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What’s the use, you said, of a robot that was not designed for any job? Now I ask

you-what’s the use of a robot designed for only one job?

Isaac Asimov
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SUMMARY

The real world is complex, unstructured, and contains high levels of uncertainty. Al-

though past work shows that robots can successfully operate in situations where a single

skill is needed, they will need a framework that enables them to reason and learn continu-

ously so that they can operate effectively in human-centric environments. One framework

that allows robots to aggregate a library of skills is to model the world using affordances. In

this thesis, we choose to model affordances as the relationship between a robot’s actions on

its environment and the effects of those actions. By modeling the world with affordances,

robots can reason about what actions they need to take to achieve a goal. This thesis pro-

vides a framework that allows robots to learn affordance models through interaction and

human guidance.

Within the scope of robot affordance learning, there has been a large focus on learning

visual skill representations due to the difficulty of getting robots to interact with the envi-

ronment. Furthermore, utilizing different modalities (e.g. touch and sound) introduces chal-

lenges such as different sampling rates and data resolution. This thesis addresses the above

challenges by providing methods to interactively gather multisensory data using human-

guided robot self-exploration and an approach to integrate visual, haptic, and auditory data

for adaptive object manipulation.

We take a human-centered approach to tackling the challenge of robots operating in

unstructured environments. The following are the contributions this thesis makes to the

field of robot learning: (1) a human-centered framework for robot affordance learning that

demonstrates how human teachers can guide the robot in the modeling process through-

out the entire pipeline of affordance learning; (2) several novel human-guided robot self-

exploration algorithms that use human guidance to enable robots to efficiently explore the

environment and learn affordance models for a diverse range of manipulation tasks; (3)

a multisensory affordance model that integrates visual, haptic, and audio input; and (4)

xx



a novel control framework that allows adaptive object manipulation using multisensory

affordances.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

“Co-robots: robots [...] that work beside or cooperatively with people” - National Robotics Initia-

tive (National Science Foundation, 2014)

Advances in affordable sensing and actuation have led to a rapid drop in the price of

state-of-the-art robots, thus enabling more industries to consider automation. However,

as we move away from factories where robots are hidden behind closed doors, we en-

counter challenges that come from robots co-existing in human environments. The Na-

tional Robotics Initiative (NRI) 1 was started to address the scientific challenges of co-

robots, specifically research that “emphasizes the realization of such co-robots working in

symbiotic relationships with human partners” (National Science Foundation, 2014). The

very existence of the NRI highlights that a knowledge gap exists in the integration of robots

in human domains where the environment is highly dynamic, cluttered, and contains a large

number of novel objects compared to controlled factories.

While robots have been used in factories for decades, traditional pre-programmed and

hand-tuned control schemes lack robustness and break down when faced with the vari-

ability found in the real world. This is especially true of robotic applications that require

dexterous manipulation (e.g. health care, flexible manufacturing) (Technology et al., 2013).

Fortunately, while we lose structure in human environments, we gain the help of people.

In this thesis, we show that typically impossible tasks for robots become tractable when

human teachers, a rich source of information, are added. We believe that this relationship

is key to successfully deploying robots into the real world to work alongside people in new

1a multi-agency research funding program
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environments such as homes, hospitals, and small factory floors.

1.2 Approach

This thesis looks at how a co-robot can accomplish tasks in unstructured environments.

Consider the situation where an end-user brings their personal robot home from the store.

The robot needs to learn about its new environment and connect its knowledge of the world

with sensory data. While a robot can be deployed with pre-programmed controllers simi-

lar to robots on factory floors, these controllers need to adapt to the variability of the real

world. To address this challenge, a robot needs to learn, model, and adapt to its environ-

ment throughout its life. Motivated by how humans tackle these challenges, this thesis

advances the field of robotics by contributing computational approaches to skill adaptation

and learning.

For the rest of this chapter, we describe the different methods by which we teach robots

about human environments and the psychology literature that inspires and motivates each

method. Specifically, Section 1.2.1 describes how we represent the world using affor-

dances, Section 1.2.2 dives into why exploration and human guidance are crucial to robot

learning, Section 1.2.3 motivates the necessity for robots to utilize multiple sensory inputs,

and we conclude the chapter in Section 1.3.2 with the contributions of this thesis.

1.2.1 Affordances

We take an affordance approach to modeling the environment, whereby the robot is building

representations of its actions and the effects that they have on objects in the environment.

The term “affordance” was first introduced by psychologist J.J. Gibson (1977). We use

the ecological definition of “action possibilities” that appear between an agent and the

environment, which is commonly used in robotics (Şahin et al., 2007; Montesano et al.,

2008). Affordances provide a building block for performing tasks and allow a robot to

reason between how it can perform a skill and why that skill needs to be done. Affordances
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leverage language to connect intentions and goals of people to the actions that the robot

needs to perform to accomplish these goals.

For a more concrete example, let us use an object such as a cup with water to demon-

strate this concept. If a robot were to perform the action tilt on the cup to produce the

effect of water pouring from the cup, the cup has the affordance “pour-able”. By teaching

a robot about this affordance, as well as other affordances (e.g. contain-able, open-able,

etc.), the robot can build a library of building blocks throughout its life to complete tasks

such as “watering the plant”. Furthermore, the affordance representation is convenient for

robot learning because it connects the physical actions the robot must perform to the actual

effects that robots should expect. By connecting physical motor commands and sensory

inputs to task goals, robots can reason about what actions they need to take to achieve these

tasks and what sensory inputs should be used to verify completion of a task.

1.2.2 Robot Exploration and Environmental Scaffolding

Co-robots deployed in unstructured human environments will have to learn and model af-

fordances for their specific environment quickly and with minimal effort by human end-

users. For a robot to learn affordances, it needs to observe the effects of its actions on the

world. One approach is for the robot to explore the environment and ground its actions in

its sensory space. This allows the robot to learn how its actions change the world around

it and slowly build a library of models of its environment through interaction. Through-

out this thesis, we utilize exploratory behaviors often seen in children and animals (Power,

2000; Lederman and Klatzky, 1993) to learn affordances. In particular, we use E.J. Gib-

son’s (2003) theory that learning affordances is “discovering distinctive features and in-

variant properties of things and events” by using basic primitive actions such as reaching

or shaking to discover these properties.

While a robot should explore its surroundings to learn about its environment, blind

exploration is inefficient and unrealistic in the real world where there exist hardware and
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safety constraints. For example, if the robot were trying to learn the affordance open-able,

even if the robot knew the exact location of the door handle, there are an infinite num-

ber of directions the robot can pull or push in a continuous action space to open the door.

Aside from being physically intractable, even several hundred explorations per affordance

would not be feasible due to the wear and tear of the hardware. Fortunately, in human

environments, co-robots can leverage the people around them to provide guidance to their

exploration much like how children can rely on their caretakers to provide guidance in their

learning process (Vygotsky, 1978; McLeod, 2010; Wood et al., 1976; Mascolo, 2005). Vy-

gotsky (1978) describes a “Zone of Proximal Development” where learning is “awakened...

when the child is interacting with people in his environment”. Wood et al. (1976) perform

a series of studies that build upon this notion and formally introduce the term “scaffolding”

that consists of an “adult ‘controlling’ those elements of the task that are initially beyond

the learner’s capacity, thus permitting him to concentrate upon and complete only those

elements that are within his range of competence”. Both works conclude that scaffolding

helps the learner to successfully and independently complete the original task. This thesis

takes inspiration from these works to expedite robot affordance learning of manipulation

tasks through the use of human guidance and environmental scaffolding.

1.2.3 Multisensory Input

Just as humans rely on multiple senses to interact with the world, robots should also use

multiple sensory inputs to model the environment. In psychology literature, Lynott and

Connell (2009) show that multiple sensory modalities are key to fully representing object

properties. Work from Gaver (1993) shows that humans can perceive object properties

through sound alone. Lederman and Klatzky (1993) prove the importance of touch and

physical exploration when people are discovering properties of novel objects. Studies from

Wilcox et al. (2007) show that a combination of visual and touch sensing improve object

recognition while Ernst and Bulthof (2004) theorize that humans use a weighted combina-
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tions of modalities (i.e. visual and tactile information) to determine object properties such

as height.

While most prior work in affordance learning focuses on visual affordances, this thesis

addresses multisensory models of affordances – what affordances look, feel, and sound

like. We claim that by using multiple sensory modalities, the robot is more robust. Take,

for example, a lamp as seen in Figure 3.8. While the robot could rely on visual information

to determine if the light has been turned on, it can also utilize touch to detect the change

in pressure, and sound to hear the click of the switch. This allows the robot to naturally

develop contingency cases (e.g. if the light bulb had gone out). Furthermore, rather than

have the robot blindly execute a trajectory, this allows a robot to adapt its control schemes

to the environment by using feedback on each of its sensor modalities (e.g. pull until it

feels a particular force, hears a click, or sees light). This thesis explores the importance

of multisensory input for modeling affordances and the impact these modalities play in

adapting affordance controllers for manipulation of everyday objects.

1.3 Thesis Overview

1.3.1 Thesis Statement

A robot can effectively manipulate objects in human environments by leveraging the struc-

ture of affordances and building adaptable controllers using multisensory input and human-

guided exploration.

1.3.2 Contributions

To support this statement, this thesis makes the following contributions to the field of robot

learning:

• Human-Centered Framework for Robot Affordance Learning: (Chapter 3) Through-

out this thesis, we focus on how human teachers can guide robots throughout the
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affordance modeling pipeline. We show in several user experiments that by utiliz-

ing human-guidance during the modeling process, robots can learn a wide range of

multisensory affordances that typically have not been studied in robots (Chu et al.,

2016a; Chu and Thomaz, 2017; Chu et al., 2017). Specifically, we demonstrate our

human-centered framework (Human-Guided Affordance Learning) with naı̈ve and

expert human teachers in three different settings. These experiments result in teach-

ing robots 5 different affordances across 11 different objects and actions.

• Human-Guided Robot Self-Exploration: (Chapter 5) This thesis contributes sev-

eral novel algorithms that enable robots to efficiently explore the environment using

guidance from human teachers to learn affordance models for a diverse range of ma-

nipulation tasks. Specifically, in Chapter 5, we present experimental results with

a robot learning 5 affordances on 4 objects using 1219 interactions. We compare

three conditions: (1) learning through self-exploration, (2) learning from supervised

examples provided by 10 naı̈ve users, and (3) self-exploration seeded by the user

input. Our results characterize the benefits of self and supervised affordance learn-

ing and show that a combined approach is the most efficient and successful (Chu et

al., 2016b). Furthermore, we provide additional analysis of the variance seen across

teachers during teaching. We provide a characterization of failure cases and insights

for future work in learning from naı̈ve end-users. (Chu and Thomaz, 2017)

• Multisensory Representation of Affordances: (Chapter 4 and 6) Our contribution

is developing a representation that integrates visual, haptic, and audio input to model

affordances and quantifies the role each sensory modality plays in affordance mod-

eling and control. Specifically, we present a system for learning haptic affordance

models of complex manipulation skills. We model two specific affordances (open-

able and scoop-able) using five different actions over seven different objects using a

force/torque (F/T) sensor mounted at the wrist of the robot. In Chapter 4, we show

6



we can successfully monitor a trajectory using haptic data to determine if the robot

finds an affordance (Chu et al., 2016a). In (Chu et al., 2017) and in Chapter 7,

we characterize the importance between visual, haptic, and audio data for affordance

modeling and control. We show that modeling affordances using multimodal sensory

information allows for more effective adaptation of manipulation skills than without.

• Adaptive Object Manipulation using Multisensory Affordances: (Chapter 7) The

final contribution of this thesis brings together the different technical components and

creates a control framework that uses a multisensory representation of affordances to

enable a robot to adaptively manipulate objects of similar affordances (Chu et al.,

2017). We show that we can break down affordances into subskill segments using

keyframes. By modeling these subskills segments using left-to-right HMMs and

multisensory inputs, a robot can adapt to 5 different drawer configurations and turn

on 2 never-before-seen lamps.
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CHAPTER 2

BACKGROUND AND RELATED WORK

To situate this thesis, we start by looking at robot affordance learning as a whole, then

move into the specific areas of human-guided exploration, multisensory representation for

affordances, and multisensory adaptable object control.

2.1 Robot Affordance Learning

Early research in robot affordance learning was controversial because of the many differ-

ent ways to interpret “affordance”. The conflict stemmed from the evolving nature of the

definition that was never formally set by J.J. Gibson (1977) in 1977. Sahin et al. (2007)

tackle this confusion behind the definition of affordances and attempt to clarify and extend

J.J. Gibson’s work specifically for robotics. Eventually, the paper advocates for the use of

the ecological definition of affordance that most robotics researchers base their work on

today by Chemero (2003). This framework relies on the effects that occur between agents,

behaviors of the agents, and objects. To learn affordances, the most commonly accepted

work comes from E.J. Gibson (2003), who claims that learning affordances is “discovering

distinctive features and invariant properties of things and events” and that in children, basic

primitive actions such as reaching or shaking, discovers these properties. This connects

the field of affordance learning to another large field in robotics, developmental robotics,

where researchers take inspiration from the psychology of child development and apply it

to improving robots.

Early work in affordance learning for robotics took inspiration from developmental

robotics and focused on using primitive actions to interact and learn about object effects.

These established a framework for affordance learning using exploration. Fitzpatrick et

al. (2003) used parametrized primitive actions to push or roll objects. Stoytchev (2005)
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used a robotic arm to use tools to bring objects within reach. Dogar et al. (2007; 2008)

tackled the traversability affordance using visual cues and wheel encoders. Montesano et.

al (2008) and Lopes et al. (2007) learned affordances to be used for imitation. In an effort

to use and plan with affordances, Kruger et al. (2011) developed a rich framework that

allowed for affordances to be defined as low-level primitives as well as chained to perform

high-level tasks. Hermans et al. (2013b; 2013a) investigated primitives for pushing objects

on a flat surface. Moldovan et al. (2012) looked at the relationship between affordances

for multi-object manipulation tasks. In the area of using scaffolding for affordance learn-

ing, Thomaz and Cakmak (2009) demonstrated the importance of scaffolding for learning

affordances. Most of these early works in affordances focused on simple affordances and

any system that used these learned affordances were mostly proof-of-concept experiments.

While some of these works included proprioceptive information, the primary focus was on

visual feedback and cues.

More recently, Koppula and Saxena (2013) used affordances to predict and anticipate

human activities. However, the evaluation with the robot was proof-of-concept and the

three main affordances were created using heatmaps of video images and external knowl-

edge that linked locations in the environment to certain object affordances (e.g. drinkable,

pourable, etc.) Katz et al. (2013b) demonstrated a system that could clear rubble with the

same effectiveness of a human operator and significantly better than random and heuristic

based pile removal algorithms. Furthermore, the system was tested extensively during ex-

perimentation. While Katz et al. used force compliant primitives, the primitives were hand

tuned, specific to pile removal, and were not learned by the system. Furthermore, the forces

were only used as thresholds and selected by the authors. Varadarajan and Vincze (2012)

built on AfNet, an open affordance initiative, by providing semantic context and house-

hold manipulation objects, however, the work does describe how a robot could physically

use the affordances. Ugur and Piater (2015) take a different approach and connect actions

to symbolic planning. This allowed the robot to learn how to grasp and move objects,

9



which resulted in a robot that could plan to stack objects into towers. While the actions

were learned, the actions were simple pick and place. In work from Wang et al. (2014),

they looked at how to efficiently transfer affordances by reducing the amount of explo-

ration needed to adapt affordance models. For a complete look at affordance learning with

robots, there exists two general surveys where they focus on robot affordances in relation to

psychology and neuroscience (Jamone et al., 2017), affordance research in developmental

robotics (Min et al., 2016), and computation models of affordances in robotics (Zech et al.,

2017).

