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Executive Summary

Status matching supports USAF development, quatibo, and maintenance test
planning and diagnostics. Thus improved statusinmag is a key enabler for improved
testing and maintenance processes within the USAfproved methods may also
support future USAF maintenance concepts such@sdang customized status models
for each engine in the fleet. Under such scenastaus decks will need to be made
more frequently than they are today, and thus tbegss must be faster and require less
expert knowledge than the traditional approach.

This research program developed an improved, auezhpaocess for calibrating turbine
engine performance models. The research proceedddee phases: (1) a literature
search for algorithms applicable to the status hiagc problem, (2) a preliminary
investigation using simulated engine data of sdvefahe methods identified in the
literature search, culminating in the selectiortvad methods, the Filtered Monte Carlo
(FMC) and the Singular Value Decomposition (SVD)timeels, for further investigation,
and (3) the detailed investigation of the seleetgdrithms using real engine data.

The proposed algorithms were found to meet thespérequirements for a robust, fast
process suitable for inexperienced users. Bothhoost were demonstrated to
successfully match measured data with no prior kedge of the engine. The methods
are complementary in that an initial FMC analysis @entify for an inexperienced user
which variables are significant and can provide loimher with appropriate ranges for
those variables. The SVD method may subsequeetlysed to quickly determine the
best value for each modifier.

One of the major conclusions of the research is tthe choice of solution algorithm is

not the most significant issue. All the algorithmsgestigated are theoretically similar to

each other. The most significant factor in a susfteanethod is the user’'s choice of
modifiers. It is difficult to avoid the fact th#tis requires experience; although certain
steps in the process have been automated andiegfggrompt the user when a decision
is required. It is noteworthy that, if user expage can be translated into probability
distributions for priors, then Bayesian methods easily be incorporated into the

developed process. Over the long term, this mayeto be the best approach to the
problem.

Finally, it should be noted that the engine stammtching process is applicable to
calibration of other types of models. Similar neth have been used by the researchers
for calibration of engine, aircraft, noise, and ssions models and for calibration of
lower fidelity aero models to CFD models.
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1 Problem Statement / Objective

The fundamental motivation for the research repbherein is the need to quickly and
accurately match gas turbine engine cycle moddligiiens to engine test data. The
problem is challenging because it requires thetswmlwf an ill-posed, underdetermined
nonlinear system. Current solution methods are ttmnsuming and highly dependent
upon the experience of the data analyst.

Status matching supports USAF development, quatiba, and maintenance test
planning and diagnostics. Thus improved statusimag is a key enabler for improved
testing and maintenance processes within the USAmproved methods may also
support future USAF maintenance concepts such@sdimg customized status models
for each engine in the fleet. Under such scenastaus decks will need to be made
more frequently than they are today, and thus tbegss must be faster and require less
expert knowledge than the traditional approach.

The objectives of the present research were tostigate a simpler, more automated
process that would enable considerable reductiortBa time and cost to match engine
performance models to measured data, while alsoowimy model accuracy. The

approach taken was to survey the methods avaitabselve the problem, and then to
select a small subset of available algorithms farthier investigation. The most

promising approaches were then applied to a reptasee engine matching problem and
refined into a practical tool available for use Air Force engine testing and data
reduction tasks.

2 Background

2.1 Status Deck Description

A turbine engine cycle model or “cycle deck” isetalled thermodynamic representation
of a turbine engine, comprising semi-analyticaleréedimensional” representations of
each of the engine components. The term “cycl&k’dewlicates that the complete
thermodynamic cycle is computed and that the operapoints of each of the
components have been matched so that the enginghermodynamic equilibrium. A
“status deck” is simply a cycle deck which has b&emed” or adjusted to match a
specified set of measured test data. A status nhegkrepresent a specific engine or an
average of a population of engines.

To illustrate, the components of a typical stateskdfor a single spool turbojet engine are
depicted in Figure 1. First, flow computation &tas are identified by number at the
entrance and exit of each engine component. Eagime component is represented by
performance “maps”, which are derived through a lwoation of analytical and

empirical means. For example, the compressor ariine maps are digitized tables
which provide pressure ratio and efficiency as ractwn of corrected rotor speed and
corrected flow. For computational purposes the massor flow, pressure ratio, and
efficiency are tabulated along arbitrary ray limes'R-lines”, while the turbine flow and

efficiency are tabulated as a function of the toebpressure ratio and corrected rotor



speed. The nozzle map provides the nozzle flow &snction of the nozzle pressure
ratio. Pressure drops across the inlet, the cotmbuand the exhaust nozzle are also
represented as functions of the appropriate pasmet

Compressor Map Turbine Map Nozzle Map
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2o 2 [
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Figure 1. Components of a typical turbojet engipeedeck

The cycle balance or match point is found by sg@\ansystem of simultaneous nonlinear
equations using a Newton-Raphson iteration teclen{gee Figure 2). The equations to
be solved represent the conservation laws; conyiramd work balances must be satisfied
throughout the engine at the match point. The tcocigons of the maps themselves
provide the basis for the computational procedirer. the turbojet example shown, there
are five equations: the continuity balances at ¢benpressor entrance, the turbine
entrance, and the exhaust nozzle entrance; the badance between the turbine and the
compressor; and the throttle or power setting meguent represented in the example by
the turbine inlet temperature demand. Each ofethesms is to be driven to zero

(y., - Owithin an acceptable tolerance), by varying a $éive independent parameters

(X). In the example shown these independent vasablare the compressor corrected
rotor speed, the compressor R-line value (whicherdahes the compressor flow,
pressure ratio, and efficiency for a given corréctaor speed), the inlet flow, the turbine
pressure ratio, and the combustor fuel-air ratio.
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Figure 2: Typical balance equations for a turbejggine cycle deck

It should be noted that this problem formulatiomad unique, and the “best” choices for
the independent and dependent variables are fétwmadgh experience or user preference.
In any case, once the cycle is balanced, the pessiemperatures, and flows are known
at each of the flow stations, and overall perforogamalues such as thrust and fuel flow
may be computed.

During an engine test, pressures and temperatuagsoem measured at some of the flow
stations within the engine, along with other valasash as the rotor speeds, the inlet flow
rate, thrust and fuel flow. Fundamentally, thegeiss of making a status deck involves
adjusting the component performance maps until dbmputed cycle match point
corresponds with the measured parameters. Tatédeilthese adjustments, the cycle
deck is provided with modifiers on the flow, eféacy, and pressure loss values read
from each component map.

The process of status matching may be broken domen three steps. First, the test
measurements are used to determine the modifieteenomponent maps at each data
point. Second, the modifiers are regressed toldpwairves such that the modifiers may
be allowed to vary realistically throughout the iexegoperating range. This step requires
the determination of the functionality of the maeli§; for example, the compressor
efficiency modifier may vary as a function of therected rotor speed, variable stator
vane position, compressor entrance Reynolds nunamel, compressor rotor-to-casing
clearances. Once these functions are determingtharstatus curves are developed, the
final step in the process is to incorporate thesges into the engine model and to verify
the results against the original test data.

The traditional approach to status matching is vanch a “hands-on” process. The
modifiers must be adjusted manually until the “bestlues, in the judgment of the



analyst, are found that make the model predictroasch the test measurements. This
process is highly dependent on the prior knowleslg experience of the analyst. Since
it is a manual process, the analyst is usually ablg to look at one parameter at a time.
Thus the process is very time consuming and cortipotdly expensive. The proposed

new approach must be more automated, to requisetitas and experience on the part of
the data analyst. To achieve this goal, the dalgms must be mathematically and

computationally stable and reliable.

2.2 Characteristics of the Problem

As described above, the status matching processlpctomprises a pair of regression
problems. The first problem entails the determamabf the model modifiers and the
assignment of values to the modifiers at each plaitat. The second problem entails the
determination of appropriate functional relatiopshto describe how the values of each
modifier changes with changing flight conditionsl&r engine power settings. Thus the
status matching process is plagued with all theeisgommon to any regression analysis.
Typical issues are discussed briefly below:

Causality

Regression analysis cannot by itself establish atatsationships. Goodness-of-fit

statistics only reflect the correlation structufettee data being analyzed. Causality can
only be determined from controlled experiments. \Mwiable selection procedure can
substitute for the judgment of the analyst. In otherds, the selection of relevant

explanatory variables should be based upon theatetbnsiderations; empirical methods
for variable selection based only on statisticadlgsis of the test data will tend to be

sample specific [13].

Specification errors

Specification errors are errors in identifying #ignificant explanatory variables. There
are two types of specification error. A type loeris “finding something that is not
there”, e.g. including explanatory variables in ttegression which in fact have no
significant effect on the observations. A typeeltor is “missing something that is
there”, e.g. excluding an explanatory variable \Wwrsbould be in the regression.

Multicollinearity

Multicollinearity, sometimes also called collinggrirefers to the situation when two or
more explanatory variables have the same effeth®wobservations and it is not possible
to differentiate between them. This problem isewnftcaused by the Ilimited
instrumentation used in full scale engine testinbp most cases, the effect will be
“smeared” across the explanatory variables. Ineex¢ cases multicollinearity can cause
incorrect signs on the regression coefficients.

Parsimony

Parsimony refers to the historical “Occam’s razprinciple of incorporating as few
explanatory variables into the model as possileginally this principle may have been
driven more by computational limitations than by tihesnatical considerations.
However, when the number of explanatory variabtetaige relative to the number of



observations there is a danger of “overfitting” thedel. An overfit model fits the noise
in the data; i.e. it incorrectly attributes randoaise to causal factors.

