − r)!!
(2.111)

Now, we have to make the connection between the inflow velocity and pressure potential

to solve for the unknown coefficients. The induced inflow velocity (w) and the pressure

potential (Φ) are related as follows [140].

w = − 1

V∞

∫ ∞
0

∂ΦV

∂z
dξ (2.112)

dw
dt̄

= −∂ΦA

∂z

∣∣∣
η=0

(2.113)

ξ is the coordinate along the free stream, positive upstream. V∞ is the magnitude of far

field flow velocity. ΦV is the convection component of pressure and ΦA is the perturbation

component of pressure in the direction of the flow. Therefore, Φ = ΦV + ΦA. Substituting
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the expressions for w and Φ in the above equations, we obtain an algebraic set of equations

with αr
j and βr

j as unknowns.

2

π
Hm
n αr+

j + L−1
c V m

n α
r
j =

1

2
τmcn (2.114)

2

π
Hm
n βr+

j + L−1
s V m

n β
r
j =

1

2
τmsn (2.115)

The expressions for L−1
c , L−1

s and V m
n are provided in [140]. The average induced velocity

is given by
√

3α0
1. The right hand side terms are the load terms which are obtained from

the unsteady aerodynamics theory discussed previously. Hence, the system of equations

are solved to obtain the inflow velocity w, which is then reinserted into the unsteady theory

to update the loads. This feedback loop is shown in Figure 2.8.

Figure 2.8: Data flow between structural, unsteady aerodynamics and inflow model.

2.2.4 Total Air Loads

The total loads that are acting on the airfoil can be written as a sum of steady loads with

wind tunnel corrections, unsteady loads and dynamic stall loads. Inflow model goes into

the load calculation as discussed in the previous section. Let F1, F2 and F3 be the forces

acting in a1, a2 and a3 directions, respectively. M1, M2 and M3 are the moments acting
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about a1, a2 and a3 axes, respectively. The total loads can be written as

F1 = S1 (2.116)

F2 = ftl(D̂
s +Dus +DDS)− S2 (2.117)

F3 = ftl(L̂
s + Lus + LDS) + S3 (2.118)

M1 = ftl(M̂
s +Mus +MDS) (2.119)

M2 = 0 (2.120)

M3 = 0 (2.121)

where ftl is the tip loss factor, which ensures that the aerodynamic lift vanishes at the tip

of the rotor blade.

Hence, the structural and aerodynamic formulations that will go into the analysis of

the rotor blade is given in this chapter. In the next chapter, rotor blade modeling and

rotor trimming using DYMORE will be discussed along with the other results pertaining to

variable speed rotor analysis.
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CHAPTER 3

ROTOR MODELING AND TRIM METHOD VALIDATION

3.1 Blade Modeling

The rotor blade model that will be used in this study will be built in DYMORE. The multi-

body dynamics capabilities of DYMORE along with the inclusion of geometrically exact

beam theory for blade analysis and sufficiently comprehensive aerodynamic models made

DYMORE a good choice for studying variable speed rotors. The characteristics of the

blade model built in DYMORE will be discussed in this section.

The analysis in the present work will be focused on hingeless rotor systems. A schematic

diagram of a typical hingeless rotor assembly with the hub, the upper swash plate, a pitch-

link and a rotor blade is shown in Figure 3.1.

Figure 3.1: Schematic of a hingeless rotor.

The rotor model built in DYMORE will be a simplified version of the hingeless ro-

tor system. The hub rotation about the mast axis and the pitching of the blade about the

feathering axis will be modeled using revolute joints. The rotor blade will be modeled as

a one-dimensional beam discretized into finite-elements. The distance between the hub
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center and the rotor blade’s root attachment point is assumed to be zero. A representation

of this model is shown in Figure 3.2.

Figure 3.2: Hingeless rotor blade model in DYMORE.

The green triangles represent the end nodes of a finite element used to discretize the

blade, as shown in Figure 3.3. The number of finite elements and the order of the finite

element’s shape function will be chosen such that the blade’s response is converged.

Figure 3.3: Four-bladed rotor system.

Hence, a four-bladed hingeless rotor system shown in Figure 3.4 can be modeled in

DYMORE as beam elements as shown in Figure 3.5. This allows one to capture the physics

of the rotor blade and the rotor system without inheriting the complexities of an actual rotor

hub assembly.
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Figure 3.4: Four-bladed rotor system. Figure 3.5: Rotor model in DYMORE.

At this point, let us define some important frames. Let I be a frame that is located at the

hub center with unit vectors (̄i1, ī2, ī3). The orientation of this frame doesn’t change with

time and is assumed to be aligned with the inertial frame. Let H (h1, h2, h3) be the hub

frame which is attached to the hub center and tilts with the mast but doesn’t spin. The unit

vector h3 is along the mast axis. The plane containing h1 and h2 will be known as the hub

plane. The angle the hub plane makes with the free stream flow is given as α as shown in

Figure 3.6.

Figure 3.6: Hub plane tilt and free stream velocity.

Let r (r1, r2, r3) be a frame with origin at the hub center which tilts with the hub plane

and also moves with the blade as the blade spins. r3 and h3 are always aligned in the same

direction. r1 is initially along h1 and makes an angle ψ with h1 as the rotor spins about

h3 as shown in Figure 3.7. ψ is the azimuthal displacement of the blade.

As the blade travels in the azimuthal direction, the pitch of the blade is varied to counter

the differential lift that arises from the advancing and retreating sides of the blade. The
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Figure 3.7: Blade azimuth angle.

pitching motion is considered to be a first harmonic function of azimuth as

θ(ψ) = θ0 + θ1s sin(ψ) + θ1c cos(ψ) (3.1)

where θ0 is the collective pitch angle, θ1s is the longitudinal cyclic pitch angle and θ1c is

the lateral cyclic pitch angle. Trimming the rotor involves finding these coefficients for a

given flight condition. This will be discussed in detail in the next section.

In order to compute the aerodynamic loads, it is necessary to define the airstation loca-

tions on the rotor blade. The airstation location is determined by airstation coordinate as

discussed in the previous chapter. The location of the airstation coordinate need not coin-

cide with the beam’s finite element nodal locations, as shown in Figure 3.8. In this study,

the airstation coordinates are usually assumed to be located at the Gaussian points along

the beam, unless otherwise specified.

Figure 3.8: Airstation coordinates on a rotor blade.
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The dynamic response of the rotor blade will be obtained by solving the equation of

motion of the beam using time integration schemes. The generalized-α time marching

scheme will be used in the present work [116]. Generalized-α scheme is proven to be a

great tool for solving structural dynamics and multi-body problems with large number of

degrees of freedom.

3.2 Rotor Trim

As discussed in the first chapter, it is important to trim the rotor in order to perform any sort

of aeroelastic analysis. The trim procedure used in the present work will be an amalgama-

tion of wind tunnel trim and propulsive trim described in [48]. Since our rotor doesn’t have

a fuselage attached to it, the procedure will be very similar to wind tunnel trim. However,

instead of specifying collective pitch as described in [48], thrust will be specified to obtain

vertical force balance.

The thrust force and moments acting on the hub is shown in Figures 3.9 and 3.10. T is

the thrust resultant, which is a sum of all the thrust forces generated by each blade, acting

at the hub center and along h3. MP is the pitching moment about the hub center, measured

positively along h2. MR is the roll moment about the hub center, measured positively along

h1.

Figure 3.9: Thrust force and pitching moment at the hub center.

Since a time marching scheme is used to determine the blade response, an auto-pilot
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Figure 3.10: Roll moment at the hub center.

controller can be used to trim the rotor. The auto-pilot controller monitors the hub loads

continuously and corrects the control inputs to reach the specified state. The hub loads that

are averaged over a complete rotation will be used for rotor trimming. In our case, the pitch

angles θ0, θ1s and θ1c will be the control inputs which will be corrected continuously. The

hub loads that will be monitored and specified are T, MP and MR. A Butterworth filter will

be used to obtain an average value of these quantities. It is necessary to specify initial guess

values for the pitch angles, which will determine the hub loads for a given flight condition.

Let us call this to be the reference state of the rotor. The controller then drives the pitch

angles so that the specified or target value of hub loads are achieved. When the specified

hub loads are achieved, the rotor is said to be in a trimmed state. The auto-pilot control law

used is as follows
θ0

θ1s

θ1c


f

=


θ0

θ1s

θ1c


i

+ ∆t[J ]−1


g1 0 0

0 g2 0

0 0 g3





T

MP

MR


Target

−


T

MP

MR


i

 (3.2)

where ∆t is the time step size, given as ∆t = tf − ti. tf and ti are the final and initial times

of the time step, respectively. Subscripts f and i represent the quantities at final and initial

time, respectively. J is the Jacobian matrix, which is evaluated as shown in equation (3.3).

g1, g2 and g3 are the gain values that ensure that the pitch angles are changed incrementally.
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Sharp change in the pitch angles could destabilize the time integration scheme.

J =


∂T
∂θ0

∂T
∂θ1s

∂T
∂θ1c

∂MP

∂θ0

∂MP

∂θ1s

∂MP

∂θ1c

∂MR

∂θ0

∂MR

∂θ1s

∂MR

∂θ1c

 (3.3)

The ability of the controller to trim the rotor depends significantly on the Jacobian

matrix. In order to compute the Jacobian, consider the rotor in its reference state. In this

state, the initial pitch angles are perturbed by a small quantity one after the other. When

a pitch angle is perturbed, the rotor is allowed to spin until it reaches a steady load state.

These new hub loads obtained at the end are used to compute the unknown first order

derivatives in equation (3.3) using a finite difference process. Hence, perturbing θ0 by ∆θ0

allows one to compute the first column of the Jacobian matrix. Similarly, the second and

third column can be computed by perturbing θ1s and θ1c, respectively. The Jacobian matrix

can be written in the finite difference form as

J =


Tpert−Tref

∆θ0

Tpert−Tref

∆θ1s

Tpert−Tref

∆θ1c

(MP)pert−(MP)ref
∆θ0

(MP)pert−(MP)ref
∆θ1s

(MP)pert−(MP)ref
∆θ1c

(MR)pert−(MR)ref
∆θ0

(MR)pert−(MR)ref
∆θ1s

(MR)pert−(MR)ref
∆θ1c

 (3.4)

where the notation ()pert refers to the steady state quantity in the perturbed state with respect

to the perturbation quantity in the denominator. The notation ()ref refers to the reference

state of the rotor. The Jacobian needs to be computed only once for a given reference state

and it can be used to trim the rotor to different trim states. The Jacobian computed for a

specific reference state was also found to work well in the neighboring reference states.

Now, let us validate our model and trim procedure with a few results from literature.
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3.3 Model Validation

In order to validate the trim procedure and the rotor model, we will be using the results

from [155]. In [155], a hingeless rotor and fuselage system was trimmed using a propulsive

trim procedure. The schematic of the rotor-fuselage system is shown in Figure 3.11. The

fuselage was represented as a flat plate in [155] to compute the drag force acting on the

fuselage. The resultant drag force acts through the drag center. Center of gravity, C.G, of

the rotorcraft is located below the drag center as shown in the schematic diagram.

Figure 3.11: Schematic of rotor and fuselage.

Since we have our trim formulation setup only for wind tunnel trim, the propulsive trim

problem needs to be transformed into a wind tunnel trim problem. In order to do this, let us

consider the forces and moments acting on the rotor and fuselage as shown in Figure 3.12.

FL is the longitudinal rotor force along the hub plane. Fd is the resultant drag force acting

along the free stream and W is the weight of the rotorcraft. Lateral forces were neglected

during the trim procedure in [155].

61



Figure 3.12: Forces and moments for propulsive trim.

The force and moment balance equations are as follows

ΣF
i1

= 0

−T sin(α) + FL cos(α) + Fd = 0 (3.5)

T sin(α)− Fd

cos(α)
= FL (3.6)

ΣF
i3

= 0

T cos(α) + FL sinα−W = 0 (3.7)

T cos(α) + FL sinα = W (3.8)

Using the expression for FL from equation (3.6), we get

T cos(α) +
T sin(α)− Fd

cos(α)
sinα = W (3.9)

T cos2(α) + T sin2(α)

cos(α)
− Fd

cos(α)
= W (3.10)
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T

cos(α)
− Fd

sinα

cosα
= W (3.11)

W cos(α) + Fd sin(α) = T (3.12)

ΣMC.G
i2

= 0

MP + Fd(L1 − L2) cos(α) + FLL1 = 0 (3.13)

−Fd(L1 − L2) cosα− FLL1 = MP (3.14)

−Fd(L1 − L2) cosα− T sin(α)− Fd

cos(α)
L1 = MP (3.15)

The drag force is given by the following expression

Fd =
1

2
ρCdfA cos(α)V 2

∞ (3.16)

where Cdf is the coefficient of drag for a flat plate and A is the flat plate area. For a flat

plate Cdf = 1.28.

Hence, for a given value of α, thrust and pitching moment can be computed from equa-

tion (3.12) and (3.15) for a given free stream velocity. On enforcing the roll moment to be

zero, we have converted the propulsive trim problem in [155] into a wind tunnel trim prob-

lem. The auto pilot control law discussed in the previous section will be used to trim the

rotor provided in [155]. The trim angles computed from our formulations will be compared

with the trim angles provided in [155] as a validation exercise. The properties of a soft-in-

plane rotor given in [155] is provided in Table 3.1. The nomenclature for the symbols used

in Table 3.1 is provided in Table 3.2

The rotating non-dimensional first flap, lag and torsion frequencies of the blade used in

[155] are given as

ωF1 = 1.125 ωL1 = 0.732 ωT1 = 3.263 (3.17)
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Table 3.1: Rotor properties [155].

m = 5.51 kg/m R = 4.91 m Ω = 425 RPM

EIFlap = 6.7235× 104 Nm2 EILag = 1.9092× 105 Nm2 GJ = 9.3430× 103 Nm2

EA = 5.1605× 107 N W = 2.1935× 104 N a = 2π

A = 0.75 m2 c = 0.27 m cd = 0.01

B = 4 τ = 0◦ L1 = 2.45 m

L2 = 1.22 m mIFlap = 0.00 kg m mILag = 5.32× 10−2 kg m

These frequencies are non-dimensionalized using the rotor speed. A moderate deflection

beam theory was used in [155]. In order to match these natural frequencies, a slightly

different set of stiffness properties are used in our model. These properties are given in

Table 3.3.

The torsional stiffness is same as in [155] while the flap and lag stiffnesses are slightly

different. This could be because of the differences in beam formulations and a small amount

of structural damping included in our model to ensure numerical stability. Rest of the rotor

properties are same as shown in Table 3.1. The rotor blade was discretized into 10 finite

elements. Third order finite elements were used in the discretization. This was sufficient to

obtain converged results.

Quasi-steady Greenberg’s aerodynamic theory was used in [155]. Stall effects were

neglected and the inflow was assumed to be uniform. Hence, we will be using a quasi-

steady version of Peter’s aerodynamics model, which neglects the unsteady terms. The

uniform inflow is achieved by using a single inflow state in the dynamic inflow model. The

dynamic stall effects will be neglected as well to bring our aerodynamics model close to

the aerodynamics model in [155] for the validation exercise.

The rotor angle, α, variation with the advanced ratio, µ, is taken from [155] as shown in
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Table 3.2: Nomenclature.

Symbol Symbol

m Mass per unit length (kg/m) R Rotor radius (m)

EIFlap Flapwise stiffness (Nm2) EILag Lagwise stiffness (Nm2)

GJ Torsional stiffness (Nm2) EA Axial Stiffness (N)

W Weight of helicopter (N) a Airfoil’s lift curve slope

A Fuselage plate area (m2) c Airfoil chord length (m)

B Number of blades mIFlap Flapwise moment of inertia

of the cross-section (kg m)

mILag Lagwise moment of inertia τ Blade pre-twist angle (deg)

of the cross-section (kg m)

Table 3.3: Blade stiffness properties and natural frequencies (DYMORE)

EIFlap = 6.8350× 104 Nm2 EILag = 1.9236× 105 Nm2 GJ = 9.3430× 103 Nm2

ωF1 = 1.125 ωL1 = 0.732 ωT1 = 3.263

Table 3.4. The corresponding thrust and pitching moment values computed form equation

(3.12) and (3.15), respectively, are also presented in Table 3.4. Advance ratio is defined

as µ = V∞/(ΩR) in our study. The Jacobian matrix is computed for initial guess value

of pitch angles and the rotor is trimmed for the states mentioned in Table 3.4. The time

history of rotor trimming is shown in Figures 3.13 — 3.17.
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Table 3.4: Rotor trim states at sea level.

