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SUMMARY 

 

A new nanodosimetry-based cell survival model for mixed high- and low-LET 

radiation has been developed. The new model employs three dosimetry quantities and 

three biological quantities.  The three dosimetry quantities are related to energy 

depositions at two nanometer scales, 5nm and 25nm.  The three biological quantities are 

related to lesion production and interaction probabilities, and lesion repair rate.  The 

model assumes that the lesions created at the two nanometer scales are directly or 

indirectly responsible for cell death depending on the lesions� interaction and repair rate.  

The cell survival fraction derived from the new model can be expressed by the familiar 

dose-dependent linear quadratic formula, .  The coefficients 2DD βα + α and β  are based 

on the three nanodosimetry quantities and the three biological quantities. 

Validation of the new model has been performed both by using published data 

and by the experimental data obtained. Published cell survival curves for V-79 Chinese 

hamster cells irradiated with various LET of radiations were used for validation. Cell 

survival experiments were performed using V-79 cells irradiated with 60Co gamma-rays 

with different dose rates to verify the validation results using the published data. The new 

model was applied to radiation therapy by irradiating V-79 cells with mixed fission 

neutron and gamma-rays. The validation results showed that this new model can be used 

to predict the cell survival and synergistic effect for mixed high- and low-LET 

irradiation.  
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CHAPTER 1 

 

INTRODUCTION 

 

 Studies on cell survival under mixed low- and high-LET radiation have been of 

great interest to radiation biologists both scientifically and pragmatically [1-4].  On the 

scientific front, the prediction of cell response to a mixed radiation field poses a great 

challenge because it requires a detailed understanding of the mechanisms by which a cell 

is killed by radiation at the cellular and sub-cellular levels.  Pragmatically, there is a need 

for the ability to predict of the tissue response for several new radiation therapy 

modalities that use mixed LET radiation [5]. 

 Most experimental results have shown that the low-LET radiation and high-LET 

radiation do not act independently and that synergistic effects exist between the two 

types of radiation. Attempts have been made to use various cell survival models to 

predict the synergistic effects [6-8].  Through the last six decades, the cell survival 

models have evolved from a simple mathematical exercise of the target theory 

presented in 1949 to the latest microdosimetry-based models that include the complex 

lesion interactions and repair processes [9-14].   Many of these models were used to 

predict radiation effects other than cell survival fraction, namely the yield of DNA 

double strand breaks and various types of chromosome aberrations.  Generally 

speaking, the development of biophysical models is hampered by poor understanding of 

the nature of the radiation-induced lesions, their repair kinetics and interactions at the 

DNA and chromatin levels. 

In the last decade or so, numerous studies have been reported on the initial 

spectrum of radiation-induced DNA lesions, their repair mechanisms and kinetics, and 
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how they are related to cell death [15-26].  To keep abreast of the latest knowledge, this 

thesis presents a new nanodosimetry-based cell survival model that can be applied to 

predict the cell survival fractions for mixed high- and low-LET radiations.  

This thesis has two major goals. The first goal is to develop a new cell survival 

model which can predict the survival fractions caused by a mixed high- and low-LET 

radiation field.  The second goal is to validate the new model with experimental results 

obtained using V79 Chinese hamster cells.  The thesis is presented in eight chapters.  

Chapter 2 gives a literature review on a few important subjects in cellular radiation 

biology including the various cell survival models.  The new nanodosimetry-based cell 

survival model is then presented in Chapter 3.  Chapter 4 presents the model validation 

method that employs the previously published cell survival data. Chapter 5 describes the 

experimental facilities and presents the computational and experimental methods and 

results for obtaining the relevant dose quantities for the V79 cell survival experiment.  

The actual cell survival experiment and results are presented in Chapter 6.  Chapter 7 

presents the application of the new model to radiation therapy.  Conclusions and 

recommendations for future work are presented in Chapter 8.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Radiation Induced DNA Lesions 

 

The radiation damage to the DNA molecule is believed to be directly responsible 

for causing death to the irradiated cells.  Two general classes of interactions of radiation 

with DNA can be identified: direct and indirect actions.  The direct action refers to when 

the energy of a radiation particle is directly absorbed by the DNA molecule and cause 

damage.  The indirect action refers to when the energy of a radiation particle is absorbed 

by the solvent molecules (e.g. water) to produce reactive species (e.g. free radicals), 

which in turn diffuse and react with DNA.  Ionizing radiations are known to produce 

many different types of molecular damage to DNA, such as DNA single strand breaks 

(SSB), DNA double strand breaks (DSB), DNA protein cross links and base damage 

pathway, etc.[27]  Over the past two decades emphasis has shifted to DSBs as the critical 

damage for radiobiological effects. It has been indicated that the biological consequences 

of ionizing radiation are determined by their clustering properties at the level of the DNA 

duplex [28].  The current picture of radiation induced DSBs, the distribution of DSBs, 

and the relationship between the radiation quality and the DSBs are reviewed in this 

section.  

 

2.1.1 DSBs induced by Low-LET Electrons and Photons 
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For low-LET electrons, the majority of hits in DNA do not lead to damage in the 

form of strand breaks. When strand breaks do occur, there are far more SSBs than DSBs. 

Among the DSBs, most are simple double strand breaks (sDSBs) � i.e. two SSBs occur 

on opposite strands within 10 base pairs (bps); a small (but significant) portion of these 

are complex double strand breaks (cDSBs) � i.e. a sDSB accompanied by at least one 

additional strand break within 10 bps [29].  

It was shown by V. Michalik [30] that electrons with energies between 200 and 

500 eV are most effective in producing DSBs, especially cDSBs.  Because these 

electrons deposit all their energy within a distance of 5-10 nanometers, this clearly 

reflects the fact that the ion clusters (of high ionization density) of the size of a few 

nanometers are highly effective in producing DSBs and cDSBs.  Figure 2.1 shows the 

yields of DSBs and cDSBs as a function of electron energy. 

 

Figure 2.1. Yield of double-strand breaks produced in electron tracks as a function of 

the initial electron energy E0. Total DSB (solid line), simple DSB(short dashed line), 

Complex DSBs( long dashed line). Adopted by V. Michalik  
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The above finding is further strengthened by studies on DNA lesions performed 

with the ultrasoft X-ray [15, 31-32].  These studies showed a large RBE value for the 

carbon K-shell ultrasoft X-ray when compared to a typical low-LET irradiation (e.g. with 
60Co gamma ray).  In fact, the cell survival curve of the carbon K-shell X-ray is very 

similar to that of high-LET radiations.  Studies also found that the yield of DSBs 

produced by the oxygen K-shell X-ray is roughly the same as that produced by typical 

low-LET gamma rays. 

The above findings, therefore, indicate that it is the cDSBs (not the sDSBs) that 

are mostly responsible for cell death.  It has been estimated that the mass density of 

inner-shell photoionizations is 1.6 times larger than that in the plasmid DNA for the same 

average dose to the sample [33-34].  

 

2.1.2 DSBs Induced by High-LET Particles 

 

Experimental results have shown that while the efficiency for cell killing 

significantly increases with increasing LET, the yields of DSB per unit dose remain 

similar or may even decrease [35]; but the yield of complex DSB per unit dose is 

proportional to the LET.  H.Nikjoo et al.[36] showed that nearly 30% of DSBs are of 

complex form for low-LET radiation, but this rises to about 70% for high-LET radiation. 

The dominant feature associated with high-LET radiation was found to correspond to a 

class of ion clusters in nucleosome size targets (i.e. 5-10 nanometers in diameter) [37].  

This finding is consistent with that obtained from the low-LET studies � i.e. the cDSBs 

(not the sDSBs) are mostly responsible for cell death.  In addition, the cDSBs are mostly 

produced by the ion clusters of the size of 5-10 nanometers. 

Other studies showed that, although the number of DSBs does not change with 

increasing LET, the number of DNA fragments produced during high-LET irradiation is 

proportional to LET and the spatial distribution of DSB and fragments induced by high-
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LET radiations is non-random [38]. Due to the spatial correlation of ionization clusters 

along a high-LET particle track, and with the periodicity of DNA folding on all levels of 

chromatin organization in the cell, short and medium sized DNA fragments are almost 

certainly produced; and there is an increased probability that short and medium-sized 

DNA fragments will form with increased high-LET irradiation.  So compared with low-

LET radiation, high-LET radiations generate more clustering on all scale levels (from the 

nanometer to the micrometer).  Consequently, the damage by high-LET radiations is 

much more complex.   In addition, because many DNA lesions along a high-LET particle 

track are spatially very near one another, many of the adjacent DNA lesions interact with 

each other to form more complex lesions on the chromatin fiber level, which has a 

diameter of 25- 30 nm. [39-41]  

 

2.2 Repair Mechanisms for DSBs 

 

There are two known cellular mechanisms for repairing DSBs: homologous 

recombination and nonhomologous recombination. Homologous recombination requires 

an undamaged DNA strand as a participant in the repair. The nonhomologous repair is 

simply an end-to-end rejoining recombination, which, therefore, is an error-prone process 

and probably accounts for many of the premutagenic lesions induced in the DNA of 

human cells by ionizing radiation.  Regardless of its error-prone nature, nonhomologous 

end joining (NHEJ) is the major repair pathway for DSBs in mammalian cells [42]. The 

time-course of NHEJ repair has generally been described as being biphasic and the half-

times of the two phases differ for different cell lines. Typically the average half-time of 

these two phases were 5-30 minutes and 1-3 hours, respectively, and are independent of 

LET [43-44].  The majority of DSBs were rejoined by the fast phase, but the fraction of 

DSBs rejoined by the slow phase and the fraction of unrejoined DSBs at 20-24 hours 

increased with increasing LET. [45] 

 6



 

Lobrich, Rydberg, Cooper and their colleagues, [46-48] have used the restriction 

fragment sizes combined with the pulsed-field gel electrophoresis and obtained a good 

measure of rejoining relative to misrejoining.  They found that the repair kinetics was 

generally slower after irradiation with high-LET particles when compared to X-ray 

irradiation and that a larger proportion of the DSBs remained unrepaired after 24 hours.   

Also, with increasing LET the correct amount of end rejoining decreased. This 

indicates that as the complexity of the DSB increases, repair by NHEJ becomes severely 

inhibited [49]. 

 

2.3 Mechanisms of Radiation-Induced Cell Death 

 

There are three different mechanisms of cell death: necrosis, apoptosis, and 

mitosis linked cell death.  While the first two mechanisms directly result in the actual cell 

decomposition, the third mechanism does not. 

Necrosis is an acute pathological cell death.  It generally results from cell injury 

or from lack of oxygen or essential metabolites, and it is characterized by a tendency for 

cells to swell and ultimately lyses. This, in turn, allows the cell�s contents to flow into the 

extracellular space.  At the tissue level, necrosis is usually accompanied by an 

inflammatory response. 

Apoptosis is also called programmed cell death; it is characterized by a 

stereotyped sequence of morphologic events.  It involves shrinkage of the nucleus and 

cytoplasm, followed by fragmentation and phagocytosis of these fragments by 

neighboring cell or macrophages.  As a mode of radiation-induced cell death, apoptosis is 

highly cell-type dependent.  