The following sections go deeper into related approaches to tackling these challenges

as well as how this thesis contributes to each area.

2.2 Learning from Demonstration

Before looking at the specific areas that this thesis contributes to, we take a brief look at

the field of Learning from Demonstration (LfD). While this thesis does not make large

contributions to the field of LfD, we heavily utilized LfD throughout this thesis. LfD is a

field that focuses on how robots can learn from examples or demonstrations from teachers.

This approach has become popular for motor skill learning (Pastor et al., 2011c; Kroemer et

al., 2015; Akgun and Thomaz, 2015) and several surveys on LfD have been released (Argall

et al., 2009; Chernova and Thomaz, 2014; Billard et al., 2008). In this thesis, we use a

specific type of LfD algorithm that uses keyframes and kinesthetic teaching (Akgun et al.,

2012a). This method of LfD allows a person to physically teach a robot how to perform

skills (e.g. opening jars, pouring) by taking snapshots of the important points in a trajectory.

This allows the robot to focus on the goals and subgoals of the skill rather than record the

full demonstrated trajectory. Furthermore, it is important to note that, in this thesis, we

utilize the skills generated after the execution and not the demonstrated trajectory to avoid

capturing noise from the human teacher. As a result, the exact method of LfD can vary

as long as the provided demonstration is a reasonable example that the robot can use to
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execute a given skill.

2.3 Human-Guided Exploration for Affordance Learning

Many researchers are investigating how robots can explore the world. One relevant area

of research is work on intrinsic motivation (IM) and curiosity-driven exploration. Early

work (Oudeyer et al., 2007a; Vigorito and Barto, 2010; Schmidhuber, 1991) looked at

using rewards and expectations to guide the exploration without any human supervision.

Recently, Ugur and Piater (2017) have applied IM to learn the hierarchical structure of

affordances such as various poking and stacking tasks. The most related work on IM from

Ivaldi et al. (2014; 2012) and Nguyen and Oudeyer (2014), combined IM with human

input. Methods using IM assume the existence of an easily-characterized reward signal,

even though such reward signals can be difficult to define for hard-to-find affordances.

More recently, work in the field has focused on how to employ LfD and input from

people to tackle these challenges (e.g. parental scaffolding (Ugur et al., 2015b) and crowd-

sourcing (Krishna et al., 2016; Sung et al., 2015)). While crowd-sourcing uses teachers

that are non-experts, these works focused on learning only visual information (Krishna et

al., 2016) and information about the robot end-effector location (Sung et al., 2015) (as

other sensory modalities are difficult to transfer through web interfaces). Nguyen and

Kemp (2014) utilize human guidance by pointing to the location the robot should explore,

however, the work requires an expert to provide specific actions for the robot to use during

exploration. Ugur et al. (2015b) uses human guidance and self-exploration to modifying

grasp actions using visual and haptic information. However, the actions were only acquired

through an expert (the author). Ugur et al. (2015a) in later work follow up the study us-

ing naı̈ve teachers, however, both works focused on simple affordances (e.g. push-able,

lift-able for pick-and-place tasks). The published work in this thesis (Chu et al., 2016b;

Chu et al., 2016a), demonstrates that human guidance from naı̈ve teachers can be used to

acquire a diverse set of actions (e.g. opening drawers, boxes, scooping) for human-guided
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robot self-exploration with multiple sensory inputs.

2.4 Multisensory Representations of Affordances

Another area of research that has utilized the ecological and developmental robotic frame-

work is in haptics. Haptics research often refers to influential work by Lederman and

Klatzky (1993) where humans use “exploratory procedures” similar to primitive actions

when interacting with novel objects. This provides a bridge between research in haptics

and affordance learning that very few researchers have explored. There exists a large body

of research that looks at visual learning of affordances (Krishna et al., 2016; Sung et al.,

2015; Koppula and Saxena, 2013; Zhu et al., 2014) and this thesis uses much of the insight

gained from these works to integrate visual information with audio and touch sensing.

Since very little work has looked at characterizing what it means for a robot to learn these

haptic and audio affordances, this section covers the most closely related works that use

audio and haptic information for object classification.

The relevant work in haptic object recognition also uses exploration to interact with

the environment to learn and classify haptic properties of objects (Torres-Jara et al., 2005;

Sinapov et al., 2011a; Gemici and Saxena, 2014; Chu et al., 2013; Bhattacharjee et al.,

2014; Fishel and Loeb, 2012). While some of these works use haptic information to obtain

object properties (similar to object affordances), (Chu et al., 2013) and (Gemici and Saxena,

2014) do not directly learn how to use these properties once found and (Bhattacharjee

et al., 2014; Bhattacharjee et al., 2013) only learned one affordance. To address these

shortcomings, this thesis presents work in haptic affordances (Chu et al., 2016a) that learn

different affordances with a wide variety of actions using only haptic information. Within

audio affordance learning, the most relevant works (Sinapov et al., 2009; Torres-Jara et

al., 2005; Romano et al., 2013) use exploration to determine different objects’ acoustic

properties as well as understanding task completion (i.e. classifying if a stapler finished).

However, these works do not look at trying to learn several affordances and instead only
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try to use audio to classify when a specific task has completed.

Integration of all multisensory input (visual, haptic, and sound) in robot learning has

not been an area that has been deeply studied, with most work focusing on how to integrate

proprioceptive and visual information (Wieland et al., 2009; Li et al., 2013). The closest

work to multisensory learning of affordances is work from Sinapov (2013; 2014b), Park et

al. (2016), and Kappler at al. (2015). Sinapov (2013; 2014b) looks at object recognition and

categorization using robot exploration and multisensory input. Park et al. (2016) look at

how multisensory input can improve anomaly detection using HMMs. Kappler et al. (2015)

explore how a bimanual robot can open bottles robustly by using multisensory information.

While these works do not specifically look at affordance learning, they provide a good

foundation for the work in this thesis.

In this thesis, we integrate multisensory information to learn affordances and show that

a wide range of affordances can be modeled using only haptic information (Chu et al.,

2016a). Furthermore, we provide a framework (Chapter 7) that uses multisensory data

to perform complex manipulation tasks and show that the various modalities are key to

modeling the effects of affordances.

2.5 Learning Multisensory Robot Controllers

Control from different sensor inputs has been studied for several decades, typically in the

form of factory robots merging force and position feedback for manufacturing. However,

these early methods of hybrid control (Mason, 1981; Raibert and Craig, 1981; Khatib,

1987), require an expert to hand-tune and specify each trajectory in very structured envi-

ronments. To execute trajectories in unstructured environments, one popular approach is

to use LfD to first teach the skill and play it back either exactly or after some exploration

and modeling (Argall et al., 2009).

There are various ways to model a trajectory once it has been demonstrated by a human

teacher. In the simplest instance, the proprioceptive information of the robot arm (i.e. joint
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position and orientations) can be imitated and played back. To generalize the trajectory

to a wider set of environments, additional information about the task is incorporated into

the model. We can break down the methods to generalize a trajectory into three schools

of thought: model-free methods, environment model based methods, and segmentation

methods. We define model-free methods as methods that do not assume any information

about the environment in which the trajectory is being executed and/or adapted to whereas

model based methods use some inherent property of the task to model the trajectory (e.g.

articulated joints). Additionally, each method is categorized by mode of input (i.e. visual,

haptic, auditory).

2.5.1 Model-free Learning

Dynamic Motion Primitives (DMPs) have gained attention in the skill learning commu-

nity. Introduced by Ijspeert et al. (2002) and Schaal et al. (2003), DMPs were used to

learn attractor landscapes for imitation learning (e.g. teleop reaching movements). Several

works sought to improve DMPs: online obstacle avoidance and goal adaption (Pastor et al.,

2009a), adapting to Force/Torque (F/T) values on a robot wrist (Pastor et al., 2011a), re-

finement of DMPs using reinforcement learning (RL) (Kalakrishnan et al., 2011), learning

and predicting successful DMP execution using interactive RL (Pastor et al., 2011d), ex-

panding gain values to include multiple channels for compliance control (Kormushev et al.,

2011a), adaption to bi-manual tasks (Gams et al., 2014), online error recovery using F/T

sensing (Abu-Dakka et al., 2015), and initial work for stereotypical motion that stores sen-

sory inputs (Pastor et al., 2012a). While some of these approaches merge haptic and visual

information to learn a skill in various configurations, it is unclear if the approaches, which

adapts a specific learned trajectory to a specific object, can generalize to vastly different

objects with similar affordances.

Other methods for learning trajectories from human teachers include work from Cali-

non et al. (2007), where trajectories are modeled using Gaussian Mixture Models (GMMs)
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and each Gaussian represents different segments of the skill. Playback is achieved us-

ing Gaussian Mixture Regression (GMR) over the GMM. Akgun and Thomaz (2015) use

keyframes of demonstrations to learn a Hidden Markov Model (HMM) of the skill. Trajec-

tories are generated by finding the shortest likelihood path through the HMM and splining

the end-effector (EEF) poses. These works do not integrate any form of haptic information

and it is unclear how these approaches can adapt to different objects of similar affordance

type. On the flip-side, Rozo et al. (2013b; 2013a; 2011) model trajectories use only F/T

sensing using HMMs and PHMMs, and GMRa (an adapted version of GMR that uses tran-

sitions learned from HMMs). Kruger et al. (2010) represents a set of actions that create

the same effect using Parametric HMMs (PHMMs) and demonstrate that PHMMs can be

manually strung together to form complex interactions. While this work does not use hap-

tic information, it does embody a key point that this thesis explores: the ability to not

only represent the action as a trajectory, but also as the effects the action causes. In work

from Hangl et al. (2016), haptic information is used to learn complex skills by learning a

hierarchy of preparation actions that connect to the effects of those actions.

2.5.2 Environmental Model-based Learning

This next section looks at representing skills from an environment model-based point of

view where there is an underlying model (e.g. physics based) that is being learned from

data. Katz et al. (2013a) uses visual information from an RGB-D camera while a robot in-

teracts with objects to learn three possible kinematic models (prismatic, revolute, and dis-

joint). Pillai et al. (2014) learns kinematic models using RGB-D data from human demon-

strations in clustered and unstructured environments. Martin-Martin and Brock (2014)

implement a recursive hierarchal probabilistic method for articulation learning. Unlike

the following sets of work, none of these approaches use haptic information. Sturm et

al. (2010) used a force-torque sensor to learn a kinematic model of an articulated object

(various doors). Jain and Kemp (2013) extend this work to create and use a database of
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forces for different doors and used it across multiple agents (humans and two different

robots). Wieland et al. (2009) merged the sensor spaces for opening doors and showed that

using visual and haptic data worked better than using a single channel.

Sukhoy et al. (2012) learned the trajectory for sliding a card through a card reader with

proprioceptive feedback. Sturm et al. (2010) learned a kinematic model for successfully

opening various doors using a F/T sensor. While both only learned one primitive, they

show that haptics could be used to improve actions directly through experience. Pastor

et al. (2011c) learned and predicted the outcome of complex skills (e.g. flipping a box

with chopsticks) by using pressure sensors and reinforcement learning on dynamic motion

primitives. They extended (Pastor et al., 2011c) and introduced Associative Skill Memo-

ries (Pastor et al., 2012b) where they learned haptic feedback from demonstration of actions

on objects. However, they did not learn and discover haptic affordances or properties of

an object. Researchers have begun exploring how to model force and compliant dependent

skills using LfD (Rozo et al., 2013c; Kormushev et al., 2011b). The focus, however, is on

executing the specific skill and not on using trajectories to model the environment.

Researchers such as Ciocarlie et al. (2014), focused on directly using forces to adjust

grasps to make them stable. Romano et al. (2011) used accelerometers to detect high

frequency vibrations to improve grasping. Representing periodic motion (e.g. wiping,

cranking a handle) can be seen as on the border of model-based trajectory learning as it

assumes a periodic structure of the task but does not represent it in a specific model. These

works include Petric et al. (2014) and Gams et al. (2015), where they teach a robot how

to perform circular motions with a sponge to wipe a table. While the approach uses visual

and haptic information to adapt a trajectory, it is unclear how this approach will transfer to

different objects.
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2.5.3 Segmentation Based Skill Learning

Segmentation based learning most directly relates to learning adaptable multisensory con-

trollers. Segmentation algorithms split trajectories into basic action primitives and each

segment is modeled using DMPs. Segments can be reused and represented in a hierarchy.

Work in this area has focused on how to segment the provided trajectories (Niekum et al.,

2015b; Niekum et al., 2015a), build representations of skills using these segments (Konidaris

et al., 2012; Manschitz et al., 2015), and understand the transitions of skills based on the ef-

fects of each segment (Kroemer et al., 2014; Kroemer et al., 2015; Kappler et al., 2015; Su

et al., 2016). Most of these works use some modified form of DMPs to model a segment

and classifiers to predict transitions. Within this area of research, Righetti et al. (2014)

and Chebotar et al. (2014) integrated F/T information with hand-coded segmented DMPs

and (Kroemer et al., 2015; Kappler et al., 2015) included policy search and multimodal

input to improve the DMPs of each trajectory segment.

Kroemer et al. (2015) and Kappler et al. (2015) use a multisensory approach to detect

when and what skills to switch to and are most similar to contributions of this thesis. Kroe-

mer et al. (2015) autonomously segments demonstrations using a modified autoregressive

Hidden Markov Models (AR-HMMs) that represent skill segments by adding an additional

edge between the hidden state and the previous observation. They introduce the state-based

transitions autoregressive hidden Markov model (STARHMM), aimed to detect transitions

based on the effects of the actions and used a combination of visual and haptic data streams.

Kappler et al. (2015), fully expand the notion of Associated Movement Primitives (ASM)

to include multisensory information about the effects of the actions (modeled as DMPs).

The sensory inputs include visual, haptic, and auditory information. These data streams

are used in conjunction with a hand-created manipulation graph to switch to the next ASM

when a skill has failed. While these works generalize to different object configurations, it is

unclear if these approaches will adapt to different objects. This thesis shows the importance

of each sensory modality in adapting affordances in novel configurations.
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CHAPTER 3

HUMAN-GUIDED AFFORDANCE LEARNING

In this chapter, we outline many of the challenges in robot learning that have not been

addressed in prior work. We begin by looking at the overall challenges in robot affor-

dance learning and then dive into the algorithmic solutions this thesis provides to address

the subproblems of the field. We outline our human-centered approach to robot learning

(Human-guided Affordance Leaning), establish the affordance learning representation we

use throughout this work, and introduce the machine learning algorithms used to model

affordances.

3.1 Challenges in Robot Affordance Learning

There are several open questions and challenges in robot affordance learning that were

briefly outlined in Chapter 2. This thesis aims to address several of these challenges:

• Most of the work in robot affordance learning has focused on visual information. This is

largely due to two factors: (1) Gibson’s original definition describes affordances within

the context of “visual perception”, and (2) affordances that rely on non-visual sensory

channels are complex and require dexterous interactions with the environment. Works

that include proprioceptive robot information (Fitzpatrick et al., 2003; Stoytchev, 2005)

do so by including it in models either as part of a single state space with visual informa-

tion or with hand-tuned thresholds on actions. The open question is “What role in the

affordance representation do sensory inputs (visual, haptic, and auditory) play?”