µ α (rad) T (N) MP (Nm) MR (Nm)

0 0 2.1935× 104 0 0

0.1 0.0105 2.1937× 104 −2.2469× 102 0

0.2 0.0383 2.1962× 104 −6.9191× 102 0

0.3 0.0825 2.2066× 104 −1.3723× 103 0

Figure 3.13: Time history of rotor trimming at µ = 0.
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Figure 3.14: Time history of rotor trimming at µ = 0.1.

Figure 3.15: Time history of rotor trimming at µ = 0.2 (Pitch and roll moments).
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Figure 3.16: Time history of rotor trimming at µ = 0.2 (Thrust).

Figure 3.17: Time history of rotor trimming at µ = 0.3.
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A comparison of the trim angles show that the pitch angles obtained in the present study

are close to the pitch angles provided in [155]. There results are shown in Figure 3.18. The

collective pitch angle obtained is slightly greater than the collective pitch provided in [155].

This could be because of the difference in the beam formulations and aerodynamic models

between the two studies. However, the cyclic pitch angles are in very good agreement.

Figure 3.18: Trim angles comparison.
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CHAPTER 4

VSR: POWER ADVANTAGES AND RESONANCE STUDIES

After validating the rotor model we built in DYMORE in the previous chapter, we will be

analyzing a variable speed rotor in this chapter. The rotor used for this study will be de-

scribed in the initial sections of this chapter. The later sections provide a proper framework

to analyze a variable speed rotor.

4.1 Rotor Properties

For variable speed rotor studies, we will be using the rotor provided in [18] which is similar

to the rotor studied in [22]. In [18], the authors studied the lead-lag resonance crossing

using a moderate deflection beam theory and quasi-steady aerodynamics. The properties

of the hingeless rotor that will be used in this study is provided in Table 4.1.

Table 4.1: Rotor properties [18].

m = 10 kg/m R = 6 m B = 4

EIFlap = 1.8340× 105 Nm2 EILag = 1.8640× 106 Nm2 GJ = 8.16× 104 Nm2

EA = 1.0× 108 N W = 1.2096× 104 N Airfoil: NACA 0012

Center of mass offset = 0 m c = 0.6 m Lag damping, ζ = 1%

Flap damping, η = 0.3% τ = 0◦ Shear center offset = 0 m

Centroid offset = 0 m mIFlap = 0.052 kg m mILag = 0.2 kg m

The first flap, second flap, first lag and first torsional non-rotating frequencies of our

blade are matching with the frequencies provided in [22]. The fan plot with 1% structural
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damping in lag is shown in Figure 4.1. The fan plot will provide important guidance in

resonance crossing studies.

Figure 4.1: Rotor blade fan plot for ζ = 1%.

The trim results from [18] are compared with the trim results from our model. Wind

tunnel trim procedure was followed in [18], but the rotor was trimmed for longitudinal

and lateral tip-path-plane angles instead of roll and pitch moment. The authors also used

a quasi-steady aerodynamics model, whereas unsteady aerodynamic terms are included

in our model. However, a three-state dynamic inflow was used to match with the inflow

states used in [18]. The results are shown in Table 4.2. The collective (θ0) and lateral

cyclic (θ1c) angles are very close to the literature values. The longitudinal cyclic angle

θ1s deviates noticeably from literature values. This could be because of differences in the

trim procedure and rotor model. This serves as another validation of our rotor model and

trimming technique.
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Table 4.2: Trim angles comparison for 3 state inflow.

Ω = 180 RPM V∞ = 28.27 m/s

Pitch Angles Han and Smith [18] Present Study

θ0 5.2025◦ 5.2057◦

θ1s −3.5063◦ −2.70◦

θ1c 2.8354◦ 2.7786◦

4.2 Baseline Conditions

The nominal angular speed for our rotor is chosen to be 230 RPM. It can be seen from the

fan plot that the natural frequencies of the rotor blade cross the multiples of rotor speed

(1Ω, 2Ω and so on) at several locations. These crossing locations are known as resonance

points. At these resonance points, the blade’s response amplifies as the operating frequency

overlaps with the blade’s natural frequency. Hence, the nominal rotor speed, ΩN is chosen

to be sufficiently far away from the resonance points as shown in Figure 4.2.

For ΩN = 230 RPM, the advance ratio and the corresponding free stream velocity is

provided in Table 4.3. The nominal advance ratio µN is defined as V∞/(ΩNR).

Table 4.3: Nominal advance ratio and free stream velocity.

ΩN = 230 RPM, T = 1.2096× 104 N

µN 0.0 0.1 0.2 0.3

V∞ (m/s) 0.00 14.45 28.90 43.35

72



Figure 4.2: Rotor blade fan plot showing nominal Ω.

4.3 Inflow States and Trim Angles

An important parameter that affects the load distribution across the rotor is the inflow ve-

locity. The inflow doesn’t tend to be uniform across the rotor blade. In order to capture the

inflow accurately, the number of inflow states has to be increased. In this section, we will

be studying the effect of inflow states on trim angles. The number of inflow states in our

aerodynamics model is increased and the behavior of trim angles is observed.

In the hovering flight condition, µN = 0, the collective pitch angle shows a converged

behavior for inflow states greater than 10 as shown in Figure 4.3. Beyond 10 states, there

appears to be no significant changes to the trimmed θ0 value. The lateral and longitudinal

cyclic values are zero for hover.

In the forward flight condition, the lateral cyclic angle is affected greatly by the number
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Figure 4.3: Trim angle convergence at µN = 0

of inflow states. The results for µN = 0.1 is shown in Figure 4.4. Lateral cyclic θ1c shows

convergence behavior only after 15 inflow states, whereas θ0 and θ1s show convergence

after 10 inflow states with slight numerical deviation.

As the forward speed increases, more inflow states are required to capture the inflow

accurately. The results for µN = 0.2 and µN = 0.3 are shown in Figures 4.5, 4.6 and 4.7.

The lateral cyclic angle shows convergence behavior after 21 inflow states for an advance

ratio of 0.2. For an advance ratio of 0.3, convergence is achieved after 55 inflow states.

Hence, we will be using the necessary number of inflow states for a given advance ratio to

ensure trim angles convergence in the consequent analysis.
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Figure 4.4: Trim angles convergence at µN = 0.1

Figure 4.5: Trim angles convergence at µN = 0.2 (Collective and lateral cyclic)
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Figure 4.6: Trim angles convergence at µN = 0.2 (Longitudinal cyclic)

Figure 4.7: Trim angles convergence at µN = 0.3
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4.4 Power Advantages of a VSR

As discussed in the first chapter, varying the rotor speed can improve the performance of a

rotor. However, such studies for a hingeless rotor are scarce in the literature. The detailed

power studies by Steiner et al. [10] is limited to an articulated rotor with rigid blades having

only flap degrees of freedom. Hence, in this section we will be using our comprehensive

rotor model to quantify the power advantages that could be achieved by varying the rotor

speed.

In this analysis, we assume that the rotor is fitted with a transmission system that allows

unlimited speed change. A continuously variable transmission (CVT) system could provide

a wide range of gear ratios unlike a fixed-ratio transmission system. CVT systems were

shown to be advantageous for VSR in [160]. The rotor speed is changed from its baseline

of 230 RPM and the power required to run the rotor at the new RPM is evaluated for sea

level altitude (ρa = 1.2041 kg/m3 at 20◦c). The thrust produced by the rotor and the forward

speed of the rotorcraft remains unchanged for a given nominal advance ratio even though

the rotor speed changes. Hence, the rotor needs to be trimmed for the new Ω to produce the

same thrust and moment balance. In this section, we are only looking at the steady state

values of a trimmed rotor and not the transition dynamics of changing rotor speed.

In hover, the rotor requires a power of 202 hp to balance the drag loads acting on the

rotor at 230 RPM, as shown in Figure 4.8. The drag loads formulation is provided in section

2.2. The drag loads acting on the airfoil due to lift and dynamic stall will be referred to as

induced drag in this study. The drag loads due to the profile of the airfoil along with the

skin friction drag will be referred to as profile drag. This helps us in explaining the power

behavior.

The total torque that is required to spin the rotor at a constant speed is shown in Figure

4.9. As the rotor speed decreases from 230 RPM, the power required to spin the rotor is

decreased. As the rotor speed is decreased, the pitch angle needs to increase in amplitude
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Figure 4.8: Power savings at µN = 0

to produce the same amount of thrust. Due to the increase in pitch angle, the induced drag

increases leading to an over all increase in rotor torque as shown in Figure 4.9. However,

the profile drag decreases with reduction in rotor speed as the velocities seen by the air-

foil sections are lower. Total torque is a summation of the torques required to balance the

induced drag and profile drag. Power is defined as rotor torque multiplied by rotor speed.

Even though the overall torque increases, reducing the rotor speed has a net effect of re-

ducing the total power requirement. Hence, reducing the rotor speed from 230 RPM to

210 RPM provides about 7% power savings. Reducing the rotor speed further improves

the rotor performance and a maximum power saving of 25% is achieved at 110 RPM for

our rotor. Reducing the rotor speed beyond 110 RPM decreases the power savings to 24%

as the torque curve gets steeper. Beyond this point the rotor is not trimmable. Any fur-

ther increase in the pitch angle stalls the rotor and thus making the rotor unable to produce

the required thrust. Power savings achieved due to reduced rotor speed comes with a 56%

increase in rotor torque in hover but improves the hover endurance performance of a rotor-

craft appreciably.

In forward flight, the rotor torque shows a different behavior than hover. The power

savings also improve considerably. For µN = 0.1, reducing the rotor speed improves the
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Figure 4.9: Torque variation with rotor speed at µN = 0

power ratings of the rotor by a maximum of 37.7%. The minimum power is achieved at a

rotor speed of 130 RPM as shown in Figure 4.10. It is to be noted that the trim boundary

of the rotor is increased to 130 RPM in this case as compared to 100 RPM in hover. Hence,

the percentage of rotor speed change that can be achieved or required reduces with increase

of forward speed. In hover, 52% change from ΩN is required to attain minimum power,

whereas at µN = 0.1 minimum power can be achieved by 43% change from ΩN .

Figure 4.10: Power savings at µN = 0.1

The rotor torque decreases as the rotor speed is reduced from 230 RPM to 180 RPM,
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Figure 4.11: Torque variation with rotor speed at µN = 0.1

shown in Figure 4.11. This is because the profile drag decrease is greater than the increase

of induced drag with reduction in rotor speed. Hence, an overall decrease in rotor torque is

observed till 180 RPM. Beyond this Ω, the induced drag starts to increase greatly leading

to an increase in total torque. However, only 10% increase in rotor torque is observed from

the baseline value at minimum power point.

At µN = 0.2, the power savings show a considerable improvement reaching a maxi-

mum of 41% at 150 RPM, shown in Figure 4.12. The significant power reduction is a result

of profile drag being greatly dominant at this forward speed.

Figure 4.12: Power savings at µN = 0.2
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Reducing the rotor speed caused the profile drag to decrease as expected and there was

also an absence of significant increase in induced drag. This can be seen in the rotor torque

curve shown in Figure 4.13, leading to a notable power reduction. The total torque has also

reduced by 10% from the baseline at 150 RPM.

Figure 4.13: Torque variation with rotor speed at µN = 0.2

For µN = 0.3, the power saving reduces. Even though the rotor is trimmable until

170 RPM, the maximum power saving of 24% is attained at 180 RPM. The power curve is

shown in Figure 4.14.

Figure 4.14: Power savings at µN = 0.3

For reduction beyond 180 RPM, the power saving reduces sharply to 8% at 170 RPM

before reaching the untrimmable region. This sharp decrease in power saving is associated
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with a sharp increase in rotor torque as shown in Figure 4.15. This sudden increase of

torque is due to a rapid increase in profile drag and continuous increase of induced drag at

high angles of attack.

Figure 4.15: Torque variation with rotor speed at µN = 0.3

4.5 Resonance Points Identification

Performing a power advantage study such as the one discussed in the previous section

makes a strong case to consider variable speed rotors. More importantly, it also serves as a

guide to identify the resonance crossing points that needs to be studied from the fan plot.

The resonance crossing points are identified for different advance ratios in Figures 4.16,

4.17, 4.18 and 4.19.

The resonance crossing points up to 7Ω are identified in this exercise. Whether these

higher frequency resonance crossing points are important or not is something that needs to

be studied.
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Figure 4.16: Resonance points for µN = 0

Figure 4.17: Resonance points for µN = 0.1
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Figure 4.18: Resonance points for µN = 0.2

Figure 4.19: Resonance points for µN = 0.3
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4.6 Resonance Transition Dynamics

In this section, we will be focusing on the response of the rotor blade as it passes through

the resonance points. Before we dive into our results, our model needs to be validated for

resonance study.

4.6.1 Validation

The resonance results from [18] are used to validate our model. In [18], the rotor speed

was changed from 180 RPM to 240 RPM in 10 seconds. The lag moment and rotor torque

are compared in Figures 4.20 and 4.21, respectively.

Figure 4.20: Lag moment comparison for 2/rev lag resonance ( 180→ 240 RPM)

The lag moment amplitude differs by 38% for the 2/rev lag resonance crossing as shown

in Figure 4.20. This deviation could be a result of differences in the aerodynamics model,

trim procedure and beam model. Twenty one inflow states were used in our model to ensure

θ1c convergence, which in turn affects the trim angles. It will be shown later that trim angles

play a significant role in resonance response. The authors in [18] trimmed the rotor for flap

angles instead of rotor moments. The rotor torque comparison, Figure 4.21, shows that

the present model predicts higher amplitude oscillations than published data. This could
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Figure 4.21: Rotor torque comparison (180→ 240 RPM)

be because of the quasi-steady assumptions and use of blade-element theory in [18]. The

resonance results for the conditions in our study are given in the subsequent sections.

4.6.2 Nominal Advance Ratio, µN = 0.3

Now, let us consider the resonance crossing points between 230 RPM and 180 RPM at

µN = 0.3, shown in Figure 4.19. There are three resonance crossing points in this re-

gion as provided in Table 4.4. The unit per rev (/rev) denotes that the frequency is non-

dimensionalized with respect to rotor speed Ω.

Table 4.4: Resonance points between 230 RPM and 180 RPM.

Blade Frequency Mode Crossing Point Crossing Frequency

(/rev) (Hz)

1st Lag 2 6.863

2nd Flap 5 15.299

1st Torsion 7 24.056
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Transition: 230 to 180 RPM

The rotor speed is changed smoothly from 230 RPM to 180 RPM as shown in Figure 4.22.

The rotor speed function is as follows

Ω(t) = Ω1 + (Ω2 − Ω1)

[
1− cos2

(
π

2
× t− t1
t2 − t1

)]
(4.1)

where Ω1 is the initial speed, Ω2 is the final speed, t1 is the time at the start of transition and

t2 is the time at the end of transition. The rotor pitch angles are obtained by trimming the

rotor for every 10 RPM between the two rotor speeds and curve fitted to obtain continuous

data. This data is provided in Figure 4.23. Once the rotor speed is known as a function of

time, pitch angles can be computed as a function of time as shown in Figure 4.24.

Figure 4.22: Rotor speed change from 230 to 180 RPM (10 s)

As the rotor speed is varied smoothly, the lag moment, flap moment and torsion moment

at the blade root are obtained as a function of time in the blade frame. This allows us to

observe the change in moment amplitudes due to resonance. Performing an FFT analysis

on the signal would reveal which of the three resonance crossings has a dominant effect on

the blade response.

The time history of the lag moment is shown in Figure 4.25. It can be seen that the

lag moment at the blade root increases significantly around 10 to 12 seconds. During this
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Figure 4.23: Pitch angles for µN = 0.3

Figure 4.24: Pitch angles variation with time for µN = 0.3 ( 230→ 180 RPM)

period the rotor crosses through the 2/rev lag resonance and 7/rev torsion resonance. The

lag moment amplitude increases 10 times the nominal amplitude.

An FFT analysis of the lag moment in the high amplitude time frame shows that the

dominant frequencies are 3.33 Hz and 6.66 Hz, Figure 4.26. The rotor operating frequency

1/rev and the lag resonance frequency 2/rev seem to be the driving factors for amplitude

increase. The amplitude of the 2/rev signal is almost 10 times the 1/rev signal. Hence,

the increase in amplitude is primarily because of the lag resonance. The 7/rev torsional

resonance doesn’t seem to have any effect on the lag moment response as no peaks are
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Figure 4.25: Time history of lag moment at blade root (µN = 0.3; 230→ 180 RPM)

Figure 4.26: FFT analysis of lag moment at resonance (µN = 0.3; 230→ 180 RPM)

observed at higher frequencies in the FFT analysis.

