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Abstract

Data-intensive, interactive applications are an important class of metacomputing
(Grid) applications. They are characterized by large data flows between data providers
and consumers, like scientific simulations and remote visualization clients of simulation
output. Such data flows vary at runtime, due to changes in consumers’ data needs,
changes in the nature of the data being transmitted, or changes in the availability of
computing resources used by flows.

The topic of this paper is the runtime adaptation of data streams, in response
to changes in resource availability and/or in end user requirements, with the goal of
continually providing to consumers data at the levels of quality they require. Our ap-
proach is one that associates computational objects with data streams. These objects
offer services like data filtering and transformation. Runtime adaptation is achieved by
adjusting objects’ actions on streams, by splitting and merging objects, and by migrat-
ing them (and the streams on which they operate) across machines and network links.
The resulting adaptive computational data streams maintain high performance by re-
sponding to changes in the needs of data consumers, as exemplified by variations in
the resolution or rate at which they desire to receive data. Adaptive streams also react
to changes in resource availability detected by online monitoring. The experimental
demonstrations presented in this paper utilize computational data streams emanating
from a global atmospheric simulation model and/or from stored model outputs, con-
sumed by visualization clients that display this data. Experiments are performed on
heterogeneous cluster machines and visualization clients connected by LAN or WAN
networks.



1 Introduction

End users of high performance codes increasingly desire to interact with their complex ap-
plications as they run, perhaps simply to monitor their progress, or to perform tasks like
program steering, or to collaborate with fellow researchers using these applications as com-
putational tools. For instance, in our own past research, we have constructed a distributed
scientific laboratory with 3D data visualizations of atmospheric constituents, like ozone, and
with parallel computations that simulate ozone distribution and chemistries in the earth’s
atmosphere. While an experiment is being performed, scientists collaborating within this
laboratory may jointly inspect certain outputs, may create alternative data views on shared
data or create new data streams, and may steer the simulations themselves to affect the data
being generated. Similarly, for metacomputing environments, Alliance researchers are now
investigating and developing the Access Grid [ST99] framework and domain-specific ‘por-
tals’ for accessing and using computations that are spread across heterogeneous, distributed
machines.

The problem addressed by our research is the creation and management of the large-scale
data streams existing in distributed high performance applications. The specific streams
investigated in this paper are those emanating from data stores or from running simula-
tions and consumed by visual displays that are employed by collaborating end users. Each
such stream consists of a sequence of data events that flow from information providers to
consumers, generated in response to requests from the consuming user interfaces and/or
generated continuously by producers.

The event-based description of a data stream presented above provides a natural vehi-
cle for associating computations with event generation, transport, and receipt, via event
handlers located in producers, consumers, or in intermediate engines. The resulting com-
putational data streams constitute the basis of our approach to online stream manipulation.
Specifically, we adapt the behavior of the streams’ events handlers in response to changes
in end user capabilities or needs and/or in response to changes in resource availability. A
simple adaptation example is one that uses a parameterized event handler to change the
way in which stream data is sampled, perhaps to downsample it in order to fit it to the
capabilities of a low end display engine. In addition to such client-driven adaptations, the
computations performed on data streams may also be varied to cope with runtime changes
in resource availability, as exemplified by a reduction in network bandwidth to some high
end client, addressed by additional downsampling of the data being sent.

This paper demonstrates how computational data streams may be adapted in order to
gain and maintain high performance in local and wide area systems. It also presents the
ACDS framework for implementing adaptive computational data streams. ACDS supports
runtime configuration actions that include (1) the migration of stream computations, (2)
the specialization of these computations, in response to changes in end user needs and in
resource availability, and (3) the splitting and merging of stream computations to increase
and decrease concurrency as per a stream’s runtime needs. Such actions are performed on
computational data streams by control events. Control events are triggered (1) by changes
in an end user’s needs or behavior, and (2) by changes in resource availability captured by
the ACDS system’s distributed monitoring daemons.



The research contributions presented in this paper are: (1) the description of sample
computational data streams used in distributed high performance applications; (2) the iden-
tification of opportunities for runtime stream adaptation; (3) the design and implementation
of the ACDS system, providing adaptation support; and (4) the demonstration of the util-
ity of ACDS for sample computational data streams, by improving the scalability of data
streams and their utility for end users.

To summarize, ACDS supports the creation of adaptive computational data streams that
transport precisely the data that is needed, when it is needed, at the levels of resolution and
with transmission rates currently desired by end users.

