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SUMMARY 

 

The mass of carbon trapped in methane hydrates exceeds that in conventional fossil 

fuel reservoirs. While methane in coarse-grained hydrate-bearing sediments is technically 

recoverable, most methane hydrates are found in fine-grained marine sediments where gas 

recovery is inherently impeded by very low gas permeability. Using experimental methods 

and analyses, this thesis advances the understanding of fine-grained sediments in view of 

gas production from methane hydrates. The research scope includes: a new approach for 

the classification of fines in terms of electrical sensitivity, the estimation of the sediment 

volume contraction during hydrate dissociation, a pore-scale study of gas migration in 

sediments and the self-regulation effect of surfactants, the formation of preferential gas 

migration pathways at interfaces during gas production, pressure core technology for the 

characterization of hydrate bearing sediments without causing hydrate dissociation, and the 

deployment of a bio-sub-sampling chamber in Japan.  

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Gas Recovery from Hydrate-Bearing Sediments 

 

The amount of methane in hydrate-bearing sediments overwhelms that of all 

conventional gas reservoirs combined. If robust recovery processes were to be developed, 

methane from hydrate-bearing sediments would be an alternative resource to replace gas 

from conventional hydrocarbon reservoirs [Kvenvolden, 1993; Milkov, 2004; Sloan and 

Koh, 2008; Boswell and Collett, 2011]. 

Current methods for gas recovery from conventional hydrocarbon reservoirs are not 

suitable for gas recovery from hydrate-bearing sediments because gas is trapped in crystals. 

Instead, gas recovery from hydrate-bearing sediments can involve depressurization, 

heating, inhibitor injection, or CH4-CO2 exchange [Holder et al., 1984; Sloan and Koh, 

2008].  

Gas production field tests have been conducted at gas hydrate sandy sites in Mallik 

in Canada [Kurihara et al., 2010], Mount Elbert in the United States [Moridis et al., 2011], 

and the Nankai Trough in Japan [Yamamoto, 2013]. These tests showed the technical 

feasibility of gas recovery from coarse-grained sediments albeit at a high cost [Collett, 

2002; Boswell and Collett, 2011]. 

On the other hand, gas recovery from fine-grained hydrate-bearing sediments is not 

yet technically feasible. [Boswell and Collett, 2011].  
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1.2. Thesis Organization 

 

This thesis investigates the physical properties of fine-grained hydrate-bearing 

sediments and the physical phenomena involved in gas production. 

Chapter 2 provides a general description of fines. In geotechnical engineering, fines 

are classified using Casagrande’s plasticity chart. However, the chart does not properly 

characterize fines for hydrate-bearing sediment studies. The characteristics of clays and 

silts are reviewed, experiments are conducted to clarify their fundamental behavior, and 

new boundaries between clays and silts are proposed. 

Chapter 3 analyzes volume change in hydrate-bearing sandy and silty sediments 

during gas production. Based on analogical experiments, empirical methods are suggested 

to evaluate the potential vertical strains that can develop in sediments during hydrate 

dissociation.   

Chapter 4 explores capillarity during hydrate dissociation in sediments. Pore-scale 

experimental and analytical studies place emphasis on surfactant concentrations and 

injection flow rates. 

Chapter 5 proposes a possible mechanism for gas recovery from fine-grained 

hydrate-bearing sediments whereby gas-driven fractures facilitate gas production. 

Analogical experiments provide insight into possible gas migration ways during gas 

production. 

Chapter 6 documents the development of pressure core characterization tools 

PCCTs used to obtain sediment properties without causing hydrate dissociation. The work 
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reported in this chapter is the result of a collaboration among the author, Sheng Dai, and 

Marco Terzariol. 

Chapter 7 reports the deployment of PCCTs to characterize pressure cores from the 

Nankai Trough in Japan. The chapter focuses on biological studies conducted using the 

bio-subsampling chamber. 

Finally, Chapter 8 summarizes salient conclusions from this study. 
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CHAPTER 2 

FINES AND FINE-GRAINED SEDIMENTS 

 

2.1 Introduction 

 

Gas hydrates can be found when temperature and pressure meet hydrate stability 

conditions, as in the deep seafloor sediments and beneath the permafrost [Kvenvolden, 

1988; Sloan and Koh, 2008]. Most hydrate-bearing sediments are found in fine-grained 

sediments. Therefore, the understanding of fines is important for hydrate production. Fines 

clog pore throats in coarse sediments during gas production [Kampel et al., 2008; Valdes 

and Santamarina, 2008; Jung et al., 2012], and high capillarity by fines leads to lens or 

nodule hydrate topology [Clennell et al., 1999; Dai et al., 2012].  

Fine grains are smaller than 75 µm. Fine-grained soils are classified using the 

plasticity chart [Casagrande, 1948]. However, this chart fails to properly distinguish silts 

and clays, and its fundamental interpretation is not obvious [Casagrande, 1938; 

Casagrande, 1948]. 

This chapter aims to elucidate ambiguious definitions, to gain fundamental 

understanding of fine-grained soils, and to propose a new approach to enhance the 

classification of fine-grained sediments.  
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2.2 Silt or Clay? Previous Studies 

 

Soil classification systems in the United States and other countries center on grain 

size distribution and Atterberg limits (Table 2.1). Yet, definitions of silt and clay remain 

unclear and even contradictory.  

 

2.2.1 Index Tests 

  Simple identification tests for soils that pass sieve No. 40 (0.4mm) assess the soil 

dilatancy, dry strength, and toughness [Casagrande, 1948; Holtz and Kovacs, 1981; 

ASTM-D2488, 2009]. In general, the plasticity of clays is pore-fluid chemistry dependent 

(pH and ionic concentrations [Santamarina et al., 2002; Palomino and Santamarina, 2005]). 

On the other hand, silts dilate when squeezed or shaken at low confining stress, exhibit low 

dry strength after air or oven drying, and fail to form 3 mm diameter rolls but crumble 

instead. These methods are simple but ill-defined. Moreover, the interpretation of test 

results is often subjective and adds further confusion to the distinction between silts and 

clays.  

 

2.2.2 Various Definitions of Clays and Clay Minerals 

The term, clay, is interchangeably used to refer to: 

 Particle size less than 2 µm which corresponds to approximately 1 m2/g specific 

surface. Particles of this size show Brownian movement in water [Atterberg, 

1912 from Baver et al., 1972]. 
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 Particles that experience electrical interactions in aqueous suspensions as a 

function of pore fluid pH, ionic concentration, and permittivity. 

 Pastes that harden during firing and gain strength (e.g., china dishes) 

 Minerals made of phyllosilicates such as kaolinite and smectite group. Yet not 

all phyllosilicates are clay minerals (e.g., mica) [Nesse, 2000; Mitchell and 

Soga, 2005].  

 

2.2.3 Soil Classification – Atterberg Limits 

Soil classification methods are compared in Table 2.1 to highlight: (a) the relevance 

of fines and (b) the use of liquid limit to assess overall plasticity, as noted by Casagrande 

(1938). Because of uncertainty in the standard method used for the liquid limit, the 

Casagrande cup [Wintermayer, 1926; Casagrande, 1958; Sherwood and Ryley, 1970], the 

fall cone test was proposed as alternative standard method, whereby the liquid limit is the 

water content at which the undrained shear strength of the soil paste is nearly 2.66 kPa 

[Hansbo, 1957; BS1377, 1990; Koumoto and Houlsby, 2001]. The liquid limit is strongly 

correlated to the specific surface area [Warkentin, 1972; Wetzel, 1990; Cerato and 

Lutenegger, 2002; Santamarina et al., 2002].  

The USCS uses the plasticity index PI=LL–PL and the liquid limit LL to distinguish 

between clays and silts. In addition, this plasticity chart discerns silt-like materials with 

high liquid limits yet low plasticity such as diatoms from sediments with high liquid limit 

and high plasticity such as bentonite. However, the plasticity chart fails to provide 

consistent boundaries. For example, clay minerals often plot below the A-line (Figure 2.1); 
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furthermore, mixtures with non-plastic materials distort soil classification with this chart 

(Figure 2.2).  

 

2.3 Experimental Study 

 

The electrical sensitivity of soil particles is explored herein to develop a more 

robust classification of fine soils. The experimental study includes specific surface, liquid 

limit, sedimentation, and insertion tests conducted using different pore fluids to alter 

electrical interactions. 

 

2.3.1 Materials 

Tested soil samples selected for their unique characteristics included: bentonite, 

ground illite, kaolinite, silica flour, diatom, fly ash and Ottawa 20-30 sand. These dry soils 

were mixed with fluids of different polarity and ionic concentration which affect electrical 

interactions. The selected fluids are: deionized water, NaCl solution (1 M for sedimentation 

and insertion tests and 2 M for liquid limit tests), a sodium-hexametaphosphate (NaPO3)6 

solution (0.065 mol/L) and kerosene. The properties of tested soils and fluids are 

summarized in Table 2.2.  

 

2.3.2 Test Procedures 

Specific Surface.  The specific surface was measured using the methylene blue test 

because water separates particles that could otherwise remain face-to-face aggregated in 

dry tests [Santamarina et al., 2002]. The concentration of the methylene blue was 5 g/L. 
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The methylene blue solution was gradually added to the soil suspension until a drop from 

the suspension showed a halo on a P5 filter paper (details in Santamarina et al., 2002). 

 Liquid Limit.  The fall cone test was used for this study. The 80 g 30-degree apex 

cone was allowed to penetrate the paste for 5 seconds. The liquid limit is the water content 

of the paste when penetration is 20 mm.  

Sedimentation.  Oven-dried specimens were mixed with the selected fluids, 

vacuumed, and stirred twice in 16 hours. Sedimentation tests were conducted in 200 mm 

tall acrylic cylinders 25.4 mm in diameter (details in Palomino and Santamarina, 2005).  

Insertion Test.  After sedimentation, the cylinder was tapped on a table to force 

densification of the sediment. 12 hours later, a 31 g, 3.2 mm diameter, 380 mm long 

stainless steel rod with a 12.7 mm diameter ball at its tip was slowly placed on the surface 

of the soil and released. The penetration depth was measured from the initial sediment 

surface. 

Comment.  The sedimentation test causes inherent segregation and its interpretation 

is less clear when sediments are heterogeneous. Segregation affects the insertion test 

conducted after sedimentation. Additional tests were conducted on silica flour and diatom 

without < 7 μm fines (separated by sedimentation).  

 

2.3.3 Results 

The liquid limit and specific surface data in Table 2.2b confirm that the liquid limit 

of a soil is proportional to its specific surface.  
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The ratios between the liquid limits determined with deionized water (LLDW), NaCl 

solution (LLNaCl), and kerosene (LLkerosene) are analyzed to assess fluid effects on 

interparticle forces. First, values are corrected for salt precipitation and specific gravity: 

 NaClNaCl

NaCl

DW

correctedNaCl

DW LLc
LL

LL

LL

LL
 1      [2.1] 

rosenekes

roseneke

DW

corrected
roseneke

DW G
LL

LL

LL

LL
,       [2.2] 

where Gs,kerosene is the specific gravity of kerosene, cNaCl [g/g] the concentration of NaCl in 

water. Corrections reflect differences in water-kerosene unit weight and the precipitation 

of salts during oven-drying when the NaCl solution is used. These ratios are presented in 

Figure 2.3. Empty circles show the ratio as defined above and solid circles are its inverse 

when the ratio is less than 1.0. Ottawa 20-30 sand, fly ash, silica flour and diatom showed 

low or no sensitivity to pore fluids, but kaolinite and bentonite exhibited significant pore-

fluid effects.  

The t50 is referred to as the sedimentation time when the water-suspension interface 

is nearly at an elevation H/2 of the initial suspension height H during sedimentation tests. 

Figure 2.4 shows the ratios between sedimentation time in deionized water, kerosene and 

(NaPO3)6 solution respectively to that in NaCl solution versus specific surface. Ottawa 20-

30 sand and fly ash are not affected by pore fluids. Ions of NaCl solution affect electrical 

interactions of particles and sedimentation time. Only kaolinite experiences shorter 

sedimentation time in deionized water than in NaCl solution: The sedimentation time for 

other soils in deionized water is longer than that in NaCl solution. The sedimentation time 

for soils in kerosene is shorter than that in NaCl solution. While fines in silica flour in 

(NaPO3)6 solution do sediment, the suspension interface of illite, diatom and bentonite in 
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(NaPO3)6 solution does not settle down in one day. Unfortunately, a clean interface is not 

always recognizable. 

The penetration ratio is defined as the ball rod penetration depth through the 

sediment interface to the sediment height. Penetration ratios measured for all sediments 

and fluids are plotted in Figure 2.5 versus specific surface. Ottawa 20-30 sand sustained 

the ball rod in all cases. All other soils show pore fluid effects on penetration, in particular:  

 The penetration depth in Ottawa 20-30 sand, coarse silica flour, fly ash and 

coarse diatom in deionized water is small: The penetration ratios are close to 

zero. On the other hand, the penetration ratio for kaolinite, ground illite and 

bentonite in deionized water are nearly one.  

 Most soils that sedimented in kerosene experienced more penetration than those 

sedimented in other fluids: The ball rod did not fully penetrate either bentonite 

or illite in kerosene. 

 Kaolinite experienced full invasion in all cases. 

 

2.4 Analyses 

 

2.4.1 Dilation in Soils 

Natural non-plastic soils are likely to be dilative near surfaces of soil sediments 

because of low confining stress [Been and Jefferies, 1985; Santamarina and Shin, 2010]. 

Similarly, the shaking test shows dilative silt behavior. Dilation in plastic clays is limited 

by sliding friction along shear bands [Lupini et al., 1981], low friction angles [Kenney, 

1967], and open fabrics that result from electrical interactions. Dilational shear resistance 
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was tested in insertion tests. Results show the potential of this method, however, sediment 

segregation during sedimentation hinders the systematic implementation of this approach.   

 

2.4.2 Electrical Interactions 

All soil particles have unbalanced surface charges. Based on surface charge, 

particles size and pore fluid, electrical DLVO interactions can govern particle behavior. 