Mitotic-linked cell death is often referred as the reproductive cell death.  In this 

case, the body of the cell may still be present and apparently intact after irradiation, it 

may be able to make proteins or synthesize DNA or may even be able to struggle through 
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one or two mitoses; but as long as it has lost the capacity to divide indefinitely (as a lively 

cancer cell does), it is considered to be dead.  Since the mitotic-linked death is most 

relevant to the in-vivo studies of cell survival in this study, it is hereafter used as a 

synonym for cell death. 

 

Studies show that mitotic-linked cell death resulting from chromosomal 

aberrations is the main route of radiation-induced cell death and that the apoptosis 

occurring either before or shortly after the cells divide following irradiation is responsible 

for only a very small fraction of radiation-induced cell death [50]. 

 

2.4 Cell Survival Models 

 

 The earliest cell survival model was proposed and summarized by Lea in 1949 

[9]. It has come to be widely known as the target theory of cell killing. The first version 

of the target theory is the single-target single-hit inactivation, which assumes that one hit 

in the single target will cause cell death, and it leads to the form of survival curve shown 

in Fig. 2.2A. The survival curve is exponential, and it is a straight line in a semi-

logarithmic plot of survival fraction versus dose. 

 These straight line survival curves can only be found in the inactivation of viruses 

and bacteria. For most of the mammalian cell lines, they are only appropriate in 

describing the very sensitive human cells or in the very high LET radiations. So a more 

general version of the target theory, called multi-target single-hit inactivation, was 

developed. It proposes that just one hit by radiation on each of n sensitive targets in the 

cell is required for death of the cell. The survival curve is shown in Fig. 2.2B, and it is an 

�off the shoulder� curve.  

 

 

 8



 

 

 

 

Figure2.2 The two most common types of target theory. A: single-target inactivation; B. 

Multi-target inactvation. 

 

 In the 1960�s, as experience with mammalian cell lines grown in tissue culture 

increased, it became clear that many cell lines have survival data that do not agree with 

the formula described by the target theory [51-52].   

 In the 1970�s and 80�s, more models were proposed with the aim to account for 

DNA damage and to replace the target theory.  A most noticeable characteristic of these 

models is that the cell survival fraction (S) of most of these models can be expressed as 

the linear-quadratic formula, i.e. , which is generally true for most of 

the mammalian cells for survival fractions greater than 10

2ln DDS βα +=−

-3 [53].  Some of the 

representative models are described in the following paragraphs. 
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Most of the currently existing models can be referred as the binary lesion 

interaction (BLI) models.  The idea of BLI was first brought up by Neary et al. in 1965 

[54]. They assumed that two lesions may interact to form aberration in a given volume 

and two lesions within a potential interaction distance may be obtained by either single 

particle traversal through the sensitive structures or by the passage of two particles. Most 

of the BLI models were developed between the early 1970�s and the mid 1980�s.  The 

representative ones include repair-misrepair model (RMR) [12] , lethal-potential-lethal 

(LPL) [14] model, and the theory of dual radiation action (TDRA) model [55-56]. 

The RMR model directly deals with the DNA repair processes [12, 57]. It 

describes the yield of relevant macromolecular lesions per cell as a function of dose (D) 

(see Fig. 2.3).  There is a time (t)-dependent transformation of these lesions, and 

accompanying time- and dose-dependent probabilities of survival(S), lethality (L), and 

mutation (M).  The model also postulates a class of lesion U, which stands for 

the�uncommitted� lesion. There are many repair states that are the result of 

transformation of U lesions.  
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Figure 2.3 Repair-misrepair model 

 

 

The LPL [14, 58] model proposes a unified repair of cell killing.  As shown in 

Fig. 2.4, the model has two sensitivity parameters, Lη , which determines the number of 

non-repairable lesions produced per unit dose, and PLη , which determines the number of 

repairable lesions.  There are also two rate constants PLε and PL2ε , the rate at which they 

undergo interaction and thus misrepair.  
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Figure 2.4 Lethal-potentially-lethal model 

 

 

The LPL and RMR models present a class of kinetic (reaction rate) models that 

attempt to link radiation damage to higher level end points through biologically plausible 

first- and second-order repair processes. 

The TDRA was first developed more than three decades ago as an attempt to 

explain the empirical observation of the large values of relative biological effectiveness 

(RBE) associated with high LET particles.  Since then, the theory has been revised twice, 

with the latest version known as the theory of compound dual radiation action (CDRA) 

[59]. 

In the theory of CDRA, the primary lesions are the SSBs and two of them can 

interact and combine to form a DSB, which by itself can induce simple chromosome 

breaks, or a pair of DSBs can interact (or combine) to form so-called two-break 

chromosome aberrations in �compound dual radiation action�.  In each case, pairs of 

entities combine to form lesions that can cause injury or death of cells.  Fig. 2.5 is a 

graphic description of the CDRA theory. 
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Figure 2.5 The CDRA cell survival model 

 

 The original TDRA included a microdosimetry quantity, and the CDRA theory 

made additional improvements by including microdosimetry quantities at two 

microscopic scales (5 nm and 1 µm) [60].  It has long been recognized that the ultimate 

biophysical model for cell survival must be based on microdosimetry quantities that 

include energy deposition, track structure, biomolecular targets, and cell repair 

mechanisms, etc [61]. The TDRA, however, has been under a great deal of criticism 

because it defines the dimensions of separation of the interacting sites in micrometer 

terms while biochemistry tells that the interactions cannot be separated by more than a 

few base pairs.  

 In addition to the BLI models, one other model called the repair saturation (RS) 

model also worth mentioning.  The RS model proposed that the shape of the survival 

curve depends only on a dose-dependent rate of repair [13,62].  Only one type of lesion 
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and single-hit killing were postulated.  As such, in the absence of any repair, these lesions 

produce the steep �single-target single-hit� survival curve.  The final survival curve 

results from repair of some of these lesions.  Under low-dose and low-dose-rate 

irradiations, there are plenty of repair enzymes available; and therefore, most of the 

damage can be repaired.  Under high-dose and high-dose-rate irradiation, however, the 

repair enzymes become saturated so that many damages become fixed before they can be 

repaired.  In other words, the �repair saturation�, rather than the �lesion interactions 

assumed in the BLI models, is the cause of steeper slopes of survival curves for high-dose 

and high-dose-rate irradiations. 

 With the advent of the new cell and molecular biology techniques, e.g. the 

premature chromosome condensation (PCC) technique and the pulsed-field gel 

electrophoresis technique (FAR), much data has been obtained, especially the data related 

to the yield of strand breaks and the size distribution of DSB fragments [63].  More 

detailed cell survival models have recently been developed based on these new data.  One 

of the representatives is called a track structure model. [31,37,64-65]  Track structure, as 

a branch of theoretical physics, uses a quantity called �cross-section� to represent the 

probability of these processes for the simulation of what actually happens in the medium. 

They use Monte Carlo track structure simulation code to follow the history of electron 

interactions in liquid water. The code follows the primary and all the secondary electrons 

generated in liquid water until they are thermalized, recording the coordinates of all 

inelastic interactions, the amount of energy deposited at the point of interaction, the type 

of interaction and the time of generation of initial radical species. Track structure models 

have successfully predicted the distribution of DNA lesions in cells such as the yield and 

distribution of SSBs, DSBs and clusters of DSBs.  But to link these lesions to the cell 

death, more work still needs to be done. 
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 Another recently developed cell survival model is called Two-Lesion Kinetic 

Model (TLK) [66-67]. This model extends and refines the formalism of the earlier LPL 

and RMR kinetic models.  Detailed DSB rejoining processes are treated to better link 

biochemical processing of the double strand breaks to cell killing.  A unique aspect of the 

TLK model is that break ends associated with both sDSB and cDSB are allowed to 

interact in pairwise fashion to form irreversible lethal and nonlethal damages.  While 

TLK can be used to estimate the yield and distribution of DNA lesions, it does not predict 

the cell survival fraction especially for mixed high- and low-LET irradiation. 

 In summary, through the last six decades, the cell survival models have evolved 

from a simple mathematical exercise of the target theory presented in 1949 to the latest 

microdosimetry-based models that include the complex lesion interactions and repair 

processes [5,61,68-70].  Generally speaking, the development of cell survival models is 

still hampered by the lack of understanding of the nature of the radiation-induced lesions, 

their repair kinetics and interactions at the DNA and chromatin levels. 
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CHAPTER 3 

 

THE NEW NANODOSIMETRY-BASED CELL SURVIVAL MODEL 

  

3.1 Arguments on Cell Death Mechanisms 

 

From Chapter 2, it is known that radiation induces DNA lesions and that the 

initial spectrum of the DNA lesions and their repair efficiencies are closely related to the 

radiation quality (i.e. RBE) and to the environment within the cell nucleus at the time of 

irradiation.  But there is still a debate as to what is the precursor (or cause) that leads to 

chromosome aberrations and cell death.  Most researchers believe that the DNA DSB is 

the key target that directly leads to chromosome aberrations and cell death.  Others, 

however, believe that radiation damage not involving DNA could also be of crucial 

importance [71].   

Hofer et al. [23-26] show clearly in their experiments that DNA damage alone is 

not sufficient to kill cells.  In their studies, Chinese hamster ovary cells were 

synchronized at the G1/S-phase and were pulse-labeled with 125I-iododeoxyuridine (a 

DNA precursor) 30 min after they entered the S phase.  The 125I is an auger emitter by 

electron capture emission and/or internal conversion.  More than 99% of these emissions 

are low-energy electrons with a very short range in biological material.  So the electron 

dose emitted from 125I is deposited in a sphere with radius of about 40 nm around the 

decay site.  It has been calculated that the radiation dose in the immediate vicinity of 125I 

can exceed that deposited by a densely ionizing 5-MeV α particle with an LET of 100 

keV/µm.  The cell survival curves observed in Hofer�s experiments, however, were the 
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same as the ones exposed to low-LET radiation within 1 hour after pulse labeling.  This 

contradicts to the results of cell survival curves for high-LETs.  So this suggests that 

damage to a non-DNA structure (e.g. nuclear matrix attachment site, proteins forming the 

base of the DNA loop domain, or a high-order chromatin structure at the chromosome 

backbone) is also involved in cell death. 

While the biological nature of the radiation-induced subcellular lesions 

responsible for cell death is unclear, it is still possible to develop a cell survival model.  

The author argues that one only needs to take into consideration the two specific sizes of 

subcellular target, 5 nm and 25 nm, which have been identified to be most relevant to cell 

death.  As such, several dosimetry quantities based on these two nanometer target sizes 

were incorporated into the formulation of the new cell survival model.  The supporting 

arguments are presented below. 

The notion that the target size of 5 nm in diameter is important in radiation-

induced cell killing is supported by both physical and biological evidence.  Physically, it 

is a well known that a majority of the irreparable damage caused by the low-dose-rate 

low-LET radiations is caused by the delta rays (i.e. secondary electrons) with energies 

between 200 eV and 500 eV.   This is because these electrons deposit all their energies in 

short distances between 5 nm and 10 nm, and thus form ion clusters which, in turn, 

produce irreparable damage.  Biologically, the fact that the ultrasoft X-ray is significantly 

more efficient in cell killing than the 60Co gamma ray further asserts that ion clusters of 5 

nm in diameter produced by 200-300 eV electrons are most relevant to cell death [72].  