The lag force behavior is shown in Figure 4.27. The dominating frequency is still 2/rev

as seen in the FFT analysis, Figure 4.28.
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Figure 4.27: Time history of lag force at blade root (µN = 0.3; 230→ 180 RPM)

Figure 4.28: FFT analysis of lag force at resonance (µN = 0.3; 230→ 180 RPM)

Flap moment time history is provided in Figure 4.29. The flap moment amplitude does

not increase significantly like lag moment, even though the second flap frequency crosses

5Ω. However, there is a noticeable increase in the flap moment amplitude. An FFT analysis

of the data, Figure 4.30, shows that the flap moment increase is arriving from the 2/rev

excitation. Hence, lag resonance is responsible for the flap moment increase as well. Even

so, the increase is small compared to the mean flap moment value.

The variation of torsional moment with time shows that the resonance crossing in-

creases the torsional moment amplitude considerably. The time history plot is given in

Figure 4.31. The first torsional frequency crosses the 7/rev frequency line around 206
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Figure 4.29: Time history of flap moment at blade root (µN = 0.3; 230→ 180 RPM)

Figure 4.30: FFT analysis of flap moment at resonance (µN = 0.3; 230→ 180 RPM)

RPM. However, the FFT data shows that the dominating frequency is still 2/rev coming

from the lag resonance. Hence, the higher frequency resonance crossing does not seem

to have any noticeable impact on torsional response. This can be seen in the FFT Figure

4.32 as no visible peak exists beyond 16 Hz. Apart from the expected 1/rev peak, there

are two additional low amplitude peaks close to 3/rev and 4/rev frequencies. These higher

frequencies also contribute modestly to the torsional response during the steady state.

Another important rotor parameter that needs to be studied is the rotor torque. As we

have seen before, rotor torque is a function of rotor speed. The rotor torque variation during

the rotor speed change from 230 RPM to 180 RPM in the hub frame is shown in Figure
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Figure 4.31: Time history of torsional moment at blade root (µN = 0.3; 230→ 180 RPM)

Figure 4.32: FFT analysis of torsional moment at resonance (µN = 0.3; 230→ 180 RPM)

4.33. The rotor torque decreases significantly with the decrease in rotor speed initially.

However, as the rotor speed decrease rate starts to slow down, the torque slowly increases

and reaches a steady state value. Therefore, the rotor torque follows the rotor’s angular

acceleration trend. The angular acceleration is shown in Figure 4.34. The rotor torque

settles at the new steady state mean value, which is below the initial steady state mean

value in this case, once the angular acceleration reaches zero.
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Figure 4.33: Time history of rotor torque (µN = 0.3; 230→ 180 RPM)

Figure 4.34: Rotor acceleration time history (Ω = 230 to 180 RPM in 10 s)

The torque response curve also shows that there is an increase in rotor torque amplitude

near the resonance crossing point in comparison to its neighborhood. A Fourier analysis in

this region shows that a 4/rev excitation is causing this bump along with a lower amplitude

2/rev excitation. The hub acts as a filter that lets the 4/rev frequencies from the moving

frame to the fixed frame for a four-bladed rotor system. This increased magnitude of torque

in the fixed frame seems to be arriving from the 2/rev lag excitation in the moving frame.
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Figure 4.35: FFT analysis of rotor torque at resonance (µN = 0.3; 230→ 180 RPM)

Transition: 180 to 230 RPM

Once the rotor speed is reduced to 180 RPM, the rotor is operating at an increased ef-

ficiency. However, the maneuverability of the helicopter decreases as the rotor sections

operate at high angles of attack. If the pilot decides to go back to nominal RPM for an

increased maneuverability, the rotor speed needs to be changed smoothly from 180 to 230

RPM. The rotor speed and acceleration for 10 seconds transition are shown in Figures 4.36

and 4.37, respectively.

Figure 4.36: Rotor speed change from 180 to 230 RPM (10 s)
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Figure 4.37: Rotor acceleration time history (Ω = 180 to 230 RPM in 10 s)

The lag moment during this transition shows a similar behavior as the transition from

230 to 180 RPM. However, the magnitude of the lag moment increase has reduced, shown

in Figure 4.38, comparatively. The amplitude and frequencies of the lag moment in the

resonance region is shown in Figure 4.39. It can be seen that the frequency close to 2/rev is

still dominating, but the amplitude is close to 8×103 Nm as compared to 9×103 Nm in the

reverse transition, Figure 4.28. Hence, crossing the same resonance point in two different

directions displays a non-linear resonance type behavior as discussed in [20].

Figure 4.38: Time history of lag moment at blade root (µN = 0.3; 180→ 230 RPM)
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Figure 4.39: FFT analysis of lag moment at resonance (µN = 0.3; 180→ 230 RPM)

The lag force follows a trend similar to the rotor speed as shown in Figure 4.40. As the

rotor speed increases, the lag force increases in the negative r2 direction. Lag force also

shows an increased amplitude during the 2/rev resonance crossing. However, the amplitude

of the increased lag force is small compared to the mean value as shown in Figure 4.41.

This value is also lower compared to the 2/rev peak value for transition in the opposite

direction, 4.28.

Figure 4.40: Time history of lag force at blade root (µN = 0.3; 180→ 230 RPM)
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Figure 4.41: FFT analysis of lag force at resonance (µN = 0.3; 180→ 230 RPM)

Flap moment response and the FFT plot of the resonance region are shown in Figures

4.42 and 4.43, respectively. The 2/rev frequency is still dominating with frequencies close

to 1/rev, 3/rev and 4/rev contributing in meager quantities to the total amplitude. However,

the peak at 2/rev is slightly greater than the corresponding peak for the reverse transition,

Figure 4.30.

Figure 4.42: Time history of flap moment at blade root (µN = 0.3; 180→ 230 RPM)
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Figure 4.43: FFT analysis of flap moment at resonance (µN = 0.3; 180→ 230 RPM)

Torsional moment response is shown in Figure 4.44. The FFT of the resonance region

signal is given in Figure 4.45. The dominating frequency is 2/rev with 1/rev being the

second dominant frequency. The amplitudes are noticeably lower than the amplitudes in

Figure 4.32.

Figure 4.44: Time history of torsional moment at blade root (µN = 0.3; 180→ 230 RPM)
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Figure 4.45: FFT analysis of torsional moment at resonance (µN = 0.3; 180→ 230 RPM)

The rotor torque increases during the transition from 180 to 230 RPM and follows the

rotor acceleration trend. The rotor torque is shown in Figure 4.46. The rotor torque reaches

a peak close to 6000 Nm during resonance crossing. This is significantly higher than the

torque response during the opposite transition, where the torque reduces in comparison

to the steady state value. The FFT analysis shows that the 4/rev response is dominating

compared to the 2/rev response in the fixed frame, Figure 4.47. The peak amplitudes are

comparable to the amplitudes in Figure 4.35 except for the mean value.

Figure 4.46: Time history of rotor torque (µN = 0.3; 180→ 230 RPM)
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Figure 4.47: FFT analysis of rotor torque at resonance (µN = 0.3; 180→ 230 RPM)

4.6.3 Nominal Advance Ratio, µN = 0.2

After analyzing the transition for µN = 0.3, let us consider the resonance crossing points

for the nominal advance ratio of 0.2. It can be seen from Figure 4.18 that the resonance

crossing points for µN = 0.2 are same as µN = 0.3. As the rotor speed is reduced to 150

RPM from the nominal speed, no additional resonance points get added. However, as the

rotor is operating at a different forward speed, the response of the blade is expected to be

different for the same resonance crossings. The resonance points are given in Table 4.5.

Table 4.5: Resonance points between 230 RPM and 150 RPM.

Blade Frequency Mode Crossing Point Crossing Frequency

(/rev) (Hz)

1st Lag 2 6.863

2nd Flap 5 15.299

1st Torsion 7 24.056

The response of the blades during transition is given in the following sections.
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Transition: 230 to 150 RPM

In order to have a reasonable comparison across the advance ratios, the rotor speed is

changed in such a way that the amplitude of the peak or valley of the rotor acceleration

curve remains the same across all µN values during transition. The rotor speed is changed

from 230 to 180 RPM in 10 seconds for µN = 0.3. Therefore, the rotor speed is changed

from 230 to 150 RPM in 16 seconds for µN = 0.2. This leads to the rotor acceleration

curve shown in Figure 4.49, which has the same valley as Figure 4.34 but stretched in time.

The rotor speed and trim angles are shown in Figures 4.48 and 4.50, respectively.

Figure 4.48: Rotor speed change from 230 to 150 RPM (16 s)

Figure 4.49: Rotor acceleration time history (Ω = 230 to 150 RPM in 16 s)
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Figure 4.50: Pitch angles for µN = 0.2

For readers who are once again curious about how the pitch angles vary with time, it

is shown in Figure 4.51. This graph will not be provided for the subsequent sections as it

becomes redundant once the pitch angles are given as a function of rotor speed.

Figure 4.51: Pitch angles variation with time for µN = 0.2 (16 s, 230→ 150 RPM)

Lag moment time history is shown in Figure 4.52. The amplitude during resonance is

lower compared to the µN = 0.3 case. This can also be seen in the FFT analysis of the

resonance region, Figure 4.53. The reason for this lower amplitude increase, despite having

a relatively close Ω̇ during resonance, can be explained by observing the pitch angles.

Figure 4.54 gives the trim angles at 2/rev lag crossing for µN = 0 to 0.3. θ1c does not

vary significantly in forward speed but the θ1s value decreases in magnitude with decrease
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in µN . Having a lower cyclic pitch angle means that the blade’s response is less harmonic

than the previous case. This reduced harmonic behavior of the blade leads to a lower

amplitude increase during resonance. However, the increase in amplitude during resonance

is still approximately 7 times the steady state amplitude at 230 RPM. As expected, the

dominating frequency is still 2/rev with 1/rev and 3/rev making small contributions.

Figure 4.52: Time history of lag moment at blade root (µN = 0.2; 230→ 150 RPM)

Figure 4.53: FFT analysis of lag moment at resonance (µN = 0.2; 230→ 150 RPM)
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Figure 4.54: Pitch angles at 2/rev lag resonance (at 205.8 RPM)

The lag force decreases in magnitude with reduction in rotor speed, Figure 4.55. The

resonance crossing causes a noticeable increase in the lag force during transition. FFT of

this signal is shown in Figure 4.56.

Figure 4.55: Time history of lag force at blade root (µN = 0.2; 230→ 150 RPM)
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Figure 4.56: FFT analysis of lag force at resonance (µN = 0.2; 230→ 150 RPM)

Flap moment resonance also has a lower amplitude compared to the corresponding

value at higher forward speed, Figure 4.57. Even though the 2/rev frequency is dominating,

Figure 4.58, the frequencies close to 3/rev and 5/rev also make small contributions to the

resonance. It should be noted that the rotor’s second flap frequency crosses 5/rev during

this transition.

Figure 4.57: Time history of flap moment at blade root (µN = 0.2; 230→ 150 RPM)
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Figure 4.58: FFT analysis of flap moment at resonance (µN = 0.2; 230→ 150 RPM)

The frequencies that are dominating the torsional moment response are similar to the

previous cases, Figures 4.59 and 4.60. The amplitude of the dominating frequency is lower

in comparison. The 7/rev first torsion crossing doesn’t seem to have any noticeable impact

on the blade response.

Figure 4.59: Time history of torsional moment at blade root (µN = 0.2; 230→ 150 RPM)
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Figure 4.60: FFT analysis of torsional moment at resonance (µN = 0.2; 230→ 150 RPM)

The rotor torque response is different compared to the previous case, as seen in Figure

4.61. The amplitude starts growing around 10 seconds and seems to have multiple fre-

quencies contributing to the resonance behavior. FFT analysis of this signal reveals that

the frequencies between 12 and 14 Hz, which are close to 4/rev, are playing a role in this

peculiar behavior, Figure 4.62.

Figure 4.61: Time history of rotor torque (µN = 0.2; 230→ 150 RPM)
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Figure 4.62: FFT analysis of rotor torque at resonance (µN = 0.2; 230→ 150 RPM)

Transition: 150 to 230 RPM

The reverse transition from 150 to 230 RPM will be dealt with in this section. The rotor

speed is increased from lower RPM to higher RPM in 16 seconds. The rotor speed is shown

in Figure 4.63 and the acceleration curve is shown in Figure 4.64.

Figure 4.63: Rotor speed change from 150 to 230 RPM (16 s)

Lag moment time history, Figure 4.65, shows that the amplitude during resonance is

slightly lower compared to the previous case at µN = 0.2. Hence, the low-to-high speed
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Figure 4.64: Rotor acceleration time history (Ω = 150 to 230 RPM in 16 s)

transition cases are noticed to have lower lag moment amplitude increase during resonance

than the high-to-low speed transitions. Similar trend has been observed for µN = 0.3

cases. This could be because of the pitch angles having a decreasing trend in the low-

to-high speed transition, Figure 4.50. FFT analysis of the resonance region, Figure 4.66,

shows that even though the 2/rev and 1/rev signals have lower amplitudes, the mean value

is higher in this case. This should be taken into account if one were to perform fatigue

analysis. The dominating frequency is still 2/rev.

Figure 4.65: Time history of lag moment at blade root (µN = 0.2; 150→ 230 RPM)
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Figure 4.66: FFT analysis of lag moment at resonance (µN = 0.2; 150→ 230 RPM)

The lag force heads in the opposite direction, as expected, compared to the previous

case as shown in Figure 4.67. However, the magnitude of 2/rev is slightly higher here,

Figure 4.68. The mean value is also higher as the rotor speed is operating at a greater

speed. It should be noted at this point that the lag force doesn’t increase significantly like

the lag moment during resonance crossing.

Figure 4.67: Time history of lag force at blade root (µN = 0.2; 150→ 230 RPM)
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Figure 4.68: FFT analysis of lag force at resonance (µN = 0.2; 150→ 230 RPM)

Flap moment resonance has a behavior very similar to the reverse transition case. The

dominating frequencies still remain the same, with mean value being the highest. The

flap moment and the corresponding FFT plot of the resonance region are shown in Figures

4.69 and 4.70, respectively. The amplitudes of the FFT peaks are also comparable to the

transition in the opposite direction.

Figure 4.69: Time history of flap moment at blade root (µN = 0.2; 150→ 230 RPM)

The torsional moment’s resonance response is smoother in comparison to the previous

transition. The same frequencies are dominating with a moderately lower amplitude as
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Figure 4.70: FFT analysis of flap moment at resonance (µN = 0.2; 150→ 230 RPM)

shown in Figure 4.72. The 2/rev crossing has a noticeable impact on the torsional moment

response. Figure 4.71 gives the time history of torsional moment at the blade root.

Figure 4.71: Time history of torsional moment at blade root (µN = 0.2; 150→ 230 RPM)
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Figure 4.72: FFT analysis of torsional moment at resonance (µN = 0.2; 150→ 230 RPM)

The rotor torque response has a distinct bump due to resonance as shown in Figure 4.73

that was missing in the previous scenario. As expected, the mean amplitude is considerably

higher during rotor speed increase, Figure 4.74. The FFT analysis shows that only a single

peak close to 4/rev is contributing to the resonance response from the higher end of the

spectrum. Contribution from a band of frequencies is not observed here.

Figure 4.73: Time history of rotor torque (µN = 0.2; 150→ 230 RPM)
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Figure 4.74: FFT analysis of rotor torque at resonance (µN = 0.2; 150→ 230 RPM)

4.6.4 Nominal Advance Ratio, µN = 0.1

The resonance crossing points for µN = 0.1 are shown in Figure 4.17. Two additional

resonance crossing points come into the picture as the rotor speed is changed from 230

RPM to 130 RPM. First lag frequency crosses 3Ω and second flap frequency crosses 6Ω

lines between 130 and 150 RPM. Hence, two lower frequency crossings, 2/rev and 3/rev,

are involved during this transition. The relevant resonance frequencies are given in Table

4.6.

The trim angles for rotor speeds between 130 and 230 RPM are given in Figure 4.75.

Table 4.6: Resonance points between 230 RPM and 130 RPM.

Blade Frequency Mode Crossing Point Crossing Frequency

(/rev) (Hz)

1st Lag 2 6.863

2nd Flap 5 15.299

1st Torsion 7 24.056

1st Lag 3 6.775

2nd Flap 6 14.530
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Figure 4.75: Pitch angles for µN = 0.1

Transition: 230 to 130 RPM

The rotor speed is changed from 230 to 130 RPM in 20 seconds as shown in Figure 4.76.