• While several works in affordance learning have looked at large-scale learning of af-

fordances, very few have performed a high-level task plan with a physical robot that

does not require very carefully-tuned robot controllers. This disconnect between scale
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and execution originates from the difficulty of getting robots to learn action controllers

for each affordance. Prior work either focused on learning a small subset of simple

affordances (e.g. push-able (Hermans et al., 2013b)) or building a large database from

text datasets, images, and videos (Zhu et al., 2014). The challenge is how to ground a

larger group of diverse affordances to allow robots to utilize the existing databases of

affordances for task planning and execution.

We can break down these high-level challenges in robot affordance learning into spe-

cific subcomponents that relate directly to the contributions of this thesis:

(1) Multi-sensory Representation: What role in the affordance representation do sen-

sory inputs (visual, haptic, and auditory) play? We explore this relationship first in

Chapter 4, where we look at learning affordances using only haptic feedback and then

more thoroughly in Chapter 7, where we do an in-depth comparison between touch,

visual, and auditory input for modeling affordances.

(2) Self-exploration: How can we quickly ground a large group of diverse affordances?

How can this be done efficiently, with minimum effort from human teachers? In Chap-

ter 4, we introduce a method of guided exploration based on prior work (Thomaz and

Cakmak, 2009) and extend it to a diverse set of objects and actions. We extend the

method to include robot self-exploration in Chapter 5, where we introduce several

novel human-guided robot self-exploration algorithms (Chu and Thomaz, 2017).

(3) Non-experts: Can robots learn affordances from naı̈ve human teachers as well as they

can from expert teachers? We explore this question more fully in Chapter 5, where

10 naı̈ve end-users teach the robot several affordances. We explore the relationship

between the quality of models learned and the differences between individual human

teachers.

(4) Adaptable Control: Once a robot has grounded an affordance, it is unclear how a

robot can then transfer this learned affordance without having to re-explore the envi-
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ronment, unlike in prior work. In Chapter 7, we introduce RMAC, a control frame-

work that uses multisensory data to model an affordance. RMAC addresses how a

robot can learn adaptable controllers that use multiple sensory inputs and demon-

strations from human teachers. We show that we can adapt and transfer the model to

objects in various configurations as well as novel objects with similar affordances.

3.2 Affordance as a Learning Problem

Figure 3.1: Visual representation of the components of an affordance in blue. Below it is
an example affordance, open-able, broken down into the components of an affordance.

Figure 3.2: Affordances in relation to tasks and the importance of modeling each affordance
to help achieve a task.

As described in Chapter 1, affordances are the “action possibilities” that appear be-

tween the agent and the environment. Affordances are a representational choice to model
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skills as the relationship between effects and a set of actions performed by an agent on

the environment. We can view this relationship in Figure 3.1, where an affordance is the

combination of an agent performing an action on the environment to produce an effect.

A specific example can also be seen in Figure 3.1, where the open-able affordance consists

of a robot (agent) pulling (action) on a door handle (environment) to open the door (effect).

Affordances enable us to communicate object properties and tasks to the robot (e.g. shown

in Figure 3.2 where, given a task to water a plant, a robot can reason that it needs an object

with a contain-able and pour-able affordance). Throughout the rest of the thesis, we define

a skill as a low-level trajectory that achieves a specific goal and we use skill and action

interchangeably. We define a task as a high-level goal that requires the execution of several

skills.

For a robot to learn affordances, it needs to interact with the environment and observe

the effects of that interaction. This interaction needs to be done by the robot (as opposed to

the robot merely observing a human performing the skill) because affordances are action

possibilities that occur between the environment and the agent. More concretely, there exist

many objects that have affordances for a human that do not exist for all robots (e.g. jar lid

is too wide for the robot to grasp). Once a robot interacts with an object and observes the

effects of that interaction, the agent can learn what the environment affords. In our work, a

robot (agent) performs a set of actionsA = {a1, .., aN} on a set of objectsO = {o1, ..., oM}

to model the effects that ai can have on oj , where i = {1, ..., N}, j = {1, ...,M}, and N

and M are the number of actions and objects respectively. We assume the effect of an

object-action (oj , ai) pair is labeled as a positive or negative example of the affordance.

Thus, it is a supervised learning problem and the resulting model can recognize the suc-

cessful (or unsuccessful) interactions of an object-action pair. This representation can be

seen in Figure 3.3.

The overall goals of affordance learning in robotics fall into several categories: (1)

grounding the effects of actions for specific affordances (e.g. the visual feature change
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Figure 3.3: Affordances can be broken down into learning object-action pairs. This results
in a supervised learning problem.

when an object is push-able) (2) using these learned models to test an object for that affor-

dance (e.g. can I use this stick to stir?) and (3) giving the robot a task and having the robot

find the objects with the suitable affordances to accomplish it.

3.3 Human-Centered Approach

To address these challenges, we take a human-centered approach that provides several di-

rect benefits for robot affordance learning. Affordances allow people to connect intentions

and goals to the actions that the robot needs to perform to accomplish these goals. This

provides a natural communication channel between people and robots because people are

goal-oriented (Csibra, 2003; Meltzoff and Decety, 2003) and can easily demonstrate to the

robot the tasks they want the robot to accomplish. More importantly, aside from making

communication easier for the human teacher, the robot benefits from this interaction by

utilizing the information given during the demonstration. This allows us to go further than

prior work in learning simple affordances (e.g. push-able and tip-able). In particular, this

thesis explores a diverse set of complex affordances (e.g. open-able, turn-on-able, scoop-

able), which require varied and difficult actions that are necessary to successfully complete

real-world tasks.
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For example, for a robot to ground how to turn on the lamp seen in Figure 3.8 through

exploration without any outside knowledge, would require the robot to exhaustively explore

the object space. This exploration space is immense and, even if we were to limit the

range of exploration (e.g. just pulling on the chain), there exists an infinite number of

directions and distances to pull in a continuous action space. Furthermore, an expertly

hand-tuned controller is required to acquire the action to explore the lamp. This limitation

has restricted many prior works in learning complex affordances. However, by having a

human teacher demonstrate how to turn on a lamp, the robot now has information on (1)

where it should explore (e.g. downward direction), (2) what effect it should be looking for

(e.g. force pressure change, light change, etc.), and (3) the action to perform (e.g. grasp the

chain and pull). In the rest of this thesis, we describe three separate methods that use this

human-centered approach to contribute to the field of robot affordance learning.

Figure 3.4: “Curi” robot used in several experiments. The various sensors used throughout
the experiments include F/T sensing, RGB-D data, and audio.

3.4 Hardware

For the experiments through this thesis, we use two different robots, “Curi” and “Prentice”.

They are each described in this section.
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Figure 3.5: “Prentice” robot used in several experiments. The various sensors used through-
out the experiments include RGB-D data, gripper position, and audio.

3.4.1 “Curi” Robot

For our experiments, we used the robot “Curi”, seen in Figure 3.4. Curi has two 7 degree-

of-freedom (DOF) arms, each with an under-actuated 4 DOF hand. The arm can be con-

trolled by physically moving it in a gravity-compensated mode and used to kinesthetically

teach the robot actions. An ATI Mini40 Force/Torque (F/T) sensor is mounted at each wrist,

an ASUS Xtion Pro RGB-D sensor is mounted above the workspace, and microphones are

mounted in its chest.

3.4.2 “Prentice” Robot

We also use the robot platform, “Prentice”. Prentice has one Kinova Jaco2 7 DOF arm

with a Robotiq pinch gripper. The arm can be controlled by physically moving it in a

gravity-compensated mode. Prentice has an XBox Kinect One RGB-D sensor mounted to a

pan/tilt unit. To record the different modalities for the experiment, we use the Jaco2 internal

forward computed kinematics to record the gravity compensated wrench at the wrist, the

Kinect2 to record visual and audio data, and the gripper position from the Robotiq gripper.

24



Figure 3.6: High-level pipeline of our human-centered approach to learning affordances.
We use KLfD to acquire actions from humans end-users. These demonstrations are used
by the robot to explore the environment and collect multisensory data. This data of both
successful and “near-miss” exploration is then used to model object-action pairs.

3.5 High-Level Pipeline

Throughout this thesis, we take a common approach to obtain actions, gather data, and

model the environment. This section walks through the framework shown visually in Fig-

ure 3.6 and outlines the methods that are each discussed in greater detail in the subsequent

chapters. We can also see how the high-level approach relates to the contributions of robot

learning in Figure 3.7.

Figure 3.7: High-level view of contributions and overall approach to robot learning. The
robot is given demonstrations from non-experts and uses these demonstrations to explore
the environment and collect data from various sensors. This multisensory data is used to
model the environment and the models are used to perform manipulation tasks on new
objects.
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(a) “Start here” (b) “Close your hand”

(c) “Go here” (d) “End here”

Figure 3.8: Kinesthetic keyframed-based LfD for the open-able affordance on the pasta jar.
Keyframes are recorded using verbal commands listed below each image.
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3.5.1 Action Generation

In our approach, we use LfD to acquire actions for the robot to use during exploration.

Specifically, a teacher provides a demonstration of an action by physically guiding the

robot to perform it (as opposed to observations of a human performing the action). This

highlights a key point that affordances are “action possibilities” that occur between the

agent and the environment. There are likely many objects that have affordances for a person

that our robot would be unable to achieve (e.g. jar is closed too tightly for the robot to open).

Particularly for multisensory affordances, it is essential that the robot successfully explore

the environment to learn what the effects of particular object-action pair feel, sound, and

look like to the robot. LfD for affordance learning is one novelty of our work and allows us

to quickly program several primitive actions. This method is used throughout all methods

in this thesis and gives us the ability to experiment with affordances that have typically not

been studied.

We use a keyframe-based LfD approach (Akgun et al., 2012a), whereby a teacher

demonstrates each action by physically guiding the robot and marking salient points of

the action. This process can be seen visually in Figure 3.8. During these points, snapshots

of the joint states are stored as keyframes (KFs). To replay a demonstration, the KFs are

splined together into a single trajectory using a quintic spline at an average velocity of 0.1

radians/second. The velocity was pre-selected to execute smoothly on the robot and ap-

plies for all actions. The robot executes the trajectory autonomously on the object during

playback (Figure 3.9). This guarantees no external noise (e.g. forces) are felt during data

recording.

3.5.2 Data Collection: Robot Exploration

To collect the data to perform supervised learning for the object-action pairs, the robot

needs to use the actions it learned. The data must contain diverse examples of the object-

action pair. Throughout this thesis we introduce several different methods of human-guided
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(a) Approach lid (b) “Near-miss”

(c) Change environment (d) Success

Figure 3.9: Curi executing demonstrated trajectory on the pasta jar. (b) Curi misses the first
time, (c) a person adjusts the object, and (d) Curi succeeds
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exploration. In similar prior work (Thomaz and Cakmak, 2009), human-guided exploration

yielded high-quality learning examples that provided focus for exploration within a very

large search space. In this thesis, we build on prior work and show that human guidance

during this data collection step is crucial to reducing the search space of complex object-

action pairs and can also be used to efficiently and effectively guide robot self-exploration.

Specifically, in Chapter 4 and Chapter 7, we use environmental scaffolding where the

robot repeats the demonstrated action several times. For each interaction the human moves

the object to perturb the action context slightly (Figure 3.9). This is a teaching interaction

known as environmental scaffolding (Mascolo, 2005). In Chapter 5, we introduce several

novel algorithms that decrease the burden from the human teacher and include robot self-

exploration (Oudeyer et al., 2007b) in this process.

3.5.3 Affordance Modeling

Figure 3.10: Object-action pairs represented using Hidden Markov Models. We learn two
HMMs per object-action pair to represent success and “near-miss” interactions. The effect
space depends on the modality (haptic, visual, audio) for each experiment.

Each interaction during the exploration phase generates a continuous signal from var-

ious sensors mounted above or on the robot (e.g. microphone, cameras, etc.). We model

these sensory readings as the effect of the object-action pair by using Hidden Markov Mod-

els (HMMs) (Rabiner and Juang, 1986). We build two HMM models (Figure 3.10) for a

given object-action pair: one HMM from examples of successful interactions and another

HMM from examples where the object-action execution failed to find the affordance. In
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this thesis, we assume unsuccessful interactions are informative “near-misses” of the ac-

tion. This model thus characterizes what the object-action pair effects look like when the

robot does not find the desired effect. Importantly, this is not a model of all failures, which

would be a huge class, but of the much smaller and likely more informative class of bound-

ary case failures that are close in action space to success (Grollman and Billard, 2012;

Grollman and Billard, 2011) (e.g. a lid slipping from the hand when lifting). Furthermore,

modeling near-misses can provide knowledge to detect when a trajectory begins to deviate

from success, enabling a robot to adapt in real-time. A benefit of modeling both success

and “near-miss” is that the decision per object-action pair can be made by comparing the

log-likelihood of these two models. Given that we have multiple object-action pairs per af-

fordance, the robot can use any/all combinations of object-action pairs previously learned

(e.g. comparing the log-likelihood from all HMMs) to determine if an object has an affor-

dance.

We use HMMs to model the sensory information throughout this thesis because of the

time-varying nature of the data and the ability to generate trajectories of an action by sam-

pling from the HMMs. We use various HMMs, which include ergodic and left-right right

HMMs. The parameters of an n-state HMM, (A,B,π), are estimated using Expectation

Maximization (EM) where A is the transition probability distribution (nxn), B the emis-

sion probability distributions (nx1), and π the initial state probability vector (nx1). We

model the emission probability distribution using a continuous multivariate Gaussian dis-

tribution. Each chapter will go into detail on the specific observation space (O) used for

each method.

Additionally, HMMs are a good representational choice for our defined object-action

pair representation of affordances. Specifically, we choose to represent affordances as ef-

fects that are the result of an action on the object. If we model the effects of an action using

an HMM, the hidden states, Zn, represent where along the trajectory (action) the robot is

currently executing relative to the object. The observation space represents the effects that
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Figure 3.11: Visually representation for Hidden Markov Models as affordances. Where
along the trajectory (action space) can be estimated as the hidden state, Zn, which is rep-
resented using multivariate Gaussians of the multisensory robot data of the effects of the
action.

the robot is currently experiencing, which are emitted based upon the robot’s pose in the

action space. By modeling the emission probability distribution as a continuous multivari-

ate Gaussian distribution, we can capture the importance of each sensory input over time.

This relationship can be seen visually in Figure 3.11.

3.5.4 Evaluation

To evaluate affordance learnings, there are several different aspects of affordances that

need to be taken into account. The goal of learning affordances is to give a robot a library

of object-action pairs it can use to perform tasks. Evaluating whether the learned object-

action pairs have achieved this goal requires us to break down the various ways in which

a robot can use an affordance model. We can look at a concrete example introduced in

Section 3.2 where the robot is asked to perform the task of “watering a plant”. To achieve

this task, a robot must find an object with the two affordances: contain-able and pour-

able. To determine if an object has these affordances, the robot must test objects and
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Table 3.1: Metric Equations

Precision Recall F1

tp
tp+fp

tp
tp+fn 2 · precision · recall

precision+ recall

compare it to that affordance’s existing object-action pair. Specifically, the robot must

determine if performing the action of pour, with a given object, creates the effect that

has been previously learned. There are two distinct situations the robot can encounter

when testing an object for an affordance: (1) the robot finds the same object it had used

previously when learning the object-action pair (2) the robot encounters a new object and

must determine whether the object has the desired affordance.