The notion that the target size of 25 nm in diameter is important in cell killing is 

also well supported.  Several studies showed that clusters of DNA lesions distributed over 

a chromatin fiber, which is around 25 nm in diameter, give rise to kilobase-sized DNA 

fragments (small and medium size fragments), and the yield of these DNA fragments per 

unit dose is proportional to LET of the radiation.  This finding is consistent with the fact 

that 5-nm-diameter ion clusters are closely spaced along a high-LET particle track 
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resulting in closely spaced lesions, which in turn, may interact to form a 25-nm-diameter 

(or kilobase-sized DNA fragments) lesion.  One more evidence is from the comparison of 

the cell survival curves of α particles with those of ultrasoft X-ray.  While the mean 

energy deposition in a 5-nm-diameter target of α particles is comparable to that of 

ultrasoft X-ray, the slopes of α-particle survival curves are significantly steeper than that 

of ultrasoft X-ray, suggesting that two nearby 5-nm-diameter lesions may interact or 

combine to form a high-order lesion (i.e. 25 nm in diameter). 

 
3.2 Premises 

 
The new model is based on the following six premises: 

 
Premise (1). There are three independent routes leading to cell death.  As shown 

in Fig. 3.1, all three routes start with the 5-nm lesions produced by the ion clusters and go 

through an intermediate stage of chromosome (or chromatid) break (CB).  Specifically, 

route 1 corresponds to a CB directly resulting from a 5 nm lesion; route 2 corresponds to 

a CB resulting from the combination of (or interaction between) two nearby lesions 

produced by the same radiation track (represented by the dashed box in Fig. 3.1); and 

route 3 corresponds to a CB resulting from the combination of (or interaction between) 

two distant lesions produced by two separate radiation tracks.  
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                                             Figure 3.1 Various routes leading to cell death 

 

Premise (2).  There are two types of 5 nm-diameter lesions: the irreparable lesion 

(IL) and the reparable lesion (RL).  The number of ILs in a cell via route 1 is linearly 

proportional to both the absorbed dose, D, and the nanodosimetry-based probability, , 

defined by 

1F

        (3.1) ∫
∞

=
  

eV  002  
1  )(       εε dfF

 

where f(ε) is the single-event frequency distribution function of energy 

deposition, ε, per unit dose in a 5 nm x 5 nm cylindrical target. 

 

Premise (3).  The repair mechanism of the RLs follows one-compartment 

kinetics. 

 

Premise (4).  The number of CBs produced is linearly proportional to the number 

of ILs. 

 

5-nm lesion 

5-nm lesion 

5-nm lesion 
Route 2

Route 1 Chromosome or 
chromatid break Clonogenic cell death 

       
Route 3
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Premise (5). The number of ILs produced via route 2 is linearly proportional to 

both the absorbed dose, D, and the nanodosimetry-based probability, , defined by 2F

        (3.2) ∫
∞

=
  

eVk  1  
2  )(        εε dfF

where f(ε) is the single-event frequency distribution function of energy 

deposition, ε, per unit dose in a 25 nm x 25 nm cylindrical target. 

 

Premise (6). The number of ILs produced via route 3 is proportional to the square 

of the total number of randomly distributed RLs integrated over time.  The number of 

RLs per cell is linearly proportional to both the absorbed dose, D, and the nanodosimetry-

based probability, , defined by 3F

        (3.3) ∫=
keV 1  

eV  100  
3  )(        εε dfF

where f(ε) is the single-event frequency distribution function of energy 

deposition, ε, per unit dose in a 25 nm x 25 nm target. 

 

Some of the above premises are self-explanatory.  A few, however, need further 

justifications.  The assertion in Premise (1) that a 5 nm-diameter lesion can lead to a CB 

is supported by the experimental cell survival curves of the ultrasoft carbon K-shell X-

rays of which the photoelectrons have ranges less than 7 nm, as discussed in the last 

section[40,74-75].  Another assertion in Premise (1), that two distant lesions are able to 

form a CB, is consistent with the recent study on interchromosomal interactions [76].  It 

is note worthy that, while routes 2 and 3 both involve interactions of two lesions, the two 

routes are treated separately.  This is because in route 2, the interaction rate of two nearby 

lesions of the same radiation track are more-or-less instantaneous and therefore, 

independent of dose rate.  In route 3, however, the interaction rate of two distant lesions 

of two separate radiation tracks may take minutes to hours, depending on both the 
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distances between two lesions and the cell repair rate, and is, therefore, dependent on 

both the absorbed dose and the dose rate.  In Premise (2), the threshold of 200 eV for F1 

is deliberately chosen to account for the fact that the randomly distributed 278-eV 

photoelectrons from carbon K-shell X-rays are lethal [40,75-76] and for the possibility to 

cause complex DSB.  In Premise (5), F2 is introduced to assert that a high-LET radiation 

track, due to its closely-spaced ion clusters, tends to produce nearby lesions which are 

likely to combine (or interact) and form a CB [77].  In addition, the target size of 25 nm x 

25 nm (~ the diameter of a chromatin fiber) is chosen to match the kilobase-sized DNA 

fragments characteristic to damages produced by high-LET heavy ions [20-22].  The 

threshold of 1 keV is chosen so that the target with a diameter of 25 nm will consist of 

several nearby lesions caused by the closely-spaced ion clusters [77].  In Premise (6), the 

threshold of 100 eV for F3 is characteristic of reparable DNA damage [78].  The upper 

bound for F3 is set at 1 keV to discount the closely-spaced lesions of a high-LET 

radiation track.   

 

3.3 Mathematical Formulation 

 

According to Premise (2), the number of ILs in a cell can be expressed as 

 

         (3.4) DFkN IL 11=

 

where k1 is the proportionality constant.  By incorporating Eq. (3.4) into Premise 

(4), the number of CBs via route 1 can be expressed as 

 

 DFrDFkpNpN ILCB 1111111)( ===      (3.5) 
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  where p1 is the proportionality constant, and 111 kpr = . 

According to Premise (5), the number of CBs per cell produced via route 2 can be 

directly expressed as 

 

        (3.6)    DFrNCB 222)( =

 

where  is the proportionality constant. 2r

 

The algebraic expression for the number of CBs produced via route 3 is more 

complex because one needs to first obtain the expression for the number of RLs.  

According to Premise (6) the production rate of RLs in a cell can be expressed as 

 

 RRL
RL NDFk

dt
dN            33 λ−= !       (3.7) 

 

where  is the number of RLs per cell,  is the corresponding proportionality 

constant, and λ is the repair time constant for the RLs.  If one denotes T as the total 

irradiation time, then the solution of N

RLN 3k

RL(t) for t > T can be found as 

 

 )(
3

3 )1()( TtT
RL eeDF

k
tN −−−−= λλ

λ
!         (3.8) 

 

In the high-dose-rate case where T<<t and λT<<1, Eq. (3.8) is reduced to 

 

        (3.9) t
RL eDFktN  

33  )( λ−=
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According to Premise (6), the number of CBs for route 3 is proportional to 

 integrated over the time period of interest, t , which is typically a few hours.  

That is, 

2)(tN RL '

 

        ∫=
'

0

2
3 )()(

t

RLCB dttNN
  

  
     ν

                   22
3

 2
2

3  )1(
2
 '

DFe
k tλ

λ
ν −−=  

                          (3.10) 22
33 DFr=

 

 where ν is a constant representing the interaction probability between two RLs of 

different radiation tracks, and 

 

 )1(
2
 ' 2

2
3

3
te

k
r λ

λ
ν −−=                                                 (3.11) 

 

  According to Premise (1) and Eqs. (3.5), (3.6), and (3.10), the total number of CBs 

can then be expressed as 

 

  321 )()()( CBCBCBCB NNNN ++=

                                         (3.12) ( ) 22
332211     DFrDFrFr ++=
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By comparing Eq. (3.12) with the classic linear-quadratic form, , one 

obtains 

2DD βα +

  
 2211 FrFr +=α                   (3.13) 

and 
 
          (3.14) 2

33Fr=β

 

In other words, α and β  are expressed in terms of three biological quantities r1, 

r2, and r3, and three physical quantities F1, F2, and F3.  It should also be noted that the 

inclusion of the time factors λ and t� in Eq. (3.10) indicates that r3 is a function of cell 

repair rate.  The above expressions of α and β  are amenable to experimental validation 

using the vastly available cell survival data obtained from radiations of various LETs.  

Furthermore, the dose rate effect can also be examined with the above formula by 

replacing Eq. (3.9) with Eq. (3.8). 
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CHAPTER 4 

 

VALIDATION OF THE NEW MODEL WITH PUBLISHED DATA 

 

 This chapter describes how previously published data was used to validate the 

new cell survival model proposed in Chapter 3.  

4.1  Validation Method 

 As described in chapter 3, the new model can also be expressed as the linear 

quadratic model which is  and the α and β  can be expressed in terms of three 

biological quantities r

2DD βα +

1, r2, and r3, and three physical quantities F1, F2, and F3.  There is a 

unique character for these three biological parameters, which are cell type dependent and 

LET independent. So this character can be used to validate this new model. The three 

physical quantities also can be used to examine the shape of the cell survival curve.  

 Various V-79 cell survival curves, irradiated by different LET such as ultra-soft X-

ray, X-ray, gamma ray, proton and alpha particles, were selected to validate the new model 

[72,79-82].   

 Since all the cell survival curves can be expressed as the linear quadratic formula,α 

and β values can be directly derived from the cell survival curves selected for the 

validation. The three physical parameters F1, F2, and F3 can be directly obtained from the 

published data [83-85] 

 According to Equation (3.13), 2211 FrFr +=α , any two sets of values of α, F1, and 

F2 from two different survival curves selected can be used to uniquely determine  and r .  

According to Equation (3.14), , any one of the survival curves selected could give 

1r 2

2
33Fr=β
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a unique value of .  In reality, however, Equation (3.13) can only give reliable results for 

two survival curves with very different α values.  This is because each survival curve 

contains an experimental uncertainty, and when two curves have similar α values, the 

resulting values of   and  become highly sensitive to experimental uncertainties.  To 

avoid this problem, each of the two low-LET survival curves (the 

3r

r

2

1 2r

60Co gamma-ray or the 

250-kVp x-ray) is coupled with one of the nine high-LET survival curves (the various 

energies of ultra-soft x-rays, protons, and alpha particles) to obtain a total of 18 sets of 

values of  and .   1r r

 Similarly, Equation (3.14) can only give reliable values of  from a survival curve 

with a significant �shoulder�.   This is because if  is much smaller than 

3r

2Dβ Dα , the curve-

fitted value of β  would be unreliable, which, in turn, would make  unreliable. To avoid 

this problem, only those survival curves that have reasonably large β values are used for 

determining r .  The selected cell survival curves adopted from the published paper 

corresponding to different LET are in the Fig. 4.1. [72,79-82].   

3r

3
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Figure 4.1.  V-79 cell survival curves for radiations of various LETs 
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4.2 Validation Results 

 

 Table 4.1 shows the curve-fitted values of α and β for these published survival 

curves.  Also included are the calculated values of F1, F2, and F3 for the radiations of 

various LETs.  Tables 4.2 and 4.3 show the values of three biological parameters  , 

and  correspondingly. 

