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SUMMARY

Previous studies performed on myelinated nerve fibers have shown that a high frequency

alternating current stimulus can block impulse conduction. The current threshold at which

block occurs increases as the blocking frequency increases. Cable models based on the

Hodgkin-Huxley model are consistent with these results.

Recent experimental studies on unmyelinated nerve have shown that at higher frequen-

cies, the block threshold decreases. When the block threshold is plotted as a function of

frequency the resulting graph is distinctly nonmonotonic. Currently, all published models

do not explain this behavior and the physiological mechanisms that create it are unknown.

This difference in myelinated vs. unmyelinated block thresholds at high frequencies could

have numerous clinical applications, such as chronic pain management.

A large body of literature has shown that the specific capacitance of biological tissue

decreases at frequencies in the kHz range or higher. Prior research has shown that introduc-

ing a frequency-dependent capacitance (FDC) to the Hodgkin-Huxley model will attenuate

the block threshold at higher frequencies, but not to the extent that was seen in the ex-

periments. This model was limited by the methods used to solve its higher order partial

differential equation. The purpose of this thesis project is to develop a numerically stable

method of incorporating the FDC into the model and to examine its effect on block thresh-

old. The final, modified model will also be compared to the original model to ensure that

the fundamental characteristics of action potential propagation remain unchanged.

vii



CHAPTER I

INTRODUCTION

Clinical and modeling studies have shown that high-frequency alternating current (HFAC)

stimulation can block conduction in nerves. The HFAC amplitude at which this block first

occurs is referred to as the block threshold; it has been proven to increase as a function

of the HFAC frequency [1], [2], [3], [17]. Laboratory experiments exploring this behavior

have been performed using mixed myelinated and unmyelinated nerve fibers. It was later

shown that, in purely unmyelinated nerve fiber, block threshold increased as a function of

frequency up to a point before decreasing, resulting in a nonmonotonic response. By varying

the frequency of the HFAC stimulus, it may be possible to selectively block different nerves.

The ability to control the propagation of signals in the body has various clinical applications,

including chronic pain management.

While this response has been observed clinically, computational studies could not repli-

cate the nonmonotonic behavior; possibly because the axon models may not be completely

accurate representations of unmyelinated nerve fiber. The foundation of these axon models,

the Hodgkin-Huxley model, assumes a fixed membrane capacitance. However, experimental

studies have shown that the membrane capacity changes as a function of stimulus frequency

[8]. A model incorporating a frequency-dependent capacitance (FDC) caused the relation-

ship between block threshold and frequency to closer resemble the nonmonotonic blocking

response observed in clinical studies [7].

However, this model has limitations stemming from the methods used to solve its com-

plex system of partial differential equations. This thesis will present a model incorporating

the FDC, implemented using numerical methods that prove to be more stable and compu-

tationally time-efficient.
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CHAPTER II

BACKGROUND

2.1 Experiments

Clinical studies have demonstrated that nerve fiber conduction can be blocked with the

introduction of either alternating current (AC) or direct current (DC) stimuli. Researchers

have utilized different methods and experimental setups to determine the mechanisms that

enable blocking, however they are still not fully understood. The bulk of these studies have

been conducted using a high frequency alternating current (HFAC) blocking stimulus on

mammalian or amphibian nerve fibers.

A typical experimental setup involves isolating the nerve fiber from the animal and

attaching electrodes to stimulate and measure compound action potential (CAP) propa-

gation. The CAP is the sum of the extracellular electric field potential created by the

electrical activity of a bundle of nerves in a fiber. A more functional preparation measures

the twitch response of muscles connected to the nerve fiber to quantify the effect of HFAC

block. Figure 1 shows this particular experimental set-up. An electrode is attached to the

proximal nerve to generate an action potential and another electrode is placed between it

and the muscle to produce conduction block stimulus [3].

The first group to attempt to isolate the cause of HFAC block was Cattel and Gerard

(1935) [5]. They used a low frequency stimulus of 500-600Hz and a high of 2300Hz. Their

research led them to conclude that a decrease in the excitability of the nerve fiber at the

block site could block impulse propagation at that location. This assertion was supported

by Reboul and Rosenblueth (1939) detailing the effects of HFAC stimulus of up to 40kHz

on the feline popliteal nerve fiber [16].

Over twenty years later, Tanner (1962) briefly investigated reversible blocking in the

sciatic nerve of large green frogs [18]. Through the application of a 20kHz blocking signal,

he was able to observe that nerve fibers of varying diameters would react differently to a
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Figure 1: Block diagram of the experimental set-up used to induce conduction block and
measure muscle response. K.L. Kilgore and N. Bhadra (2006)

given block amplitude. He noted that smaller fibers would experience larger currents and

therefore a larger depolarizing effect.

Woo and Campbell (1964) examined the effect of HFAC block in the sciatic nerves of

frogs and the tibial nerves of cats [19]. By varying the amplitude of a 20kHz blocking

stimulus, they observed change in the neuron response. At low amplitudes, the nerve fiber

exhibited rhythmic firing. As the amplitude of the blocking stimulus was increased, the

firing frequency increased until it became sporadic passed 400-700Hz before stopping com-

pletely. After demonstrating blocking using HFAC stimuli, Woo and Campbell researched

conduction block using DC blocking stimuli.

Bowman and McNeal (1986) experimented with a stimulus consisting of rectangular

pulses ranging from 100 to 10,000Hz [4]. When applied to the sciatic nerves of cats, they

observed that a block could be achieved at 4kHz with a blocking amplitude five times that

of the threshold voltage. The high frequency stimulus initially generates 1-2 seconds of

firing before blocking truly occurs, which is reversible around 1 second after the blocking

stimulus is removed. Their experimentation revealed that there is a frequency threshold at

which block occurs.
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Kilgore and Bhadra (2005) found that a fully reversible conduction block could be

achieved in the sciatic nerves of frogs using a 3-5kHz sinusoidal waveform with 0.5-2mA

amplitude [2]. Both experimental results and computer modeling led them to conclude that

conduction block is due to the depolarization of the nerve fiber around the block site.

HFAC block is not only reversible, as demonstrated in these papers, but also exhibits

a particular response to changes in blocking amplitude. Bhadra et al. (2006) detailed the

effect of conduction block on the pudendal nerves of cats [3]. They established that the

threshold amplitude of the block stimulus voltage increases as a function of the frequency;

Figure ?? shows the monotonic block threshold-frequency relationship.

Figure 2: Monotonic response of voltage threshold needed to induce HFAC block in the
pudendal nerve plotted as a function of frequency. Bhadra et al. (2006)

Many of these studies were conducted using mammalian or amphibian neurons, which

contain myelinated nerve fibers. A more recent study, using purely unmyelinated Aplysia

nerves, uncovered a significantly different blocking response. Joseph and Butera (2009)

showed that a consistent, reversible conduction block could be achieved using HFAC stim-

ulation [11]. Four suction electrodes were positioned along the fiber, as seen in Fig. 3.