Random error

The term “random error” is not related to the ramdwoise or measurement error present
in experimental data, but refers to the situatiomem the values of the explanatory
variables vary randomly. Classical regression yamalrequires that the explanatory
variables be set by the experimenter in a desigmedaontrolled experiment. As
described above, this is required to prove caysallt is also important to the proper
interpretation of goodness-of-fit statistics. Foample, the significance of a higf R
value depends strongly on the range and distributibthe values of the explanatory
variables.

It should be clear that the typical status matchraplem, due to limited data and limited

instrumentation, violates most of the standard esgion guidelines. Engineering

judgment is often required to resolve the issueshvimay arise. Thus creating a more
automated process which relies less on engineerpgrience is a daunting task. As will

be seen, the approach ultimately selected comluimeplementary procedures designed
to provide guidance to the analyst without takiimg br her completely out of the loop.

A more complete understanding of the problem mayob&ined by considering the
overall process of physical system modeling. Twlan[34] generalizes a scientific
procedure for the study of a physical system vhthfollowing three steps:

1. Parameterization of the system

2. Forward modeling

3. Inverse modeling

First, the parameterization of the system is tealier the minimal set of parameters that
completely characterizes the system. Such a sealisd model parameters. Second,
forward modeling is to discover a physical law thdws us to predict the outcome of
the system given the model parameters. Third, severodeling is to estimate the model
parameters when the outcome of the system is odderkccording to Tarantola’s
generalization status matching is an inverse mogdeli

Problems that involve the forward and inverse madehbre referred to as direct and
inverse problems, respectively. Keller [22] prowde definition of direct and inverse

problems in a historical point of view. Keller dedis two problems as direct and inverse
problems if the formulation of one involves thewmn of the other. Among the two

problems the direct problem is the one that has Iséedied extensively than the other
while the inverse problem is the one that is légdisd or understood than the other. On
the other hand, Bertero’s definition [2] is basedcausal relationships. A direct problem
is formulated based on a physical law specifyingaase-effect consequence. The
corresponding inverse problem is to find the unknamause of known effect. Hansen’s
point of view is more or less similar to that ofri&eo. Hansen [17] describes that
inverse problems involve finding the internal stuse of a system from the observed



behavior of the system or determining the unknomput of the system from the known
output.

Direct problems are perceived to be much easien thaerse problems, due to the
following two properties: locality and causalityals of nature are often expressed as a
system of algebraic or differential equations. Elgeations are local in a sense that they
express the dependency of the function describisgséem and its derivatives on the
outcome of the system at a given point, i.e., givan model parameters. They are causal
in a sense that the outcome depends on the modwhpeers. On the contrary, inverse
problems are often not local and/or not causaltéderand Boccacci [3] argue that the
conceptual difficulty associated with inverse peshs due to a loss of information. A
forward modeling always involves a loss of inforioat or an increase in entropy.
Consequently, an inverse modeling of the same mydsiecomes different from the
forward modeling, and the inverse problem requihesrecovery of the lost information.
The argument of Bertero and Boccacci is an anatddgrward and inverse modeling to
an irreversible thermodynamic process.

The conceptual difficulty of inverse problems imgssunfavorable characteristics on
inverse problems. According to Hadamard [16] a [mabis well-posed if the following
conditions are met:

1. a solution exists,

2. the solution is unique, and

3. the solution depends continuously on the data.

Unfortunately, inverse problems are typically ilged; one or some of the above
conditions are not met for inverse problems. Haalavorable characteristic of ill-posed
problems poses different issues in choosing oremphting a solution technique. Some
of these issues are discussed in the following.

First of all, the possible non-existence of invesskitions makes it hard to set a stopping
criterion for solution search. When the solutioarsh is failed, it is hard to tell that the
solution technique is failed because of not enaegirch attempts or the non-existence of
a solution.

Second, the non-uniqueness of inverse solutionsregsome additional capabilities to a
desirable solution technique: not only the capgbof successfully identifying multiple
solutions but also assessing the multiple solutiergs, which solution is more likely than
others or which solution is physically impossilg&;.

Third, if an inverse solution does not depend ota dantinuously, the inverse solution
becomes unstable. The continuous dependency aofseeslutions on data ensure that a
small change in the data cause only a small chamdbe inverse solutions. On the
contrary, if the dependency is discontinuous, allschange in the data can cause a large
change in the inverse solutions. Figure 3 showh susituation.



perturbation

Figure 3: An Example of Unstable Inverse Solutiphy

A system of two linear equations with two indepertdeariables is shown in the two-
dimensional inverse solution space. When a depéndgeiable contains a small error,
which is manifested as a small perturbation ofdeesponding line, the solution of the
system of linear equations jumps one position & dther drastically, compared to the
small magnitude of the perturbation. The sensitioit a system of linear equations can
be measured with the condition number of the magxgressing the system of linear
equations. Consider a system of linear equationsaitix form

y = AX
The condition number is the ratio of the largesigslar value of the matriA to the
smallest one [14]. The matrk can be viewed as the sensitivities between thiablas
(x) and the responses (y). In this case, the tomdnumber can provide a measure of
how influential the variables are relative to eather in describing the responses. This
characteristic is especially important when dealiriiy data containing some errors such
as measurement noise, which is always the caseiretl world. As shown in Figure 3,
a small error in a dependent variable caused bysunement noise can lead to large
deviations in independent variables in the inveradlem.

3 Literature Review

Current approaches to the status matching probkenvedl as other potential solutions
were identified through a literature search. Tleeegal subject of matching computer
models to real data is covered thoroughly by Kegnad O’Hagan [23]. While the
subject of engine modeling itself, cycle decks amtjgular, has received little attention in
the published literature, several valuable souraes available through the NATO
AGARD and RTO publications. In addition, a richuste of reference material may be
found in the related field of engine health monngrand diagnostics. The subject of
matching computer models to test data has alsaveztesome attention in the area of
hydrological modeling. Finally, the field of nuneal optimization was explored as a
possible source for potential solutions to theustahatching problem. These sources,
along with a brief description of each method,diseussed in turn below.



3.1 AGARD Publications

One of the earliest descriptions of the status hiag¢cproblem may be found in Habrard
[15]. Habrard formulated the problem by superpgsiner the usual Newton-Raphson
cycle balance an additional iteration comprising {dependent) error terms for the
measured data and (independent) tuning parametensdifiers to adjust the component
maps. Habrard made several recommendations tlatclaaracteristic of modern
approaches:
» Additional estimated parameters should be incluighethe tuning equations in
addition to the directly measured parameters
* The tuning equations should be augmented with viigigtfunctions to account
for the relative level of confidence attributed tfloee measured or estimated
dependents
» He addressed the problem that the number of moslifieailable may exceed the
number of dependent parameters. The solution rdefteorecommended was
equivalent to the singular value decomposition ($viethod described in later
sections of this report.

3.2 Engine Diagnostics Literature

The engine diagnostics and health monitoring prabie closely related to the status
matching problem. There is an extensive bodytefdiure related to analytical engine
diagnostics; a good general review is availablei ji26].

The subject of analytical engine diagnostics bemiitk Urban’s pioneering work, GPA
(Gas Path Analysis) [38]. Changes in the healthinoéngine are manifested as changes in
measurable engine parameters. GPA uses theseisgesiin matrix form, called the
influence coefficientnatrix written as follows:

Az, Az Az,
Az, Az, Az,
8, 83, g,
Ax,  AX, AX,

wherez is a measurable engine parameteransl an engine performance modifier. The
influence coefficient matrix is a linear approximoat of the real, possibly nonlinear,

relationships between the measurable engine pagesnanhd the engine performance
modifiers. When some measurable parameters ardalhaithe engine performance
modifiers can be calculated by the inversion of itifeuence coefficient matrix or the

weighted least squares (WLS) method. Urbans’s wasgired many other researchers,
and there are various extensions of the originaA GR late 1970s, GE Aircraft Engines

developed a similar program called TEMPER [10]. &vls GPA was followed by many

other similar research works.



Another linear approach in engine status matchsnthe use of the Kalman filter [21].
The Kalman filter is a recursive filter that estiemthe state of a linear dynamical system
from a series of noisy measurements. The Kalmaer fdonsists of two phases: predict
and update. In the predict phase, the current $af@edicted from the state at the
previous time step. In the update phase, the mems&unt at the current time step is used
to correct the predicted state. In the 1980s, Réllsyce developed COMPASS
(COndition Monitoring and Performance Analysis S@fte System) using the Kalman
filtering technique to estimate turbofan engineltmeparameters and sensor bias from
measurements [30]. To improve the performance efkhlman filter in diagnostics of
gas turbine engine, the Kalman filter is used imyndifferent ways, for example, the
constrained Kalman filtering [32] and a bank of #kah filters [24]. The extended
Kalman filter (EKF) [33] and unscented Kalman filtéUKF) [19] are nonlinear
extensions of the Kalman filter.

3.3 Optimization Methods

The discipline of numerical optimization may als@yde a source for solutions to the
status matching problem. Historically, there hdwesen efforts to estimate engine
performance modifiers by converting the inversebfgm to one of optimization. In these
efforts a numerical optimizer finds engine perfonta modifiers that make the result of
a thermodynamic engine model as close as possiblaeasured engine performance
parameters. “Closeness” to measured performantgisally calculated using a single

objective function. The objective function comlsnall available performance

measurements into a single measure of fitnesds then the job of the optimization

routine to find the set of modifiers to maximizestbverall fithess of the objective

function [9].

Most optimization techniques can typically be grediinto two categories: 1) line search
or gradient-based techniques and 2) heuristicamhsistic searches. The gradient-based
methods perform extremely well for convex problemiich have a unique global
optimum, but may stop searching prematurely in ghesence of many local optima.
Stochastic methods, although usually requiring mmemputer resources, are able to
avoid becoming stuck at a local optimum [39].