Monitoring

In situation (1) where the robot finds the same object, the evaluation is relatively straight-

forward. To test the object, we determine whether the previously learned object-action

pair has sufficiently captured the effects between the robot’s action and the object. This

becomes a standard binary classification task where we label never-before-seen successful

and unsuccessful interactions with the object. In this situation, we use the standard binary

classification metrics of precision, recall, and F1 as defined in Table 3.1 where tp is the

number of true positives, fp false positives, tn true negatives, and fn false negatives. We

also include overall accuracy. Precision is a measure of quality (e.g. how accurate is

the model when it does label an interaction with the drawer as open-able?) and recall is

a measure of completeness (e.g. of all interactions with the drawer, did the model miss

any instances of open-able?). It is important to note that while this evaluation is used to

determine how well we modeled the object-action pair, it can also be used during task

execution. In particular, we can use binary classification to monitor whether the robot has

succeeded in performing the skill (e.g. pouring).

32



Figure 3.12: Offline transfer evaluation where the open-able object-action pairs from the
jar, box, and drawer are tested on the breadbox. Similarly, this can be done with the differ-
ent cups for scoop-able.

Transfer to Novel Objects

In situation (2), the robot encounters an object it has not seen before and must determine

if this novel object has the desired affordance. There are several challenges that exist with

this situation. While the effect of an object-action pair is common across objects with the

same affordance (e.g. all lamps emit light), the action associated with each object may

differ. For example, the affordance open-able may be associated with different actions

depending on whether you’re trying to open a jar, a drawer, or a box. To test a new object

for an affordance, the robot must understand how to adapt its existing action to the new

object. However, adapting existing trajectories to new objects is an active research field on

its own (Taylor and Stone, 2009; Pastor et al., 2009b; Pastor et al., 2011b). In this thesis,

we address this challenge through methods described in Chapter 4 and Chapter 7.

In Chapter 4, we introduce an evaluation that simulates transfer across objects without

adapting the robot’s actions. This is done by comparing one object’s existing object-action

pairs to that of another object with the same affordance. Specifically, we test whether the

object-action model of opening a drawer with a pulling action can be used to classify the

sensory stream of opening a breadbox with a lifting action. Both object-action models fall

under the affordance of open-able and this evaluation gives insight into whether the effects
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of affordances can be transferred across objects (i.e. can the robot determine if the effects

of open-able are universal across objects). This can also be seen visually in Figure 3.12

where we evaluate the open-able object-action pairs from the jar, box, and breadbox drawer.

Similarly, this can be done with the different cups for scoop-able.

While this offline affordance testing can give insight into affordance transfer, the robot

cannot use the learned object-action model on a novel object to complete a task. To do

so, the robot must generate actions from its existing model and adapt the action to the new

object. To perform this transfer, we introduce an algorithm in Chapter 7 that breaks down

object-action models into subskill components that allow the robot to generate motion. In

this situation, the evaluation metric is no longer binary classification but, instead, execution

success of an existing learned object-action model on novel objects.

The following chapters dive into the different algorithmic contributions to robot learn-

ing using multisensory input and human-guidance.
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CHAPTER 4

LEARNING HAPTIC AFFORDANCES FROM DEMONSTRATION AND

HUMAN-GUIDED EXPLORATION

To address the question of “What role in the affordance representation do sensory inputs

(visual, haptic, and auditory) play?”, this chapter looks at learning haptic models of affor-

dances – what successful and unsuccessful interactions of a object-action pair feel like. The

robot perceives these affordances using F/T sensors. The haptic model of an object-action

pair is complementary to visual affordances. While both require acting on the object to

learn an affordance, a learned visual affordance can be used to select “action possibilities”

prior to interacting with the object; whereas haptic models can only provide information on

possibilities during the interaction. Furthermore, some affordances are visually difficult to

detect, but are salient through force sensing. For example, one can often predict whether a

door opens by pulling vs. pushing by looking at the handle. However, there are many cases

where visually this is not possible to detect and only through the forces felt when interact-

ing with the door can this be determined. Without this information, a robot could easily

damage itself or the door. However, together, visual and haptic information can provide a

richer set of possibilities for the robot to find and utilize.

This chapter also looks at how to answer the question of ”How can we quickly ground

a large group of diverse affordances?” In this chapter, we explore the approach outlined in

Chapter 3 that leverages a human teacher to assist the robot in rapidly exploring a variety of

objects to learn haptic affordances. This chapter contributes a system that (1) uses a human

teacher to both rapidly acquire actions and explore objects for learning affordances and (2)

uses only haptic sensing to identify multiple affordances on unseen objects. We use the sys-

tem to perform 5 different actions over 7 different objects to build object-action models for

the haptic affordances of ”open-able” and ”scoop-able”. We show that the learned object-
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Figure 4.1: Our experimental platform, Curi, with the various objects it learns affordances
for in this chapter.

action models achieve good cross-validation performance with 4 of the 7 object-action pairs

achieving a perfect F1 score. Also, by leveraging the set of object-action models per af-

fordance, we perform leave-one-object-out testing to identify affordances with an average

accuracy of 67% for scoop-able and 53% for open-able, with haptic sensing alone.

4.1 Approach: Learning Haptic Affordances

To learn haptic affordances, a robot must successfully interact with objects and build a

model of the interaction. Our approach has four components (Figure 4.2). We use the

pipeline described in Chapter 3 and add additional detail specific to this chapter. Specif-

ically, we use environment scaffolding to help the robot gather data. We also include the

testing framework for offline affordance monitoring described in Section 3.5.4.

(1) Action Acquisition: We use LfD to quickly show the robot an exploration action

to perform (Figure 3.8). Most prior work use one or two simple primitives (e.g. push is

popular), whereas here we have five primitive actions with a range of complexity.
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Figure 4.2: Components and information flow of the system. Action Acquisition builds an
action trajectory from human demonstration. In Human-Guided Exploration, environmen-
tal scaffolding yields successful and “near-miss” interactions. This data is then used during
Affordance Modeling to build a set of generative object-action models where in Affordance
Testing, they are used to determine if an object has an affordance.

(2) Human-Guided Exploration: As described in Chapter 3, we use human-guidance

to perform environmental scaffolding (Mascolo, 2005) to allow the robot to quickly gather

interactions with the environment. Aside from quickly collecting high-quality data from

the interaction, this step provides an important piece of information to the robot. With

no initial information about what affordance the robot is looking for, guidance inherently

provides the specific affordance of the action-object pair; it defines the objective for the

robot to achieve.

(3) Affordance Modeling: We generate two HMMs (success and “near-miss”) as de-

scribed in Chapter 3. In this chapter, we focus on learning affordances that have a diverse

range of actions that can achieve the affordance. By modeling each object-action pair as

two HMMs, this allows the robot to not only learn what an affordance feels like, but also

provides a library of actions for different ways in which the affordance has been achieved.

For instance, there are multiple ways for an object to be open-able (e.g. open a drawer by

pulling, open a jar by twisting the top) and by modeling each of these methods, the robot

now has access to a library of actions to explore a new object to find the affordance.

(4) Affordance Testing: As described in Section 3.5 we evaluate the learned models

by monitoring the effect of the execution of each object-action pair for that affordance. We

do this within object-action pairs as well as across object-action pairs.

The remainder of the chapter, is focused on our implementation and validation of each
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of the four main components mentioned above.

4.2 Hardware Platform

We use the robot platform “Curi” and in this chapter, utilize just the left arm. Curi is

positioned in front of a table with an object on it (Figure 4.1). Above the table is a ASUS

Xtion Pro RGB-D sensor. We segment the objects on the table using the point cloud data.

The object’s pose (position and orientation) and bounding box are recorded.1

4.3 Action Acquisition

We taught Curi two affordances (scoop-able and open-able), which results in five separate

actions to interact with seven different objects. The actions range in complexity starting

with simple actions that can be easily executed by the robot (e.g. pushing) to more realistic

actions on objects that can be found in homes (e.g. scooping pasta, opening drawers).

The first action is on the objects shown in Figure 4.3, where the same scooping motion is

repeated using three different, but similar objects. We then increase the difficulty of the

task by selecting an affordance that require four different actions over varying objects. The

set of objects shown in Figure 4.4 are all open-able, but require different low-level actions.

The object-action pairs are listed in Table 4.1. To increase the stability of some of the

lighter objects during interaction, Curi’s non-functional right arm was propped up and the

weight of the arm prevented the objects from sliding. This was done for the objects Pasta

Jar, Wooden Box, and the bowl of macaroni during all of the scoop actions.

4.4 Human-Guided Exploration

Next we collect a dataset of haptic information during object-action interactions for each

of the seven object-action pairs described in Table 4.1. Each action was executed by the

1While the visual data is not used in this chapter, we record it to allow for future integration with systems
using visual affordance learning.
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Table 4.1: Affordances

Object Action Effect Affordance
Cup 1 Scoop Macaroni in container scoop-able
Cup 2 Scoop Macaroni in container scoop-able

Parmesan Bottle Scoop Macaroni in container scoop-able
Pasta Jar Lift Cap Lifts open-able
Drawer Pull Drawer slides open-able

Wooden Box Push1 Lid opens open-able
Bread Box Push2 Lid opens open-able

Figure 4.3: Scoop-able objects: Left-to-right - Bowl of macaroni, Cup 1, Cup 2, Parmesan
Bottle

robot 20 times on the same object, such that 10 interactions successfully found the affor-

dance on the object and 10 were unsuccessful “near-misses”. This was done by moving the

object around by the human2 and hand labeling when the interaction did or did not find the

affordance. As “near-misses” occur naturally when executing a skill, overall, extra interac-

tions were not necessary to achieve an even split of successful and “near-miss” examples.

For the open-able affordance, “near-misses” often included interactions where Curi missed

the handle or lid of the object. For the object-action pairs in the scoop-able affordance,

“near-misses” were instances where the cup dragged along the macaroni, but did not get

any macaroni in the cup. During each interaction, the robot records: F/T data from the

wrist sensors (example in Figure 4.5), object pose information, and all joint positions.

As mentioned previously, in some cases, it is visually very difficult to see when these

actions find the affordance and could easily fall within the noise of a RGB-D sensor. For

example, it was difficult for even the experimenter (the author) to detect the change in

2in this chapter, the teacher is the author
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Figure 4.4: Open-able objects: Left-to-right - Pasta Jar, Drawer, Wooden Box, Bread Box

amount of macaroni in the large bowl and in the cup. This suggests that using haptic

feedback during action execution is important to fully understand the objects and object

affordances.

4.5 Learning Haptic Affordance Models

With the data collected, we build two haptic models (success and “near-miss”) for each of

the seven object-action pairs. This results in two different haptic affordance models: one

for open-able and one for scoop-able.

By training two models for each skill, we can use the HMMs to monitor the success

or failure of a skill. We can use the success of the skill to determine if an object has an

affordance that the robot can perform. To train HMMs, we split the data into train and test

sets. The detail and results of the training are described in this section.

4.5.1 Hidden Markov Models

As described in Chapter 3, we represent each object-action object pair using two HMMs. In

this chapter, the observation state-space O is [Fx, Fy, Fz, Tx, Ty, Tz] where F are the forces

and T the torques. For our implementation, we used the Python library scikit-learn (Pe-

dregosa et al., 2011).
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Figure 4.5: An example of force data we collect from the sensor during a scooping skill.
The yellow shaded portion indicates the time period when the hand is in contact with the
object. The top graph is a success and the bottom a “near-miss”.

4.5.2 Training

We split the data randomly into a train (80%) and test (20%) set for each object-action pair

and each type of model (i.e. 8 training and 2 testing interactions for both success and “near-

miss”). We select the optimal number of states (between 2-6 states inclusive) for the HMMs

by performing leave two-out cross-validation (CV). With 8 interactions in the training set,

this results in 28 CV sets where each set has a different variation of 2 trajectories removed

for testing.

4.5.3 Modeling Results

For each object-action pair, we look at whether the models can determine success versus

“near-miss” for each test interaction. Per Section 3.5, correctly monitoring the success and

“near-miss” of an object-action pair allows us to test for affordances in objects. Therefore,

to evaluate our models, we look at how the models perform at monitoring test interactions.

We use the standard binary classification metrics of precision, recall, and F1 as defined in

Table 3.1 in Chapter 3. The interaction is classified as successful if the log-likelihood of the
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Table 4.2: Affordance Skill Monitoring Results

Object-Action Pair Precision Recall F1 Accuracy
Cup 1-Scoop 0.50 1.00 0.67 0.50
Cup 2-Scoop 1.00 1.00 1.00 1.00

Parmesan-Scoop 0.67 1.00 0.80 0.75
Pasta Jar-Lift 1.00 1.00 1.00 1.00
Drawer-Pull 1.00 1.00 1.00 1.00

Wooden Box-Push1 1.00 1.00 1.00 1.00
Bread Box-Push2 0.00 0.00 0.00 0.50

successful model is greater than the log-likelihood of the unsuccessful “near-miss” model.

The resulting scores for correctly determining each object-action pair can be found in

Table 4.2. Overall, each of the models perform well at determining if the test interaction

within each pair was successful versus “near-miss”, with four object-action pairs achieving

a perfect F1 score and another with a score of 0.75. This could be attributed to the fact

that “near-misses” and successes have very unique F/T readings. For example, when lifting

the lid off of the jar, the robot ended up with the weight of the lid firmly in its hand vs.

having no weight at all. The two exceptions to this are scooping with the small blue cup

and opening the bread box. For Cup 1, the models were overly optimistic, with all of the

trajectories being classified as succeeding. This could be due to the interactions having

more noise than Cup 2 and Parmesan Bottle because of the rigidness of the object. While

scooping, Cup 2 and Parmesan do not deform as greatly as Cup 1. For detecting if Curi

opened the Bread Box, the models were overly pessimistic with none of the test trajectories

being classified as successfully opening the box. We believe that this is because “near-

misses” often still pushed on the object and the sensory readings look similar to pushing

on the handle successfully. This difference in sensory readings across actions and objects

is explored in more detail in Chapter 6.
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4.6 Affordance Testing

The next evaluation is a case study of how well existing object-action pairs can classify

other object-action pairs within the same affordance. As described in Section 3.5.4, this is

an offline approach to testing transfer of object-action pairs within affordances. We present

this section to show the limits of using only the previously built object-action pairs to gen-

eralize to other interactions from existing object-action pairs. More specifically, whether

two different object-action pairs can be correctly identified to be the same affordance. It

is interesting to note that for the scoop-able affordance, by using the same action across

similar objects, we are in fact simulating how well testing an unseen object could possibly

perform.