This allows the rotor acceleration to have the same valley, or peak, magnitude as the previ-

ous cases, Figure 4.77.

Figure 4.76: Rotor speed change from 230 to 130 RPM (20 s)

Lag moment response is shown in Figure 4.78. There are two resonance bumps dur-

ing this transition, which was not observed in the previous transitions. The first bump is

referred to as the first resonance crossing, and the second bump as the second resonance
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Figure 4.77: Rotor acceleration time history (Ω = 230 to 130 RPM in 20 s)

crossing. FFT analysis reveals that the first resonance is due to the 2/rev crossing, Figure

4.79. The amplitude of this 2/rev lag resonance is lower than any other 2/rev resonance dis-

cussed before. The second resonance has an observably higher amplitude and the same is

seen in the FFT results, Figure 4.80. The dominating frequency is close to 3/rev suggesting

that the response is due to the first lag frequency crossing the 3/rev line. Both these behav-

iors can be explained based on the pitch angles during resonance. As discussed previously,

the cyclic pitch angles decrease with decrease in forward speed, Figure 4.54. Hence, the lag

moment amplitude increase during the 2/rev resonance decreases with decrease in forward

speed. However, the pitch angles increase in magnitude as the rotor speed is reduced. The

trim angles during 2/rev and 3/rev crossing is shown in Table 4.7 for comparison. The val-

ues during 3/rev crossing are greater in magnitude than those at the 2/rev crossing, which

leads to a greater amplitude increase during resonance.
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Figure 4.78: Time history of lag moment at blade root (µN = 0.1; 230→ 130 RPM)

Table 4.7: Trim angles comparison at µN = 0.1

2/rev Crossing 3/rev Crossing
(205.8 RPM) (135.5 RPM)

Trim Angles (deg) (deg)
θ0 4.795 9.693
θ1c 1.601 2.754
θ1s -0.8477 -3.15

Figure 4.79: FFT analysis of lag moment at first resonance (µN = 0.1; 230→ 130 RPM)
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Figure 4.80: FFT analysis of lag moment at second resonance (µN = 0.1; 230→ 130 RPM)

The lag force also has two resonance regions as shown in Figure 4.81. Again, the second

resonance has a greater relative increase in magnitude compared to the first resonance. The

2/rev peak, Figure 4.82, has a lower amplitude in comparison to the 3/rev peak shown in

Figure 4.83.

Figure 4.81: Time history of lag force at blade root (µN = 0.1; 230→ 130 RPM)
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Figure 4.82: FFT analysis of lag force at first resonance (µN = 0.1; 230→ 130 RPM)

Figure 4.83: FFT analysis of lag force at second resonance (µN = 0.1; 230→ 130 RPM)

Flap moment also shows a similar resonance behavior as seen in Figure 4.84. The am-

plitude increase during the first resonance is not only less than half of the second resonance,

it is also lower than the corresponding value at µN = 0.2. The FFT analysis is given in

Figures 4.85 and 4.86. The noticeable frequencies are 2/rev, 3/rev and 4/rev in both the

resonances. The dominating frequency is 2/rev in the first crossing and 3/rev in the second

crossing. The higher frequency flap crossings like 5/rev and 6/rev have little effect on the

response.
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Figure 4.84: Time history of flap moment at blade root (µN = 0.1; 230→ 130 RPM)

Figure 4.85: FFT analysis of flap moment at first resonance (µN = 0.1; 230→ 130 RPM)
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Figure 4.86: FFT analysis of flap moment at second resonance (µN = 0.1; 230→ 130 RPM)

The torsional moment response is shown in Figure 4.87. The amplitude of the second

resonance is more than three times the amplitude of first resonance. The dominating fre-

quencies are still 2/rev and 3/rev as shown in Figures 4.88 and 4.89. During the second

resonance, 1/rev, 2/rev and 5/rev also make secondary contributions.

Figure 4.87: Time history of torsional moment at blade root (µN = 0.1; 230→ 130 RPM)
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Figure 4.88: FFT analysis of torsional moment at first resonance (µN = 0.1; 230→ 130 RPM)

Figure 4.89: FFT analysis of torsional moment at second resonance (µN = 0.1; 230 → 130
RPM)
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The rotor torque response increases in magnitude as the rotor reaches lower angular

speeds, as seen in Figure 4.90. The amplitude increase due to resonance shows a gentle

behavior in both the first and second resonances. The first resonance’s amplitude increase

is barely noticeable in comparison to the final torque amplitude. The FFT plot, Figure 4.91,

shows that a 3.5/rev frequency makes a contribution less than ten times the mean value to

the response. However, a 4/rev frequency makes a comparable contribution, slightly less

than one fourth, to the torque response during the second crossing as shown in Figure 4.92.

Figure 4.90: Time history of rotor torque (µN = 0.1; 230→ 130 RPM)

Figure 4.91: FFT analysis of rotor torque at first resonance (µN = 0.1; 230→ 130 RPM)
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Figure 4.92: FFT analysis of rotor torque at second resonance (µN = 0.1 230→ 130 RPM)

Transition: 130 to 230 RPM

The rotor speed and rotor acceleration for the reverse transition from 130 to 230 RPM are

given in Figures 4.93 and 4.94, respectively.

Figure 4.93: Rotor speed change from 130 to 230 RPM (20 s)
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Figure 4.94: Rotor acceleration time history (Ω = 130 to 230 RPM in 20 s)

Lag moment response shows a transposed behavior as the rotor sees the 3/rev lag res-

onance first and then the 2/rev lag resonance during this transition, Figure 4.95. Now, the

first and second resonance of the previous transition switch places. The first resonance has

a higher amplitude than the second resonance. The FFT analysis of the first and second

resonance is given in Figures 4.96 and 4.97.

As expected, FFT analysis reveals that the first resonance is due to the 3/rev crossing,

Figure 4.96. The amplitude of this 3/rev lag resonance is even higher than the previous 3/rev

lag resonance for the reverse transition. The second resonance is due to 2/rev crossing and

the amplitude is slightly higher than the previous case, Figure 4.97. It is interesting to note

that the frequencies for the low to high rotor speed change are slightly offset to the right in

the FFT plots.
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Figure 4.95: Time history of lag moment at blade root (µN = 0.1; 130→ 230 RPM)

Figure 4.96: FFT analysis of lag moment at first resonance (µN = 0.1; 130→ 230 RPM)
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Figure 4.97: FFT analysis of lag moment at second resonance (µN = 0.1; 130→ 230 RPM)

The lag force’s resonance regions are small in comparison to the mean value of the lag

force, Figure 4.98. The FFT plots of the resonance regions are given in Figures 4.99 and

4.100.

Figure 4.98: Time history of lag force at blade root (µN = 0.1; 130→ 230 RPM)
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Figure 4.99: FFT analysis of lag force at first resonance (µN = 0.1; 130→ 230 RPM)

Figure 4.100: FFT analysis of lag force at second resonance (µN = 0.1; 130→ 230 RPM)

Flap moment’s resonance behavior is shown in Figure 4.101. The 3/rev resonance

amplitude is more than twice the 2/rev resonance amplitude. The FFT plots are given in

Figures 4.102 and 4.103. The noticeable frequencies are still 2/rev and 3/rev for both the

resonances.
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Figure 4.101: Time history of flap moment at blade root (µN = 0.1; 130→ 230 RPM)

Figure 4.102: FFT analysis of flap moment at first resonance (µN = 0.1; 130→ 230 RPM)
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Figure 4.103: FFT analysis of flap moment at second resonance (µN = 0.1; 130→ 230 RPM)

The torsional moment response, shown in Figure 4.104, has a trend very similar to the

lag moment response. The first resonance has a magnitude which is marginally greater

than the previous 3/rev transition during the backward crossing, Figure 4.105. The second

resonance is comparable in magnitude to the reverse 2/rev transition as shown in Figure

4.106.

Figure 4.104: Time history of torsional moment at blade root (µN = 0.1; 130→ 230 RPM)
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Figure 4.105: FFT analysis of torsional moment at first resonance (µN = 0.1; 130 → 230
RPM)

Figure 4.106: FFT analysis of torsional moment at second resonance (µN = 0.1; 130 → 230
RPM)
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The rotor torque response seems to be affected only by the first resonance crossing. As

seen in Figure 4.107, the torque increases initially due to increase of rotor acceleration.

The increase is also associated with an oscillatory behavior. FFT analysis of this region

shows that a band of frequencies close to 4/rev during the 3/rev crossing is causing such

a behavior, Figure 4.108. The second crossing doesn’t seem to have any effect on the

rotor torque. However, the peak value of rotor torque during the transition almost reaches

6.5× 103 Nm, which is the highest torque attained thus far in forward speeds.

Figure 4.107: Time history of rotor torque (µN = 0.1; 130→ 230 RPM)

Figure 4.108: FFT analysis of rotor torque at first resonance (µN = 0.1; 130→ 230 RPM)
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4.6.5 Nominal Advance Ratio, µN = 0 (Hover)

The resonance crossing points for µN = 0.0 are given in Figure 4.16. One additional

resonance crossing point is added to the previous set to get a new set for µN = 0. Second

flap frequency crosses the 7Ω line at 121.30 RPM. The resonance frequencies are given in

Table 4.8. The trim angles for rotor speeds between 110 and 230 RPM are given in Figure

4.109.

Table 4.8: Resonance points between 230 RPM and 110 RPM.

Blade Frequency Mode Crossing Point Crossing Frequency

(/rev) (Hz)

1st Lag 2 6.863

2nd Flap 5 15.299

1st Torsion 7 24.056

1st Lag 3 6.775

2nd Flap 6 14.530

2nd Flap 7 14.151

Figure 4.109: Pitch angles for µN = 0
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Transition: 230 to 110 RPM

The rotor speed is changed from 230 to 110 RPM in 24 seconds as shown in Figure 4.110.

The rotor starts changing speed at 5 seconds and ends at 29 seconds mark. The rotor

acceleration is given in Figure 4.111.

Figure 4.110: Rotor speed change from 230 to 110 RPM (24 s)

Figure 4.111: Rotor acceleration time history (Ω = 230 to 110 RPM in 24 s)

Lag moment response is shown in Figure 4.112. It is interesting to see that the reso-

nance crossings have no effect on the blade response in hover condition. The lag moment

response is smooth during the entire transition. This is because of the zero cyclic pitch

angles in hover, Figure 4.109. As mentioned previously, the cyclic pitch angles affect the
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blade response during resonance crossing. The absence of cyclic pitch angles makes the

blade response non-harmonic, and thus, the blade passes through resonances without any

amplitude increase.

Figure 4.112: Time history of lag moment at blade root (µN = 0; 230→ 110 RPM)

Other blade parameters also show a similar behavior. The lag force, flap moment,

torsional moment and rotor torque are given in Figures 4.113, 4.114, 4.115 and 4.116,

respectively. Hence, none of the resonance crossings had any impact on the blade response

during the hover transition.

Figure 4.113: Time history of lag force at blade root (µN = 0; 230→ 110 RPM)
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Figure 4.114: Time history of flap moment at blade root (µN = 0; 230→ 110 RPM)

Figure 4.115: Time history of torsional moment at blade root (µN = 0; 230→ 110 RPM)
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Figure 4.116: Time history of rotor torque (µN = 0; 230→ 110 RPM)

Transition: 110 to 230 RPM

The rotor speed variation is shown in Figure 4.117. The rotor acceleration is given in Figure

4.118.

Figure 4.117: Rotor speed change from 110 to 230 RPM (24 s)
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Figure 4.118: Rotor acceleration time history (Ω = 110 to 230 RPM in 24 s)

The blade’s transition response in this case is similar to the reverse transition response

as seen in the previous section. Lag moment response is shown in Figure 4.119. Here again,

resonance crossings have no effect on the blade response. The lag force, flap moment,

torsional moment and rotor torque are given in Figures 4.120, 4.121, 4.122 and 4.123,

respectively.

Figure 4.119: Time history of lag moment at blade root (µN = 0; 110→ 230 RPM)
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Figure 4.120: Time history of lag force at blade root (µN = 0; 110→ 230 RPM)

Figure 4.121: Time history of flap moment at blade root (µN = 0; 110→ 230 RPM)
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Figure 4.122: Time history of torsional moment at blade root (µN = 0; 110→ 230 RPM)

Figure 4.123: Time history of rotor torque (µN = 0; 110→ 230 RPM)

However, oscillations could be introduced into the blade response due to external dis-

turbances. The disturbances can be in the form of a atmospheric breeze or pilot input.

Hence, we will introduce some perturbations to the rotor and see how the blades behave

during transition at hover.
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4.6.6 Nominal Advance Ratio, µN = 0: Perturbation Response

Let us introduce perturbations in the form a gust wind. The orientation of the gust velocity,

Vg, is shown in Figure 4.124. αg is the angle between the free stream and gust velocity. The

gust velocity is chosen to be 6 knots (3.086 m/s), which is between a light and gentle breeze

on a Beaufort wind scale. The properties of the gust are given in Table 4.9. We will be

introducing two perturbations during transition. One close to the beginning of the transition

and one close to the middle of the transition as shown in Figure 4.125. The response of

the blade will be studied in the following sections. The transition occurs between 5 and 29

seconds.

Figure 4.124: Gust orientation with respect to the rotor disk

Figure 4.125: Time history of gust speed at µN = 0
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Table 4.9: Gust properties at µN = 0.

|Vg| 6 knots or 3.086 m/s

αg 60 ◦

Perturbed Transition: 230 to 110 RPM

The rotor speed, acceleration and pitch angle evolve in the same fashion as shown in the

unperturbed section. Hence, the only addition is the gust wind to the free stream.

Lag moment response during the perturbed transition is shown in Figure 4.126. It can

be seen that the perturbation increases the amplitude and introduces oscillatory behavior

into the moment response. The oscillatory behavior, however, dies out with time and does

not show any sudden increase due to resonance crossings. The FFT analyses of the regions

after perturbations are given in Figures 4.127 and 4.128. The region after first perturbation

seems to be influenced by the 2/rev crossing, which is in the vicinity, as the dominating

frequency is 6.8 Hz. The region after second perturbation is influenced by the 3/rev crossing

with 6.75 Hz being the dominating frequency.

Figure 4.126: Time history of lag moment with gust (µN = 0; 230→ 110 RPM)
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Figure 4.127: FFT analysis of lag moment after first perturbation (µN = 0; 230→ 110 RPM)

Figure 4.128: FFT analysis of lag moment after second perturbation (µN = 0; 230 → 110
RPM)

The lag force, on the other hand, is not affected greatly by the introduced perturbations.

The lag force response is given in Figure 4.129. The FFT analysis of the post perturbed

region did not reveal any frequencies. Hence, the FFT results are not shown here.
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Figure 4.129: Time history of lag force with gust (µN = 0; 230→ 110 RPM)

Flap moment response is affected by the perturbations, Figure 4.130, but the resulting

response after perturbations is not significant. This is unlike the lag moment response.

This could be because of the flap damping of a rotor blade being usually higher than the

lag damping. The FFT analysis of the post perturbed regions show a small bump around

6.8 Hz, Figures 4.131 and 4.132.

Figure 4.130: Time history of flap moment with gust (µN = 0; 230→ 110 RPM)
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Figure 4.131: FFT analysis of flap moment after first perturbation (µN = 0; 230→ 110 RPM)

Figure 4.132: FFT analysis of flap moment after second perturbation (µN = 0; 230 → 110
RPM)

The torsional moment responds in a similar manner as the lag moment. The regions

after perturbation have an oscillatory behavior that dampens out slowly as shown in Figure

4.133. The FFT analysis is done over a large region until the oscillations damp out. Hence,

the magnitudes corresponding to the 2/rev and 3/rev frequencies are small compared to the

initial oscillations. These are given in Figure 4.134 and Figure 4.135.
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Figure 4.133: Time history of torsional moment with gust (µN = 0; 230→ 110 RPM)

Figure 4.134: FFT analysis of torsional moment after first perturbation (µN = 0; 230 → 110
RPM)
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Figure 4.135: FFT analysis of torsional moment after second perturbation (µN = 0; 230 →
110 RPM)

The rotor torque’s oscillation actually increases in amplitude noticeably right after the

perturbation period before damping out, shown in Figure 4.136. This sort of behavior is

also noticed for the torsional moment, but not as clearly as here. The FFT analysis shows

that the second perturbation leads to greater amplitude oscillations compared to the first

perturbation as shown in Figures 4.137 and 4.138. The dominating frequencies are still

2/rev, for the first perturbation, and 3/rev, for the second perturbation.

