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Accessing quantum systems:
* quantum measurement

= Quantum measurement: formulated as positive
operator-valued measure (POVM)
M = {Mi}@', with 0 < Mz <1 and ZzM’& — ]1,
when performing the POVM on a system in the
state W , we obtain outcome "; " with probability
Tr(wM;).

= von Neumann measurement: special case of POVM,
with the POVM elements being orthogonal projectors:

M;M; = 6;;M;, where 0;; is the Kronecker delta.



hypothesis testing)

| Quantum state discrimination (quantum

= Suppose a quantum system is in one of a set of
states {w,...,w,} , with a given prior {P1;---,Pr}.
The task is to detect the true state with a minimal
error probabality.

= Method: making quantum measurement {M; }}_; .
= Error probability (let A; := p;w;)

Po({Ar,. o A My, M) =) T Ay(1— M),
=1

= Optimal error probability
P: ({Al P Ar}) p—

min {Pe ({Ay, ... AV M, ... M,Y) : POVM {M,,... ,M,,.}}.



* Asymptotics in quantum hypothesis testing

= What's the asymptotic behavior of
Py ({p1pf", .. pep}), @as M — 00 ?

= Exponentially decay! ( )
Pr ~ exp(—&n)

e

= But, what's the error exponent

—1
¢ = liminf — log P ({p1 PP Deps n})

n—oo N

It has been an open problem (except for r=2)!
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Our result:
error exponent = multiple Chernoff distance

= We prove that

Theorem  Let {py,...,p.} be a finite set of quantum
states on a finite-dimensional Hilbert space H. Then the
asymptotic error exponent for testing { piﬁm, IR p‘?”}, for
an arbitrary prior {p1,...,pr}, is giwen by the multiple
quantum Chernoff distance:

1
lim — log P* ({p1p®",....p,p®"}) = mi {—1 Tr pf 1.-8}. |
Jim —log P7 ({p1pf",- . prpy"}) Jnin - max q —log Trpfp;™ . (1)



* Remarks

= Remark 1: Our result is a multiple-hypothesis
generalization of the r=2 case. Denote the multiple
quantum Chernoff distance (r.h.s. of eq. (1))
as C(pi,...,pr), then

C(pla oo 9p7') — 1’1111’1 C(pz; pj)’
(4,7):97#7

with the binary quantum Chernoff distance is defined as

Clor. p2) := puax, {~log T pipy™

= Remark 2: when O1, ..., Pr commute, the problem
reduces to classical statistical hypothesis testing.
Compared to the classical case, the difficulty o
quantum statistics comes from noncommutativity &

entanglement.
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Some history review

= The classical Chernoff distance as the
opimal error exponent for testing two

probability distributions was given in
H. Chernoff, Ann. Math. Statist. 23, 493 (1952).

= The multipe generalizations were subsequently
made in

N. P. Salihov, Dokl. Akad. Nauk SSSR 209, 54 (1973);

E. N. Torgersen, Ann. Statist. 9, 638 (1981);

C. C. Leang and D. H. Johnson, IEEE Trans. Inf. Theory 43, 280 (1997);
N. P. Salihov, Teor. Veroyatn. Primen. 43, 294 (1998).



Some history review

= Quantum hypothesis testing ﬁstate discrimination)
was the main topic in the early days of quantum
information theory in 1970s.

= Maximum likelihood estimation
= for two states: Holevo-Helstrom tests

({p1 —p2 >0}, 1 —{p1 — p2 > 0})

= for more than two states: only formulated in a
complex and implicit way. Competitions between
pairs make the problem complicated!



* Some history review

= In 2001, Parthasarathy showed exponential decay.

= In 2006, two groups [Audenaert et al] and [Nussbaum
& Szkola] together solved the r=2 case.

= In 2010/2011, Nussbaum & Szkola conjectured the
solution (our theorem), and proved that C/3 < ¢ < O,

= In 2014, Audenaert & Mosonyi proved that C/2 < (< C.
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Sketch of proof

= We only need to prove the achievability part" §{ = C .

For this purpose, we construct an asymptotically optimal
gquantum measurement, and show that it achieves the
quantum multiple Chernoff distance as the error exponent.

= Motivation: consider detecting two weighted pure states.