4.6.1 Experiment Setup

To test if the affordance model can classify an existing object-action pair, we use leave-

one-object-out cross validation within an affordance to demonstrate how a robot might

test an object for that affordance. This results in three tests for scoop-able and four tests

for open-able. For example, to test if the Cup1-Scoop pair would be classified as hav-

ing the scoop-able affordance, we remove the model learned from the Cup 1 interactions

completely and all interactions with Cup 1 then become the test set (10 successful and 10

“near-miss” trajectories). For each test interaction, we use each object-action model within

the affordance to evaluate the log-likelihood of that interaction. For scoop-able, this results

in 4 different log-likelihood values (from each of the successful and “near-miss” HMMs)

and for open-able, 6 log-likehood values. We label an object as having the affordance if the

log-likelihood value is greatest with a successful HMM and not if the value is greatest with

a “near-miss” HMM.
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Table 4.3: Scoop-able Leave One Object Out

Object-Action Pair Precision Recall F1 Accuracy
Cup 1-Scoop 0.50 0.10 0.17 0.50
Cup 2-Scoop 0.77 1.00 0.87 0.85

Parmesan Bottle-Scoop 0.59 1.00 0.74 0.65

Table 4.4: Open-able Leave One Object Out

Object-Action Pair Precision Recall F1 Accuracy
Pastajar-Lift 0.50 1.00 0.67 0.50
Drawer-Pull 0.44 0.89 0.59 0.42

Wooden Box-Push1 0.00 0.00 0.00 0.50
Bread Box-Push2 0.60 0.60 0.60 0.60

4.6.2 Results

The results of affordance testing can be seen in Table 4.3 for scoop-able and Table 4.4 for

open-able. However, unlike the results in Section 4.5, it is difficult to fully understand what

a “near-miss” example should be classified as given that the interaction was on an object

that did indeed have that affordance. Instead, it makes more sense to look only at the

interactions that successfully found the affordance. This is shown in Fig. 4.6 and Fig. 4.7

with accuracy values for successful interactions reported separately from “near-misses”.

We only include the full precision, recall, and F1 scores in Table 4.3 and Table 4.4 and

the accuracy scores of the “near-miss” interactions to show that the models are not merely

classifying all interactions as having the affordance.

For scoop-able, the object-action pairs correctly identify an unseen object for both Cup

2 and Parmesan Bottle with accuracy scores of 65% and 85% respectively. Interestingly,

Cup1-Scoop does not perform as well. This suggests that the interactions from Cup1-Scoop

were not as easily distinguishable, which is supported by our results in Section 4.5. The re-

sults of scoop-able show that for an affordance with relatively similar objects, it is possible

to identify an unseen object using the learned object-action models. We look next at how

well object-action models perform on an affordance that requires very different actions on

dissimilar objects. As expected, scoop-able outperforms open-able for identifying an af-
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Figure 4.6: Scoopable: Accuracy values for Leave One Object Out. The figure shows the
accuracy breakdown between successful and “near-miss” interactions

fordance on unseen objects with an average accuracy score of 67% where open-able has an

average accuracy of 53%. As expected, the performance for identifying the open-able affor-

dance on unseen objects is lower than that of scoop-able. Within open-able, the only object

that the models could reasonably classify were those of BreadBox-Push2. While the accu-

racy of PastaJar-Lift and Drawer-Pull are high for successful interactions, it is unclear if it

is due to the models truly finding the affordance because all of the interactions (including

“near-miss” interactions) were labeled as finding the affordance. For WoodenBox-Push1,

the object-action pairs were conservative and did not label any interactions successfully

finding the affordance. This could be due to the small F/T values overall felt during the

push compared to the other actions that opened objects.

We believe this difference in performance between the two affordances can be attributed

to different actions required to find each of these affordances, with open-able requiring

more varying actions and scoop-able using similar actions. This suggests that for affor-

dances that require different actions, additional work must be done to adapt and recognize

each action (e.g. increasing the number of object-action pairs, including self-exploration,

integrating visual information).
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Figure 4.7: Openable: Accuracy values for Leave One Object Out. The figure shows the
accuracy breakdown between successful and “near-miss” interactions

4.7 Findings of Learning Haptic Affordances with Human Guidance

The results of both monitoring and affordance testing show that human-guided affordance

learning can successfully learn multiple haptic object-action pairs by using LfD and human

guidance to initiate the exploration and ground affordances with F/T sensing. For five of

the seven object-action pairs, we achieve high F1 scores at identifying successful execution

of the action on the object. We then show that affordance monitoring using multiple object-

action pairs can correctly identify the scoop-able affordance on an unseen object with high

accuracy. More importantly, our approach allowed us to quickly generate vastly different

actions for exploration, which allowed us to analyze and gain insight into affordances not

typically explored in the robotics community.

4.7.1 Action Variability

Scoop-able outperforms open-able and we believe this is due to the inherent difference be-

tween the affordances open-able and scoop-able. While there are several different methods

to open an object, there are far fewer ways to scoop. Furthermore, actions vary signifi-
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cantly between the different methods of opening vs. scooping. For example, testing if any

object can scoop macaroni, would result in similar sweeping motions with slightly different

rotations in the wrist and end-effector offsets (e.g. scooping with a spoon or ladle). How-

ever, as seen in this chapter, open-able can break down into several different affordances.

One can imagine open-able as comprising of various affordances (e.g. lift-able, pull-able,

push-able) while scoop-able is the “lowest” level of the affordance. However, modeling

and understanding “high-level” affordances such as open-able is crucial for robots to truly

plan and execute tasks. This interesting distinction between the generality and specificity

of different affordances is further explored in Chapter 6. Our end goal is for robots to

reason about high-level affordances at the task planning stage, but then dive down into the

low-level representations of how to achieve that affordance on different types of objects

when it comes time to decide how to control the manipulator.

4.7.2 Action Generation

While our current system demonstrates capabilities to test for specific object-action pairs,

it cannot adapt to new objects. Later chapters of this thesis tackle this directly by building

hybrid control models that use position and haptic feedback to adapt to new objects. This

work on action generation fits within the framework of this chapter as it augments the

human provided trajectory with robot-generated ones.

4.7.3 Contributions

This chapter showed that in studying haptic affordances, we can begin to understand the

role haptics plays in discovering object functions and come closer to building a repre-

sentation of skills that will allow a robot to achieve tasks in a variety of environments.

Furthermore, we have demonstrated that using LfD allows us to quickly provide concrete

examples to the robot and allow the robot to discover the “action possibilities” that ex-

ist for the robot as opposed to any agent. This generated trajectory provides a means to
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act to sense the environment and human-guided exploration provides a means to obtain

high-quality grounded examples of affordances. The results of this chapter highlight two

main pillars of this thesis: the importance of representing affordances with more than just

visual data and the benefits of using human demonstrations for affordance learning. The

rest of this thesis builds on these core components, and dives deeper into the methods and

algorithms that use these core components.
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CHAPTER 5

HUMAN-GUIDED ROBOT SELF-EXPLORATION

A major challenge for self-exploration in robot affordance learning is how to determine

where to interact with the environment. In Chapter 4, we employed a method of environ-

mental scaffolding and human-guided exploration that required a human teacher to modify

the environment. However, requiring a human teacher to modify the environment for the

robot is tedious. Furthermore, the human teacher in Chapter 4 was an expert. In this chap-

ter, we look at the questions of How can we improve this process to require minimum effort

from the human teacher? and Can naı̈ve human teachers help the robot learn affordances

similarly to experts? To address these questions, this chapter explores different approaches

to utilize human guidance and robot self-exploration with naı̈ve human teachers.

We compare three approaches to affordance learning: (1) the traditional self-exploration

strategy where the robot exhaustively interacts with the workspace; (2) a human-supervised

exploration strategy where a human provides example object interactions from which the

robot learns; and (3) a combined human-guided approach that performs self-exploration

biased by information provided from human teachers. We compare these three strategies

by learning five affordances across four different objects and show that a human-guided

approach can learn an affordance model that is as effective as exhaustive self-exploration

with an order of magnitude fewer interactions with its environment.

This chapter first explores the result of the exploration algorithms in aggregate across

10 individual teachers. Then the chapter dives into differences between the teachers and an-

alyze the causes for why some users’ demonstrations are more informative for exploration

than others.
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Figure 5.1: A naı̈ve user during the user study teaching “Curi” the robot that the drawer
has the open-able affordance.

5.1 Exploration Space for Affordance Learning

As described in Chapter 3, robots need to interact with the environment and observe the

effects their actions have on the environment to learn affordances. However, how the robot

should interact with the environment is an open question and the space of possible actions

the robot can take is infinite. For example, in the simplest case, if the agent’s actions are

discrete, it could try all actions on all objects and model the outcomes. However, a better

method is required to efficiently sample the infinitely large space of real-world actions the

robot could perform to manipulate an object. For example, to open a drawer such as the one

seen in Figure 5.1, there are an infinite number of directions a robot could move the drawer

in before discovering that it needs to pull the drawer towards itself in a horizontal line. In

Chapter 4, we left this exploration process completely up to the expert human teacher by

performing environment scaffolding. In this chapter, we consider several novel approaches

to reduce the burden on the teacher by adding robot self-exploration.
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To make the object exploration tractable using robot self-exploration, we provide the

robot with a set of parameterized primitive actions. The exploration space is then defined by

the continuous-valued parameters for each primitive action. This choice of representation

has gained traction in the reinforcement learning community and has shown great promise

with learning actions and skills (Kober et al., 2012; Silva et al., 2014). Consider again the

drawer example. Now the opening action can be a primitive defined with three parameters

(start, close-hand, and end poses). Note that this still results in a sample space that is

infinitely large because these actions parameters are continuous-valued poses of the end-

effector. Thus, we present and compare five different strategies in Sections 5.2 and 5.3 for

efficiently sampling this space to collect a sufficient set of examples to build object-action

affordance models.

For this chapter, we used the same robot “Curi” as in Chapter 4 and seen again in

Figure 5.1.

5.1.1 Objects and Actions

We selected four household objects (Figure 5.2) for the robot to interact with. Each of these

are tracked using the RGB-D sensor throughout the interaction, from which we record

visual object information commonly used in affordance learning (Thomaz and Cakmak,

2009; Montesano et al., 2008) (in 3D space rather than 2D images). We record the color,

orientation, volume of the bounding box, the dimensions of the bounding box (x,y,z), and

the squareness of the object (the ratio of the number of points in the object to the area of

the bounding box). We also store information from the 6-axis F/T sensor in the wrist (Fx,

Fy, Fz, Tx, Ty, Tz) and the robot end-effector (EEF) position relative to the centroid of

the object point cloud. This feature vector contains 18 values: 9 (visual), 6 (F/T), and 3

(EEF) and is how we represent the effect of object-action pairs for the affordance learning

problem.

The robot can perform two parameterized action primitives: move and pick. Each is
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(a) Closed bread box (b) Closed drawer (c) Pasta Jar (d) Lamp off

(e) Opened bread box (f) Opened drawer (g) Pasta Jar (h) Lamp on

Figure 5.2: Shown are the various objects the robot explored. The top row are the objects
before interaction and the bottom row include the same objects with the effect the robot is
looking for. Note: pushing the drawer and pasta jar shift the object on the table.

a sequence of EEF poses relative to the centroid of the object point cloud. The EEF pose

is the position and orientation of the robot hand for all 6 DOFs. A move action has two

EEF poses (start and end). The pick action has three EEF poses (start, where Curi closes

its hand, and end). For both primitives, we generate a trajectory for the EEF by performing

a quintic spline between the EEF poses with an average velocity of 1 cm/second. The two

actions can be seen in Figure 5.3 where naı̈ve users from our user study are demonstrating

pick and move actions on the lamp and the drawer respectively.

While all poses are needed to define the primitive action, this work will only modify

the parameters of the final pose for each primitive action due to the sheer number of object

interactions needed to explore the continuous-valued parameters of all poses in a primitive

action. This is a reasonable simplification since the start pose can be initialized by putting

the EEF near the object, as is common in existing affordance work (Fitzpatrick et al., 2003;

Hermans et al., 2013b). For both primitive actions in this work, the final pose has the

largest impact on successful execution (e.g. the final pose is key in making the move action

succeed in pushing an object).
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(a) “Start here” (b) “Close your hand” (c) “End here”

(d) “Start here” (e) “End here”

Figure 5.3: Shown are the two primitive actions (pick and move) taught by users during the
user study by using keyframe-based kinesthetic learning from demonstration while the arm
is in gravity compensated mode. The users indicate poses within a keyframe using voice
commands seen below each image. The pick action (5.3a,5.3b,5.3c) consists of a start,
close, and end pose and is being demonstrated on the lamp. The move action (5.3d,5.3e)
consists of a start and end pose and is being demonstrated on the drawer

5.1.2 Affordances

The five specific object-action pairs and their corresponding affordance used in this chapter

are described below and summarized in Table 5.1. The effects of each object-action pair

can be seen in Figure 5.2. These selected affordances represent a range of difficulty: sim-

ple affordances that can be found in a large part of the action space during exploration (e.g.

push-able can be found in a variety of ways) while complex affordances require interacting

with the object along a specific dimension of the action primitive space (e.g. open-able on

the drawer requires the robot to pull the object towards itself in a particular way, represent-

ing a small subset of the object-action exploration space).

• Bread box: The lid of the breadbox can be opened with a move action. Affordance:
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open-able.

• Pasta jar: The pasta jar can be pushed across the table. Affordance: push-able.

• Drawer: The drawer unit is light enough that the robot can push it across the table.

It also contains shelfs that can be pulled open. Affordance: push-able, open-able

• Lamp: When the string attached to the lamp is pulled far enough, the lamp turns on

Affordance: Turn on-able.

Table 5.1: Affordances

Object Action Effect Affordance

Breadbox Move Moves up open-able
Pasta jar Move Moves push-able
Drawer Move Moves push-able
Drawer Pick Pulls out open-able
Lamp Pick Pulls down turn-on-able

The question we ask in this chapter is how to best sample the space of our primi-

tive actions’ continuous-valued parameters to interact with objects and collect effective

examples for affordance modeling in a way that is efficient. We present two baseline ap-

proaches, Self-Exploration (SE) and Human-Supervised Exploration (HSE), and compare

these to three strategies that represent a combined approach: Guided Aggregate Exploration

(GAE), Guided Iconic Exploration (GIE), and Guided Boundary Exploration (GBE). All

five of these are detailed in the following two sections.

5.2 Baseline Exploration Strategies

Typical self-exploration strategies in robot affordance learning (Fitzpatrick et al., 2003;

Stoytchev, 2005; Hermans et al., 2013b) exhaustively sample the space of action parame-

ters. These strategies know only that it should perform actions around the object and the

main decisions needed to discretize the space of action parameters relate to (1) what range
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Figure 5.4: Shown above is a visual example of the self-exploration algorithm. The algo-
rithm is viewed in two-dimensions to be visually clear. The exploration is centered around
the starting position of the object and the two depths of exploration are shown in two dif-
ferent shapes.

the robot should explore around the object and (2) the resolution (step-size) to use in sam-

pling. We present our version of self-exploration, SE, below (Algorithm 1 and visually in

Figure 5.4). To understand the importance of these two variables on exploration, consider

the following section.