Figure 4.136: Time history of rotor torque with gust (µN = 0; 230→ 110 RPM)
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Figure 4.137: FFT analysis of rotor torque after first perturbation (µN = 0; 230→ 110 RPM)

Figure 4.138: FFT analysis of rotor torque after second perturbation (µN = 0; 230 → 110
RPM)

Perturbed Transition: 110 to 230 RPM

The rotor transition takes place in the same manner as described in the second part of

section 4.6.5 as far as rotor speed, acceleration and pitch angles are concerned.

Lag moment response shows that the first perturbation incites a higher magnitude re-

sponse both during and after the perturbation in comparison to the second gust, Figure4.139.

The oscillatory behavior dies out with time like in the previous case and does not show any

sudden increase due to resonance crossings. The region after the first perturbation is influ-

enced by the 3/rev lag crossing as the dominating frequency is 6.72 Hz. The FFT analyses
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are given in Figures 4.140 and 4.141. The region after second perturbation is influenced by

2/rev lag crossing.

Figure 4.139: Time history of lag moment with gust (µN = 0; 110→ 230 RPM)

Figure 4.140: FFT analysis of lag moment after first perturbation (µN = 0; 110→ 230 RPM)
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Figure 4.141: FFT analysis of lag moment after second perturbation (µN = 0; 110 → 230
RPM)

The lag force response is given in Figure 4.142. The lag force is not significantly

influenced by the introduced wind gust.

Figure 4.142: Time history of lag force with gust (µN = 0; 110→ 230 RPM)

The flap moment does not increase greatly after perturbations and the resulting oscil-

lations dampen out quickly as shown in Figure 4.143. This is similar to the previous case.

The FFT analysis of the post perturbed regions are shown in Figure 4.144 and 4.145. The

second flap frequency crossings are not affecting the blade response during this transition.
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Figure 4.143: Time history of flap moment with gust (µN = 0; 110→ 230 RPM)

Figure 4.144: FFT analysis of flap moment after first perturbation (µN = 0; 110→ 230 RPM)

Figure 4.145: FFT analysis of flap moment after second perturbation (µN = 0; 110 → 230
RPM)
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Torsional moment response is shown in Figure 4.146. Here again, the region after first

perturbation have greater magnitude oscillations than the second perturbation. The FFT

plots are given in Figures 4.147 and 4.148.

Figure 4.146: Time history of torsional moment with gust (µN = 0; 110→ 230 RPM)

Figure 4.147: FFT analysis of torsional moment after first perturbation (µN = 0; 110 → 230
RPM)
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Figure 4.148: FFT analysis of torsional moment after second perturbation (µN = 0; 110 →
230 RPM)

The rotor torque response is shown in Figure 4.149. The FFT analysis shows that

the dominating frequencies are still 3/rev and 2/rev as seen in Figures 4.150 and 4.151,

respectively. The 4/rev frequency that was influencing the rotor torque response in forward

flight is not playing a role in the hover flight condition.

Figure 4.149: Time history of rotor torque with gust (µN = 0; 110→ 230 RPM)
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Figure 4.150: FFT analysis of rotor torque after first perturbation (µN = 0; 110→ 230 RPM)

Figure 4.151: FFT analysis of rotor torque after second perturbation (µN = 0; 110 → 230
RPM)
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CHAPTER 5

LOAD REDUCTION DURING RESONANCE

As seen in the previous chapter, the loads at the blade root increase significantly during

resonance crossing. The increased loads lead to lower fatigue life of the blade, increased

vibration of the hub, transmission system, and fuselage. This could result in several struc-

tural problems. Hence, it is vital to reduce the resonance loads. In this chapter, some of the

important parameters of the resonance crossing and the blade are modified to study their

impact on the blade response. The resonance crossing time, blade structural damping, and

blade stiffness are chosen as the parameters of interest.

5.1 Rotor Speed Transition Time

The amount of time spent by the rotor close to the resonance region is expected to have

a notable impact of the resonance loads. The rate at which the rotor passes through the

resonance region, i.e. rotor acceleration, is both increased and decreased from the baseline

value to study its effects.

5.1.1 µN = 0.3, 230 → 180 RPM

The baseline rotor speed transition time for µN = 0.3 is 10 s. The transition time is varied

from 2 s to 25 s as shown in Figure 5.1. The corresponding acceleration curves are shown

in Figure 5.2. The blade response is captured for all these cases.
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Figure 5.1: Rotor speed transition time cases (µN = 0.3; 230→ 180 RPM)

Figure 5.2: Rotor speed transition time cases (µN = 0.3; 230→ 180 RPM)
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The root lag moments for different transition times are compared as shown in Figure

5.3. The baseline response is shown in the black dashed lines. As the transition time is

reduced from the baseline, the peak amplitude of the lag moment during resonance also

decreases. The 2 s transition has the lowest amplitude. On the other hand, increasing the

transition time from the base line also increases the lag moment amplitude during reso-

nance. Hence, the quicker a rotor passes through the resonance the more desirable it is in

terms of the lag moment response.

The resonance response shifts to the right as the resonance crossing is delayed with

increase in transition time. The variation of the peak amplitudes with transition time is

shown in Figure 5.4. A maximum of 37% reduction in the peak amplitude from the baseline

is observed for 2 s transition, whereas, a 20% increase is noticed for 25 s transition. In

Figure 5.4, the percentage changes with respect to the baseline amplitude are also specified.

Figure 5.3: Time history of lag moment at blade root (µN = 0.3; 230→ 180 RPM)
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Figure 5.4: Lag moment’s peak amplitude variation with transition time (µN = 0.3; 230 →
180 RPM)

Lag force response is not discussed in the rest of our analysis as no significant force

increase was observed in the previous cases. Flap moments during resonance are compared

in Figure 5.5. The peak amplitudes show a similar trend as the lag moment response. The

dominating frequency is still 2/rev for all transition times. The variation of peak amplitudes

is shown in Figure 5.6. Only a maximum of 18% reduction in amplitude was observed by

changing the transition time from 10 s to 2 s.
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Figure 5.5: Time history of flap moment at blade root (µN = 0.3; 230→ 180 RPM)

Figure 5.6: Flap moment’s peak amplitude variation with transition time (µN = 0.3; 230 →
180 RPM)

159



Torsional moment response is shown in Figure 5.7. It can be seen that the response

is identical to the lag moment response, Figure 5.3, but lower in magnitudes. The peak

amplitude variation is shown in Figure 5.8.

Figure 5.7: Time history of torsional moment at blade root (µN = 0.3; 230→ 180 RPM)

Figure 5.8: Torsional moment’s peak amplitude variation with transition time (µN =
0.3; 230→ 180 RPM)

Rotor torque required to achieve the rotor speed transition times described previously is

shown in Figure 5.9. As expected, the rotor torque needs to decrease in amplitude to reduce
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the rotor speed. However, for the 2 s and 5 s transitions the rotor torque becomes negative

for a significant portion of the transition. This means that the torque not only needs to

reduce in amplitude, but the transmission system should apply torque opposite to the spin

direction to reduce the rotor speed quickly. This is analogous to applying brakes to the

wheels of a moving vehicle. Building a transmission system that can achieve this will be

quite an engineering task. If we assume that our transmission system can only reduce the

torque but cannot apply torque in the opposite direction, the minimum possible transition

time is 8 s, where the valley just touches the zero line as shown in Figure 5.10. The eight

seconds transition only allows for a 5.5% reduction in peak amplitude of the lag moment

as shown in Figure 5.4. The transitions above the baseline time require a lower change in

torque from the baseline value but at a penalty of higher loads at the blade root.

Figure 5.9: Time history of rotor torque (µN = 0.3; 230→ 180 RPM)
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Figure 5.10: Time history of rotor torque without 2 s and 5s transition (µN = 0.3; 230→ 180
RPM)

5.1.2 µN = 0.3, 180 → 230 RPM

The transition times and rotor acceleration curves are shown in Figures 5.11 and 5.12,

respectively. Since the resonance response of the flap moment and torsional moment are

dependent on the lag resonance, only lag moment and rotor torque are discussed in the rest

of our analysis unless necessary.

Figure 5.11: Rotor speed transition time cases (µN = 0.3; 180→ 230 RPM)
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Figure 5.12: Rotor speed transition time cases (µN = 0.3; 180→ 230 RPM)

For the transition times given in Figure 5.11, the lag moment response is shown in

Figure 5.13. As discussed in the previous chapter, the lower-to-higher rotor speed transition

has a lower amplitude increase during resonance. However, the increase of peak amplitude

with increase in transition time is consistent with the previous case.

Figure 5.13: Time history of lag moment at blade root (µN = 0.3; 180→ 230 RPM)

It is important to pay attention to the rotor torque behavior during this transition as

it is expected to increase. The rotor torque responses are shown in Figure 5.14. It can

be seen that the rotor torque increases drastically for shorter transition times. For the 2
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s transition, the torque increases to almost 1.6 × 104 Nm. An upper bound on the torque

needs to be imposed to have a reasonable allowable torque increase during transition. Based

on our previous analysis, the maximum torque required during a no external disturbance

transition was 1.04× 104 Nm for the hover case, Figure 4.123. Hence, with some margin,

we can assume that the transmission system can provide a torque up to 1.1×104 Nm during

transition. With this assumption, the 2 s transition becomes unachievable. The 5 s transition

has a peak only close to 8.5× 104 Nm. Hence, there is some room to reduce the transition

time from 5 s.

Figure 5.14: Time history of rotor torque (µN = 0.3; 180→ 230 RPM)

The analysis was repeated for 3 and 4 s transition times, Figure 5.15. The corresponding

rotor torques are shown in Figure 5.16. The 3 s transition is too short as the rotor torque

crosses the 1.1 × 104 Nm limit. Hence, 4 s transition is the ideal case. The lag moment

response for all the cases is shown in Figure 5.17. The corresponding peak amplitudes are

shown in Figure 5.18. The peak amplitude is reduced by 21.5% from the baseline for the 4

s transition.
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Figure 5.15: Rotor speed with 3 s and 4 s transition times (µN = 0.3; 180→ 230 RPM)

Figure 5.16: Time history of rotor torque with 3 s and 4 s transition times (µN = 0.3; 180→
230 RPM)
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Figure 5.17: Time history of lag moment including 3 s and 4 s transition (µN = 0.3; 180 →
230 RPM)

Figure 5.18: Lag moment’s peak amplitude variation with transition time (µN = 0.3; 180 →
230 RPM)
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5.1.3 µN = 0.2, 230 → 150 RPM

The baseline transition time for µN = 0.2 is 16 s. The transition time is varied from 5 to 25

seconds as shown in Figure 5.19. The rotor acceleration curves are shown in Figure 5.20.

Figure 5.19: Rotor speed transition time cases (µN = 0.2; 230→ 150 RPM)

Figure 5.20: Rotor speed transition time cases (µN = 0.2; 230→ 150 RPM)

The lag moment response for these transition times is shown in Figure 5.21. The peak

amplitude variation is shown in 5.22. In order to choose the ideal transition time, we need

to look at the rotor torque response. The torque behavior is shown in Figure 5.23. It can be
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seen that below 14 seconds transition time the torques enter the reverse torque region. The

torque just touches the zero line for 14 s case, Figure 5.24. Hence, only a 3.5% reduction in

peak amplitude from the baseline can be achieved for lag moment as seen in Figure 5.22.

Therefore, obtaining a significant decrease in lag moment peak amplitude by reducing the

transition time seems unlikely for the high-to-low rotor speed change scenario.

Figure 5.21: Time history of lag moment at blade root (µN = 0.2; 230→ 150 RPM)

Figure 5.22: Lag moment’s peak amplitude variation with transition time (µN = 0.2; 230 →
150 RPM)
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Figure 5.23: Time history of rotor torque (µN = 0.2; 230→ 150 RPM)

Figure 5.24: Time history of rotor torque from and above 14 s transition time (µN =
0.2; 230→ 150 RPM)
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5.1.4 µN = 0.2, 150 → 230 RPM

The rotor speed and acceleration for the low-to-high speed transition at µN = 0.2 are shown

in Figures 5.25 and 5.26, respectively.

Figure 5.25: Rotor speed transition time cases (µN = 0.2; 150→ 230 RPM)

Figure 5.26: Rotor speed transition time cases (µN = 0.2; 150→ 230 RPM)

The lag moment responses are given in Figure 5.27. The variation of peak amplitude

with transition time is shown in 5.28. The reduction in peak amplitude that can be achieved

depends on whether the torque increase during transition is below the acceptable limit,
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11000 Nm (1.1 × 104 Nm), or not. From Figure 5.29, it can be seen that the torque for

5 seconds transition is just below this limit. Reducing the transition time any further will

increase the torque beyond the assumed limit. Therefore, almost 28% reduction in lag mo-

ment peak amplitude can be achieved, Figure 5.28, which is significantly higher compared

to the 3.5% reduction in the previous case.

Figure 5.27: Time history of lag moment at blade root (µN = 0.2; 150→ 230 RPM)

Figure 5.28: Lag moment’s peak amplitude variation with transition time (µN = 0.2; 150 →
230 RPM)

171



Figure 5.29: Time history of rotor torque (µN = 0.2; 150→ 230 RPM)

5.1.5 µN = 0.1, 230 → 130 RPM

The rotor speed and acceleration curves for high-to-low speed transition at µN = 0.1 are

shown in Figures 5.30 and 5.31, respectively. The baseline transition time is at 20 seconds.

One might have noticed that 13 seconds transition time case has been inserted into our

existing cases, the reason for which will become obvious in the later portion of this section.

Figure 5.30: Rotor speed transition time cases (µN = 0.1; 230→ 130 RPM)
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Figure 5.31: Rotor speed transition time cases (µN = 0.1; 230→ 130 RPM)

The lag moment responses are shown in Figure 5.32. This transition has two resonance

crossings, one at 2/rev and the other at 3/rev. The 3/rev resonance has significantly higher

amplitude than the 2/rev resonance. Hence, reducing the 3/rev resonance amplitude is of

greater importance. Reducing the 3/rev crossing amplitude also reduces the 2/rev crossing

amplitude as seen in Figure 5.32. The variation of 3/rev peak amplitude with transition

time is shown in 5.33.

Figure 5.32: Time history of lag moment at blade root (µN = 0.1; 230→ 130 RPM)

The torque behavior is shown in Figure 5.34. It can be seen that below 13 seconds
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transition time the torques enter the negative region. The torque is just above the zero line

for 13 s case, Figure 5.35. Hence, a 7.3% reduction in peak amplitude from the baseline

can be achieved for lag moment, Figure 5.33.

Figure 5.33: Lag moment’s peak amplitude at 3/rev resonance (µN = 0.1; 230→ 130 RPM)

Figure 5.34: Time history of rotor torque (µN = 0.1; 230→ 130 RPM)
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Figure 5.35: Time history of rotor torque from and above 13 s transition time (µN =
0.1; 230→ 130 RPM)

5.1.6 µN = 0.1, 130 → 230 RPM

The rotor speed curves for low-to-high speed transition are shown in Figure 5.36 and ac-

celeration curves are shown in Figure 5.37.

Figure 5.36: Rotor speed transition time cases (µN = 0.1; 230→ 130 RPM)
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Figure 5.37: Rotor speed transition time cases (µN = 0.1; 230→ 130 RPM)

The lag moment responses and the corresponding 3/rev peak amplitudes are given in

Figures 5.38 and 5.39, respectively. The first resonance corresponds to 3/rev crossing as

the rotor goes from lower-to-higher speed. The rotor torque for these transitions is given in

Figure 5.40. The torque for the 7 seconds transition is just below the maximum assumed

limit. Reducing the transition time any further increases the torque beyond 1.1× 104 Nm.

Therefore, 20.73% reduction in lag moment peak amplitude can be achieved for 7 s transi-

tion according to Figure 5.39.

Figure 5.38: Time history of lag moment at blade root (µN = 0.1; 130→ 230 RPM)
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Figure 5.39: Lag moment’s peak amplitude variation with transition time (µN = 0.1; 130 →
230 RPM)

Figure 5.40: Time history of rotor torque (µN = 0.1; 130→ 230 RPM)
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5.1.7 Transition Time: Summary

The results of the transition time impact on resonances are given in Tables 5.1 and 5.2.

Table 5.1: Transition time impact on high-to-low speed transition.

µN Transition Ideal transition Lag moment peak

(RPM) time (s) amplitude reduction

0.3 230→ 180 8 5.55%

0.2 230→ 150 14 3.50%

0.1 230→ 130 13 7.30%

(Second Resonance)

Table 5.2: Transition time impact on low-to-high speed transition.