Because of the nonlinear relationships between unabke engine parameters and engine
performance modifiers, the genetic algorithm (GA) preferred over gradient-based
optimization methods [43]. GA is also of interést its potential to add intelligence to
otherwise random search methods such as FilterenteM@arlo. Rather than blindly
sample a solution space, the algorithm drives tdveamore optimum solution at each
iteration by combining attributes of multiple “geigally fit” solutions. This property,
called crossover, combined with mutation, can Bettings of the performance modifiers
that match the responses quite accurately. Fore ndetailed explanation of genetic
search techniques, the reader is referred to [2®%hough GA has better chance to find
the global optimum than gradient-based methodsglitieal optimality of its solutions is
still not guaranteed. Furthermore the genetic @lgor is computationally demanding,
requiring a large initial population and many iteas.



3.4 Surrogate Modeling

In the above optimization approach a thermodynanigine model is used to simulate
the engine performance. Instead of using a theymendic engine model, there have
been efforts to use lower fidelity surrogate modets Al (Artificial Intelligence)
techniques to interpret the measurable engine pemmand relate them to the engine
performance modifiers. An advantage to these meathad that complex
computation/optimization can be performed on therogates which are typically
polynomial expressions versus a much slower compytele model. This fact makes
surrogate models ideal for Monte Carlo methods etiers not uncommon to perform
many thousands of function calls. These technideaasn the mappings between the
measurable engine performance parameters and tjreegperformance modifiers from
available data. The trained mappings are then ueegdredict engine performance
modifiers when new measurable engine performancanpeters arrive. A common
surrogate modeling techniqgue and one that will beestigated in this research is
response surface equations (RSEs). RSEs are pettragastest type of surrogate to
create through a simple least squares regressignthby suffer from an inability to
represent nonlinear design spaces. While thernardigcycle behavior across the entire
flight regime is highly nonlinear, RSEs may be usedepresent a small region of the
space such as a single setting of ambient condamahthrottle position.

While the literature search yielded alternativénteques including those from the field of
Al such as neural networks [44], fuzzy logic [1&hd expert systems [37], these methods
were not pursued as viable means of solving theistaatching problem. Although
more sophisticated surrogate modeling techniques rieural networks map complex
nonlinear relationships quite well, they are difficto train as they typically require their
own optimization algorithm and significant compigatl resources. Therefore, the time
required to merely generate the networks negatgpeassible advantage gained through
their ability to model nonlinear space. What iskably worse, there is a severe lack of
transparency when using neural networks so thet difficult to gain insight into the
behavior of multidimensional spaces. Fuzzy logicoften criticized with regards to
scalability. Although fuzzy logic has been used dantrol applications for home
appliances, there are few publications regardirguge of fuzzy logic in the real world
[11]. Expert systems are mostly used for solvinglig@ative problems.

3.5 Other Statistical Methods

In addition to the Al techniques mentioned abovaydsian networks have been paid
great deal of attention recently. The Bayesian oskwtechnique is a framework
combining graph theory and probability theory. AyBsian network for engine
diagnostics probabilistically models the relatiapsh between measurable engine
parameters and engine performance modifiers. WherBayesian network is used in
diagnostics, the measured data is entered intmeéhgork, and the engine performance
modifiers are inferred. Breese et al. [7], Masale{28], and Romessis and Mathioudakis
[31] applied the Bayesian network technique forgdistics of industrial or aircraft
engine. Lee [25] proposed a use of multiple Bayesietworks to increase the accuracy
and robustness of estimates of engine performarudfiers. Although it has shown a
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great potential for its usage, the Bayesian netwedknique is often criticized for its
mathematical complexity and computational burden.

It is interesting that singular value decomposit{®vD) and regularization, which are
the most widely known inverse problem solution tegbes in the fields of medical
imaging and statistics, are rarely used in gasnartliagnostics.

Singular value decomposition (SVD), developed imedir algebra, is a technique for
solving underdetermined system of linear equatighs. underdetermined system of
linear equation has an infinite number of solutiohsiong these solutions the minimum
2-norm solution is always unique [6]. SVD finds tineique, minimum 2-norm solution.
However, the minimum norm solution may not be ptgty meaningful in practical

problems.

Regularization is a classical approach for stabijzunstable inverse solutions.
Regularization methods seek a stable, approxinmtgien by adding an extra constraint
on inverse solutions. Two widely used constraims the 1-norm or 2-norm of the
inverse solution. Regularization using these twostm@ints is called thkasso[35] and
Tikhonov regularization36], respectively.

3.6 Hydrological modeling literature

Among the many applications discussed by Kennedy @MHagan [23] is that of
hydrological simulation, dating back to the pionegrwork of Beven and Binley [4].
The Generalized Likelihood Uncertainty EstimatioBLUE) method developed by
Beven and Binley is similar in many respects toRheered Monte Carlo (FMC) method
described in the following sections.

4 Algorithm Selection

Once the literature search identified a list ofgmbial solutions to the status matching
problem given the time and scope of the projeet,niaxt step was to develop a procedure
for selecting, refining, and further developing ome more of those solutions into a
practical, easy-to-use method. A subset of algorit was identified from the literature
for further investigation and direct application arsimple thermodynamic cycle model
calibration problem. This way, each algorithm’sfpamance could be compared side-
by-side and the necessary refinement and/or rejeaf the method could take place.
The methods chosen for further research were thewing: FMC, genetic algorithm,
SVD, regularization, Kalman filters (EKF and UKRnd Bayesian networks. These
methods showed the most potential for obtainingukate estimations for the
performance modifiers given the non-linear and wtise complex behavior of the
inverse problem. For those methods that requiutzdion of a sensitivity matrix (EKF,
SVD, and Regularization), a local iterative techugiqof solving for the performance
modifiers was adopted. In other words, the locativéitive matrix (Jacobian) was
calculated at an initial guess point. The algonittvas executed in order to update the
initial guess to a better estimate. The Jacobias then calculated for the new estimated
point and the procedure was repeated until converge This method can be likened to
trust region optimization and imposes stability aminherently nonlinear problem. In
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addition to the particular algorithms, RSEs wereestigated as a potential enabler of
faster computation and transparency.

In order to qualitatively assess the performanceeadh solution technique, a set of
metrics was adopted. These metrics were arrivegiag engineering judgment as well
as input from potential end-users of the producfatold Engineering Development
Center (AEDC) in Tullahoma, TN. The first and pgpk most obvious metric was the
ability for the method to match the given measum@ndata. The performance modifiers
obtained from a given method ought to produce altiag data point that matches as
closely as possible the measured data. This castdted quantitatively simply as a
summation of percent errors between the measurensat and what an individual
method predicts. The next metric used to evalttaesolution methods is the overall
ease of implementation and use. It was an origyual of the project to develop a
method that could be used not necessarily by apedance engineer intimately familiar
with a given turbine engine or even statisticiarlwersed in complex inverse problem
theory. The method must be sophisticated enougtatisfactorily solve the complex
problem and yet simple enough to be used by angmnany engine. A qualitative
representation of this metric is the time needesketoup or code the algorithm as well as
the number of additional pieces of information reedi (parameter constraints,
covariance, weighting, etc.) to produce reliablutes. The final metric used to compare
methods was their respective computational demarids time and effort required to
create a status deck using current status matcheofiniques is a significant
disadvantage. The new method must use minimal atatipnal resources to match
multiple data points quickly and accurately. Ttas be represented as the time to match
a single point, the number of thermodynamic cydses/runs, or amount of function
calls/iterations.

4.1 Sample Problem

Once the metrics were identified, a sample problaam set up to serve as a test bed for
each potential status matching technique. Thebs$ichosen was a generic mixed flow
turbofan (MFTF) engine developed using NASA’s Nuirer Propulsion System
Simulation (NPSS). NPSS is an object-oriented riogeenvironment widely used
throughout industry and the USAF. With NPSS, thegiee is modeled as an assembly of
component “elements”. Each element contains “sistker the component maps and
additional empirical factors. “Audit” modifiers@available for adjusting the component
representations. The scripting language in NP&8vatl for easy implementation of
each solution method. A drawing of the sample magnodel is presented in Figure 4,
annotated to show the simulated instrumentatioations. The figure also defines the
variable names.
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Responses Instrumented Engine
T23 HPC Inlet Temperature
P23 HPC Inlet Pressure
T13 Bypass Duct Inlet Temperature T 13
P13 Bypass Duct Inlet Pressure P13 P 16 WF XN 2 R
T3 HPC Exit Temperature A8
P3 HPC Exit Pressure
P16 Bypass Duct Pressure
FN Net Thrust <
T41 Turbine Inlet Temperature <
WF Fuel Flow / C
P5/P2 Engine Pressure Ratio
XN2R Corrected LP Shaft Speed
XN25R Corrected HP Shaft Speed P2 T23 T3 T41 XN25R EGT
EGT Exhaust Gas Temperature P5
A8 Nozzle Throat Area P23 P3

Figure 4: Engine Model and Nomenclature for Sanpigine Model

Since the cycle model did not represent an actogine, no “noisy” data was readily
available. In order to simulate noisy engine measent data, a single point of the
baseline MFTF model was run with a select set dional performance modifiers
applied. This produced a set of responses to maditiy each technique beginning with
the baseline cycle model. The responses themsekm®eschosen based on what typically
is available from a moderately instrumented turtengine. These are given along with
their simulated measurement values in Table 1.