5.2.1 Self-Exploration (SE)

To represent all 6 DOFs of the EEF, requires three variables (x,y,z) to describe the position

and three variables (rx, ry, rz) to describe the orientation in Euler space. However, in

practice, it is infeasible for the robot to perform exploration in all six dimensions. For

example, suppose we only vary the orientation of the EEF between −90◦ and 90◦, with

a step-size of 90◦ and the position between −α and α with a step-size of α. Assume α
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Algorithm 1 Self-Exploration (SE)
1: procedure COMPUTEPERMUTATION(v = [v0, v1, ...vn])
2: Pset ← set of permutations of (x, y, z) ∀x, y, z ∈ v
3: Pset ← Pset − {(0, 0, 0)}
4: return Pset
5: procedure GENERATEEXPLORATION(expert dist. d)
6: α← d+ 10cm
7: D1 ← ComputePermutation([−α, 0, α])
8: D2 ← ComputePermutation([−α, −α

2 , 0, α2 , α])
9: Unique← (D1 ∪D2)− (D1 ∩D2)

10: ExploreSet← Random(Unique, 100)
11: return ExploreSet

is a constant selected to guarantee the search covers some maximum distance needed for

the EEF to have a chance at achieving the object-action pair in question. Even this coarse

exploration of the action space results in 676 interactions per EEF pose per object-action

pair and, realistically, a higher resolution search will most likely be needed to find the

affordance.

It is infeasible for the robot to perform all exploratory actions for all five object-action

pairs and all possible primitive action parameter poses. To reduce the number of ex-

ploratory actions, we only sample the space of parameters of the final pose of each primitive

action. An expert (one of the authors) provides a starting pose (position and orientation)

for move and a start and close pose for pick. These are provided to be ideal for achieving

the affordance. We believe it is a reasonable assumption to provide the start/close pose,

because there exist state-of-the-art algorithms that find the best grasp/interaction points for

a wide range of objects (e.g. the handle of the breadbox or the ball on the chain for the

lamp). Furthermore, providing this information only helps self-exploration by providing

expert information as to where the robot should be interacting. With this assumption, SE

exhaustively explores the position (x,y,z) of the final end pose for each primitive action.

While varying the orientation could provide additional ways to achieve an affordance, we

fix the final pose orientation to be the same as the start pose to keep exploration tractable.

Even with these constraints, the number of explorations generated can still result in an
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impractical number of exploratory actions. Thus, we limit the number of samples to 100

actions per object.

To generate these 100 samples, we demonstrate one successful interaction with each

object to calculate the maximum distance (α) the EEF must travel to achieve each affor-

dance. To ensure this is a conservative estimate we extend the expert demonstrated dis-

tance, d, (α = d + 10cm), resulting in the maximum distance the SE samples to create

exploratory actions. Rather than provide more information to SE about the resolution to

sample within these maximum bounds, we adaptively split the action parameter space in

half until we reach the designated 100 samples. Thus, we start with a coarse exploration of

the space, and continue to sample at a higher resolution until we reach 100 samples of the

action space. First, we explore all possible permutations of the three dimensions (x,y,z)

for the discrete values: −α, 0, and α. This has 27 different permutations, but we remove

the interaction where nothing changes (0, 0, 0) for a total of 26 EEF poses to execute as

exploratory actions on the object, which we call D1. To sample at a higher resolution, we

split the step-size in half, resulting in five discrete values: −α, −α
2

, 0, α
2

, and α and a total

of 125 permutations. Again, we remove (0, 0, 0) as well as any actions already included

in D1, resulting in 98 new EEF poses, which we call D2. This adaptive split can be seen

visually in 2-dimensions in Figure 5.5. To limit each object-action pair to 100 samples, we

randomly select 74 interactions from D2 to add to the 26 interactions of D1. Together, D1

and D2 compose the exhaustive set of interaction samples for SE.

Note, as mentioned earlier, to make SE tractable, we provided expert information to

the algorithm in the form of the start position and orientation of the EEF as well as the

maximum distance (α) that the EEF has to explore to find the affordance.

5.2.2 Human-Supervised Exploration (HSE)

The next baseline approach uses a human teacher to fully supervise the collection of ex-

amples of object-action interactions. Through action demonstrations, the human teacher
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provides successful or unsuccessful examples of the affordance. Our approach, HSE, is the

same as described in Chapter 4.

For HSE, we collect data from people in the campus community who had not interacted

with our robot before. They used the same two action primitives (move and pick) that the

robot uses during SE. Users teach a move action by moving the arm to a start pose and then

an end pose, and a pick action by moving the arm to a start, grasp, and end pose, which can

be seen in Figure 5.3. The robot creates an action trajectory in the same manner as SE, by

splining between the action poses. The data used for affordance learning is collected when

the robot autonomously executes this human-taught action on the given object. This allows

the robot to record the visual and haptic sensory data without erroneously capturing noise

from user contact.

We conducted a user study with 10 participants (5 male, 5 female) from a college cam-

pus. At the start of their session, participants were instructed briefly on the definition of

affordances as well as how to verbally command and move the robot for kinesthetic teach-

ing. For practice, they taught two actions on two objects: lifting the lid off a jar with the

pick action and tipping an object over with the move action. These affordances are not

included in our analysis. Once they were comfortable with how to control the robot and

had performed several example affordances, we began their real data collection.

The participants taught the robot about the 3 affordances over the 4 objects described

in Table 5.1 for a total of 5 object-action pairs. For each object, they were told the specific

action (move or pick) to use and the effect to show the robot. We instructed them to think

about what strategy they might use if they were to teach a child about that specific affor-

dance. Participants were instructed during this time to also think about negative examples

as a good way to teach a child about an affordance. However, we wanted to see how people

teach robots about affordances naturally. Thus, we did not force users to provide negative

examples or provide guidance as to how they should teach the robot. A single example

for affordance learning was collected each time the robot executes the taught action au-
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Table 5.2: Number Examples from Each Exploration Strategy

Object Action SE HSE GAE GIEa GBEa

Breadbox Move 100 64 31 12 9
Pasta jar Move 100 48 30 12 9
Drawer Move 100 51 31 12 9
Drawer Pick 96 41 31 12 9
Lamp Pick 100 51 N/A N/A N/A

a These are the number of examples generated for each user
model, since these approaches operate on an individual user
basis.
N/A means there were not enough examples for that strategy

tonomously. To generate multiple object-action examples, participants could either move

the object and repeat the previous action or they could teach a new action.

For the complex object-action pairs (i.e. breadbox-move, drawer-pick, and lamp-pick),

participants were given 10 minutes to provide examples to the robot. For the simple pairs

(pasta jar-move and drawer-move), they were given 5 minutes. The motivation for this

difference was based on pilot studies. For simple affordances, users quickly developed

strategies for teaching, whereas complex affordances required more time and trials for the

user to develop a strategy to get the robot to perform the desired user action. The selected

time constraints facilitate the collection of several interactions of each object-action pair

and limit each study to within an hour, thus preventing user fatigue. To control for ordering

effects in the data, we counter-balanced the order in which the five object-action pairs were

taught across users. At the end of the experiment, participants answered a single open-

ended survey question that asked them about their teaching strategy. The total number of

examples collected across all 10 users can be seen in Table 5.2.

5.2.3 Active Exploration Baselines

While there exist active exploration methods that use human guidance, such as intrinsic

motivation (Nguyen and Oudeyer, 2014) and the approach from Nguyen and Kemp (2014),

both of these methods require additional information from an expert. Intrinsic motivation
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requires a carefully crafted reward signal, which becomes difficult for naı̈ve users to pro-

vide. Furthermore, it is unclear how to create reward signals for a wide variety of different

motion without carefully hand-tuning each reward signal to each affordance. For example,

in this work, pushing, opening the drawer, and turning on the lamp, would all require their

own custom reward signals.

The approach from Nguyen and Kemp requires that the initial set of visual features to

select from be available prior to execution. Specifically, the approach selects the best start-

ing position for the robot to explore and has an expert provide the behaviors (i.e. actions)

the robots executes after the start has been selected. In this work, we search in the end pose,

which is necessary for certain affordances that can vary widely in goal state (e.g. pushing

an object). As a result, we cannot rely on the visual features provided prior to execution

to actively select the next search location. It is important to note that the initialization for

the search space (i.e. searching around a point with a Gaussian sphere) is similar to the first

guided exploration strategy described below (GAE), however, GAE does not assume the

shape or size of the Gaussian, and instead learns that from the demonstrations provided by

the human teachers.

Due to these limitations for active exploration algorithms, we do not include any active

exploration baselines for this work.

5.3 Guided Exploration Strategies

While users provide key information and useful examples of affordances, it is cumbersome

to have people provide an exhaustive set of examples for each object-action pair. During

self-exploration, the robot can easily generate an exhaustive search, but has no real concept

of where to focus that search. Combining the strengths of both approaches should yield

the best of both worlds. Our primary research question is how to effectively bias SE with

information from human teachers. In this section, we present three novel strategies that

differ in how they integrate teacher input for exploration.

60



5.3.1 Guided Aggregate Exploration (GAE)

Figure 5.5: Shown is a visual example of the GAE algorithm. The algorithm is viewed in
two-dimensions to be visually clear. The exploration is centered around the mean ending
position of the first demonstrated by all of the users and exploration is bounded by the
variance of the demonstrations.

Our first approach, GAE (Algorithm 2), takes an aggregate view of the guidance that

people provided from HSE. The algorithm is described in detail below and shown visually

in 2-dimensions in Figure 5.5. For each object-action pair, we build a new set of samples

in the action space based on the mean and variance of the final EEF position of each first

action shown by the ten people in our study. We use only the first action from each user

to create a strategy that could be generated using a person’s first intuition for teaching the

affordance. However, this is difficult to achieve using just one action primitive and so we

built a set that contains the final position of the first action from all users. More concretely,

let pn be the final EEF pose from the first demonstration by user n. Now we define P(j,i) as

the set of final EEF positions from all users’ first demonstrations for an object-action pair
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Algorithm 2 Guided Aggregate Exploration (GAE)
1: α← expert demo dist. +10cm
2: p(j,i) ← {p1...pn} for n = 1...10
3: µji = mean(p(j,i))
4: σ2ji = variance(p(j,i))
5: ~rchange ← µji − EEFstartposition
6: ~echange ←

~rchange

||~rchange||2
7:
8: procedure GENERATEEXPLORATION

9: exploreRegions = [µji, µji + σ2ji, µji − σ2ji]
10: ExploreSet← ComputePermutation(exploreRegions)
11: c← 1
12: ~pchange ← (0, 0, 0)
13: while ‖~pchange‖ < α do
14: ~pchange = ~echange ∗ c ∗ α
15: ExploreSet← ExploreSet ∪ {~pchange}
16: c++

return ExploreSet

(oj, ai): P(j,i) = {p1...pn} for n = 1...10. We compute the mean (µji) and variance (σ2
ji) of

P(j,i), which represents an aggregate of the human provided input, and use them to generate

new sample points in the action space. Note that each value contains three numbers (for

each axis).

During SE, we sampled the final position of the EEF by adaptively splitting the action

space about the starting position using an expert defined α. In GAE, we instead replace

α with the computed σ2
ji and center the sampling of the final position of the EEF using

µji. This generates an action primitive that starts at the same position defined by the expert

and ends using all permutations of the three dimensions (x, y, z) for the discrete values:

µji + σ2
ji, µji, and µji − σ2

ji. For each object-action pair, we have 27 sample locations and

use the same EEF orientation used during SE. This strategy explores along the dimensions

(x,y,z) of high variance, which are locations in the action space where the object-action

can be discovered in a variety of positions. It also constrains the exploration in dimensions

of low variance as these are important to finding the affordance.

Additionally, while collecting the SE interactions, we noticed that each object-action

pair had a direction of change. For example, the open-able drawer affordance, requires
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moving the EEF perpendicular to the drawer towards itself and the open-able breadbox at

an angle away from itself. To focus the exploration along this direction of change (~echange),

we do an additional sampling of the EFF action space along this dimension. The ~echange

is actually the unit vector between the start (or close) and end positions of the EEF in the

action primitive. To explore along this dimension, we scale ~echange by different magnitudes

and use the resulting vector as the position in the final EEF pose.

To compute ~echange, we subtract and normalize the expert selected starting position from

µji. For consistency, we use the same resolution from SE (α) as the base increments to the

magnitude. Precisely, ~echange = ~rchange

||~rchange||2
where ~rchange = µji − EEFstartposition and the

final EEF position is ~echange ∗ c ∗ α where c = {1...C}. C is the max number of times

we can increase the magnitude by before we reach the max exploration distance allowed

(set in SE: α). This results in 3 new interactions for pasta jar-move and 4 for all other

object-action pairs.

5.3.2 Guided Iconic Exploration (GIE)

Our next approach, GIE (Algorithm 3 and shown visually in Figure 5.6), uses each human

teacher’s input individually to bias the exploration of the action space rather than relying on

the aggregate of several teachers. Specifically, we use only two samples (the first successful

an(S) and the first failed an(F ) interaction) from user n to generate a new set of samples.

We select an(S) and an(F ) because this provides crucial information on the location of

the boundary between affordance success and failure in the action space. Furthermore,

selecting an(S) and an(F ) allows us to determine the viability of having a user provide

two samples of the space and having the robot take over afterwards.

We define ~rSF to be the vector extending from S to F , where S is the position (3D) of

the EEF in the final pose of an(S), and F is the final position of the EFF in an(F ). The L2

norm of ~rSF provides a crucial piece of information that, during SE, we had to get from an

expert: the exploration resolution the robot should use to achieve the affordance. We can
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Figure 5.6: Shown is a visual example of the GIE algorithm. The algorithm is viewed
in two-dimensions to be visually clear. The exploration uses the first successful and first
unsuccessful demonstrations to determine the resolution of exploration as well as where in
the space to explore around.

look for the iconic or prototypical examples of successful and failed interactions by adding

and subtracting ||~rSF ||2 from the final pose of the EEF in the action primitive provided by

the user in all dimensions (x, y, z). This results in 6 final EEF poses for an(S) and 6 final

EEF poses for an(F ) for a total of 12 final EEF poses. Each of the computed final EEF

poses are used to generate primitive actions by replacing the final EEF pose of the primitive

action provided by the user.

Note that all poses in the primitive action are generated from the user provided sample.

Therefore, not only are we inferring the resolution of the search space with ||~rSF ||2, but we

also no longer need an expert to define the start or close pose of the EEF primitive action.

This is particularly important for instances where the a robot manipulator is not standard or
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Algorithm 3 Guided Iconic Exploration (GIE)
1: S ← EEF position of final pose in an(S)
2: F ← EEF position of final pose in an(F )
3: ~rSF ← (F − S)
4: procedure GENERATEEXPLORATION

5: ExploreSet← []
6: for p in [S,F ] do
7: ExploreSet← ExploreSet ∪ {[px ± ‖~rSF ‖2, py, pz]}
8: ExploreSet← ExploreSet ∪ {[px, py ± ‖~rSF ‖2, pz]}
9: ExploreSet← ExploreSet ∪ {[px, py, pz ± ‖~rSF ‖2]}

10: return ExploreSet

easily modeled, or the object handle is not visually distinct (e.g. the small lip of a drawer).

5.3.3 Guided Boundary Exploration (GBE)

Figure 5.7: Shown is a visual example of the GBE algorithm. The exploration uses the first
successful and first unsuccessful demonstrations to determine the resolution of exploration
as well as where in the space to explore around.