One electrode initiated the action potential and another provided the HFAC block; the

other two electrodes were used to record the propagation of the compound action potential.

Sinusoidal or biphasic rectangular waveforms of 5-50kHz were used to induce block. At each
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Figure 3: Schematic of the experimental setup used to induce and measure HFAC block in
Aplysia nerve. Joseph and Butera (2009)

HFAC stimulus frequency, the current amplitude was varied until block occurred, producing

a distinct relationship between frequency and current intensity threshold. As depicted in

Figure 4, block amplitude increases as a function of frequency until 12kHz, at which point

it decreases until the maximum test frequency is reached at 50kHz.

Unlike the previous experiments, which were conducted with a mix of myelinated and

unmyelinated nerve fibers, the purely unmyelinated nerves demonstrate a nonmonotonic

relationship between block threshold and frequency. To help explain this disparity, the

experiment was repeated using the sciatic nerve of frogs, which are a mix of myelinated and

unmyelinated fibers. The compound action potential was measured to determine if block

had occurred; after which, the A and C components of the measurement were isolated

to determine the individual effect of HFAC block. The A component is dominated by

myelinated fibers, while the C component represents activity of a subset of unmyleinated

fibers. It was possible to isolate the A and C fiber components because the C fiber has a

slower conduction velocity and a distinct CAP shape, causing its response to appear 20ms
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Figure 4: Nonmonotonic response of current threshold needed to induce HFAC block in
Aplysia nerve. Joseph and Butera (2009)

after the A fiber response. The experiment was repeated using a range of frequencies from

5-50kHz on 9 nerves. The average block threshold of the A and C fibers versus frequency

is shown in Fig. 5. Figure 5 shows that, at lower frequencies, there is a range of current

amplitudes where A fiber is blocked, but C fiber is not [12]. While at higher frequencies, C

fiber is blocked and A fiber is not.

Figure 5: Average current block threshold of A and C fibers of the sciatic nerve of rats. L.
Joseph and R.J. Butera (2011)
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2.2 Modeling

Modeling is a useful tool in understanding the mechanisms that allow for nerve conduc-

tion and, more recently, conduction block. Modeling of the nerve began in 1952 when

Hodgkin and Huxley [9] published a series of papers asserting that the electrical behavior

of a unmyelinated giant squid axon could be represented by the electrical circuit in Fig. 6.

Figure 6: Electrical schematic of the membrane of a squid axon. A. L. Hodgkin and A. F.
Huxley (1952)

Current flows through the membrane by charging the membrane capacitance or by the

movement of ions through the ion channels, which are represented by parallel resistances.

Current through the ion channels, called the ionic current, is comprised of potassium and

sodium ions traveling through their respective channels. A leakage channel is also included

to account for other ions such as chloride.

The ionic current densities (current per unit area) are determined by their individual

ionic conductances (gK for potassium, gNa for sodium, and gl for leakage) and Nernst po-

tentials, which are the membrane potentials at which there is no net flow of the particular

ions. Potassium and sodium channel conductances are nonlinear, being both voltage and

time dependent. The leakage channel, however, contains a linear conductance. The indi-

vidual current densities flowing through the ion channels are represented in Equations 1, 2,
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and 3.

INa(Vm, t) = gNa(Vm − ENa), (1)

IK(Vm, t) = gK(Vm − EK), (2)

Il(Vm, t) = ḡl(Vm − El) (3)

The ionic current density is the sum of the individual ion channel current densities,

expressed in Eq. 4.

Ii = INa + IK + Il (4)

The total current density through the membrane is a combination of the current through

the membrane capacitance and the ionic current described previously. The capacitive cur-

rent is a function of the membrane capacitance per unit area, which is assumed to be a

fixed value, as well as the derivative of the membrane voltage (Eq. 5).

I = Cm
∂Vm
∂t

+ Ii (5)

To model the behavior of the ionic conductances, Hodgkin and Huxley fitted curves

to experimental data of the changes in ionic conductances over time associated with the

depolarization and repolarization of the nerve. The rise and fall of the ionic conductances

caused by changes in membrane potential obey different first order equations. These equa-

tions solve for gating variables, which indicate how open a population of channels are. The

potassium conductance can be modeled as being proportional to a variable to the fourth

power (Eq. 6), where the variable is described by a first-order equation (Eq.74).

gK = ḡKn
4 (6)

∂n

∂t
= αn(1− n)− βnn (7)

αn and βn are rate constants dependent solely on voltage and n is a dimensionless

variable with the range of zero to one. By solving Eq. 74 when the membrane potential

is at rest, Hodgkin and Huxley were able to describe the rate constants as functions of

the time constant, τn. In conjunction with the resting values of αn and βn, which were
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obtained from fitting experimental data, Hodgkin and Huxley derived equations describing

the potassium rate constants (Equations 8 and 9).

αn = 0.01(V + 10)/[exp(
V + 10

10
)− 1] (8)

βn = 0.125exp(V/80) (9)

The sodium conductance equations were determined in a similar manner. However, the

sodium conductance was found to be proportional to two variables both obeying first-order

equations (Eq.’s 10, 11, and 12).

gNa = ḡKm
3h (10)

∂m

∂t
= αm(1−m)− βmm, (11)

∂h

∂t
= αh(1− h)− βhh (12)

where,

αm = 0.1(V + 25)/[exp(
V + 25

10
)− 1] (13)

βm = 4exp(V/18), (14)

αh = 0.07exp(V/20) (15)

βh = 1/[exp(
V + 30

10
) + 1] (16)

Using these equations, Hodgkin and Huxley were able to model the electrical behavior

of a single point on a nerve fiber.

The potential generated by an injected current flowing through the membrane may

be great enough activate the voltage-gated ion channels. If the channels open, sodium

ions will flow inward, causing the membrane potential to further increase, which in turn

opens more sodium channels and the depolarization continues. At the peak of the action

potential, the sodium channels close and the potassium channels dominate. The outward

flow of potassium ions eventually causes the membrane potential to return to rest. The

surge in membrane current caused by the ion channels is significantly larger than that of

the stimulating current.
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However, nerves come in many shapes and sizes and it is often necessary to have a

model that can account for more than one point on the nerve. From this necessity, the

cable model was developed using the simple geometry of a cylinder to represent the axon

or sections of the dendrites. The cable model describes the flow of current through and

along the membrane by segmenting the membrane so that the voltage and current can be

calculated at each point (Fig. 7).

Figure 7: Diagram of current flow in cylindrical cable model.

In the passive cable model, each point along the cable length is approximated with a

transmembrane capacitance and resistance, which are connected to each other with resis-

tances approximating the internal and external resistance along membrane (Fig. 8).

Figure 8: Electrical schematic of passive cable model.