1r

2r 3r
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Table 4.1. The values of α and β obtained from the published V79 survival 

curves and the calculated values of F1, F2, and F3  

for various radiation types. [72,79-82]. 

Radiation type α  (Gy-1) β  (Gy-2) F1 (Gy-1) F2 (Gy-1) F3 (Gy-1) 

      

250 kVp X-ray 0.15 0.019 1.7 × 10-7 6.8 × 10-7 1.9 × 10-4 

60Co γ-ray 0.10 0.024 1.2 × 10-7 1.2 × 10-7 1.6 × 10-4 

      

CK X-ray 0.50 0.19 7.0 × 10-7 0.0 3.2 × 10-4 

AlK X-ray 0.38 0.081 4.5 × 10-7 7.0 × 10-7 2.1 × 10-4 

TiK X-ray 0.26 0.033 3.1 × 10-7 8.0 × 10-7 1.9 × 10-4 

      

0.64-MeV proton 0.65 − 6.43 × 10-7 1.69 × 10-5 1.28 × 10-4 

1.41-MeV proton 0.47 0.044 3.76 × 10-7 6.45 × 10-6 1.85 × 10-4 

3.2-MeV proton 0.37 0.036 2.71 × 10-7 2.30 × 10-6 2.33 × 10-4 

      

2.4-MeV α-particle 1.15 − 1.08 × 10-6 2.68 × 10-5 4.71 × 10-5 

3.8-MeV α-particle 1.32 − 1.13 × 10-6 3.21 × 10-5 6.72 × 10-5 

8.0-MeV α-particle 1.05 − 8.85 × 10-7 3.14 × 10-5 1.02 × 10-4 
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 Comparing α and β values from Table 4.1 for all different cell survival curves, the 

low-LET cell survival curves have lower α value than the high-LET radiation, but the Ck 

X-ray cell survival curve has a larger α value compared to the other low-LET irradiation.  

This can be explained by examining the corresponding  values.  F

 First, Comparing the F  value of these different cell survival curves, the Ck X-ray 

has a larger  value than the other lower LETs. The  value is defined in the new model 

as in route 1 which is the energy deposited probability corresponding to the energy 

threshold from 200 eV and in 5 nm volume scale. The cluster ionization within 5 nm scale 

will cause the complex DSB and can cause the irrepairable lethal lesion; this is the reason 

why ultra-soft X-ray has a higher efficiency of cell killing compared to other low-LET cell 

survivals.  

1

1F 1F

 Second, comparing the value, the value is zero for ultrsoft X-ray, but for 

high-LET irradiation such as cell survival curves for alpha irradiation,  is much bigger 

than the low-LET cell survival curves. The value is defined in the new model as in route 

3 which is the energy deposited probability; corresponding to the energy threshold from 

1keV and in the 25 nm volume scale. The heavy ion cluster within 25 nm will have the 

chance to interact each other and to cause the chromosome break which also can cause 

irreparable lethal lesion.  

2F 2F

2F

2F

 Third, comparing the F3 value, F3 is defined as the threshold probability from 

energy 100eV to 1keV. It includes the dose rate effect. Since only high dose rate was 

selected for this validation, the F3 values are very similar to each other. 

 The calculated r , r and  values are listed in table 4.2 and 4.3. 1 2 3r
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Table 4.2: The values of  r1 and r2  obtained from curve fit of  
various cell survival Curves [72,79-82]. 

Radiation type 1r  2r  
60Co γ-ray and CK X-ray 7.14E+05 1.19E+05 

60Co γ-ray and AlK X-ray 8.33E+05 4.74E+02 

60Co γ-ray and TiK X-ray   8.30E+05 3.40E+03 

60Co γ-ray and 0.64MeV proton 8.26E+05 7.02E+03 

60Co γ-ray and 1.41MeV proton 8.08E+05 2.58E+04 

60Co γ-ray and 3.2MeV proton 7.62E+05 7.11E+04 

60Co γ-ray and 2.4MeV α-particle 8.24E+05 9.72E+03 

60Co γ-ray and 3.8MeV α-particle 8.21E+05 1.22E+04 

60Co γ-ray and 8.0MeV α-particle 8.23E+05 1.02E+04 

   

250 kVp X-ray and CK X-ray 7.14E+05 4.20E+04 

250 kVp X-ray and AlK X-ray 8.90E+05 1.85E+03 

250 kVp X-ray and TiK X-ray 7.59E+05 3.07E+04 

250 kVp X-ray and 0.64MeV proton 8.59E+05 5.77E+03 

250 kVp X-ray and 1.41MeV proton 7.71E+05 2.79E+04 

250 kVp X-ray and 3.2MeV proton 4.52E+05 1.08E+05 

250 kVp X-ray and 2.4MeV α-particle 8.47E+05 8.77E+03 

250 kVp X-ray and 3.8MeV α-particle 8.36E+05 1.17E+04 

250 kVp X-ray and 8.0MeV α-particle 8.44E+05 9.66E+03 
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Table 4.3.  The values of  r3  obtained from curve fit of  
various cell survival curves[72,79-82].   

Radiation type 3r  

250 kVp X-ray 1.06E+06 

60Co γ-ray 9.39E+05 

TiK X-ray 9.22E+05 

3.2-MeV proton 6.76E+05 

 

 

 Table 4.2 shows that the values of  fluctuated very little, indicating that the 

choices of target size and threshold energy associated with F

1r

1 are quite good.  The values 

of  and , however, are not very consistent.  These inconsistencies exist for the 

following reasons.  First, since is related to the intra-track interaction (whose 

probability is represented by ),  the r

2r

2r

3r

3r

2r

2r 2 values obtained from the soft X-rays and high 

energy protons are unreliable and should be discarded.  Second, the cell survival curves 

used in this study are not perfect data for calculating these biological parameters.  In fact, 

none of the curves that contain data for doses below 1 Gy.  Consequently, the curve-fitted 

α values obtained from these curves cannot possibly be of high accuracy.  If the α values 

are questionable, then the corresponding β values also become questionable.  This 

explains the inconsistency among the  values.  Another factor causing the uncertainty 

of and  has to do with the cell-cycle phases.  This is because the cells used in these 

experiments were not synchronized in cell-cycle phases and because cells at different 

cycle phases have very different sensitivities to radiation.   

3r
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 By averaging all the r  values from Table 4.2, one obtains  =8  ± 

6.02%.  By averaging all the reliable values of  (i.e. with those in bold face discarded) 

from Table 4.2, one obtains =9  ± 23%.  Although  still has a large 

uncertainty, it does not greatly affect the accuracy of α, which is very much dominated 

by the accuracy of .  The average value is 7  ± 25% for high-dose-rate 

irradiation, and the uncertainty of  may be reduced in the future when more accurate 

cell survival data become available.    

1

2r

1r
51015. ×

2r

31038. ×

3r

3r

2r

11Fr 51067. ×
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CHAPTER 5 

 

EXPERIMENTAL FACILITIES AND DOSE EVALUATION 

 

V-79 cell survival experiments were conducted to provide additional validation 

for the new cell survival model.  V-79 cells were irradiated with two different radiation 

fields: a 60Co gamma-ray field and a mixed neutron and gamma-ray field of a nuclear 

reactor.  The 60Co gamma-ray irradiation was conducted at the hot cell in the Neely 

Nuclear Research Center of Georgia Institute of Technology, and the mixed neutron and 

gamma-ray irradiation was conducted at the University of Maryland Training Reactor 

(MUTR). 

In the 60Co gamma-ray irradiation experiment, the cell flasks were placed at 

various distances from a NIST-traceable source whose corresponding dose rates were 

accurately measured and verified.  Since the irradiation geometry is straightforward, no 

further description is necessary.  This chapter mainly describes the irradiation facilities at 

the MUTR and discusses how the neutron and gamma ray dose components were 

determined.  

 

5.1 Experimental Facilities 

 

The MUTR is an open pool type reactor with a maximum licensed, steady state, 

thermal power of 250 kW.  The reactor is fueled with 24 modified TRIGA fuel clusters. 

The reactor core consists of a total of 93 fuel rods - 20 fuel clusters each containing four 

fuel rods, one fuel cluster containing three fuel rods, an instrumented fuel rod, and the 

remaining three assemblies each contains three fuel rods and a control rod guide tube. 

The fuel rods are enriched to <20 w/o in 235U, and each of the fuel rods contains a top and 
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bottom slug of graphite which act as reflectors. Additionally, two graphite reflector 

elements are positioned in the assembled core, adjacent to two of the outer fuel 

assemblies.  

The reactor contains five experimental facilities. The graphite filled thermal 

column, the two (east and west) beam tubes, one through tube allowing relatively large 

samples to be placed adjacent to the core, and a pneumatic transfer system allowing small 

samples to be placed directly into the center of the core.  The cross-sectional view of 

some of the MUTR components is shown in Fig. 5.1. 
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Fig. 5.1  Cross-sectional view of the MUTR Core 
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Before the actual cell irradiation experiment, several measurements were made to 

help decide the cell irradiation location.  The selection of irradiation location was based 

on the following criteria:  First, the total dose rate should be high enough so that the 

irradiation time is less than half an hour.  This is because V79 cells usually cannot 

survive for more than an hour outside the incubator.  Second, the total dose rate should be 

low enough so that the cell sample �transit time� is negligible in comparison with the 

irradiation time.  Third, the neutron-to-gamma ray dose ratio should be high enough so 

that the high-LET effect can be clearly observed in the survival curves.   It was judged 

that the west beam tube of the MUTR is the most appropriate location to carry out the 

mixed-field cell irradiation experiment.  Since the neutron-to-gamma ray dose ratio was 

found to be low (much less than 1), a special beam insert was designed to attenuate 

gamma rays.  The detailed dimensions and the front view picture of the beam insert are 

shown in Figures 5.2 and 5.3, respectively.  Note that the beam insert with the cell sample 

is also shown in Fig. 5.1.  As shown in Fig. 5.2, the lead shielding in the front end and 

around the outer layer of the beam insert effectively reduces the gamma-ray dose, and 

therefore, significantly increases neutron-to-gamma ray dose ratio. 
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Figure 5.2  Detailed dimensions of the beam insert 

 

 

 

 

 

 

 

 

 

 

 38



 

 

 

 

 

 

 

 

 

Figure 5.3  Front view of the beam insert 
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5.2 Dual Ion Chamber Method 

 

In order to accurately determine the neutron and gamma doses and dose rates, two 

miniature ion chambers made by Standard Imaging Inc. have been employed (see Fig. 

5.4).  The charge collecting volume is 0.056 cm3 for both chambers.  One of them, 

referred to by the vendor as M1, has its wall made of magnesium, which is almost only 

sensitive to gamma rays (i.e. its sensitivity to neutrons is extremely low).  The other one, 

referred to by the vendor as T1, has its wall made of a tissue equivalent plastic (A150), 

which is sensitive to both neutrons and gamma rays.  By using these two ion chambers 

together one will be able to �sort out� the neutron and gamma-ray doses in a mixed field.   