The remainder of this paper first places ACDS in the context of related work in Section 2
and describes a sample scientific application and the computational data streams it uses (see
Section 3). Section 4 identifies the opportunities for runtime stream manipulation existing
for this application and its end users, followed by a description of stream computations and
configuration actions that implement these manipulations. Section 5 describes the ACDS
system abstractions and their realization. ACDS is evaluated in Section 6, where performance
results demonstrate substantial advantages of adaptive vs. non-adaptive streams. In one
case, stream performance is improved by 400% by migrating some of its components. In
another case, stream performance is increased due to the use of additional parallelism for
one of the stream’s computationally intensive components. Conclusions and future work
appear in Section 7.

2 Related Work

The ACDS system and its support for computational data streams rely on a high perfor-
mance event infrastructure, called ECHo [Eis99], layered directly on transport-level commu-
nication protocols and capable of moving data at rates comparable to those of high perfor-
mance programming platforms like MPI [MPI]. ECHo’s event-based approach to defining
and organizing data streams has been used in prior work on system monitoring and con-
trol [GES98, ES98]. In comparison to such work, ACDS employs ECHo for both trans-
porting data and for controlling data transport. The computations associated with data
events can apply both general or application-specific compression and filtering techniques to
data, thereby giving ACDS the ability to improve system scalability, by reduction of pro-
cessing and bandwidth needs and by provision of differential services to multiple end users.
ECHo’s event-based paradigm supports data streams with multiple producing or consuming
subscribers; it can deal with dynamic subscriber arrivals and departures; and it supports
runtime evolution for the types of data events a subscriber produces or consumes.

Past work on multimedia systems has already proven the efficacy of runtime stream
control, by exploiting tradeoffs in stream throughput or fidelity vs. reliability in transmission,
including the acceptance of significant loss rates in order to accommodate a larger number
of users or to retain desired transmission and display rates despite variations in network and
CPU availabilities [RKC99, WS99]. Beyond such performance results, much of the research
funded by the Digital Library Initiative in the U.S. attempts to identify semantically relevant
portions of media stream, based on which systems like ACDS could perform meaningful



online filtering of data streams. Potential performance gains derived from such filtering are
demonstrated in our past work on Active User Interfaces [IKST99a].

The Interactivity Layer Infrastructure (ILI) [MS98] represents our previous approach to
online data stream adaptation. This paper extends that work as follows. First, by using
Active User Interfaces that emit control events describing current user behavior, ACDS
can react to changes in end user needs as well as to changes in underlying system loads.
Second, ACDS has been used in both LAN and WAN environments, thereby demonstrating
its applicability to the Grid-based scientific computations and collaborations we aim to
support. Third, the ACDS framework offers adaptation capabilities and support beyond that
provided by ILI, including robust split and merge operations, decision algorithms, monitoring
support, etc.

ACDS-controlled computational data streams may be used with arbitrary parallel ap-
plications, including those written with meta-computing systems like Globus [FK97|, Le-
gion [GW96], Schooner [HS94], or Active Harmony [HK98]. In these contexts, ACDS
addresses only the runtime control of the computational data streams linking such Grid
computations to end users. In comparison, the load-balancing and resource management
mechanisms included with the grid computing frameworks themselves concern the runtime
managent of the actual grid procedures, threads, or processes. It would be interesting to
study how ACDS’ data stream management interacts with load balancing performed for grid
computations. Finally, both Cumulvs [GKP97] and ACDS customize task migration by use
of application-specified knowledge. However, as with the load balancing performed in other
metacomputing environments, Cumulvs does not know about entire data streams, nor does
it support stream adaptations like component splitting or merging.

ACDS’ implementations of the split and merge operations could take advantage of pre-
vious approaches to component checkpointing and migration, including those presented in
[LTBL97, ZML99, Lud92]. However, the restrictions imposed by these approaches (e.g.,
homogeneity or hardware support) forced us to develop our own approach.

3 Sample Application

The sample application used in our research is a global atmospheric climate model, described
in previous publications [KSS*96, JRZ197]. The data streams of principal interest to this
paper link the running model and/or data stored from previous model runs to visualizations
employed by end users.