The van der Waals attraction force develops between polar or polarized molecules 

[Santamarina et al., 2001; Israelachvili, 2011]:  

2

324

1
d

t
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F h

Att          [2.3] 

where the Ah [J] is the Hamaker constant, t [m] the distance between two platy particles, d 

[m] the diameter of the particles. The double-layer repulsion is caused by mineral surface 

charges [Santamarina et al., 2002]:  

for large t, 
t

DL edRTcF


 2

016      [2.4] 

for small t, 







 1

2

2

1
2

22
2

0
t

dRTcFDL


     [2.5] 

where R is the gas constant, 8.314 J/(K·mol), T the absolute temperature, c0 [mol/L] the 

bulk fluid concentration, and the double-layer thickness ϑ [m] is: 

2

1

22

0

2

1

22

00 22 






 








 


Fzc

RT

Nzec

kT

av


       [2.6] 

where ε' [farad/m] is the real permittivity of the solution; k Boltzmann’s constant,   

1.38×10-23 J/K; e0 the elementary charge, 1.602×10-19 C; Nav Avogadro’s number, 
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6.022×1023 1/mol; z the valence of the prevailing cation; and F Faraday’s constant, 96485.3 

C/mol.  

Electrical interaction explains the sensitivity of the liquid limit to grain size, fluid 

polarity and ionic concentration (Figure 2.3). The ratio between the liquid limit obtained 

with deionized water and that obtained with the NaCl solution reflects sensitivity to double-

layer repulsion. The ratio of the liquid limit obtained with kerosene to that obtained with 

the NaCl solution illustrates the sediment electrical sensitivity to both van der Waals and 

double-layer effects.  

  

2.4.3 Fall Cone Test 

The trend for penetration depths versus water content for the fall cone test (BS 

1377) becomes steeper when the liquid limit approaches 30%, which corresponds to the 

water content when coarse grains pack in a loose, simple cubic packing fabric. Electrically 

sensitive grains with high liquid limits have gentle slopes when mixed with deionized 

water, but slopes become steeper when mixed with the NaCl solution and with kerosene. 

These observations suggest a causal link between the slope of penetration versus water 

content and sediment-fluid electrical interaction.  

 

2.5 Discussion – Recommendations 

 

The compilation and analysis of experimental data have led to multiple correlations 

between soil classification and soil properties such as hydraulic conductivity [Göktepe and 

Sezer, 2010], compressibility [Sridharan and Nagaraj, 2000], and shear strength [Oda, 
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1972; Lupini et al., 1981; Jamiolkowski et al., 1985; Mitchell and Soga, 2005; Mayne, 

2006]. 

A new approach to fine grain classification is proposed to extend the understanding 

of soil behavior to physical-chemical processes, by including electrical interactions with 

high salt concentration and non-polar hydrocarbons. Electrical sensitivity is assessed using 

the fall cone test to avoid particle size segregation (e.g. sedimentation tests). The selected 

fluids (deionized water, 2-M NaCl solution and kerosene) are readily available and capture 

electrical sensitivity of soils to van der Waals and double-layer effects. Results show that 

double-layer effects dominate in bentonite, but that both double layer and van der Waals 

attraction affect inter-particle interactions in kaolinite. Fly ash and diatoms exhibit low 

electrical sensitivity but high liquid limit. Hence, the proposed methodology distinguishes 

among intra-porous materials and plastic clays.   

 The electrical sensitivity of the sediments shown in Figure 2.3 combines van der 

Waals and double-layer effects using a Pythagorean distance: 

22
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where SE is the distance from the origin at LLkerosene/LLNaCl=1.0 and LLDW/LLNaCl=1.0 to 

the data point. The reciprocal of these ratios is used if they are less than 1.0.  

The new chart shown in Figure 2.6 classifies soils based on the electrical sensitivity 

SE and the liquid limit obtained with NaCl solution. Two boundaries drawn in Figures 2.3 

and 2.6 divide soils into low electrical sensitivity (silica flour, fly ash and diatom), 

intermediate electrical sensitivity (kaolinite and illite), and high electrical sensitivity 

(bentonite). Intra-porous materials (e.g., diatoms and organic soils) show high liquid limits 
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with low electrical sensitivity. The use of liquid limit (in this case obtained with NaCl 

solution) can be preserved from earlier classifications to assess the extent of plastic 

behavior because it is a proxy parameter for specific surface.   

Finally, the recommended procedure for fines classification follows: 

1. Use the fraction that passes sieve No. 200. 

2.  Conduct liquid limit tests (BS 1377) with three different pore-fluids: deionized 

water, kerosene and 2-M NaCl solution. 

3. Calculate electrical sensitivity SE (Figure 2.2 and Equation 2.7).   

4. Identify soil types using Figure 2.6. 

 

2.6 Conclusions 

 

Current soil classification systems define ambiguous boundaries between clays and 

silts, and multiple semantics for the same term “clay”. Experimental studies in this chapter 

suggest new boundaries and parameters for the classification of fine-grained soils. It places 

emphasis on electrical sensitivity. Salient conclusions follow: 

 The liquid limit, the plastic limit, and the specific surface of soils are highly 

correlated. The plasticity index helps distinguish plastic sediments with intra-

pore grains (e.g., diatoms and organic materials) from high plastic clays.  

 A critical aspect of sediment behavior is its response to changes in pore fluid 

chemistry, i.e., its electrical sensitivity.  

 The fall cone test with different fluids can be used to classify fine grains into 

electrically sensitive soils and electrically non-sensitive soils.  Electrically 
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sensitive soils are susceptible to either van der Waals force or double-layer 

repulsion.  

 Electrical sensitivity includes underlying physical concepts in current soil 

classifications, such as mineral type, grain size, soil structure and shear 

resistance. 

 Other index tests can provide valuable complementary information. The 

sedimentation test adds information related to pore fluid chemistry, but grains 

segregate while they are settling and interface is not always clear. Insertion tests 

identify the structure of fine grains: electrical force-dominated fabric or grain 

packing.  
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Table 2.1 Soil classification systems and fine grains: (a) fines contents and (b) liquid 

limits [%] 

(a) 

 

(b) 

 

  

• Fine grain size:  U.S., Japan and China < 75µm; France < 80µm; Germany and U.K. < 60µm

• The A-line on a plasticity chart divides silts and clays

fine soils

fine soils

fine soils with 

coarse grains
fine soils

fine soils with 

coarse grains
fine soils

clean 

coarse 

soils

coarse 

soils with 

small 

fines

coarse 

soils with 

fines

5 12

15

35

50

65

GBT 50145 (China, 2007)

DIN 18196 (Germany, 2011)

BS 5930 (U.K., 1999)

ASTM D2487 (U.S., 2011)

JGS 0051 (Japan, 2009)

LPC (France, 1997)

50

40

75

low plasticity high plasticity

low plasticity
intermediate 

plasticity

high plasticity

high

plasticity

very high 

plasticity

extremely high 

plasticity

50

35

70 90

DIN 18196 (Germany, 2011)

BS 5930 (U.K., 1999)

ASTM D2487 (U.S., 2011)

JGS 0051 (Japan, 2009)

LPC (France, 1997)

GBT 50145 (China, 2007)
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Table 2.2 Material properties: (a) pore fluids and (b) soils 

(a) 

 Water 
K-1 

Kerosene 

Dispersant 

Solution 
NaCl Solution 

Molecular Formula H2O N/A 
(NaPO3)6 

40 g/L(a) 

NaCl 

1-2 mol/L 

Relativity Permittivity 

at 20°C 
80.4 1.8-2.0  

1 mol/L:  65(b) 

2 mol/L:  55(b) 
(a) ASTM D422 
(b) Santamarina et al. [2001] 

 

(b) 

 
Ca-

Bentonite 
Diatom 

Ground 

Illite 
Kaolinite 

Silica 

Flour 

Fly 

Ash 

Ottawa 

Sand 

20/30 

D50 [µm] 0.073* 10** -- 0.36* 20* 20* 720* 

Liquid 

Limit, 

LL [%] 

276 121 67 67 31 50 22 

Specific 

Surface, 

Ss [m
2/g] 

661 104 128 46 0.6 2.4 0.003*** 

Specific 

Gravity, 

Gs 

2.5** 2.2** 2.2* 2.6* 2.65** 2.3* 2.65* 

Weight 

[g] 
5 5 5 5 20 20 40 

*Literature 

**Specification 

***Calculation:  LL=19+0.56Ss [Farrar and Coleman, 1967; Santamarina et al., 2001] 

     
50

,

6

d
S spheres  , ρ [kg/m3] density 
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Figure 2.1 Clay minerals on the plasticity chart [White, 1949; Skempton and Northey, 

1953; Grim, 1962; Seed et al., 1964; Lambe and Whitman, 1969; Lupini et 

al., 1981; Wood, 1982; Fukue et al., 1986; Mesri and Cepeda-Diaz, 1986; 

Wasti and Bezirci, 1986; Di Maio and Fenelli, 1994; Sridharan and Nagaraj, 

1999; Donohew et al., 2000; Feng, 2000; Koumoto and Houlsby, 2001; 

Cerato and Lutenegger, 2002; Polidori, 2003; Tanaka et al., 2003; Sridharan 

and Nagaraj, 2004; Dolinar and Trauner, 2005; Spagnoli et al., 2012]. 
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 Figure 2.2 Mixtures of clays and non-plastic fines on the plasticity chart [Seed et al, 

1964; Dumbleton and West, 1966; Tanaka et al., 2003]. 
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Figure 2.3  Electrical sensitivity of soils.  
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Figure 2.4 Sedimentation times: deionized water, kerosene and (NaPO3)6 to NaCl 

solution respectively.  
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Figure 2.5 Penetration ratios by ball insertion tests. 

 

  

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100 1000

P
e
n

e
tr

a
ti

o
n

 R
a
ti

o
 [

 ]

Specific Surface [m2/g]

O
tt

a
w

a
2
0
-3

0
 s

a
n
d

c
o
a
rs

e
 s

ili
c
a
 f
lo

u
r 

(>
7
µ

m
)

s
ili

c
a
 f
lo

u
r

fl
y
 a

s
h

k
a
o
lin

it
e

g
ro

u
n
d
 i
lli

te

b
e
n
to

n
it
e

d
ia

to
m

deionized water
NaCl solution
kerosene
(NaPO3)6 solution

c
o
a
rs

e
 d

ia
to

m
 (

>
7
µ

m
)



 23 

 

 

 

Figure 2.6 New chart for fine-grained soil classification based on electrical sensitivity. 
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CHAPTER 3 

VOLUME CONTRACTION DURING HYDRATE DISSOCIATION 

IN SANDY AND SILTY SEDIMENTS 

 

3.1 Introduction 

 

Methane hydrates dissociate when pressure and temperature (P-T) conditions fall 

outside the hydrate stability zone. Hydrate dissociation produces gas and water, is 

accompanied by large volume expansion, and can generate high pore pressure in sediments. 

The state of stress, the sediment type and density, and the hydraulic and mechanical 

properties will control slope stability [Sultan et al., 2004; Nixon and Grozic, 2007], the 

reservoir deformation during gas production [Rutqvist et al., 2009; Uchida et al., 2011] and 

well stability [Rutqvist and Moridis, 2007].  

The experimental study of the mechanical behavior of hydrate-bearing sediments 

during hydrate formation and dissociation is challenging due to difficulties in generating 

methane hydrates. Alternatively, specimens can be prepared using analogues:  

tetrahydrofuran (THF)-hydrate has been used to study volume contraction in sediments 

during hydrate dissociation under zero-lateral strain conditions [Lee et al., 2010; Dai et al., 

2011].  

Similar to hydrate dissociation, ice melting in frozen ground causes surface 

subsidence [Watson et al., 1973; Nixon, 1991]. In fact, the mechanical properties of ice, 

methane-hydrates and THF-hydrates are very similar [Lee et al., 2007; Sloan and Koh, 

2008; Jung and Santamarina, 2011]. The mechanical properties of hydrate- and ice-bearing 
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sediments depend on sediment conditions and either hydrate or ice content. The tensile and 

adhesive strengths of hydrates on mineral surfaces determine the hydrate contribution to 

the shear strength of a hydrate-bearing sediment [Jung and Santamarina, 2011], and its pore 

habit affects stiffness [Yun et al., 2007; Lee et al., 2010; Dai et al., 2011; Jung et al., 2012]. 

Likewise, ice saturation increases the strength and the volumetric strains during shear of 

frozen ground and it also changes the failure mode [Andersland et al., 1978; Lange and 

Ahrens, 1983; Nickling and Bennett, 1984; Arenson and Springman, 2005]. This chapter 

investigates volumetric changes in frozen unsaturated sediments during melting. The main 

goal is to determine upper bound asymptotic trends (using very loose sediments) of 

anticipated volumetric strain in hydrate-bearing silts during dissociation.  

 

3.2 Thaw Consolidation 

 

Heterogeneous nucleation triggers hydrate or ice formation at interfaces, such as 

mineral-water or water-gas; after nucleation, hydrate or ice grows into the pores [Taber, 

1929; Liu, 2000; Waite et al., 2004; Dai et al., 2012; Jung and Santamarina, 2012]. Hydrate 

or ice growth in coarse-grained soils at high stress takes place by gradual invasion from 

one pore to the next. Consequently, coarse-grained soils inherently show little volume 

change during dissociation or thawing when fluids propagate through pores [Nixon and 

Ladanyi, 1978; Lee et al., 2010]. By contrast, fine-grained soils develop hydrate or ice 

lenses [Konrad and Morgenstern, 1980; Penner, 1986; Konrad and Duquennoi, 1993; 

Rempel, 2007; Dai et al., 2012]. Frost-susceptible soils such as silty clays exhibit high 

compressibility during dissociation or thawing resulting from the phase change of the 
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segregated hydrate or ice, and changes in the soil fabric [Chamberlain and Gow, 1979; 

Anderson et al, 1978; Lee et al., 2010]. The ratio between thaw and consolidation times R 

determines whether soils generate excess pore-water pressure, i.e., a comparison of the 

rates of heat and pressure diffusion: 

v

T

c

D
R           [3.1] 

where DT [m2/s] is the thermal diffusivity and cv [m
2/s] is the coefficient of consolidation 

[Morgenstern and Nixon, 1971]. 