According to Kirchoff’s current laws, current that is introduced to the system will flow

across and along the membrane; however, since this model lacks ion channels, no action

potential will be generated from a stimulating current. To create a model with nonlinear

properties, one that will generate and propagate action potentials, Hodgkin and Huxley’s

ion channel model will replace the fixed transmembrane resistance (Fig. 9).
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Figure 9: Electrical schematic of nonlinear cable model. The block represents the ion
channels from the Hodgkin-Huxley model.

Unlike the Hodgkin-Huxley model, the cable model accounts for both the spatial as well

as the temporal spread of potential. The membrane properties (resistances, capacitances,

etc.) and the densities of the currents and voltages will have to be in terms of the cylinder’s

dimensions.

Using Kirchoff’s current and voltage laws, expressions for the transmembrane current

can be derived in terms of the membrane voltage and the injected current. One equation

utilizes the derivative of the voltage with respect to the spacial dimension, x, and the other

with respect to time, t. Set equal to each other, an equation is created describing the

membrane voltage along an axon in terms of time and space (Eq. 17).

∂Vm
∂t

=
1

4π(Ri +Re)Cm

∂2Vm
∂x2

− Vm
RmCm

+
Iinj

2πaCm
(17)

where,

• Rm is the transmembrane resistance in units of kohm cm

• Ri is the internal membrane resistance in units of kohm cm

• Re is the external membrane resistance in units of kohm cm

• Cm is the membrane capacitance per unit area (µF/cm2)

• a is the radius of the cylinder in cm

• Vm is the membrane voltage in mV

11



• Iinj is the injected current µA

• t is time in msec

• x is space in cm

In this model, current is injected directly into the membrane to generate an action

potential (AP). However, it is possible to trigger an AP through external stimulation only.

In this scenario, an electrode is placed within a few millimeters of the axon, where it

generates an electro-magnetic field. This stimulus is modeled as a point current source lying

in a uniform medium with the unmyelinated nerve fiber (Fig. 10). NcNeal (1976) assumed

that the extracellular potential along the membrane would be fixed by the monopole’s field

[13]. It is then possible to calculate the potential at each node along the fiber (Φe) based

on the distance to the point source (r), conductivity of the extracellular medium(σe), and

the strength of the stimulating current (Istim)(Eq. 18).

Figure 10: Diagram of current flow in cylindrical cable model with extracellular stimulation.

Φe =
Istim
4πσer

(18)

Since the extracellular membrane potential is fixed, there is no longer any current flowing

along the outside of the membrane. The cable model is modified in Figure 11 to reflect this

change.

When the cable equation is rederived based on this new model, it loses the extracellular

resistance (re) and gains a term including the second derivative of extracellular membrane

potential (Φe or Ve) with respect to space (Eq. 19). The derivative of the extracellular

12



Figure 11: Electrical schematic of nonlinear cable model with external stimulation. The
block represents the ion channels from the Hodgkin-Huxley model.

voltage can still be calculated independently of the cable equation as shown in Equation 20.

∂Vm
∂t

=
1

Cm

[
d

4Ri

∂2Vm
∂x2

+
d

4Ri

∂2Ve
∂x2

− Iion
]

(19)

∂2Ve
∂x2

=
Istim
4πσe

[
2x2 − h2

(h2 + x2)5/2

]
(20)

Equation 20 is called the activating function because activation is only possible when

∂Vm
∂t > 0, which Rattay assumed would occur when ∂2Ve

∂x2 > 0 [14]. To illustrate the effect

of the activating function, Rattay created a figure showing its behavior given a cathodal

current source of -290µA and an anodal current of 1450µA (Fig. 12).

Figure 12: ∂2Ve
∂x2 and Ve resulting from a point source 1mm away from a 10mm fiber with

anodal (1450µA) and cathodal (-290µA) current sources. The x-axis shows the length of
the cable in mm. The y-axis shows the value of ∂Ve

∂t and Ve along the cable. Rattay (1986)

A strong anodal stimulus will cause ∂2Ve
∂x2 at the stimulus site (x=0 in Fig. 12) to be

13



very negative, making it difficult or even impossible to have an action potential occur there.

However, on either side of the stimulus site, ∂2Ve
∂x2 becomes more positive, which could trigger

APs. Cathodal stimulation does the opposite of an anodal source, but in a smaller scale.

A slightly smaller negative current causes ∂2Ve
∂x2 to be positive at the stimulus site, possibly

triggering APs. On either side of the site, ∂2Ve
∂x2 becomes negative and, if large enough, could

prevent the propagation of APs.

This behavior can be used to both generate action potentials and block their propaga-

tion. Frequently in modeling studies of this effect, two extracellular sources are used: one

to generate an AP with a rectangular pulse of current and the other to block the AP using

a HFAC source (Fig. 13).

Figure 13: Diagram of the triggering and subsequent blocking of APs using extracellular
stimulation.

Haeffele and Butera (2007) modified the cable model to determine the cause of the

nonmonotonic blocking response seen in clinical studies of Aplysia nerves [7]. They incor-

porated a frequency-dependent capacitance in place of the fixed membrane capacitance in

the Hodgkin-Huxley model. The evidence that the capacitance of unmyelinated nerve fiber

is frequency-dependent came from Haydon and Urban’s (1985) study of the giant squid axon

under HFAC stimulation [8]. The membrane capacity was measured at different stimulus

frequencies, the results are shown in Figure 14.
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Figure 14: Membrane capacitance of the giant squid axon as a function of stimulus fre-
quency. The different data markers represent the different experimental setups that were
used to obtain readings of the capacity. Haydon and Urban (1985).
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CHAPTER III

METHODS

3.1 Implementation of the unmodified cable model with extracellular
stimulation

The purpose of first implementing the unmodified cable model is to establish a starting

point with verifiable results for the new model. The cable model also provides a point of

comparison for the modified model. As introduced in the Background, the cable model with

extracellular stimulation is described by the following equation (Eq. 21).

∂Vm
∂t

=
1

Cm

[
1

2πari

∂2Vm
∂x2

+
1

2πari

∂2Ve
∂x2

− Iion
]

(21)

∂2Ve
∂x2 is solved analytically because it depends only on known quantities: the current

amplitude, conductivity of the medium, and the position of the stimulus in relation to the

fiber (Eq. 22).

∂2Ve
∂x2

=
Istim
4πσe

[
2x2 − h2

(h2 + x2)5/2

]
(22)

Before the system equations are solved, ∂2Ve
∂x2 is calculated at every point along the cable

at every point in time. Figure 15 shows the superposition of Ve along the cable.

Figure 15: Superposition of the external voltage on the cable determined by solving the
Activating Function at each point.

