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SUMMARY 

The basic problem treated by Boltzmann and Gibbs involved 

obtaining a "workable theory describing i r revers ib le and equilibrium 

thermodynamic behavior starting from revers ible microscopic dynamics. 

Their theory leaned heavily on the plausible but unproven hypothesis of 

e rgodic i ty , -which, loose ly speaking, asserts that each t rajectory of an 

isolated system samples the entire energy surface of that system. They 

deduced that an essent ia l ly i r revers ib le approach to equilibrium followed 

from the ergodic hypothesis, despite the r e v e r s i b i l i t y of the under

lying microscopic dynamics. Unt i l recently, the ultimate jus t i f i ca t ion 

for introducing the ergodic assumption has been empirical ve r i f i ca t ion 

of the f i na l predictions made by the Boltzmann-Gibbs theory. Perhaps 

the most de f in i t i ve of the recent evidence supporting the ergodic assump

tion has been provided by Sinai. In part icular, assuming only the 

v a l i d i t y of Newton's equations of motion, Sinai has r igorously estab

lished that a hard-sphere gas does indeed exhibit the ergodic behavior 

hypothesized by Boltzmann and Gibbs. For the purposes of this -work, the 

key feature of Sinai ' s proof l i e s in his showing ergodic i ty to follow 

from the fact that the distance between almost any two system trajec

to r ies i n i t i a l l y close together in phase space grows exponentially with 

time. 

I t i s believed that Sinai ' s proof can be extended to a large class 

of systems having purely repulsive in terpar t ic le forces, but there i s 

doubt concerning the extension of the theorem to systems having 
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a t t rac t ive as we l l as repulsive forces. Thus in this research we 

chose to study a Lennard-Jones gas system empirical ly on a computer in 

order to invest igate the question of e rgodic i ty for a physical ly rea l 

i s t i c system having a t t rac t ive as we l l as repulsive in terpar t ic le 

forces. These computer experiments show that t ra jec tor ies for this 

Lennard-Jones system separate exponentially in time at the temperatures 

( t o t a l system energies) studied. According to the theory of Sinai, as 

w e l l as that of Arnold and Sinai, this empirical evidence for exponen

t i a l l y separating t ra jec tor ies implies that the Lennard-Jones system 

i s ergodic, as i s the hard-sphere gas. 

The computer experiments also lend themselves to the test ing of 

an hypothesis in the f i e l d of kinetic theory. In kinetic theory, diver

gences appear when transport coeff ic ients are calculated as series 

expansions in the system density. The calculation assumes that binary 

co l l i s ions are the dominant transport mechanism at low density, with 

three-body, four-body, e t c . , co l l i s ions becoming important sequentially 

as the density i s increased. Our hypothesis involved the conjecture 

that this sequential assumption might be in error and that cooperative 

behavior- -col l i s ions among large numbers of particles--might sud

denly appear as the density increased, thereby destroying the conver

gence of the terms in the series expansions. I t was expected that the 

onset of cooperative behavior would cause the t rajectory exponentiation 

rate to exceed considerably the exponentiation rate due to binary co l 

l i s ions alone. 

In order to test our hypothesis, a theory of t rajectory-

exponentiation in a hard-sphere gas was developed. This theory yielded 
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an expression for the rate of exponentiation due to binary co l l i s ions 

alone, because many-particle co l l i s i ons , and hence cooperative e f f ec t s , 

were suppressed by the theoret ical calculation. Contrary to our 

hypothesis, the empirically-observed exponentiation rate for the Lennard-

Jones gas was in reasonable agreement with the theoret ical ly-der ived 

binary co l l i s i on expression over the entire range of densit ies studied. 

Indeed, this agreement extended to densit ies suf f ic ien t ly high that 

three-body and four-body co l l i s ions were observed in the Lennard-Jones 

gas. Since no cooperative behavior was needed to explain the t ra jec

tory exponentiation rates, even at these r e l a t i v e l y high densi t ies , no 

empirical support was obtained for the conjecture linking divergences 

in transport coef f ic ien ts with cooperative behavior. 
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CHAPTER I 

INTRODUCTION 

This dissertat ion presents the results of some numerical 

experiments executed on a d i g i t a l computer and a theoret ical analysis 

that p a r t i a l l y predicts these results . From the numerical experiments, 

which consist of the numerical integration of Hamilton's equations, i t 

i s shown that a c lass ica l Lennard-Jones gas system exhibits exponential 

growth of the separation distance "between t ra jec tor ies in phase space 

as the system evolves in time; and data i s obtained on the exponential 

growth rate over a range of macroscopic equilibrium conditions. This 

behavior i s explained by a theoret ical treatment consisting of an anal

ysis of the binary co l l i s i on process. 

Motivation 

This study was motivated by two dis t inct considerations. F i r s t , 

1 2 

the ergodic assumptions of Boltzmann and Gibbs can be shown to hold 

r igorously for systems in which the phase-space t ra jec tor ies separate 

exponentially with time, but there are tremendous technical d i f f i c u l t i e s 

in mathematically proving that a given system has this exponential 

character. At present, i t has not been shown that systems with at trac

t i v e in te rpar t ic le forces exhibit exponentially separating t ra jec tor ies . 

In this work, the exponentially separating character of t ra jec tor ies 

for an a t t r ac t ive - fo rce , Lennard-Jones gas system i s demonstrated empir

i c a l l y by means of a d i g i t a l computer. 
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Second, the conjecture was made that the term-by-term divergences 

•which ar ise in the contemporary kinetic theory of transport coef f ic ien ts 

could "be related to an abrupt appearance of cooperative behavior among 

a l l the par t i c les of the system as the density increased. We undertook 

to prove or disprove this conjecture by searching for a more rapid 

increase in the exponential growth rate with density than could be 

explained by binary co l l i s i on processes alone. 

In the remainder of this chapter the background material and 

object ives are given in more de ta i l . 

Ergodic Theory 

The problem of s t a t i s t i c a l mechanics i s to develop a theory for 

the i r r eve rs ib le and equilibrium behavior of macroscopic systems start

ing from revers ible microscopic dynamics. Boltzmann and Gibbs were the 

1 4-7 
f i r s t to do this , ' although their treatments included assumptions 

which have been put on a rigorous basis only recently by modern ergodic 

2 8 12 

theory. 3 In this section, only those features of the o r ig ina l 

Boltzmann-Gibbs theory or the more recent ergodic theory having a d i rec t 
bearing on our work are presented. The discussion generally fol lows 

For a mo: 

1,2,4-12 

Uhlenbeck and Ford^ and Wightman.^" For a more detai led exposition the 

reader i s referred to the references. 

Let us begin by considering the revers ib le , microscopic dynamics 

of an isolated mechanical system of N pa r t i c l e s . Here the state (micro-

s ta te) of an isolated system i s represented by a point in the phase 

space (p-space) of the system. This representative point moves in time 

along a phase-space t rajectory specified by a solution of the dynamical 
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equations of motion. Indeed, a deta i led, general solution of the 

equations of motion would allow a determination of a l l possible t ra jec

to r i e s and would therefore provide a l l possible physical information 

about the system; however, i t i s not feasible to obtain such a general 

solution or i t s associated t ra jec tor ies for any but the simplest mechan

i c a l systems. Thus, in attempting to provide a method for calculating 

equilibrium, macroscopically observable quantit ies, s t a t i s t i c a l mechan

ics was forced to devise a scheme which avoids having to solve the 

equations of motion. I t was possible to devise such a scheme because 

the macroscopically observable quantities are insensi t ive to the precise 

microscopic mechanical state of the system. These equilibrium quanti

t i e s can be shown to be time averages of certain phase functions, that 

i s , certain functions of the microscopic variables ( q , p ) , where q and p 

are the generalized coordinates and momenta of the system. To calculate 

these time averages would require knowledge of the detai led solutions 

of the equations of motion. Since such knowledge i s not ava i lab le , 

s t a t i s t i c a l mechanics sought to replace these time averages by some 

equivalent but more eas i ly calculated averages. 

Boltzmann was the f i r s t to make such a replacement successfully. 

He introduced various p l a u s i b i l i t y arguments in support of the hypothe

sis (ergodic hypothesis) that the representative point of a system in 

phase space wanders f r ee ly over the energy surface, spending equal times 

in equal (hyper-) areas. On the basis of the ergodic hypothesis, 

Boltzmann then argued that the equilibrium values of macroscopic quan

t i t i e s could be calculated be averaging the appropriate phase functions 

over the energy surface rather than over a time in te rva l . In this 



fashion, Boltzmann used the ergodic hypothesis to ease the calculation 

of macroscopically observable quantities for systems at equilibrium. 

Ergodici ty also appears in BoltzmannTs view of the approach to 

equilibrium. Since the long-time average of a phase function i s pre

sumed to equal the measured value of the corresponding observable quan

t i t y for a system at equilibrium, Boltzmann argued that most microstates 

(values of the microscopic variables ( q , p ) ) on a freely-wandering, 

ergodic t ra jectory must correspond to the same thermodynamic equi l ib 

rium state. As a consequence, he suggested that most microstates on 

the entire energy surface correspond to a single macroscopic equ i l ib 

rium state. Therefore, Boltzmann expected that an isolated system 

started in some disequilibrium state and subsequently allowed to fol low 

i t s assumed ergodic tendency to wander f ree ly over the energy surface 

would surely approach equilibrium because most microstates on the 

energy surface correspond to the equilibrium state. 

Gibbs^ restated and generalized BoltzmannTs arguments by in t ro

ducing an ensemble--a co l lec t ion of representative system points in 

phase space confined for our purposes to a thin energy shel l . The phase 

function that gives the density of representative system points in an 

ensemble i s cal led the distr ibution of the ensemble. Usually one nor

malizes this distr ibution to unity and treats i t as a probabi l i ty d i s 

t r ibut ion. This treatment i s allowable because, in the course of time, 

the representative system points of an ensemble move l ike an incompres-
k 

sible f luid on the energy shel l , according to the L iouv i l l e theorem. 

A physical ly observable system state (macrostate) corresponds to 

a large number of microstates. Therefore, by a physical measurement one 
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determines the region on the energy shell wherein the representative 

point of a system must l i e , but not in which of the possible micro-

states i t ex i s t s . As there i s no a p r i o r i reason to assign any one of 

the possible microstates in preference to another, a system prepared in 

a given macrostate i s represented by an ensemble with a distr ibution 

that i s i n i t i a l l y zero outside and constant inside the appropriate 

energy shel l region. As the system evolves from the prepared state, 

the corresponding distr ibution can change i t s shape but not i t s volume. 

Gibbs suggested that such a distr ibution evolves in time into a long, 

thin filament which eventually permeates the energy shel l uniformly. 

At any time in the process, one considers the probabi l i ty that the 

o r ig ina l system has evolved to some particular macrostate to be the 

measure of the part of the distr ibution which then occupies the region 

of the energy shel l associated with that macrostate. When the d i s t r i 

bution becomes uniform over the energy shel l , the probabi l i ty of a 

part icular f ina l macrostate i s proportional to the (hyper-) volume of 

the corresponding region. Because by far the largest volume belongs to 

a single macroscopic equilibrium state, this state i s overwhelmingly 

l i k e l y to be the f ina l one. The "extension-in-phase" of Gibbs gives 

the same f ina l results as the ergodic hypothesis of Boltzmann, both in 

the ultimate approach to equilibrium and in the replacement of time 

averages by phase space averages. 

The rigorous ergodic theorems of B i r k h o f f a l l o w e d Boltzmann's 

assumptions about isolated systems to be expressed in terms of suff i 

cient conditions. These theorems are: l ) the time average of an 

integrable phase function exis ts on almost every t rajectory, and 2) for 
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met r ica l ly t rans i t ive systems, the time average i s the same on almost 

every t ra jectory and i s equal to the uniformly weighted phase space 

average of the phase function. We use the term "almost" in the sense 

of measure theory to mean "except for a set of measure ze ro . " A 

mechanical system i s said to he metr ical ly t rans i t ive i f i t i s impos

sible to divide the energy surface into two regions of pos i t ive measure 

such that almost a l l t ra jec tor ies beginning in one of the regions remain 

there. The modern terminology i s to c a l l metr ical ly t rans i t ive systems 

ergodic, and we shall follow this pract ice . 

Although ergodic i ty in the preceding sense i s suff icient to 

insure the equality of time and phase-space averages, there are stronger 

conditions of s tochast ici ty which also ensure the equali ty of time and 

2 

phase-space averages; we shall consider two of these, the f i r s t being 

the property of mixing. 

Since a distr ibution of points on the energy surface moves l ike 

an incompressible f lu id , there exis ts an invariant measure there, which 

we shall c a l l p,. Suppose that the measure of the entire surface i s nor

malized to unity. Let A be a fixed set on the surface, and l e t be 

a set on the surface at time t that has evolved from an o r ig ina l set B 
to o 

at time t=0 according to the dynamics of the system. The system i s 

then said to be mixing i f we have 

I t can be shown that mixing implies ergodic i ty , but the converse i s 

not true. 

lim 
t-*» (i(AAB t) = | i(A )n(B o ) • ( 1 ) 

2 
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We now give an example (adapted from Arnold and Avez ) 

i l l u s t r a t ing the mixing property: suppose that we have a glass con

taining 80 per cent Coca-Cola and 20 per cent rum. I f B q i s the region 

in the glass o r i g i n a l l y occupied by the rum, then after suff ic ient 

s t i r r ing ( t - * » ) any set A somewhere in the glass would be expected to 

consist of Coca-Cola and rum in four-to-one proportions. This i s 

exact ly the behavior indicated byEq. ( l ) . 

Comparison of the las t three paragraphs with the arguments of 

Boltzmann and Gibbs reveals that mixing i s similar to Gibbs's<picture 

while e rgodic i ty (metric t r a n s i t i v i t y ) i s closer to the ideas of 

Boltzmann. 

The second stochastic property we shall need i s that exhibited 

2 11 12 

by a class of systems known as C-systems. ' 9 These systems w i l l be 

discussed in more de ta i l in the next chapter; for the present, l e t us 

note that C-systems have the following characterist ic behavior: every 

element of area on an energy surface of a C-system changes shape as i t 

moves under the dynamical equations of motion in such a way that i t 

expands exponentially in at least one direct ion and contracts exponen

t i a l l y in at least one other. I n t u i t i v e l y one can see that such behavior 

leads to a distr ibution of points on the energy surface being drawn out 
2 

into a filament as discussed by Gibbs, and in fact i t can be shown that 

C-systems are ergodic and mixing. For our work, C-systems have the 

addit ional advantage that their behavior i s r e l a t i v e l y easy to charac

t e r i ze empirical ly in computer studies. 
12 

Sinai has shown that a hard-sphere gas i s ergodic and mixing 

and exhibits exponential behavior similar to that of a C-system. 
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Further, Wightman states that the " fo lk lore" holds Sinai ' s results 

to he extendable to a large class of purely repulsive forces but that 

a t t r ac t ive forces would introduce stable, periodic orbits at low enough 

energies, thus preventing ergodic behavior. A natural question to ask 

i s then the following one: do systems with a t t rac t ive in te rpar t ic le 

forces exhibi t this exponential behavior? This i s one of the questions 

which we answer here empirical ly. 

Dense Gases 

Another motivating factor in our research l i e s in the work of 

13 

M i l l e r , who performed some computer studies on s te l l a r dynamical 

systems and observed exponential behavior as described in the preceding 

section. He concluded that his results indicated cooperative behavior 

among a l l of the par t i c les because the results deviated from that 

expected due to binary co l l i s ions alone. This behavior was attributed 

to the long range of the gravi ta t ional force. We were led by this con

clusion to make the conjecture that cooperative behavior might make a 

sudden appearance as the density increased in a system having short-

range in te rpar t ic le forces. I f i t did so, one might then, in terms of 

this behavior, explain the divergences that occur when transport c o e f f i 

cients are calculated by means of a series expansion in powers of the 

density. In part icular , this calculation assumes that binary (two-

p a r t i c l e ) co l l i s ions are the dominant mechanism for transport phenomena 

at low densit ies and that three-body, four-body, e t c . , co l l i s ions 

become important sequentially as the density increases. The sudden 

appearance of cooperative behavior among many par t i c les would indicate 
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that this sequential assumption was not va l id "but rather that a sudden 

transi t ion from two-body to many-body behavior occurred. As was men

tioned ea r l i e r , we observed exponential behavior in the system studied, 

and we expected to detect such a transit ion, i f any, by looking for a 

sudden, rapid increase in the exponential growth rate as the density 

was increased. 