 

3.3 Experimental Study 

 

3.3.1 Device 

This study employed a zero-lateral strain oedometer cell (Figure 3.1). The specimen 

diameter is D=63.5 mm, and the diameter to height ratio is approximately D/H~3. Water 

can be injected from the bottom of the specimen. 

 

3.3.2 Materials 

Silica flour (Sil-Co-Sil 106) is selected for this study (mean diameter d50=20 µm, 

specific gravity Gs=2.65, maximum void ratio emax=1.51, minimum void ratio emin=0.67 

and specific surface Ss=0.6 m2/g). The behavior of this sediment simulates deep marine 

hydrate-bearing sediments from the Nankai Trough (d50=10 to 100 µm and a void ratio of 

0.891 [JOGMEC, 2012]) and permafrost hydrate-bearing sediments at Mt. Elbert (d50=100 

to 200 µm and a void ratio of 0.72 [Winters et al., 2011]).  
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Figure 3.2a shows the compressibility of this silt when packed at different relative 

densities, as measured in the oedometer equipment shown in Figure 3.1. The compression 

index Cc is computed:  
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The standard definition for relative density is adopted: 
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Note that high compression indices are observed for sediments with high initial void ratios 

(Figure 3.2b).  

 

3.3.3 Procedure 

 Silica flour and water mixtures were packed to form density-controlled specimens 

inside the oedometer cell. The prepared specimens were placed in a freezer together with 

the loading caps. Frozen specimens were then mounted in the loading frame, subjected to 

loading, allowed to thaw under stress and finally water-saturated to assess any capillary-

related stability. An LVDT tracked the specimen settlement during loading, thawing and 

subsequent saturation. Tests were repeated for specimens mixed at two water contents 

(ω0=0.12 and ω0=0.22) to control initial ice saturation, three initial densities (dense, 

intermediate, and loose) and for different vertical stress during thawing (σ'0=50, 100, 200, 

500 and 1,000 kPa) for a total of 30 tests.  

Ice formed preferentially at contacts between particles due to capillary effects and 

water in pendular conditions at low water content. With this pore habit, ice exerts 
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maximum effect on soil stiffness and strength; the same is true in hydrate-bearing 

sediments [Yun et al., 2007]. 

 

3.3.4 Results 

 A typical change in void ratio versus time is schematically illustrated in Figure 3.3. 

Specimens responded rapidly to vertical load, and the associated settlement depended on 

the ice saturation, initial density, and applied stress σ'0. Additional settlement took place 

during thawing and during final saturation because of capillarity loss. 

Figure 3.4 shows the void ratio evolution from the initial condition, after loading, 

thawing, and saturation for all specimens. Capillarity supports the soil structure. Hence, 

the initial void ratio for all specimens with initial water content ω0=0.12 and some of 

specimens with ω0=0.22 reached higher than the maximum void ratio for silica flour 

emax=1.51. The wide range in initial void ratios gradually narrowed from one step to the 

next. Specimens with initial water content ω0=0.12 experienced more settlement during 

loading in the frozen condition than specimens with ω0=0.22. After thawing, void ratios 

converged to values between emax and emin. The final void ratios after saturation were closer 

to emin for specimens with initial water content ω0=0.22 than for those specimens with 

ω0=0.12, suggesting that memory of the initial fabric remains after loading, thawing and 

saturation.  
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3.4 Analyses and Implications 

 

3.4.1 Volume Change 

 Volumetric strain εv is defined as the change in void ratio with respect to the initial 

void ratio at the beginning of each process: 
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Results for all test are summarized in Figure 3.5. It can be observed that: 

 High ice saturation leads to low strain during loading.  

 The volume contraction during thawing is proportional to the initial void 

ratio (ei, and eth), the applied vertical load, and ice or water saturation.  

 Low water contents induce high strains during saturation, similar to wetting 

collapse. 

  

3.4.2 Volumetric Strains During Thawing in Sediments 

Data in Figure 3.5 (ω0=0.12 and 0.22) are combined with published results in Figure 

3.6. Data correspond to two geological histories: hydrate formation after sediment loading 

from published data and sediment loading after hydrate formation from this chapter. The 

volumetric strain proportional to the initial void ratio ei (after loading). Data for sediments 

with internal porosity deviate from the main trend. 
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The void ratio of packings made of mono-sized spheres varies from emax=0.908 for 

simple cubic packing to emin=0.351 for tetrahedral packing [Graton and Fraser, 1935; 

Deresiewicz, 1958]. In general, the emax and emin values depend on the coefficient of 

uniformity Cu and particle shape [Cho et al., 2006; Youd 1973]. Relative density is used in 

an attempt to generalize results obtained with a single sediment to other sediments. Figure 

3.7 shows the relative density at the end of saturation Dr
sat plotted against the relative 

density before thawing Dr
i.  Because of capillarity, initial void ratios are often greater than 

the maximum void ratio, so their relative densities are negative. Although the normalized 

input relative densities range from Dr=−1.5 to Dr=0.9, the final relative densities fall within 

Dr
sat~0.65±0.1 when the initial water content was ω0=0.12, and within Dr

sat~0.75±0.1 when 

ω0=0.22. The empirical equation derived for the trend is:  

   11tanh  i

rww

sat

r DbaD       [3.7] 

where aw and bw depend on initial water content: aw=0.37, bw=2 for ω0=0.12 and aw=0.25, 

bw=2 for ω0=0.22.    

The accumulated vertical strain during thawing and saturation for specimens tested 

at the same void ratio is plotted versus the applied vertical stress (Figure 3.8). Peak 

volumetric strains occurred around the vertical stress σz'=100 kPa when initial water 

content was ω0=0.12 and σz'=500 kPa when ω0=0.22; where the loading strain radically 

changes due to the failure of ice-particle contacts. 

 

Estimated Vertical Strain.  A method for estimating potential volumetric strains in 

silts during thawing (or hydrate dissociation) is suggested based on trends observed above. 
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Schematic trends in Figure 3.9 are based on experimental results in Figures 3.2 and 3.7. 

Calculation steps follow:  

1) Identify the in-situ void ratio ei and vertical effective stress σ'. 

2) Measure emax and emin (i.e., remolded specimens), and determine the sediment 

compressibility for loosely and densely packed specimens as in Figure 3.2.  

3) Compute the initial relative density at the in-situ state of stress. 
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where the vertical bar with subscript σ implies that the parameter is 

evaluated at the in-situ vertical stress.  

4) Estimate the post dissociation relative density Dr
t from Dr

i using the empirical 

relationship Equation 3.7 (Figure 3.7). 

 i

r

t

r DfD 


       [3.9] 

5) Compute the void ratio after thawing (or dissociation) 

 
 minmaxmax eeDee t

r

v       [3.10] 

6) Compute the volumetric strain 
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ee
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       [3.11] 
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3.6 Conclusions 

 

 Thaw-consolidation tests showed the extent of potential volume change that can be 

expected in hydrate-bearing sediments during dissociation. Salient conclusions follow:   

 Initial void ratio and vertical effective stress determine the volumetric strain 

during thaw consolidation.  

 Void ratios gradually converge between emin and emax during thawing and 

saturation. Final void ratios correlate with initial void ratios because the 

sediment retains memory of its initial fabric.  

 Vertical strains resulting from hydrate dissociation can be estimated using the 

relationship between compression index and relative densities, and between 

input and output relative densities.  
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Figure 3.1 Experimental configuration used for thaw-consolidation tests. 

  

DH

loading
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(a) 

 

 
(b) 

 

Figure 3.2 Silt compressibility: (a) test results at different relative densities (dry 

conditions) and (b) compression index between 35 kPa and 1,000 kPa as a 

function of initial void ratio. 

  

0.6

0.8

1

1.2

1.4

1 10 100 1000

V
o

id
 R

a
ti

o
 [

 ]

Effective Vertical Stress [kPa]

0

0.2

0.4

0.6

0.8

1

R
e

la
ti

v
e

 D
e

n
s

it
y
 [

 ]

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

C
o

m
p

re
s
s
io

n
 I
n

d
e
x
 [

 ]

Initial Void Ratio [ ]

Cc=0.1444e0− 0.0567



 35 

 

 

 

 

 

Figure 3.3 Schematic displacement-time trend. The test sequence includes: loading, 

thawing and saturation. 
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(a) 

 

 
(b) 

 

 

 
 (c) 

 

Figure 3.4 Void ratio change after freezing due to (a) loading, (b) thawing and (c) 

saturation. 
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Figure 3.5 Compressive strain versus initial void ratio: (a) loading, (b) thawing and (c) 

saturation. 
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 Material Vertical stress [kPa] Reference 

 Remolded silts & 

THF hydrate 
10/100/510 Lee et al., 2010 

 Kaolinite-silt mixture 

& Ice 
70/130/157/185 

Konrad and Samson, 

2000 

 Permafrost core 

samples (clay) 
380/600 Watson et al., 1973 

 Remolded clayey 

soils & Ice 
18/36/150/218 

Morgenstern and Smith, 

1973 

 

Figure 3.6 Volumetric strain during thawing as a function of the void ratio after the end 

of loading. 
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Figure 3.7 Relative density at the end of thawing and saturation, terminal relative 

density, Dr
t versus relative density before thawing, initial relative density, Dr

i. 
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(a) 

 
 

(b) 

Figure 3.8 Combined vertical strain during thawing and saturation versus applied stress 

σ0' for specimens prepared at different initial void ratios (high, intermediate, 

and low relative densities) and initial water content (a) ω=0.12 and (b) 

ω=0.22. 
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(a) 

 

 

 
(b) 

 

Figure 3.9 Method for the estimation of vertical strains due to hydrate dissociation in 

hydrate-bearing sediments: (a) compressibility at different relative densities 

– refer to Figure 3.2 and (b) normalized relationship between input and output 

relative densities – refer to Figure 3.7. 
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CHAPTER 4 

THE EFFECT OF SURFACTANT SELF-REGULATION ON MIXED-

FLUID FLOW – A PORE SCALE STUDY 

 

4.1 Introduction 

 

Hydrate-water interfacial tension in hydrate-bearing sediments determines the 

morphology and the occurrence of hydrates in sediments. Low capillary forces in large 

pores allow hydrate growth in sand pores [Dai et al., 2012]. High capillarity in fine-grained 

sediments shifts the phase boundary of the hydrate stability zone, it requires higher pressure 

and lower temperature to form hydrates [Clennell et al. 1999], and it leads to segregated 

hydrate formation.  

Capillarity also plays a critical factor in multi-phase flow conditions such as during 

gas production [Jang and Santamarina, 2011; Jung et al., 2012] and CO2 sequestration 

[Espinoza and Santamarina, 2012]. Gas production from hydrate-bearing sandy sediments 

is considered technically feasible because capillarity is low, and it allows gas flow through 

pore throats [Boswell and Collett, 2010].  

Surfactants can be designed to reduce surface tension and help fluid flow through 

narrow pores in multi-phase systems such as CO2 injection [Kim and Santamarina, 2014] 

and enhanced oil recovery EOR [Iglauer et al., 2010; Johannessen and Spildo, 2013]. This 

chapter documents the study of self-regulation effects that surfactants experience when 

approaching a pore throat. Fundamental concepts are reviewed first, followed by a unique 

experimental study at the pore scale.   
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4.2 Preliminary Concepts 

 

4.2.1 Capillarity 

The Laplace equation relates the capillary pressure difference ∆p [kPa] between 

two fluids as a function of the interface geometry and the contact angle θ between the fluid 

interface and the solid substrate liquid-solid interface [Thomson, 1886; Bear, 1972; Cho 

and Santamarina, 2001],  

cos
11

21










rr
Tp s

        [4.1] 

where Ts [mN/m] the surface tension, r1 and r2 [m] are the two principal radii at the curved 

fluid interface. Young’s equation relates three interfacial tensions T between the two fluids 

and the solid to the contact angle [Young, 1804], 

lg

cos
T

TT slsg 
         [4.2] 

where sub-indices correspond to s: solid, l: liquid, and g: gas.  

 Surface tension and the contact angle are not constant but change based on the 

interface conditions such as the roughness, wettability, velocity of the fluid in the tube, 

impurities, and pressure [de Gennes, 1985; Sharma and Ross, 1991; Kwok and Neumann, 

2000; Miwa et al., 2000; Siebold et al., 2000; Espinoza and Santamarina, 2010]. The 

dynamic contact angle θD in advancing and receding conditions depends on the capillary 

number Ca [Rose and Heins, 1962; Hoffman, 1975; Tanner, 1979; Kalliadasis and Chang, 

1994]: 

3

1

aD C          [4.3] 
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where the capillary number is defined as a ratio between viscous drag and capillary force: 

sT

v
Ca


          [4.4] 

where µ [Pa·s] is the fluid viscosity and v [m/s] the fluid velocity. 

 

4.2.2 Surfactants 

Surfactants are surface-active agents that can be designed or selected to reduce 

interfacial tension. They are endowed with a tendency to adsorb on interfaces and form 

micelles because of their amphipathic structure with hydrophobic and hydrophilic ends; 

the hydrophobic end moves away from water [Holmberg et al., 2003; Rosen, 2004]. 

According to electric properties of the hydrophilic group, surfactants are classified into 

anionic, cationic, zwitterionic, and nonionic [Rosen, 2004].  

 

Surfactant Concentration and Micelles.  Surface tension varies with surfactant 

concentration in the solution and the surfactant adsorption rate onto the interface [Defay 

and Prigogine, 1949; Miller et al., 1994]. Surfactants are adsorbed onto interfaces below 

their critical micelle concentration CMC, and surfactant concentrations on interfaces 

remain constant thereafter as excess surfactants in the bulk solution form micelles 

[Holmberg et al., 2003; Rosen, 2004]. Micelles are spherical, cylindrical, flat, and vesicular 

depending on the structure of the surfactant [Rosen, 2004; Israelachvili, 2011].  