It is not possible to solve the cable equations analytically because they contain several

higher order spacial and temporal derivatives,. Instead, the finite difference method will

be used to approximate the system equations. A differential equation is numerically solved

using algorithms and a set of initial conditions. The first step in this process is to discretize
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the continuous system; the dimensions that exist in the system (space, time, etc.) must be

broken down in to finite steps in time and space. These algorithms replace the derivative

with approximately equivalent difference quotients, which use the distance between points

and their values to estimate the next point. This model uses the backwards difference al-

gorithms to approximate the temporal derivatives because this method requires only the

solutions at previous time points. It is possible to estimate a partial differential equation

as a system of linear ordinary differential equations, which can then be approximated us-

ing numerical methods. However, this approximation of the nonlinear PDE, coupled with

ODEs, lends itself to errors.

The derivatives of the membrane voltage with respect to time and space are approxi-

mated in Equations 23 and 24. The temporal and spacial steps are represented by 4t and

4x respectively. The membrane voltage, Vm, will now be referred to by V .

∂Vm
∂t
≈
V x
t − V x

t−1
4t

(23)

∂2Vm
∂x2

≈ V x+1
t − 2V x

t + V x−1
t

4x2
(24)

Substituting derivatives with their approximations results in Equation 25.

Cm
V x
t − V x

t−1
4t

=
1

2πari

[
V x+1
t − 2V x

t + V x−1
t

4x2

]
+

1

2πari

∂2Ve
∂x2

− Iion (25)

The coefficients from Equation 25 are reorganized and new terms (Eq.’s 27 - 29) are

defined. Equation 26 is then rewritten in matrix-vector form.

− αV x+1
t + (1 + 2α)V x

t − αV x−1
t = V x

t−1 + c
∂2Ve
∂x2

− bIion (26)

α =
4t

2πari4x2Cm
(27)

b =
4t
Cm

(28)

c =
4t

Cm2πari
(29)
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

1 + α −α 0 . . . 0

−α 1 + 2α
. . . . . .

...

0
. . .

. . . −α 0

... . . . −α 1 + 2α −α

0 . . . 0 −α 1 + α





V 1
t

V 2
t

V 3
t

...

V n
t


=



V 1
t−1

V 2
t−1

V 3
t−1
...

V n
t−1


+ c

∂2Ve
∂x2

− bIion

In particular, the equation takes on the Ax=b form, where A is the symmetric, tridi-

agonal matrix, x is the unknown membrane voltage, and b is everything on the right-hand

side of the equals sign. To solve this system, b must first be determined using the previous

membrane voltage to calculate the ionic current from the Hodgkin-Huxley equations. The

membrane voltage can then be solved for using the tridiagonal matrix algorithm. This

voltage is used to recalculate the ionic currents and the process repeats itself until the

membrane voltage has been solved for at each time point.

One important consideration in approximating the model’s differential equations is nu-

merical stability. A numerically stable algorithm has either no errors or no errors that grow

rapidly during the calculations. Numerical stability is difficult to define when dealing with

non-linear partial differential equations, such as the cable model, because they lack many of

the well-defined characteristics of linear equations. Numerical stability can be effected by

the number of significant digits used in the calculations; too few digits will result in large,

uncontrollable errors. Therefore, the computational model is implemented using double

precision numbers, which at 64 bits, are the largest format available in the C programming

language.

Discrete equations will behave differently than the original differential equations be-

cause they are subject to the constraints of the temporal and spacial steps. At certain

points along the cable, the membrane voltage will experience rapid changes in magnitude.

This is most evident at the point where block occurs on the cable. This point is largely

governed by the second derivative of the external voltage, which is determined by the high

frequency stimulus. If the cable is not sampled at small enough intervals, the difference in

voltage between the points becomes very large. This effect translates to the approximation
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algorithms, where the error in the voltage estimates increase. The solution begins to blow

up, eventually resulting in a mathematical singularity. To prevent this discontinuity, step

sizes must be chosen carefully.

Another consideration in creating a numerically stable system is how to solve for the

unknown x (the next Vm) from the Ax=b formulation. One method for solving this system

is to represent it as a system of ordinary differential equations (ODEs) for each segment of

time. Then, an ODE solver can be used to solve for x. However, this method is prone to

error and instability. Another, more straightforward, method for solving this system is to

multiply b and the inverse of A. Although this algorithm is computationally simple, and

therefore faster, it is very likely to produce numerically unstable results. The tridiagonal

matrix algorithm (TDMA) uses backward substitution to calculate the value of x, making

the method backward stable. As a backward stable algorithm, the TDMA will help minimize

errors in the solution, however it is more computationally expensive [6].

3.2 Modification of the cable model to include a frequency-dependent
capacitance

The derivation of the modified cable model is split up into four major subsections:

• 3.2.1: Defining the relationship between frequency and membrane capacity

• 3.2.2: Incorporating the FDC in to the cable model

• 3.2.3: Approximating the modified cable model

• 3.2.4: Solving the modified cable model

3.2.1 Defining the relationship between frequency and membrane capacity

Haydon and Urban [8] showed that the membrane capacity decreases with increasing stim-

ulating frequency. These frequencies are above the typical electrophysiological range, but

within the firing range of the HFAC stimulus. Therefore, the capacity can no longer be
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represented as a fixed quantity and must be described by a function of frequency. This

function is fitted to the data from Haydon and Urban’s 1983 paper using Matlab’s Curve

Fitting toolbox. While it is possible to fit many different types of functions to the data, it

is crucial to consider how this function will be incorporated into the cable equation.

A function with a rational polynomial form allows for the most flexibility in fitting the

data, providing multiple terms of varying degrees. Importantly, it is possible to take the

Laplace transform of a polynomial expression, shifting it in to the same domain as the

cable model equations. Figure 16 shows the frequency-dependent function (Eq. 30) plotted

with the data points from Haydon and Urban. The equation is fitted upto 50kHz; anything

larger is above the electrophysiological range.

Cm(s) =
s2 + 1.75 · 105s+ 3.75 · 109

187.5s2 + 2.25 · 107s+ 3.75 · 1011
(30)

Figure 16: Membrane capacity as a function of stimulus frequency. The data points are
from Haydon and Urban (1983) and the line fitted to the data is described by Equation 30.

3.2.2 Incorporating the FDC in to the cable model

As discussed previously, the frequency-dependent membrane capacitance can be expressed

by a fitted rational polynomial. However, for the duration of this derivation, the symbolic
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coefficients in Equation 31 will be used in place of these known quantities.

Cm(s) =
b0s

2 + b1s+ b2
a1s2 + a2s+ a3

(31)

The membrane capacitance can be expressed by the transfer function in Equation 32,

where the ratio of the membrane voltage and capacitive current is equal to the electrical

impedance of the capacity.