 

 

 

 

Figure 5.4:  Two miniature ion chambers T1 and M1 
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 The general equation for the response (i.e. electric charge) of an ion chamber to a 

mixed field of neutrons and gamma-rays can be written in the following form [86] 

 

        (5.1) nn BDADQ += γγ,

or 

 n
n D

A
BD

A
Q

+= γ
γ,         (5.2) 

 

Where =  total response due to the combined effects of the γ-rays and neutrons, γ,nQ

             A   =  response per unit absorbed dose in tissue for γ-rays 

             B   =  response per unit absorbed dose in tissue for neutrons 

             D γ =  γ-ray absorbed dose in tissue 

             Dn  =  neutron absorbed dose in tissue 

 

 The gamma-ray calibration factor A can be obtained from a 60Co gamma-ray beam 

whose the free-space exposure rate is known. The absorbed dose at the center of an 

equilibrium sphere of tissue, 0.52 g/cm2 in radius, for a time run that produces a free-

space exposure X (C/kg) at the same location, is given by the following equation [86] 

 

 tiss
a

en
aireq e

WXAD )()(
ρ
µ

βγ     =       (5.3) 

Where β≅ 1.003 

   Aeq = (attenuation of photons in penetrating to the center of the tissue 

                       sphere) 0.988 ≅
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             =ae
W )( 33.97 J/C 

     ( = the ratio of mass energy absorption coefficients for tissue/air,  tiss
aen )/ ρµ

                            0.0293/0.0266=1.102 

 

So equation (5.3) is reduced to  

 

         (5.4) )1.37 GyXD (  =γ

 

 For the tissue-equivalent (TE) ion chamber, if ( is the charge (C) produced in 

the ion chamber when it is given the same gamma-ray irradiation that deposits (Gy) in 

the tissue sphere, then  

TEQ )γ

γD

 

 
γD

QA TE
TE

)(
≡  (C/Gy)       (5.5) 

 Similarly, for the magnesium ion chamber, factor can be expressed as magA

 

 
γ

γ

D
Q

A mag
mag

)(
=  (C/Gy)       (5.6) 

 

 To obtain the neutron response B for both chambers, one uses the ratio of 









A
B previously derived by Kuchnir et al.[87].  The ratio of 








A
B  as a function of neutron 

energy is shown in Fig. 5.5. 
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Figure 5.5  The ratio of 



 A
B


  as a function of neutron energy 
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5.3 Calibration of Ion Chambers Using Co-60 Source 

 

 The two ion chambers were calibrated with a NIST-traceable 60Co source in the 

hot cell of the Neely Research Center at Georgia Tech.  A digital electrometer (Model 

MAX-4000), made by Standard Imaging Inc., was used to measure the integrated charge 

over time.  The calibration was conducted under two different gamma dose rates, 1.622 

cGy/sec and 0.1014 cGy/sec.  The calibration results are listed in Tables 5.1 and 5.2. 

 

Table 5.1 The ion chamber calibration results for dose rate of 1.622 cGy/sec. 

Ion Chamber Type T1 M1 

Dose rate ( ) cGy/sec γD 1.62 1.62 

Charge produced(Q ) nC/sec γ 0.026±0.64% 0.03±0.49% 

γA (nC/cGy) 0.016 0.018 

 

 

Table 5.2   The ion chamber calibration results for dose rate of 0.1014 cGy/sec 

Ion Chamber T1 M1 

Dose rate ( ) cGy/sec γD 0.10 0.10 

Charge produced(Q ) nC/sec γ 0.0015±0.48% 0.0018±0.27% 

γA (nC/cGy) 0.015 0.017 
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 The above results show that gamma dose responses of these two ion chamber 

were different.  The gamma response of T1 is slightly lower than the response of M1.  

Comparing the gamma dose response obtained by using high dose rate exposure and low 

dose rate exposure, there is a good agreement for the results of these two measurements.  

The difference between these two measurements is 6% for T1 and 4% for M1.  The 

difference may be attributed to the charge leakage, which increases for the low dose rate 

exposure. The gamma responses for these two ion chambers are determined by averaging 

these two measurement results, and they are 0.01567± 4.4% nC/cGy for T1 and 0.0182 ± 

2.68% nC/cGy for M1. 

 

5.4  Dose Measurement of a Mixed Neutron and Gamma-Ray Field  

 

The dual ion chamber method was used to determine the neutron and gamma-ray 

dose components inside the beam insert in the west beam tube of the reactor.  The proper 

dose rate was obtained by adjusting the distance between the beam insert and the reactor 

core. The ion chamber responses at the final position inside the beam insert had the 

following readings: =0.019nC/sec and  Q  =0.013nC/sec. TE
nQ γ

mag
nγ

From equation 5.2, one may write the following two equations for T1 and M1, 

respectively: 

 

 nTE
TE

TE
n D

A
BD

A
Q

)(+= γ
γ         (5.7) 

 

 nmag
mag

Mag
n D

A
BD

A
Q

)(, += γ
γ        (5.8) 
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TEA  and  were obtained from gamma-ray calibration and the results are 

shown in Tables 5.1 and 5.2.  According to the Monte Carlo calculation, which will be 

introduced in the next section, the average energy of neutrons is around 2 MeV.  

According to Fig. 5.5, the values of 

magA

TEA
B )(  and magA

B )(  for 2-MeV neutrons are 0.97 and 

0.025, respectively.  Attix [86] also obtained similar results for the tissue equivalent ion 

chamber for neutrons with energies around 2 MeV.  By substituting the numerical values 

into equations (5.8) and (5.9), one obtains  

 

 nDDcGy
cGynC

nC 97.0sec/2125.1
/01567.0
sec/019.0

+== γ  
 

  

and 

 nDDcGy
cGynC

nC 025.0sec/7142.0
/0182.0
sec/013.0

+== γ  
 
  

 

One may then solve the above two equations and obtain  and  as follows: nD γD

                                 min/316.0sec/527.0 GycGyDn ==   

and 

                                 min/423.0sec/7063.0 GycGyD ==  γ  

 

The neutron-to-gamma ray dose ratio is, therefore, 0.747. 
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5.5  The Monte Carlo Calculations 

 

To further increase the confidence of the measured neutron and gamma-ray dose 

components and to obtain the neutron energy spectrum (required for estimating F1, F2, 

and F3 of the cell survival model), both the neutron absorbed dose (approximated by 

kerma) and the neutron energy spectrum were calculated using a Monte Carlo N-particle 

transport code, MCNP5 [88].  MCNP5 is a general-purpose time-dependent Monte Carlo 

transport code that can be used for neutron, photon and /or electron transport, including 

the capability to calculate eigenvalues for critical systems. The transport of particles is 

based on tabulated cross-section data. The code features a geometric language for 

specifying complex three-dimensional configurations of materials, including a system for 

defining portions of geometry and using them in repeated structures and lattices.  In 

addition to the effective geometry syntax, the code also offers the ability to define very 

general sources, a full set of tally options, an extensive collection of variance reduction 

techniques and an extensive collection of cross-section data.  

MCNP5 was selected to perform the calculations because it is extensively 

benchmarked and well accepted by the international community.  The neutron spectrum 

was obtained by using a fine-interval energy-binned fluence tally.  The details of the 

method used to calculate the neutron spectrum is described in the following section.   

 

5.5.1 MCNP Modeling 

 

The University of Maryland Training Reactor (MUTR) was modeled in MCNP5 

to determine the neutron spectrum inside the beam insert at the west beam tube.  The 

reactor was modeled in great detail.  Minor components which would have little impact 

on the neutron spectrum were neglected in the model.  The components that were 
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neglected consisted of items such as the lower fuel grid assembly, upper fuel grid 

assembly, drive motor actuators and tie rods, fission chamber internal components, and 

several other components that are in the reactor tank proper.  All other components that 

comprise of the fuel rod assembly, consisting of the fuel meat, the zirconium hydride 

moderating rod, graphite plugs, as well as the cladding and fuel nipples were modeled in 

the �as built� fashion.  All of the major components that comprise the core proper were 

modeled in a similar fashion.  A picture of the core at the midplane of the beam port is 

shown in Fig. 5.6.   

The MCNP5 model was run using the k-code module.  In this module, the 

computer calculates keff while maintaining the correct multiplication for the fuel.  The 

core conditions were modeled exactly as they were during the irradiations.  These 

operating conditions consisted of components such as tank coolant temperature, fuel 

temperature, and control rod positions for all three control rods.  The built-in temperature 

broadening feature (tmp card) was used.  The built-in feature only corrects the 1/v cross 

section region of the impacted materials.  This, however, is an acceptable answer because 

the MUTR is a thermal reactor.  The control rod positions were taken as percent removed 

from the core (this is Maryland�s standard reporting method).  This percent removed is 

based on of the centerline of the control rod to the fuel rod.  They were run out to the 

dimensions taken from the operating log book for the experiment. The time selected for 

the run was 1 hour, the approximate time of the measurements.  Due to the small mean 

free path of fission neutrons in water and the small volume of the beam insert, the 

probability for a source fission neutron (starting in the core) to arrive at the beam insert is 

extremely small.  To obtain acceptable statistics in the beam port, weight windows as 

well as cell importances were adjusted to provide adequate variance reduction to improve 

run time.  The model was run for 5000 active cycles at 1x105 particles per cycle.  The 

weight window generator was used during this run.  The results of the MCNP run came 
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up with a keff  1.00871 with a standard deviation of +/- 0.00002 with an average number 

of neutrons per fission reaction of 2.439.   

 

5.5.2  The MCNP Results 

 

The reactor geometry modeled by MCNP is in shown in Fig. 5.6. 

 

 

Fig 5.6  Three dimensional geometry of the MUTR modeled by MCNP 
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Because the neutron fluence calculated by MCNP5 is normalized to one source 

neutron, to obtain the absolute neutron fluence rate one must know the source neutron 

production rate.   The neutron production rate for a 250-kW reactor can be calculated by 

the following equation[89] 

 

 N ν××= 250X         (5.9) 

 

Where  X  is the fission rate per kilowatt of power, andν  is the average number of 

neutrons per fission. 

Using a mean value of 190 MeV per fission, the fission rate per kW of power is 

calculated as follows: 

 

 
fissXMeV

fiss
Joule
MeVJoulekW

  
 sec

190
1024.6

sec
101 123 ××××= , 

which gives 

 
 s

fissX 13103.3 ×=  per kW 

If one uses 2.42 forν , then equation 5.11 would give a neutron production rate 

(from a 250-kW reactor) of 1  neutrons/sec.  The absolute neutron fluence rate 

at the beam insert can then be calculated as 

1610997. ×

 

          (5.10) PN ×=Φ

 

Where N is the neutron n from 250 kW fission reactor, and P is the normalized 

neutron fluence obtained from MCNP5.  The neutron spectrum calculated by MCNP5 is 

shown in Fig. 5.7 
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Figure 5.7 Fission neutron spectrum 
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The neutron absorbed dose at the beam insert was obtained by using the f6 tally in 

MCNP5.  The f6 tally actually calculates neutron kerma (as an approximation to the 

absorbed dose) using the following formula[86]   

 

         (5.11) ni
i

i FK ∑Φ=

Where  is the neutron fluence for the iiΦ th energy bin  is the corresponding fluence-

to-kerma conversion factor.  The neutron dose (or kerma) vs neutron energy obtained by 

MCNP5 at the beam insert is shown in Fig. 5.8.   

niF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 52



 

 

 

 

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

5.00E
-05

5.00E
-03

1.82E
-01

3.45E
-01

5.09E
-01

6.73E
-01

8.36E
-01

1.00E
+00

1.73E
+00

2.45E
+00

3.18E
+00

3.91E
+00

4.64E
+00

5.20E
+00

5.70E
+00

6.20E
+00

6.70E
+00

7.20E
+00

Neutron Energy (MeV)

N
eu

tr
on

 K
er

m
a 

(R
ad

/s
ec

)

 

Figure 5.8 Neutron absorbed dose (or kerma) vs. neutron energy at the beam insert. 
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As shown, the average neutron energy is around 2 MeV, and the total fast neutron 

kerma at the beam insert is 0.36 Gy/min.  This result compares reasonably well with the 

measured result of 0.316 Gy/min (see Chapter 4).  The difference between the two is less 

than 13.9%.  