 

Surfactant Adsorption.  Surfactant adsorption onto interfaces affects their 

efficiency and effectiveness. Surfactant efficiency relates the concentration required to 

attain a target surface tension. Surfactant effectiveness indicates the surfactant 
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concentration that produces the lowest surface tension [Rosen, 2004]. When the surfactant 

concentration is unbalanced along the interface, the surfactant density rapidly equilibrates 

driven by the surface tension gradient created by the unbalanced concentration, i.e., the 

Marangoni effect [Holmberg et al., 2003].    

Surfactants in solution adsorb onto solid surfaces based on the bulk surfactant 

concentration. As the surfactant concentration increases, the adsorption onto solid surfaces 

reflects multiple interactions between solid surfaces and surfactants: electrostatic 

interactions between solid surface charges and surfactant head charges, lateral interactions 

among hydrophobic chains on solid surfaces, and lastly interactions between micelles and 

hydrophobic chains on solid surfaces when net electrical charges on solid surfaces become 

neutral as well as the bulk surfactant concentration reaches CMC [Zhang and 

Somasundaran, 2006]. The number of moles of an adsorbed surfactant on the adsorbent na
s 

[mol/g] is a function of the change in the mole number of surfactant in the solution ∆ns 

[mol] and the mass of the adsorbent m [g] [Rosen, 2004]. 

m

CV

m

n
n ss

a





         [4.5] 

where ∆C [mol/L] is the molar concentration change in the surfactant from the beginning 

to the end of the adsorption, and V [L] the volume of the liquid phase.  

Surfactant adsorption on a liquid-gas interface follows the Gibbs adsorption 

equation for a monolayer [Eastoe and Dalton, 2000; Rosen, 2004]:  


i

iis ddT          [4.6] 

where dTs [N/m] is the change in the interfacial tension of the solvent, Γi [mol/m2] the 

surface excess concentration of any component of the system, and dμi [J/mol] the change 



 46 

in the chemical potential of any component of the system. Other isothermal equations such 

as the Henry, Langmuir, Frumkin, and Szyszkowski isotherms can be applied to liquid-gas 

interfaces as well [Eastoe and Dalton, 2000; Rosen, 2004]  

 

4.2.3 Self-regulation: the Biological Analogy of the Respiratory System 

The capillary effects of surfactants in multi-phase systems gain special relevance 

in the lungs. Pulmonary surfactants reduce the liquid-air surface tension Teq=10 mN/m or 

less [Pattle, 1955; Schurch et al., 1976; Schurch et al., 1992]. The lipid 

dipalmitoylphosphatidylcholine DPPC reduces the surface tension of the alveolar film, and 

proteins SP-B and SP-C enhance the adsorption rate of the surfactant onto the alveolar 

surface [Hawgood and Clements, 1990; Creuwels et al., 1997; Goerke, 1998; Veldhuizen 

et al., 1998]. 

Alveolar expansion and contraction alter the surfactant concentration and 

adsorption during breathing [Clements et al., 1958; Ghadiali and Gaver, 2000; Ghadiali 

and Gaver, 2008]: the concentration of the surfactant is lower and the surface tension is 

higher in the expanded alveolus than that in the contracted alveolus. This self-regulating 

mechanism helps exhale, inhale, and prevents the abnormal expansion or shrinkage of 

neighboring alveolar sacs.  

 

4.3 Experimental Study 

  

The purpose of this study is to investigate the effect of surfactant self-regulation at 

pore throats during mixed fluid flow. Tests were conducted using deionized water DW, 
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alcohol and detergent. Table 4.1 lists the main compositions of the detergent. Ethanol is a 

co-surfactant [Liu et al., 2003] and amine oxide is a cationic surfactant or foam stabilizer 

[Rosen, 2004]. These additives decrease surface tension and increase the solubility of 

surfactant, i.e., the synergistic effect [Holmberg et al., 2003; Rosen, 2004]. Without 

additives, the critical micelle concentration of the sodium dodecyl sulfate is 0.0082 mol/L 

[Folmer and Kronberg, 2000; Holmberg et al., 2003]; the required detergent to reach this 

concentration is approximately 0.01 g/g when the molar mass of sodium dodecyl sulfate is 

288 g/mol. 

 

4.3.1 Surface Tension 

 A ring tensiometer is used to measure surface tension of fluids used in this project. 

The tensiometer consists of a torsion wire and a platinum-iridium ring with a mean 

circumference of 59.35 mm; the ratio of the ring major radius to the wire radius is 53.2.   

Figure 4.1 shows the air-liquid surface tension of deionized water, alcohol, 

detergent, and aqueous detergent solutions at different concentrations (Table 4.2a). The 

surface tension of aqueous detergent solution is near the minimum value, which 

corresponds to the critical micelle concentration, for all tested concentration.   

 

4.3.2 Pore-Scale Tests – Experimental Procedure 

The 74 mm long glass capillary tube used for this study has outside diameter of 1.4 

mm and inside diameter of 0.88 mm. A constriction is formed by localized heating. The 

constricted capillary tube was connected to the injection syringe through stainless steel 

tubing and saturated by the test liquid to minimize volume changes due to pressure changes. 
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The general configuration is sketched in Figure 4.2. The micro-control syringe pump 

(volume: 5 mL; inside diameter: 9.3 mm) maintained constant flow rates during either 

advancing or receding tests. Imposed flow rates are summarized in Table 4.2b: propagation 

velocity along the cylindrical capillary tube, Reynolds number Re and the capillary number 

Ca are included in the table. The advancing test at 20 µL/hr flow rate was conducted on the 

dry tube surfaces: all other tests were conducted on pre-wet surfaces. 

 

4.3.3 Results 

Test results are summarized in Figure 4.3 in terms of pressure-position p-x 

signatures when liquid-gas interfaces transit across the constricted region, for all fluids and 

injection rates (Note: pressure-position signatures are computed from the recorded 

pressure-time data using the imposed injection rate; as the system was not absolutely rigid, 

the results do not necessarily capture proper x-position information such as signature 

width). The measured pressure combines a hydrostatic component, drag, and capillary 

pressure. The peak pressure during advancing and receding tests occurred at the 

constriction, and decreased as the surfactant concentration increased. The pressure 

signatures for 0.05 g/g surfactant concentration solution were similar to those for alcohol. 

The shape of signatures gathered during advancing tests changed with surfactant 

concentration.  

During advancing tests the pressure decreased as the interface moved towards the 

necking, increased when the interface was at its narrowest point, and then dropped just 

after the interface passed the narrowest point (Figure 4.3).  
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During the receding flow, the water pressure decreased as the interface moved 

toward the necking, then suddenly snapped to the steady state value. Surfactant solutions 

above the 0.1 g/g concentration and alcohol formed films that blocked the airway at the 

necking. This film broke and regenerated several times producing the oscillatory pressures 

cycles seen in the signature.  

 

4.4 Analyses and Discussion 

   

The hydrostatic pressure is constant. The drag resistance increases as the air-liquid 

interface advances, but it decreases when the interface recedes Note that the drag 

component is not recognizable in the zoomed-in signatures plotted in Figure 4.3. Then, the 

capillary pressure is the controlling component in the pressure variation seen in p-x 

signature. 

Capillary pressure pc [Pa] depends on surface tension Ts [N/m], the contact angle 

θ, the geometry of the flow channel, the angle αx between the tube surface and the tube 

direction, and the tube radius r [m] (Figure 4.4) 

 

x

xxxs

xc
r

T
p

 


cos2 ,

,        [4.7] 

where the sub-index x indicates local value at position x. The air-liquid interface can snap 

from concave to convex for certain α and combination as shown in Figure 4.5.  

The capillary pressure signature is analytically computed and plotted in Figures 4.6. 

Trends illustrate the capillary pressure signature when the surface tension remains constant, 

Ts,x=constant. Figures 4.6 illustrates effects of surface tension on capillary pressure: as 

experimentally observed, the amplitude of pressure signatures decreases when surface 
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tension decreases. In particular, the peak amplitudes predicted for Ts=0.072 N/m are three 

times greater than for Ts=0.025 N/m as pressure scales linearly with surface tension when 

the surface tension Ts,x=constant. Most importantly, p-x signatures change dramatically 

with contact angle (Figure 4.6).  

If the surfactant effectiveness and adsorption rate oscillate as the fluid traverses the 

constriction, similarly to breathing, then measured p-x signatures should deviate from 

linear Ts-proportionality. Figure 4.7 explores the effects of surfactant self-regulation by 

plotting pressure ratios at key signature values (Figure 4.7a) versus surfactant 

concentration. The measured pressure at the constriction continuously changed (Figures 

4.7 and 4.8) while the surface tension remained nearly constant as surfactant concentrations 

increased. While the air-liquid interface passes through the narrow region, surfactant 

molecules at the air-liquid interface repel each other, i.e., surfactant desorption in Figure 

4.9a and decreases the surface tension as neighboring surfactants come closer together 

according to Equation 4.6 (Figure 4.9b); surfactants behind the interface prevent desorption 

of surfactants on the surface. The deviation of pressure signatures also reflects the synergic 

interaction between the surfactant mixture and the solid surface [Huang et al., 1989; Schulz 

and Warr, 2002; Zhang and Somasundaran, 2006]. We infer that while the charge of main 

surfactant head and the solid surface are negative, other components such as zwitterion 

surfactants and hydrocarbon additives can neutralize the solid surface charges and drive 

other surfactant interactions for the surfactant adsorption on solid surfaces. As seen in 

Figure 4.7, the capillary pressure is nearly constant above the surfactant concentration of 

0.001 g/g, when the solution attains the maximum effectiveness. 
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Contact angles determine the shape of the interface. When the interface advances, 

contact angles increase in proportion to the capillary number (Equation 4.3). Indeed, as 

soon as an interface began receding, the measured pressure dropped because of the 

transition from a static to dynamic contact angle. 

Surface tensions alter the contact angle based on Young’s equation (Equation 4.2). 

Thin residual solution on a pre-wet surface affects the gas-solid interfacial tension, and 

surfactants also affect the liquid-solid interface. Observed contact angles were greater on 

the dry surface than on the pre-wet surface, so the pressure amplitude decreases when 

moving along pre-wet surfaces (Figure 4.7),  

  

4.5 Conclusions 

 

The capillary pressure varies as a mixed fluid interface traverses pore throats. The 

pressure-position signature results from interfacial tension, contact angle, pore throat 

geometry. In the presence of surfactants, self-regulation alters interfacial tension and 

contact angle along the necking. Experimental results and associated analyses support the 

following conclusions: 

 Surfactants modify both surface tension and contact angle: Higher surfactant 

concentration leads to smaller the surface tension until a plateau related to 

micelle concentration is reached.  

 Surfactant self-regulation results from changes in surfactant concentration at 

pore throats. Surfactant self-regulation changes the direction of surfactant 
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adsorption and desorption on the gas-liquid interface according to the flow 

channel geometry. This process modifies the effectiveness of surfactants.  

 Pressure-position signatures during air-liquid interface displacement across 

throats reflect local changes in surface tension in agreement with self-

regulation.  

 The surfactant adsorption not only onto the gas-liquid interface but also onto 

the liquid-solid interface define the capillary pressure during the gas-liquid 

interface displacement through pore throats.  
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Table 4.1 Detergent: Chemical composition 

Component Concentration 

ethanol 1 - 5 % 

sodium laureth sulfate 

(sodium lauryl ether sulfate, SLES) 
10 - 30 % (anionic surfactant) 

sodium lauryl sulfate 

(sodium dodecyl sulfate, SDS) 

alkyl dimethyl amine oxide 

(amine oxide, C10-16) 
3 - 7 % (zwitterionic surfactant)  

 

 

 

  



 54 

 

 

Table 4.2 Experimental study: (a) solution concentration and (b) flow parameters 

(a) 

Liquid Concentration of Detergent in Water [g/g] 

aqueous 

surfactant 

solution 

 

0.0001 

0.00025 

0.0005 

0.001 

0.0025 

0.005 

0.01 

0.025 

0.05 

 

(b) 

Flow Rate [μL/hr] Velocity [m/s] 
Reynolds Number 

Re* 

Capillary Number 

Ca 

20 

40 

80 

160 

9×10-6 

18×10-6 

37×10-6 

73×10-6 

8 

16 

32 

64 

1.3×10-7 

2.5×10-7 

5×10-7 

10×10-7 

*



vd
Re  where ρ [kg/m3] is the fluid density, v [m/s] the fluid velocity, d [m] the pipe 

diameter, and µ [Pa·s] the fluid viscosity. 
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Figure 4.1 Air-liquid surface tension as a function of surfactant concentration. 
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Figure 4.2 Experimental configuration to study capillary effects in a constricted capillary 

tube.  
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(a) 20 µL/hr 

 
(b) 40 µL/hr 

 
(c) 80 µL/hr 

 
(d) 160 µL/hr 

Figure 4.3 Pressure-position p-x signatures measured for different fluids across a 

constriction during advancing and receding tests. Flow rates: (a) 20 μL/hr, (b) 

40 μL/hr, (c) 80 μL/hr and (d) 120 μL/hr. 
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Figure 4.4 Schematic configuration of the air-liquid interface and capillary pressure near 

the constriction point.  
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Figure 4.5 Menisci shapes near a constriction in a capillary tube. 
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Figure 4.6 Analytically computed capillary pressure-position p-x signatures as a 

function of contact angle and surface tension (No self-regulation): (a) the 

assumed tube geometry is a cosine function, (b) constant contact angle with 

Ts=0.025, 0.035, 0.045, 0.055, 0.065 and 0.072 N/m and (c) constant surface 

tension with θ=0°, 30°, 45°, 60°, 90°, 120°, 135°, 150° and 180°.  
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(c) 

 

Figure 4.7 Measured pressure changes at the constriction (A: advance, R: recede, and Ts: 

surface tension): (a) pressure signatures during interface movement; (b) flow 

rate=20µL/hr; (c) flow rate=40 µL/hr; (d) flow rate=80 µL/hr; (e) flow 

rate=160 µL/hr.  
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Figure 4.7 continued. 
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(a) 

 

(b)  

 

(c)  

 

Figure 4.8 Measured pressure changes at the constriction versus Ts/Ts,water: (a) pressure 

signatures during interface movement, (b) pressure difference ratios of pc-pd 

with detergent solutions to that with deionized water and (c) pressure 

difference ratios of pb-pc with detergent solutions to that with deionized water. 
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Figure 4.9 Surfactant self-regulation at the air-liquid interface: (a) desorption preserves 

surface concentration; (b) surface concentration increases at the constriction. 
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CHAPTER 5 

GAS RECOVERY FROM FINE-GRAINED SEDIMENTS 

 

5.1 Introduction 

 

Hydrate-bearing sediments are found where pressure and temperature are within 

hydrate stability conditions and guest gas molecules are present. In “Class 1” hydrate-

bearing sediment stratigraphy, the hydrate bearing sediment is confined by a cap rock 

above and a mixed water-gas saturated layer beneath; this stratigraphy is favorable for gas 

recovery [Moridis et al., 2003; Moridis et al., 2011]. 