µN Transition Ideal transition Lag moment peak

(RPM) time (s) amplitude reduction

0.3 180→ 230 4 21.50%

0.2 150→ 230 5 27.92%

0.1 130→ 230 7 20.73%

(First Resonance)

5.2 Structural Damping Impact

The rotor loads are affected by the amount of damping. Hence, another parameter that

can be varied is the structural damping of the blade. It was shown theoretically that up to

∼ 7% lag damping can be attained by embedding carbon nanotubes (CNTs) into composite

blades that are stiff in-plane [161]. The current lag damping of our blade is at 1%. It is

increased to 3%, 5% and 7% to study the impact on resonance loads. The corresponding

baseline transition time is used for each µN case.
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5.2.1 µN = 0.3, 230 → 180 RPM

The baseline transition time for µN = 0.3 is 10 s as shown in Figures 4.22 and 4.36. The

lag moment response as a function of structural damping is shown in Figure 5.41. It can

be seen that increasing the damping ratio, ζ , from 1% to 3% has a significant impact on the

resonance amplitude. Peak amplitude as a function of ζ is shown in Figure 5.42. The peak

amplitude drops by 47.5% from the baseline for ζ = 3%. On further increase in damping,

the peak amplitude drops by 65% and 73% for ζ = 5% and ζ = 7%, respectively. It can be

seen that the difference in drop percentage reduces as ζ increases. The amplitude difference

between 3% and 5% ζ is 17.3% and between 5% and 7% ζ is only 8%.

The rotor torque response is compared in Figure 5.43, As the damping increases, the

additional vibration that arises due to resonance almost disappears. The response is already

smooth at ζ = 3%. Beyond 3%, the amplitude of oscillations decrease further the valley

region.

Figure 5.41: Effect of structural damping on lag moment (µN = 0.3; 230→ 180 RPM)
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Figure 5.42: Structural damping impact on lag moment peak amplitude (µN = 0.3; 230→ 180
RPM)

Figure 5.43: Effect of structural damping on rotor torque (µN = 0.3; 230→ 180 RPM)
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5.2.2 µN = 0.3, 180 → 230 RPM

The lag moment response for the low-to-high speed transition is shown in Figure 5.44. The

decrease in peak amplitude shows a similar trend as the previous case. The peak amplitude

reduces by 44% at ζ = 3% and by 70% at ζ = 7%, shown in Figure 5.45.

Figure 5.44: Effect of structural damping on lag moment (µN = 0.3; 180→ 230 RPM)

Figure 5.45: Structural damping impact on lag moment peak amplitude (µN = 0.3; 180→ 230
RPM)

The rotor torque is shown in Figure 5.46. The amplitude increase due to resonance

almost disappears. The peak value of rotor torque shows only a small change from the
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baseline value due to damping increase, Figure 5.47.

Figure 5.46: Effect of structural damping on rotor torque (µN = 0.3; 180→ 230 RPM)

Figure 5.47: Rotor torque peak value (µN = 0.3; 180→ 230 RPM)

5.2.3 µN = 0.2, 230 → 150 RPM

Baseline transition time for this µN case is 16 s. The lag moment response for the high-to-

low speed transition is shown in Figure 5.48. The peak amplitude reduction due to increase
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of damping is shown in Figure 5.49. The amplitude decrease from ζ = 1% to ζ = 7%

follows a trend similar to µN = 0.3 case, Figure 5.42. The drop percentages in both the

high-to-low speed transition is matching very closely. The rotor torque response is shown

in Figure 5.50. The torque amplitudes do not change significantly with damping.

Figure 5.48: Effect of structural damping on lag moment (µN = 0.2; 230→ 150 RPM)

Figure 5.49: Structural damping impact on lag moment peak amplitude (µN = 0.2; 230→ 150
RPM)
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Figure 5.50: Effect of structural damping on rotor torque (µN = 0.2; 230→ 150 RPM)

5.2.4 µN = 0.2, 150 → 230 RPM

The lag moment response for the low-to-high speed transition is shown in Figure 5.51. The

amplitude reduction due to damping increase is shown in Figure 5.52.

The amplitude decrease shows a very close trend to the previous case, Figure 5.49. The

rotor torque response is shown in Figure 5.50.

Figure 5.51: Effect of structural damping on lag moment (µN = 0.2; 150→ 230 RPM)
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Figure 5.52: Structural damping impact on lag moment peak amplitude (µN = 0.2; 150→ 230
RPM)

Figure 5.53: Effect of structural damping on rotor torque (µN = 0.2; 230→ 150 RPM)

185



5.2.5 µN = 0.1, 230 → 130 RPM

Baseline transition time for µN = 0.1 case is 20 s. The lag moment for the high-to-low

speed transition is shown in Figure 5.54. Since there are two resonances, the amplitude

reduction of the first resonance is shown in Figure 5.55 and the second resonance is shown

in Figure 5.56. It can be seen that the amplitude decrease of the first and second resonances

are proportional to each other. The rotor torque response is shown in Figure 5.57.

Figure 5.54: Effect of structural damping on lag moment (µN = 0.1; 230→ 130 RPM)

Figure 5.55: Structural damping impact on first resonance amplitude (µN = 0.1; 230 → 130
RPM)
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Figure 5.56: Structural damping impact on second resonance amplitude (µN = 0.1; 230 →
130 RPM)

Figure 5.57: Effect of structural damping on rotor torque (µN = 0.2; 230→ 150 RPM)
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5.2.6 µN = 0.1, 130 → 230 RPM

The lag moment response for the low-to-high speed transition is shown in Figure 5.58. The

resonances switch places for this transition.

Figure 5.58: Effect of structural damping on lag moment (µN = 0.1; 130→ 230 RPM)

The amplitude reduction of the first and second resonances are shown in Figures 5.59

and 5.60, respectively. It can be seen that the amplitude decrease trend is similar to the

previous case. The rotor torque response is shown in Figure 5.61. The peak value of rotor

torque during transition is hardly affected by lag damping as shown in Figure 5.62.
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Figure 5.59: Structural damping impact on first resonance amplitude (µN = 0.1; 130 → 230
RPM)

Figure 5.60: Structural damping impact on second resonance amplitude (µN = 0.1; 130 →
230 RPM)
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Figure 5.61: Effect of structural damping on rotor torque (µN = 0.1; 130→ 230 RPM)

Figure 5.62: Rotor torque peak value (µN = 0.1; 130→ 230 RPM)
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5.2.7 Structural Lag Damping (ζ): Summary

The results of the lag damping impact on resonances are given in Tables 5.3 and 5.4.

Table 5.3: ζ impact on high-to-low speed transition.

µN Transition Lag moment amplitude reduction

(RPM) ζ = 3% ζ = 5% ζ = 7%

0.3 230→ 180 47.55% 64.91% 73.04%

0.2 230→ 150 47.50% 64.72% 73.01%

0.1 230→ 130 46.85% 62.86% 70.20%

(Second Resonance)

Table 5.4: ζ impact on low-to-high speed transition.

µN Transition Lag moment amplitude reduction

(RPM) ζ = 3% ζ = 5% ζ = 7%

0.3 180→ 230 44.26% 61.44% 70.31%

0.2 150→ 230 47.25% 64.33% 72.60%

0.1 130→ 230 45.84% 62.02% 70.32%

(First Resonance)

5.3 Rotor Blade Stiffness Impact

In our transition studies, it was noticed that the higher frequency resonance crossings had

no noticeable impact on the blade response, such as the second-flap crossing 5/rev or the

first-torsion crossing 7/rev. Therefore, increasing the lag crossing from 2/rev to higher

frequency crossings could reduce the resonance loads. This can be achieved by increasing

the lag stiffness of the blade. In [162], Carter includes a composite spar at the blade root

to increase the lag wise stiffness of a variable speed rotor blade. Here, we will only be

increasing the stiffness property of our blade model without changing the mass. This makes
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it easier to compare with the baseline rotor case. Two new stiffness cases will be analyzed,

one that changes the 2/rev lag crossing to 3/rev crossing and the other from 2/rev to 4/rev

crossing, for µN = 0.3 case. The new lag stiffnesses are given in Table 5.5 and are named

as Case 1 and Case 2. The fan plot for these two cases are shown in Figures 5.63 and 5.64.

The other blade properties are unchanged. The upper bound of the stiffness was determined

based on literature. The Mars helicopter [163] has a 4/rev lag crossing close to the rotor

operating speed. This crossing was the highest found in literature. X2 and XH-59A have

only 2/rev lag crossing close to the rotor operating speed [2].

Table 5.5: Lag stiffness for higher crossings (µN = 0.3).

Lag crossing between EILag

180 and 230 RPM (Nm2)
2/rev (Baseline) 1.864× 106

3/rev (Case 1) 4.308× 106

4/rev (Case 2) 7.735× 106

Figure 5.63: Fan plot: Baseline Vs Case 1 (µN = 0.3)
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Figure 5.64: Fan plot: Baseline Vs Case 2 (µN = 0.3)

Baseline transition time is maintained for all the cases in this section.

5.3.1 µN = 0.3, 230 → 180 RPM

The lag moment response for all the lag stiffness cases is shown in Figure 5.65. It can be

seen that the amplitude is significantly reduced for 4/rev crossing. The peak amplitude plot,

5.66, shows that the resonance amplitude is reduced by 75% for 4/rev crossing. The FFT of

the lag moment response shows that the dominating frequencies are 2/rev, 3/rev and 4/rev

for the corresponding crossing cases, 5.67.

However, the rotor torque response reveals a different story as shown in Figure 5.68.

The steady state amplitude of the torque increases with increase in lag stiffness. The ampli-

tude increase during resonance is shown in Figure 5.69. A tremendous increase is observed

for 4/rev crossing, 729%. It was seen previously that a four-bladed rotor transfers 4/rev

loads to the hub. Having a 4/rev lag resonance has transferred significant loads to the ro-

tor hub causing the rotor torque to increase immensely. The FFT of the resonance region

shows the dominance of the 4/rev frequency, Figure 5.70. Even though the 4/rev crossing
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reduces the lag moment, it increases the loads on the transmission system. Hence, it may

not be advantageous to increase the stiffness to such high degree. The 3/rev crossing, which

provides a 26% reduction in lag moment peak amplitude, would be a better compromise.

Figure 5.65: Effect of lag stiffness on lag moment (µN = 0.3; 230→ 180 RPM)

Figure 5.66: Resonance amplitude variation with lag crossing (µN = 0.3; 230→ 180 RPM)
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Figure 5.67: FFT on lag moment resonance amplitude (µN = 0.3; 230→ 180 RPM)

Figure 5.68: Effect of lag stiffness on rotor torque (µN = 0.3; 230→ 180 RPM)
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Figure 5.69: Rotor torque peak value during resonance (µN = 0.3; 230→ 180 RPM)

Figure 5.70: FFT on rotor torque resonance amplitude (µN = 0.3; 230→ 180 RPM)
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5.3.2 µN = 0.3, 180 → 230 RPM

The lag moment response for the reverse transition is shown in Figure 5.71.

Figure 5.71: Effect of lag stiffness on lag moment (µN = 0.3; 180→ 230 RPM)

The peak amplitude plot shows a 20% drop for 3/rev crossing and a 71% reduction for

4/rev crossing, Figure 5.72. The rotor torque exhibits a similar behavior as the previous

case. The torque amplitude increases significantly during the 4/rev crossing, Figure 5.73.

The peak torque during the 3/rev crossing increases only by 5% from the baseline, Figure

5.74. During the 4/rev crossing, it increases by 171.5%, which is above the maximum limit

we assumed previously.
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Figure 5.72: Resonance amplitude variation with lag crossing (µN = 0.3; 180→ 230 RPM)

Figure 5.73: Effect of lag stiffness on rotor torque (µN = 0.3; 180→ 230 RPM)
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Figure 5.74: Rotor torque peak value during resonance (µN = 0.3; 180→ 230 RPM)

5.3.3 µN = 0.2, 230 → 150 RPM

The resonance points for the new stiffness values at µN = 0.2 are shown in Figures 5.75

and 5.76. It can be seen that an additional 4/rev lag resonance point comes into play for

Case 1 and a 5/rev resonance point for Case 2.

The lag moment response is shown in Figure 5.77. The baseline case has only one

resonance crossing, whereas Case 1 and 2 have two crossings during this transition. The

peak amplitudes for the first transition is shown in Figure 5.78. The drop percentage varies

from 20% for 3/rev crossing to 65% for 4/rev crossing. The peak amplitudes for the second

crossing are shown in Figure 5.79. Compared to the steady state value of the baseline, the

Case 1 4/rev crossing has 102% higher amplitude. This is almost as high as the first 2/rev

crossing. The 5/rev crossing has 3.5% lower amplitude than the baseline.
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Figure 5.75: Fan plot: Baseline vs. Case 1 (µN = 0.2)

Figure 5.76: Fan plot: Baseline vs. Case 2 (µN = 0.2)
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Figure 5.77: Effect of lag stiffness on lag moment (µN = 0.2; 230→ 150 RPM)

Figure 5.78: Resonance amplitude during first crossing (µN = 0.2; 230→ 150 RPM)
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Figure 5.79: Resonance amplitude during second crossing (µN = 0.2; 230→ 150 RPM)

The rotor torque response for both the crossings is shown in Figure 5.80. The torque

increase during the 4/rev crossing of Case 1 is three times the torque increase during the

4/rev crossing of Case 2. This is because the 4/rev crossing of Case 1 occurs at a lower

rotor speed. Lower rotor speeds tend to have higher amplitude oscillations in the torque

response. During these crossings, the torque crosses the maximum limit on both the ends.

Hence, neither Case 2 nor Case 1 lag stiffnesses are desirable for this transition. The

baseline rotor has a better response. If we were to use the Case 1 lag stiffness, the rotor

shouldn’t cross the 4/rev resonance. The speed change should be limited to 160 RPM.
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Figure 5.80: Effect of lag stiffness on rotor torque (µN = 0.2; 230→ 150 RPM)

5.3.4 µN = 0.2, 150 → 230 RPM

The reverse transition of the previous case is discussed in this section. The lag moment

response is shown in Figure 5.81. The steady state response of Case 1 has a high magnitude

at the beginning as the rotor is operating very close to 4/rev crossing. The rotor torque

response is shown in Figure 5.82. It can be seen that both Case 1 and Case 2 cross the

torque limits at both ends. Hence, neither of these cases are ideal for this transition.

Figure 5.81: Effect of lag stiffness on lag moment (µN = 0.2; 150→ 230 RPM)
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Figure 5.82: Effect of lag stiffness on rotor torque (µN = 0.2; 150→ 230 RPM)

5.3.5 µN = 0.1, 230 → 130 RPM

The resonance points at µN = 0.1 are shown in Figures 5.83 and 5.84. It can be seen that

Case 1 has the same two resonance points as the previous case. The 6/rev lag resonance

point is in the operating regime for Case 2, in addition to 4/rev and 5/rev resonance points.

Figure 5.83: Fan plot: Baseline vs. Case 1 (µN = 0.1)
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Figure 5.84: Fan plot: Baseline vs. Case 2 (µN = 0.1)

The lag moment response is shown in Figure 5.85. The baseline case has two resonance

crossings, 2/rev and 3/rev. The 3/rev resonance is of primary importance in this transition

due to its higher amplitude. As the stiffness is increased to Case 1 or Case 2, the large sec-

ond resonance bump is replaced by smaller bumps as shown in 5.85. The 6/rev crossing

has no noticeable impact on the blade response. The peak amplitudes for the first and sec-

ond resonances are shown in Figures 5.86 and 5.87, respectively. For the second resonance,

75% reduction in peak amplitude was obtained by using Case 1 stiffness. But looking at

the torque response, Figure 5.88, it can be seen that the torque crosses the previously de-

cided limits for Case 1. The torque response for Case 2 is moderate compared to Case 1

and doesn’t cross the positive limit. However, it crosses the negative region, which is not

desirable. Also, previous cases have shown that Case 2 crosses the positive limit.
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Figure 5.85: Effect of lag stiffness on lag moment (µN = 0.1; 230→ 130 RPM)

Figure 5.86: Resonance amplitude during first crossing (µN = 0.1; 230→ 130 RPM)
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Figure 5.87: Resonance amplitude during second crossing (µN = 0.1; 230→ 130 RPM)

Figure 5.88: Effect of lag stiffness on rotor torque (µN = 0.1; 230→ 130 RPM)
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5.3.6 µN = 0.1, 130 → 230 RPM

The lag moment response is shown in Figure 5.89. The amplitude reduction due to stiffness

increase has a trend similar to the previous case, Figures 5.90 and 5.91.