Table 1: Simulated Measurements for MFTF

Measurement Measurement Description Value | Units
T23t HPC Inlet Total Temp 663.688| °R
P23t HPC Inlet Total Pressure 30.457 psi
T13t Bypass Duct Inlet Total Temp 687.11 °R
P13t Bypass Duct Inlet Total Pressur{ 34.409 psi
T3t HPC Exit Total Temp 1390.516/ °R
P3t HPC Exit Total Pressure 320.765 | psi
P16 Bypass Duct Static Pressure 32.332 psi
EN Net Thrust 20726.7 | Ib;
T41 Turbine Inlet Temp 3261.9 °R

WF36 Fuel Flow 3.518 lb/s
EPR Engine Pressure Ratio 2.378 -
PCN2R Corrected LP Shaft Speed 99.9998 %
PCN25R Corrected HP Shaft Speed 08.6145 %
EGT Exhaust Gas Temp 1197.23| °R
A8 Nozzle Throat Area 716.9 in®

The performance modifiers used to generate thessunements were chosen at random
within a range selected to be representative ofdtier in a baseline cycle model.
Therefore, a modifier value of one indicates theeliae cycle. All values were chosen
to be slightly less than one to simulate a degrahggihe. These are given in Table 2.
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Table 2: Simulated Performance Modifiers for MFTF

Modifier Modifier Description Value
Name
Fan.eff Fan Efficiency Scalar 0.986
Fan.Wc Fan Corrected Flow Scalar 0.996
HPC.eff HPC Efficiency Scalar 0.976
HPC.Wc HPC Corrected Flow Scalar 0.986
Burner.dPgP | Combustor Pressure Drop Scalar | 0.996
LPT.eff LPT Efficiency Scalar 0.986
LPT.Wp LPT Corrected Flow Scalar 0.976
HPT.eff HPT Efficiency Scalar 0.976
HPT.Wp HPT Corrected Flow Scalar 0.976
Nozzle.Cfg | Thrust Coefficient Scalar 0.981
Ductl.dPgP | HPC Inlet Duct Pressure Drop Scaldr0.996
Duct2.dPgP | HPC Exit Duct Pressure Drop Scalar 0.976
Duct3.dPgP | LPT Exit Duct Pressure Drop Scalar] 0.991
Duct4.dPgP | Nozzle Inlet Pressure Drop Scalar | 0.981
Duct5.dPgP | Bypass Duct Pressure Drop Scalar | 0.986

An advantage to using this approach, while contkives that the values of the

performance modifiers were known in advance. Phivided an additional metric with

which to rank the solution methods: ability to megbuce the initial set of modifiers given

only the noisy set of responses. This would beasible with real engine test data or
actual baseline cycle model because the correciesabf the performance modifiers
would not be known beforehand.

4.2 Algorithm Selection Results and Conclusions

The first results and conclusions to be drawn weose concerning the use of RSEs. The
goal of the investigation was to determine if th@atential to replace the more complex
cycle model was realizable. It was determined ithags not. The time savings gained

by executing the polynomial expressions was losttha generation of the RSEs

themselves, which remains a very manual proce$ss dan be seen in Figure 5 in the
comparison between the time it takes to run anleguaber of cases on the NPSS cycle
model versus generating and executing RSEs.
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Figure 5: Cycle Model vs. RSE Execution Time

While the hypothesis that linearization of the eychodel about a single data point
(single set of inlet conditions and throttle segjinvas appropriate, this fact still required
a set of RSEs for every point in the flight mapurtRermore, to ensure optimality, the
final solution (or set of solutions in the case=MC or Bayesian networks) still required
validation within the cycle model itself. From ghpoint on, the plan for each algorithm
moving forward was for it to be implemented usitg tcycle model rather than a
surrogate.

The next step was to test and evaluate each mettmmiding to the chosen metrics. A
discussion of each metric will follow along withrse noteworthy observations and
general comments in order to provide the justifcatfor down-selection to two final
methods. First, closeness to measurement datavensin Table 3.

Table 3: Converged Results and Closeness to MeasuatdData: EKF and UKF

Response | Target EKF Results| % Diff UKF Results | % Of

T23 663.688 663.69 0.001% 663.69| 0.000%
P23 30.457 30.46 -0.003% 30.46| 0.001%
T13 687.11 687.11 0.000% 687.11| 0.000%
P13 34.409 34.41 -0.003% 34.41| 0.003%
T3 1390.516 1390.50 -0.001% 1390.53| 0.001%
P3 320.765 320.75 -0.005% 320.77| 0.003%
P16 32.332 32.34 0.012% 32.33| 0.004%
Thrust 20726.7 20726.80 0.000% 20726.63] 0.000%
T41 3261.9 3262.20 0.009% 3261.72| -0.006%
WF36 3.518 3.52 0.028% 3.52| 0.005%
EPR 2.378 2.38 0.000% 2.38| -0.007%
XN2 99.9998 100.00 0.000% 100.00| 0.000%
XN25 98.6145 98.61 -0.005% 98.61| 0.000%
EGT 1197.23 1197.26 0.003% 1197.25| 0.001%
A8 716.9 716.93 0.004% 716.90| 0.000%
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While the preceding table shows only EKF and UKtg tesults illustrate how all the
methods could be evaluated. This result was singty consistent for all methods: they
could match the measurement data with a high degfraecuracy. This was especially
true for those that required calculation of the fitoent matrix/Jacobian: EKF,
Regularization, and SVD. Using information abobe tmodel, in this case the
sensitivities of the measurements to changes inp#r®rmance modifiers, proved to
yield very accurate final solutions with respecthe outputs. The accuracy in predicting
the performance modifiers proved to be the oppasise, as seen in following table.

Table 4. Converged Performance Modifier ValuesHKF and UKF

Modifier | Target EKF % Diff UKF Results % Diff

Fan.eff 0.986 0.98602 0.002% 0.98600344| 0.000%
Fan.Wc 0.996 0.99590B -0.009% 0.9959854| -0.001%
HPC.eff 0.976/ 0.976014 0.001% 0.97599974| 0.000%

HPC.Wc 0.986 0.98607f 0.008% 0.98602274; 0.002%
Burn 0.996/ 0.997904 0.191% 0.96015892 -3.599%
LPT.eff 0.986] 0.999041 1.323% 1.00260338] 1.684%

b

3

b

LPT.Wp 0.976] 0.990826 1.519% 0.99500236) 1.947%
HPT.eff 0.976] 0.968183 -0.801% 0.96516456 -1.110%
HPT.Wp 0.976] 0.976176 0.018% 0.97465093 -0.138%
Cfg 0.981| 0.981106 0.011% 0.98100936/ 0.001%
Ductl 0.996/ 1.001182 0.520% 0.99396482 -0.204%
Duct2 0.976/ 1.001486 2.611% 1.02337535 4.854%
Duct3 0.991] 0.995698 0.474% 0.98508077, -0.597%

D

4

Duct4 0.981] 0.995629 1.491% 1.01233622 3.194%
Duct5 0.986] 0.994732 0.886% 0.98674393 0.075%

The difference in converged values is not insigatfit even though both points provide
almost identical measurements. This highlight®@-tmivial difficulty in solving inverse
problems and one that appeared in every testedoghiethere may be infinitely many
solutions that satisfy convergence criteria witl@ngiven tolerance. This will be
addressed to a degree in following sections whenimg the selected methods.

In terms of computation time, the EKF had a sliatitantage over the UKF. While the
EKF still required calculation of the local derivegs, UKF required many more

iterations of the filter before convergence. Imgel however, the computation times for
all methods tested with the exception of the stettbanethods (FMC and GA) were on
the same order of magnitude. The computation fon&MC and GA depended directly

on the number of performance modifiers used andretksesolution of the random

search. GA especially took a significant amountioke longer than FMC yet provided

comparable results. The implementation of the &A atroduced a level of complexity

in coding and execution that provided no incentowechoosing it over the simpler FMC

method.
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The final metric used to assess the performandbeoktatus matching techniques was
overall simplicity in implementation and use. \hihe other two criteria were valuable
in gaining insight into the methods themselvess thas the only one that could identify
methods with distinct advantages over others. Bgibes of Kalman filter, for example,
require many pieces of information and assumptiondilize to their full potential. This
a priori knowledge is not critical to obtaining a solutiasing a Kalman filter. However,
much of the information that normally makes theriah filter a powerful tool for state
prediction is absent on a real cycle model calibraproblem: covariance between
performance modifiers, distribution of measurementor, etc. This “bare-bones”
approach essentially reduces the Kalman filter weegghted least squares solution. This
need for reduction of each method to a simpler fdyynimposing minimal prior
knowledge led to a rejection a many potential sohg on the grounds that this
knowledge may not be available on a real statushirag problem.

The advantages and disadvantages of each algaithsummarized in Table 5 below.
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Table 5: Algorithm Advantages and Disadvantages
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After weighing each metric and eliminating thosatthad unacceptable characteristics or
offered no advantages, two methods were chosdarefl Monte Carlo and Singular
Value Decomposition. While each may be used oms as a standalone solution to
status matching, they can also complement eachr;ofMC is the simplest way to
examine the entire solution space, while SVD iglalle method for an inexperienced
user to find a unique solution. Each method iscdesd in detail in the following
sections.

5 Description of Selected Algorithms

The Filtered Monte Carlo and Singular Value Decosijpan methods are described in
the following sections.

5.1 Filtered Monte Carlo (FMC) Method

The Filtered Monte Carlo method is carried out bypdy assigning random values to
each of the modifiers, running the model with theséues, and comparing the model
outputs to the corresponding test measured parasnet€he procedure is illustrated
graphically in Figure 6.

X satisfying Observed
the observed [ or targety
or target y \

Y1

F— YRR —{ yzl—
s

s

J \

Figure 6: Schematic of Filtered Monte Carlo preces

The input modifiers may be assigned values over specified range and using any
specified probability distribution function desirbg the analyst. Input sets that produce
outputs matching the test data to within some $iéctolerance are retained, and the
other input sets are discarded. The process magmated any number of times to
narrow down to the most probably solution.