Sandy hydrate bearing sediments are preferred because of potentially high hydrate 

saturation, high gas permeability, and low volumetric strain upon dissociation. 

Consequently, field tests for gas production have been conducted at sandy gas-hydrate sites 

in Mallik in Canada [Kurihara, et al.,2010], Mount Elbert in the United States [Moridis, et 

al., 2011], and the Nankai Trough in Japan [Yamamoto, 2013].  

While clayey hydrate-bearing sediments contain most of the methane trapped in 

hydrates, gas recovery from clayey sediments is currently considered impractical [Moridis 

and Sloan, 2007; Boswell and Collett, 2011]. The purpose of this chapter is to explore 

possible bio-inspired gas production mechanisms in clayey hydrate-bearing sediments.  

 

 

 

 



 66 

5.2 Gas Migration in Fine-Grained Soils – Underlying Concepts 

 

5.2.1 Capillary Effects in Soils: Gas Invasion 

The fluid pressure in a non-wetting fluid such as gas Pg must exceed the pressure 

in the wetting host fluid Pw in order to displace it. The threshold capillary pressure 

difference Pc=Pg−Pw is the non-wetting fluid entry value or air entry value AEV [Brooks 

and Corey, 1964; Bear, 1972; Aubertin et al., 1998; Cho and Santamarina, 2001]. In 

general, capillary pressure Pc is a function of the surface tension Ts [N/m] and pore radius 

rthroat [m] (Laplace equation): 

throat

s
wgc

r

T
PPP

2
         [5.1] 

The interfacial tension between carbon dioxide and water radius varies from Ts=0.065 N/m 

at 1 atm to Ts=0.025 N/m at 20 MPa [Espinoza and Santamrina, 2010; Hildenbrand et al., 

2004]. Gas displaces water intermittently, from one pore throat to the next [Haines, 1930; 

Morrow, 1970]. Invasion momentarily stops until the gas pressure recovers. 

 

5.2.2 Gas-Driven Fractures 

 The major particle forces under multi-phase fluid conditions are the capillary force 

Fc, the drag force Fd, and the skeletal force Fs:  

ssc TdF           [5.2] 

sd vdF 3         [5.3] 

2

ss dF            [5.4] 
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where ds [m] is the grain size, µ [Pa·s] the fluid viscosity, v [m/s] the flow velocity, and σ' 

[Pa] effective stress. Gas driven fractures emerge when the drag force or the capillary force 

opposes and prevails over the skeletal force [Shin and Santamarina, 2010]. Fractures in 

soils are highly permeable conduits and preferential gas passages [Horseman et al., 1999; 

Hildenbrand et al., 2002; Delahaye and Alonso, 2002]. A gas-driven fracture initiates when 

the breakthrough pressure Pc
* exceeds [Espinoza and Santamarina, 2010]: 

kPa

p
Ce

S
P

ckPa

s
c

1
log

cos

1

*





        [5.5] 

where Ψ is a constant for fabric geometry (particle shape and pore size distribution), Ss 

[m2/g] is the specific surface, ρ [kg/m3] the density, e1kPa the void ratio at σ'=1 kPa, Cc the 

compressibility, and σ' [Pa] the effective stress.  

 

5.2.3 Analogical Concept:  Gastrointestinal GI Tract 

Gas in the GI Tract.  Gases in the GI tract (N2, CO2, H2, CH4, and O2) are generated 

by inhalation and bacterial fermentation [Levitt and Bond, 1980; Danzl, 1992]. The gas 

storage volume is limited [Serra et al., 1998]. Excess gas is either consumed (e.g., O2) or 

eliminated from the GI tract through exhalation, diffusion and flatulence. A person 

discharges between 400 and 2,000 ml of gas per day [Levitt and Bond, 1980; Danzl, 1992]. 

 

Flatulence in the GI Tract.  Peristaltic movement in the GI tract carries solids along 

the digestive systems [Sherman and Sherman, 1979; Weisbrodt, 1981; Schauf et al., 1990; 

Tortora and Grabowski, 2000; Germann and Stanfield, 2002; Boron and Boulpaep, 2009]. 

Non-concurrent gas and solid migration in the GI track suggests an alternative gas passage 
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independent of peristaltic motion, related to gas-swollen tract and the development of 

preferential flow paths [Gregersen and Christensen, 2000; Hansen, 2003; Gregersen, 2006; 

Tremolaterra et al., 2006]. A similar gas propagation strategy can be used to recover gas 

from clayey hydrate-bearing sediments. 

 

5.3 Experimental Study 

 

5.3.1 Experimental Procedure 

Materials.  Four soils were tested in this study Ottawa 20-30 sand (d50=0.72 mm), 

F110 sand test-1 and test-2 (d50=0.12 mm), silica flour (d50=0.02 mm), ground calcium 

carbonate (d50=0.009 mm), and kaolinite (d50=0.00036 mm). For comparison, feces 

consists of ~10 µm particles [Stephen and Cummings, 1980]. The air entry value AEV was 

measured in each case using a rigid cylinder (Figure 5.1). Trends computed with Equation 

5.1 are superimposed on the figure for loose and dense mono-size packings. Deviations 

from these trends (e.g., ground calcium carbonate) reflect the effect of non-uniform, non-

spherical grains.  

 

Analogical Experiments of Gas Propagation.  Experiments were designed to 

simulate gas accumulation, pressure increase, tube expansion, and gas propagation in the 

GI tract. A latex tube (outside diameter OD=22mm; inside diameter ID=19mm) was 

selected to model an expanding boundary; the measured compliance is 0.5mL/kPa and the 

measured Young’s modulus E is 1,340 kPa (Figure 5.2); for comparison, the rectal wall 
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compliance is 75 ml/kPa [Prior et al., 1990; Bharucha et al., 2006]. The tube was filled 

with fully water-saturated soils and impervious solids (plastic spheres or rods).  

Tests were conducted by forcing air flow in the horizontal, upward and downward 

directions and controlling the pressure gradient (Figure 5.3). A pressure transducer PT 

measured changes in inlet pressure versus time. 

   

5.3.2 Results  

Flexible Tube with Impervious and Rigid Fill.  Air cannot break through the rigid 

and solid acrylic fill and must flow between the latex tube wall and the solid fill. Figure 

5.4 shows the evolution of inlet pressure [Harrington and Horseman, 1999; Horseman et 

al., 1999; Hildenbrand et al., 2002; Olivella and Alonso, 2008]: 

 Threshold pressure at the beginning of gas invasion 

 Breakthrough pressure at the end of the propagation in the sediment 

 Steady state leak pressure during constant gas flow 

 Shut-off pressure after stopping gas injection 

Fluid passages generated between the rod and the tube are preserved under constant inlet 

flow. Residual water can imbibe into drained pores and cause cycles in the evolution of 

inlet pressure (Figure 5.4b). The pressure-time signature for the latex tube with spherical 

solid inclusions shows a pressure drop as the fluid advances past each sphere (Figures 5.4c 

and 4d): injected air spreads into the expanded gap between solid spheres and the latex 

tube, and the air pressure drops rapidly.  
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Flexible Tube Filled with Soil.  The inlet pressure Pin versus time signatures 

measured with different sediments and at different orientation are summarized in Figure 

5.5. Time is normalized with respect to the breakthrough time in each case.  

Horizontal Direction.  The signature gathered with Ottawa 20-30 sand shows stable 

displacement at a pressure similar to the AEV (Figures 5.5a and 5.1a). Hydrostatic pressure 

is negligible. The drag resistance decreases as the front advances, so the inlet pressure 

decreases as well. When the fill was either F110 sand or F110 sand with fines, similar 

pressure-time trends are obtained with the maximum pressure being the corresponding 

AEV. When the air injection rate increased to 2 ml/s by a peristaltic pump, the drag 

resistance increased, and high inlet pressure caused the latex tube to swell and soil particles 

to migrate (Figure 5.6). 

Downward Direction.  Inlet pressure versus time signatures are presented in Figure 

5.4b. The inlet pressure exceeds drag resistance and the AEV (Note: the hydrostatic 

pressure at the bottom is 9 kPa). Ottawa sand 20-30 experienced stable displacement 

through the sand along the tube. The breakthrough pressure of F110 sand test-2 was 20 kPa 

followed by a pressure drop towards the same Pin-t signature for F110 sand test-1.  

Upward Direction.  Figure 5.5c shows the increase in inlet pressure until 

breakthrough and shutoff. After the collapse of air passages in the three soils, inlet pressure 

was rebuilt. The latex tube deformed both radially and vertically in response to the invading 

gas. The inlet pressure gradually increased until the gas passed the sediment. Air trapped 

between soil fractions formed a gap at the top of the sediment (F110 sand test-1 and F110 

sand test-2). Air propagated when the inlet pressure led to the collapse of the upper 
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segment. Gas propagation between the tube wall and the sediment could have induced the 

collapse. 

 

5.4 Analyses 

 

Preferential Flow Along the Soil-Boundary Wall. The elastic thin-walled flexible 

latex tube experiences elastic expansion in the radial and axial directions in the small strain 

range [Kyriakides and Chang, 1990; Kyriakides and Chang, 1991]. The initial tube 

diameter Dtube can expand under internal pressure to form a gap δ between the tube and the 

rigid fill. The radial strain is:  

tube

r
D




2
          [5.6] 

A gap forms when the internal pressure Pin exceeds the external pressure Pext. The gap 

thickness δ will be: 

20

tubeextin D

E

PP 
         [5.7] 

where E0 is the elastic modulus. In the tests with the latex tube, hoop stress may develop 

by stretching the latex tube with the fill to cause εr rather than by external pressure. In this 

case, the equivalent external pressure is 

0

* EP rext           [5.8] 

Preferential flow takes place along the gap rather than through the sediment when the gap 

opening exceeds the pore throat size dth that defines the air entry pressure AEV:  

AEV

T
d s

th

4
          [5.9] 

Therefore, boundary flow occurs when: 
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AEV

T

D

E

PP

d s

tubeextin
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4

2
1 0




        [5.10] 

Figure 5.7 predicts gas passage regimes whereby gas can flow through pores or fluid-driven 

fractures. The effective stress in Figure 5.7 (b) is the pin − pext when AEV= pin − pext and 

δ/dth=1 in Equation 5.10. According to this analysis, gas propagation takes place when gas 

pressure is greater than either the capillary pressure (AEV) or the effective stress (confining 

stress). Although the capillary pressure is low, fast air invasion will cause drag resistance, 

increased inlet pressure and gas may form a gap between the sediment and the tube wall. 

Air propagation along the fill-wall interface is controlled by the confining stress or elastic 

boundary expansion, drag and capillary forces and resembles gas-driven fractures [Shin 

and Santamarina, 2010].  

 

Gas Flow Along the Gap.  Inlet pressure during gas propagation can be estimated 

(Figure 5.5):  

w

avgairs P
xuT

P 
2

122






      [5.11] 

where uavg [m/s] is the average air velocity, µair [Pa·s] the viscosity of air, Pw [Pa] 

hydrostatic pressure, an x [m] the total length of air propagation. The capillary term 

vanishes after a gas passage is formed.   
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5.5 Discussion – Paradigm Shift in Gas Recovery 

 

Gas propagation in sediments is affected by the hydrostatic pressure, the drag 

effect, and the AEV. In general, gas propagation in fine sediments requires high gas 

pressure to overcome the AEV due to the small pore size. Experiments in this chapter show 

the possibility of gas propagation along a gap that forms as an opening mode discontinuity 

along interfaces; in this case, gas pressure during hydrate dissociation increases until it 

reaches the confining stress when the opening mode discontinuity develops. The proposed 

mechanism can facilitate gas recovery from fine-grained hydrate bearing sediments.  

 

5.6 Conclusions 

 

Gas recovery from fine-grained hydrate-bearing sediments has received little 

attention due to inherent gas flow restriction in fine-grained sediments. This study 

highlights alternatives for gas production through preferential gas passages that form in 

fine-grained sediments. Experimental results show the following: 

 Gas passage depends on flow rate, fill characteristics, and boundary 

compliance. 

 Gas pressure increases until it reaches the AEV and migrates through pores, or 

the pressure produces gas-driven openings.  

 Sediments deformation affects the pressure for gas propagation.  

 Pressure cycles including buildup, breakthrough, steady state leak, and shut-off 

should be expected during production.   
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Figure 5.1 Air entry values for the tested sediments. 
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(a) 

 

(b) 

Figure 5.2 Elastic moduli of the latex tube: (a) compliance and (b) Young’s modulus. 
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(a) 

 

(b) 

 

(c) 

Figure 5.3 Experimental configuration for gas migration tests in latex tubes filled with 

sediments: (a) horizontal direction, (b) downward direction and (c) vertical 

upward direction. 
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(a) 

 

 

 

(b) 

Figure 5.4 Inlet pressure versus time measured using the latex tube filled with 

impermeable rigid fill: (a) rod and air, (b) rod and water, (c) spheres and air 

and (d) spheres and water. 
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(c) 

  

(d) 

Figure 5.4 continued 
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 Pin with Pw Pin without Pw 

(a) 

  

(b) 

  

(c) 

  

Figure 5.5 Experiment results for air propagation in soil-filled tubes: (a) horizontal 

direction, (b) downward direction and (c) upward direction. 
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Figure 5.6 Sediment deformation and displacement in the latex tube during gas 

pressurization. The evolving tube geometry depends on flow directions 

(horizontal, upwards or downwards) and affects pressure signatures.  