We did not observe the onset of cooperative behavior. Neverthe

less , this was the motivation for our study of the gas system over the 

wide density range that was covered by our experiments. The major moti

vation of the theoret ica l analysis that w i l l be reported was to deter

mine the exponential growth rate due to binary co l l i s ions alone in order 

to compare i t to the experimental growth rate. 

In summary, our research consists of computer experiments 

designed to detect exponential behavior in a certain gas system and to 

gather data on the exponential growth rate over a wide density range. 

I t further consists of a theoret ical analysis to which the computer 

results can be compared. These things were undertaken to provide em

p i r i c a l support for some of the basic postulates of s t a t i s t i c a l mechanics 

and to attempt to account for some d i f f i c u l t i e s in the kinet ic theory of 

dense gases. 
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CHAPTER I I 

INTRODUCTION TO THE NUMERICAL EXPERIMENTS 

This chapter contains an introductory description of the numerical 

experiments mentioned in the preceding chapter. The following chapter 

then gives a theoret ical calculation of some of the quantities observed 

in these experiments. By "observed" we shall always mean "computed in 

the course of numerical experiments" throughout this thesis . In s t i l l 

la ter chapters we shall give a presentation of the experimental results 

and a comparison between experiment and theory. This order of presenta

tion i s followed because the theoret ical calculation uses quantities 

defined in the description of the experiments, and the experimental 

results are then presented in terms of theore t ica l ly derived quantities 

to f a c i l i t a t e comparison. 

In the next section we develop some notation and define a C-

system more prec ise ly than before. The weight of the empirical evidence 

presented la ter i s that the gas system under consideration i s a C-system. 

Mathematical Preliminaries 

A c lass ica l system of M degrees of freedom i s described by giving 

i t s generalized coordinates q_̂  and their conjugate momenta p^, where 

i = 1 , . . . , M . The state of such a system at any instant of time t i s 

conveniently represented by a phase space point ( q , p ) = (q^,... ,q^, 

p^, . . . /P-^) in the 2M-dimensional, Euclidean phase space having the q^ 

and p. as coordinate axes. The representative point moves along a 
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t ra jec tory in phase space as the system evolves in time. The time 

evolution of the system i s uniquely generated from the Hamiltonian 

H(q>p) "by means of Hamilton's equations of motion: 

l _ oh / p \ 
dt ~ dp. ' { } 

i 
-^1 - _ (O\ 
dt ~ dq. > { 5 ) 

where i = 1 , . . . , M . 

We shall r e s t r i c t our attention to Hamiltonians H(q,p) which are 

not e x p l i c i t functions of the time and which y ie ld t ra jec tor ies lying 

t o t a l l y within a hounded region of phase space. We have dH/dt = 0 since 

H(q,p) does not depend e x p l i c i t l y on the time; therefore each trajectory 

IK 
i s res t r ic ted to l i e on an energy surface given by 

H(q,p) = E , (10 

where E i s the to ta l energy of the system. The energy surface i s a 

(2M-1)-dimensional sub-space of the phase space and has f i n i t e , (2M-l)-

dimensional (hyper-) area since the system motion i s bounded. 

Let us denote a single phase space point by y = ( q , p ) , and l e t 

y ( t ) = ( q ( t ) , p ( t ) , -co < t < oo) be a parametric representation of a 

t ra jectory. Suppose the t ra jectory y ( t ) passes through the point y Q at 

the time t = 0. In the energy surface containing y ( t ) , construct the 

(2M-2)-dimensional (hyper-) plane normal to y ( t ) at y . Let 6yQ repre

sent a small displacement from y Q lying in the normal plane, y^ the 

point y + 6y Q , y ' ( t ) the t rajectory through y^, and 6y( t ) the 
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difference [ y ' ( t ) - y ( t ) ] at any time t . 

A system is said to be a C-system i f the normal plane can be 

s p l i t into exact ly two sub-spaces, called the d i la t ing and contracting 

spaces, each sub-space having dimensionality one or higher, and further, 

i f there exis ts a pos i t ive \ (which may depend on y Q ) such that the 

following inequal i t ies hold: 

t = 0 , (5a) 

t = 0 , (5b) 

t = 0 , (6a) 

t - 0 , (6b) 

for 6yQ in the contracting space. Conditions (5) or (6) are required to 

be va l id for a rb i t r a r i l y large | t | only for suf f ic ien t ly small | 6 y Q | . 

There must ex is t some displacements 6y^ for almost every point on the 
2 

energy surface such that these conditions hold. I t can be shown that 

C-systems are mixing and ergodic. Therefore, a system exhibit ing expo

nential behavior of this type for almost a l l t ra jec tor ies would be 

expected to possess a l l of the s t a t i s t i c a l properties hypothesized by 

Boltzmann and Gibbs. 

From the C-system def in i t ion , the d i la t ing space has dimension

a l i t y one or more; thus, the entire contracting space has measure zero 

in the normal plane, and conversely, so does the d i la t ing space. Conse

quently, almost a l l 6y ( t ) w i l l be dominated by Eq . (5a) for t -• + °° and by 

|6y( t) | S e A t | S y j > 

|6y(t)| S e A t | « y o | , 

for 6y in the d i la t ing space, and o 

|6y(t) | S e " U | 6 y Q | , 

|Sy ( t ) | S e " H | S y J , 
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Eq. (6b) for t-*-co. Our experimental evidence indicates that in our case 

this asymptotic behavior i s established v i r t u a l l y immediately (see 

Figures 3 through l l ) . We shall use Eq. ( 5 a ) exclusively as our exper

imental c r i t e r ion for C-system behavior since we have integrated the 

equations of motion only in the forward time di rect ion, starting from 

some specified i n i t i a l conditions. 

Throughout the rest of this thesis , we shall use the term 

"exponentiation rate" for the coef f i c ien t of an independent variable in 

the exp function, e . g . , \ in Eq. ( 5 a ) , and the term "exponentiation of 

t ra jec to r ies" for the conditions indicated by Eqs. ( 5 ) and ( 6 ) . 

Description of the Gas System 

The gas system investigated was a mathematical model of an inert 

gas. We attempted to make the model as r e a l i s t i c as possible , within 

the l imita t ions of c lass ica l mechanics and of computer time. 

The system consisted of N point par t i c les each having mass m. 

For various reasons which w i l l be described presently, the system was 

res t r ic ted to two spatial dimensions; each pa r t i c l e was confined to 

move within the same bounded, two-dimensional area. We denote the two-

dimensional posi t ion vector of the i th pa r t i c l e as r_̂ , and the corre

sponding momentum vector as p^ = m dr \ /d t . 

Potent ia l 

We chose a Lennard-Jones pair potent ia l for the gas system 

because this interaction i s supported by both theoretical"^ and experi

mental"1"^ evidence. The potent ia l was modified s l i gh t ly to have a 

f i n i t e range for convenience in the computer calculations. In terms of 
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THE EUCLIDEAN, TWO-DIMENSIONAL DISTANCE R BETWEEN TWO PARTICLES, THE 

RANGE ? ̂ OF THE INTERACTION, AND THE TABULATED^ LENNARD-JONES PARAM

ETERS e AND < j , THE PAIR POTENTIAL U IS GIVEN BY 

U(r) = 4 S { ( * F - (*f ( T ) 

+ 
- / x l 2 , i n . v 2 , 1 2 , A 

WHEN R < R C, AND IS ZERO WHEN R = R . WE NOTE THAT BOTH U OF EQ. ( 7 ) 

AND DU/DR GO CONTINUOUSLY TO ZERO AS R APPROACHES AND THAT U DIFFERS 

ONLY SLIGHTLY FROM THE PRECISE LENNARD-JONES POTENTIAL WHEN IS TAKEN 

TO BE SEVERAL TIMES THE SIZE OF a. IN OUR EXPERIMENTS WE SET = 5cr. 

THE POTENTIAL, AS USED IN OUR EXPERIMENTS, IS PLOTTED IN FIGURE 1 . 

IT WAS CONVENIENT IN OUR COMPUTER EXPERIMENTS TO EXPRESS DISTANCE 

IN UNITS OF o, ENERGY IN UNITS OF he, AND MASS IN UNITS OF M. IN TERMS 

OF THESE UNITS, EQ. (7) FOR U BECOMES 

U W = - W ( 4 - 4 X F ) 2 ( 8 ) R R R R C R R C C C C 

WITH EQ. (8), THE FULL HAMILTONIAN H FOR OUR N-PARTICLE SYSTEM MAY BE 

WRITTEN AS 

W 2 

H = I I R + I U K J > > (?) 
1=1 I>J 

WHERE THE DISTANCE R. . BETWEEN PARTICLES I AND J IS GIVEN BY 



a 2a 3a ka 

Figure 1 . Cut-Off Lennard-Jones Potential 
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D i m e n s i o n a l i t y 

A l t h o u g h some o f o u r i n i t i a l c o m p u t e r w o r k w a s d o n e o n a t h r e e -

d i m e n s i o n a l g a s , b y f a r t h e l a r g e s t a m o u n t w a s d o n e f o r g a s p a r t i c l e s 

m o v i n g i n o n l y t w o d i m e n s i o n s . T h e r e w e r e s e v e r a l r e a s o n s f o r t h i s , 

t h e p r i m a r y o n e b e i n g t o a c h i e v e f a s t e r c o m p u t e r o p e r a t i o n w i t h o u t l o s s 

o f s i g n i f i c a n t g e n e r a l i t y . I n a d d i t i o n , a t w o - d i m e n s i o n s 1 s y s t e m o f t h e 

t y p e u s e d i n t h e s e i n v e s t i g a t i o n s h a s f e w e r p a r t i c l e s n e a r t h e b o u n d 

a r i e s t h a n a t h r e e - d i m e n s i o n a l s y s t e m w i t h t h e same n u m b e r o f p a r t i c l e s ; 

t h u s t h e b o u n d a r y c o n d i t i o n s h a v e l e s s e f f e c t o n a t w o - d i m e n s i o n a l 

s y s t e m . M o r e o v e r , t h e t h e o r e t i c a l d e v e l o p m e n t w h i c h w e s h a l l p r e s e n t 

l a t e r w o u l d h a v e b e e n s o m e w h a t m o r e c o m p l i c a t e d i n t h r e e d i m e n s i o n s 

w i t h l i t t l e p r o m i s e o f a d d i n g e n o u g h a d d i t i o n a l i n f o r m a t i o n t o j u s t i f y 

t h e e f f o r t . F i n a l l y , w e e x p e c t t h e q u a l i t a t i v e f e a t u r e s t o b e t h e same 

i n t h e s i m p l e r , t w o - d i m e n s i o n a l s y s t e m a s i n t h e m o r e p h y s i c a l l y r e a l 

i s t i c t h r e e - d i m e n s i o n a l o n e s i n c e t h e m o s t i m p o r t a n t s o u r c e o f e x p o n e - n -

2 13 

t i a t i n g t r a j e c t o r i e s f o r g a s s y s t e m s i s t h e b i n a r y c o l l i s i o n p r o c e s s ' 

w h i c h i s i d e n t i c a l i n t w o a n d t h r e e d i m e n s i o n s . 

B o u n d a r y C o n d i t i o n s 

I n p r e l i m i n a r y e x p e r i m e n t a t i o n w i t h v a r i o u s t y p e s o f r e f l e c t i n g 

w a l l s f o r t h e s y s t e m , i t w a s f o u n d t h a t s u c h w a l l s c o n t r i b u t e d i n a s i g 

n i f i c a n t a n d u n p r e d i c t a b l e w a y t o t h e e x p o n e n t i a t i o n r a t e b e i n g o b s e r v e d . 

I t w a s t h e r e f o r e d e c i d e d t o e l i m i n a t e t h e w a l l s a l t o g e t h e r b y u s i n g 

p e r i o d i c b o u n d a r y c o n d i t i o n s . W i t h t h e s e b o u n d a r y c o n d i t i o n s , t h e 

e x p o n e n t i a t i o n r a t e i s d e t e r m i n e d b y t h e e f f e c t s o f i n t e r a c t i o n s a m o n g 

t h e p a r t i c l e s a l o n e . 



1 7 

The system with periodic boundary conditions was la id out in the 

shape of a square, the opposite edges of which were e f f e c t i v e l y joined 

so a pa r t i c l e leaving the system through one edge of the square immedi

a t e ly re-entered through the opposite edge. The potent ia l was also 

e f f e c t i v e across the boundaries; thus, our system had the topology of a 

torus. Systems with this topology have frequently been the subject of 

2 
studies in ergodic theory. 

Description of the Numerical Experiments 

As has been indicated ea r l i e r , the numerical experiments 

described in this section were performed to obtain evidence that the 

t ra jec tor ies exponentiate in gas systems having a t t rac t ive in terpar t ic le 

forces and to gather data on the exponentiation rate over a range of 

densi t ies . 

Experimental Procedure 

The experimental procedure was essent ia l ly the same as M i l l e r ' s 

13 1 7 procedure. A fourth-order, variable-step Runga-Kutta method was 

used for a l l numerical integrations. 

In our terminology, a single experiment consisted of integrating 

Hamilton's equations of motion simultaneously for two macroscopically 

ident ica l systems. The representative points in phase space for the 

systems were i n i t i a l l y separated by a very small distance (on the order 

of 10 in the units of Eq. ( 8 ) ) . The equations of motion were then 

integrated unt i l the distance between the representative points grew by 

several orders of magnitude. 

Two groups of such experiments were run. For the f i r s t and by 

far the largest group, the density was varied and the temperature held 
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approximately constant. For the much smaller second group, the 

temperature was varied at constant density. The number of pa r t i c les 

was held constant at N = 100 in both groups of experiments. 

Observed Quantities 

I t was mentioned previously that the major observed quantity in 

our experiments was the exponentiation rate of the t ra jec tor ies . For 

any single experiment, however, the t ra jec tor ies separated exponentially 

only on the average (see Figures 3 through 11); i t was therefore neces

sary to compute a time-averaged exponentiation rate . In order to make 

such a computation, we experimentally obtained the distance between the 

t ra jec tor ies as a function of time. For the purpose of preserving 

dimensional homogeneity, the distances in configuration space and 

in momentum space were defined separately at time t as 

where we use a prime ( ' ) to distinguish the second system from the f i r s t . 

The experimental values for these distances were then plot ted in the 

form of log-^Dg and l o g ^ D versus time. The resulting graphs yielded 

approximately straight l ines which were then f i t t ed by a least-squares 

method to obtain time-averaged values for the exponentiation rates \ 

and X defined by 
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( 1 3 ) 

d<log 
(1*0 dt 

where the angular brackets here indicate the least-squares derived 

quanti t ies . 

The results may he conveniently interpreted by expressing the 

exponentiation rates with respect to the number of co l l i s ions that have 

occurred up to time t instead of with respect to t i t s e l f . In order to 

do th is , co l l i s ions were counted as they occurred during the integra

tion process. At high enough density in a rea l gas one would expect 

three-body and higher-order co l l i s ions to occur, and we observed such 

co l l i s ions in the model. 

For the purpose of counting, an n-body c o l l i s i o n was defined as 

the formation and subsequent dissolution of a group of n pa r t i c l e s . A 

group was defined as a co l lec t ion of par t ic les such that each member of 

the group was within a given distance of at least one other member. In 

our experiments we took this distance to be a of Eq. ( 7 ) . A c o l l i s i o n 

was counted when the f i r s t pa r t i c le l e f t a group, but not when successive 

par t i c les did, unless a new par t i c le joined the group before the group 

became completely broken up. In this l a t t e r case a new c o l l i s i o n was 

counted when the f i r s t pa r t i c l e l e f t the new group, and so on. 

In this chapter the experimental procedure has been described only 

so far as necessary to motivate and introduce the theoret ica l discussion 

of the fol lowing chapter. We shall return to the description of the 
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e x p e r i m e n t s a n d t h e p r e s e n t a t i o n o f t h e d a t a a f t e r we h a v e o b t a i n e d some 

t h e o r e t i c a l r e s u l t s f o r c o m p a r i s o n . 
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CHAPTER I I I 

THEORETICAL ANALYSIS 

The object ive of the theory discussed in this chapter i s to 

predict the exponentiation of t ra jec tor ies in a gas system and to derive 

an expression for the exponentiation rate which may be compared with 

experiment. The following derivation i s concerned exclusively with 

binary c o l l i s i o n processes, even though higher-order co l l i s i on pro-

cesses were observed empirical ly. This res t r ic t ion to binary c o l l i 

sions was made because a major aim of our experiments was to find in 

what way the observed exponentiation differed from purely binary c o l l i 

sion behavior as the density increased. I t therefore behooved one to 

determine what this purely binary behavior might be. 