Vm(s)

Ic(s)
=

1

sCm(s)
(32)

When the capacity transfer function (Eq. 31) is substituted into Equation 32, the

transfer function can be rewritten as a function of the Laplace transforms of the membrane

voltage and capacitive current only (Eq. 34). The inverse Laplace transform of Equation

34 is performed to move the equation into the time domain. The initial conditions of Vm(s)

and IC(s) and their derivatives are assumed to be equal to zero, resulting in Equation 35.

sVm(s) =
IC(s)

Cm(s)
= IC(s)

(
a1s

2 + a2s+ a3
b0s2 + b1s+ b2

)
(33)

(b0s
3 + b1s

2 + b2s)Vm(s) = (a1s
2 + a2s+ a3)IC(s) (34)

b0
...
Vm + b1V̈m + b2 ˙Vm = a1ÏC + a2 ˙IC + a3IC (35)

The capacitive current is a function of the the extracellular voltage and the ionic current,

which are only dependent on known quantities and the membrane voltage (Equation 36).

In solving the model, IC is calculated first, then used to solve for Vm in Equation 36. The

new Vm is used to determine the next IC and the process repeats itself.

IC = Cm
∂Vm
∂t

=
d

4Ri

[
∂2Vm
∂x2

+
∂2Ve
∂x2

]
− Iion (36)

Since we are dealing with a large system of differential equations, including a third-order

differential equation, an analytical solution is not possible. However, the derivatives can

be estimated using finite difference approximations. This method requires that the model

be discretized; therefore, the cable space is broken into segments, 4x, and the time into

4t’s. Each side of Equation 35 is first approximated separately and then combined and

transformed into a solvable matrix-vector system.
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3.2.3 Approximating the modified cable model

3.2.3.1 Approximate b0
...
Vm + b1V̈m + b2 ˙Vm

The derivatives of Vm with respect to time are approximated using the backwards difference

method. From this point on, the membrane potential, previously referred to as Vm, will be

written as V.

b0
...
Vm + b1V̈m + b2 ˙Vm ≈ b0

5V x
t −18V x

t−1+24V x
t−2−14V x

t−3+3V x
t−4

24t3
+ ...

b1
2V x

t −5V x
t−1+4V x

t−2−V x
t−3

4t2
+ b2

3V x
t −4V x

t−1 + V x
t−2

24t
(37)

The coefficients are grouped and assigned to new terms (Eq.’s 38-41) to minimize clutter

in the final approximation.

V x
t

(
5b0

24t3
+

2b1
4t2

+
3b2
24t

)
+V x

t−1

(
−18b0
24t3

− 5b1
4t2
− 4b2

24t

)
+...

V x
t−2

(
24b0
24t3

+
4b1
4t2

+
b2

24t

)
+V x

t−3

(
−14b0
24t3

− b1
4t2

)
+V x

t−4

(
3b0

24t3

)

c1 =
5b0

24t3
+

2b1
4t2

+
3b2
24t

=
(5/2)b0+2b14t+(3/2)b24t2

4t3
(38)

c2 =
−18b0
24t3

− 5b1
4t2
− 4b2

24t
=
−9b0−5b14t−2b24t2

4t3
(39)

c3 =
24b0
24t3

+
4b1
4t2

+
b2

24t
=

12b0+4b14t+(1/2)b24t2

4t3
(40)

c4 =
−14b0
24t3

− b1
4t2

=
−7b0−b14t
4t3

(41)

c5 =
3b0

24t3
(42)

The resulting approximation (Eq. 43) will require three previous time steps to estimate

the next membrane voltage, V x
t .

b0
...
Vm + b1V̈m + b2 ˙Vm ≈ c1V x

t + c2V
x
t−1 + c3V

x
t−2 + c4V

x
t−3 + c5V

x
t−4 (43)

3.2.3.2 Approximate a1ÏC + a2 ˙IC + a3IC

The membrane capacity current is determined from the cable equation with external stim-

ulation (Eq. 44). Since Iion and ∂2Ve
∂x2 , are determined prior to the new Vm calculations,
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they are isolated from the ∂2Vm
∂x2 term and assigned to a new term, γ. The calculation of γ

is dealt with separately from this approximation. The membrane capacity current, which

has been written as IC , will now be referred to by I.

IC =
d

4Ri

[
∂2Vm
∂x2

+
∂2Ve
∂x2

]
− Iion (44)

=
d

4Ri

∂2Vm
∂x2

+
d

4Ri

∂2Ve
∂x2

− Iion (45)

= ω
∂2Vm
∂x2

+ γxt (46)

where,

ω =
d

4Ri
(47)

γxt =
d

4Ri

∂2Ve(x, t)

∂x2
− Iion(x, t) (48)

Since IC contains a second-order spacial derivative, ∂2Ve
∂x2 must first be approximated

before the time derivative approximations are determined (Eq. 49).

IC = ω
∂2Vm
∂x2

+ γxt ≈ ω
[
V x+1
t − 2V x

t + V x−1
t

4x2

]
+ γxt (49)

The first and second time derivatives of IC are determined using the backwards difference

approximation method, as Equations 50 and 51 show.

˙IC ≈
3Ixt − 4Ixt−1 + Ixt−2

24t

=
3ω
[
V x+1
t −2V x

t +V x−1
t

4x2

]
+ 3γxt

24t
+

−4ω

[
V x+1
t−1 −2V x

t−1+V x−1
t−1

4x2

]
− 4γxt−1

24t
+ ...

ω

[
V x+1
t−2 −2V x

t−2+V x−1
t−2

4x2

]
+ γxt−2

24t
(50)

ÏC ≈
2Ixt − 5Ixt−1 + 4Ixt−2 − Ixt−3

4t2

=
2ω
[
V x+1
t −2V x

t +V x−1
t

4x2

]
+ 2γxt

4t2
+

−5ω

[
V x+1
t−1 −2V x

t−1+V x−1
t−1

4x2

]
− 5γxt−1

4t2
+ ...

4ω

[
V x+1
t−2 −2V x

t−2+V x−1
t−2

4x2

]
+ 4γxt−2

4t2
+

−ω
[
V x+1
t−3 −2V x

t−3+V x−1
t−3

4x2

]
− γxt−3

4t2
(51)
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Utilizing these approximations results in Equation 52.

a1ÏC + a2 ˙IC + a3IC ≈
2ωa1
4t24x2

[V x+1
t − 2V x

t + V x−1
t ] +

2a1
4t2

γxt − ...

5ωa1
4t24x2

[V x+1
t−1 − 2V x

t−1 + V x−1
t−1 ]− 5a1

4t2
γxt−1 + ...

4ωa1
4t24x2

[V x+1
t−2 − 2V x

t−2 + V x−1
t−2 ] +

4a1
4t2

γxt−2 − ...

ωa1
4t24x2

[V x+1
t−3 − 2V x

t−3 + V x−1
t−3 ]− a1

4t2
γxt−3 + ...

3ωa2
24t4x2

[V x+1
t − 2V x

t + V x−1
t ] +

3a2
24t

γxt − ...