From our users’ perspectives, useful views of this data display information about species
concentration in grid form, where a grid point represents an area of approximately 5.6 x
5.6 degrees of latitude and longitude on the earth’s surface. In order to provide this data
view, however, the computational data stream producing it must first transform data from its
model-resident or stored ‘spectral’ form to the grid-based form meaningful to end users. This
transformation (termed ‘Spec2Grid’) may be performed on the receiving machine, on some
intermediate node, or by the data producer. The resulting pipeline-structured computational
data stream linking a single producer to two consumers is shown in Figure 1. This figure
also shows an additional computation, termed ‘Gridred’, that filters the data being sent to



the Ul so that only those grid points currently requested by the end user are actually sent.
The actual display processing is done in the elements termed AUL

Figure 1: Sample Access Grid Application

The computations associated with the sample data stream shown in Figure 1 include data
transformations required by the scientific end user, data compression needed for efficient
storage or transport, data uncompression, data filtering or downsampling to capture current
user needs and/or reduce transport costs, and data conversions with respect to display,
the latter including view computations or additional graphical computations like isosurface
determination [JRZ197, ZS99]. Some of these computations are substantial, and so are their
effects on the sizes of data events being transported. For instance, a typical spectral to grid
transformation can be performed at the rate of 213 levels per second on a Sun Ultra 30, and
the data expansion implied by this conversion increases the size of spectral data by a factor
of 4.04 when producing grid data. This implies that it would be advantageous to postpone
conversion until the data reaches the consumer, in order to preserve bandwidth. However,
even high performance graphical rendering machines, like our OpenGL-based, feature-poor
active Ul running on an SGI Octane, can be overwhelmed by the processing and storage
demands of a visualization that must render large data sets. This is one of the interesting
problems to be addressed by the runtime methods for data stream configuration presented
next.

4 ACDS: Concepts

4.1 Stream Adaptations

ACDS supports the construction and adaptation of computational data streams used in
scientific applications. Since stream computation may themselves be computationally in-
tensive, they can benefit from parallelization. This motivates ACDS’ ‘split’ and ‘merge’
adaptations described below. Since the amounts of data being streamed may be large, data
cannot be viewed in its entirety at all times. This implies the need for data filtering and the
need to change filtering at runtime in accordance with current user behavior or needs; these
needs motivate ACDS’ support for the runtime adaptation of parameters in single or sets of
stream components. Finally, ACDS supports the runtime migration of stream components,
in order to deal with dynamic variations in the node and network loads of the underlying
computational and access grids.



Parameter Changes. Parameter changes are actions that alter the behaviour of indi-
vidual stream components. ACDS supports such changes with control events consumed by
stream components and generated by user interfaces, by the ACDS monitoring and steering
tool (MST), or by other stream components. The design and implementation of control-
enabled stream components are described in more detail in Section 5.1 and in [IKST99a].

Task Migration. Dynamic load-balancing algorithms [Lud92, ZLP95, RD97, LMRI1]
may be classified by the distribution levels of their algorithms and by the ways in which
they can affect application behaviour, ranging from local knowledge and local changes to
global knowledge and global changes. ACDS enables task migration based on both local
or global migration methods, by supporting the movement of individual and/or of multiple
stream components, and by permitting such movements to be initiated by stream compo-
nents themselves or by remote sites. Furthermore, splitting and merging stream components
constitutes an interesting form of data migration; it addresses the computationally intensive
nature of certain stream components.

The implementation of task migration is non-trivial on the distributed memory machines
targeted by ACDS, especially when multiple tasks must be migrated in order to complete
some desired stream adaptation. Issues to be addressed include the consistent transfer of
internal task state from the source to the destination across heterogeneous machines, the
rerouting of connections while dealing with messages that may still be in transit, and inter-
facing with heterogeneous OS platforms and their system call interfaces. ACDS approaches
these issues as follows. Concerning heterogeneity, we assume that stream components offer
explicit operations for state saving and restoring, which may be called by ACDS adapta-
tions. The re-routing of connections is handled by use of buffering in stream components,
with buffer management being under the control of ACDS. The current implementation of
ACDS runs with the Solaris, Irix, and Linux operating systems.

The novel concept provided for task migration by ACDS is that of distributed adaptation
enactment with a transaction model. This is described in more detail in Section 4.2 below.