The theoret ica l discussion considers two macroscopically ident i 

ca l s y s t e m s which have representative points i n i t i a l l y only s l i gh t l y 

separated in phase space, just as in the experiments. We focus our 

attention on a single pa r t i c l e in one system as i t undergoes a binary 

c o l l i s i o n and on the corresponding par t i c le in the other system as i t 

undergoes the corresponding c o l l i s i o n . The f i r s t quantities calculated 

are the s ingle-par t ic le posi t ion and v e l o c i t y differences between the 

two systems af ter the co l l i s i on in terms of these differences before the 

c o l l i s i o n . The f ina l differences are then extended to give the values 

of the i n i t i a l differences in the following c o l l i s i o n . This procedure 

y ie lds a set of difference equations for the s ingle-par t ic le posi t ion 
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and v e l o c i t y differences. These equations are solved approximately by 

means of an averaging process. The resulting average solutions for 

the s ing le -par t ic le differences are used to produce averaged expres

sions for the N-part ic le distances D^ and defined by Eqs. ( l l ) and 

( 1 2 ) . F ina l ly , an expression for the average exponentiation rates i s 

obtained from the N-part icle distances. 

Assumptions 

We expect co l l i s ions due to the hard core of the potent ia l of 

Eq. (8) to be the dominant interaction among the par t ic les since the 

a t t rac t ive part of the potent ia l i s very weak and has a f i n i t e range. 

Moreover, the repulsive hard core of this potent ia l i s chosen^ in 

particular because of i t s resemblance to a hard-sphere potent ia l . 

Therefore, we e l ec t to simplify our discussion by considering a hard-

sphere gas. We confine our attention to gas systems whose par t ic les 

move in only two spatial dimensions. 

Definit ions 

Consider two macroscopically ident ica l , N-par t ic le , hard-sphere 

gas systems. Denote the Cartesian posit ion and v e l o c i t y vectors of the 

gas par t i c les by r ^ , . . . , r ^ and u^,. . . ,u^ in the f i r s t system and by 

r | , . . . , r ^ and u^, . . . , u^ in the second. For the kth par t i c le of each 

system, define £>r and 5u to be the s ingle-par t ic le differences in 

posi t ion and v e l o c i t y between the two systems, as given by 

6?k = ?i - ?k , (15a) 



23 

• —• 

i - \ • ( 1 5 D ) 

We shall uniformly use a small 5, as in Eqs. (15)> to denote the 

difference in a quantity between the two systems. Such differences are 

always assumed to be suf f ic ien t ly small that second and higher-order 

terms in them may be neglected in the calculation. Because we work 

only to f i r s t order in 6-quantities, i t i s permissible and frequently 

expedient to t reat 6 as a d i f f e r e n t i a l operator applied to the unprimed 

quanti t ies, and we do so several times in the course of the discussion. 

The immediate object ive of this calculation i s to find the d i f 

ferences of Eqs. (15) as functions of time, for then and of Eqs. 

( l l ) and (12) can be computed from 

where m, the mass of a gas pa r t i c l e , i s unity in the computer dimensions 

of Eqs. (8 ) and ( 9 ) . 

Before going into the detai led analysis, l e t us f i r s t define most 

of the quantities that w i l l be needed and sketch an outline of the 

der ivat ion. To avoid repet i t ion , i t w i l l be our convention to define 

quantities only in the unprimed system. Such a def in i t ion w i l l implic

i t l y define both the equivalent quantity in the primed system and, as 

( 1 6 ) 

(17) 
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in Eqs. ( 1 5 ) , the difference in the quantity between the two systems. 

These impl ic i t ly-def ined quantities w i l l be denoted respect ively by a 

prime and by the l i t t l e - 6 acting on the unprimed quantity, again as in 

We examine the posi t ion and v e l o c i t y differences of pa r t i c l e i 

as i t undergoes a c o l l i s i o n with pa r t i c l e j . In the following deriva-
—• —• —» —• 

t ion , we temporarily use the special symbols s., s. and v . , v . re spec-
— J I J 

t i v e l y for the posit ions and v e l o c i t i e s of the par t i c les immediately 
—• —» —• —* 

af ter the c o l l i s i o n and reserve the symbols r . , r . and u., u. for these 
1 J 1 J 

quantit ies immediately before the c o l l i s i o n . By immediately we here 

mean during some small (compared to the time between c o l l i s i o n s ) but 

non-zero time intervals after and before the c o l l i s i o n . Later we shall 

evaluate the r ' s and s's at particular times (the u's and v ' s remain 

constant because of the f ree-par t ic le dynamics), but un t i l we do so, i t 

should be kept in mind that these specially-defined posit ion vectors are 

functions of time. When we arr ive at the resulting difference equations, 

we shall return to the more general notation of Eqs. (15) through (17) 

in which r^ and u^ gener ica l ly denote posit ion and v e l o c i t y . 

For convenience we perform most of our calculation in the center-

of-mass frame of the unprimed system; this frame i s diagramed in Figure 2. 

Several center-of-mass quantities w i l l be required, beginning with the 
—• —» 

i n i t i a l and f ina l r e l a t i ve v e l o c i t i e s u and v defined by 

Eqs. (15 ) . 

u = u 1 - u. 
J 

(18) 

V = ( 1 9 ) 



Figure 2. Center-of-Mass Frame. 
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The i n i t i a l and f ina l v e l o c i t i e s of pa r t i c le i in the center-of-mass 

frame are u/2 and v / 2 , while those of pa r t i c l e j are -u/2 and - v / 2 . 
-» -+ 

Similar ly, we define the r e l a t ive posi t ion vectors r and s to he given 

by 

r ( t ) = r . ( t ) - r j ( t ) , (20) 

s ( t ) = s . ( t ) - S j ( t ) , ( 2 1 ) 

which are the vectors drawn from par t ic le j to pa r t i c l e i before and 

af ter the c o l l i s i o n , respect ively. 
—> 

Now define the scattering angle 9 as the angle measured from u to 
—» 

v . Because energy i s conserved in the c o l l i s i o n , we have 

v = R ( e ) u , 

rhere R(8) i s the rotation operator given by 

(22 ) 

R ( e ) = 

cos 0 - sin 

s i n cos Q 
( 2 3 ) 

Fina l ly , l e t the impact parameter b be the projection of r per-
—» , 

pendicular to u ( t h i s s l i gh t ly unusual def in i t ion of the impact parameter 

w i l l be discussed l a t e r ) . For hard spheres, the scattering angle 0 i s a 

function of b alone; we represent this fact by writ ing 

0 = 0 ( b ) . (2U) 

B r i e f l y , the derivation w i l l go as fol lows. The i n i t i a l 
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differences 6R., 6R., 6U., and 6U . in the lab frame cause conditions in 
i J i J 

the center-of-mass frame to d i f f e r between the two systems by 6R and 6U 

(which are i m p l i c i t l y defined by Eqs. (L8) and (20) according to our 

convention). This produces a difference §b in the impact parameter 

which, in turn, generates a difference 66 between the scattering angles 

of the two systems. The difference 6V in the f ina l v e l o c i t y v i s then 

obtained with the help of Eq. (22). 

After finding the v e l o c i t y difference, we next compute from 6R 

the difference 6S in posit ion after the co l l i s i on by introducing a cer

tain re f lec t ion operator. The f ina l center-of-mass differences 6V and 

6S are then transformed back to the lab frame to give the f ina l d i f f e r 

ences 6V\ and 6S\ for pa r t i c le i . F inal ly , we use f ree-par t ic le dynam

ics to get the i n i t i a l posit ion and v e l o c i t y differences for the next 

successive co l l i s i on of par t i c le i . Thus, we obtain a set of equations 

for the i n i t i a l differences of a co l l i s ion in terms of the i n i t i a l dif

ferences of the preceding one. We then solve these equations approxi

mately and find an expression to be compared with the experimentally 

observed exponenentiation rates. 

Veloc i ty Difference 

We now begin the detailed calculations by finding f i r s t the f ina l 

v e l o c i t y difference 6V. In our notation, the magnitude of a vector w i l l 

be indicated, unless otherwise specif ied, by omitting the vector symbol 

( " * ) , and a unit vector w i l l always be denoted by a hat ( A ) , as in Eq. 

(25) below. 

I t w i l l be expedient to introduce the orthogonal unit vectors u 
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and 1D defined by 

A -»/ 
u = u/u , (25) 

(26) 

where R is the rotation operator of Eq. (23). The impact parameter b 

may then be written as 

I t i s always possible to pick the direction of pos i t ive rotation 

in such a way as to make b non-negative according to Eq. (27), but we 

do not choose to do so. Instead, we take the direct ion of pos i t ive 

rotation to be given, allow negative values for b, and l e t the scatter

ing angle 0 range from zero to 2-n-. This procedure allows the same posi

t i ve rotation direct ion to be maintained throughout a sequence of co l 

l i s i ons . This w i l l be important later when we solve the difference 

equations. Since b can be negative, i t i s not the magnitude of the 

impact vector b* of Eq. (28) but rather i s the quantity defined by Eq. (2 

Although we shall not need i t immediately, we complete the 

def in i t ions for this section here by defining the vector d*, as shown in 

Figure 2, to be the common value of r and s* at the instant of c o l l i s i o n , 

that i s , 

(27) 

and we define the impact vector b by 

(28) 

3 = ? ( t c ) = s ( t c ) , (29) 
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where t i s the time of the c o l l i s i o n . The magnitude d of the vector d c 

i s just the diameter of the hard spheres of the gas. 

We now find the difference 6h in the impact parameter of Eq. (27) 

This may he done by finding 6 b (defined imp l i c i t l y by Eq. (27)) and 

then using 

6b = D - 6 b . (30) 

I t i s to be emphasized that 6b i s the difference ( b ' - b ) and not the mag

nitude of 6b, according to our convention. 

The truth of Eq. (30) can be seen eas i ly by dotting D with 

Eq. (27) to give 

b = b-b (31) 

and applying the 6 operator to Eq. (31) to y ie ld 

6b = b-6b + b-6b . (32) 

Wow, since D has constant length, 6b i s orthogonal to b*, the las t term 

of Eq. (32) vanishes, and Eq. (30) i s established. 

As "5* i s the vector projection of r perpendicular to u ( c f . Eqs. 

(27) and (28)), we have 

t* -> ( r - u ) - , N 

b = r - 2 ' u . (33) 
u 

Application of the 6 operator to Eq. (33) gives 

2 ^ 2 
u u 
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Hence, from Eqs. (30) and (3*0> we obtain 

Sb -&p.i.68 . (35) 
u 

We next want to simplify Eq. (35) "by evaluating r and 6r, which 

are functions of time, at the co l l i s i on time t^. Here we must be espe

c i a l l y careful because 6r has not been defined at the time i f the 

co l l i s i on time V in the primed frame happens to be ea r l i e r than t . To 

c l a r i f y th is , we compute 6r e x p l i c i t l y : we wri te 

r ( t ) = d + ( t - t c ) u , t ^ t c , (36) 

which follows from Eq. (29) and f ree-par t ic le dynamics. The equivalent 

re la t ion in the primed frame, va l id for t ea r l i e r than V , i s 

? » ( t ) = d*' + ( t - t p u » , t = V . (37) 

On subtracting Eq. (36) from Eq. (37)> w e have 

6r(t) = 6d* + ( t - t )6u - u 6t , (38) 
c c 

but Eq. (38) i s va l id only for times up to the ea r l i e r of t c and t^. We 

shall c a l l the ea r l i e r of t c and t^ the beginning of the c o l l i s i o n 

process, and the la te r , the end. At the beginning of the co l l i s i on 

process, Eq. (38) becomes, to f i r s t order, 

6r = 6d - u 6t . (39) 

In obtaining Eq. (39); we have evaluated Eq. (38) at the ea r l i e r of t 
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and t1 and then dropped the middle term which i s ei ther zero or at 

most of second order. The 6r of Eq. (39) i s we l l defined and i s the 

part icular value we want to consider as the i n i t i a l posit ion difference 

for the c o l l i s i o n under invest igat ion. 

Hereafter, we shall use the symbol 6r exclusively to mean the 

quantity given in (essen t ia l ly defined by) Eq. (39); although i t w i l l 

not be convenient to substitute for 6r from this equation because experi

mentally 6r i s known while 6d and § t c are not. 

Eq. (35) for 6b i s va l id for any time up to the beginning of the 

c o l l i s i o n process. We therefore evaluate this equation at the beginning 

of the co l l i s i on process and substitute for r from Eq. (36) then to 

y i e l d , to f i r s t order, 

6U =£•«?- ^ f ^ - 6 u . (40) 
u 

From the conservation of l inear and angular momentum, i t can be 

shown that the l ine of d* bisects the supplement ( T T - 9) of the scattering 

angle 0 as shown in Figure 2. Thus, the angle from b to d* i s 9/2, and we 

wri te 

d = d R ( | ) b . (41) 

Hence, with the help of Eq. (26), we have 

d.u = - u d sin I . (k2) 

Therefore, Eq. (4o) becomes 
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A —» r] Q A —» / i v 

6b = b-6r + ^ sin | b-6u , (V3) 

which completes the determination of 6b. 

Our next step i s to find 69, the difference in the scattering 

angle. From Eq. (2^) we obtain 

59 = | | 6 b , ( 1 * ) 

where we use the pa r t i a l der ivat ive notation to keep in mind that 9 in 

general, as opposed to the hard-sphere case considered here, depends on 

u as w e l l as b. Now evaluate Eq. (27) at the time t , with the help of 

Eqs. (29) and (k-l), to get 

b = d cos ^ • (^5) 

Hence, we have 

^ = ——— . (U6) ab . . 9 K J 

d sin ^ 

Eqs. (>3) and (k6) may now be substituted into Eq. (kh) to y ie ld 

d sin 2" 

I t remains to compute the f ina l v e l o c i t y difference 6v from 69 of 

Eq. (^7). Eq. (22), written e x p l i c i t l y for the primed system, is 

v ' = R(9 + 66)u» . (48) 
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Using Eq. (23), the rotation in Eq. (48) can be shown to be given by 

R ( 9 + 66) = R ( 9 ) +66R (6)R( 2
I) . (49) 

We put Eq. (49) into (48), and use Eq. (22.) and the definition 

u' = u + 6u , (50) 

to obtain, after some rearrangement, 

6v = R(6)(6u + ub66) . ( 5 1 ) 

By substitution of Eq. (47) into (5l)> ™ e find 6v to be given by 

(52 ) 

which was the objective of this section. 

Position Difference 
—> 

The final position difference 6s wi l l now be calculated. As with 
—• —» 

6r, we must be careful to state at what time 6s is to be found, for i t 

has not been defined at times before the later of t and t T . In the 
c c 

—» 

terminology of the preceding section, 6s is not defined before the end 

of the collision process. 

With the use of Eq. (29), we write, in analogy with Eq. (36), 

s = 3 + ( t - t c ) v , t > t c . (53) 

Eq. (53); in analogy with Eq. (38), leads to 

6v - R(9) 6u - 2b(b-6u) 2ub(b-6r) 

d sin 2 
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6S = 6D + (T - T )6V - V6T C , (54) 

VALID AT AND AFTER THE END OF THE COLLISION PROCESS. NO MATTER WHICH 

OF T OR T' IS LATER, HOWEVER, TO FIRST ORDER 6S* AT THE END OF THE COL-C C 
LISION PROCESS IS GIVEN BY 

6S = 6D - V6T C , (55) 

WHICH IS TO BE COMPARED WITH EQ. (39) FOR 6R AT THE BEGINNING OF THE 

COLLISION PROCESS. AFTER THIS, BY 6I* WE SHALL ALWAYS MEAN THE PARTICU

LAR ONE GIVEN BY EQ. (55)^ JUST AS BY 6R WE MEAN THE ONE OF EQ. (39)' 

NOW LET P BE THE OPERATOR THAT REFLECTS A VECTOR THROUGH THE U 

AXIS. AS ANY VECTOR A MAY BE WRITTEN IN THE FORM 

A = A R(C*)U , (56) 

FOR SOME ANGLE CR, THE RESULT OF P ACTING ON SUCH AN A MAY BE WRITTEN 

PA = A R(-O/)U . (57) 

~* —» 

IT WILL NOW BE SHOWN THAT 6R AND 6S ARE RELATED BY 

6S = R(9)P br . (58) 

—» —» —• 

WE MUST HAVE 6D PERPENDICULAR TO D BECAUSE D HAS CONSTANT LENGTH; THUS, 

WITH THE HELP OF EQ. (4L), WE MAY WRITE 6D AS 

63* = § | 6 D | R ( f ) $ , (59) 

WHERE § IS +1 . HENCE, FROM EQS. (57) AND (59 ) j w e OBTAIN 
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P 6d = § |6? |R(- I) TJ . (60) 

Therefore, hy means of Eq. (59), R ( 9 ) applied to Eq. (6o) gives 

R ( 9 ) P 6d = 6d . (6l) 

Further, we note from Eqs. (57) and. (22) that 

R(e) P u = v . (62) 

Let us now operate on 6r with the composite operator R(9)P. In the 

process we substitute from Eqs. (39) and (55) and use Eqs. (6l) and (62) 

to obtain 

R ( 9 ) P 6r = R ( 9 ) P (6d - u 6 t Q ) (63) 

= R(9) P 6d - v 6t 

= 6d + 6s - 6d ; 

so Eq. (58) i s proved. 