Figure 5.89: Effect of lag stiffness on lag moment (µN = 0.1; 130→ 230 RPM)

Figure 5.90: Resonance amplitude during first crossing (µN = 0.1; 130→ 230 RPM)
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Figure 5.91: Resonance amplitude during second crossing (µN = 0.1; 130→ 230 RPM)

The rotor torque response is shown in Figure 5.92. Once again, Case 1 torque crosses

the maximum limits during the 4/rev crossing. Interestingly, Case 2 torque does not cross

the limits during this transition. The amplitude increase during this 4/rev crossing is only

35% more than the baseline amplitude. Hence, this is the only acceptable transition sce-

nario for Case 2 stiffness in terms of torque.

Figure 5.92: Effect of lag stiffness on rotor torque (µN = 0.1; 130→ 230 RPM)
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Figure 5.93: Rotor torque peak value during resonance (µN = 0.1; 130→ 230 RPM)

5.3.7 Impact of Lag Stiffness (EILag): Summary

The results of the lag stiffness impact on resonances are given in Tables 5.6 and 5.7.

Table 5.6: EILag impact on high-to-low speed transition.

µN Transition Case 1 Case 2

(RPM) Lag moment Torque within Lag moment Torque within
amplitude bounds? amplitude bounds?

0.3 230→ 180 −26.01% Yes −75.25% No
0.2 230→ 150 −20.33% No −64.96% No

(First Resonance)

0.2 230→ 150 +102.02% No −3.53% No
(Second Resonance)

0.1 230→ 130 −33.27% Yes −80.91% No
(First Resonance)

0.1 230→ 130 −75.3% No −86.01% Yes
(Second Resonance)

Therefore, increasing the lag stiffness reduces the lag moment amplitude during res-

onance for most of the cases. However, the torque response goes out of limits for most

of them. If my dissertation is a democracy and torque bounds are my constituents, the lag

stiffness increase as a candidate is defeated by 11 ’No’ votes to 9 ’Yes’ votes. Either the lag
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Table 5.7: EILag impact on low-to-high speed transition.

µN Transition Case 1 Case 2

(RPM) Lag moment Torque within Lag moment Torque within
amplitude bounds? amplitude bounds?

0.3 180→ 230 −20.30% Yes −70.83% No
0.2 150→ 230 +123.67% No +35.86% Yes

(First Resonance)

0.2 150→ 230 −19.38% Yes −64.44% No
(Second Resonance)

0.1 130→ 230 −75.8% No −86.39% Yes
(First Resonance)

0.1 130→ 230 −32.35% Yes −81.72% Yes
(Second Resonance)

stiffness has to be increased beyond Case 2 to have 5/rev crossing instead of 4/rev crossing

or the stiffness has to remain the same. Even with a stiffness higher than Case 2, the steady

state torque could be an issue as the amplitude keeps increasing with increased stiffness.

Increasing the lag stiffness beyond the second flap frequency is no easy task, it has to be 6.5

times the current lag stiffness to avoid any resonance issues. Hence, keeping the original

stiffness and tweaking ζ and transition time seems more reasonable.

5.4 Combination Impact: Transition time (tT ) and ζ

In this section, the combined effects of structural damping and transition time, tT , are

studied. The structural lag damping ratio is increased to 7%, as it produced the best results,

and ideal transition times from Tables 5.1 and 5.2 are used. The results are discussed in the

following sections.

5.4.1 µN = 0.3, 230 → 180 RPM

The baseline parameters for µN = 0.3 are ζ = 1% and tT = 10 s. For the new case,

ζ = 7% and tT = 8 s, Table 5.1. The lag moment comparison is given in Figure 5.94.

The peak amplitude is reduced by 73% as shown in Figure 5.95. This is almost the same

as the reduction obtained using the baseline transition time as described in Table 5.3. In

211



this case, there is no additional reduction obtained by reducing the transition time. Since

we are comparing the peak amplitudes during resonance, the reduction will never be 100%

as there will always be loads that are independent of resonance. Hence, there is a natural

upper bound on the amplitude reduction that can be achieved. The rotor torque response

is shown in Figure 5.96. The torque dips further down because of the lower tT and the

resonance bump disappears.

Figure 5.94: Effect of ζ and tT on lag moment (µN = 0.3; 230→ 180 RPM)

Figure 5.95: Resonance amplitude variation with ζ and tT (µN = 0.3; 230→ 180 RPM)
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Figure 5.96: Effect of ζ and tT on rotor torque (µN = 0.3; 230→ 180 RPM)

5.4.2 µN = 0.3, 180 → 230 RPM

The ideal transition time for this low-to-high speed scenario is tT = 4 s, Table 5.2. The lag

moment results are given in Figure 5.97.

Figure 5.97: Effect of ζ and tT on lag moment (µN = 0.3; 180→ 230 RPM)

The peak amplitude is reduced by 71% as shown in Figure 5.98, which is slightly more

than the reduction obtained using baseline transition time, Table 5.4. The difference is

only 0.65%. It appears that the transition time is not providing any significant additional
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reduction to the amplitude that is already reduced by ζ increase. The torque, however,

increases in amplitude due to shorter transition time as shown in Figure 5.99. The new

peak is about 54% higher than the baseline, Figure 5.100.

Figure 5.98: Resonance amplitude variation with ζ and tT (µN = 0.3; 180→ 230 RPM)

Figure 5.99: Effect of ζ and tT on rotor torque (µN = 0.3; 180→ 230 RPM)
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Figure 5.100: Rotor torque peak value during resonance (µN = 0.3; 180→ 230 RPM)

5.4.3 µN = 0.2, 230 → 150 RPM

The baseline transition time for µN = 0.2 is 16 s. The ideal transition time for the current

case is 14 s, Table 5.1. The lag moment response is given in Figure 5.101. The peak

amplitude is reduced by 73% as shown in Figure 5.102. This is the same as the reduction

shown in Table 5.3 for the baseline time. The rotor torque response is shown in Figure

5.103.

Figure 5.101: Effect of ζ and tT on lag moment (µN = 0.2; 230→ 150 RPM)
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Figure 5.102: Resonance amplitude variation with ζ and tT (µN = 0.2; 230→ 150 RPM)

Figure 5.103: Effect of ζ and tT on rotor torque (µN = 0.2; 230→ 150 RPM)
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5.4.4 µN = 0.2, 150 → 230 RPM

The ideal transition time for this speed change scenario is 5 s, Table 5.2. The lag moment

results are given in Figure 5.104. The peak amplitude is reduced by 74% as shown in Figure

5.105, which is 1.18% more than the reduction shown in Table 5.4. The torque increase is

shown in Figure 5.106. The new peak is 95.42% higher than the baseline, Figure 5.107

Figure 5.104: Effect of ζ and tT on lag moment (µN = 0.2; 150→ 230 RPM)

Figure 5.105: Resonance amplitude variation with ζ and tT (µN = 0.2; 150→ 230 RPM)
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Figure 5.106: Effect of ζ and tT on rotor torque (µN = 0.2; 150→ 230 RPM)

Figure 5.107: Rotor torque peak value during resonance (µN = 0.2; 150→ 230 RPM)
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5.4.5 µN = 0.1, 230 → 130 RPM

The baseline transition time for the current case is 20 s and the ideal transition time is 13 s,

Table 5.1. The lag moment response is shown in Figure 5.108. The second resonance has

a higher magnitude as discussed previously. The peak amplitude of the second resonance

is reduced by 70% as shown in Figure 5.109, almost the same as the Table 5.3 value. The

rotor torque response is shown in Figure 5.110.

Figure 5.108: Effect of ζ and tT on lag moment (µN = 0.1; 230→ 130 RPM)

Figure 5.109: Resonance amplitude variation with ζ and tT (µN = 0.1; 230→ 130 RPM)
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Figure 5.110: Effect of ζ and tT on rotor torque (µN = 0.1; 230→ 130 RPM)

5.4.6 µN = 0.1, 130 → 230 RPM

The ideal transition time for this case is 7 s, Table 5.2. The lag moment results are given

in Figure 5.111. The peak amplitude of the dominant first resonance is reduced by 70% as

shown in Figure 5.112. The torque increases as shown in Figure 5.113. The new peak is

about 70% higher than the baseline, Figure 5.114.

Figure 5.111: Effect of ζ and tT on lag moment (µN = 0.1; 130→ 230 RPM)
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Figure 5.112: Resonance amplitude variation with ζ and tT (µN = 0.1; 130→ 230 RPM)

Figure 5.113: Effect of ζ and tT on rotor torque (µN = 0.1; 130→ 230 RPM)

221



Figure 5.114: Rotor torque peak value during resonance (µN = 0.1; 130→ 230 RPM)

5.4.7 Combined Impact (ζ & tT ): Summary

The impact of the lag damping and transition time combination on resonances are given in

Tables 5.8 and 5.9. The results from previous sections are also given here for comparison.

Table 5.8: ζ and tT impact on high-to-low speed transition.

µN Transition Lag moment amplitude reduction

(RPM) ζ = 7% Ideal tT ζ = 7% & Ideal tT

alone alone combined

0.3 230→ 180 73.04% 5.55% 72.89%

0.2 230→ 150 73.01% 3.50% 72.99%

0.1 230→ 130 70.20% 7.30% 70.07%

(Second Resonance)

Combining the high damping cases with ideal transition times has the same effect as

increasing the ζ alone. Therefore, increasing the structural damping using CNTs is an
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Table 5.9: ζ and tT impact on low-to-high speed transition.

µN Transition Lag moment amplitude reduction

(RPM) ζ = 7% Ideal tT ζ = 7% & Ideal tT

alone alone combined

0.3 180→ 230 70.31% 21.50% 70.96%

0.2 150→ 230 72.60% 27.92% 73.78%

0.1 130→ 230 70.32% 20.73% 70.21%

(First Resonance)

effective way to reduce resonance loads. Following the baseline transition times also means

that the sharp rotor torque increase during quick transitions can be avoided.
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CHAPTER 6

ANTI-RESONANCE SYSTEM (ARS)

In this chapter, a new blade concept is introduced. Let us assume that there is a sliding

mass inside the blade that can travel along the length of the blade. The mass moves on a

rail, which runs along the length and deforms with the blade. A schematic of this system is

shown in Figure 6.1, by cutting a top section of the blade. Let us assume that the mass can

be moved to the desired location using a mechanical control system, without going into the

details, for the sake of simplicity. By changing the location of the mass along the length,

the mass moment of inertia of the blade about the vertical axis is altered. Changing the

mass moment of inertia of the blade changes the natural frequency of the blade. Varying

the natural frequency, in turn, changes the resonance crossings. Hence, the new blade can

actively change the location of its resonance points. This moving mass system inside the

blade will be referred to as the Anti-Resonance System (ARS) and the new blade will be

called as the ARS blade. If the mass and location of the moving mass are carefully selected,

it is possible to move the resonance point out of the rotor operating range.

Figure 6.1: Schematic of a hingeless blade with sliding mass.

It should be mentioned here that a concentrated mass was used in [164] to change the
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twist angle of a rotating blade, which is different from what is attempted in the present

work.

The moving mass is modeled as a point mass in DYMORE, Figure 6.2, and the sliding

motion is defined using the prismatic joint definition. The stiffness of the rail is assumed

to be small compared to the blade and hence, neglected. The mass is assumed to be located

on the beam’s reference line. The mass properties of the ARS blade are selected such that

the first lag frequency remains close to the baseline blade as shown in Figure 6.3. These

properties are given in Table 6.1. The total mass of the blade is maintained the same, which

makes it easier to compare with the previous results.

Figure 6.2: Blade model in DYMORE with sliding point mass.

Table 6.1: Mass properties: Baseline vs. ARS Blade.

Blade Property Baseline Blade ARS Baseline Blade
Sliding mass, ms (kg) 0 15

Location of sliding mass, xm (m) - 4.16

Mass/length (kg/m) 10 7.5

Total mass (kg) 60 60
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Figure 6.3: Fan plot: Baseline vs ARS Baseline (µN = 0.3)

6.1 µN = 0.3, 230 → 180 RPM

The baseline location of the sliding mass is given in Table 6.1. As the rotor speed is changed

from 230 to 180 RPM in 10 s, the sliding mass is moved from 4.16 m to 5.90 m, towards the

tip. This displacement occurs in a smooth manner as shown in Figure 6.4 to avoid any sharp

changes to the rotor torque. As the mass is moved towards the tip, the natural frequency

decreases. Therefore, the 2/rev lag resonance point located inside the rotor operating range

is moved out of range as shown in the fan plot, Figure 6.5.

The lag moment response is shown in Figure 6.6. It can be seen that the ARS blade

has no significant amplitude increase during this transition due to the absence of 2/rev res-

onance point. In comparison, the amplitude is decreased by almost 83% from the baseline

blade as shown in Figure 6.7, which is more than what was achieved using 7% lag damping.
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Figure 6.4: Location of sliding mass with time (µN = 0.3; 230→ 180 RPM)

Figure 6.5: Fan plot: Baseline vs. ARS with mass at tip (µN = 0.3)
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Figure 6.6: Lag moment: Baseline vs. ARS (µN = 0.3; 230→ 180 RPM)

Figure 6.7: Peak amplitude: Baseline vs. ARS (µN = 0.3; 230→ 180 RPM)
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The rotor torque has a peculiar behavior compared to the previous cases. As the mass

is moved towards the tip, the rotor has a natural tendency to slow down due to conservation

of angular momentum. Hence, the torque need not dip significantly as in the baseline case.

In fact, the torque is required to increase slightly during this transition to prevent the rotor

from slowing down too fast, Figure 6.8.

Figure 6.8: Rotor torque: Baseline vs. ARS (µN = 0.3; 230→ 180 RPM)

6.2 µN = 0.3, 180 → 230 RPM

For the reverse transition, the mass is moved back to its previous location as shown in

Figure 6.9. The resonance point is located behind the rotor operating speed at 180 RPM,

Figure 6.10. The mass location with time is defined such that the 2/rev lag resonance always

stays behind the rotor operating speed during the low-to-high speed transition.
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Figure 6.9: Location of sliding mass with time (µN = 0.3; 180→ 230 RPM)

Figure 6.10: Fan plot: Baseline vs. ARS with mass at tip (µN = 0.3)
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The lag moment comparison is shown in Figure 6.11. Once again, the ARS blade

shows no significant amplitude increase. The amplitude is decreased by almost 86% from

the baseline blade as shown in Figure 6.12.

Figure 6.11: Lag moment: Baseline vs. ARS (µN = 0.3; 230→ 180 RPM)

Figure 6.12: Peak amplitude: Baseline vs. ARS (µN = 0.3; 230→ 180 RPM)

The rotor torque response is shown in Figure 6.13. In this case, as the mass is moved

towards the center, the rotor has a natural tendency to speed up. As can be seen from Figure
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6.13, the torque is in fact required to decrease slightly during this transition to prevent

the rotor from speeding up too fast. Hence, using the ARS system, the lag resonance

is completely removed from the transition range and the torque increase required is also

decreased significantly.

Figure 6.13: Rotor torque: Baseline vs. ARS (µN = 0.3; 230→ 180 RPM)

6.3 µN = 0.2, 230 → 150 RPM

At this lower forward speed, the range of rotor speed change is wider. Therefore, with the

existing parameters of the ARS system it is not possible to move the 2/rev crossing below

150 RPM, as shown in Figure 6.14.

The rotor needs to travel through the resonance as the speed is changed from 230 RPM

to 150 RPM. The location of the sliding mass remains constant at the baseline location as

shown in Figure 6.15.
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Figure 6.14: Fan plot: Baseline vs. ARS with mass at tip (µN = 0.2)

Figure 6.15: Location of sliding mass with time (µN = 0.2; 230→ 150 RPM)
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The lag moment response is shown in Figure 6.16. The rotor torque response is shown

in Figure 6.17. It can be seen that the ARS blade has a greater amplitude increase during

resonance. This is because of the presence of concentrated masses. The deformation of

the blade depends on its azimuth location. As each blade has a different deformation at

any instance, the presence of concentrated masses is causing the dissimilarity of the rotor

to increase. This dissimilarity is causing an increase in resonance loads. Such a resonance

response can also be seen in [18]. The rotor torque exceeds the acceptable limit.