Task Splitting. We call the set of parallel tasks generated through splitting a program,
while its individual components are called tasks. Splitting is difficult when performed for
a stream component (i.e., a program) that communicates with other components, each of
which may itself consist of multiple tasks. To address these difficulties, the split operation
may be used in three different modes.
Parallel Mode. Each copy of the source task performs a different job, with tasks negotiating
for jobs. This mode is used to increase the level of parallelism of the stream component being
split. Sample uses of this mode include executing the same code on different data (SPMD)
or executing different codes on shared parts of the data (MIMD). Stream components split in
this fashion must make the correct assumptions concerning the necessary synchronization at
their respective inputs and outputs. The alternative synchronization methods supported by
buffer management and communication support in ACDS stream components are explained
next.

Figure 2 depicts a situation in which ‘Program 2’ is split into two tasks, with each task
operating on half the data. Figures 3 and 4 depict three alternate synchronization methods
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Figure 2: Start Position and Distribution Mode
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Figure 3: Global Synchronization on Task Input vs. Output




employed by the parallelized version of ‘Program 2’: (1) synchronization at the inputs of
‘Program 2’, (2) synchronization at its outputs, and (3) synchronization at both its inputs
and outputs.
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Figure 4: Global Synchronization on both Input/Output and ‘Configuration Mode’

A typical use of the split operation is one in which some particular stream component is
parallelized, followed by the reassembly of results in a subsequent component. Cost models
resident in the MST can provide estimates of the potential benefits of split operations, as
shown with the experimental results described in Section 6. More complex cost models
targeting real-time applications are described in [RSYJ97].

Redundant Mode. A program ‘split’ in ‘redundant mode’ generates two parallel tasks (from
one initial task) that both execute the same operations on the same data, and that send
their outputs to the same target(s) as the initial task. This mode is useful when splitting
is performed to improve component reliability. However, ACDS does not currently offer
built-in support for voting on task outputs.

Configuration Mode. A program ‘split’ in ‘configuration mode’ again results in two identical
tasks. However, their outputs may be directed at different targets, a fact that is not obvious
from the depiction of such a split operation on the right hand side of Figure 4. This mode
is useful when dynamically creating a ‘branch’ in a computational data stream, perhaps to
process and visualize the same data as the original branch, but using different processing
methods and displays. An example drawn from the sample application presented in Section
3 is one in which one stream branch extracts physical information from atmospheric data
(e.g., wind velocities, etc.), whereas the second, new branch extracts chemistry information
(e.g., ozone concentrations).

Merging. Merging is the inverse operation of splitting. The only difficulty with merging
concerns connection reconfiguration for adjacent stream components. ACDS’ buffer manage-
ment and communication facilities integrated with stream components automatically deal
with such reconfiguration. As with component splitting, a cost model is employed by the
decision-making component of ACDS (ie., the MST) when making merging decisions.



4.2 Adaptation Transactions

One problem with splitting, merging, and otherwise changing stream components is that
there typically exist dependencies across multiple components, as exemplified by the com-
munications between connected components. While the anonymity of the ECHo event mech-
anisms helps with the implementation of communication reconfiguration, ECHo does not
address dependencies across stream components that concern changes in internal component
states, as exemplified by a ‘split’ in which half the outputs from the previous component
should be sent to one vs. the other split task. The resulting need for multi-component
adaptations is met by ACDS’ adaptation transactions [GR93, Lam81].

ACDS’ adaptation transactions constitute a distributed version of the multiprocessor
mechanism first described in [BS91] and are in general a modified version of a 2-phase trans-
action protocol used in databases. However, ACDS adaptation transactions do not attempt
to guarantee their completion times. Furthermore, our current implementation assumes a
no-fault error model due to our principal interest in performance rather than reliability. Fi-
nally, ACDS transactions are not limited to directed acyclic graphs of computational data
streams, but can also deal with cycles in connection topologies.

Adaptation transactions operate as follows:

e Phase 1: (1) notify all stream components involved in the adaptation step concerning
the changes they must each apply, using a unique, monotonically increasing adapta-
tion identificator ‘AID’ for this adaptation; (2) wait for every component to send the
acknowledgment that the adaptation can be executed; (3) upon receipt of all acknowl-
edgments, start Phase 2 of the adaptation.

e Phase 2: (1) send a message with adaptation id ‘AID’ to all sources of inputs of the
stream component being adapted; this causes all necessary adaptations of the sources
(if any); (2) when the stream component being adapted has received messages with this
AID from all of its input sources, it then completes its own adaptation and executes
any necessary cleanup actions; all messages sent by a component are tagged with the
largest ‘AID seen so far by this component; (3) for failure detection, it also sends a
message to the monitoring and steering tool (MST). It is up to each stream component
to decide how it should best implement its own adaptations.

e Abort: if an adaptation should be aborted while still in progress, an abort message
is sent, which clears all ongoing adaptations using the same propagation principle as
described in Phase 2. Adaptations are aborted when the MST determines them to be
unnecessary or inappropriate, if one component cannot enact the adaptation, or when
failures occur.