Difference Equations 

At this point we have found, in Eqs. (52) and (58), expressions 

for 6v and 6s at the end of the co l l i s i on process in terms of center-of-

mass quanti t ies . Before going on to wri te the corresponding equations 

in the lab frame, l e t us rewrite Eq. (52) according to the following con

sideration. 

From Eq. (56) i t can be seen that 

P u = u , (6k) 
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P -b = - & . (65) 

But, since any vector a may be "written as 

a = (a-u)u + (a- 'f i)^ , (66) 

we have, from Eqs. (6k) through (66), the ident i ty 

P a = (a-u)u - (a.-tS)-fi (67) 

= a - 2(a.-6)lS . 

Thus, with Eq. (67), we can rewrite Eq. (52) as 

6v = R(6)P 6u - 2uR ( l i | (Itf) f (68) 
d sin 2 

which i s to be compared with Eq. (58) for 6s. 

Now l e t us transform 6v and 6s: of Eqs. (68) and (58) to the lab 

frame. The lab frame f ina l v e l o c i t y v\ and posit ion "s are given by 

—» —• 

u. + u. -» 
v 1 = ^ ^ + | , (69) 

r. + r . -* 
s. = - 3 ^ + 1 , (TO) 

where u., u. , r . , and r . are taken at the beginning of the c o l l i s i o n 1 J 1 J 
process, and v \ , v , s , and s at the end. Eq. (70) i s va l id only to 

zeroth order, as we have dropped a term on the order of (u. + u . )6 t . 
1 j ' c 

However, the equations for the differences 6v\ and 6s\ are va l id to 

f i r s t order; we write them e x p l i c i t l y : 
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6U. + 6U. T -
6?,= \ J

+ | , (TD 

5R. + 6R. . 
l ^ - V + F (72) 

IN ORDER TO PROCEED WE MUST CONSIDER SUCCESSIVE COLLISIONS OF A 
PARTICLE. FOR ANY PARTICLE K, LET THE SINGLE-PARTICLE COLLISION INDEX 
N (̂T) BE DEFINED AS THE TOTAL NUMBER OF COLLISIONS UNDERGONE BY PARTICLE 
K FROM THE INITIAL TIME T = 0 THROUGH THE TIME T. LET T, BE THE TIME 

K,N 

OF THE BEGINNING OF THE NTH COLLISION OF PARTICLE K, WHERE "BEGINNING" 
IS USED IN THE SPECIAL SENSE THAT HAS BEEN DEFINED. WE SHALL USUALLY 
OMIT THE EXPLICIT TIME DEPENDENCE OF THE COLLISION INDEX AND WRITE SIMPLY 
N , OR JUST N WHEN THE PARTICLE MEANT IS CLEAR FROM THE CONTEXT. 

WE NOW REVERT TO OUR EARLIER NOTATION IN WHICH THE POSITION AND 
VELOCITY OF ANY PARTICLE K AT TIME T ARE DENOTED BY R, (T) AND U (T). WE 

—* —* 

IMMEDIATELY INTRODUCE THE FOLLOWING SPECIAL NOTATION FOR Û  AND R̂  AT 
-» —» 

THE BEGINNING OF THE NTH COLLISION OF PARTICLE K: DEFINE U AND R 
K. y N N 

BY 
U, = U*. (T ) , (73) K,N KV K,N' ' V J ' 

R, = R. (T. ) , {Jh) k,n K K,N 

WHERE N IS UNDERSTOOD TO MEAN THE COLLISION INDEX N̂  FOR PARTICLE K. 
SUPPOSE THAT THE PARTICULAR COLLISION WE HAVE BEEN EXAMINING IS 

NUMBER N̂  FOR PARTICLE I AND NUMBER N FOR PARTICLE J . THE OLD 6R\ AND 
6R. OF EQ. (72) GO OVER INTO THE NEW NOTATION OF EQ. (jh) ACCORDING TO J 
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6r. 5r. , ( 7 5 ) 1 1 ,N V 1 ' ' 

6R. -* 6R. . (76) 

A SIMILAR CHANGE OF 6U. AND 6U. OF EQ. (71) INTO THE NOTATION OF EQ. (73) 
IS GIVEN BY 

6u. - 6 u . , (77) 1 1 ,N 

6U. ~» 6U. . (78) 

IT IS TO BE UNDERSTOOD THAT THE N OF EQS. (75) AND (77) IS N̂ , WHEREAS 
THE N OF EQS. (76) AND (78) IS N.. 

J 

WE WANT TO WRITE A SET OF EQUATIONS FOR THE BEGINNING CONDITIONS 
OF SUCCESSIVE COLLISIONS, BUT WE HAVE OBTAINED END CONDITIONS IN EQS. (71) 
AND (72). THE BEGINNING CONDITIONS OF THE NEXT (I.E., N + 1ST) COLLI
SION ARE EASILY FOUND, HOWEVER. THE VELOCITIES DO NOT CHANGE BETWEEN 
COLLISIONS, SO WE HAVE 

6U. - 6v. , (79) 1,N+1 1 V 7 

WHERE 6V̂  IS FROM EQ. (71). THE CHANGE IN POSITION DIFFERENCE IS FOUND 
FROM FREE-PARTICLE DYNAMICS TO BE 

6R. 1 = 6S. + T . ,N 6U. , , (80) I,N+L 1 I,N+L I,N+L 

WHERE 6S. IS FROM EQ. (72), AND WHERE T. . I S DEFINED TO BE THE TIME 1 I,N+L 
INTERVAL BETWEEN THE COLLISIONS N AND N+1 OF PARTICLE I ACCORDING TO 
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T. n = t . - t . . (81) i , n + l i , n + l i ,n x ' 

Thus, from Eqs. (79) and (80), by using Eqs. ( 71 ) and ( 7 2 ) , by 

substituting from Eqs. (68) and (58) , and by employing the def in i t ions 

of 6u and 6r impl ic i t in Eqs. ( l 8 ) and ( 2 0 ) , we obtain 

6u. + 6u. / 6 u . - 6u. \ 

2u R(0 )b / 6 ? . - 6r. 
_ N N N

 B
A . 1;N ILR 

8 n \ 2 

d sin -75-

6r. + 6r. / 6r. - 6r. 
5 ? i , „ + l = 1 , n

2

 J > n + *< V P n ( 1 , n 2 • 1 ' n ) (83) 

i , n + l i , n + l ' 

where the n subscripts on the center-of-mass quantities (u , 0 , P , 
* n n n 

e t c . ) refer to those quantities in the nth co l l i s i on of pa r t i c l e i . 

In Eqs. (82) and (83) , we intend that the par t i c le index i range 

over a l l the par t i c les to produce a set of 2N simultaneous vector d i f -
-• —» ference equations, the solution of which would give the or. and 6u. for ^ > TO 1 1 

a l l N par t i c les as functions of the N c o l l i s i o n indices n^. As they 

stand, these equations are incomplete, because there i s no specif icat ion 

of the center-of-mass quantities (u , e t c . ) nor of the times T. 
rr ' i , n + l 

between c o l l i s i o n s . To specify these quantit ies, we should have to 

solve the equations of motion (Eqs. (2) and (3 ) ) for the gas system. As 

the exact solution of neither Eqs. (2) and (3) nor Eqs. (82) and (83) i s 

poss ible , we attempt a s t a t i s t i c a l solution of them. 
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Solutions 

Using a s t a t i s t i c a l method, we next solve Eqs. (82) and (83) 

approximately. The s t a t i s t i c a l assumptions introduced in the solutions 

preclude any theoret ica l proof of the stochastic character of our model 

2 12 
by these methods. The hard-sphere gas has been shown by Sinai ' to 

be essent ia l ly a C-system; in part icular , the two-part ic le , two-

2 

dimensional, hard-sphere gas we next consider i s of this class. There

fore , one would expect s t a t i s t i c a l methods to be v a l i d . Our purpose in 

what follows i s not a proof of s tochast ici ty but rather a computation of 

formulas to be compared with experiment. We r e ly on Sinai ' s theorems 

to j u s t i fy many assumptions that would not be allowed in a rigorous dis

cussion. 

Two-Particle Solution 

Before finding an approximate, general solution of Eqs. (82) and 

( 8 3 ) ; we find s t a t i s t i c a l solutions of these equations for a two-part icle 

system that has periodic boundary conditions as in our computer experi

ments. This case i s considered f i r s t because i t i s more nearly rigorous 

than the general solution we shall present hut nevertheless contains 

most of the same features. 

We i n i t i a l l y take the to t a l l inear momentum to be zero in both 

the primed and unprimed systems and translate one system, i f necessary, 

so the two centers of mass coincide. The lab and center-of-mass frames 

are then ident ica l for both systems and w i l l remain so as the systems 

evolve because the t o t a l l inear momentum i s conserved. Thus, in the 

notation of Eqs. ( 7 3 ) and (jk), we have for a l l n that 
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u . + u . = 0 , (84) i ,n j , n ' 

r . + r . = constant , (85) i ,n j , n 9 v y / 

where i and j represent the two pa r t i c l e s . The corresponding posi t ion 

and v e l o c i t y differences between the two systems are therefore related 

by 

6U. - - 6U. , (86) i ,n j , n 

6R. = - 6R. , (87) i ,n j , n v ' 

for every n. The n of these las t four equations i s c l ea r ly the same for 

both pa r t i c l e s , as the two must always co l l i de with each other. 

In order to sat isfy the C-system c r i t e r i a , as stated in connection 

with Eqs. ( 5 ) and (6), we must select the differences of Eqs. (86) and 

(87) to be both on the energy surface of the unprimed system and normal 

to the unprimed trajectory there. These res t r ic t ions could be accom

plished by requiring that the i n i t i a l differences 6U. and 6R. sat isfy 

1,0 1,0 
6U. -u. = 0 , (88) 1,0 1,0 ' 

6R\ -u. = 0 , (89) 1,0 1,0 N ' 

in addition to Eqs. (86) and (87). For the present, however, we omit 

applying the res t r ic t ions of Eqs. (88) and (89) in order to bring out 

certain features of the solutions which have a bearing on our computer 

experiments, as w i l l be discussed. 
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Substitution of Eqs. (86) and (87) into Eqs. (82) and (83) y ie lds 

2u R(0 ) _ . 
6u. x n = R(9 )P 6u. V1 * > (90) 

i , n + l n n i ,n 0 n i ,n ' d sin — 

6?. ^ = R(9 )P 6?. + T -. 6u. __ , (91) i , n + l n n i ,n n+1 i , n + l 

where we have dropped the n-subscript from u^ of Eq. (82) because u i s a 

constant of the motion in Eq. (90) and the i-subscript from T. 
i , n + l 

because T , i s the same for both pa r t i c l e s . Since the lab frame i s the n+1 * 

center-of-mass frame, we have 

u , , = R(e ) ii , (92) 
n+1 v n/ n w ' 

and hence, from Eq. (26), we also have 

b ^ = R(9 ) b . (93) n+1 ny n v ' 

I t would be necessary to insert the p o s s i b i l i t y of a re f lec t ion as we l l 

as a rotation into Eq. (93) had we not allowed negative values of the 

impact parameter b of Eq. (27). The negative values were o r i g ina l l y 

allowed to avoid this r e f l ec t ion . 

With the help of Eqs. (92), (93), and (67), we next resolve the 

difference vectors of Eqs. (90) and ( 9 1 ) into components along the center 

of mass axes u , D , u , n , and D , , as appropriate to the nth or n+lst n n' n+1 n+1 

c o l l i s i o n s . In so doing, for notational convenience, we make the fo l low

ing def in i t ions : 

6 x n = V « ? i , n > (9*0 
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6y = b -6? . , (95) Jn n i ,n w ' 

6z = 5 • 6u. , (96) 
n n i , n ' 

6w = b -6u. , (97) n n l .n w ' 

which are to hold for any n. For the u components we obtain, with the 

help of Eq. (92), 

6z ^ = 6z , (98) n+1 n v ' 

6xn+l = 5xn + Vl 6 zn+1 ' 

while for the b components we ge t , with the help of Eq. (93)> 

d sin — 

Eqs. (98) and (99) have the immediate solutions 

6z = 6z , (102) n o ' 

6 x n = 5xQ + t n 6 Z Q , (103) 

where t i s the time of the nth co l l i s ion ( r e l a t i v e to t =0), and the n v o " 

i n i t i a l conditions 6z and 6x are given. 
o o 

We now apply the res t r ic t ions of Eqs. (88) and (89), which, in 

view of Eqs. (94) and (96), give 



kk 

6z = 
o 

0 ( 1 0 4 ) 

5x = 0 . 
o ( 1 0 5 ) 

Thus, Eqs. ( 1 0 2 ) and ( 1 0 3 ) hecome 

6z = n 0 ( 1 0 6 ) 

5x = 0 , 
n 

( 1 0 7 ) 

for a l l n. 

From Eqs. ( 1 0 2 ) and ( 1 0 3 ) we can see the features referred to 

ea r l i e r that are pertinent to the computer experiments. In the experi

ments, an approximate algorithm was used to sat isfy the appropriately 

generalized equivalents of Eqs. (88) and ( 8 9 ) . Sometimes there resulted 

a small component of the i n i t i a l differences normal to the energy sur

face or p a r a l l e l to the t rajectory, in analogy with 6 Z q and 6 X q . One 

can argue in considerable de ta i l , however, that the analog of Eqs. ( 1 0 2 ) 

and ( 1 0 3 ) should hold for a system of any number of pa r t i c l e s , provided 

that the pa r t i c les are suf f ic ien t ly similar to hard spheres, as we have 

assumed ours to be. Therefore, these i n i t i a l differences contribute at 

most a l inear time dependence to and of Eqs. ( l l ) and ( 1 2 ) . This 

l inear dependence i s quickly dominated by the experimentally observed 

exponentiation. 

We return now to the solutions for 6w and 6y. Eqs. (100) and 

( 1 0 1 ) can be separated into two second-order equations, each involving 

only one of 5w and 6y. The separation gives 
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6 V n+2 + 

2u T. 
1 + n+1 SIN + 

d sin n+1 
SM 

n+1 
SM 

n 
6w + n+1 6w = 0 , (108) 

SIN 
n+1 

6 w + f1 + 

L 
2UT n+2 

d sin n+1 

, n+2 i . n+2 . + ; Oy + 6y = 0 . T ,., ^n+l T . -, n 
n+1 J n+1 

(109) 

To solve Eqs. (108) and (109), we assume that each co l l i s i on n i s an 

independent event in which 6̂  and TN are selected independently accord

ing to appropriate probabi l i ty distr ibutions. (When we evaluate the 

averages in Appendix B, we use a Maxwell, i . e . , canonical, v e l o c i t y 

d i s t r ibu t ion . ) In addition, we consider an ensemble of unprimed systems 

that extends over a l l possible microscopic states consistent with the 

macroscopic conditions. From i t we obtain an associated, primed ensemble 

by requiring the i n i t i a l differences 6w , Sy , 6z , and 6x to be the 
o o o o 

same in every case. Our object ive i s to solve for the ensemble averages 

of 6w and 6y . 
n n 

In Appendix A, i t i s shown that the approximations 

sin <sin — > 
(no) 

<T > 9 

n 

dn) 

where the angular brackets indicate an ensemble average, allow Eqs. (108) 

and (109) to be written for the ensemble everages of 6w^ and 6y^ by 

averaging the coef f i c ien t s . 
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The procedure of averaging the coef f ic ien ts in Eqs. ( 1 0 8 ) and 

( 1 0 9 ) gives 

6w n+2 + 2 [ i + ™ l ) 6 v 

O , y v n + 6w = 0 , 

2 d / n+1 n 

(112) (113) n •where a l l quantities are ensemble averages. The average of sin T J - i s 

taken from Eq. ( B 1 7 ) of Appendix B. For the i n i t i a l conditions, a 

similar average of Eqs. (lOO) and ( l O l ) i s needed, which gives 

6wn = - 6w - -^r 6y , 
1 o d o 

(114) 6y1 = 6yQ + t 6w1 , (115) where again a l l quantities are ensemble averages with the exception of 

6w and 6y which are the given i n i t i a l conditions. 