The difference between the measurement and the MCNP5 calculation may be 

attributed to two uncertainties.  The first uncertainty is associated with the values of 

neutron response used for the two ion chambers in the measurement.  These values were 

not properly calibrated.  Instead, they were obtained from the published data.  The second 

uncertainty is associated with the power level used to calculate the total neutron 

production rate in equation 5.9.   

 54



 

 

CHAPTER 6 

 

CELL SURVIVAL EXPERIMENT AND RESULTS 

 

This chapter discusses the cell culture techniques, describes the V-79 cell survival 

experiments, and then presents the experimental results.   

 

6.1 Cell Culture Techniques 

 

The cell line used to conduct the cell experiment is V-79-4, which is originated 

from the lung tissue of a young male Chinese hamster.  It has a very high plating 

efficiency (80%-90%) and a cell-cycle time of 12 to 14 hours.  The complete growth 

medium is Dulbecco�s modified Eagle�s medium with 4 mM L-glutamine adjusted to 

contain 1.5g/L sodium bicarbonate with 4.5g/L glucose; 10% fetal bovine serum and 1% 

penicillin/Streptomycin.  The V-79 cells were planted in the dishes with complete growth 

medium and incubated inside the Water Jacketed CO2 Incubator (ThermoElectron Model 

3110 series).  The temperature of the incubator was kept at 37°C and the concentration of 

the CO2 was kept at 5%.  

 

6.1.1 Subculture  

 

For a typical in-vitro cell survival experiment, one must first prepare a large 

number of cell flasks (or dishes) that contain healthy cells.  Since cells quickly die as they 

approach full confluence in a dish, one must split (or reseed) the cells on a continuous 

basis.  To split the cell, one first removes the medium and rinses the cell layer with 0.25% 
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trypsin solution, adds 1 ml trypsin-EDTA solution to the disk and then puts it back into 

the incubator for 1-2 minutes.  One then watches the cells under an inverted microscope 

to observe if the cell layer is detached from the bottom of the dish.  As soon as the cells 

are detached, one adds 6 ml of complete growth medium and then gently aspirates the 

cells-in-suspension with an appropriate pipettor.  Finally, one adds appropriate aliquots of 

the cells-in-suspension to new culture disks and places them back in the incubator for 

continuous growth. 

 

6.1.2 Plating Efficiency   

 

When cells are plated out with low cell densities (2-50 cells/cm2), they grow as 

discrete colonies.  The planting efficiency (PE) is calculated as the following  

 

 100        ×=
edcells seedNumber of 

ormedcolonies fNumber of PE     (6.1) 

 

The PE is different for different cell lines.  Generally the PE for V-79 cells is 

around 80-90%.  But the values vary slightly among different experiments.  

 

6.1.3 Cell and Cell Colony Counting 

 

The number of cells planted in each dish was counted with the hemocytometer 

under the inverted microscope.  The number of colonies formed in each dish was counted 

manually with a threshold of 50 or more cells per colony.  That is, a colony size that is 

smaller than 50 cells was discarded.  As far as the procedure goes, one first removes and 

discards the medium, rinses the monolayer with PBS, discards the rinse and adds 10 ml 

methanol, and then leaves it for 10 minutes.  One then discards the methanol, adds 10 ml 
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of crystal violet (i.e. the stain) per 75cm2 and leaves it for 10 minutes.  Finally, one 

discards the stain, rinses the dish, and waits for the dish to dry.   The dish with the 

colonies is then ready to be counted. 

 The cell culture technique is also described in Figure 6.1, and the picture of cell 

colonies formed is shown in Fig. 6.2 . 

 

 

Figure 6.1: Cell culture technique for subculture and cell colony 
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Figure 6.2:  The V-79 cell colonies 
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6.2 Cell Irradiation 

 

As discussed in Chapter 5, V79 cells were irradiated with 60Co gamma-rays at 

Georgia Tech�s Neely Research Center and with a mixed neutron and gamma-ray field at 

the MUTR.  The absorbed doses to the cells were measured by placing the ion chamber 

M1 at the positions where cells were exposed.  The dose calibration and dose 

measurement were described in Chapter 5.   The dose rates exposed for the 60Co gamma-

ray experiment were 0.15 Gy/min, 0.46Gy/min, and 1.3Gy/min, respectively.  

Before irradiation, cells were first transferred from round dishes (100 cm2 in area) 

into the small (25 cm2 in area) rectangle flasks and then placed back into the incubator to 

grow until they are ready.  The most appropriate time for irradiation is when the cells 

reach 85%-95% confluence. The time it took to transfer the cells between the hot cell and 

cell culture lab in the Neely building was negligible.  After the irradiation, the cells were 

placed back into the incubator to recover for half an hour.   Different number of cells, 

corresponding to the various doses they received, was then reseeded into the round 

(100cm2 in area) dishes.   Finally, the round dishes were placed back into the incubator 

for about 7-10 days to allow cells to grow into colonies. 

The above procedure was also followed in the irradiation experiment conducted at 

the MUTR.  The only difference involved in the MUTR experiment was the dose 

measurement.  As described in Chapter 5, the neutron and gamma-ray doses were 

measured by placing both ion chambers T1 and M1 at the cell irradiation position inside 

the beam insert.  The flask was transferred to the cell irradiation position where the 

largest neutron-to-gamma dose ratio is the highest (see Fig. 6.3).  The neutron dose rate 

during irradiation was measured to be 0.316 Gy/min and the gamma-ray dose rate was 

0.423 Gy/min.  The time it took to transfer the cells from the fission reactor to the cell lab 

was also negligible. 
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Figure 6.3 The beam insert with the flask inside 
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6.3  Experimental Results 

 

The cell survival curves for the V79 cells resulting from the 60Co gamma-ray 

experiment are shown in Fig. 6.4. 
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Figure 6.4 The cell survival curves for V79 cells irradiated with 60Co gamma rays of 

various dose rate. 
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The cell survival curves for the V79 cells resulting from the MUTR experiment 

are shown in Fig. 6.5. 
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Figure 6.5 The cell survival curves for V79 cells irradiated with the mixed field of 

neutrons and gamma rays inside the MUTR west beam tube insert. 
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6.4 Validation of the New Cell Survival Model with the Experimental Results 

 

 By curve-fitting the cell survival curves of the 60Co gamma-ray irradiation with 

the linear quadratic formula, one may derive the values of α and β.  The results are 

shown in Table 6.1 

 

Table 6.1 The values α and β of survival curves of V79 cells irradiated with 60Co 

gamma rays. 

 α β 

0.15 Gy/min Co-60 gamma rays 0.095 0.0098 

0.46 Gy/min Co-60 gamma rays 0.1 0.018 

1.3 Gy/min Co-60  gamma rays 0.1 0.03 

 

 The three physical parameters, F1, F2, and F3, for 60Co gamma rays are listed in 

Table 4.1.  To obtain the values for the three biological parameters r ,  and , two 

different cell survival curves (one for low-LET and one for high-LET) were needed as 

described in Chapter 4.  Since the cell survival curve for fission neutrons was not 

available, the survival curve for 4-MeV alpha particles was used instead.  This is because 

the slope of the survival curve for 4-MeV alpha particles is quite similar to that for the 

fission neutrons.  The results are shown in Table 6.2.  

1 2r 3r
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Table 6.2 The values of , and  obtained from the survival curves of V79 cells irradiated 

with 

1r 2r 3r
60Co gamma rays of various dose rates. 

 

 1r  2r  3r  

0.15 Gy/min Co-60 gamma rays 7.78E+05 1.37E+04 3.83E+05 

0.46 Gy/min Co-60 gamma rays 8.21E+05 1.22E+04 7.03E+05 

1.3 Gy/min Co-60  gamma rays 8.21E+05 1.22E+04 1.17E+06 

 

 

 Table 6.2 shows that the values of  and fluctuate very little with various dose 

rates. This is expected for the facts that  and  correspond to the routes 1 and 2, which 

are dominated by single track effect and irreparable lesions, and that changing the dose 

rate does not affect the values of  and .  These results also agree well with the 

published data.  The fact that  varies as a function of dose rate is also consistent with 

the new model because  corresponds to route 3 and it is dependent on the cell repair 

rate.  For example, for the very low dose rate case (i.e. 0.15 Gy/min), some of the cells 

will be repaired during the fast phase repair period, and the value of  is, therefore, 

smaller than those of the high does rate cases. 

1r 2r

1r

2r

2r

1r

3r

3r

3r
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CHAPTER 7 

 

APPLICATION OF THE NEW MODEL TO RADIATION THERAPY 

 

Due to the recent development of a new generation high-activity miniature 252Cf 

source [90], there is a renewed interest in 252Cf brachytherapy (CBT) for treating a 

variety of radioresistant cancers, including cancers of the head and neck, cervical cancer, 

prostate cancer, melanoma, sarcoma, and malignant glioma. Numerous experimental 

studies have been conducted on RBE of 252Cf neutrons, and a large deviation in the results 

was noted [91-92].  The deviation was largely attributable to the various absorbed doses, 

dose rates, and biological end points used in the experiments. In addition, the RBE was 

obtained based on the assumption that there are no interactions between neutron and 

gamma-ray lesions.  However, cell survival experiments clearly show that synergistic 

effects do exist between x-ray and neutron damages and between x-ray and α-particle 

damages. [93-95].   

 In this chapter, a cell survival formula for mixed high- and low-LET irradiation is 

derived and the application using this new formula to predict the synergistic effect for 

mixed high- and low-LET irradiation is introduced.  Since no high-dose-rate 252Cf 

neutron source was available for this study, we used the cell survival data obtained with 

the mixed field of fission neutrons and gamma at the MUTR to illustrate the synergistic 

effect.  In addition, the mixed-field cell survival data obtained at MUTR is also used to 

extract the RBE values for fission neutrons. 
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7.1 Computational Method for Mixed Field Irradiation 

 

Studies have clearly shown that the synergistic effect does exist when cells are 

exposed to a mixed field of high- and low-LET particles. The new cell survival model 

described in Chapter 3 can be used to successfully predict the cell survival fraction for 

the mixed field irradiation. 

To derive the cell survival fraction for mixed field high-LET and low-LET 

irradiation, one simply replaces the parameters in equation (3.12) with the mixed field 

parameters and the logarithm of the cell survival fraction for a mixed field irradiation can 

be expressed as 

 

[ ] ( ) 22
332211

2  )()()( ln HLHLHLHLHLHLHLHLHLHL DFrDFrFrDDS ++=+=− βα    (7.1) 

 

 where the subscript HL stands for the mixed field of high- and low-LET particles, 

and, accordingly, 
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And 
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Substituting Eqs. (7.2), (7.3), (7.4) and (7.5) into Eq. (7.1), one obtains 
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where 

 

( ) ( )LHHL FFr 333    2=β                                            (7.7) 

 

 which represents the contribution from the interaction between the lesions caused 

by the high-LET particles and that caused by the low-LET particles.  