Additional detail on adaptation transactions, including possible optimizations, graph anal-
ysis methods and the fashion in which cycles are removed, failure recovery, and how to deal
with concurrent adaptation requests appear in [Ise99].



5 ACDS: Architecture and Implementation

5.1 Framework for Stream Component Construction

Given a code module that implements the basic functionality of a stream component, it
should be straightforward to construct a new stream component and integrate it into existing
streams. In particular, component programmers should not have to be concerned about
the underlying ACDS structure that monitors component behavior, supports splitting and
merging, implements adaptation transactions, and handles component connections.

ECHo event channel basic stream Relﬂtlﬂrlshlps:

gvcnt channel interface class component class Isa

library - uses
adaptable stream general buffer
component class template

MST Provider Spec2Grid GridReduction AUI
class class class class class
T T T T T
| | | | |
Shadow, Spectral file Spec2Grid matching or OpenGL/GLUT
decision parser conversion dQUOB library
algorithms etc. library library

Figure 5: Class Hierarchy and Libraries

The implementation of ACDS stream components utilizes two basic C+-+ classes, as
depicted in Figure 5. First, the basic stream component class provides communication sup-
port via its event channel interface class and other basic utilities like monitoring and buffer
management. This class uses ECHo event channels for inter-component communications.
Second, the adaptable stream component class provides everything that is necessary to carry
out adaptations, including monitoring, AID management, and adaptation enactment.

A new stream component is created by deriving a new application class from the adaptable
stream component class, then overriding the virtual methods for computation, providing the
computational code in the stubs, identifying the internal state that should be transferred in
case of component migration, and finally, supplying information about the manner in which
the new component may be split into multiple tasks (and merged) and about any other
adaptations that are supported by this component. For the sample application described
in this paper, each stream component is derived from the adaptable class, even the data
provider, the AUIL and the monitoring and steering tool (MST) itself (see Figure 5).

When an element is split and then runs as two parallel copies, each supplying data to a
common target, the target may have to deal with out of order data arrivals. To shield the
application programmer from this problem, a standard buffering technique is provided for
reassembling input data. However, if in-order delivery is not required there is no need to use
these buffers. A more detailed description can be found in [Ise99].
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5.2 Internal Component Structure

The internal structure of a stream component is depicted in Figure 6. This structure is not
visible to application programmers, but it is useful to describe it to place into context the
performance results presented in Section 6.

enactment
thread

single
input
channel

multiple
output
channels

=
.

network N computation
thread Buffer thread

monitoring
thread

monitoring channel

Figure 6: Adaptable Stream Component

Each stream component consists of four different threads, two of which perform most
of the relevant work. The monitoring thread gathers timing information about the perfor-
mance of this stream component and counts events, including incoming events, computation
times, and outgoing events. This information is sent over the monitoring channel to the
MST. Monitoring events can also serve as acknowledgments for completed adaptations. The
enactment thread carries out adaptation transactions, and it interacts with the MST and
with other stream components, as necessary. Both of these threads are run periodically.

Most of the actual ’work’ in a stream component is performed by the network thread
accepting inputs and the computation thread running the component’s code and issuing
output events. Since event communications are asynchronous, each stream component can
take advantage of communication/computation overlap in its operation.

5.3 MST Structure

The Monitoring and Steering Tool (MST) supervises ACDS’ stream operation and adapta-
tion. Its main components are the data management system, adaptation decision algorithm,
and adaptation enactment mechanism. Data management keeps track of the stream’s task
graph, of the node graph of available processors, and of the mapping of tasks to processors.
Associated with each task is a monitoring trace window and other attributes like mapping
constraints, available adaptation actions, and operating system. The MST also performs
resource management, by keeping track of previously created local and remote processes.
These processes act as ‘containers’ for newly created stream components and their tasks.
Once created, such containers are ‘acquired’ in response to ‘split’ operations and ’released’
when tasks are ‘merged’.
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At startup time, each stream component sends a registration message to the MST via
the system’s monitoring channel; the message contains application-specific information with
which data management in the MST constructs its own ‘shadow’ of each stream component.
Runtime component registration with the MST is coupled with the fact that the MST decides
on changes like ‘split’” and ‘merge’, guarantees the consistency of the resulting ‘view’ of
the computational stream maintained in the MST. The MST uses its internal view of the
computational stream when executing its decision algorithms to suitable stream adaptations.
A detailed description of the decision algorithms employed in the MST appears in [Ise99].
Discussions concerning the effects of monitoring rates and detail on the performance of
MST decision algorithms appear in Section 6 of this paper and in more detail for real-time
applications in [RSYJ97]. Currently, the main bottleneck for large data volumes is the MST
as shown by experiments in [Ise99]. Our solution to this problem is also discussed there. As
the MST is a stream component itself, we can apply exactly the same operations as to the
other elements, namely split, merge, migrate, and parameter changes to build dynamiccly a
hierarchy of MSTs.