4ωa2
24t4x2

[V x+1
t−1 − 2V x

t−1 + V x−1
t−1 ]− 4a2

24t
γxt−1 + ...

ωa2
24t4x2

[V x+1
t−2 − 2V x

t−2 + V x−1
t−2 ] +

a2
24t

γxt−2 + ...

ωa3
4x2

[V x+1
t − 2V x

t + V x−1
t ] + a3γ

x
t (52)

New terms, α’s and β’s, are defined to keep the approximation orderly.

α1 =
ωa1
4t24x2

(53)

β1 =
a1
4t2

(54)

α2 =
ωa2
4t4x2

(55)

β2 =
a2
4t

(56)

α3 =
ωa3
4x2

(57)

β3 = a3 (58)

The coefficients are then grouped and the approximation rewritten in Equation 59.

a1ÏC + a2 ˙IC + a3IC ≈ V x+1
t [2α1 + (3/2)α2 + α3] + V x

t [−4α1 − 3α2 − 2α3] + ...

V x−1
t [2α1 + (3/2)α2 + α3] + V x+1

t−1 [−5α1 − 2α2] + V x
t−1[10α1 + 4α2] + ...

V x−1
t−1 [−5α1 − 2α2] + V x+1

t−2 [4α1 + (1/2)α2] + V x
t−2[−8α1 − α2] + ...

V x−1
t−2 [4α1 + (1/2)α2] + V x+1

t−3 [−α1] + V x
t−3[2α1] + V x−1

t−3 [−α1] + ...

γxt [2β1 + (3/2)β2 + β3] + γxt−1[−5β1 − 2β2] + ...

γxt−2[4β1 + (1/2)β2] + γxt−3[−β1] (59)
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The two approximations (Eq.’s 43 and 59) are assembled to form the complete finite

difference approximation of the modified cable equation (Eq. 60).

V x+1
t [−2α1−(3/2)α2−α3] + V x

t [c1+4α1+3α2+2α3] + V x−1
t [−2α1−(3/2)α2−α3] =

V x+1
t−1 [−5α1 − 2α2] + V x

t−1[−c2 + 10α1 + 4α2] + V x−1
t−1 [−5α1 − 2α2]+

V x+1
t−2 [4α1 + (1/2)α2] + V x

t−2[−c3 − 8α1 − α2] + V x−1
t−2 [4α1 + (1/2)α2] + ...

V x+1
t−3 [−α1] + V x

t−3[−c4+2α1] + V x−1
t−3 [−α1] + V x

t−4[−c5] + ...

γxt [2β1+(3/2)β2+β3] + γxt−1[−5β1−2β2] + γxt−2[4β1+(1/2)β2] + ...

γxt−3[−β1] (60)

Equation 60 is rewritten in matrix-vector form as shown below. In this form, it is

apparent that the model can be described with four symmetric, tridiagonal matrices (A, B,

C, and D) and several scalar terms. When simplified, this equation has the form Ax=b;

the unknown, x, is the vector representing V x
t and b is everything else, which is calculated

as the system is solved. V x
t is solved for with the tridiagonal matrix algorithm.

A



V 1
t

V 2
t

V 3
t

...

V n
t


= B



V 1
t−1

V 2
t−1

V 3
t−1
...

V n
t−1


+ C



V 1
t−2

V 2
t−2

V 3
t−2
...

V n
t−2


+D



V 1
t−3

V 2
t−3

V 3
t−3
...

V n
t−3


− c5



V 1
t−4

V 2
t−4

V 3
t−4
...

V n
t−4


+ ...



γ1t γ1t−1 γ1t−2 γ1t−3

γ2t γ2t−1 γ2t−2 γ2t−3

γ3t γ3t−1 γ3t−2 γ2t−3
...

...
...

γnx γnt−1 γnt−2 γnt−3





2β1+
3
2β2+β3

−5β1−2β2

4β1+
1
2β2

−β1


where,
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A=



c1+2α1+
3
2α2+α3 −2α1−3

2α2−α3 0 . . . 0

−2α1−3
2α2−α3 c1+4α1+3α2+2α3

. . . . . .
...

0
. . .

. . . −2α1−3
2α2−α3 0

... . . . −2α1−3
2α2−α3 c1+4α1+3α2+2α3 −2α1−3

2α2−α3

0 . . . 0 −2α1−3
2α2−α3 c1+2α1+

3
2α2+α3



B=



−c2+5α1+2α2 −5α1−2α2 0 . . . 0

−5α1−2α2 −c2+10α1+4α2
. . . . . .

...

0
. . .

. . . −5α1−2α2 0

... . . . −5α1−2α2 −c2+10α1+4α2 −5α1−2α2

0 . . . 0 −5α1−2α2 −c2+5α1+2α2



C=



−c3−4α1−1
2α2 4α1 + 1

2α2 0 . . . 0

4α1 + 1
2α2 −c3−8α1−α2

. . . . . .
...

0
. . .

. . . 4α1 + 1
2α2 0

... . . . 4α1 + 1
2α2 −c3−8α1−α2

0 . . . 0 4α1 + 1
2α2 −c3−4α1−1

2α2



D=



−c4+α1 −α1 0 . . . 0

−α1 −c4+2α1
. . . . . .

...

0
. . .

. . . −α1 0

... . . . −α1 −c4+2α1

0 . . . 0 −α1 −c4+α1



3.2.3.3 Determining γ

γ represents the effect of the ionic currents and the external, stimulating voltage on the

cable model. It is a result of the previous derivations and defined in Equation 61.

γxt =
d

4Ri

∂2Ve
∂x2

− Iion (61)

∂2Ve
∂x2 is calculated using the activating function (Eq. 62), which is dependent on the

26



amplitude of the stimulating current (Istim), the conductivity of the surrounding medium

(σe), and the distance between the stimulus and the cable (h). Since all of these parameters

are already known, ∂2Ve
∂x2 can be calculated for every point along the cable at every point in

time prior to solving the system.

∂2Ve
∂x2

=
Istim
4πσe

[
2x2 − h2

(h2 + x2)5/2

]
(62)

The ionic current is the sum of the currents through the individual ion channels: sodium,

potassium, and leakage (Eq. 63). The behavior of these ion channels is described by the

Hodgkin-Huxley model (see the Background for further details). It relies on many different

terms to describe the activation of the channels, including fixed ionic conductances, rate

coefficients, and gating variables. The channel rate coefficients (Eq. 67 through 72) are

voltage-dependent; they are calculated using the previous membrane voltage. φ represents

the temperature-dependent component of the model; it is defined in Equation 73, where T

is temperature in Celsius.