00 
With the i n i t i a l conditions of Eqs. ( 1 1 4 ) and ( 1 1 5 ) , the solutions 

of Eqs. ( 1 1 2 ) and ( 1 1 3 ) can be shown to be 

6v - g
 (-1C v { fa - e"Y)6« 6y 

n 2 smh V L L o d c 

yn (116) 
+ [ ( e V . - If 4yJ e"*} , 

6 l r n = 2 j [~(eY - l)6y + t6w " sinh v L L o o_ 

(i-'-r) + [ ( 1 - e"Y)6yo - t6Wq] e " Y n ) , 
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"where y i s here given by 

Y = c o s h ' ^ l + ^ ) . ( 1 1 8 ) 

From Eqs. ( 9 4 ) through ( 9 7 ) , ( 1 0 6 ) , and ( l 0 7 ) , we have 

6u = 6w , ( 1 1 9 ) n n 

6r = 5y ( 1 2 0 ) n n ' 

Suppose ve choose 6"Wq and 6yQ to be related by 

( e Y - l ) « v =f 6yo . (121) 

Then Eqs. ( l l 6 ) , ( 1 1 9 ) , and ( i l l ) combine to give 

|6u I = |6u | e Y n , ( 1 2 2 ) ' n o 7 

and, with the additional help of Eq. ( l l 8 ) , Eqs. ( 1 1 7 ) , ( 1 2 0 ) , and ( l 2 l ) 

give 

|«?J = |6?Je Y n . ( 1 2 3 ) 

Eqs. ( 1 2 2 ) and ( 1 2 3 ) are to be compared with Eqs. ( 5 ) . 

I f , instead of Eq. ( 1 2 1 ) , we choose 6 W q and 6yQ to be related by 

(ey - i ) 6 w = - f 6y o , (12k) 

then we s imilar ly obtain 

|6uJ = ISSJE-* 1 , ( 1 2 5 ) 
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|«?J = Isrje^ ; ( 1 £ 6 ) 

"which are to "be compared "with Eqs. ( 6 ) . 

Thus, the choice of Eq. ( l2 l ) determines the d i la t ing space, and 

that of Eq. (l2h) determines the contracting space. Furthermore, V of 

Eq. (l.l8) i s the ensemble average of the t rajectory exponentiation rate 

("with respect to c o l l i s i o n index n) for both posi t ion and v e l o c i t y . 

General Solution 

An approximate, general solution of Eqs. (82) and (83) w i l l now 

be found for a system of N pa r t i c l e s . The problem w i l l be approached in 

two parts: l ) find the overa l l e f fec t of the sequence in which c o l l i 

sions occur and 2) find the quantitative e f fec t of individual co l l i s i ons . 

Once the f i r s t part i s accomplished, the second becomes a straight

forward generalization of the two-particle case. The d i f f i c u l t y i s that 

there i s no equivalent in the general case to Eqs. (86) and (87) of the 

two-part icle case. This lack tends to destroy the causal relationship 

of a pa r t i c le with i t s past. In the f i r s t part of the discussion we 

shall find a quantity that i s causally related to i t s past and associate 

this quantity with the exponentiation of t ra jec tor ies . 

For brev i ty in the discussion, re la t ional conditions are sometimes 

stated for vectors ( e . g . , the maximum 6u). These statements should be 

taken to apply to the magnitudes of the vectors . Also , the discussion 

w i l l be carried through for the most part in terms of the 6u's; i t i s 

to be understood that equivalent remarks hold for the fir's. 

We make the following postulate, based on observation: 

Postulate 1. The 6u' s and 6r 's of a system are distributed at any 
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instant over a wide magnitude range. 

3 5 

Empirically i t was observed that typ ica l ly a factor of 10 to 10 

existed between the maximum and minimum 6u ' s and 6 r ' s . 

The experimental i n i t i a l conditions put a l l of the 5 u ' s and 6 r ' s 

with the same magnitude, and i t might be thought that at least one co l 

l i s i o n per pa r t i c l e would be required to establish the condition of 

Postulate 1 . However, the crucial part of this postulate i s that the 

maximum 5u and 6r in the system be much larger than most of the other 

Su's and 6r ' s . This condition was observed experimentally to be estab

lished, rather quickly (within 10 co l l i s ions or so of t = 0 ) . 

Two coro l l a r i es are obtained from Postulate 1 : 

Corollary la . In a large proportion of co l l i s i ons , the i n i t i a l 6u and 

6r of one pa r t i c l e are much larger than the i n i t i a l 6u and §r of the 

other p a r t i c l e . 

Corollary l b . The maximum 6u and 6r of a system dominate the sums 

forming and of Eqs. ( l 6 ) and ( I T ) . 

Suppose pa r t i c l e i has the larger i n i t i a l 6u and 6r in an i-.i 

c o l l i s i o n , as in Corollary la . Then we can neglect 6u . and 6 r . in 
J,n j , n 

comparison with 6u^ n and 6r\ ^ in Eqs. (82) and (83) to obtain 

6u. 6u. u R(9 )b 
£ - » i ,n / v i ,n n n7 n ,A . , . 
6u. n = —7T~ + R( 9 )P —77— - x— (b • 6r. j , ( 1 2 7 a ) i , n + l 2 v n ' n 2 0 v n i , n / ^ < / , . n d sin — 

6r 6r 
6 ? . . = — ; i ^ + R ( 9 ) P — i ^ + T . . 6u. ^ , ( 1 2 7 b ) i , n + l 2 v n' n 2 i , n + l i , n+ l \ • / 
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fiu. fiu. u R(0 )b 
6u. . = - R(8 )P - ^ U n \ n (t -6?, ) , ( 1 2 7 c ) j , n + l 2 N n' n 2 9 n i , n ' \ > / 

d sin -7j-

6r. _ = - ^ | ^ - R ( 9 )P + T . ^ fiu. _ . ( I 2 7 d ) j , n + l 2 n' n 2 J,n+1 J,n+1 v 7 

I f one substituted from Eqs. (127a) and ( l 2 7 c ) on the r ight of Eqs. 

( l27b) and ( l 2 7 d ) , then a l l four equations would have only fiu. and 
i ,n 

—» —• —• 
6r. on the r ight . Thus, 6u. _ and 6r. _ are causally related to i ,n & i , n+ l i , n + l J 

—» —• —• — » 
6u. and 6r. , but fiu. ,-. and fir. , are not causally related to i ,n i , n ' J,n+1 J,n+1 

fiu. and fir. . The future of pa r t i c l e j depends on the past of J,n j , n 

pa r t i c l e i . In fact , i t can be shown from Eqs. ( 1 2 7 ) that on the 

average Ifiu. , n and Ifir. _ | are equal to Ifiu. .1 and I fir. _ | . & 1 J^n+l1 , u j , n + l ' ^ l w i , n + l ' " u i , n + l ' 

In this way, pa r t i c l e i communicates i t s past history to pa r t i c l e j 

insofar as the fi's are concerned; the past of pa r t i c le j i s i r re levant . 

Hence, the fiu\ for a particular pa r t i c l e i i s not always causally 

related to i t s own past. Nevertheless, in certain sequences of c o l l i 

sions, i t i s possible to define a maximum fiu that i s causally related to 

i t s own past, although the par t i c le with which this maximum fiu i s 

associated may change during the sequence. As an example of th is , con

sider the sequence of co l l i s ions ( l - 2 , 2-3, 3 -4) . Let us number these 

co l l i s ions for reference by the index n*: the 1-2 co l l i s i on i s number n*, 

the 2-3 number n* + 1, e tc . Note that n* i s not associated with any 

single pa r t i c l e . We assume that a co l l i s i on almost always acts to 
-* 2 12 

increase the fiu's involved, because of the known ' exponentiating 

character of this system and the argument in Chapter I I about the domi

nance of the d i la t ing space. 
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Suppose that i n i t i a l l y 6un „ i s the maximum of the fiu's. After l , n* o 
the 1-2 c o l l i s i o n 6un „ _ and 6u 0 „ _ are the maxima, af ter the 2-3 i ,n^+i d,n*+l o o 
c o l l i s i o n 6u _ and 6u are the maxima, and after the 3-4 co l -

2,nQ+^ ^ ^ n

0

+ ^ 

l i s i o n 6u^ n*+^ a n d

 n*+)+ a r e t i i e m a x i m a ( s imilar comments apply to 

the 5 r ' s ) . Nov observe that through Eqs. ( l 2 7 c ) and ( l 2 7 d ) ve have 

6 " 2 , n ^ + l ( a n d 6 ? 2 , n ^ + l ) c a u s a l l y e l a t e d to 6u (and fi? ), 6? n * + 2 

' o ° _ _« ° o _̂  ' o 
causally related to 6u 0 v . , n , and 6ui, „ ~ causally related to 6u_ „ 0 . 17 2 ,n*+l 4,n*+3 3,n*+2 

Thus 6 ^ , defined by ( S u ^ , S u ^ ^ , to*^^, ^ n ^ ) being respect ive ly 
o o o o 

equal to ( S u ^ ^ , S u 2 , n ^ + 1 ' 6 ^ 3 , n * + 2 ' 6 % , n * + 3 ^ i S t h e m a x i m u m 6 ^ 

throughout the sequence and i s causally related to i t s past. 

I t i s not possible to define such a causally related 6u through

out any sequence that includes a maximum (other than the f i r s t ) generated 

by a c o l l i s i o n outside the sequence. In our example, i f 6u^ had been 

larger than Sû  in the 2-3 c o l l i s i o n , then the causal sequence would not 

have occurred. But there i s one sequence ( i f i t ex i s t s ) for which i t i s 

always possible to define such a causal 6u, namely, the sequence in which 

a new maximum 6u (and 6?) for the entire system i s produced by each 

c o l l i s i o n . In this sequence, the maximum fiu at each c o l l i s i o n i s neces

sa r i ly a result of the previous co l l i s i on in the sequence. Furthermore, 

i t i s just this sequence which i s of greatest in teres t , for by Corollary 
— » - 4 

lb the calculation of the maximum 6u and 6r i s the calculation of D and 
P 

V 
I t i s unlikely for a single sequence as just described to exis t 

over a long period of time. However, we shall shortly make the approxi

mation of replacing the co l l i s i on parameters of Eqs. (82) and (83) by 

their averages, and in so doing we shall average over the direct ions of 
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the 6u's and fir's. In this approximation, successive maxima of the 
—• —» 

fiu's and fir's appear to be causally related, whether they actual ly are 

or not. This last statement i s based on the following argument. After 

averaging over the directions of the fiu's and fir's, these quantities are 

distinguished from par t ic le to par t ic le only by their magnitudes. Now 

suppose that immediately before some time t pa r t i c le i has the current 
—» —* 

maximum fiu, but at time t the fiu of pa r t i c le j , which i s remote from 

and unconnected with pa r t i c l e i , becomes the new system maximum. I f , as 

we assume in our approximation, the e f fec t of a l l the parameters 

involved in a c o l l i s i o n (other than the magnitudes of the fiu's and fir's; 

i s f a i r l y regular from co l l i s i on to c o l l i s i o n , then the fiu in the c o l l i 

sion that produces the new maximum at time t must be of the same order 

of magnitude as the old maximum fiu^. There i s in e f fec t a re la t ion 

between these fiu's because they are distinguished only by their magni-
—• 

tudes. Hence, the new maximum fiu. i s e f f e c t i v e l y related to the old J 
—• 

maximum fiu^. 
Experimentally, the assumption of regular i ty does turn out to be 

a moderately good one. This can be seen most eas i ly from the l o e n r t D ° ^ °10 p 

curves in Figures 3 through 11. There are fluctuations, of course, but 

in general, the jumps in these curves are reasonably regular. 

In sum so far, we have argued that in order to find the ove ra l l 

exponentiation rate, i t i s only necessary to calculate the maximum fiu 

and fir in the system and that these maxima are in e f fec t causally related 

to their past. We now make one additional postulate which w i l l allow 

these maxima to be calculated: 
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Postulate 2. The par t i c le having the maximum 6u and 6r at time t i s the 

one which has e f f e c t i v e l y undergone the most co l l i s ions up to time t . 

The term " e f f e c t i v e l y " i s used in Postulate 2 because the par t i c le 
— F —4 

with the maximum 6u and 6r need not actually have undergone the most 

c o l l i s i o n s . For instance in our previous example, after the ^-h c o l l i 

sion par t i c le h has undergone only one c o l l i s i o n hut e f f e c t i v e l y has 

undergone a l l of the co l l i s ions in the sequence (as w e l l as whatever 

co l l i s ions preceded the 1-2 c o l l i s i o n ) . 

Postulate 2 i s simply the statement that the par t ic le with the 

largest fiu and fir i s most l i k e l y to be the one which has undergone the 

most co l l i s ions because co l l i s ions are the mechanism for increasing the 

fiu's and fir's. 

We can now solve Eqs. (127) for the system maximum fiu and fir by 

taking n in those equations to be the index n* that counts co l l i s ions in 

the sequence which has the maximum co l l i s ion rate. We must also take T 

in these equations to be the time r* between the co l l i s ions counted by n*. 

At each c o l l i s i o n in this maximum sequence, the resulting fiu's (and fir's) 

of the two par t ic les are approximately equal in magnitude and are there

fore both system maxima. By Postulate 2, however, we shall assume that 

the one of these two which undergoes the ea r l i e s t succeeding co l l i s i on i s 

the maximum in which we are interested; the other of these two par t ic les 

w i l l be ignored in our approximation. 

In the solution of Eqs. (127), we shall obtain second-order d i f 

ference equations in the fiu's and fir's. These equations necessarily 

involve two successive co l l i s ions in the maximum sequence. There are 
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two d is t inc t ways in which the two co l l i s ions can occur. Suppose that 

pa r t i c l e i i s the maximum in the f i r s t c o l l i s i o n between i and j and 

that one of i and j then goes on to co l l i de with k. We then have the 

possible sequences ( i - j , i - k ) and ( i - j , j - k ) . In the f i r s t case, Eqs. 

(l27a) and (l27b) apply to both co l l i s i ons ; in the second case Eqs. 

(127c) and (l27d) apply to the f i r s t c o l l i s i o n , and Eqs. (l27a) and 

(127b) to the second c o l l i s i o n . But i t can be shown that the same 

second-order equations result in either case; therefore, for de f in i t e -

ness we consider the ( i - j , i - k ) sequence and solve Eqs. (l27a) and 

(127b). 

We define 6u „ and 6r „ to be the maxima we are following in the n* n* to 

maximum sequence. In order to avoid unwieldy notation, we now drop the 

* from n* unt i l stated otherwise. As in Eqs. (94) through (97)> ™e use 

6x and 6z for the components of 6r and 6u along u and 5y and 6w n n * n n ^ n ^ n n 

for the components of 6r and 6u along & . We also define £ to be the * n n 0 n s n 
A A / 

angle measured from b^ to t> ^ (on the maximum c o l l i s i o n sequence): 

b _ = R(g )t . (128) n+1 v * n ' n s ' 

With the help of the f i r s t l ine of Eq. (67), we may wri te 

P 6u = 6z u - 6v b , (129a) n n n n n n \ s / 

P 6r = 6x u - 6y b . (129b) n n n n n n v ' 

Now take the dot product of ^ n + - ^ with both sides of Eqs. (l27a) and 

(127b), and use Eqs. (128) and (129); this gives 
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6v ,-, =75 { - [ s in § + sin(C - 9 ) ]6z ( 1 3 0 a ) n+1 2 L L n̂ v*n n 7 J n x 7 

u

n

C 0 S ( S n " O 
>n ~n / J U "n J 9~ + [cos e - cos(e - e ) ] 6 v } - i s_ 6 y 

d sin — 

6 y n + 1 = \ f " [s in § n + s i n ( § n - 9 j ] 6 x n ( l 3 0 b ) 

+ [cos % - cos(§ - 9 ) ] 6 y } + r* 5w . , L 3n v s n n ' J n n+1 n+1 

where r* -, i s the time between co l l i s ions on the maximum sequence. We n+1 

next average Eqs. ( 1 3 0 ) on the co l l i s i on parameters u^, 9 , and 

-, ; the averages are carried, out in Appendix B and result in n+1 

where T* i s the mean time between co l l i s ions of the maximum sequence and 

where u i s the system average of u . 