6 Evaluation

6.1 Experiment Platform

This section utilizes output data from the atmospheric simulation described in Section 3.
The measurements reported here use a cluster of 16 Sun Ultra 30 workstations (each with
128MB RAM, 247MHz, running Solaris version 2.5.1). These machines are connected via
switched 100MBit/s Ethernet links. Data is displayed with an OpenGL-based visualization
tool running on SGI O2 machines (each with 64MB RAM, 195MHz, running Irix version
6.3). The SGI machines are connected to the Sun Ultra cluster via 10 MBit/s Ethernet.

The atmospheric data used in our experiments is organized by simulation time steps and
by the 3D nature of this data set. Specifically, each time step simulates 2 hours of real time;
atmospheric data is comprised of 9 different species, each having 64 longitudes, 32 latitudes,
and 37 level values, where each value is represented by a floating point number. This results
in roughly 2.7MB of data per time step in grid format. For long term storage, this data is
compressed into spectral form, with a resulting constant compression rate of 4.04, thereby
reducing data size for one time step to roughly 675KB.

A ‘debugging’ model run simulates at least 6 weeks of real-time and generates a total of
about 340MB of spectral data. A run used for interesting scientific inquiries might simulate
1-2 years of real-time and produces about 1.5 to 3GB of spectral data, which translates to
about 12GB in grid format. Compared to other scientific applications, these data amounts
are still small. Today’s large data sets can easily reach the order of 1TB, and the trend for
larger data sets seems to continue. The atmospheric data file used in our experiments resides
on the local disk of one of the Sun machines on which the provider runs.

12



6.2 Application Benchmarks

ACDS’ utility for high performance data streams has two sources: (1) its ability to react
to changes in the availability of underlying computing resources and (2) its ability to react
to changes in end user needs. This differentiates ACDS from traditional research in load
balancing and migration [CX94, LK87, LMR91, BS85].

The ACDS prototype evaluated in this paper derives its knowledge about changes in end
user needs from the user interface itself, by watching the end users’ manipulations of the data
being displayed. As pointed out in a recent publication by our group [IKST99a], the resulting
‘active user interface’ (AUI) can substantially improve stream performance, by ensuring that
the data being streamed is exactly what is currently needed (being viewed or manipulated)
by the end users. Control events issued by the AUI are used for this purpose. We illustrate
such improvements with results attained from an experiment with the computational stream
described in this paper and with a simple active user interface written with the OpenGL
library. The experiment is performed in a WAN environments spanning the Internet.

Approach | Request time in s

AUI 188
Traditional 2016

Table 1: Atlanta-Munich Experiment

Table 1 presents the results of this WAN experiment, where a user at Georgia Tech
dynamically changes his behaviour, by viewing different portions of the atmospheric data
set, the latter being generated at the TU Munich, Germany. Performance improvements are
derived from reductions in the total amounts of data being transmitted (and transformed)
by this computational data stream. These reductions are due to the fact that control events
produced by the AUI adapt the stream to send only the data actively being viewed by the
user. The times listed are the total times required to display all data actually viewed by
the user in representative stream executions. Performance improvements vary depending on
user actions.

The importance of this experiment is its demonstration of ACDS’ ability (1) to adapt
data streams in response to changes in end user needs and (2) to generate substantial end-
to-end performance improvements by performing such runtime adaptations. More generally,
in [TKS*99b|, we demonstrate the utility of the AUI-based approach to data stream man-
agement for (1) improving query response times and (2) stream scalability with respect to
both the number of clients using stream outputs and the amounts of data injected into the
stream. A third advantage of runtime stream adaptation is demonstrated next, by react-
ing to dynamic changes in the capabilities and loads of the computational engines used by
streams.