 

 

  

tube expansion by 

soil migration 

during gas flow

Flow direction

A

A'



 81 

 
(a) 

 
(b) 

Figure 5.7 Preferential gas passage – different regimes defined by (a) the ratio of 

breakthrough pressure to the air entry value versus pore throat sizes and (b) 

the ratio of breakthrough pressure to the air entry value versus the ratio of 

breakthrough pressure to the effective vertical stress.  
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Figure 5.8 Gas flow along the gap between the wall and the solid rod. 
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CHAPTER 6 

PRESSURE CORE CHARACTERIZATION TOOLS FOR 

HYDRATE-BEARING SEDIMENTS 

 

The author was primarily involved in designing the controlled depressurization 

chamber and the sub-sampling tool for bio-studies; all tools were developed in 

collaboration with S. Dai and M. Terzariol. This chapter documents this collective effort, 

and it published as a shorter version in Santamarina et al., 2012.  

  

6.1 Introduction 

  

 Natural gas hydrates form at high fluid pressure and low temperature, where 

biogenic and/or thermogenic gases are available. These requirements delimit the 

distribution of hydrate-bearing sediments to sub-permafrost, deep lakes (theoretical water 

depth greater than ~390 m), or ocean sediments (theoretical water depth greater than 

~320m). Typically, hydrates are found in deeper water columns due to thermal fluctuations 

and diffusion near the sediment surface [Xu and Ruppel, 1999]. 

 The clathrate or cage-like structure formed by water molecules hinders the 

repulsion between gas molecules and allows for high gas concentration. There is one 

molecule of methane every 5.75 molecules of water in CH4-hydrate, compared to the 

solubility of methane in water which is in the order of 1-in-750. With such a high methane 

concentration, natural gas hydrates can become an energy resource but they are a potential 

source for potent green-house gases as well. 
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 Depressurization and/or heating across the phase boundary causes hydrate 

dissociation. The hydrate volume expands multiple times just to cross the phase boundary. 

For example, there is a 1.3 times expansion under Blake Ridge pressure-temperature P-T 

conditions, and a 4 times expansion in the shallower Hydrate Ridge formation. Rapid 

volume expansion brings the sediment to failure in low permeability formations, triggering 

wellbore and even large scale seafloor instabilities.  

 Dissociation, volume expansion, and the ensuing sediment destructuration 

dramatically affect the ability to characterize hydrate-bearing sediments. Indeed, proper 

characterization requires coring, recovery, manipulation and testing under P-T conditions 

within the stability field. Pressure core technology has been advanced to address this need. 

 

6.2 Pressure Core Technology: Overview 

 

6.2.1 Coring and Recovery 

The development of pressure coring and recovery tools have involved research 

teams around the world, including initiatives such as the International Ocean Drilling 

Program and the European Union’s Marine Science and Technology Program [Kvenvolden 

et al., 1983; Pettigrew, 1992; Amann et al., 1997; Dickens et al., 2003; Qin et al., 2005; 

Schultheiss et al., 2009]. Push-piston (clay bearing sediments) and rotary coring (sands 

with high hydrate saturation) methods have been developed to gather several meter long 

pressure cores. The core slides inside a plastic liner during coring to facilitate its 

manipulation after recovery. The in situ fluid pressure is maintained by a ball valve that 

closes the barrel beyond the core-catcher; the ball valve seal is critical to reliable pressure 
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core recovery. While temperature control is also possible (PTCS - Kawasaki et al., 2006), 

analytical and field results show that the additional complexity of temperature control is 

unnecessary as long as the barrel is rapidly cooled once it reaches the surface.  

 

6.2.2 Manipulation 

Earlier studies using pressure cores required fast depressurization and stabilization 

in liquid nitrogen before transferring the core into testing chambers. Such drastic changes 

in pressure and temperature can be prevented if all operations after recovery are conducted 

under P-T conditions within the stability field to prevent dissociation. Pressure core 

manipulation and transfer technology requires a longitudinal positioner/manipulator and 

ball valves to couple components at equalized pressures (Pressure Core Analysis and 

Transfer System PCATS - Schultheiss et al., 2006).  

 

6.2.3 Testing and Characterization 

Testing and characterization tools were developed in parallel to manipulation 

capabilities. Non-contact characterization tools are based on gamma density, X-rays and 

water-coupled P-waves (Pressure Multi-Sensor Core Logger -Schultheiss et al., 2006; see 

also Abegg et al., 2008). Contact/invasive tools allow for the assessment of stiffness using 

P-and S- wave velocities, strength, electrical resistivity profiles and internal core 

temperature (IPTC - Yun et al., 2006); contact measurements require pre-drilling the plastic 

liner under pressure at the locations where measurements will be conducted. Subsampling 

capabilities have also been developed for biological studies under in situ P-T conditions 

(DeepIsoBug - Parkes et al., 2009).  
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6.2.4 Current Situation 

Other characterization needs have gradually surfaced driven by the enhanced 

understanding of hydrate bearing sediments, the renewed interest in gas production and 

related engineering tasks, and the increased reliability of pressure core recovery. Pressure 

core characterization tools developed at the Georgia Institute of Technology are described 

next.  

 

6.3 GT Pressure Core Characterization Tools (PCCTs) 

 

Our pressure core characterization system includes both core manipulation tools 

and characterization chambers. Tools have been selected to obtain complementary 

information relevant to science and engineering needs, with emphasis on the measurement 

of parameters used in hydro-thermo-mechanical analyses. 

 All tools are designed following key guidelines and objectives: simple and robust 

systems, portable components for fast deployment, modular design for maximum 

flexibility, standard dimensions and parts for economic construction and maintenance, rust-

resistance for seawater environment (all devices are made of stainless steel 316), can hold 

35 MPa fluid pressure and operate at 21 MPa, capable to impose effective stress when 

physical parameters are effective stress dependent, and safe for the monitoring of hydrate 

dissociation and gas production during controlled depressurization, heating or fluid 

exchange (such as with liquid CO2). The modular design implies geometrically compatible 

chambers and components developed with the same design philosophy; in particular, any 

two tools/chambers can be readily coupled through an identical flange-clamp system. 
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6.3.1 Manipulator (MAN)  

The manipulator is a longitudinal positioning system that is used to grab and move 

the core along the interconnected chambers and valves as needed, always under the 

required P-T conditions. Figure 6.1 shows the typical operation sequence used to retrieve 

a specimen from the storage chamber into the manipulator followed by displacing core into 

a generic test chamber. The geometric analysis of the operation shown in Figure 6.1 reveals 

that the length of the manipulator Lman (with its “temporary storage chamber”) is 

proportional to the length of the core Lcore to be manipulated, Lman  3.5Lcore. If an external 

positioning system is used, the rod must undertake the force due to the fluid pressure and 

the force required to displace the core; such a design is typically limited by buckling even 

when an open ended hollow tube is selected. Our system is designed to handle Lcore = 1.2 

m long cores, uses an internal telescopic screw system (stroke = 2.6m) driven by an external 

stepper motor, and can position the specimen with sub-milimetric resolution. It is coupled 

to the 1.3m long temporary storage chamber by means of a dismountable flange-clamp 

connection. A see-through port is included to confirm the position of the manipulator at 

any time.  

 

6.3.2 Sub-Sampling (CUT) 

The 1.2m long core can be cut into short specimens. Our cutting tool CUT houses 

either a linear or a ring-shaped saw-blade within a clamp-type chamber. The saw-based 

cutting ensures clean surfaces and minimizes specimen disturbance. The cutting tool CUT 

is mounted in series between the manipulator and any other test or storage chamber as 

needed (Figure 1e).  
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6.3.3 Instrumented Pressure Testing Chamber (IPTC) 

The chamber was developed to measure P&S wave velocities, undrained strength, 

electrical conductivity, internal core temperature, and to sample fluids (Figure 6.2A - 

details in Yun et al., 2006). This cylindrically-shaped chamber has two sets of four 

diametrically opposite port pairs. The first pair drills holes (ID = 8mm) in the plastic liner 

so that contact probes in successive ports can be pushed into the specimen. In 

characterization mode, the IPTC is coupled to the manipulator on one side and an extension 

chamber on the other end, and measurements can be conducted at any position along the 

core length. The eight access ports make the IPTC a versatile chamber for conducting well-

monitored production studies in view of reservoir calibration models. 

 

6.3.4 Effective Stress Chamber (ESC) 

Pressure cores are recovered and stored at fluid pressure and temperature P-T 

conditions needed to preserve hydrate. However, physical properties such as stiffness and 

shear strength are a function of both hydrate saturation and effective stress (Note: the 

relative relevance of effective stress increases as hydrate saturation decreases).  

The effective stress chamber ESC maintains P-T stability conditions and restores 

the effective stress σ that the sediment sustains in situ (Figure 6.2b). It was designed and 

laboratory-tested at Georgia Tech in 2006 under Joint Oceanographic Institutions JOI 

sponsorship, and it was first deployed in the field by the Korean Institute of Geoscience & 

Mineral Resource KIGAM in collaboration with Geotek during the UBGH1 expedition 

(Lee et al., 2009).  
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The original design was based on a zero-lateral strain boundary condition. We have 

updated this chamber to accommodate a stress-controlled boundary condition using a 

jacket (Figure 6.3). The resulting triaxial stress configuration consists of 3’ applied with 

the jacket and 1’ applied by a piston that is advanced through the ball valve and acts 

directly onto the pressure core. The piston and the base pedestal house the sensors needed 

for the measurements of physical properties, including stiffness (wave velocities), thermal 

conductivity, and electrical resistivity.  

A salient advantage of the flexible wall configuration is the ability to conduct 

precise fluid conductivity measurements by preventing the preferential flow along the 

sediment-steel boundaries in rigid-wall chambers. This chamber is particularly well suited 

to monitor production studies under in situ effective stress conditions, including the 

assessment of sediment volume change upon dissociation.  

 

6.3.5 Direct Shear Chamber (DSC) 

The shear strength of hydrate-bearing sediments under in situ pressure, temperature 

and effective stress conditions is a necessary parameter for constitutive models.  

Two constraints guided the design of the DSC tool. First, the imperfect boundaries 

that result when cutting heterogeneous cores under pressure cause stress concentration 

during vertical loading; thus, we selected a “double direct shear” geometry to cut across 

the specimen away from end effects. Second, overcutting during coring leaves a gap and 

the core tends to tilt during shear; then, we adopted a double shear plane configuration to 

avoid bending action. Consequently, the direct shear chamber consists of a thick wall 

stainless steel ring that is pushed to shear the central third of the specimen (Figure 6.2c). 
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The DSC includes the piston to restore effective stress (self-reacting vertical frame - similar 

to the ESC), a liner trap to capture the plastic liner before the specimen enters the shear 

chamber, and a small lateral built-in frame to push the side piston that displaces the ring 

(Figure 6.2c). The maximum shear displacement is max = 15mm so that both peak and 

residual shear strengths can be determined.  

 The test sequence includes: (1) shear under in situ vertical effective stress and P-T 

conditions, (2) push the ring back to its original position, (3) monitor hydrate dissociation 

and gas production at constant vertical effective stress and zero-lateral strain boundary 

conditions, and (4) shear the specimen again to determine the hydrate-free residual shear 

strength. The complete data set provides strength and volume change data under in situ 

conditions that are necessary for model calibration, production design and stability 

analyses.  

 

6.3.6 Sub-Sampling Tool for Bio-Studies (BIO) 

The study of bioactivity in deep-water sediments without incurring in de-

pressurization cycles is crucial to the survival of some barophilic microorganisms. The BIO 

chamber is loaded with a core segment using the manipulator; afterwards, it is detached 

from the manipulator for all successive procedures (Figure 6.2d). Its operation involves (1) 

nitrogen-liquid replacement, (2) core face cleaning and chamber fluid-based sterilization, 

(3) sub-sampling using a rotary sampling head, and (4) sample release into the bio-reactor 

that is pre-filled with nurturing solutions (volume = 10 cc). All operations can be observed 

through a sapphire window. Bio-reactors are readily replaced by closing a system of two 

ball valves and decoupling the quick connect fitting in between. This device allows the 
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collection of a large number of specimens from a single core segment under in situ 

hydrostatic pressure. 

 

6.3.7 Controlled Depressurization Chamber (CDC)  

Successful pressure coring operations may produce more pressure cores than the 

available storage. In this case, recovered cores are selectively de-pressurized to conduct 

further studies under atmospheric pressure. The controlled depressurization chamber is 

designed to help preserve the core lithology and to gain valuable information during 

depressurization, with minimal demand on personnel resources. This stand-alone device 

has a built-in drilling station to perforate the liner at selected locations in order to reduce 

the specimen longitudinal expansion. A pressure transducer and a thermocouple monitor 

the gas P&T conditions inside the chamber. In addition, three self-drilling thermocouples 

are built-in along the CDC; these are driven into the core to monitor the internal sediment 

temperature during depressurization. Finally, a 2L water trap and a 55L gas trap are 

attached in series to the needle valve that controls the rate of depressurization; these traps 

sit on scales to monitor produced water and gas (Figure 6.2e).   

 

6.4 Measurement of Physical Properties:  Sensors and Gadgets 

 

Multiple sensing systems have been developed to characterize the sediment and to 

determine hydro, thermo, chemo, bio, and mechanical parameters within the chambers, 

under controlled pressure, temperature, and effective stress conditions as described above. 

Not all sensors or gadgets are available for all chambers, yet, their deployment in various 
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devices support the comprehensive characterization of natural hydrate-bearing sediments 

under in situ pressure, temperature, and/or stress conditions, and permit detailed 

monitoring of gas production tests. 

 

6.4.1 Tool Position Control 

All contact instruments, sensors and drills are mounted on polished rods (diameter 

d=7.9mm) which are advanced into the specimen using externally controlled screw-based 

positioning systems to overcome the 1.7 kN force at the maximum working fluid pressure 

of 35 MPa (Figure 6.4). The hand-operated driver advances along the threaded guide while 

pushing the tool rod. The ball valve between the threaded guide and the chamber permits 

replacing tools under pressure (Figure 6.4).  