In GIE, we inferred the boundary between success and fail in the action space by con-

centrating the new action samples around an(S) and an(F ). Now we introduce GBE (Al-
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(a) Approach handle (b) Moving handle

(c) Open bread box (success) (d) Approach handle

(e) Open bread box (fail)

Figure 5.8: Shown are example interactions of Curi executing the move action on the bread
box to find the open-able affordance. The top row (5.8a,5.8b,5.8c) show Curi successfully
finding the open-able affordance. The bottom row (5.8d,5.8e) shows an example of Curi
failing to find the affordance.
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Algorithm 4 Guided Boundary Exploration (GBE)
1: S ← EEF position of final pose in an(S)
2: F ← EEF position of final pose in an(F )
3: ~rSF ← (F − S)
4: procedure GENERATEEXPLORATION

5: ExploreSet← []
6: for θ in [−π

2 ,
π
2 , π] do

7: ExploreSet← ExploreSet ∪ {rotateX(S + ~rSF
2 , θ)}

8: ExploreSet← ExploreSet ∪ {rotateY (S + ~rSF
2 , θ)}

9: ExploreSet← ExploreSet ∪ {rotateZ(S + ~rSF
2 , θ)}

10: return ExploreSet

gorithm 4 and visually in Figure 5.7), which explicitly samples along the boundary. This

strategy also uses two action samples (an(S) and an(F )) from each user, and S, F , and

~rSF are the same as before.

To generate the boundary between success and failure in the action space, we use the

midpoint between S and F , and coarsely generate multiple vectors circling the midpoint.

Specifically, we take ~rSF

2
and translate it to the position halfway between S and F . We

rotate this new vector about each axis (x, y, z) for the angles π
2
, -π

2
, and π. We hypothesize

that one of these vectors is the real boundary for the action space.

GBE generates 9 different final EEF poses in the action space (3 for each axis) that

try to find the boundary between the successful and failed affordance interactions. Similar

to GIE, we generate each sample by replacing the EEF position in the final EEF pose in

an(S). Note that since we are using the vector from S to F , we only use an(S) and not

an(F ) unlike GIE, which uses both action primitives. Just like GIE, we no longer need an

expert for the start pose, close pose, or orientation of the actions primitives. Now these

come directly from the human demonstrated action sample.

5.4 Affordance Modeling

We used all five exploration strategies to select actions for the robot to execute to collect

example object interactions for all 5 object-action pairs. In total, the robot executed 1219
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interactions with the environment (SE (496), HSE (255), GAE (123), GIE and GBE (345)1).

Each interaction was hand labeled as “Success” or “Failure” depending on whether

or not the object interaction achieved the affordance. An example interaction with the

breadbox can be seen in Figure 5.8. We used the following cutoffs for “Success”:

• Breadbox (open-able) - the breadbox had to be completely open. Any interactions

where the robot only opened the box partially is a failure.

• Pasta jar (push-able) - the jar is pushed any distance without tipping.

• Drawer (push-able) - the drawer is pushed any distance.

• Drawer (open-able) - the robot has to pull the drawer out greater than or equal to

5.5 inches (the halfway point)

• Lamp (turn-on-able) - the robot has to turn on the lamp without causing the lamp

to tip/wobble

To compare the five search strategies, we attempt to train 32 separate models for each

object-action pair using the collected data; 2 for strategies that used the holistic approach

to search (SE = 1, GAE = 1) and 30 models from the strategies that build a model per user

(HSE = 10, GIE = 10, GBE = 10).

Each of these methods take a different approach on how to explore the environment and

results in different interactions used to build the affordance model. In essence we look at

the efficiency as well as the quality of examples provided by each approach. The overall

goal is to determine which strategy provided the “best” interactions for building models

of affordances. To determine what is “best”, we evaluate the accuracy of each model at

determining if an interaction successfully found an affordance. Specifically, we use binary

classification as the method of determining how the types of interactions used to model the
1GIE and GBE often explored similar locations around the object. As a result, we collected GIE and

GBE as a single set and removed similar interactions using a 2cm threshold for position and 45◦ threshold
for orientation.
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affordance impact the overall quality of the model at determining success and failure of

unseen interactions.

5.4.1 Model Representation

As described in Chapter 3, we represent each object-action object pair using two HMMs.

In this chapter, we expand the observation state-space used in Chapter 4 to include visual

and EEF information. Specifically, the observation state-space O is composed of visual

information, F/T information, and EEF relative to the object as described in Sec. 5.1.1. To

select the number of states n for each HMM, we performed 5-fold cross-validation within

the training set described in Section 5.4.2. Similar to Chapter 4, for our implementation,

we used the Python machine learning library scikit-learn (Pedregosa et al., 2011).

5.4.2 Training and Testing

We split the data collected from each strategy into two sets: train and test. The train set for

each strategy contains a randomly selected 80% of the samples from that strategy. The test

set is comprised by merging the remaining 20% of the samples from each of the strategies.

This results in a test set that contains examples from all strategies. Thus, each strategy

trains using 80% of its own sample set, but is tested on a common test set that contains

samples from all strategies. We use the standard binary classification metrics of precision,

recall, and F1 as defined in Table 3.1 in Chapter 3.

5.5 Aggregate Results

In this section we focus on the aggregate results across the 10 different teachers. Specif-

ically, we present (1) a characterization of the action space coverage achieved by each

exploration strategy (2) the classification performance of the models for each strategy, and

(3) qualitative results from the user study survey question.
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Table 5.3: Percentage of Positive Interactions Per Strategy

Object-Action SE HSEa GAE GIEa GBEa

Breadbox-Move 8% 50% 39% 35% 42%
Pasta Jar-Move 44% 77% 93% 34% 33%
Drawer-Move 43% 78% 100% 28% 36%
Drawer-Pick 18% 38% 74% 33% 44%
Lamp-Pick 2% 4% N/A N/A N/A

a Values are averaged across each user
Note: Darker shading denotes higher scores and N/A means there
were not enough examples for that strategy

5.5.1 Exploration Coverage

We first compare the exploration strategies by the total number and percentage of interac-

tions that successfully achieve the affordances. Seen in Table 5.2, the different strategies

result in dramatically different number of samples. HSE resulted in around 5 samples

per affordance, whereas SE had 100 samples. By design, all of the Guided strategies fall

somewhere between these two extremes. In prior work (Thomaz and Cakmak, 2009), it

was shown that self-exploration resulted in mostly negative examples, and their conclusion

was that human teachers are good at showing the robot salient positive instances of object

affordances. Our data also supports this conclusion. Table 5.3 shows the percentage of

successful interactions per affordance. The human teachers (HSE) in our study showed

a heavy bias for positive examples, with three of the five affordances having at least half

successful examples. This positive bias carries over to the GAE strategy. In terms of cov-

erage of the affordance space, GIE and GBE achieved what we wanted. Biasing SE with

supervised examples results in a small number of samples (12 or 9 compared to 100) that

have more positive examples than the SE strategy, and more negative examples than HSE.

For the Lamp-Pick affordance, only one of ten users and two SE interactions were

able to complete the action successfully due to the arm being too compliant. To train and

test a success HMM, we need a minimum of three successful interactions, otherwise the

Guided exploration strategies cannot be generated. Thus we exclude Lamp-Pick in the
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rest of the results. Furthermore, given the limited data from human teachers, some users

did not provide sufficient data to build both HMM models (i.e. min of 3 positive and 3

negative), and in some cases this carried over to the user-biased data sets as well. Column

n in Table 5.4 indicates the number of HSE or Guided strategies with sufficient data to build

the affordance HMM model.

If we look at the per affordance breakdown in Table 5.3, we can see that aside from the

more complex affordances such as Drawer-Pick, users tended to heavily favor providing

positive examples. The failures from complex affordances mostly arose from failed at-

tempts in teaching the robot. There does not seem to be a significant difference in positive

interactions between Guided Iconic and Guided Boundary.

Coverage can also be evaluated by the physical space the EEF explored and can be

visualized by plotting the final position of the EEF relative to the object for successful and

failed executions. Fig. 5.9 shows an example visualizing all five strategies for the object-

action pair Breadbox-Move. The successful interactions have a high dependency on the

x- and z-axis. This makes sense as the EEF must lift the handle away from itself to open

the breadbox. In SE, we can see the grid structure of the exhaustive strategy and the large

coverage of the action space. The explorations for HSE are highly concentrated and fixated

on nearly the same locations in the space. GAE finds examples of successful and failed

executions for Breadbox-Move (reflected in Table 5.3), but without a clear action space

boundary as in GIE and GBE. GBE examples span a wider range in the action space than

GIE.

We can also see that self-exploration looks at a much larger area of the object space

for both successful and failed interactions. The human exploration has far more positive

examples over a larger area than failed interactions. We can see that Merged exploration

is highly concentrated and focused on the boundary between success and failure, which is

reflected in the number of positive interactions found per affordance.
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(a) Self-Exploration (SE) (b) Human-Supervised Exploration (HSE)

(c) Guided Aggregate Exploration (GAE) (d) Guided Iconic Exploration (GIE)

(e) Guided Boundary Exploration (GBE)

Figure 5.9: The action space (EEF relative to the object) for all five strategies for the affor-
dance Breadbox-Move. Successful interactions are circles and failed interactions crosses.
Note: 5.9b, 5.9d, and 5.9e are aggregates over all of the user models.
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Table 5.4: Classification Scores on All Exploration Strategies

Aff. Strategy n Precision Recall F1 Score

Breadbox
Move

SE 1 0.73 0.78 0.75
HSEa 10 0.69±0.28 0.48±0.42 0.45±0.34
GAE 1 0.75 0.53 0.62
GIEa 5 0.75±0.05 0.62±0.35 0.60±0.27
GBEa 3 0.81±0.08 0.53±0.31 0.57±0.24

Pastajar
Move

SE 1 0.54 0.97 0.70
HSEa 3 0.90±0.14 0.23±0.24 0.29±0.25
GAE 0 N/A N/A N/A
GIEa 2 0.65±0.12 0.80±0.20 0.69±0.01
GBEa 4 0.53±0.36 0.45±0.40 0.39±0.28

Drawer
Move

SE 1 1.00 0.35 0.52
HSEa 3 0.40±0.43 0.06±0.06 0.08±0.07
GAE 0 N/A N/A N/A
GIEa 1 0.51±0.00 0.88±0.00 0.65±0.00
GBEa 1 0.50±0.00 0.56±0.00 0.53±0.00

Drawer
Pick

SE 1 0.66 0.93 0.77
HSEa 4 0.66±0.41 0.26±0.42 0.22±0.33
GAE. 1 0.69 0.93 0.79
GIEa 3 0.68±0.01 0.90±0.07 0.77±0.02
GBEa 2 1.00±0.00 0.06±0.03 0.10±0.06

a Reported values are averaged across the n user or user-biased models.
Note: Darker shading equates to higher scores and N/A means no model could be built
using the example

5.5.2 Model Performance

The performance of the models built from each strategy is shown in Table 5.4. For explo-

ration strategies that resulted in individual user or user-biased models (Supervised, Guided

Iconic, Guided Boundary), we report the mean and variance of all the models within that

strategy. HSE has the worst performance. This could be due to the fact that overall, users

tended to overly focus on positive interactions and that these models were built from the

least amount of data (5 examples compared to 9, 12, 30 or 100). These results support our

hypothesis that the limited data we can collect from a person in 5-10 minutes of interaction

is not sufficient to build models on par with exhaustive self-exploration consisting of 100

interactions with an object.
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Next we turn to the question of whether or not the Guided strategies can help bridge this

performance gap between SE and HSE. Our results show that both GIE and GAE achieve

higher performance than GBE and approach the performance of SE with significantly less

data. GIE outperforms GAE in two ways: (1) across the four affordances, GAE only gener-

ates 2 working affordance models (due to the focus on successful examples) whereas GIE

generated 11 (seen in column n in Table 5.4) and (2) GIE is likely to be the more prac-

tical approach compared to GAE since it can be used with a single individual as opposed

to requiring data from multiple teachers. On average, the Guided Iconic exploration strat-

egy reaches similar performance levels as the exhaustive Self-Exploration strategy. This is

true for every object-action pairs except for Breadbox-Move. For the pair Breadbox-Move,

we can look closer at the precision and recall scores and see that Guided Iconic has simi-

lar precision scores, but is more conservative at labeling the breadbox with the open-able

affordance.

Surprisingly, the simple affordances (Pastajar-Move & Drawer-Move) performed worse

on average across the strategies than the complex affordances. The only exception is GIE

for Pastajar-Move, which slightly outperforms Breadbox-Move. One possibility for the

discrepancy between these affordances could be related to how affordances are not really

on a binary spectrum, but rather there are varying levels (e.g. slightly push-able vs. very

push-able). This suggests that the task should be a regression task where we label the

affordances with values (e.g. 1cm vs. 5cm). In our case, we set hard cutoffs for judging the

success of each affordance. Successful interactions were more obvious for complex tasks

(e.g. drawer or breadbox fully opening) compared to simple tasks (e.g. shifting the pasta

jar or drawer 10 cm vs. 1 cm across the table; both of which were considered successful

interactions).

Finally, it is important to note the high variance for exploration strategies that generated

models per user. While the average GIE performance is similar to SE, many individual

models achieved performance that surpassed the SE models, with an order of magnitude
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fewer examples. This shows that certain users provided better examples than others, and

future work is to understand how to accomplish this with all users.

5.6 User Specific Results

To understand why some user specific models performed better than others, we take a

deeper look at each user. We first look at the precision, recall, and F1 scores for each

user specific strategy (HSE, GIE, and GBE). This can be seen in Table 5.5. As described

previously, several users outperformed self-exploration (5 users in HSE, 5 users in GIE,

and 1 user in GBE across all four object-action pairs). Table 5.5 also shows why GIE

outperforms GBE and HSE on aggregate. While many of the models from HSE and GBE

do equally as well as models from GIE, there are several models in HSE and GBE that

perform poorly. In contrast only 1 model in GIE performs poorly (Breadbox-Move: User

8).

Interestingly, for some users, even though the user provided enough positive or negative

examples to build models for HSE, GIE and GBE were not able to find enough examples.

This tells us that the first successful and unsuccessful demonstrations were not diverse

enough to provide a sufficient amount of exploration range for GIE or GBE. Specifically,

for all object-action pairs except for Pastajar-Move, there were users where HSE could

build a model, but GIE or GBE could not. To better understand this, we looked at the pose

of the first successful and unsuccessful demonstration provided from users that generated

good GIE/GBE models and compared them to users who did not. In Figure 5.10, we can see

the comparison of the final pose of each user’s first successful and unsuccessful demonstra-

tion. Visually, the general location of the demonstrations seem relatively similar. However,

computing the average Euclidean distance between the successful and unsuccessful posi-

tions (shown in Table 5.6), shows that participants who provided demonstrations that were

further apart in distance, allowed GIE and GBE to generate better models. This makes

intuitive sense as both GIE and GBE rely on the user’s demonstration to determine the res-
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olution to search within. If the resolution is too small, then the algorithm does not explore

a large enough range to capture a balanced set of positive and negative interactions.

(a) Breadbox Move (b) Drawer Move

(c) Drawer Pick

Figure 5.10: This shows the first successful and unsuccessful demonstration for the af-
fordances Breadbox-Move, Drawer-Move, and Drawer-Pick. The symbols indicate if the
demonstration given was a success or fail demonstration. The colors separated the users
that could generate GIE/GBE models and those who could not (green - models were gen-
erated, red - models were not). Note: this figure requires color to fully understand.