Migration experiments. By default, whenever a user connects some user interface to a
running instance of the atmospheric model’s data stream, the stream components necessary
for data conversion (e.g., Spec2Grid) and reduction (e.g., GridReduction in response to AUI-
based control events) are initially created on the host on which the user interface resides.
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Better initial placements could be computed, but the main goal for our approach was to
be able to cope with dynamic changes in data stream sizes. The main purpose of this
experiment is to show that ACDS is able to react bring the system from a bad situation —
e.g., due to dynamic changes — into a better one. The data provider for the stream runs on
the computational cluster. In the LAN-based experiments shown next, this host is the SGI
machine connected to our computational cluster of SUN workstations via a 10MB Ethernet
link.

Remote Provider GT-SGI

Figure 7: Initial Configuration

The resulting stream configuration is termed the ’Initial Configuration’ in Figure 7
and does not exhibit good performance, principally because the SUN cluster has internal
100MBit/s connections vs. the 10MBit/s connection of the cluster to the SGI machine. The
ACDS MST tool discovers this fact by monitoring stream performance. In response, it first
migrates the Spec2Grid stream component to the SUN cluster, followed by the migration of
the GridRed component (see Figure 8), the latter being the stream component that reduces
network bandwidth needs by filtering the stream in response to changes in end user behavior
seen by the AUIL. The AUI itself and the DataFile provider cannot be migrated.

Remote Provider GT-SGI

Figure 8: Situation after Migration

Table 2 presents the results for a ‘debugging’ model run. The first two rows represent
the best and the worst cases without the MST enabled and the stream configured by hand.
The times shown are the total stream execution times for both cases. The third row depicts
total stream execution time when using ACDS’ stream monitoring and adaptation and the
decision algorithm currently embedded in the MST'. Total stream execution time with MST is
worse than the best case due to delays in MST’s recognition of stream performance problems
and due to the costs of adaptation enactment. These delays and costs are explained in more
detail in Section 6.3.

These results are encouraging, since performance with MST is only 8.3% worse than
the best possible performance attained by manual component placement. Specifically, these
results demonstrate that the current delays and overheads due to MST usage are acceptable
for the computational data streams addressed by the ACDS system.

The previous experiment demonstrated MST’s ability to deal with heterogeneity in the
underlying computing infrastructure. In comparison, the experimental results depicted in
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Configuration | Time in s

Middleware on Sun 109
Middleware on SGI 437
Migration with MST 118

Table 2: Performance Improvements due to Migration

Configuration | Time in s
No load 109
Load on GridReduction, no migration 337
Load on Spec2Grid, no migration 328
Load on Spec2Grid node, migration 134
Load on GridReduction node, migration 151

Table 3: External Load

Table 3 concern performance improvements derived from ACDS and the MST in response
to runtime changes in system loads. Specifically, in these experiments, we impose large
additional loads on the respective computational engines. With a small delay due to the
reasons mentioned in Section 6.3, the stream components are migrated to idle nodes, and
the stream asymptotically reaches its best performance.

Dynamic stream behavior. Changes in machine loads and in user requirements are
two causes of stream adaptations. A third cause are runtime variations of the execution
times or the communication bandwidths due to the dynamic behavior of stream components
themselves. Such dynamic behaviors are common in complex components with many internal
branches taken in response to the data values received as inputs.

The experiment described next simulates such component behavior, by varying the com-
putation time of the ‘Spec2Grid’ component in relation to the types of atmospheric species
being transformed. For experiment purposes, we assume that the most ‘expensive’ species re-
quires 30 times the execution time of the ‘normal’ species. Runtime changes in computation
times are due to users’ selections of the species being viewed.

This experiment demonstrates the utility of the ‘split’ operation on stream components,
where a user’s switch from the normal to the expensive species results in a component split
and therefore, in the reduction of stream component execution time due to parallelization.
Figure 9 depicts the situation after the Spec2Grid element has been split once and when
the expensive species is being transformed. The resulting performance improvements are
discussed next.