One would expect u in the maximum sequence to be larger than the 

average u, at f i r s t at leas t . However, experimentally the speeds of the 

par t i c les with the maximum fiu and fir were on the order of the mean part i

c le speed, although the speeds were widely distributed. This may seem 

more reasonable in the l igh t of the following argument: suppose the 

maximum fiu i s associated with a single par t ic le throughout a long 

sequence of co l l i s i ons . I t i s then reasonable to expect that pa r t i c l e 

to sample the v e l o c i t y distr ibution f a i r l y and to have an average speed 



56 

close to the system average. Conversely, suppose the maximum 6u is 

associated "with many dif ferent par t ic les during a long sequence of 

c o l l i s i o n s . In this case i t i s reasonable to expect the di f ferent 

pa r t i c l es also to represent the v e l o c i t y distr ibution f a i r l y . In 

ei ther case, the average speed of the par t ic les in the maximum sequence 

may reasonably be expected to be close to the system average; there

fore , for co l l i s ions in the maximum sequence the average r e l a t ive speed 

of one par t i c le to the other may also be reasonably expected to be 

close to the system average r e l a t i ve speed u. 

Eqs. ( l 3 l ) may now be solved in a manner ident ica l to the solu

t ion of Eqs. (lOO) and ( l O l ) . One obtains the same second-order equa

tions for 6"w and 6y: 

8 w n + 2 + Iv. 1 + + T5 K = 0 ' ( W 2 * ) 

5 W + M1 + ̂ rK+i+
 i s 6 ^ = 0 • < 1 3 2 t > 

n ^ 
These equations have the two independent solutions ( - l ) e and 

n Y ^ 
( - 1 ) e , where i s given by 

Y* = - In 4 f cosh" 1 ; ' ! + ( 1 3 3 ) 

Since we are interested only in the d i la t ing space, we use the plus sign 

in Eq. ( 1 3 3 ) and wri te 

5 v n = 6 w 0 ( - l ) n e Y * n , ( 1 3 4 a ) 

K = to0(-i?ey*n > ( 1 3 ^ ) 
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where y* is defined by 
Y* = cosh"1^ + ^ ) - In 4 . (135) 

A 
If one forms the dot product of u n with both sides of Eqs. 

n+1 
(127a) and (127b), uses Eqs. (26), (128), and (129 , and averages on £ , u , Q and t ,-,, then one obtains (see Appendix B for averages) n n n n+1 

6zn+l = t 6zn ' (136a) 

6xn+l = i 6xn + T*6zn+1 " 

Eqs. (136) have the general solutions 
- n In 4 6z = 6z e , (137a) n o ' 

-n ]ji ^ 6x = (6x + 4t 6z )e , (137b) n o n o ' 
where t (= iit*) is the time of the nth collision. The magnitudes 
I6û J and |&r

nl are dominated very quickly as n increases by 6wn and 
6yn of Eqs. (134). Hence, Y* of Eq. (135) is the exponentiation rate 
with respect to the index n (= n*) in the maximum sequence; therefore, 
by Corollary lb, y* is the exponentiation rate for and D of Eqs. 
(l6) and (17). 

We now restore the * to n*, and we let n without a star count 
collisions for the average particle, that is, we let 

n(t) = i , (138) 
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w h e r e T i s t h e mean t i m e b e t w e e n c o l l i s i o n s f o r a s i n g l e p a r t i c l e . L e t 

3 h e t h e r a t i o o f n * t o n , s o we h a v e 

n * ( t ) = 3n ( t ) . (139) 

B u t b y t h e d e f i n i t i o n o f a n d n * , we m u s t a l s o h a v e 

n ( t ) = ^ r , (lhO) 

a n d h e n c e we o b t a i n , f r o m E q s . (138) t h r o u g h (l4o), 

T* = 1 . 
T 3 

A s m e n t i o n e d , a c c o r d i n g t o C o r o l l a r y l b we h a v e 

N e x t d e f i n e y s o t h a t 

(141) 

D = D e

v * n * (l42a) 
p p o 7 s ' 

D = D e ^ * . (142b) 
q q o 

D = D , (l43a) p p o ' \ -> * 

D = D e Y n . (143b) q q o \ ^ / 

T h e n f r o m E q s . (135) a n d (139) t h r o u g h ( l43) , we s e e t h a t 

We now make a v e r y c r u d e a r g u m e n t t h a t 3 i s g i v e n i n o r d e r o f 
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magnitude by 

0 « In N . (1^5) 

Observe an N - p a r t i c l e system for one mean c o l l i s i o n time T . During t h i s 

t ime, each p a r t i c l e undergoes one c o l l i s i o n on the average ; thus, from 

Eq. (139); 3 c o l l i s i o n s occur in the maximum sequence. At any in s t an t 

during t h i s t ime, there i s p r e c i s e l y one p a r t i c l e in the system tha t 

not only has the maximum 6u and 6r but a l s o i s in the maximum sequence. 

(There are two p a r t i c l e s wi th the maximum 6u and 6r, but only one of 

these i s in the maximum sequence.) Wow add one p a r t i c l e to the system 

and suppose tha t during the time T the only change i s tha t the new 

p a r t i c l e c o l l i d e s once wi th some other p a r t i c l e . I f the new p a r t i c l e 

happens to c o l l i d e wi th the p a r t i c l e wi th maximum 6u and 6r in the maxi

mum sequence, then, by the supposi t ion tha t nothing e l s e changes, there 

w i l l be 3+1 c o l l i s i o n s in the maximum sequence during the time T ; o ther 

w i s e , there w i l l be 3 c o l l i s i o n s in the maximum sequence. Assuming tha t 

the new p a r t i c l e has the p r o b a b i l i t y l /N of c o l l i d i n g wi th any p a r t i c u l a r 

p a r t i c l e , we f ind the expected average inc rease in 3 for an inc rease 

from N to N+1 p a r t i c l e s to be l /N, which leads t o Eq. (1^5) . 

We p r e f e r to l e t Eq. (l44) stand without s u b s t i t u t i n g for 3 

because Eq. ( l^5) was obtained by such a crude argument. In the l a t e r 

comparison of Eq. (ihh) to experiment, however, we s h a l l use Eq. ( l^5) 

fo r l a ck of a b e t t e r c a l c u l a t i o n . 

For comparison of y of Eq. (ihh) to experimental q u a n t i t i e s , 

observe from Eqs. (13) and (lh) tha t we may wr i t e D and D as 
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X t 

X t 
D = D 1 0 q . (l46b) q qo v ' 

Thus, from Eqs. ( 1 3 8 ) , ( l 4 3 ) , and (l46) we have 

X = \ = — . (1^7) q p T In 1 0 

In actual comparison to experiment i t w i l l he convenient to write 

Y = AT In 1 0 , ( l 4 8 ) 

where A. is the common value of X^ and X , and to compare the experi

mental evaluation of Eq. (l48) to Eq. ( 1 4 4 ) . 

D = D 1 0 P , (l46a) p po x ' 
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CHAPTER IV 

RESULTS OF THE NUMERICAL EXPERIMENTS 

Previously we gave only a rudimentary description of the numerical 

experiments; here we present the deta i l s of them and show our results . 

The procedure for choosing i n i t i a l conditions to obtain a fa i r sample of 

the energy surface i s described, the macroscopic characterist ics of the 

system are discussed, and the computer parameters are compared to data 

for a rea l gas. After these preliminaries the central point of this 

chapter i s reached in setting forth the quantitative findings. F inal ly , 

the error in the numerical method and i t s consequences in the empirical 

results are considered. 

I n i t i a l Conditions 

To determine values for the s t a t i s t i ca l quantities X and A. of 
q P 

Eqs. ( 1 3 ) and (lh) with any degree of certainty, one requires a reason

able sampling of the energy surface for each set of macroscopic condi

t ions. I t i s apparent from the number of degrees of freedom involved 

that an exhaustive sample would be p roh ib i t ive ly time-consuming. We 

therefore base our sampling procedure on the fact that empirically our 

system i s a C-system, and hence almost a l l t ra jec tor ies sample the entire 

energy surface. 

Several o r ig ina l sets of i n i t i a l conditions were selected by 

taking the coordinates and momenta from a table of random numbers. 

Experiments were run with these conditions, and occasionally during the 
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course of an experiment the coordinates and momenta as they existed at 

the time were saved to he used subsequently as i n i t i a l conditions in 

further experiments. In turn, these further experiments produced sets 

of i n i t i a l conditions for s t i l l further experiments, and so on. Thus, 

a f a i r sample was obtained on the basis of the stochastic properties of 

a C-system tra jectory. 

Error in the integration process also added to the randomness of 

the sample. The e f fec t of error was that each integration step d is 

placed the system point somewhat from the true trajectory. The distance 

from the true t rajectory presumably increased exponentially within the 

energy surface as the system evolved; thus, error introduced ear ly in 

the process could grow quite large after long integration times. The 

farther a point became in time from the i n i t i a l point along a numeri

c a l l y integrated trajectory, the better that point was from the point of 

view of a random sample. Of course, this had to be accounted for when 

the error in experimentally observed quantities was estimated, as w i l l be 

discussed la te r . 

Whether the source of i n i t i a l conditions was random numbers or 

previous experiments, they were processed in i n i t i a t i ng each experiment 

as we now describe. The given i n i t i a l conditions were taken to be those 

of the unprimed system. The coordinates were uniformly scaled to reach 

the desired density, and any par t ic les closer together than .9a were 

separated to this distance. The to ta l l inear momentum was reduced to 

zero by subtracting l /N times the to ta l momentum from the momentum of 

each pa r t i c l e . The angular v e l o c i t y of the system was found by applying 

the inverse of the iner t ia tensor to the to t a l angular momentum. The 
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angular momentum was reduced to zero "by adding the negative of the 

angular v e l o c i t y to the system as a whole. The linear momenta were 

then uniformly scaled to attain the desired to t a l energy. At this 

point, i f the i n i t i a l conditions were derived from a random number 

table , the system was integrated unt i l an approximately Maxwellian 

v e l o c i t y distr ibution was obtained. Final ly , the i n i t i a l conditions 

for the primed system were derived from those of the unprimed one by 
Q 

making small displacements (about 10 per par t i c le in the units of 

Eq. (8)) in the unprimed coordinates and momenta. 

Comparison to a Real Gas 

The physical r e a l i t y of the gas model of Eq. (7) can perhaps be 

seen more eas i ly than otherwise by expressing the macroscopic system 

parameters in a standard system of units. For this purpose, we chose 

neon as a basis of computation. By use of the atomic mass and the tabu-

16 

lated Lennard-Jones parameters e and a for this gas, one can convert 

the computer units of Eq. (8) to , say, MKS units. We have made this 

conversion; the results are given in Table 1. We use for the Bol tz

mann constant and the abbreviations m.u., l . u . , t .u . , and e.u. for the 

computer units of mass, length, time, and energy, respect ively . For 

comparison, we also give the values of the par t ic le mass m and the 

Lennard-Jones parameters e and rj in the table. 

During the following discussion of the experimental results , we 

use Table 1 to express quantities in familiar units whenever i t serves 

to elucidate the physical state of the computer model. 
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Table 1. Conversion Between Computer and MKS Units for Neon. 

Quantity Computer 
Units 

MKS 
Units 

3.34 X 10" •26 kgm 

2.7k X 10" •10 meter 

1.12 •12 1.12 X 10" 
•12 

sec 
•21 joule 2.00 X 10" 
•21 joule 

1.38 X 10" •23 joule 1.38 10" 
°K-part ic le 

3.34 X 10" 26 kgm 

2.7+ X 10" •10 meter 

5.00 22 5.00 X 10" 
22 

joule 

Mass 

Length 

Time 

Energy 

1 m.u. 

1 l . u . 

1 t .u . 

1 e.u. 

lc (Boltzmann Constant) . O O 6 9 O . E ' U ' -a K-par t ic le 

m (Pa r t i c l e Mass) 1 m.u. 

1 l . u . 

.25 e.u. 
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T a b u l a t i o n o f Q u a n t i t a t i v e R e s u l t s 

T h e m a j o r i t y o f t h e c o m p u t e r e x p e r i m e n t s w e r e r u n a t a p p r o x i m a t e l y 

c o n s t a n t t e m p e r a t u r e . T h e q u a n t i t a t i v e r e s u l t s o f t h e s e a r e g i v e n i n 

T a b l e 2 . E x c e p t a s n o t e d o t h e r w i s e , a l l o f t h e t a b u l a t e d q u a n t i t i e s a r e 

g i v e n i n c o m p u t e r u n i t s ( c f . T a b l e l ) . E a c h o f t h e s e e x p e r i m e n t s w a s 

p e r f o r m e d w i t h N = 100 . 

T h e f i r s t e n t r y i n T a b l e 2 i s t h e n u m b e r d e n s i t y p, g i v e n i n 

p a r t i c l e s p e r u n i t a r e a . F o r c o m p a r i s o n o f e x p e r i m e n t a l s t a t e s t o 

s t a t e s o f a r e a l g a s , t h e f r a c t i o n o f t h e l i q u i d - n e o n d e n s i t y t h a t p 

r e p r e s e n t s i s g i v e n s e c o n d i n t h e t a b l e . T h i r d , we g i v e t h e t e m p e r a t u r e 

T i n d e g r e e s K e l v i n . F o r t h i s p u r p o s e , T i n t h e t a b l e i s c a l c u l a t e d a s 

t h e t i m e a v e r a g e o f t h e i n s t a n t a n e o u s t e m p e r a t u r e d e f i n e d b y 

N 

w h e r e v i i s t h e s p e e d o f t h e i t h p a r t i c l e . B e c a u s e t h e s y s t e m o f o u r 

e x p e r i m e n t s i s i s o l a t e d , t h e e n e r g y r e m a i n s c o n s t a n t , a n d t h e t e m p e r a 

t u r e f l u c t u a t e s . 1 H o w e v e r , i n o u r e x p e r i m e n t s t h e s t a n d a r d d e v i a t i o n o f 

t h e i n s t a n t a n e o u s t e m p e r a t u r e f r o m t h e t a b u l a t e d t i m e a v e r a g e , a s c a l 

c u l a t e d f r o m s t e p t o s t e p i n t h e i n t e g r a t i o n p r o c e s s , h a d a mean v a l u e 

o f a b o u t .6 p e r c e n t a v e r a g e d o v e r a l l t h e e x p e r i m e n t s ( t h e maximum 

d e v i a t i o n i n a n y o n e e x p e r i m e n t w a s 2 .2 p e r c e n t ) . T h e r e f o r e , we c o n 

s i d e r t h e t e m p e r a t u r e a s g i v e n t o b e a w e l l - d e f i n e d t h e r m o d y n a m i c v a r i 

a b l e o f t h e s y s t e m . 