 

7.2 Calculated Cell Survival Fraction for Mixed n-γ Irradiation 

 

The cell survival fraction irradiated with a mixed field of fission neutrons and 

gamma-rays can be calculated by the new model according to equation (7.6 ).  Since the 

pure neutron irradiation is not available for this cell experiment, the neutron cell survival 

fraction was calculated using the new model.  The cell survival curve irradiated with 

gamma-rays was obtained from cell experiments.  
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7.2.1  Calculated Cell survival Fraction for Neutron Irradiation 

The survival fraction of cells irradiated with neutrons can be calculated by the 

new model described in Chapter 3.  To do so, one must first obtain the spectra of recoil 

protons and then calculate the nanodosimetry quantities, , and .  For a neutron 

field, the recoil proton spectrum can be calculated as 

1F 2F 3F

 

∫ ∑= n

p

E

E s pnnnnppp dEdEEEEESdEES )()(),()( φ                                               (7.8) 

 

where is the proton spectrum for neutrons with energy , and 

and 

pnp dEEES )( ,

)( nE

nE ∑s nE )(  

φ are, respectively, the macroscopic scattering cross section and the fluence rate 

for neutrons with energies between and nE nn dEE + .   

The neutron spectrum )( nEφ  at the MUTR cell irradiation facility was calculated 

by MCNP5 and has been discussed in Chapter 5.  The proton spectrum thus obtained with 

equation (7.8) is shown in Fig. 7.1.  The three physical parameters , and  can then 

be calculated using the recoil proton spectrum and the published computational data for 

5-nm and 25-nm targets [83-85].  The values for these three parameters calculated are: 

= , =1 and =1 . 

1F 2F 3F

1F 9106.6 −× 2F 7107. −× 3F 61043. −×
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Figure 7.1.  Recoil proton spectrum at the MUTR beam insert. 
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The next step was to calculate α and β using equations 3.13 and 3.14 , i.e. 

2211 FrFr +=α  and .  We chose  = 7 and =1 , which were 

suggested in Chapter 4.  We chose  = 1 , which corresponds to the averaged 

value for high dose rate irradiation.  This is because for neutron irradiation, the cell repair 

will be negligible especially when the irradiation time is short.  The cell survival fraction 

(i.e. curve) for neuron irradiation thus calculated is shown in Fig. 7.2. 

2
33Fr=β 1r

41×

51084. ×

610

2r
41096. ×

3r .
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Figure 7.2.  The calculated survival curve for V-79 cells irradiated with fission neutrons. 
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7.2.2  Calculated Cell Survival Fraction for Mixed n-γ Irradiation 

  

The cell survival fraction for mixed n-γ irradiation can be calculated using equation 

(7.6), i.e. .  The values for        γββαβα γγγγγγ DDDDDDS nnnnnnn ++++=− 22)(ln nα  and 

nβ  were determined to be  and , respectively, and they were obtained 

from the cell survival curve shown in Fig. 7.2.  The values for 

11027.8 −× 61087.2 −×

γα   and γβ   were determined 

to be 0.1 and 0.018, respectively, and they were obtained from the cell survival curves shown 

in Fig. 6.4 or Table 6.1.  The value of γβn

( ) ( )γ

 was calculated using equation (7.7), 

i.e. γβ 3332 FFr n    21063. −×n = =5 .  The cell survival curve for mixed n-γ irradiation thus 

calculated is shown in Fig. 7.3.  Also shown in this figure are the corresponding neutron-only 

and gamma-ray-only cell survival curves.  The gamma-ray-only curve was based on the 60Co 

gamma-ray experiment with 0.46 Gy/min dose rate. 

 

 

 

 

 

 

 

 

 

 

 

 72



 

 

 

 

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

Dose (Gy)

C
el

l S
ur

vi
va

l F
ra

ct
io

n

gamma irradaition
mixed n-r irradation
neutron irradiation

 

Figure 7.3.  V-79 Cell survival curves for the mixed neutron and gamma rays irradiation. 
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7.2.3  Comparison Between the Experimental results and the Computational Results 

 

The cell survival curve for mixed n-γ irradiation obtained from cell experiment is 

shown in Fig. 7.4.  For comparison, the two computationally derived survival curves (i.e. 

those with and without the synergistic term) are also included in Fig. 7.4.   In general, the 

experimentally obtained cell survival fractions are slightly higher than those predicted by 

the new cell survival model especially for the low dose data.  
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Figure 7.4  Cell survival curves for mixed n-γ irradiation. 

 

The difference between these two cell survival curves may be attributed to three 

factors.  The first one is the uncertainty associated with the parameters used in the new 

cell survival model.  That is, these parameters were based on the two cell survival curves, 

the neutron-only cell survival curve and the gamma-ray-only cell survival curve.  The 

uncertainty mainly comes from the neutron-only cell survival curve because it was based 

on calculations instead of actual experimental results.  The second factor is the 

uncertainty associated with the three biological parameters, which have already been 

discussed in Chapter 4.  The third factor is the uncertainty associated with cell counting. 

The synergistic effect shown in Fig. 7.4 can be more explicitly illustrated as 

follows:  For typical 252Cf brachytherapy doses of = 4 Gy and = 2 Gy, the new 

cell survival model predicts a value of 0.6372 for the synergistic term

nD γD

γγβ DDnn , which 

translates to an additional 36.3% of cell killing.   

 

7.2.4 Relative Biological Effectiveness of Fission Neutrons 

 

As mentioned in the beginning of this chapter, the accuracy of the relative-

biological-effectiveness (RBE) value for fission neutrons has been an issue for the 252Cf-

based brachytherapy.  By definition, the neutron RBE is obtained with the following 

equation [96]: 

 
nD

D
RBE γ=          (7.9) 

where Dγ is the dose that is needed for a low-LET reference source (i.e. a 250 kVp x-ray 

or a 60Co gamma-ray source) to produce a given biological effect, and  Dn is the dose that 
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is needed for the test radiation (i.e. the fission neutrons in this study) to produce the same 

biological effect.   

To be consistent with the conventional radiation therapy where dose is delivered 

in a multi-fraction scheme with 2 Gy per fraction, the RBE values for fission neutrons, 

(RBE)n, were obtained by comparing the survival curve of a multi-fraction 60Co γ-ray (as 

the low-LET reference source) with either the calculated fission neutron survival curve 

shown in Fig. 7.2, or the experimentally obtained mixed n+γ survival curve shown in Fig. 

7.4.     The survival curve of the multi-fraction 60Co γ-ray were artificially generated by 

using the high-dose-rate (i.e. 1.3 Gy/min) data and the following formula: 

i
i SS )( 1=         (7.10) 

where S1 is the cell survival fraction after a single fraction of 2 Gy, and Si is the cell 

survival fraction after i fractions with 2 Gy per fraction.  Figure 7.5 shows this �artificial� 

multi-fraction cell survival curve, together with the other two survival curves � i.e. the 

fission neutron survival curve and the mixed n+γ survival curve.   
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Figure 7.5  The V-79 cell survival curves used for RBE calculation 
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By evaluating the corresponding dose components of the survival curve of the multi-

fraction 60Co γ-ray and of the calculated fission neutron survival curve for survival 

fractions of 10% and 1% and by using equation (7.9), one may easily obtain the values of 

(RBE)n.  The dose components and the (RBE)n values thus obtained are shown in Table 

7.1.  The fact that the (RBE)n values are the same for survival fractions of 10% and 1% is 

because both survival curves are straight lines, indicating that lesion interactions (i.e. the 

quadratic term) play no role in cell death in both curves. 

   

Table 7.1.  The dose components and the (RBE)n values obtained from the calculated 
fission neutron survival curve. 

 

Biological End Point Dn Dγ (RBE)n 

10% cell survival fraction 2.78 13.45 4.83 

1% cell survival fraction 5.56 26.89 4.83 

 

To obtain (RBE)n via the mixed n+γ survival curve, one evaluates dose 

components for survival fractions of 10% and 1% using the following equation:  

 γγ DDDRBE mixmixnn =+× −−)(      (7.11) 

where Dn-mix and Dγ-mix are the neutron dose and gamma dose, respectively, and Dγ is the 

gamma dose corresponding to the �artificial� multi-fraction survival curve of 60Co γ-ray.  

For example, for the case of 10% cell survival fraction, the corresponding values of Dn-

mix, Dγ-mix, and Dγ are 2.14, 2.86, and 13.45.  By substituting these values into equation 

(7.11), one obtains an (RBE)n of 4.95.  The fact that the experimentally obtained value 

(i.e. 4.95) agrees well with the calculated value (i.e. 4.83) serves as an additional 

validation for the new cell survival model.  Table 7.2 shows the dose components and the 
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(RBE)n values obtained for survival fractions of 10% and 1% using the mixed n+γ 

survival curve.  It is interesting to note that the experimentally obtained (RBE)n value of 

6.32 for survival fraction of 1% is significantly greater than the value of 4.95 for survival 

fraction of 10%.  This is consistent with the finding in Section 7.2.3 in that the synergetic 

effect due to the interactions of neutron and gamma-ray lesions contributes to additional 

cell killing, and thus increasing the (RBE)n value.  The (RBE)n value of 6.32 is also 

consistent with the value of 6.0 often used in the 252Cf-based brachytherapy where the 

total neutron dose is around 4 Gy.   

 

 Table 7.2.  The dose components and the (RBE)n values obtained from the 
experimentally obtained mixed n+γ survival curve. 

 
 
Biological End Point D n-mix D γ-mix Dγ (RBE)n 

10% cell survival fraction 2.14 2.86 13.45 4.95 

1% cell survival fraction 3.51 4.69 26.89 6.32 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE WORK 

 

Several conclusions can be made for this thesis.  First, the new nanodosimetry-

based cell survival model for mixed low- and high-LET radiation has been developed.  

Two specific sizes of subcellular target, 5 nm and 25 nm, were defined and several 

dosimetry quantities based on these two nanometer target sizes were used to develop the 

new model.  The final expression of this new model is expressed as a linear quadratic 

formula, , where 2DD βα + α andβ  are expressed by three physical quantities associated 

with energy deposition at nanometer scales, and the three biological quantities associated 

with lesion production and interaction probabilities and lesion repair rate.  Second, the 

new survival model has been validated by using the previously published survival data of 

V-79 hamster cells and by conducting additional V79 cell survival experiments 

specifically designed for this study at the MUTR.  Third, the new model has been 

successfully used in the 252Cf-based brachytherapy to predict: (1) the synergistic effect 

between neutron and gamma-ray lesions, and (2) the neutron RBE.   

As to the future work, several areas should be considered:  First, the counting 

technique both for the cell number and for the colony number needs to be improved.  For 

example, one may develop an automatic counting system to count accurately both the 

number of cells the number of cell colonies.  Second, further validation of the new 

survival model should be conducted using cell lines other than V79 and comparison of 

the cell survival results should be made between normal cell lines and cancer cell lines.  