 

6.4.2 Sensors 

Transducers are mounted at the tip of tool rods and wired through the central bore. 

Available instruments are shown in Figure 6.5 Small-strain wave velocity measurements 

employ bender elements for S-waves and pinducers for P-waves (Figures 6.5a&6.5b –

peripheral electronics and test procedures as described in Lee and Santamarina, 2005a; Lee 

and Santamarina, 2005b).  

While large-strain strength data can be gathered using the direct shear chamber (DSC – 

Figure 6.2c), we have developed a strength-penetration probe as well (Figure 6.5c). This 

device determines the sediment strength using a cone-shaped stud equipped with a full-

bridge strain gauge inside. The measured tip resistance during probe penetration reflects 

the sediment undrained shear strength (details in Yun et al., 2006).   



 93 

 Fluid conductivity can be determined using the flexible wall system built within the 

effective stress chamber ESC (Figure 6.2b & 6.3), and inferred using the fluid sampling 

tool (Figure 6.5d). This is a self-drilling drainage port with a pressure or volume control 

flow condition to drive the interstitial fluids out of hydrate-bearing sediment. The pressure 

difference can be selected to preserve hydrates within stability conditions.  

 Electrical resistivity is measured using an electrical needle probe that is gradually 

inserted into the specimen to determine a radial resistivity profile with millimeter-scale 

spatial resolution (Figure 6.5e – details and measurement procedure in Cho et al., 2004). 

We have also developed a multiple electrode system at the base of the effective stress cell 

that allows us to conduct a surface-based electrical resistivity tomography within a 

specimen. 

 The thermal probe consists of a thermocouple deployed at the tip of a tool rod. 

When pushed into the sediment, the thermal probe monitors the temperature inside the core 

(Figure 6.5f). The self-drilling version of this probe, deployed in the controlled 

depressurization chamber CDC, places the thermocouple inside a hollow drill tip at the end 

of a tool rod. Internal temperature measurements can be used to monitor phase transitions 

during controlled gas production studies and to determine thermal conductivity (by 

inversion for given imposed boundary conditions). In addition, the TPS sensor for thermal 

conductivity measurements developed at NETL (Figure 6.5g, Rosenbaum et al., 2007) can 

be installed at the tip of tools or on the pedestal of the effective stress and direct shear 

chambers.   
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6.5 Monitoring Dissociation – Gas Production 

 

 All PCCTs chambers allow core-scale gas production tests by either de-

pressurization, heating, or chemical injection (e.g., inhibitors or carbon dioxide). 

Monitoring data include pressure, temperature, produced gas and water, stiffness (seismic 

wave velocities), fluid conductivity, and electrical resistivity. Figure 6.6 shows examples 

of data gathered during the depressurization of natural hydrate-bearing sediments.  

 

6.6 Discussion: Comprehensive Characterization Approach 

 

 Pressure coring, recovery, and testing prevent hydrate dissociation and its 

catastrophic consequences on sediment structure. However, inherent sampling effects 

caused by unavoidable changes in effective stress remain. These changes are quite 

prominent and include: stress relaxation from lithostatic confinement to virtually no 

effective stress, the potential for internal fluid pressure drop and local dissociation even 

when chamber P-T conditions are within the stability field (i.e., a form of poro-elastic 

Mandel-Cryer effect coupled with phase transition), side friction along the liner, skeleton 

expansion and the potential for stain-induced decementation.  

 Clearly, in-situ testing can play an important role in the characterization of hydrate 

bearing sediments. However, in situ tests face their own technical challenges and 

interpretation difficulties, including the effect of tool insertion on measured properties. 

 Based on these observations and field experiences (Gulf of Mexico, Krishna-

Godavari Basin, Ulleung Basin, and Mount Elbert), the comprehensive characterization of 
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hydrate-bearing sediments should include:  (1) detailed analysis of available logging data, 

(2) pressure core characterization and monitored de-pressurization, (3) index properties 

(with emphasis on grain size distribution and fines content, specific surface, SEM 

microphotographs, mineralogy and plasticity, pH and pore fluid ionic concentration), and 

(4) laboratory tests on reconstituted specimens with synthetic hydrate saturation to 

determine the behavior of sediments as a function of effective stress and hydrate saturation 

(including: stiffness, strength, and hydraulic conductivity).  

 Index properties -analyzed within the framework of accumulated field and 

laboratory data- provide exceptional information related to hydrate pore habit and 

morphology, potential sediment properties and production-related information including 

the possibility of fines migration (Refer to Waite et al., 2009 for a comprehensive review 

of hydrate-free sediment properties).  

 The reconstitution of hydrate bearing sediments is hindered by inherent difficulties 

in forming methane hydrate from dissolved phase methane. Tetrahydrofuran THF presents 

important advantages as a proxy hydrate former (Lee et al., 2007). First, its complete 

miscibility in water enables accurate hydrate saturation control and fast hydrate formation 

from dissolved phase (i.e., no preferential formation at interparticle contacts). Second, THF 

hydrate forms at atmospheric pressure and standard geotechnical devices can be used to 

characterize hydrate bearing sediments. 
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6.7 Conclusions 

 

Pressure core technology is needed for the proper evaluation of natural hydrate-

bearing sediments.  

The set of pressure core characterization tools PCCTs described in this chapter 

allow the manipulation, sub-sampling, and the extensive assessment of natural gas hydrate-

bearing sediments under in situ pressure, temperature, and effective stress conditions.  

In addition to pressure core testing, comprehensive characterization programs 

should include sediment index properties analyzed within the framework of available data 

for natural hydrate bearing sediments, and tests with remolded specimens with synthetic 

hydrate. 

Pressure core technology can also be deployed to study other gas rich hydrocarbon 

formations such as deep sea sediments, coal bed methane, and gas shales. 
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Figure 6.1  Pressure core manipulation. (a) The manipulator MAN couples with the 

storage chamber and fluid pressures are equalized at the target pressure p0 

before opening the ball valve. (b) The manipulator captures the core and 

transfers it into the temporary storage chamber. (c) Ball valves are closed and 

the depressurized storage chamber is separated. (d) The selected 

characterization tool is coupled to the manipulator and is pressurized to p0. 

(e) Ball valves are opened and the core is pushed into the characterization 

tool; stand-alone characterization tools may be detached after retrieving the 

rest of the core and closing valves. Note: the cutter tool CUT is shown in 

panes d&e; it is attached in series to cut core to any desired length to meet 

tool requirements (for stand-alone ESC, DSC, CDP, and Bio tools).  
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Figure 6.2  Schematic diagrams of characterization chambers. (a) IPTC instrumented 

pressure testing chamber with P-T control. (b) ESC effective stress chamber 

with σ’-P-T control. (c) DSC direct shear chamber with σ’-τ-P-T control. (d) 

CDP controlled depressurization chamber for sediment preservation and gas 

production. (e) BIO sampler for multiple bio-reactor chambers. Scale: the 

outside diameter of the large ball valve shown in all devices is OD = 220 mm. 
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Figure 6.3  Flexible wall boundary condition. Lateral effective stress can be 

independently applied through a flexible wall membrane gadget (ID = 

63.5mm, H = 150mm). This device allows the implementation of triaxial test 

conditions, and prevents preferential flow paths along the interface for fluid 

conductivity studies. 

 

 

 

 

  



 100 

 

 

 

 

 

 

 

Figure 6.4  Tool Control. The displacement of sensors, subsampling tools and drills are 

controlled under pressure using a screw-based positioning system where the 

driver advances along the threaded guide while pushing the tool rod (shown 

in green). Transducers at the tip of the rod are wired through the central hole 

in the tool rod. 
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Figure 6.5   Measurement tools and sensors. (a) Bender elements for S-wave generation 

and detection. (b) Piezocrystals for P-waves. (c) Penetrometer for strength 

measurement. (d) Pore fluid sampler. (e) Electrical needle probe for resistivity 

profiling. (f) Thermocouple instrumented tip. (g) Strain gauge for thermal 

conductivity determination (TPS – NETL; Rosenbaum, et al., 2007). 

 

 

 

 

  



 102 

 

 

 

 

 

Figure 6.6  Monitored gas production tests using IPTC: (a) Evolutions of pressure, 

temperature, electrical resistivity, and produced gas (Krishna-Godavari 

Basin, Yun, et al., 2010); (b) Typical wave signatures during gas production: 

P-wave signatures eventually fade out after gas production; S-waves detect 

the evolution of the skeleton shear stiffness during hydrate dissociation and 

gas production (Ulleung Basin, Yun, et al., 2011). 
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CHAPTER 7 

NANKAI TROUGH PRESSURE CORE STUDY – BIO-CHAMBER 

 

7.1 Introduction 

 

Methane gas trapped in hydrates is either biogenic or thermogenic. Biogenic gas 

accounts for 99% of the methane found in hydrate-bearing sediments [Kvenvolden, 1993]. 

Biological studies are necessary to elucidate the origin of hydrate-bearing sediments and 

to understand the complex hydro-chemo-bio-thermo-mechanical coupling in the sub-

surface. 

Sub-sampling chambers for pressure cores have been designed to provide 

specimens for biological testing while maintaining hydrate in the stability field and 

anaerobic conditions [Parkes et al., 2009; Santamarina et al., 2012]. The bio-sub-sampling 

BIO chamber, which is a part of the pressure core characterization tools PCCTs described 

in Chapter 6, was deployed for the first time to study Nankai Trough sediments. This 

chapter documents the operation of the BIO-chamber for stand-alone multi-bio-samplings. 

It describes fundamental biological experiments and reports on measured hydrate 

saturation as a byproduct of these tests. 
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7.2 Previous Biological Studies on Hydrate-Bearing Sediments 

 

Quantification and Gene Analyses.  Several studies have been conducted to 

quantify and analyze genes of microorganisms in hydrate-bearing sediments; these include: 

 Cell counting with direct counting methods (color: acridine orange, SYBR 

green, and others), catalyzed reporter deposition-fluorescence in-situ 

hybridization (CARD-FISH), and quantitative, real-time polymerase chain 

reaction (Q-PCR) [Reed et al., 2002; Schippers et al., 2005; Sakamoto et al., 

2005] 

 Genetic study with PCR for 16s rRNA [Parkes et al., 2000; Reed et al., 2002; 

Nunoura et al., 2008; Parkes et al., 2009] 

 The metagenomics of the microbial community [Biddle et al., 2011].  

Limiting Factor: Pore Size.  Related studies have shown that the growth of 

microorganism in soils is limited by environmental factors such as nutrients and pore space 

[Mitchell and Santamarina, 2005; Rebata-Landa and Santamarina, 2006; Phadnis and 

Santamarina, 2011; Eilers et al., 2012].  

Biological Metabolism and Hydrocarbon Source.  Consumed isotopes is used as a 

measure to estimate biological metabolism. Because microorganisms prefer stable carbon 

molecules, biogenic gas has low carbon-isotopic composition [Kvenvolden, 1995; Sassen 

et al., 1999]. Methanogenesis is the biomediated reaction between CO2 and H2 to produce 

methane; conversely, the anaerobic oxidation of methane is the reverse reaction [Reeburgh, 

2007; Colwell et al., 2008; Bowles et al., 2011]: 

CO2 + 4H2 ↔ CH4 + 2H2O       [7.1] 
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Contamination Control.  Drilling fluids can contaminate recovered soil samples. 

Florescent tracers or microspheres can be injected into the drilling fluid to assess the extent 

of contamination [Smith et al., 2000a; Smith et al., 2000b; House et al., 2003], so that 

biological studies are conducted on indigenous microorganisms.  

  

7.3 Experimental Study 

 

7.3.1 Case History – Pressure Core 

Hydrate-bearing sediments in the Nankai Trough have been studied to understand 

geological processes, to assess their mechanical properties, chemical compositions, and 

biological activity [Colwell et al., 2004; Masui et al., 2008; Fujii et al., 2009; Kida et al., 

2009; Uchida et al., 2009; Conin et al., 2011; Raimbourg et al., 2011]. Microorganism cell 

counts in methane hydrate-bearing sediments from the Nankai Trough decreased with 

depth [Reed et al., 2002]. Isotopic analyses on carbon and hydrogen have shown that 

methane from the Nankai Trough is mainly biogenic [Uchida et al., 2009].  

The hybrid pressure coring system was used to retrieve hydrate bearing sediments 

(July, 2012). Pressure cores were analyzed on-board (X-ray, ultrasonic and γ-density), and 

were stored in a cold room at 4 °C under 20 MPa for future testing [Yamamoto et al., 2012].   

The core selected for biological testing was recovered at a depth of 1276.6 mbsl 

and an overburden of 278 mbsf. The in-situ temperature was 12°C. The specimen was 

recovered from the middle of the core (Figure 7.1). The sediment is a silt with porosity 

n=0.475, specific surface Ss=19.42m2/g, particle density ρ=2.621g/cm3, and mean grain 

size d50=8.8μm (Figure 7.1).  
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7.3.2 Operation for Bio-Sampling 

A 17cm long specimen was cut from the core by using the SAW tool and transferred 

into the BIO-chamber using the manipulation system MAN (Chapter 6). Once loaded in 

BIO-chamber, the system was pressurized to 9MPa using argon gas to preserve anaerobic 

conditions. The temperature and pressure sensor were connected and the specimen was 

fixed using the locking nails (Figure 7.2a). Then the fluid filling the chamber was gradually 

flushed out and replaced with argon gas while maintaining the pressure. The cut specimen 

surface was grinded away as the surface was presumed to be contaminated during coring 

and cutting (contamination tracers were not injected during the core recovery). Finally, soil 

subsamples were collected for biological tests. The high pressure syringe built-in the 

scraper was used to inject nutrients and distilled water to force the recovery of sediments 

into the bioreactors. The weight of the six recovered samples are summarized in Table 7.1a. 

Once loaded, bioreactors were coupled to the manifold without pressure loss, and the fluid 

pressure was preserved throughout the test (Figure 7.2b). 

 

7.3.3 Microbial Growth Test 

Preparation – Equipment and Nutrient Sterilization.  Equipment, nutrients, and 

solutions for biological tests were autoclaved for 40 minutes at 100 kPa and 120 °C 

[Madigan et al., 2009].  Large devices could not be autoclaved and were washed with 

alcohol and rinsed with sterilized distilled water.  