T h e n e x t t w o e n t r i e s o f T a b l e 2 a r e t h e e x p e r i m e n t a l v a l u e s f o r 

X a n d X o f E q s . ( 1 3 ) a n d (lh). T h e s e a r e t h e s l o p e s o f t h e s t r a i g h t 
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Table 2. Quantitative Results of the Numerical Experiments at 
Approximately Constant Temperature. 

p liq p T(°K) \ 
P q. 2B 3B 1+B w t 

r 
T Y 

exp 

.1200 1 1 + . 8 327 • 935 1 .09 1 . 0 1 61+ 9 2 8 8 2.11+ 1.22 2.83 

.1000 1 2 . 3 312 .857 .882 .870 ll+8 1 . 9 2 192 6 . 2 0 1 . 6 2 3 . 2 3 

. 0 8 0 0 9.81+ 310 .705 .701+ .701+ 182 10 0 202 9.81+ 2.1+1+ 3 . 9 5 

. 0 8 0 0 9.81+ 303 . 6 6 6 .685 .676 178 1 7 1 215 9 . 5 6 2.22 3 . 4 6 

. 0 6 0 0 7 . 3 8 300 .690 .705 .697 91 5 0 101 6 . 1 5 3 . 0 5 1+.89 

. 0 6 0 0 7 . 3 8 300 .61+6 .675 .660 130 7 0 11+1+ 8 . 7 0 3 . 0 2 4 . 5 9 

. 0 6 0 0 7 . 3 8 305 .791 .830 .810 123 7 1 11+0 7 . 1 5 2 . 5 5 4 . 7 6 

.01+00 1+.92 297 .501 .522 . 5 1 1 136 7 0 150 ll+.O 1+.67 5 . 4 9 

.01+00 1+.92 290 .501+ .507 .505 129 5 0 139 1 3 . 9 5 .00 5 . 8 2 

.0200 2 .1+6 294 .353 .358 o355 76 2 0 80 1 8 . 6 1 1 . 6 9 . 5 1 
o0200 2 .1+6 295 . 5 5 7 .559 .558 61+ 2 0 68 1 3 . 9 10 .2 1 3 . 1 

.0100 1 .23 290 . 2 5 2 .257 .255 1+0 0 0 1+0 16o0 20.0 1 1 . 7 
O o o 8 o .981+ 290 .203 .206 .205 62 0 0 62 3 3 . 8 2 7 . 3 1 2 . 8 
. 0 0 8 0 .981+ 290 .200 .200 .200 72 0 0 72 35 .2 2k.k 1 1 . 3 

. 0 0 6 0 .738 290 . 1 7 7 .183 .180 50 1 0 52 3 6 . 2 3 4 . 8 1 4 . 4 

. 0 0 6 0 .738 290 .232 .232 »232 52 0 1 32.1+ 29o5 1 5 . 7 

.001+0 .1+92 290 ol57 .162 ol59 1+8 0 1 51 4 3 . 5 1+2.7 1 5 . 6 

.001+0 .1+92 290 . 1 1 2 . 1 1 9 . 1 1 6 -49 0 0 4 9 56.1+ 5 7 . 6 1 5 . 3 

.001+0 .1+92 2 8 9 . 1 1 + 6 . 157 .152 1+2 0 0 1+2 1+1+.7 53.2 1 8 . 6 

.0020 .21+6 290 .102 0 I 0 2 .102 36 0 0 36 68.0 9 4 . 4 2 2 . 1 

.0010 . 1 2 3 290 .052 . 0 5 ! + .053 28 0 0 28 100 179 2 1 . 9 

. 0 0 0 8 .098 290 .056 .065 .060 23 0 0 23 98.0 213 2 9 . 4 

O o o o 8 .098 290 .080 .087 .081+ 1 6 0 0 1 6 69.0 216 4 1 . 5 
.0008 .098 290 .051 .056 0O53 23 0 0 23 112 21+5 2 9 . 9 
.0001+ .01+9 290 .01+0 .01+2 .01+1 12 0 0 12 100 1 + 1 8 3 9 . 1 
.0001+ .01+9 290 .038 .01+6 0OI+2 12 0 0 12 100 1+18 40 oO 
.0001+ .01+9 290 .018 .022 .020 11+ 0 0 11+ 172 6 1 6 28.2 
.0002 .025 290 .055 .059 .057 10 0 0 10 9 9 . 6 1+98 65 0 2 
.0002 .025 290 .025 .027 .026 19 0 0 19 2l4 562 3 3 . 8 

.0001 .012 290 .025 .030 .027 1+ 0 0 1+ 9 9 . 7 121+7 7 8 . 7 

.0001 0 O 1 2 290 .011+ .015 .011+ 5 0 0 5 315 3150 104 

.0001 .012 290 .019 .020 .019 13 0 0 13 269 1036 4 6 . 2 
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l ines resulting from a least-squares f i t of the logarithm p lo t s , as 

mentioned ea r l i e r . In Figures 3 through 11 we show some typica l exam

ples of these p lo ts with the f i t t ed straight l ines superposed on them. 

In these f igures , l o g ^ D and the corresponding f i t t e d l ine are plot ted 

as sol id curves while log-^D and i t s corresponding l ine are plot ted as 

broken curves. 

In view of Eq. ( l V f ) , we expect X̂  to be equal to y As can be 

seen from the plots and from Table 2 , this expectation i s borne out to 

a surprising degree on consideration of the s t a t i s t i c a l fluctuations 

possible in such quantit ies. From this point, then, we drop the d is 

t inct ion between X and X ' and use the mean value X as given next in 
q p 

Table 2 in a l l further calculations. 

Following the X's , we have tabulated the number of two-body, 

three-body, and four-body co l l i s i ons , and a weighted sum W of these co l 

l i s i o n s , under the respective headings 2B, 3B, 4B, and W. Wo co l l i s ions 

of more than four par t i c les were observed to occur. 

In the weighted to t a l W, three-body and four-body co l l i s ions were 

given the weights of two and three binary co l l i s i ons . These weights 

represent the simplest sequences of binary co l l i s ions that would replace 

the multiple ones i f the theoret ica l , hard spheres were to replace the 

experimental pa r t i c les which have the Lennard-Jones interact ion. One 

chooses the simplest sequences because i t can be argued that these 

represent the true binary co l l i s i on ef fec ts of a multiple c o l l i s i o n , 

whereas more complicated sequences represent e f fec ts of higher order for 

which our simple theoret ical model has no hope of an explanation. Thus, 

for the purpose of comparison to our theoret ical results , we take W to 



Figure lb. Plot of Data Corresponding to Entry 2 of Table 2. 
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be the t o t a l number of co l l i s ions occurring in an experiment and make 

our theore t ica l comparison as i f a l l co l l i s ions were binary ones. 

After the c o l l i s i o n data in Table 2, we give the duration of 

each experiment t . By comparison of these values with Table 1, one 

sees that even our longest experiments are of extremely short duration 

on a macroscopic scale--a few tenths of a nanosecond at most. With t 

and W, we can calculate the e f f ec t i ve mean time T between co l l i s ions ac

cording to 

T = g — > (150) 
r 

where the factor of N/2 i s included to obtain the mean time between co l 

l i s i ons of a single p a r t i c l e . These results are tabulated following t 

in Table 2. 

The experimental values v for the exponentiation rate are cal -* exp * 

culated from Eq. (15*0 and are given after T in Table 2. These results 

are shown graphically in Figure 12, where Y e x p versus T i s p lo t ted . 

The results of a few experiments made holding the density con

stant and varying the temperature are given in Table 3. Table 3 has the 

same format as Table 2. The f i r s t l ine of Table 3 i s copied for re fe r 

ence from the twelfth l ine of Table 2. 

Table k shows the evaluation of 3 of Eq. (139) from data taken in 

some preliminary experiments. From l e f t to r ight , the Table k entr ies 

are the number of par t i c les N, the to t a l number of co l l i s ions observed, 

the average number n of co l l i s ions per pa r t i c l e , the number n* of c o l 

l i s i ons in the maximum sequence, 3 as calculated from Eq. (139), and 
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Table 3. Quantitative Results of the Numerical Experiments at 
Constant Density. The first line of this table is 
copied from Table 2, Line 12. 

p . / T(°K) X X X 2B 3B 4B W t T y liq. p p q. r 

.oioo 1.23 290 .252 .257 .255 

.0100 1.23 435 .420 .440 .430 

.0100 1.23 580 .460 ,4oo .430 

.0100 1.23 725 .4io .430 .420 

4o 0 0 4o 16.0 20.0 11.7 
40 0 0 4o 10.1 12.6 12.5 
23 0 0 23 6.00 13.0 12.9 
4o 0 0 4o 11.3 14.1 13.7 



Table 4. Experimental Values of p Compared to Ln N for Small Syst 

Total „ 6 
Col l is ions ln N 

8 172 21.5 
12 252 19.3 
16 152 9.5 
20 Ilk 5.7 

50 2.33 1.12 
kS 2.48 1.00 
27 2.84 1.02 
24 4.21 1.4l 
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f i n a l l y , the ra t io of 3 to In N. From this las t entry, i t appears that 

Eq. ( l ^ 5 ) i s a reasonable (although s l i gh t l y small) order-of-magnitude 

estimate for 3 for N in this range. 

In our calculations the energy and l inear momentum were conserved 
g 

to one part in 10 , hut for such unstable systems, the conservation of 

energy (or momentum) i s not a good accuracy tes t because these systems 

are not unstable in the direct ion normal to the energy surface. Thus, 

the error in the energy i s addit ive from integration step to step, 

whereas the error introduced within the energy surface in a given step 

grows exponentially in succeeding steps. Furthermore, i t i s d i f f i c u l t 
1 7 

to obtain an accurate error estimate for the Runga-Kutta integration 

method used. Therefore, we adopted a reversed-integration procedure 

for error analysis. 

For s implic i ty in this section, we shall p lo t the quantity l o g ^ D , 

where D i s defined by 

Although D i s dimensionally inhomogeneous, in view of the equali ty of 

\q and \ of Table 2 Eq. ( 1 5 1 ) i s useful for i l l u s t r a t i v e purposes. 

A pair of systems were integrated over a time period, and l o g ^ D 

was plot ted as shown in Figure 13 ( so l i d curve) . We shall c a l l this the 

forward integrat ion. The v e l o c i t i e s were reversed in the f ina l condi

tions of the forward integration, and these reversed conditions were 

used as i n i t i a l conditions for a similar integration over the same time 

Accuracy 

(151) 
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per iod. The log D curve of this reversed integration i s also shown in 

Figure 13 (broken curve) . 

The following discussion shows how these two integrations may "be 

used to estimate the error . At the end of the forward integration the 

difference vector between the two systems has components in each of the 

d i l a t ing and contracting spaces. The d i la t ing component i s overwhelm

ing ly the largest ; the contracting component consists only of error 

introduced in the las t few integration steps because contracting com

ponents in the i n i t i a l conditions or introduced by ea r l i e r errors have 

decayed away exponentially by this time. Reversing the v e l o c i t i e s inter-

l8 

changes the d i la t ing and contracting components; so the d i la t ing com

ponent of the reversed integration i n i t i a l l y consists only of error 

from the forward integrat ion. During the reversed integration the d i 

la t ing component grows, and the i n i t i a l l y large contracting component 

decays exponentially. When the d i la t ing component exceeds the contrac

t ing one, the log-^D curve turns upward. The upward-turned part thus 

results en t i r e ly from the exponentiation of the i n i t i a l error plus error 

accumulated during the reversed integration i t s e l f . On the other hand, 

the l o g 1 Q D curve of the forward integration results from exponentiation 

of the i n i t i a l difference between the systems. On a logarithmic p lo t , 

the distance of the forward curve above the upward-turned part of the 

reversed curve measures the ra t io of the i n i t i a l difference to the error. 

The r a t io l o g ^ D on the forward curve to log-^D on the reversed 

curve can be computed from the data for Figure 13. This computation 

y ie lds a geometric mean of 2.0 for the r a t i o , the largest and smallest 

values of the individual ra t ios in the average being 3.2 and .6, 
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Figure 13„ Plot of Log^D versus Time for Forward (Sol id Curve) 

and Reversed (Broken Curve) Integrat ions. 



respec t ive ly . Hence, the error in the distance D "between the two 

system points i s approximately ^0 per cent in the ear ly points of the 

integrat ion, and we shall assume that this value holds for D and D 
p q 

separately. 

The 50 per cent figure i s not a good estimate for the error in 

X^ and X^, however, "because the ear ly error does not propagate into 

l a t e r data points in a random fashion "but rather exponentiates regularly. 

The log-^Dp and log^cPq P-'- 0^ s m a y ^ e shifted up or down, hut the over

a l l slope i s only affected "by the random error introduced into each 

point . The ra t io of and to the random error increases exponen

t i a l l y with time, since there i s no reason for errors in each system to 

depend on the distance between systems. Therefore, except for the early 

data points, the integration error i s n e g l i g i b l e , and even the early 

error tends to change the v e r t i c a l intercepts but not the slopes of the 

least-squares-f i t ted l ines . Hence, integration error i s unlikely to be 

s ignif icant in the experimental values of X and X^. 

We have yet to consider errors introduced in the least-squares 

f i t t i n g process. Although i t i s possible to compute a so-called corre

la t ion factor for such a f i t , i t i s d i f f i c u l t to interpret and, further

more, would be affected by deviations from s t ra ight- l ine behavior that 

can be accounted for on a dynamical basis, namely, the discontinuit ies in 

the l o g ^ D ^ p lo ts and the rapid increase in the log-^D^ curves immedi

a t e ly af ter a jump in (see Figures 3 through 1 1 ) . We f e e l , there

fore , that the best idea of the accuracy of the f i t t i n g process can be 

obtained graphically, and we refer the reader to Figures 3 through 1 1 , 

which are typ ica l . 
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CHAPTER V 

EXPERIMENTAL AND THEORETICAL COMPARISON 

We have already pointed out one feature of the theory that i s 

v e r i f i e d experimentally: the exponentiation rates are the same in con

figuration and momentum space. In this chapter, we compare other theo

r e t i c a l quantities to the experimental results of the preceding chapter. 

A question naturally arises about the app l i cab i l i t y of the hard-

sphere theory to the Lennard-Jones experiment. This question i s compli

cated by the uncertainties in the theoret ical solution. Fortunately, 

one can make an independent argument to arr ive at the temperature depen

dence of Y in "the hard-sphere case. Comparison of this result to the 

experimental data indicates that the hard-sphere model i s a moderately 

good one for the experimental system. 

Temperature Dependence 

The temperature dependence of y for hard-spheres may be inferred 

from the following argument: consider a hard-sphere system as in our 

previous theore t ica l discussion. Hold N and the volume constant and l e t 

the temperature T, as defined by Eq. ( l ^ 9 ) , vary. Since the t o t a l 

energy E i s en t i r e ly kinet ic in this case, T does not fluctuate. Sup

pose we have two t ra jec tor ies y ^ ( t ) = ( r ^ ( t ) , p ^ ( t ) ) and y ^ ( t ) = 

( r j - ^ t ) , Pj_ 1 (" f c )) a t temperature T 1 such that D g ( t ) and D^ ( t ) , defined 

as indicated by Eqs. ( l l ) and ( l 2 ) , have the average time behavior given 

by 
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<Dq ( t ) > = D Q q e , (152a) 

•where the brackets indicate average behavior over the t ra jec tor ies . 

Further, consider two similar t ra jec tor ies and y^ which 

belong to systems at temperature and which are related to y and y^ 

at t = 0 by 

? 1 2 ( 0 ) = > (153a) 

P i 2 ( 0 ) = _ P i l ( 0 ) , (153b) 

r ! 2 ( 0 ) = ^ ( 0 ) , (153c) 

p:2(o) = C PJ^Co) , (153d) 

where £ i s defined by 

i 

From hard-sphere dynamics and the i n i t i a l conditions of Eqs. (l53)> 

i t follows that 

? i 2 ( t ) = r±1(Qt) , (155a) 

p i 2 ( t ) = C Pn(Ct) , (155b) 
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with similar equations holding for the primed t ra jec tor ies . Thus, one 

has that the distances D ( t ) and D ( t ) , defined as in Eqs. ( l l ) and q2 P2 
(12), are related to D ( t ) and D ( t ) by 

q-L P-L 

D ( t ) = D (Ct) , (156a) 

D (t) = C D (Ct) . (156b) Po P-i 

Therefore, i f we wri te the average time behavior of D ( t ) and D ( t ) as 
q 2 P 2 ' 

Apt 

<D ( t ) > = D e , (157a) 
q2

 (-'42 

Apt <D (t)> - D e , (157b) 
P2 Vyr) 

then from Eqs. (152), (156), and (157), ve obtain 

Ap_ = £ \ . (158) 

The c o l l i s i o n exponentiation rates y A N (^ Y 2 may be found, in 

analogy with Eq. ( l 4 8 ) , to be given by 

Y X = A 1 t 1 , (159a) 

Y 2 = A 2 t 2 , (I59"b) 

where and t 2 are the mean times between co l l i s ions for a single 

pa r t i c l e in the systems of temperatures and T 2 , respect ively . In 
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terms of Y-̂  and Y 2 * Eqs. (152) and (l5T) may be rewritten as 

Y n 
<D > = D e 1 1 , (l60a) 

q-L o q i 

Y n 
<D > = D e 1 1 , (l60b) 

P-L OP-l 

Y n 
<D > = D e 2 2 , (l60c) 

q 2 oq 2 ' 

Y 2 n 2 

<D > = D e , (l60d) 
Po op 0 ' 

where n^ and n 2 are the average co l l i s ions per pa r t i c l e in the systems 

at temperatures T^ and T 2 respect ively. From Eqs. (155) we have that 

- C T 2 (161) 

and, with the help of Eq. ( l7 l )> that 

Y-l = Y 2 • ( l 6 2 ) 

Thus, the exponentiation rate with respect to co l l i s ions i s independent 

of temperature for hard spheres. Since the hard-sphere system i s 

2 12 

ergodic and mixing, ' this conclusion, which was arrived at by con

sidering a time-averaged behavior, i s applicable to the phase-averaged 

Y of Eq. (ikh). The combination UT in Eq. (ihk) i s proportional to the 

mean free path and hence i s independent of temperature. 