There are two ways to interpret and apply the f@tteMonte Carlo results. First is the
“probabilistic” method, whereby the analyst filtdhe results to a tolerance sufficient to
obtain reasonable probability distributions, andnttselects the mean values as “the”
solution. A refinement to this approach might beekamine the joint probability space
to determine a “most probable point” solution. Heeond method is the “deterministic”
method, whereby the analyst filters the data vegitly to eliminate all but a few
solutions. The analyst then examines each solutiotetail to select the “best” one.
However, it should be noted that the solution lyohgsest to the measured value may not
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be the most probable solution. For this reasorptbabilistic interpretation is usually
preferred over the deterministic interpretation.

5.2 Singular Value Decomposition (SVD)

SVD was first introduced to meteorology in a 19%(¢r by Edward Lorenz [Lorenz], in
which he referred to the process as empirical gadhal function analysis. Today, it is
also commonly known as principal component anal{RGA). All three names are still

used, and refer to the same set of processes. S&étbods deal with solving difficult

linear-least squares problems. SVD method when fmestatus matching implements a
linearization process.

They are based on the following theorem of LinekyeAra:

“Any M x N matrix A whose numbers of rows M is gteathan or equal to its number of
columns N can be written as the product of an M @oNimn orthogonal matrix U , an N
x N diagonal matrix W of singular values and thenspose of an N x N orthogonal
matrix V:

W

W

Qualitatively the U matrix represents a vector dsr the most relevant information in
the system while the eigenvaluesrepresent the variability in the information.

SVD plays a very important role in linear algebitahas applications in solving least
squares problems, in computing the pseudoinvensepinputing the Jordan canonical
form, in solving integral equations, in digital ige processing, and in optimization.
Many of the applications often involve large madsclt is therefore important that the
computational procedures for obtaining the SVD eféicient as possible. The basis of
the most popular modern singular value decompesélgorithms consists of two phases.
In the first phase one constructs two finite segesrof transformations

P k=12,...n
and

Q“k=12,..n-2,
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such thatP"...P*AQ"..Q"* = oo =J°, an upper bidiagonal matrix.

Specifically, P' zeros out the subdiagonal elements in colunamd Q' zeros out the
appropriate elements in row

Because all the transformations introduced areogdhal, the singular values df are
the same as those of A. Thus, if

JO=G3HT
is the SVD ofJ°, then
A=PGIH'Q",
so that
U=PG,V =QH.

The second phase is to iteratively diagonalid€ by the QR method so that

i+l i\T qiTi . i
3°. 305 =5, whered =(8) IT wheresiand T are orthogonal.

The matricesT'are chosen so that the sequemndé=(J')" J' converges to a diagonal

matrix, while the matricesS'are chosen so that all'are of bidiagonal form. The
products of theT'and theS' are exactly the matriceld " andG", respectively

The computation is usually implemented in a compptegram as follows: Assume for
simplicity that the matrix A can be destroyed amaktU can be returned in the storage for

A. In the first phase thé' are stored in the lower part of A, and t@eéare stored in the
upper triangular part of A. After the bidiagonatipa, the Q' are accumulated in the
storage provided for V, the two diagonals Bfare copied to two other linear arrays, and
the P'are accumulated in A. In the second phase, for gashis applied to P from the
right, and (T')"w is applied to Q" from the left in order to accumulate the
transformations.
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SVD can not fail to give an answer in theory; ihagive results for over-determined,
under-determined, or singular matrices. For unaégermnined problems, SVD finds the
Bayesian solution which minimizes error residualslevsimultaneously being closest to
the prior guess for the independent variables. dver-determined problems, SVD finds
the least squares solution that minimizes SSE alveesiduals.

SVD is a method to solve systems of linear equatidn order to use svd for status
matching, which is nonlinear, the linear equati@me successively linearized. This
procedure is illustrated in Figure 7. The SVD noetls an “outer loop” surrounding the
“inner loop” which is the standard Newton-Raphstenation to balance the cycle (i.e., to
satisfy the continuity and work requirements) floe turrent set of modifiers computed
by the “outer loop”.

Nonlinear System f(x)=y

A 4
Linearize the system
about the nominal point x,:
[A]AX = Ay

A 4

Apply linear SVD method to find Ax

Find U, V, w:
[AI=[U][w][V]

}

Solve for x:
Ax=[V][diag(1/w)][U]"Ay

A

A 4

X= Xprevious + AX

A 4
Re-linearize the system
about the new x

No

IS AX <g

Yes

Figure 7: Flowchart of SVD Calculations

One refinement to the process is to make use ofethenvalue information (Yvto
identify and remove unimportant modifiers from 8¥¢D solution. If the eigenvalues are
smaller than a predetermined limit, they are zeroetl so that the values of the
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corresponding modifiers are no longer updated.s phocedure helps avoid Type | errors
of including unnecessary modifiers.

5.3 Measurement uncertainty considerations

From the perspective of status matching, uncestamthe measured parameters, while
important, is not necessarily a primary concerhis lusually much more important to
determine whether a measurement is “bad” or iny&lither due to a malfunction of the
sensor or due to poor placement of the sensor,mgdkie measurement overly sensitive
to the three-dimensional unsteady flow field wittive engine. The identification of an
invalid measurement must be made within the cordétihe other measurements which
are accepted by the analyst to be valid. Thabns, parameter may be observed not to
“close” with the others while satisfying the conssion laws with the engine model.
However in making such identifications, the analystist keep in mind that the
apparently invalid measurement may in fact be ctrhe remaining parameters may
exhibit only subtle shifts from their “normal” vaa within their measurement
uncertainties. The experience and judgment of ahalyst, perhaps combined with
physical inspection of the hardware, may be reguiceresolve this type of problem. As
such, it is considered beyond the scope of theentiresearch, although it may be a
fruitful area for future work.

In addition to sensor error, there are other sauot@oise that affect the solution, such as
the measured ambient conditions (e.gwnland Rmp Or altitude and Mach number).
These sources must be included as part of the watartainty of a measurement. For
example the total uncertainty of the thrust measerd F, including the effects of Jhp
and Rn, may be expressed as shown in the equation below:

oF

n ) 2
measTamb
amb aTamb

Feyr(o

szn_equiv = a-rieasfn + (UmeasPamb a
where ¢ is the standard deviation. The total measurem@certainty may then be

included in the selected analysis methods in égéifarward manner. In the case of the
FMC method, for example, measurement uncertaict@sbe taken into account when
selecting the ranges of values for filtering. He tase of the SVD method or any method
that essentially solves a system of the form y=the, measurement uncertainty can be
incorporated by scaling or dividing through eackv rof the A and x matrices by the

standard deviation assigned to the correspondiragsuarement.

6 Demonstration

As a proof of concept, real engine data from tgswh Pratt and Whitney PW2037

turbofan engines was used to develop a status engadel from a baseline engine model
using both the FMC and SVD methods. The resulthefstatus matching provided by
each method were then compared.

6.1 Description of the Data

Engine test data was provided by Delta Air Linasuse in this demonstration. The data
consisted of 46 engines each tested at six diffgrawer settings called “bands”. The six
different bands made up a sea-level static powek li@ginning with Band A at high
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power through Band F at idle. The engine data eadiected during post-maintenance
testing. It was not known how many operating haugse on the engines or what type of
maintenance was performed.

6.2 Baseline Engine Model

The first step in analyzing the data was to deval@yaseline engine model, which would
then be tuned to the test data through use oftétessmatching processes. In the absence
of a true baseline PW2037 model, one was develspedifically for this research. As
was the case for the sample engine developed mgyjothe baseline model for the
PW2037 was made using NPSS.

| Inlet |—| Fan |—| Splitter |

-I Duct4 |—| LPC |—| Duct6é |—| HPC |—| Burner |—| HPT |—| Ductll |—| LPT |—| Duct13 |—| Core_Nozz
Figure 8: Schematic Diagram of NPSS Engine Modgh@onents

The components of the NPSS engine model are shokemstically in Figure 8. Each
turbomachinery component (Fan, LPC, HPC, HPT, amil)Lare represented by
component maps and have audit modifiers for efiicyeand corrected flow. The burner,
the splitter, and each of the ducts have audit fiewdi on their pressure loss
characteristics. Finally, the two exhaust nozhage audit modifiers on their discharge
(or flow) coefficients.

The baseline model of the PW2037 engine was degdldpm data available in the
public domain from the International Civil AviatioBrganization’s (ICAQO) emissions
databank [Aircraft]. Generic component maps dmakracteristics were scaled to match
the ICAO data, resulting in a baseline model maigtds closely as possible the engine
certification data. Figure 9 shows the baselinelehplotted with the ICAO data as well
as the set of engine test data for the 46 PW203T® baseline model at similar inlet
conditions to the test data is also shown on tneréd.
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¢ Test Data
B Baseline Model at Inlet Conditions

—Baseline SLS Power Hook

© ICAO Powerhook Data

SFC

Thrust

Figure 9: PW2037 Power Hook

As seen in the figure, the high power conditionsvstthe most discrepancy between
baseline and target. While data was availablesibortotal throttle positions, only four
were used in the demonstration. This was mainlgoasequence of the baseline
performance maps lacking the ability to predictdxebr adequately for the lowest power
settings. From here on, the demonstration wiltede only with Bands A through D.

An additional test of matching ability could be sda plotting various measurements

against engine throttle setting for the four baofisterest. High pressure rotor speed,
thrust, and fuel flow are shown below in Figureaidan example. In all cases, there is a
significant discrepancy between the baseline mpagliction and actual test data.
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# Test Data

Thrust

* # Test Data
W Baseline Model

H Baseline Model

High Pressure Rotor Speed

e

Engine Pressure Ratio Engine Pressure Ratio

*

Fuel Flow

# Test Data

mBaseline Model

Engine Pressure Ratio

Figure 10: Baseline Model Comparison with EnginstT2ata

In general, higher fidelity baseline models aredajty used as the starting point for the
status matching problem. The use of a generic madh estimated component
performance maps certainly does not degrade thati@ol In fact, the successful
matching of cycle model predictions to test datapnnitially poor representative model
is a testament to the robustness of the statushimgtmethod.