The concentration of the NaCl buffer solution was 8 g/L, and the nutrient was 

Lysogeny Broth (LB-Miller formula: 10g of tryptone, 5g of yeast extract, and 10g of NaCl 

in one liter of distilled water). This selected nutrient is a complex medium that prompts the 
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growth of a broad range of microorganisms. Agar plates used for culture growth were 60-

mm diameter Petri-dishes filled with the solid nutrient prepared by mixing 15 g/L of agar 

into the LB-Miller formula. All tests were conducted following strict protocols to avoid 

contamination. 

 

Growth Tests – Procedure.  Tests were conducted to confirm the existence of active 

microorganisms in these sediments to estimate bacterial counts, to study the effects of 

depressurization rate on living microorganisms, and to assess the effect of temperature on 

microbial growth. Bio-reactors were depressurized from 7 MPa to atmospheric pressure in: 

(a) 1~2 seconds, i.e., a fast depressurization rate, (b) 1 minute, i.e., an intermediate 

depressurization rate, and (c) 30 minutes, i.e., a slow depressurization rate. After 

depressurization, bio-reactors were shaken to separate microorganisms from soil grain 

surfaces [Lindahl and Bakken, 1995; Riis et al., 1998]. The supernatant fluid was diluted 

with buffer solution to attain 10-1 and 10-3 concentration by volume. Then, the diluted 

supernatant fluid was used for the spread-plate cell count method on the LB-agar plate in 

order to count active microorganisms [Madigan et al., 2009]. Plates were covered with 

parafilm to prevent contamination and maintained at culturing temperatures 4, 10 and 30°C 

at atmospheric pressure. Table 7.1b summarizes the scope of the study. As plates were 

exposed to the atmosphere, only aerobes survive during incubation. Cell growth was 

photographically recorded.  
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7.3.4 Dissociation Test  

The specimen that remained in the BIO-chamber was subjected to a mini-

production test. First, water was pumped into the BIO-chamber to displace the argon gas 

in order to measure the volume of CH4 produced. Stiffness tests were conducted via 

pressure-controlled volume changes to calculate the volume fraction of residual gas in the 

system. Depressurization was controlled using a needle valve, and a graduated cylinder 

was used to collect and measure the produced fluids (Figure 7.2a). Sensors in the chamber 

monitored the evolution of pressure and temperature inside the chamber; the thermocouple 

was 20 mm away from the specimen.  

 

7.3.5 Results 

Biological Test.  Typical colony-forming units CFUs observed on agar plates are 

shown in Figure 7.3 at different incubation times. Counted CFUs are summarized in Table 

7.2 for all tests. The colony forming time is defined by the appearance of a colony on each 

plate. Clearly visible CFUs few millimeters in diameters appeared on plates after 43 hours 

of incubation at 30 ºC. The morphology of most colonies was white and circular with 

convex top and smooth edge. Cell counts were based on identifiable CFUs, dilation and 

soil weight (Tables 7.2). Results summarized in Table 7.2 show viable cell counts ranging 

from 287 to 52084 cells/g. No consistent trend is observed as a result of different 

depressurization rates. Most CFUs were white color and some were orange; but CFUs 

cultures after fast depressurization conducted at 30ºC were red.  
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Dissociation Test.  P-T path during depressurization is shown in Figure 7.4. The 

system was filled with 99.88% water based on stiffness tests. Although pressure decreased, 

temperature remained relatively constant, i.e., limited free gases in the system. The P-T 

diagram did not clearly capture the transition across the hydrate stability phase boundary: 

The temperature drop during the dissociation test was only ∆T=−0.13 ºC. The produced 

gas was ~ 6 liters which corresponds to a hydrate volume of Vhyd= 34 mL. For a specimen 

size 310 mL and porosity n=0.475, the estimated hydrate saturation is Shyd=23%.  

 

7.4 Analyses and Discussion 

 

Justification.  Barophiles live at high pressure and their metabolism may stop at 

atmospheric pressure. Furthermore, the radical pressure drop from high pressure to 

atmospheric pressure experienced in marine sediments during conventional sampling may 

physically damage and biochemically disturb microorganisms [Fraser, 1951; Nakamura et 

al., 1994; Patterson, 2005]. For example, gas vacuolate bacteria may burst due to gas 

expansion during fast pressure drop [Hemmingsen and Hemmingsen, 1980]. In contrast, 

bacteria without a gas vacuolate such as Escherichia coli can readily sustain a 30 MPa 

pressure drop even as gas bubbles instantaneously come out of solution [Hemmingsen and 

Hemmingsen, 1980]. In addition, depressurization and exposure to oxygen in the 

atmosphere is lethal to obligate anaerobes such as methanogens, so viable, culturable 

microorganisms are limited during biological tests conducted with exposed specimens. 

Note that tests could have been conducted under the anaerobic condition by conducting all 
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operations within an anaerobic incubator such as a glove box filled with argon gas at 

atmospheric pressure.   

Counts.  Results from this study show that the number of culturable cells measured 

using the spread-plate method is lower than observed in previous studies (Figure 7.5). The 

lower number can reflect: 

 Culturable microorganisms in the laboratory can be as low as 1% of the total 

number of microorganisms [Madigan et al., 2009], because of lethal changes to 

some species of microorganisms, such as the methanogens exposed to 

atmospheric condition.  

 Dead or inactive microorganisms cannot be detected by the spread-plate 

method. Previous studies typically used staining methods, and counts include 

dead and alive microorganisms (Figure 7.5a). 

 Analytical upper bound estimates of cell count based on pore-size restriction do 

not take into consideration other limiting factors such as nutrients (Figure 7.5b).  

Temperature.  The temperature during culturing had a clear effect on growth rate. 

Bacterial growth in 30°C was fastest (in-situ temperature ~12°C) such as mesophiles that 

prefer 10 and 30°C [Madigan et al., 2009]. Observable red colonies occurred at 10 and 

30°C.  

Pressure.  No obvious pattern with depressurization rate could be observed based 

on CFUs. Yet, the various colors of the colonies indicate that different microorganisms 

survived the various depressurization rates.  

Hydrate Saturation.  The dissociation test showed a hydrate saturation Shyd=23 %; 

this value is considered high value for fine grained sediments [Waite et al., 2009].  
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Phase Transition.  Lack of collocation between the thermocouple and the sediment 

where dissociation takes place did not allow a clear detection of the P-T phase boundary 

during dissociation. The temperature drop can be calculated using geometrical and physical 

properties of the system consisting of quartz (soil), stainless steel (BIO-chamber), hydrate 

and water (Table 7.3). The endothermic heat required to dissociate hydrate in the sediment 

is HDiss: 

kJVLH hhhDiss 3.7       [7.2] 

where L [kJ/kg] is the latent heat, ρ [kg/m3] density, V [m3] volume, and subscript h is used 

to denote hydrate. The endothermic heat of dissociation causes a volume-average 

temperature drop ∆T equal to: 

VcVcVcVc

H

Vc

H
T

qqsssssshhhwww

Diss

iii

Diss

 



    [7.3] 

where c is specific heat and subscripts w=water, q=quartz, and ss=stainless steel. The 

computed temperature drop ∆T=−0.2°C is in agreement with the temperature drop 

∆T=−0.13 °C, measured ~20 mm away from the cooling specimen. 
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7.5 Conclusions 

 

The BIO-chamber was deployed to conduct biological studies in the context of 

hydrate-bearing sediments. The chamber was first deployed as part of the pressure-core 

characterization studies for the Nankai Trough. Salient conclusions from this experience 

follow: 

 The BIO-chamber allowed for the successful collection of uncontaminated bio-

samples at in-situ pressure and temperature while preserving anaerobic 

conditions. 

 The spread method for cell counts detects viable cells. However, the aerobic 

implementation in this first study was lethal to anaerobes such as methanogens; 

previous studies based on staining methods identified both alive and dead cells. 

Consequently, cell counts in this study were lower. 

 Surviving microorganisms showed clear temperature-dependent growth rate. 

 Evidence of depressurization rate effects on survivability is limited to changes 

in colony color.  

 The measured hydrate saturation is Shyd=23%. The measured global 

temperature drop inside the BIO-chamber is compatible with this hydrate 

saturation. 
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Table 7.1 Experimental study – parameters: (a) weight of samples obtained for different 

depressurization tests and (b) experimental matrix – number of agar plates 

used for cell counts 

(a) 

 
Sample 

Number* 

Depressurization Rate 

min30

7MPa
 

min1

7MPa  
s

MPa

2

7  

Collected Soil 

Weight [g] 

1 to 3 0.21 0.4 1.34 

4 to 6 0.13 0.16 0.17 

*The total number of samples is six. 

 

(b) 

Number of  Agar Plates (1 atm) 

Depressurization 

rate 

T=4 ºC T=10 ºC T=30 ºC 

Dilution 

10-1 

Dilution 

10-3 

Dilution 

10-1 

Dilution 

10-3 

Dilution 

10-1 

Dilution 

10-3 

min30

7MPa
 3 3 6 6 3 3 

min1

7MPa
 3 3 6 6 3 3 

s

MPa

2

7  3 3 6 6 3 3 
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Table 7.3 Gravimetric and thermal properties of materials in the BIO-chamber 

 CH4-Hydrate Water SS316 Quartz 

Latent heat 

[kJ/kg] 
4351)    

Density 

[kg/m3] 
9292) 10003) 80004) 26505) 

Specific Heat 

[kJ/kg·°C] 
2.0312) 4.23) 0.54) 0.735) 

Volume [ml] 18.1 1018.7 8592.2 160.0 

1) Handa (1986) 

2) Waite et al. (2007) 

3) Weast (1987) 

4) ASM Internaltional Materials Properties Database Committee (2002) 

5) Kaye and Laby (Tables of physical and chemical constants, National Physical 

Laboratory, 2008, http://www.kayelaby.npl.co.uk/) 

 

  

http://www.kayelaby.npl.co.uk/
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Figure 7.1 Core, sample cut for bio-studies and its grain size distribution (from AIST 

and JOGMEC, 2012).  
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(a) 

 

(b) 

Figure 7.2 Experimental configurations with the BIO-chamber: (a) operations in the cold 

room and (b) manifold and three bio-reactors. 
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Figure 7.3 Culture at different times. Depressurization rate=7MPa/2s, 4ºC and 10-1 

dilution. 
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Note: The CH4-hydrate stability boundary of pure water and seawater are presented below 

[Tishchenko et al., 2005]: 
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where T [K] is temperature, Psw
dis [Pa] the dissociation pressure in seawater, and S 

[‰] salinity. 

Figure 7.4 Pressure and temperature during the controlled depressurization.  
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Figure 7.5 Cell counts in hydrate-bearing sediments [Cragg et al., 1996; Li et al., 1999; 

Reed et al., 2002; Knittel, et al., 2003; Kormas et al., 2003; Mills et al., 2003; 

Newberry et al., 2004; Colwell et al., 2005; Inagaki et al., 2006; Webster et 

al., 2006; Colwell et al., 2011; Mills et al., 2012] and theoretical limits (gray 

lines) to cell numbers due to pore size restriction [Phadnis and Santamarina, 

2011]. 
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CHAPTER 8 

CONCLUSIONS 

 

This study focused on hydrate-bearing sediments with emphasis on fine-grained 

sediments in view of gas production. Experiments and analyses addressed the classification 

of fines, volume changes in sediments resulting from hydrate dissociation, capillarity in 

multi-phase systems, gas propagation mechanisms, high-pressure chambers for 

characterization and fundamental biological experiments. Salient conclusions from this 

study follow. 

 

Fine and Fine-Grained Sediments 

 A new procedure is recommended for fine-grained soil classification. It 

highlights sensitivity to electrical forces and specific surface. 

 The fall cone test can be used to assess the electrical sensitivity of fines due to 

change in van der Waals attraction and the double-layer repulsion. 

 

Volume Contraction during Hydrate Dissociation 

 Volume changes in sediments during thaw consolidation depend on the initial 

void ratio, ice or hydrate saturation and vertical effective stress.  

 Terminal void ratios during thaw consolidation are between emin and emax.  

 A new approach is proposed to estimate the possible vertical strain that sandy 

or silty sediments can experience during hydrate dissociation. It takes into 

account the initial relative density, the state of stress and the compression index.  
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The Effect of Surfactants on Capillarity during Mixed-Fluid Flow 

 Capillary pressure in multi-phase systems depends on flow channel geometry 

and interfacial tension.  

 Surfactants reduce interfacial tension and can be used to modify contact angles 

and lower capillary pressure. 

 Surfactant self-regulation and adsorption at pore throats alters the capillary 

pressure response as the gas-liquid interface passes through pore throats.  

 

Gas Recovery from Fine-Grained Sediments 

 Gas propagation in hydrate-bearing sediments depends on gas flow rates and 

sediment types.  

 Either capillary or drag forces can cause gas-driven fractures in fine-grained 

sediments during hydrate dissociation, particularly at stratigraphic boundaries.  

 Gas-driven fractures facilitate gas recovery from fine-grained hydrate-bearing 

sediments. This gas recovery mechanism expands the potential for gas-recovery 

to fine-grained hydrate bearing sediments.  

 

Pressure Core Characterization Tools  

 A set of unprecedented pressure core characterization tools PCCTs was 

designed, built and deployed to manipulate sub-sample and conduct extensive 

assessment of natural gas hydrate-bearing sediments under in-situ pressure, 

temperature, and effective stress conditions.  
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 PCCTs can also be deployed to study other gas rich hydrocarbon formations 

such as deep-sea sediments, coal bead methane and gas shales.  

 

Nankai Trough Pressure Core Study – Biological Studies 

 A BIO-chamber was designed and built to gather bio-samples for biological 

tests without hydrate dissociation or contamination and under anaerobic 

conditions.  

 Viable cells were identified at the Nankai Trough.   

 Microorganism growth tests confirmed temperature effects.  

 The measured hydrate saturation for the tested fine-grained sediments at the 

Nankai Trough was Shyd=23%.  
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