Big overlap: give up the light one; P2
g P: g p g __— . o1
Small overlap: make a projective Sp/;
measurement, using orthonormalized L 09
version of the two states. i /
> gpl



* Sketch of proof
QXN

pm o psn pS

Spectral decomposition:

n T; n n
P? = Dl )‘gk)ng),

T :=max{T;}; < (n+1)¢

=
A,

Overlap between eigenspaces:

Olap (Supp (QEZU » SUPP (QS’Z)))

;= max {|<¢|¢>| |0 € supp (Q§g>) ,|¢) € supp (Qgg))}




Sketch of proof

"Dig holes" in every eigenspaces to reduce overlaps

—_~— —_~——
—_—~—

XN ®
P1 P2 " P?n

e-subtraction:

Let PPy =P \Q:

Define P, 8. Py:= P — Z Qz

T:\p €2

V%/

PZ® "= Z 1 EZ)Q(R) Olap (Supp (Q§Z)> , SUPP (Qﬁ?)) < e



Sketch of proof

. Qn n ®n
= Now the supporting space of Pi P> Pr
the hypothetic states have —
small overlaps. Fori £ j , =
— — — eo oo §
op (oo (57) o (7)) < 7 ==

= The next step is to orthogonalize these eigenspaces
1. Order the eigenspaces according to the their eigenvalues, in
the decreasing order.
2. Orthogonalization using the Gram-Schmidt process.



* Sketch of proof

= Now the eigenspaces are all orthogonal.

“on _ i () A1) = S yor
Pi _@]{Z:1 )‘z'k sz pr P2 Py

— "

= We construct a projective
measurement } h

o)
k

r

1=1

= Use this to discriminate the original states:
Psyee = Z;‘azl Pi 1r P?nﬂi



Sketch of proof

“digging holes” orthogonalization

QY

QY - QY

= Loss in "digging holes":
mn mn 1 T n
(d - Qi ) 5 > TPy
GO >l

= Mismatch due to orthogonalization:

T n 1_(7_1)T6 n n
0w (1 -0 QW'
Tr{gzk( Din ﬂ T ; (n)Trg o5

(5.0 >4

s Estimation of the total error:

Po< S ATy [Q (11—(»2{”))] S AL { ( QO - Q) )+I‘1[(J(”}( Q?if)”

(i,k) (i,k)



Sketch of proof

1 1—(r—1)Te \() Qe (n)
< [ —
Pe_(fg—l_l—QT—lTE) E E mln{)\lk, jE}TQ

_ (@g)aFg kO
——

< p(n) < (A.ﬂj))q (Agf;))“‘”

~—

<pn) 30 in, (Teotn™)

(,7):177

~ e “n| min max { —logTr pspt~ S}
of - (i s {-1ox o0t ) )|
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Result for the one-shot case

Theorem Let Ay,..., A, € P(H) be nonnegative ma-
trices on a finite-dimensional Hilbert space H. For all
1 <i<r, let A; = @gzl N Qi1 be the spectral decom-
position of A;, and write T := max{T,...,T.}. Then

(i,5):i<j Kt

= Remark 1: It matches a lower bound up to some
states-dependent factors:

Pr({A1,..., A}) > 20— 1) (‘;<‘%:1nm{/\i;m Niet Tr Q;Q e
i,7)i<g kL

Obtained by combining [
]and [ ].



* Result for the one-shot case

= Remark 2: for the case r=2, we have

Pr ({A1, Ao}) <1077 ) min{ Ay, Aoe} Tr Q1Qae.
.

On the other hand, it is proved in [
] that

* . s pl—s
P ({A1, Ax}) < Juin Tr AT A5 7.

(note that it is always true that

. . s Al—s
%mm{hk,)\%}’ﬂ“ Q11:Q2r < S Tr ATA™" )
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* Open questions

1. Applications of the bounds:

< 10(r—1)*1? Z Zmin{/\ik?)\ﬂ} Tr Qi Qi

pP* ({A1 o Ar}) ) , (4,7)i<y k.t

> STy Z{kz;min{/\ik, Ao} Tr QinQ i
VT

2. Strenthening the states-dependent factors

3. Testing composite hypotheses:

P& Vs > 40" (or, [o®du(o))



Thank you !