6.3 User Interface

A user interface developed in Microsoft Excel VisBasic for Applications (VBA) to
address the need for a more automated status m@tptocess. The “front page” of the
interface, shown on the left in Figure 11, prontpts user through the steps necessary to
set up and run the engine model. Setting up thetimvolves defining the independent
and dependent variables, and mapping them frontetedata sheet to the engine model
input and output files. After the model is rune tlesults (computed modifiers) may be
loaded into the results page. A plotting utilishown on the right in Figure 11,
automatically generates predefined plots of theltes The plotting utility allows the
results to be compared to the original engine madetlell as the test measured data.
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| Modify run.bat to point to NPSS on your computer |

Line Constant [ SETESINNN

Default Plots X Y
Open up Command Prompt and Navigate to | E’Egg z;
SVD_Model_Simple EPRO EN

1 EPRO WF_AVG

EPRO PT25

Set Up input File EPRO PS31

EPRO PT49

Line #  Description ) EPRO TT25

1 Indgpendent Vanavble Names EPRO TT35

Minimum value of independent variable EPRO TT49

Maximum value of independent variable

# of MCS cases per calibration point
Number of calibration points

Starting condition for SVD

Inlet condition names of first calibration point
Inlet condition of first calibration point

Active measurements of first calibration point

Active measurement values of first calibration point
1
B
B
1

| Run Simulation

Optional Plots

CENO O s WN

-
15}

Command line input:
Monte Carlo:run run/pw2000.run -DMCS
SVD: run run/pw2000.run -DSVD

| Copy Results to "Results" Page |

Number of Optional Plots [

Set up "Plot Setting" Page, Plot Results |
{ Command: CTR + 1 |

Figure 11: User Interface

The user interface interacts with the engine mbgeteveral “wrapper” files which read
in the data from a data file, set up the model ating to the selected solution method,
execute the model, and collect the results. Btimall the steps together under a single
user interface, the data manipulation is greatitgpsified and streamlined. This is a
major contributor to speeding up the status matcpiocess for an inexperienced user.

6.3.1 Interfacing Measurements

Instrumentation on each engine provided the measants used to develop the status
model. The available measurements used for staétishing as well as those used to set
the appropriate flight conditions for baseline maate listed in Table 6. It was assumed
that throttle position controlled engine presswator (LPT exit pressure divided by fan
inlet pressure). Therefore, EPR was treated aspan to set the flight condition.
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Table 6: PW2037 Measurements

Elight Condition Measurement
Test Cell Inlet Temperature Thrust
Outside Air Temperature HP Rotor Speed
Relative Humidity LP Rotor Speed
Fan Inlet Pressure Fuel Flow
Engine Pressure Ratio (EPR) HPC Inlet Pressure

HPC Exit Pressure
HPC Inlet Temperature
HPC Exit Temperature
LPT Inlet Temperature

Exhaust Gas Temperature

An important aspect that should not be overloolethaw the physical measurements
from instrumentation on the actual engine are mappevariables in the cycle model on
the computer. For this demonstration, it was asslthat there was a direct mapping.
For example, the measurement for LPT inlet tempesatorresponded exactly with the
thermodynamic flow station immediately before thaw! pressure turbine. This
assumption was used for every measurement and aszsl lon the fidelity level of the
baseline. Typically with a more sophisticated haeg the probes and sensors used to
obtain the measurements can be modeled and thepxge losses and other effects can
be recorded.

6.3.2 Interfacing independent variables

The next piece needed to complete the setup podidhe demonstration problem is
identification of the performance modifiers usedntatch the test data. Without any
prior knowledge of engine behavior, the completecfeavailable scalars was chosen.
There were scalars for efficiency and flow on eactating component (fan, LP/HP
compressors, and LP/HP turbines). Each duct haabsociated pressure loss expressed
in terms of a scalar on baseline pressure losstlyl.dhere were pressure losses across
the splitter, combustor, core, and bypass nozzieating a total of 15 performance
modifiers. The modifiers are summarized in Table 7
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Table 7: Component Performance Modifiers

Modifier Name Description

Fan.s_effAud Fan Efficiency Scalar

Fan.s WcAud Fan Flow Scalar

Duct4.s_dPgPaud | LPC Inlet Duct Pressure Drop Scalar
LPC.s_effAud Low Pressure Compressor Efficiency Scalar
LPC.s_WcAud Low Pressure Compressor Flow Scalar
Duct6.s_dPgPaud | HPC Inlet Duct Pressure Drop Scalar
HPC.s_effAud High Pressure Compressor Efficiency Scalar
HPC.s_WcAud High Pressure Compressor Flow Scalar
Burner.s_dPgPaud | Combustor Pressure Drop Scalar
HPT.s_ WpAud High Pressure Turbine Efficiency Scalar
HPT.s_effAud High Pressure Turbine Flow Scalar
Ductll.s dPgPaud | LPT Inlet Duct Pressure Drop Scalar
LPT.s_ WpAud Low Pressure Turbine Efficiency Scalar
LPT.s effAud Low Pressure Turbine Flow Scalar
Duct13.s_dPgPaud | LPT Exit Duct Pressure Drop Scalar
Ductl15.s_dPgPaud | Bypass Duct Pressure Drop Scalar
Splitter.dPqP1 Splitter Bypass Stream Pressure Drop
Splitter.dPqP2 Splitter Core Stream Pressure Drop
Core_Nozz.s_CdTh| Core Discharge Coefficient
Byp_Nozz.s_CdTh | Bypass Discharge Coefficient

6.4 Results of SVD Method

The SVD method was used to compute modifiers fahez the test data points. To
demonstrate the full process, i.e. including regjoes of the modifiers and incorporating
them back into the model, a single representatigene was selected at random.

6.4.1 Representative Engine (SN# 716310)

A representative engine (SN# 716310) was selectad the sample of engine test data
provided by Delta Air Lines. The match accuracy ba seen for the Band A data (100%
power) in Figure 12. Note that the maximum ersoariound 0.025 % (not to be confused
with 2.5 %). The resulting modifiers for all fomands are tabulated in Table 8.
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Figure 12: Percent Error for Engine SN# 716310 Bar{ti00% Power)

Table 8: SVD Results for Engine SN# 716310

Modifier Name Band A Band B Band C Band D

Fans_effAud. 1.01824| 1.01926| 1.02853| 1.04701
Fans_WcAud. 0.96436| 0.95476| 0.95619| 0.96058
Duct4s_dPgPaud. 1.00019 1.0001| 1.00038| 1.00049
LPCs_effAud. 1.09247| 1.09066| 1.08546| 1.10765
LPCs_WcAud. 0.92826| 0.93029| 0.92174| 0.91319
Duct6s_dPgPaud. 1.00043| 1.00053| 1.00058| 1.00085
HPCs_effAud 1.01781| 1.01943| 1.01916| 1.03046
HPCs_WcAud 0.9585| 0.95128| 0.93613| 0.89866
Burners_dPgPaud 1.00207| 1.00373| 1.00298| 1.00337
HPTs_WpAud 0.94299| 0.94355| 0.94451| 0.94012
HPTs_effAud 0.93023| 0.93063| 0.92737| 0.91543
Ductlls_dPgPaud 1.00021| 1.00051| 1.00035| 1.00028
LPTs_WpAud 0.97852| 0.97825| 0.98343| 0.99695
LPTs_effAud 0.94648| 0.94317| 0.93813| 0.91292
Duct13s_dPgPaud 0.99612| 0.99513| 0.99519| 0.99304
Ductl5s_dPgPaud 1.0006| 1.00065| 1.00064| 1.00042
SplitterdPgP1 0.01435| 0.02625| 0.03206| 0.04691
SplitterdPgP2 0.05046| 0.05318] 0.05511| 0.03482
Core_Nozzs CdTh 1.00003| 1.00002 1| 1.00001
Byp Nozzs CdTh 1.00003| 1.00002 1| 1.00001

Due to the limited amount of data, the regressibthe modifiers was carried out for
demonstration purposes only and should not be deresi as representative of the
regression quality that is possible when more daitavailable. To demonstrate the
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process, each modifier was either fitted to a potyial function of corrected fan speed
(N1K) to account for the variation from band to daar set to a constant if the variation
across power bands was sufficiently small, as atdit in Table 9 below.