For the experimental system, one would expect y to have only a 

small temperature dependence i f the hard-sphere model i s a good one for 



89 

i t . That this i s so can "be seen from Table 3 "where Y e x p v a r i e s only 

a few per cent over a wide temperature range. 

By the above argument we have ve r i f i ed another of the theoret i 

cal conclusions and gained some confidence that the hard-sphere results 

apply to the experiments. 

Dependence of y on T 

The theoret ical and experimental dependence of Y on T w i l l now be 

compared. Or ig ina l ly we set out to find the dependence of y on the 

density p , but T arises naturally in both the theoret ica l and experi

mental calculations and i s the natural independent variable to use. 

Finding the dependence of Y on p would require knowing T as a function 

of p . This function would have to be empirically determined at the 

densi t ies involved, and having p as the independent variable offers no 

part icular advantage for our purposes. 

The average u of Eq. (L44) i s evaluated in Appendix C to be 

U = ̂  VRMS ' ( l 6 3 > 

where i s obtained from Eq. ( l^9) according to 

v. 
' 2 K B T 

RMS ./ m 
(16M 

Since the pa r t i c l e diameter was taken to be cr in the experimental 

col l is ion-counting process, we assign d in Eq. (L44) to be given by 

A = a , ( 1 6 5 ) 
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which i s unity in the computer units of Table 1 . F inal ly , we use 

Eq. ( 1 ^ 5 ) with N = 1 0 0 as an estimate of the value of 3, which y ie lds 

3 « 4 . 6 . ( 1 6 6 ) 

With Eqs. ( 1 6 3 ) through ( 1 6 6 ) , we can p lo t a theoret ica l y vs T 

curve from Eq. ( l 4 4 ) ; this curve i s shown in Figure l 4 superposed on the 

data points from Figure 1 2 . The fract ional absolute deviation A of 

this curve from the data points, given by 

'exp 

where Y i s the theoret ical value corresponding to Y e X p> n a s a mean value 

of 2 1 per cent. In view of the range of T covered and the estimates and 

approximations made to obtain Eq. (l44), this i s extremely good agree

ment. The discrepancies between the curve and experimental points for 

the large T values should perhaps be given a r e l a t i v e l y small weight 

because Postulate 1 used in deriving the theoret ica l y i s least l i k e l y 
—» 

to be true for these points. This i s because i n i t i a l l y the 6u's and 

fir's are equal for a l l the pa r t i c l e s , in d i rec t contradiction to Postu

la te 1 at t = 0 , and several co l l i s ions are necessary for the conditions 

of this postulate to be established. The la rge-T experimental points 

which involve small numbers of co l l i s ions (say 1 0 or l e ss ) are therefore 

the points least l i k e l y to sat isfy Postulate 1 . 

Cooperative Behavior 

The exponentiation rate (calculated as in Eq. (l48)) for 
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gravi ta t ional systems was reported by Mi l l e r to be proportional to 

the number of par t i c les for N in the range 4-32. From this Mi l l e r con

cluded that the long range of the gravi ta t ional force caused the system 

to behave cooperatively, as i f a l l N par t ic les were t i g h t l y coupled. 

In the density range observed in our experiments, however, the empiri

cal exponentiation rate i s in reasonably good agreement with the theo

r e t i c a l calculation which includes no such t ight coupling and which 

does not produce y proportional to N ( c f . Eq. ( l 4 4 ) ) . 

In two-dimensional systems, the three-body co l l i s i on term i s the 

f i r s t divergent one in the calculation of transport coefficients.-^ 

Because our data includes up to 15 per cent three-body and four-body 

co l l i s ions in the high-density range, one would think that i f coopera

t i v e e f fec ts were to appear (as indicated by an increase in the experi

mental y over the theoret ical one at high dens i ty ) , they would have done 

so. 

Thus, our results indicate that the divergences in the transport 

coef f ic ien t s are probably not due to the sudden appearance of coopera

t i v e behavior. Experiments at somewhat higher densit ies would be 

required to make a de f in i t i ve statement on this point. 

Summary and Conclusions 

The problem treated by Boltzmann and Gibbs involved developing a 

workable theory for i r revers ib le and equilibrium thermodynamic behavior 
1 4-7 

starting from revers ible microscopic dynamics. ' In developing the 

theory, the so-called ergodic assumption was introduced which asserts, 

loose ly speaking, that the trajectory for an isolated system samples 

the entire energy surface. This assumption and the s t a t i s t i c a l 
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m e c h a n i c s b a s e d on i t g a v e r i s e t o m a t h e m a t i c a l p r o b l e m s w h i c h a r e 

e x t r e m e l y d i f f i c u l t . O n l y r e c e n t l y h a s i t b e e n shown t h a t t h e e r g o d i c 

2 12 

a s s u m p t i o n i s t r u e f o r a h a r d - s p h e r e g a s . T h i s w a s d o n e b y S i n a i , ' 

who p r o v e d t h a t t r a j e c t o r i e s o f a h a r d - s p h e r e g a s s e p a r a t e e x p o n e n t i a l l y 

i n t i m e a n d t h a t t h i s p r o p e r t y i s s u f f i c i e n t t o g u a r a n t e e t h e v a l i d i t y 

2 

o f t h e B o l t z m a n n - G i b b s e r g o d i c a s s u m p t i o n . S i n a i ' s r e s u l t i s b e l i e v e d 

t o b e e x t e n d a b l e t o a l a r g e c l a s s o f s y s t e m s w i t h p u r e l y r e p u l s i v e 

f o r c e s , " ^ " b u t t h e r e i s some d o u b t r e g a r d i n g t h e p o s s i b i l i t y o f e x t e n d 

i n g i t t o s y s t e m s h a v i n g a t t r a c t i v e f o r c e s . 

A L e n n a r d - J o n e s s y s t e m , w h i c h h a s a t t r a c t i v e f o r c e s , w a s s t u d i e d 

i n t h e r e s e a r c h r e p o r t e d h e r e . A s e r i e s o f c o m p u t e r e x p e r i m e n t s w e r e 

p e r f o r m e d w h i c h p r o v i d e d s t r o n g e m p i r i c a l e v i d e n c e t h a t t h e t r a j e c t o r i e s 

o f t h e L e n n a r d - J o n e s s y s t e m s e p a r a t e e x p o n e n t i a l l y i n t i m e . T h e r e f o r e , 

t o c o m p u t e r a c c u r a c y , t h i s s y s t e m s a t i s f i e s t h e e r g o d i c a s s u m p t i o n . 

T h e c o m p u t e r e x p e r i m e n t s j u s t m e n t i o n e d a l s o l e n d t h e m s e l v e s t o 

t h e t e s t i n g o f a n h y p o t h e s i s i n t h e f i e l d o f k i n e t i c t h e o r y . I n k i n e t i c 

t h e o r y , d i v e r g e n c e s a p p e a r w h e n t r a n s p o r t c o e f f i c i e n t s a r e c a l c u l a t e d b y 

s e r i e s e x p a n s i o n i n t h e d e n s i t y . ~ T h i s c a l c u l a t i o n a s s u m e s t h a t b i n a r y 

c o l l i s i o n s a r e t h e d o m i n a n t t r a n s p o r t m e c h a n i s m a t l ow d e n s i t y , w i t h 

t h r e e - b o d y , f o u r - b o d y , e t c . , c o l l i s i o n s b e c o m i n g i m p o r t a n t s e q u e n t i a l l y 

a s t h e d e n s i t y i s i n c r e a s e d . I t w a s t h o u g h t p o s s i b l e t h a t t h i s s e q u e n 

t i a l a s s u m p t i o n m i g h t b e e r r o n e o u s a n d t h a t c o o p e r a t i v e b e h a v i o r - -

c o l l i s i o n s among l a r g e n u m b e r s o f p a r t i c l e s - - m i g h t s u d d e n l y a p p e a r a s 

t h e d e n s i t y i n c r e a s e d . 

T o t e s t t h i s h y p o t h e s i s , a t h e o r y o f t r a j e c t o r y - e x p o n e n t i a t i o n i n 

a h a r d - s p h e r e g a s w a s d e v e l o p e d . T h i s t h e o r y y i e l d e d a r a t e f o r t h e 
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exponentiation which represented only non-cooperative phenomena because 

only binary co l l i s ions were considered. For the density and tempera

ture range observed in the experiments, the empirical ly observed expo

nentiation was in reasonable agreement with the theory. This agreement 

extended to densit ies high enough to make i t unlikely that divergences 

in the transport coef f ic ien ts are due to cooperative behavior. 
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APPENDIX A 

We want to show that Eqs. (108) and (109) reduce to Eqs. (112) 

and ( l l 3 ) with the approximations of Eqs. ( l l O ) and ( i l l ) . 

Eq. (109) averages over the ensemble as 

< 6 y n + 2 > = 

2 U T 

1 + n+2 + 
rn+2 

d sin n+1 'n+1 n+1. ( A l ) 

' T 

n+2 
6y 

T n \ n+1 

From Eq. (109), "we also see that 6yn+2_ i £ 5 independent of T

n + 2 a n c ^ ^n+l'' 

and further, that 6y n i s independent of T as w e l l . Thus from Eq. 

( A l ) we have 

2 U T P 

< ^ n + 2 > = " ^ + V T > < 6 y n + l > (A2) , . n+1 d sm —2"— 

„ A + 2
 A ' 

We now take Eq. (109) for 6 y n + 1 , multiply i t by T g / 'V l - l ' a n d a v e r a S e 

the resul t , with the fact in mind that 6y and 6y"n are independent of 

T , to obtain n+1 
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//2uT , T , 

j.
 1 / f n+1 , n+1 , » 

n+1 son. n n 
\ 

n-1. 

In Eq. (A3), we use the approximation of Eq. (ill) to replace 
1/<T > by < 1 /T -,>, which results in ' n+1 ^ 1 n+1 

n+2 
v n+1 

'n+2N 

rn+l< e ' T d sin — n n 
6y ) (A4) 

J 2 ± i 6 y 

On comparison of Eq. (Ak) with Eq. (Al), we see that 
/ T n + 2 
\ 

'n+a 
r n+l 

(A5) 

Substitution of Eq. (AJ) into Eq. (A2) then yie lds 

< 6 y n 4 2 > = 1 + 
2 U T n + 2 Tn 

d sin 'n+1 
T n + l / 

< 6 y n + l > (A6) 

It is consistent with the approximation of Eq. (ill) to put 
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( ^ ) - 1 • (AT) 
\ T N + L / 

WITH EQ. (A7), EQ. (A6) REDUCES TO EQ. ( 1 1 3 ) , WHICH WAS TO BE SHOWN. 

AN EXACTLY ANALOGOUS CALCULATION ALLOWS EQ. ( 1 1 2 ) TO BE DERIVED 

BY AVERAGING EQ. ( 108 ) AND USING THE APPROXIMATION OF EQ. (LLO). 
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APPENDIX B 

I t i s required to calculate the averages necessary for Eqs. 

(112), (113), (131), and (136). In this append i x , a l l center-of-mass 

quantit ies •will "be understood to he for par t ic le i . 

Consider a sequence of co l l i s ions ( i - j , i - k ) which are numbered n 

and n + 1 . Col l i s ion n has the v e l o c i t y u in the center-of-mass frame 
J n 

given by 

u = u. - u. , ( B l ) n i ,n j , n 1 

and co l l i s i on n + 1 has the v e l o c i t y 

u _ = u. _ - u, _ , (B2) n+1 i , n+ l K,n+1 ' V ' 

where the notation of Eq. (73) i s used. From Eqs. (22) and (69), we 

have that 

u. + u. (u. - u. ) 

Hence, u , , may be written as n+1 
— » — • / — • — • V 

u. + u. (u. - u. ) 
u . . . = ^ n

 0 ^ n - S ^ +R(9 J - i S — J ^ l . (Bh) n+1 2 k,n+l x ir 

From Eqs. (26) and (128) we see that 

u , = R(g )u . (B5) n+1 v a n y n v ' 
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FROM EQ. (B5)> WE OBTAIN THE FOLLOWING RELATION FOR ANY ANGLE ot: 

U , • [R(A)U ] = U ,. U COS(§ - a) . (B6) 
N+1 N N+1 N N 

WITH PROPER SELECTION OF ot, ALL OF THE TRIGONOMETRIC FUNCTIONS OF EQS, 
(130) MAY BE GENERATED. 

EQS. (BL), (B4), AND (B6) COMBINE TO YIELD 

1 2 2 U U COSFF - ot) = — COS otiu. - U.' ) + U. U. SIN ot SIN CP N+1 N V ̂ N 2 Î N «], N 1, N J , N T 

eos(<* - E ) „ 
+ 1—^- , (B7) 

WHERE 03 IS THE ANGLE MEASURED FROM U. TO U . : 
I,N J,N A 

U . 

NOW WE ASSUME THAT THE IMPACT PARAMETER B IS UNIFORMLY DISTRIBUTED 
FROM -D TO D. FROM EQ. (1U5), THE DISTRIBUTION F(6) OF SCATTERING ANGLES 
CAN THEN BE CALCULATED AS 

F (9) =1 SIN § , (B9) 

WHERE 9 RANGES FROM ZERO TO 2N. WE FURTHER ASSUME THAT THE VELOCITIES 
—* —• —» U. » U. , AND U, ,N HAVE ISOTROPIC DIRECTIONAL DISTRIBUTIONS AND ARE I,N J^N7 K,N+L 
ENTIRELY UNCORRELATED EITHER AMONG THEMSELVES OR WITH THE ANGLE 9 . 

WITH THE FOREGOING ASSUMPTIONS, ONE SUCCESSIVELY REPLACES ot OF 
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Eq. (B6) with 0, 9 , TT/2, and ( 9 + TT/2) and averages the results over 

9 and the u 's to obtain n 

<cos § > = 0 , (BIO) 
'n 

<cos(C - Q)>*k > ( B l l ) 
n n d 

<sin 5 N > = 0 , (B12) 

and 

< s i n ( 5 N - 9 n ) > = 0 , (B13) 

where in Eq. ( B l l ) the approximation 

(B14) 
\ V i / 

has been made. 

Similarly, we can further find that 

'u cos(§ - 9 ) \ n x *n n' \ UTT 

, • n 
d sm -g— 

( B 1 5 ) 

where again the approximation of Eq. (Bl4) has been used, and that 

u sin(§ - 9 ) y 

^ 2 — M = o . ( B 1 6 ) 
d sm - T J " 

Eqs. (BIO) through (Bl6) l i s t a l l of the averages required for 
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. (131) and (136). In addition, for Eqs. (112) and (113) we require 
9n\ 

sin ~ / > which i s calculated from Eq. (B9) as 

(BIT) 
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APPENDIX C 

Our object ive i s to compute the expectation value of u given in 

Eq. ( 1 6 3 ) . 

We assume that the ensemble average of u can be replaced by the 

average of this quantity over the par t i c les of a single system. We 

further assume that the pa r t i c l e v e l o c i t i e s are independent and have the 

equilibrium, two-dimensional Maxwell distr ibution B(v) given by 

From Eq. ( C l ) , i t can be shown that the distr ibution B ( u . . ) of d i f f e r -

ences u . . , defined by 

u. . = | v . - v . | , (02) 

—• —• . . 
where v . and v . are distributed according to Eq. ( C l ) , has the form 

J 

2 

mu. . . mu. . . 
B ( u i j > =2^e^[-k^J • 

By di rec t calculation, one obtains from Eq. (C3) that 
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