Figure 6.16: Lag moment through resonance: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM)

In order to reduce the torque amplitude during resonance, the lag damping of the rotor

is increased from 1% to 3%. The transition time is changed from 16 s to 25 s. The fan plot

with 3% lag damping is shown in Figure 6.18, the frequency doesn’t change significantly

due to increased damping.
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Figure 6.17: Rotor torque through resonance: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM)

Figure 6.18: Fan plot: Baseline vs. ARS with 3% lag damping (µN = 0.2)
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The results of the increased damping case is shown below. The lag response is shown in

Figure 6.19. The amplitude during resonance is decreased by 36% from the baseline due to

increased damping, Figure 6.20. The rotor torque is within the acceptable limits as shown

in Figure 6.21.

Figure 6.19: Lag moment through resonance: Baseline vs. ARS with 3% lag damping
(µN = 0.2; 230→ 150 RPM)

Figure 6.20: Peak amplitude through resonance: Baseline vs. ARS with 3% lag damping
(µN = 0.2; 230→ 150 RPM)
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Figure 6.21: Rotor torque through resonance: Baseline vs. ARS with 3% lag damping
(µN = 0.2; 230→ 150 RPM)

6.4 µN = 0.2, 150 → 230 RPM

However, as the rotor speed is changed from lower to higher RPM, it is possible to move

the resonance point up and beyond the nominal rotor speed. The sliding mass needs to be

moved inwards to increase the natural frequency. By moving the mass from the baseline

location to the root, the natural frequency is moved up as shown in Figure 6.22. The mass

location for this transition is shown in Figure 6.23.

The lag moment response is shown in Figure 6.24. It can be seen that the ARS blade

has no significant amplitude increase during this transition due to the absence of 2/rev

resonance point. In comparison, the amplitude is decreased by 76% from the baseline

blade as shown in Figure 6.25.
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Figure 6.22: Fan plot: Baseline vs. ARS with mass at root (µN = 0.2, ζ = 3% )

Figure 6.23: Location of sliding mass with time (µN = 0.2; 150→ 230 RPM)
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Figure 6.24: Lag moment: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM; ζ = 3%)

Figure 6.25: Peak amplitude: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM; ζ = 3%)
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The rotor torque response is shown in Figure 6.26. As the mass is moved towards the

root, the rotor has a natural tendency to speed up. Initially, the torque decreases slightly

as seen in Figure 6.26 to prevent the rotor from speeding up too fast. The torque increases

later during the transition and approaches the baseline response. The torque response is not

as smooth as the baseline case.

Figure 6.26: Rotor torque: Baseline vs. ARS (µN = 0.2; 150→ 230 RPM; ζ = 3%)

6.5 µN = 0.2, 230 → 150 RPM (Resonance Outside)

During the previous transition, the 2/rev resonance is moved beyond the nominal rotor

speed. Therefore, the rotor speed can be reduced to 150 RPM without going through a

resonance region. Even though a 3/rev resonance point is located close to 150 RPM, it

can be moved out of range by bringing the mass back to the baseline location as shown in

Figure 6.27. The mass location for this transition is shown in Figure 6.28. The mass is

kept at the root until 210 RPM and begun to move below this rotor speed. This is done to

prevent the 2/rev resonance point from reaching the operating speed at anytime during the

transition. The rotor speed is shown in Figure 6.29.
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Figure 6.27: Fan plot: Baseline vs. ARS with mass back to baseline (µN = 0.2, ζ = 3%)

Figure 6.28: Location of sliding mass with time (µN = 0.2; 230→ 150 RPM)
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Figure 6.29: Rotor speed change from 230 to 150 RPM (16 s)

The lag moment response is shown in Figure 6.30. It can be seen that the ARS blade

doesn’t have a significant amplitude increase during this transition. In comparison, the

amplitude is decreased by 75% from the baseline blade as shown in Figure 6.31.

Figure 6.30: Lag moment: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM; ζ = 3%)
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Figure 6.31: Peak amplitude: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM; ζ = 3%)

The rotor torque response is shown in Figure 6.32. The torque reduces initially as the

mass is kept at a fixed location on the blade. As the mass starts moving outwards, the

torque increases before dropping to the steady state. Once again, the torque response is not

smooth as the baseline case due to the movement of the mass along the radial direction.

Figure 6.32: Rotor torque: Baseline vs. ARS (µN = 0.2; 230→ 150 RPM; ζ = 3%)

Therefore, the ARS blade needs to pass through the resonance only once at this forward

speed. The subsequent transitions can take place by pushing the resonance regions out of

the operating zone.
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6.6 µN = 0.1, 230 → 130 RPM

The transition range at µN = 0.1 is shown in Figure 6.33. It can be seen that there are

two resonance points inside the transition range. Like mentioned in the previous case, it

is not possible to move the 2/rev resonance out of range if it is initially located within the

transition bounds. However, the 3/rev resonance can be moved below 150 RPM by moving

the mass towards the tip, after the 2/rev resonance is crossed.

Figure 6.33: Fan plot: Baseline vs. ARS with mass at tip (µN = 0.1, ζ = 3%)

The sliding mass is kept at the baseline location until 180 RPM and moved towards the

tip as shown in Figure 6.34. The rotor speed change is shown in Figure 6.35.
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Figure 6.34: Location of sliding mass with time (µN = 0.1; 230→ 130 RPM)

Figure 6.35: Rotor speed change from 230 to 130 RPM (20 s)

The lag moment response as the rotor passes through the 2/rev crossing but skips the

3/rev crossing is shown in Figure 6.36. The ARS blade has only one resonance bump and

the second bump completely disappears. The amplitude in the second resonance region is

decreased by 80% from the baseline blade as shown in Figure 6.37.
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Figure 6.36: Lag moment: Baseline vs. ARS (µN = 0.1; 230→ 130 RPM; ζ = 3%)

Figure 6.37: Second resonance amplitude: Baseline vs. ARS (µN = 0.1; 230 → 130 RPM;
ζ = 3%)
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The rotor torque response is shown in Figure 6.38. The first resonance has a noticeable

impact on torque but not a significant increase in amplitude. As the mass starts to move

towards the tip, the torque needs to increase to prevent the rotor from slowing down too

fast. The steady state value of the torque is significantly lower compared to the baseline

case as the resonance is moved away from the rotor operating speed.

Figure 6.38: Rotor torque: Baseline vs. ARS (µN = 0.1; 230→ 130 RPM; ζ = 3%)

6.7 µN = 0.1, 130 → 230 RPM

At the end of the previous transition, the 2/rev resonance stays inside the transition region

and the 3/rev resonance is moved out. During the reverse transition, the 2/rev resonance

can be moved out as well by moving the mass close to the root of the blade. The movement

of the resonance points is shown in Figure 6.39.

The sliding mass is moved continuously during this transition as shown in Figure 6.40.

The rotor speed change is shown in Figure 6.41.
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Figure 6.39: Fan plot: ARS with mass at root vs. mass at tip (µN = 0.1, ζ = 3%)

Figure 6.40: Location of sliding mass with time (µN = 0.1; 130→ 230 RPM)
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Figure 6.41: Rotor speed change from 130 to 230 RPM (20 s)

The lag moment response as the rotor travels from lower to higher speed is shown in

Figure 6.42. The ARS blade has no resonance bumps. The amplitude in the first resonance

region is decreased by 80% and in the second resonance region by 76% from the baseline,

Figures 6.43 and 6.44.

Figure 6.42: Lag moment: Baseline vs. ARS (µN = 0.1; 130→ 230 RPM; ζ = 3%)
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Figure 6.43: First resonance amplitude: Baseline vs. ARS (µN = 0.1; 130 → 230 RPM;
ζ = 3%)

Figure 6.44: Second resonance amplitude: Baseline vs. ARS (µN = 0.1; 130 → 230 RPM;
ζ = 3%)
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The rotor torque response is shown in Figure 6.45. The torque needs to be reduced

initially as the mass is moved inwards, which alone can make the rotor to speed up. The

torque needs to increase during the later half of the transition to speed up the rotor. No

significant amplitude increase is noted in the torque response.

Figure 6.45: Rotor torque: Baseline vs. ARS (µN = 0.1; 130→ 230 RPM; ζ = 3%)

6.8 µN = 0.1, 230 → 130 RPM (Resonance Outside)

Once the 2/rev resonance is moved out, the high to low speed transition can take place

without passing through a resonance point. The resonance movements are shown in Figure

6.46. The sliding mass is moved continuously but in the reverse direction, Figure 6.47. The

rotor speed change follows the same path as in Figure 6.35.
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Figure 6.46: Fan plot: ARS resonance points movement (µN = 0.1, 230 → 130 RPM,
ζ = 3%)

Figure 6.47: Location of sliding mass with time (µN = 0.1; 230→ 130 RPM)
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The lag moment response for the high to low speed transition with continuous mass

movement is shown in Figure 6.48. There is no significant amplitude increase in the reso-

nance regions for the ARS blade. The rotor torque response is shown in Figure 6.49.

Figure 6.48: Lag moment: Baseline vs. ARS (µN = 0.1; 230→ 130 RPM; ζ = 3%)

Figure 6.49: Rotor torque: Baseline vs. ARS (µN = 0.1; 230→ 130 RPM; ζ = 3%)

Hence, the ARS system is capable of avoiding resonance regions during rotor speed

transition. It works best for µN = 0.3 case. The torque needed for 0.2 and 0.1 nomi-

nal advance ratios can be a little challenging to provide, but the load benefits are highly
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noteworthy. For some of the cases, the transition times can be stretched without any lag

moment penalties as no resonance is involved. This means that the transition can occur as

slowly as needed.
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CHAPTER 7

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK

7.1 Conclusions

Power advantages and resonance crossings of a variable speed rotor is analyzed using an

enhanced rotor model. The model incorporates geometrically exact beam theory to pre-

dict the blade response and Peters et al unsteady aerodynamics model for obtaining the

aerodynamic loads. The rotor model was built in Dymore and incorporates a finite state

inflow model and dynamic stall effects. Some important observations and conclusions are

as follows,

• Power saving characteristics of a variable speed rotor stems from the variation of

profile drag and induced drag with the rotor speed change. Reducing the rotor speed

reduces the profile drag but increases the induced drag for most of the Ω range. As the

rotor speed is reduced, the pitch angles increase to provide the same load condition.

Changing the speed of a rotor improves its performance characteristics. Reducing

the rotor speed from 230 to 150 RPM at µN = 0.2 led to a maximum power saving

of 41.47%.

• Important resonance crossing points for a given µN can be identified from the fan

plot based on power studies. The range of allowable speed change reduces with

increase of µN , and so does the number of important resonance points. During a

resonance crossing, the forces acting on the blade root increase significantly.

• The lower frequency 2/rev lag crossing dominates the blade response for µN = 0.3

and 0.2 transitions. The higher frequency crossings, such as the 5/rev flap and 7/rev

torsion, do not have a noticeable impact on the blade response. The increase in

moment amplitude during a resonance is a strong function of the cyclic pitch angles
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during the resonance crossing.

• For µN = 0.1, the 3/rev lag crossing causes a greater increase in amplitude than the

2/rev lag crossing. Once again, the higher frequency 5/rev, 6/rev and 7/rev crossings

do not contribute significantly to the resonance response.

• The magnitude increase during the low-to-high rotor speed transition was found to

be slightly different from the high-to-low rotor speed transition in most of the cases.

• For the baseline blade, the rotor torque follows the rotor acceleration trend. The

torque has an ∪ shape for high-to-low speed transitions and a ∩ shape for low-to-

high speed transitions. The rotor torque’s resonance behavior is dominated by the

4/rev frequency for a four bladed system.

• For transitions during hover, the resonance crossings were found to have no impact

on the blade response, even when perturbations were introduced into the system in

the form of gusts.

• Load reduction studies were carried out by varying the transition time, structural

damping, and lag stiffness of the blade. The longer the rotor takes to traverse a

resonance region, greater were the resonance loads. Hence, the quickest transitions

had the least lag moment increase during resonance. However, there were torque

limitations on how quickly a rotor can pass through resonance. For the high to low

speed transition, the rotor torque dips into the reverse torque region if the transi-

tion happens too quickly. For the low to high speed transition, the torque exceeds

the maximum assumed limit for quick transitions. Therefore, the low-to-high speed

transitions had a greater window for transition time reduction than the high-to-low

speed transitions. The ideal transition times for the high-to-low speed cases varied

from 8 to 14 seconds, whereas the ideal transition times were between 4 and 7 sec-

onds for the low-to-high speed scenarios. The maximum amplitude reduction that

was achieved by changing the transition time was only 28%.
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• Increasing the structural damping was a very effective way of reducing the resonance

loads. Increasing the lag damping from 1% to 3%, reduced the resonance loads by

40− 50%. On further increasing the lag damping to 7%, by assuming that the blades

have embedded carbon nanotubes, slightly over 70% load reduction was achieved for

all the cases. This a significant result on the load reduction front of variable speed

rotors.

• The lag stiffness of the rotor blade was increased to move the lag resonance crossing

from 2/rev to 3/rev, and 4/rev. Even though the lag moment during resonance was

reduced for most of the cases, the torque response deteriorated due to 4/rev crossings.

The amplitude of the steady state torque response also increased with increase in

stiffness. The torque response crossed the limitations for majority of the transitions.

Hence, it was decided not to increase the lag stiffness of the blade to Case 1 or Case

2 value.

• A detailed combination study was performed by combining the ideal transition times

with 7% lag damping. Combining ideal tT with ζ showed that the load reduction

remained close to 70%, which was already achieved by changing the ζ to 7%. Hence,

the ideal transition time was not providing any additional reduction to the resonance

loads in this scenario. Therefore, the higher torque peak that is required for some of

the ideal transition times can be avoided.

• A novel blade design with a moving mass system was conceptualized and modeled

in Dymore to analyze its dynamic behavior. The moving mass system was called as

the Anti-Resonance System (ARS). The ARS system was able to effectively move

the resonance points out of the rotor operating range. At µN = 0.3, the ARS system

not only eliminated the load increase due to resonance but also reduced the torque

change needed during transition. For µN = 0.2 and 0.1, the rotor had to pass through

the resonance region at least once before the ARS system was able to move the
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resonance points out of the operating zone. The lag damping was increased to 3% to

reduce the loads during 2/rev crossing at µN = 0.2. Significant load benefits were

obtained using a moving mass system that could move the resonance points in and

out of the operating range.

Hence, the range of rotor speed change depends on the flight condition, whereas the

response of the blade depends on the flight conditions, blade parameters, and the resonance

crossing. It is important to take these different behaviors into account while designing a

VSR helicopter. This study provides a broad set of resonance response results that could

be useful for future research on VSR technology.

7.2 Contributions

The contributions of this study are mentioned below,

• An enhanced rotor model with state of the art beam theory and an unsteady aerody-

namics model was built in Dymore to analyze the rotor dynamics of a variable speed

rotor.

• A frame work was provided to identify the important resonance crossing points based

on power studies.

• Resonance studies were carried out for a wide range of advance ratios and in both

the transition directions to characterize the blade response during various resonance

crossings..

• Load reduction studies were carried out by changing the transition times, structural

damping, and lag stiffness of the blade. The analysis performed here expanded the

work carried out in [18] and has a more detailed combination studies.

• A novel blade design with a moving mass system was conceptualized to eliminate

the presence of resonance points within the rotor operating range.
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7.3 Future work

In this study, we were able to analyze some of the important aspects of a variable speed

rotor with respect to the resonances. This work can be expanded to broaden its scope and

analysis capabilities. Some of the suggestions are given below,

• The modeling was only limited to a hingeless rotor system with no root offset or

pitch link components. Other mechanical components can be added to make it a

more realistic rotor model.

• A model of a transmission system that allows unlimited speed change, like a continu-

ously variable transmission (CVT), can be combined with the rotor model to analyze

the coupled system.

• Stability of the rotor can be studied at various operating conditions by performing

stability analysis using Floquet theory.

• The effect of airfoil properties on the resonance response needs to be studied as the

amplitude increase during the resonance is a function of the pitch angles. Using an

airfoil that can lead to lower cyclic pitch angles in forward flight could be an effective

way to reduce resonance loads.

• The effect of lower rotor speed and higher pitch angels on the maneuverability of the

aircraft can be studied from a flight dynamics perspective.

• In this study, the resonance analysis was only limited to sea level conditions. Study-

ing the resonance crossing behaviors at different altitudes will also be of importance

in understanding variable speed rotors.

• In the present study, the response of the blade during resonance is compared between

two different beam theories in the validation section. Other beam theories, such as

the elastica theory, could be used to study the blade response during resonance.
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• In the last chapter, only one sliding mass was used to modify the location of reso-

nances. Having a distributed set of smaller sliding masses along the length of the

blade could expand the capabilities of the ARS. Such a system needs to be modeled

and analyzed.

• The power needed by the mechanical control system to move the sliding mass also

needs to be taken into account for the rotor power studies of an ARS blade.
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