Table 9: Final Values for Status Deck — Engine SN&310

Modifier Name

Status Deck Value

Fans_effAud Curve (function of N1K)
Fans_WcAud 0.9590
Duct4s_dPqgPaud 1.0003

LPCs_effAud Curve (function of N1K)
LPCs_WcAud Curve (function of N1K)
Duct6_dPgPaud 1.0006

HPCs_effAud Curve (function of N1K)
HPCs_WcAud Curve (function of N1K)
Burners_dPqgPaud 1.003

HPTs_WpAud 0.9428

HPTs_effAud

Curve (function of N1K)

Ductlls dPgPaud

1.0003

LPTs_WpAud

Curve (function of N1K)

LPTs_effAud

Curve (function of N1K)

Ductl3s_dPgPaud

0.9949

Ductl5a_dPgPaud

1.0006

SplitterdPqP1

Curve (function of N1K)

SplitterdPqP2

Curve (function of N1K)

Core_Nozzs CdTh

1.0000

Byp Nozzs CdTh

1.0000

The representative curve fits are shown in the riégbelow.
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Figure 13: Modifier curve fits for Fan and LPC
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Figure 15: Modifier curve fits for HPT and LPT

As a final step in the demonstration, these cuwese added back to the model, and a
power hook was run to compare to the baseline andhé¢ measured test data.
Representative plots of fuel flow vs. EPR and thugs fuel flow are shown below.
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Figure 16: Representative Plots of Status DecBaseline and Test Data

It may be seen that the final results, while nafqu, are fairly good. Additional data
and analyses could improve the results still furthe
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6.4.2 Entire Engine Population

The above results were obtained for a single reptatve engine chosen at random from
the population of 46 engines. Once the statushmaggrocedure was formulated using
the SVD method with this single engine as a tes¢ctne procedure was executed on the
entire population of engines at four thrust banaishe This yielded 184 total points to
perform the status match. This exercise was dor@der to evaluate the overall speed
and convergence properties of the algorithm wheedawith large sets of engine data.
The first attempt yielded a converged solutioniéb of the 184 test cases (79%). This
result highlighted an important aspect of the SVI2thod; it relies on a local
linearization of the model, so the final resulbfien dependent on the starting condition.
A non-converged solution typically indicated an noyer choice of starting condition for
that particular data point. For this reason, s@ae must be taken when selecting a
starting condition about which to begin linearieatiof the model. For this specific
example, the poor convergence on the initial tez$ Wwelieved to be the result of the
lower fidelity baseline model. However, when thatad was rerun using a different
starting condition, 94% convergence rate was aeliewn terms of computation time, all
computations performed for matching of the basemuslel to 184 different test points
took approximately six minutes.

6.5 Results of FMC method

While the concept and implementation of a filtedddnte Carlo simulation is quite
simple, the interpretation of its result is notpically, the interpretation involves various
multivariate statistical analyses such as corm@atanalysis, principal component
analysis, and Fisher’s linear discriminant analysighis section it will be demonstrated
how these techniques can be used to analyze r@diltdonte Carlo simulation result.

For the demonstration a filtered Monte Carlo sirtiata was performed on a set of
measurements obtained from a real Pratt & Whitn&2@37 engine at a fixed operating
condition. The range of each performance modidrsted in Table 10. Although for an
exploratory study it typically is desired to useviae range of values for each variable,
for this particular case the ranges were choseadas the experience of the authors.
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Table 10: Ranges of the Engine Performance Modifier

Performance Scala Lower Bound Upper Bound
Fan.s_effAud 0.9 1.01
Fan.s_WcAud 0.95 0.98
Duct4.s_dPgPaud 0.8 1.02
LPC.s_effAud 1.0% 1.08
LPC.s_WcAud 0.9 0.93
Duct6.s_dPgPaud 0.8 1.02
HPC.s_effAud 1.0n 1.04
HPC.s_WcAud 0.9¢ 0.8
Burner.s_dPgPaud 0.p9 1.02
HPT.s_WpAud 0.98 0.96
HPT.s_effAud 0.91 0.94
Ductll.s_dPgPaud 0.p8 1.02
LPT.s_ WpAud 0.96 0.99
LPT.s_effAud 0.93 0.96
Duct13.s_dPgPaud 0.p8 1.01
Ductl15.s_dPgPaud 0.p8 1.02
Splitter.dPgP1 D 0.01
Splitter.dPgP2 0.045 0.055
Core_Nozz.s_CdTh 0.98 1.02
Byp_Nozz.s CdTh 0.98 1.02

The target measurements used in this demonstragos FN, N1, N2, WF_AVG, PT25,

PS31, TT25, TT35, TT49, and EGT. Precise infornmatiegarding the uncertainty of
each measurement was unavailable to the authotiseshlter tolerance was arbitrarily

chosen as 1% of the target value. A total 160,0®@lations were performed, and 655 of
these cases fell within the filter tolerance.

6.5.1 Histograms

The results of ultimate interest to the analyst thee values of the engine performance
modifiers and, sometimes, the variances of the emllAn estimate of an engine
performance modifier and its variance can be ggilyishown with histograms.

Figure 17 shows the histograms of five engine perémce modifiers from the filtered
Monte Carlo simulation: Fan.s_WcAud, LPC.s_ WcAu®Cis_WcAud, HPT.s_WcAud,
and LPT.s_effAud. The x-axis of each of the histogs is frequency, and the y-axis is
the value of a modifier. In each plot it can bensd®at some intervals are more frequently
visited than others. The rest of the engine peréorre modifiers, not shown in Figure 17,
produce nearly uniform histograms, which means tioaparticular value in the range of
the modifier is preferred.

Should a point estimate of each modifier be reagljitee sample mean can be used as the
point estimate. The samples means of the perforenaradifiers are listed in Table 11,
and the NPSS output with the mean vector as art isgdisted in Table 12. Each target
variable is matched with less than 0.5% errorshttuld be noted that these results, when
compared to the first column of Table 8 (the SVBuits for the same data point) are
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similar but not identical. The SVD results arepewer, well within the ranges shown in

the histograms.

Table 11: Means of the Performance Modifiers

Performance Scala Mean
Fan.s_effAud 0.9970
Fan.s_WcAud 0.9660
Duct4.s_dPqgPaud 1.0007
LPC.s_effAud 1.0653
LPC.s_WcAud 0.9220
Duct6.s_dPgPaud 1.0003
HPC.s_effAud 1.0251
HPC.s_WcAud 0.9622
Burner.s_dPqgPaud 1.0045
HPT.s_WpAud 0.9475
HPT.s_effAud 0.9248
Ductll.s_dPgPaud 0.9998
LPT.s_ WpAud 0.9746
LPT.s_effAud 0.9478
Duct13.s_dPgPaud 0.9950
Ductl15.s_dPgPaud 0.9999
Splitter.dPgP1 0.0049
Splitter.dPgP2 0.0498
Core_Nozz.s_CdTh 1.0002
Byp_Nozz.s CdTh 1.0002

Table 12: Matching Results

NPSS Outpu; Measurement % Error
FN 36040.80 36038.96 0.01
N1 3994.8( 3993.96 0.02
N2 11351.4 11350.47 0.01
WF_AVG 13221.0 13232.33 -0.08
PT25 37.59 37.60 -0.02
PS3I 373.1%Y 373.30 -0.03
TT25 688.0( 686.96 0.15
TT35 1403.2 1400.98 0.16
TT49 1470.2 1464.40 0.39
EGT 1470.17 1476.47 -0.41
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Figure 17: Non-uniform Histograms of Performancedifiers

6.5.2 Correlations

Histograms provide useful information regarding vamiate data. Multivariate data

analysis of the correlation between two variablesalso quite useful. A correlation

coefficient quantitatively indicates the degreecofrelation between two variables. The
correlation coefficient is a real value betweerartl 1. The correlation coefficient of -1

or 1 means a perfect negative or positive coraatirespectfully. The correlation

coefficient of zero means no correlation at allvési a finite sample, a sample correlation
coefficient between two variablesandy is defined by

. nZXiYi_ZXiZyi
T - () v - ()’
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wheren is the number of samples [41]. Table 13 shows rtiarix of the sample
correlation coefficients. Among the pairs of 20 imegoerformance modifiers, three pairs
are found more or less correlated, i.e., the absaaorrelation coefficient equal or greater
than 0.5. These three pairs are HPT efficiency fremdand LPT flow modifier, HPC
efficiency modifier and HPT efficiency modifier, éran efficiency modifier and LPT

efficiency modifier. All of the three pairs are aigely correlated; when one increases,
the other decreases.
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Table 13: Correlation Coefficients
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A correlation coefficient is merely a measure ofehlrity between two variables. The
correlation coefficient of zero does not mean tasynot related to each other. If the two
variables have a nonlinear relationship betweemthbeir correlation coefficient is zero.
Visualization of data helps avoid falling into tip#fall. Each case of a filtered Monte
Carlo simulation is a multi-dimensional vector waadements are independent variables
and response variables. Correlation between a gfaindependent variables can be
visualized by plotting all the cases of the filegéiglonte Carlo simulation in the space
constituted by the pair of independent variablethdre is a correlation between this pair,
the points of all the cases of the filtered MontIQ simulation will look alike more or
less a band while those of uncorrelated pair baittbud looking alike a circle or square

Figure 18 is the matrix of the correlation plots sdven variables, HPC efficiency
modifier, HPC flow modifier, Burner pressure dropdifier, HPT flow modifier, HPT
efficiency modifier, Duct pressure drop, and LP@wlmodifier. Each cell of the matrix
contains the correlation plot between two of thgesevariables. The matrix of the
correlation plots is symmetric; the lower diagoisah flipped image of the upper one.
According to the correlation analysis HPT efficigmoodifier is more or less correlated
with HPC efficiency modifier, HPT flow modifier, @nLPT flow modifier. In this
simulation none of the plots shows nonlinearity.tdtNthat the observed correlations
between two of the engine performance modifiers @éd only with the given
measurements. They may or may not true at diffeog@rating conditions. When a
severe correlation is present between two of engardormance modifiers, caution is
required. Two or more sets of engine performanceiieos can result in an identical
NPSS output.
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Figure 18: Correlation Plots

6.5.3 Principal Component Analysis

The correlation matrix and plots reveal the relaldp between each pairs of variables.
However, each case of the filtered Monte Carlo &atmn is shown in several two
dimensional space so that it is still hard to se® kach case is distributed in the inverse
solution space constituted by the independent bkesa In fact, it is impossible due to the
large dimensionality of the problem. The large cisienality can be reduced principal
component analysis (PCA).

Principal component analysis is a dimensionalitgduction technique based on
projection. Multi-dimensional data points are pobtgel onto a few principal components,
which constitute a lower dimensional space. Thetidiolensional data points can be
visualized in the lower dimensional space, e.g2-@ or 3-D space. This kind of
visualization is especially useful for identifyimgultiple solutions. Similar solutions will
gather together and constitute a cloud of pointsewdifferent solutions will appear apart
from each other.
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A principal component analysis follows the follogisteps [5]. Consider a data set\bf
observationsX,} wheren =1, ...,N, andx, is a vector with dimensionality.