Iion = INa + IK + Il (63)

INa(Vm, t) = gNa(Vm − ENa), (64)

IK(Vm, t) = gK(Vm − EK), (65)

Il(Vm, t) = ḡl(Vm − El) (66)

αn = φ
(0.1(1− 0.1V ))

exp(1− 0.1V )− 1
(67)

βn = φ0.125exp

(
−V
80

)
(68)

αm = φ
(2.5− 0.1V )

exp(2.5− 0.1V )− 1
(69)

βm = φ4exp

(
−V
18

)
(70)

αh = φ0.07exp

(
−V
20

)
(71)

βh = φ
1

exp(3− 0.1V ) + 1
(72)

φ = 3(T−6.3)/10 (73)
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The rate coefficients are used to determine the status of the gating variables, which

are described by first-order derivatives (Eq.’s 75, 77, and 78). The conductance of the ion

channels are then determined by the gating variables (m, n, and h) and the conductance

constants (gK and gNa).

gK = ḡKn
4 (74)

∂n

∂t
= αn(1− n)− βnn (75)

gNa = ḡKm
3h (76)

∂m

∂t
= αm(1−m)− βmm, (77)

∂h

∂t
= αh(1− h)− βhh (78)

The derivatives of m, n, and h are approximated using the backwards difference method,

the results of which are described in Equations 79, 80, and 81. The new m, n, and h terms

are calculated using their previous values.

mnext = 4tαm − (4tαm +4tβm − 1)mprev (79)

nnext = 4tαn − (4tαn +4tβn − 1)nprev (80)

hnext = 4tαh − (4tαh +4tβh − 1)hprev (81)

The computation time of this model varies depending on the chosen parameters such as

the fiber length, simulation duration, and step sizes, as well as the processing power of the

computer. For the simulations performed in the results, the average time to compute the

membrane voltage in space and time is around 15 minutes.

3.2.4 Solving the modified cable model

The modified cable model is implemented in C because it has less overhead than programs

such as Matlab and it is the programming language I am most familiar with. Overhead is a

significant consideration because of the long computation times involved in the execution of

this model. The largest contributor to running time is the size of the temporal and spacial

steps (4t and 4x). Smaller step sizes mean more points in time and space at which to

perform calculations.
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As discussed previously, solving the model is essentially solving the Ax=b system for

the unknown x (the next membrane voltage). The matrix A is already known and b must

be determined using the Hodgkin-Huxley equations and previous membrane voltages. The

system is solved iteratively using two nested for loops. The first for loop steps through

time, where, at each time point, the membrane voltage along the cable is calculated. The

nested, second loop calculates the ionic current and effect of the external stimulus at each

point long the cable, referred to previously as γ. The results of the γ calculations are part

of the b component of Ax=b. Its previous two values are also needed, so they must be

saved during the computation. The other components of b are the three previous values of

the membrane voltage, attenuated by the matrices B and C and the scalar c4.

Once b has been determined for the current time point, x is solved for using the tridiag-

onal matrix algorithm, which is applicable because A is a tridiagonal matrix. The temporal

for loop progresses one time step and the previous membrane voltages will be used to cal-

culate current one. The following list outlines the set of iterative calculations performed to

solve the system for the membrane voltage.

1. Initialize model variables based on the system starting at rest

2. Calculate ion channel rate constants

3. Calculate gating variables

4. Calculate ion channel currents and sum for Iion

5. Calculate γ from Iion and external stimulus (∂
2Ve
∂x2 )

6. Advance to the next space step and repeat from step 2 until the cable ends

7. Use the previous Vm values and new and previous γ values to calculate b, where

b = BVx
t−1 + CVx

t−2 + DVx
t−3 - c5V

x
t−4 + γ terms

8. Use the tridiagonal matrix algorithm to solve for the next Vm

9. Advance to the next time step and repeat from step 2 until the run time ends
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CHAPTER IV

RESULTS

4.1 Unmodified cable model verification

The unmodified cable model is verified through comparison to papers implementing the

cable model with extracellular stimulation. The first paper, Analysis of Models for Ex-

ternal Stimulation by Rattay [14], examines the model behavior when stimulated with a

rectangular cathodal impulse. Rattay plotted the threshold current needed to generate an

action potential as a function of the axon diameter (d). It is apparent from this plot that

as the diameter increases, the threshold current decreases. Figure 17 demonstrates that the

results from my model are consistent in value and general trend with Rattay’s results.

(a) Results from my cable model with external stim-
ulation.

(b) Results from Rattay’s cable model with external
stimulation. The solid line is the one of interest.

Figure 17: Threshold current as a function of the fiber diameter. Stimulation occurs from
a rectangular cathodal impulse of 0.1 ms, 1 mm away from the axon. The axon parameters
used are those of squid nerve fiber.

In 1987, Rattay expanded on this model study by examining the relationship between

stimulating current and distance between the stimulus and axon [15]. For a cathodal current,

there exists a threshold at which impulse generation is achieved. As the current is increased,

the area surrounding the active region becomes increasingly hyperpolarized by the stimulus,

eventually blocking the impulse from propagating beyond it. An anodal stimulus will also
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create a region of hyperpolarization that will block impulse propagation.

For a given stimulus current and fiber diameter (9.6µm), Rattay determined the range of

distances between the electrode and fiber at which AP excitation would occur. He showed

that, for a cathodal electrode current, there is an upper and lower bound of electrode

position where AP generation will occur. If the electrode is too far away from the fiber, the

effect on the membrane voltage will not be enough to trigger an AP. If the electrode is too

close, the stimulus may depolarize the fiber around the electrode cite, therefore blocking

AP generation and propagation. For anodal stimulation, the electrode cannot be too close

to prevent AP excitation. Rattay’s results from this experiment are plotted with the results

from my model in Figure 18. There is some difference between Rattay’s results and mine;

this is due the the manner in which the AP excitation threshold is determined. The electrode

stimulus is varied by a fixed amount until the excitation status changes, which means the

threshold can fall within the step size used to augment the stimulus magnitude.

Figure 18: Plot of AP excitation as a function of electrode current and distance to the
fiber. The model uses the squid axon properties and a fiber diameter of 9.6µm.

While Rattay focused only on impulse generation, Tai et al. [17] also examined impulse

block in the cable model with extracellular stimulation. This model uses two external

stimuli placed 0.1cm from the axon. A rectangular pulse is used for AP generation at

1cm and a 5kHz sinusoidal stimulus for block at 2.5 cm along a 4cm long fiber with a

diameter of 10µm. The block stimulus is turned on first so that any impulses it initially
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generates are not confused with the AP of interest generated by the current pulse. Given

these parameters, Tai et al. show that the block current threshold lies between 12.2mA and

12.3mA. The block threshold refers to the current intensity at which conduction block first

occurs. Using the same model parameters, my model results in a block threshold between

12.0mA and 12.1mA. Tai et al. also examined the relationship between axon diameter and

block threshold at various HFAC stimulus frequencies.

(a) Results from my cable model with external
stimulation.

(b) Results from Tai et al. (2005) cable model with exter-
nal stimulation.

Figure 19: Relationship between block current threshold and fiber diameter for various
frequencies.