@

Figure 9: Situation after Splitting Spec2Grid
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Figure 10 shows the speedup graph for Spec2Grid. Speedup is good for two tasks, but
it is not present for three or four tasks. This lack of speedup is due to workload imbalances
across the split tasks.
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Figure 10: Speedups for Parallel Spec2Grid

The current MST tool does not have sufficient information about stream components
to determine optimal levels of parallelism. Instead, it must determine suitable stream con-
figurations by trial and errror. The resulting stream performance for one sample data run
is depicted in Table 4. In this run, the computationally expensive species is requested for
100 time steps. Four different scenarios are measured. In the first scenario, the stream is
not adapted at all, so that a single instance of Spec2Grid is used throughout. In the sec-
ond scenario, the stream always uses two instances of Spec2Grid. An inappropriate stream
configuration, using three instances of Spec2Grid, is shown in the third row. Finally, per-
formance for the same run with MST enabled appears in the fourth row. Throughout this
run, the level of parallelism for Spec2Grid varies from 2 to 3, resulting in repeated split and
merge operations. More sophistical cost models of computational streams and therefore,
more appropriate runtime adaptations on streams are under current development for the
MST tool (see [Ise99] for further discussions of this topic).

6.3 Enactment Costs

This section describes some of the delays and overheads inherent in the current implemen-
tation of ACDS and its MST tool (complete descriptions appear in [Ise99]). ACDS uses the
‘rsh’ command to start up remote processes. This results in large delays for split operations,
in the range of 1.3s - 5s. Furthermore, the initial establishment of and also subscription to
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Configuration | Time in s

Single instance of Spec2Grid 127
Two instances of Spec2Grid 84
Three instances of Spec2Grid 157
Adaptations turned on 115

Table 4: Performance Improvements due to Splitting

communication channels remains slow, due to the lack of optimization for these actions in
the current ECHo channel implementation, resulting in startup times for ‘connected’ tasks
ranging from 2.9s to 6.2s.

More interestingly, the enactment of adaptation decisions, that is, the execution of adap-
tation transactions, typically takes only a few seconds, thereby making it feasible to adapt
computational data streams with delays suitable for end users operating user interfaces via
a keyboard or a mouse. Additional performance improvements are required for immersive
interfaces. Specifically, we have observed average adaptation enactment times of 1.5s in our
LAN environment, with actual times ranging from 0.88s to 3.79s. Accordingly, the current

MST implementation is limited to performing adaptations at a rate of no more than 1 per
4s.

7 Conclusions and Future Work

The main contribution of this paper is the implementation, design, and evaluation of a
framework for constructing and adapting computational data streams (ACDS). ACDS is
used to automatically and dynamically configure an access grid computation represented as a
computational data stream. Such a stream is typically associated with a parallel /distributed
scientific computation that generates stream inputs or consuming stream outputs.

Dynamic stream configuration is performed in response to changes in end user needs
and in underlying machine performance. Monitoring data is gathered via control events
associated with ACDS computational data streams. Configuration decisions are made by
decision algorithms embedded in a stream controller, called the Monitoring and Steering
Tool (MST). ACDS provides explicit support for several configuration actions on streams,
including parameter changes local to individual stream components, component migration,
splitting, and merging. Configuration actions are carried out by adaptation transactions
that use a specialized commit/abort transaction protocol.

Computational data streams are constructed using a C++ library comprised of classes
that offer the necessary functionality of ACDS stream components. Using these classes,
developers simply provide the application-specific functions embedded in each component.
If components are to be adaptive, developers must also provide methods to extract internal
monitoring state and possibly, additional methods that adapt the component’s internal op-
eration. Additional functionality developed by our group to facilitate component monitoring
and steering is described in [ES98].

Experimental results presented in this paper demonstrate the utility of runtime stream
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adaptation, in a WAN environment in response to changes in end user needs, and in a
LAN environment in response to changes in user needs and/or underlying system (network
or CPU) loads. Specific adaptations evaluated in this paper and demonstrated useful for
computational data streams include component migration, splitting, and merging.

Ongoing work with ACDS includes improvements in the rate at which adaptations on
streams may be performed and improvements in the algorithms that make adaptation deci-
sions. Future research should address the scalability of systems like ACDS to the large-scale,
wide area ‘access grid’ computations and ‘portals’ now being envisioned by HPC researchers.
Specific topics include the hierarchical structuring of system monitoring and steering methods
and tools, additional support for system reliability, and the integration and use of multiple
system and network monitoring tools, including MOSS [ES98] or OMIS [LWSB97]| for in-
dividual stream components, NSR [RLB98] for node monitoring, and ReMoS [DGL197]| for
network monitoring.
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from the TU Munich for their support of this work at Georgia Tech.
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