Third, the new survival model should be modified to include prediction of the number of 

chromosome aberrations as a function of dose and dose rate.  
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APPENDIX 

 

MCNP5 INPUT FILE 
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Maryland TRIGA Rx k-code flux tally model 
C **************************************** 
C Cell Cards 
C **************************************** 
1 1 -6.53 -1       u=1  tmp=3.3694e-8      imp:n=1 $ Zirconium rod 
2 2 -6 -2 1        u=1  tmp=3.3694e-8      imp:n=1 $ fuel meat 
3 3 -1.3 -3        u=1  tmp=2.67915e-8     imp:n=1 $ graphite plug bottom 
4 3 -1.3 -4        u=1  tmp=2.67915e-8     imp:n=1 $ graphite plug top 
5 4 -8.03-5 4 3 2  u=1  tmp=2.67915e-8     imp:n=1 $ cladding no air gap 
6 5 -1 -6 5        u=1  tmp=2.67915e-8     imp:n=1 $ water outside clad 
7 5 -1 6           u=1  tmp=2.67915e-8     imp:n=1 $ outside of universe space 
c 21 like 1        but mat=6 rho=-1.21e-3 u=3 tmp=2.67915e-8 
c 22 like 2        but mat=6 rho=-1.21e-3 u=3 tmp=2.67915e-8 
c 23 like 3        but mat=6 rho=-1.21e-3 u=3 tmp=2.67915e-8 
c 24 like 4        but mat=6 rho=-1.21e-3 u=3 tmp=2.67915e-8 
c 25 like 5        but u=3 tmp=2.67915e-8 
c 26 like 6        but u=3 tmp=2.67915e-8 
c 27 like 7        but u=3 tmp=2.67915e-8 
21 10 -2.5 -71     imp:n=1 u=3   tmp=2.67915e-8 
22 5 -1     71     imp:n=1 u=3   tmp=2.67915e-8 
23 10 -2.5 -72     imp:n=1 u=14  tmp=2.67915e-8 
24 5 -1     72     imp:n=1 u=14  tmp=2.67915e-8 
25 10 -2.5 -73     imp:n=1 u=18  tmp=2.67915e-8 
26 5 -1     73     imp:n=1 u=18  tmp=2.67915e-8 
8 5 -1 -6          fill=1  u=2   imp:n=1 tmp=2.67915e-8 
12 5 -1 6          u=2 imp:n=1 tmp=2.67915e-8 
9 like 8 but fill=3 u=4 tmp=2.67915e-8 
10 like 12 but u=4 tmp=2.67915e-8 
109 like 8 but fill=14 u=20 tmp=2.67915e-8 
110 like 12 but u=20 tmp=2.67915e-8 
111 like 8 but fill=18 u=19 tmp=2.67915e-8 
112 like 12 but u=19 tmp=2.67915e-8 
113 5 -1 -6 lat=1 fill=0:1 0:1 0:0  2 2 2 4  u=16 tmp=2.67915e-8 imp:n=1 
161 5 -1 -7   fill=16 u=17 tmp=2.67915e-8  imp:n=1 
171 5 -1  7   u=17         tmp=2.67915e-8  imp:n=1 
13 5 -1  -6   lat=1 fill=0:1 0:1 0:0   2 2 2 20 u=10 tmp=2.67915e-8 imp:n=1 
61 5 -1  -7   fill=10 u=6  tmp=2.67915e-8    imp:N=1 
71 5 -1   7   u=6                  tmp=2.67915e-8      imp:n=1 
15 5 -1  -6    lat=1 fill=0:1 0:1 0:0   2 2 2 2 u=11 tmp=2.67915e-8 imp:n=1 
62 5 -1  -7   fill=11 u=5        tmp=2.67915e-8      imp:N=1 
72 5 -1   7            u=5        tmp=2.67915e-8      imp:n=1 
16 5 -1  -6     lat=1 fill=0:1 0:1 0:0   2 2 19 2 u=12 tmp=2.67915e-8 imp:n=1 
63 5 -1  -7    fill=12 u=7    tmp=2.67915e-8           imp:N=1 
73 5 -1   7    u=7            tmp=2.67915e-8           imp:N=1 
17 3 -1.3 -7   u=8            tmp=2.67915e-8           imp:n=1 
18 5 -1  -7    u=9            tmp=2.67915e-8           imp:n=1 
14 0  6        u=10           imp:n=1 tmp=2.67915e-8 
19 5 -1  7     u=8            imp:N=1 tmp=2.67915e-8 
30 like 14 but u=11 tmp=2.67915e-8 
31 like 14 but u=12 tmp=2.67915e-8 
33 like 19 but u=9 tmp=2.67915e-8 
28 like 18 but mat=6 rho=-1.21e-3 u=13 imp:n=1 tmp=2.67915e-8 
29 like 19 but u=13   tmp=2.67915e-8    imp:n=1 
 
 
 
50 5 -1   -7  lat=1  fill=0:8 0:4 0:0 
          9 9 9 9 9 5 9 9 9 
          9 5 5 6 5 13 5 9 9 
          9 5 5 5 5 5 5 8 9 
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          9 5 17 5 5 7 5 8 9 
          9 5 5 5 5 5 5 9 9 
               u=15   tmp=2.67915e-8                    imp:N=1 
51 0   7       u=15                                     imp:N=1 
52 5 -1  -8 fill=15    tmp=2.67915e-8                   imp:n=1 
53 5 -1    -10 11 12 13 8 16                            imp:N=1 
55 3 -1.3  -11                                          imp:n=1 
56 7 -2.7  -12 14 17                                    imp:n=1 
58 6 -1.21e-3  -14 15                                   imp:n=1 
59 8 -11.8  -15                                         imp:n=1 
57 6 -1.21e-3 -13                                       imp:n=1 
60 6 -1.21e-3 -16 12 18 19 20 21                     ip:N=100 
81 8 -11.8  -17                                         imp:N=100 
82 7 -2.7   -18 19 20 21                                imp:N=100 
83 8 -11.8  -19 20 21                                   imp:n=100 
84 7 -2.7   -20 21                                      imp:N=100 
85 6 -1.21e-3 -21                                       imp:n=100 
86 9 -2.3      (-50:-51:-52) 10 11 12 13 14 16  imp:n=1 
54 0        50 51 52 16                                 imp:N=0 
 
C **************************************** 
C Surface Cards 
C **************************************** 
1 rcc 0 0 0      0 0 38.1     .2285 
2 rcc 0 0 0      0 0 38.1     1.74 
3 rcc 0 0 -8.76  0 0 8.76     1.74 
4 rcc 0 0 38.1   0 0 8.76     1.74 
5 rcc 0 0 -8.811 0 0 55.722    1.791 
71 rcc 0 0 36.528 0 0 43.2    1.7 
72 rcc 0 0 40.338 0 0 43.2    1.7 
73 rcc 0 0 35.0134 0 0 43.2   1.7 
6 rpp -1.9434 1.9434  -1.9434 1.9434   -8.811 97 
7 rpp -1.9434 5.829 -1.9434 5.829 -8.811 97 
8 rpp -1.9433 66.6366 -1.9433 36.91 -8.811 97 
9 rpp -1.9433 66.6365 -1.9433 36.1565 -8.812 96.9999 
10 rcc 23 18 -48          0 0 648    106.5 
50 rcc 23 18 -48          0 0 335.28 304.62 
51 rcc 23 18 287.28       0 0 60.96  258.9 
52 rcc 23 18 348.24       0 0 251.76 197.94 
11 rpp -1.9 66 39.45 130 -8 47 
12 rcc -4.4833 21.125 19.05 -79.5717 0 0 7.46125 
14 rcc -5.1183 21.125 19.05 -60.7367 0 0 6.82625 
15 rcc -5.1183 21.125 19.05 -7.62   0 0 6.82625 
16 rcc -83.42 21.125 19.05 -200 0 0     10.08507 
17 rcc -67.13 21.125 19.05 -15.24 0 0 6.12775 
18 rcc -84.055 21.125 19.05 -43.815 0 0 6.76275 
19 rcc -84.055 21.125 19.05 -43.815 0 0 6.11251 
20 rcc -84.055 21.125 19.05 -43.815 0 0 5.08 
21 rcc -84.055 21.125 19.05 -43.815 0 0 4.445 
13 rcc -90 -11.46125 19.05   240 0 0 7.46125 
 
C **************************************** 
C Data Cards 
C **************************************** 
m2 40000 -.89813 1001 -9.92e-3 92238 -6.2e-2 92235 -1.95e-2 
mt2 zr/h.62t h/zr.62t 
m1 40000 -1 
m3 6012 -1 
mt3 grph.62t 
m4 6012 -.0003 24000 -.19 26000 -.7015 25055 -.02 28000 -.1 
          15031 -.00045 16000 -.0003 14000 -.0075  $ SS304 from matls.com 
m5 1001 2 8016 1 
mt5 lwtr.61t 
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m6 6000 -1.24e-5 7014 -.755268 8016 -.231781 18000 -.012827 
                   $ NIST dry air (sea level 
m7 13027 -.991 26000 -.008 12000 -.0009 23000 -.000015 22000 -.000015 
               29000 -.00004 24000 -.00001 14000 -.00003   $ Al 1100 grade 
m8 82000 -1                  $ pure lead (not actually, but who knows) 
m9 1001 -.0221 6000 -.002484 8016 -.57493 11023 -.015208 12000 -.001266 
         13027 -.019953 14000 -.304627 19000 -.010045 20000 -.042951 
         26000 -.006435              $ NIST concrete 
m10 5011 3.2 5010 .8 6000 1 
f2:n 8.2 
f12:n 18.2 
f4:n 85 
f22:n 12.2 
sd2 434 
sd4 2719.6678 
e0 5e-8 8e-7 5e-6 5e-5 5e-4 5e-3 5e-2 1.82e-1 2.64e-1 3.45e-1 4.27e-1 5.09e-1  
         5.91e-1 6.73e-1 7.55e-1 8.36e-1 9.18e-1 1 1.36 1.73 2.09 2.45 2.82 
         3.18 3.55 3.91 4.27 4.64 5 5.2 5.5 5.7 6 6.2 6.5 6.7 7 7.2 7.5 7.7 8 
         8.2 8.5 8.7 9 9.2 9.5 9.7 10 10.2 10.5 10.7 11 11.2 11.5 11.7 12 12.2 
         12.5 12.7 13 13.2 13.5 13.7 14 14.2 14.5 14.7 15 16 17 18 19 20 50 100 
c        Energy bins for dE/dF energy conversion to be conducted 
c   outside the code. 
mesh geom=rec origin=-300 -300 -50 kmesh 0 30i 30 600 imesh -195 10i -90 90i  
         0 20i 20 300 jmesh 5 35i 40 300 ref=1e-6 1e-7 0 
c weight window mesh for variance reduction purposes 
wwg 12 0 5j 0 
c ssr old=8.2 new=8.2 
rand gen=2 seed= 6516161565161 
c using the 64 bit random number generator with a random seed 
c obtained by pure luck of striking the keyboard repeatedly 
c ssw 8.2 sym=2 
kcode 5e5 1.0 2 422 
c ksrc 31.1 26.43 20 27.3 26.29 20 19.88 26.40 20 
c nps 15148787 
c nonu 
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