1. Subtract the mean from the data
The mean can be calculated with

1 N
X=—)> X
N2
The data subtracted by the mean vector is calleddjusteddata:
Xn,adj = Xn —-X

2. Calculate the covariance matrix
The sample covariance matrix can be calculated with

s=%g(xn %)X, -%)"

3. Calculate the eigenvectors and eigenvalues ofdlaar@mnce matrix
The principal components are the eigenvectorsefdhowing problem:

Su=Au
whereu is aD-dimensional vector, and lambda is a modifier. Dhealues of lambda
that satisfy the above equation are the eigenvaaresthe corresponding valuesuof
are the eigenvectors. Refer Golub and van Loanuiahd van Loan] for algorithms
to find eigenvectors and eigenvalues.

4. Choose components

The eigenvector associated with the largest eideavis called the first principal
component. Typically a few principal components an@ortant. When we project
the data to these few principal components, wealdase much of information even
though the dimensionality of data decreases. FbBr Asualization two principal

components should be chosen, and for 3-D visuaizahree principal components.

5. Project the data onto the components

The adjusted data can be projected on to the pahcomponents using
Xproj = FTXadj

where F is the matrix with the selected principahponents in its columns.

Figure 19 shows all the cases of the filtered Md@a@glo simulation projected on to two

the principal components. Note that the larger @lofi points on the right is the cases
from the original ranges of variables and the senatloud on the left is the cases from
another set of ranges. The separated clouds meardifferent inverse solutions. By

visualizing the multi-dimensional data in the twioadnsional space, the multiple

solutions can be easily identified.
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Figure 19: Projected Data onto the Principal CongpbiSpace

6.5.4 Fisher’s Linear Discriminant Analysis (LDA)

PCA is the projection of the data onto a lower disienal space such that the variance of
the projected data is maximized [5]. Fisher’'s L¥Aalso a projection technique used for
dimensionality reduction. However, unlike PCA, & the projection of data that
maximizes the class separation [5]. A Fisher’'s LioNows the following steps [8].
Consider a data set dof observations X} wheren = 1, ...,N, andx, is a vector with
dimensionalityD.

1. Calculate the within-scatter matrix
The within-scatter matrix for clagscan be written as

Se = D (XX )(x—X.)"

And, then, the within-scatter matrix is
SW = zsc
cC

whereC is the class space.

2. Calculate the between-scatter matrix
The between-scatter matrix can be calculated with
S, = z n. (X, - X)(X, = X)"
cC
wheren is the number of data points in class

3. Calculate the optimal discriminant direction

The optimal discriminant directiogp can be obtained by solving the generalized
eigenvalue problem:
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S,$ =1S,/¢
where A is a scalar. The vector associated with the largess the optimal
discriminant direction.

Each element of the discriminant direction vec#thie contribution of each variable in
the original vector xn. He et al. [18] refer to thar chart of the discriminant direction
vector as theontribution plotand use it to determine which variables are resiptanfor
the separation of classes.

Fisher’'s LDA is performed on all the cases of titkered Monte Carlo simulation, and
Figure 20 shows the contribution plot. Each bamrresents the contribution of each
performance modifier in distinguishing one cloud=igure 19 from the other. Among 20
engine performance modifiers only one modifier,itBpldPgP2, is mainly separating the
two clouds.
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Figure 20: Contribution Plot

6.5.5 Additional Monte Carlo Studies

While the filtered Monte Carlo is a heuristic tetue for optimization given mostly to
trial and error, there are a number of plots thdtima the status matching and overall
execution of the algorithm. These plots can previtsight into the filtering behavior as
well as justification for selecting total case nwntand tolerances when using the
method. This in turn gives additional scientifigar to the algorithm.

The first plot shown in Figure 21 provides the uséh information about the number of
cases that will remain after filtering the data@ading to a certain tolerance. In other
words, if the cases were removed that did not raagtof the target values within the
given tolerance level, how many cases would remain?
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Figure 21: Number of Points Remaining for a GivdteFTolerance

In the example in the above figure, if the simaatbegan with 10,000 cases and a four
percent filter tolerance was placed on all of dugeéts, approximately 2000 cases would
remain. This information is useful when determgnnvhat type of approach the user
would like to take with the Monte Carlo method. alfprobabilistic approach is desired,
there may be a minimum number of final cases reduio define frequency distributions
or make statistical claims about the data.

The next figure indicates the minimum number ofesadefore the Monte Carlo
simulation results become independent of that numbe

1.01

—100 1000
2000 5000
1.00 1 —10000
c \ r\/\
© \
(<5} = e e |
=

000 [N \/ B

0.98

1 2 3 4 5 6 7 8 9 1d

Trial Number

Figure 22: Monte Carlo Results Independence

For example, in the above figure, a simulation @ tases provides a different value of
the mean each time the simulation is run. The nie@ndoes not become horizontal
until a simulation of 10,000 cases is run. Thasersure accurate results and prove that a
single simulation can be used to predict the medifa minimum of 10,000 cases is
required.
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7 Conclusions and Recommendations

7.1 Impact / Review of Significant Results

This research program developed an improved, auemhgaocess for calibrating turbine
engine performance models. After a detailed exatiun of several potential algorithms,
two complementary approaches were investigated:Fittered Monte Carlo method and
the Singular Value Decomposition method. The pseploalgorithms meet the sponsor’s
requirements for a robust, fast process suitablentexperienced users. Both methods
were demonstrated to successfully match measurtadwitn no prior knowledge of the
engine. The procedure will contribute to Air Forgeals for improved engine test
planning, diagnostics, and condition-based maimeaa

One of the major conclusions of the research is tthe choice of solution algorithm is
not the most significant issue. All the algorithmgestigated are theoretically similar to
each other. For example, the Kalman filter is raetdependent expansion of the
weighted least squared method. SVD finds the mininmorm solution among possibly
multiple solutions. Regularization methods usdoter norms such as'land L norms.
The regularization term in the regularization mehavork the same as prior information
in Bayesian methods. Genetic algorithms are aioeref the filtered Monte Carlo
method with a heuristics inspired by natural se@ct The main difference between
these algorithms is the amount of information resgiito run the algorithms. Bayesian
methods require the most amount of prior infornratwhile the filtered Monte Carlo
method the least.

The most significant factor in a successful metisatie user’s choice of modifiers. Even
a sophisticated Bayesian method may result in eoas solutions if it includes
unnecessary modifiers. It is difficult to avoidetfiact that choosing the right set of
modifiers requires experience; although certaipssia the process have been automated
and effectively prompt the user when a decisioregaiired. It is in this respect that the
FMC and SVD methods complement each other in a galveray. An initial FMC
analysis will identify for an inexperienced userigéhvariables are significant and will
provide him or her with appropriate ranges for theariables. This analysis may need to
be conducted only one time, at the beginning ottélse program. The SVD method may
then be used to quickly determine the best valu@&ch modifier at all subsequent test
conditions.

It is noteworthy that, if user experience can l@dtated into probability distributions for
prior assumptions on the modifiers, then Bayesiathods can easily be incorporated
into the developed process. Over the long teris,ntay prove to be the best approach to
the problem.

7.2 Transition / Collaboration Opportunities

The engine status matching process is applicabtaltbration of other types of models.
Similar methods have been used by the researchersafibration of engine, aircraft,
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noise, and emissions models and for calibratiotowfr fidelity aero models to CFD
models.

7.3 Recommendations for Future Work

Recommendations for future work address to the masn obstacles to completely
automating the status matching process, whichgredlecting the most appropriate set
of modifiers and (2) regressing the results.

7.3.1 Modifier selection

The first step in the creation of a status deckoisselect which component model
modifiers will be allowed to vary to force the mbtle match the test-measured data. As
in all model fitting problems, it is important tov@d Type | errors (i.e., including
unnecessary variables) as well as Type Il erroes @mitting significant variables) while
being alert to multicollinearity problems. No antated process can completely replace
the expertise of the analyst. However, it has lmonstrated in the present work that
the filtered Monte Carlo method provides significansight which can guide an
inexperienced analyst.

Unfortunately, the filtered Monte Carlo proceduss de quite time consuming. Future

research should focus on methods which are fasdee approach that has been recently
investigated [25] involves a Bayesian approach whiwe analyst may assign prior

distributions to the modifiers. Through an iteratirefinement procedure, the most

effective explanatory variables congruent with pegpectations may be identified. It is

recommended that research continue into applicat@ithis approach to the status

matching problem.

7.3.2 Regression

The final step in the creation of a status ded iegress the modifiers against physical
parameters such as corrected rotor speeds, angbanating these curves into the engine
model. In the present research this was a manumleps. The process requires
additional expertise on the part of the analystowiust determine not only the proper
modifiers to include in the matching step, but maisb determine the most appropriate
parameters against which to regress those modifi€re process is especially difficult
and time consuming when analyzing data from mutiflight conditions. In the
demonstration problem considered in the presemiareh, all the data was taken at sea
level static conditions. At this flight conditiothe modifiers were found to be either
constant values or simple functions of the rotozesis. However, data taken at high
altitude, low Mach number conditions might be expdcto be a function of Reynolds
number, and data taken at high Mach conditions tiighexpected to be a function of
turbomachinery running clearances. These and q@#emeters must be considered in
the regression process.

Ideally, it would be possible to match and regréata from multiple flight conditions
and multiple power settings all in one step. Sattempts at this have been reported in
the literature for related problems (see for exanip®]). Typical approaches require the
assumption of some functional form, e.g. a secoaedrek polynomial. It may be
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appreciated even from the limited analysis perfatme the sea level data in the present
work that a simple polynomial is not sufficientle@rly more research is required in this
area.
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