Figure 19 shows that the block threshold increases as a function of stimulus frequency

and decreases as a function of diameter. Therefore, stimulation frequency can be varied to

selectively block axons of different diameters.

To improve stability at smaller time steps and higher frequencies, the membrane voltage

used to update the gating variables can be clipped to between -50 and 120mV (where 0mV

is the resting potential). This is because the equations for the voltage-dependent time-

constants decay towards zero at very high and low voltages. This is quite unrealistic, and

an artifact of the membrane potential being well outside the range considered by Hodgkin

and Huxley [9] when the model was developed. If the membrane voltage greatly exceeds

the voltage range, as it does at the block site, then the gating variables will grow out of

control. The clipping is solely used when updating the gating variables. To ensure that the

clipping does not change the behavior of the cable model, the model is implemented with
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and without clipping. As seen in Figure 20, clipping of the membrane voltage has very little

effect on the relationship between block frequency and threshold.

Figure 20: Relationship between block current threshold and frequency for the unmodified
cable model with and without clipping. The model is implemented with the parameters
used in the comparison to Tai’s paper.

4.2 Modified cable model verification

The modified cable equation can be simplified to the unmodified cable equation by setting

certain parameters, b0, b1, a1, and a2, to zero so that the relationship in Equation 82

simplifies to

b2 ˙Vm = a3IC . (82)

This expression says that the current through the membrane capacity is equal to a constant

(b2/a3) times the derivative of the voltage across it; this is consistent with the current-

voltage relationship of a capacitor if the constant is the capacity. Nullifying the before

mentioned terms will cancel out the matrix D, the scalar c5, and any previous terms of γ;

it also modifies the matrices B and C and the coefficients of γ. What remains is consistent

with the unmodified cable equation.

Figure 21 shows the membrane voltage and gating variables of the modified cable model

without the FDC component at a point 1.75cm along the fiber, resulting from a 3mA current

pulse with the block stimulus turned off. These values are plotted against the results of the

unmodified cable model, which match very well.
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(a) (b)

(c) (d)

Figure 21: Modified cable model without the FDC component. Membrane voltage and
gating variable values as an action potential propagates through a node 1.75cm along a
cable with a 10µm diameter. The AP was generated by applying a -3mA current pulse at
0.1ms from the simulation start and no blocking stimulus.

In Figure 22, the modified cable model without FDC is compared to Tai (2005), as was

done with the unmodified cable model in Figure 19. It is evident from these plots that

the modified cable model without FDC is consistent with the unmodified cable model both

in terms of the AP characteristics and the block threshold-frequency relationship. This

comparison helps to ensure that the results of the FDC model are due to the addition of

the FDC and not any changes in the computational methods or code.

Once the model has been implemented with the FDC component, it is necessary to verify

that the model generates a propagating action potential. Figure 23 shows the membrane

voltage and gating variables at a point 1.75cm along the fiber, resulting from a 3mA pulse
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(a) Results from the FDC model without FDC. (b) Results from Tai et al. (2005) cable model.

Figure 22: Relationship between block threshold and fiber diameter for various frequencies.

at 0.1ms from the start with the block stimulus turned off. There is a difference in timing

between the AP of the modified and unmodified cable model and a difference in the AP

shape and duration.

(a) (b)

(c) (d)

Figure 23: Membrane voltage and gating variable values as an action potential propagates
through a node 1.75cm along a cable with a 10µm diameter.
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The faster timing is caused by an increase in propagation velocity, which is likely an effect

of modifying the membrane capacitance. The change in shape and duration of the AP and

gating variables is also likely caused by the change in capacitance. However, the effect will

require further investigation to be completely understood. Preliminary exploration of this

effect has shown that varying the membrane capacitance in a single-node Hodgkin-Huxley

model will result in a change in AP amplitude and duration (Figure 24).

Figure 24: The membrane capacitance in varied in a Hodgkin-Huxley model (resting po-
tential = -65mV) with a rectangular pulse stimulus of amplitude 20µA applied at 5ms.

The relationship between the block current threshold and frequency of the FDC model

is plotted in Figure 25(b) against that of the unmodified cable model. The FDC model

block threshold starts and remains low, near to the block threshold for the cable model

at low frequencies. The variation in block threshold is so small that the relationship is

practically flat. This response does not demonstrate the nonmonotonic response seen in

animal experiments.

Besides methods of approximation, the choice in step size is extremely important. Clip-

ping the membrane voltage for the gating variables will allow the model to compute at

smaller time and space steps without incurring ’Not a Numbers’ (NaNs), which result when

the membrane voltage blows up. However, this doesn’t guarantee that the model is stable

at those time steps. To determine the minimum step sizes, the relationship between the

block threshold and frequency of the modified cable model is plotted in Figure 26 for over
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(a) Modified cable (FDC) model by itself. (b) Modified (FDC) and unmodified cable model.

Figure 25: Relationship between block current threshold and frequency for the modified
(FDC) and unmodified cable model. Stimuli are 0.1cm away from an axon with diameter
= 10um and length = 4cm.

a range of time steps (dt) and space steps (dx).

Figure 26: Relationship between block current threshold and frequency for the FDC model,
as results from different time (dt) and space (dx) steps.

At large time steps the block threshold-frequency relationship is inconsistent, increasing

as the step size decreases until 0.1µs. At this point the values converge and will remain the

same even at smaller step sizes. Therefore, the minimum time step necessary to produce a
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stable result is 0.1µs; Haeffele (2007) used time steps of 0.01µs. The space step (dx) results

in stable calculations at 5µm, 50µm, and 100µm; at 500µm the model results become

inconsistent.
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CHAPTER V

CONCLUSION

This thesis has shown that it is possible to incorporate a frequency-dependent capacitance

into the cable model in a way that is numerically stable. Through the use of finite differ-

ence approximations, the model is able to run at larger step sizes and is therefore more

computationally efficient. This method also allows for the model to be formulated as an

Ax=b problem, which is solved using the tridiagonal matrix algorithm. This formulation is

more stable than the previous FDC model, where the model’s PDE was approximated as a

system of linear ODEs.

By adjusting certain parameter values, the modified cable model can be simplified to the

unmodified cable model. A comparison of the block threshold-frequency relationship and

AP shape prove that the modified cable model without the FDC component is consistent

the fixed-capacitance cable model. When the FDC is reincorporated into the model, there

is a difference in shape and time delay of the AP. Changing the membrane capacitance

will cause a change in the propagation velocity and the amplitude and duration of the AP.

However, further investigation is needed to fully understand the mechanisms behind this

effect.

In the modified cable model, the relationship between the block threshold and frequency

is significantly flattened compared to that of the cable model. The model response does

not increase significantly with frequency and does not decrease at high frequencies, as was

observed in animal studies. From this work, it seems unlikely that the FDC is the sole cause

of the nonmonotonic blocking response of unmyelinated fibers.
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