5.6.1 Exploration Coverage

In 5.5.1, we visually showed the difference between strategies in the action space (EEF

position relative to the object). Here we visualize the action space to provide insight into
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Table 5.6: Average Distance Between Demonstrations

Object-Action Good (cm) Poor (cm)

Breadbox Move 8.46 ± 0.05 7.3 ± 0.19
Drawer Move 32.94 ± 0.0 24.60 ± 0.14
Drawer Pick 8.98 ± 0.01 8.08 ± 0.019

(a) User 2 (b) User 6

(c) User 8

Figure 5.11: Shown is the action space (EEF relative to the object) for strategy Guided
Iconic Exploration for users 2, 6, and 8 for the object-action pair Breadbox-Move. The
arrow indicates the direction the EEF palm is facing. Successful interactions are circles
and failed interactions are crosses.
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why a model based on a certain user’s demonstrations might not have generated a good

model. Table 5.5 shows that only one user’s GIE model performed poorly. Furthermore,

this particular user (user 8) does poorly across all of the user specific strategies (HSE, GIE,

GBE) for the object-action pair Breadbox-Move. The next set of graphs will be presented

as a case study to determine what differences exist between user 8 and the rest of the users.

In Figure 5.11, we see three different users’ exploration points generated for the object-

pair Breadbox-Move for the strategy GIE. Circles represent successful interactions while

crosses represent failed interactions. The orientation of the palm of the EEF is also shown

as a vector. The figure shows that the orientation of the EEF played a clear role in differen-

tiating user 8 from the rest of the users. User 8 chose a different orientation when opening

the bread box and video verifies that user 8 had Curi’s palm facing down as opposed to up

to lift the handle.

This suggests that the demonstration from user 8 was not bad, but rather different from

the other demonstrations provided by other users. Furthermore, we hypothesize that if

there existed a subset of the evaluation set that is similar to the demonstrations from user

8, then the performance for that user would increase. To understand and determine which

users were most similar to each other, we take a simple approach of clustering all of the

user’s first demonstrations (those used to seed GIE and GBE) using a standard unsupervised

clustering algorithm k-means.

5.6.2 Clustering

To cluster the demonstrations using k-means, there are two decisions that need to be made

(1) what metric to use for distance between demonstrations and (2) the number of clus-

ters we expect to see. We chose to use the Euclidean distance of the EEF position and

orientation of the palm relative to the object. This decision allows us to focus on what

the user demonstrated relative to the object without looking at the effects generated by the

demonstration. Furthermore, Euclidean distance is a natural metric between points in three-
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(a) Success; Size: 2 (b) Success; Size: 3

(c) Success; Size: 4 (d) Fail; Size: 2

(e) Fail; Size: 3 (f) Fail; Size: 4

Figure 5.12: Displayed are the first success and fail demonstration from each user in action
space (EEF relative to object) for different clusters sizes (2,3,4). The arrow indicates the
direction the EEF palm is facing. Note: this figure will be easier to decipher with color.
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dimensions. While orientation of the EEF is stored as a quaternion, when computing the

distance between demonstrations, orientation is represented by the normalized unit vector

of the direction the palm of the EEF is facing (shown in Figure 5.11).

We chose several cluster sizes and compared user performance within clusters. As a re-

minder, we use both the first successful and first unsuccessful demonstration from each user

when generating exploration points. We cluster successes and failures separately. While

successful demonstrations are (typically) intentional, failures are not guaranteed to be in-

tentional. Often during the HSE, the human-user’s first failure was a result of failing to

demonstrate a successful interaction.

We visually show which cluster the user’s first demonstrations (successes and failures)

fall into for the object-action pair Breadbox-Move, which can be seen in Figure 5.12. For

clusters of size two, it seems that orientation of the EEF plays a larger role in cluster

membership. As the cluster sizes increase, position plays a larger role.

5.6.3 Clustering Performance

To verify that the difference in initial demonstrations impacts the final performance of a

user-specific model, we hypothesize that there exists a subset of robot interactions that are

similar to the user and the model would perform well on this subset. We generate the

user-specific test set by taking a portion of the original test set (20% of each strategy).

This subset is determined based on the cluster membership of the user-specific model. For

example, to generate the test set for user 1, we first determine what cluster generated from

k-means the user falls into (for both success and fail). Then the test interactions associated

with all users in that cluster are pulled and these interactions make up the test set for user

1. Note, this means that the original test set does not contain any interactions that are not

associated with a specific user (i.e. only test interactions from GIE, GBE, and HSE are

used).

The aggregate performance of each user-specific model for each object-action pair for
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(a) GIE

(b) GBE

(c) HSE

Figure 5.13: Aggregate F1 values across users and affordances and clusters sizes.
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all cluster sizes are shown in Figure 5.13. The average F1 scores are shown in comparison

to the original aggregate user-specific scores for GIE and GBE. Overall, with the exception

of Pastajar-Move, selecting a subset of the test set based off of the user’s first demonstration

was unable to improve the performance of the user-specific models. As expected, there does

not exist a single cluster size that is favored across object-action pairs. We believe this is

due to the inherent differences in each pair (i.e. each pair has its own subset of unique

interactions).

Given that clustering did not work uniformly across all object-action pairs, we only

present detailed user-specific scores for Pastajar-Move and Breadbox-Move to understand

why some aggregates went up while others went down. This can be seen in Table 5.7.

Overall the models generated from HSE did not drastically change. This is likely because

HSE models have access to all demonstrations provided within a single user whereas GIE

and GBE are limited to the first successful and first failed demonstration. This is amplified

by users going out of their way to provide different and interesting demonstrations for each

pair during the user study. Looking at Pastajar-Move, on the aggregate level, clustering

the test set improves the overall performance. On an individual level, the models that

were already performing well improved and the models that were not forming well either

dropped or didn’t change. This is seen for several users in Breadbox-Move as well. While

it is not surprising that existing high-performing models improve when looking a subset of

interactions that are most similar to it, it is surprising that the models that were performing

poorly, performed even worse. This suggests that there is something else occurring within

the effect space of the affordance that we are not capturing by clustering the EEF pose

relative to the object. We explore this in Section 5.6.5.

5.6.4 Ratio of Success and Failure

Before we look into the observation space of the learned HMM, we look at one final metric

presented in previous results (Table 5.3), the ratio between successful and unsuccessful
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Table 5.8: Percentage of Positive Interactions Per User For Strategies HSE, GIE, and GBE

Object-Action User HSE GIE GBE

Breadbox Move
User 1 0.50 0.11 0.17
User 2 0.40 0.33 0.40
User 3 0.33 0.11 0.17
User 4 0.60 0.50 0.50
User 5 0.50 0.10 0.14
User 6 0.38 0.25 0.43
User 7 0.50 0.29 0.67
User 8 0.50 0.67 0.67
User 9 0.50 0.44 0.20
User 10 0.75 0.12 0.12

Pastajar Move
User 1 0.50 0.50 0.43
User 2 0.60 0.20 0.67
User 3 0.60 0.50 0.67
User 4 0.75 N/A N/A
User 6 0.67 0.12 0.33
User 7 0.67 0.12 0.20
User 8 0.67 N/A N/A
User 10 0.75 N/A N/A

Drawer Move
User 1 0.75 0.14 0.25
User 2 0.60 0.11 0.14
User 3 0.67 0.89 0.88
User 4 0.67 N/A N/A
User 5 0.75 0.25 0.33
User 8 0.50 0.11 0.14
User 10 0.67 N/A N/A

Drawer Pick
User 3 0.50 0.10 0.14
User 4 0.33 0.33 0.67
User 5 0.50 0.33 0.67
User 6 0.50 0.12 0.20
User 7 0.67 0.22 0.67
User 8 0.50 0.14 0.20
User 9 0.67 N/A N/A
User 10 0.25 0.75 0.67

Note: Darker shading equates to higher scores
and N/A means no model could be built using the
examples (recall we need a minimum of 3 exam-
ples each of success and failure to build models).
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interactions. Previously, we concluded that overall GBE and GIE had a more balanced set

of positive vs. negative examples compared to HSE or self-exploration. We now take a

look at this ratio on a per user basis. Results are summarized in Table 5.8.

Similar to Table 5.5, we only show the users that had enough positive and negative

interactions to build a HMM. As mentioned earlier, we need a minimum of 3 examples of

both positive and negative to build a model. For the models that could be built, we can look

back at the detailed results in Table 5.5, and pull out specific users that performed well

and performed poorly. For strategy GIE for the object-action pair Breadbox-Move, users

2, 6, 7, and 9 outperformed user 8. We can see that user 8 has a much higher percentage

of positive executions than these other users. This is also true for the strategy GBE, where

user 8 performs poorly compared to 2 and 6. This trend is consistent across the rest of the

pairs as well: users with a particularly high number of success demonstrations have models

that perform poorly.

Digging deeper, we discovered that for some of the models that performed poorly, they

essentially classify everything as not having the affordance, resulting in low recall and

non-existent precision values. This indicates that when users have too many examples of

successful interactions we cannot build a good HMM representing the expected effects of

these successful interactions. We believe this happens due to the nature of the F/T data we

are using to represent the effects of affordances. Recall that our exploration strategies are

taking a couple of human demonstrations as seed examples and then varying these slightly

in the end-effector space to get several new examples around the original ones. However,

even though a slight change in position of the end-effector to the object may still result in

a successful interaction (e.g. the breadbox still moves), it can drastically change the signal

seen on the F/T plate at the robot’s wrist. Thus, a dataset that includes a large number of

successful examples is more likely to be highly varied. It is difficult to build a model that

represents all of these different effects at once. On the other hand datasets with a limited

number of success interactions, are more likely to only include a single way of achieving
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the affordance, that is more consistent in the sensory space and easier to model.

5.6.5 Affordance Effect Space

In Section 5.6.3 and Section 5.6.4 we have seen evidence that the effect space of the object-

action pairs play large role in the quality of models built. To understand why, we take a

deeper look at the multivariate Gaussian distribution that represent the observation space

of the learned HMMs. We choose to look at the last state because achieving an affordance

is highly dependent on the final pose of the interaction. This also allows us to focus on a

specific snapshot in time where the effect of the affordance is most likely to have occurred

as opposed to the entire trajectory of the interaction.

Recall we have an 18-value feature vector that represents the observation state-space

of the HMM. To focus on the specific dimensions that have the greatest change in the

effect space, we perform principal component analysis (PCA) on the observation space.

Concretely, we compute the principal components of the set of all mean values of the

multivariate Gaussian distribution for all of the generated HMMs. This is done specific to

the set of successful HMMs and unsuccessful HMMs. This results in two transforms - one

for each set of means. We selected the top three principal components, which account for

99.9% of variance for both sets of HMMs (successful and unsuccessful). We compare this

reduced set of components from user models that produced good object-action pairs vs.

those who did not. As a reminder, successful HMMs were HMMs generated from robot

trials that successfully found the affordance whereas unsuccessful HMMs were generated

from trials that did not. Furthermore, good user models (or good HMMs) are models

that performed well at classifying unseen interactions whereas poor user models (or poor

HMMs) did not score well in classifying new unseen interactions.

Figure 5.14 shows the different principal component values for each individual model

for the object-action pair, Drawer-Move. The green bars show the users that had good

HMMs and the red bars show users with HMMs that performed poorly. While the means
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(a) Successful HMMs

(b) Unsuccessful HMMs

Figure 5.14: Displayed are the top three principal components of the final state of each user
specific model for the object-action pair Drawer-Move. The values are separated in color
by user models that performed well (green) and user models that performed poorly (red).
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do differ, it is unclear if this difference is enough to account for the poor performance. As a

result we do not show the rest of the object-action pairs. When we compare the variance of

the means of the set of good user models and poor user models (in Figure 5.15) there is a

clear difference in the variance of the HMMs that do well vs. poorly. Aside from Pastajar-

Move, the poorly performing HMM models have a much larger variance in the observation

state of the HMMs. The high performing models clearly had greater consistency in the

observational values as opposed to those from the poorly trained models. This supports

our hypothesis in Section 5.6.4 that the HMMs were having difficulty capturing a larger

variety of demonstrations, whereas those trained with a smaller set converged to a specific

and consistent observational state-space for the HMM. For Pastajar-Move, we believe the

difference in variance is not high because none of the Pastajar-Move models themselves

performed as well as the other object-action pairs.

5.6.6 Qualitative Observations

We presented qualitative observations from the user study based on anecdotes and common

threads from a single open-ended question survey administered at the end of the user study

in the previous results.

In general, users tended to view the hour long session as “fun” and compared getting the

robot to successfully find the affordance to puzzle solving. For simple pairs like Pastajar-

Move, users tended to get bored quickly and many wanted to move onto the next pair before

the allotted time. The bread box was particularly favored because it was simple enough to

provide many examples of success and failure, but “difficult” in comparison to the pasta

jar.

Users’ dislike of failure resulted in an expressed preference to not provide examples of

failure when teaching affordances. Not surprisingly, people dislike failure. However, it was

surprising that users preferred not to provide example of failure even when instructed that

providing negative examples of an affordance could be beneficial. Users were allowed to
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(a) Breadbox Move - Successful (b) Breadbox Move - Unsuccessful

(c) Drawer Move - Successful (d) Drawer Move - Unsuccessful

(e) Drawer Pick - Successful (f) Drawer Pick - Unsuccessful

(g) Pastajar Move - Successful (h) Pastajar Move - Unsuccessful

Figure 5.15: Shown are the comparisons of variance across the mean HMM values between
good user models and poor performing user modes for all four object-action pairs. The
means are separated by successful HMMs and unsuccessful HMMs. Poor performing user
models overall have higher variance than high performing user models.
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discard demonstrations and one user used this as a feature to “test the action [they] wanted

to teach [the robot] without her recording to see if her interaction with the object would

behave as [they] expected.” Another user reported feeling dejected that he could not get

the robot to successfully find the affordance and felt that it was due to a lack of ability and

intelligence. Interestingly, while only a few negative examples were provided, 6 out of 10

users reported thinking about providing negative examples in the survey.

Another common thread in the reported teaching strategy was the focus on providing

“different ways to achieve the same outcome” and “show[ing] the affordance in multiple

ways”. Half of the users reported using this method in their teaching strategy. This thread is

interesting because it could account of the difference in variance across users when showing

examples of interactions.

While users focused on providing varied and different interactions for the same effect,

The vast majority of users did so by changing the robot’s action as opposed to the environ-

ment. Going into the study, we believed that users would take advantage of the fact that

they could modify the environment as opposed to reteaching actions to provide different

interactions. For example, showing a negative example of Pastajar-Move could be achieved

but just putting the jar out of reach and this was in fact demonstrated to all participants be-

fore the study began as part of the tutorial on affordances. Even with this priming, users

did not use this strategy, with only one user mentioning that they would “slowly modify the

environment by repositioning the object”. For the users that did reuse an action, this gen-

erated very similar interactions since the same action is executed with a slightly different

object position.

Finally, users displayed various failure recovery strategies. For example, turning on the

lamp was a very difficult task due to compliance of the arm. As a result, some teachers

experimented with several different grasps and directions of motion whereas some teachers

quickly deemed the task impossible. This highlights two interesting components of LfD.

First, it is important for users to see the result of their demonstrations as users quickly adapt
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their teachings based on the robots actions. This is important to note because not all LfD

techniques are evaluated in real-time due to the difficulty of robustly generating trajectories

from demonstrations. The second is that not all teachers deal with failures similarly and

a deeper understanding of user motivation is necessary to determine how to best motivate

people to carefully teach robots a difficult skill.

5.7 Findings of Human-Guided Robot Self-Exploration

In this chapter, we provided an in-depth comparison of three different approaches to affor-

dance learning: self-exploration, human-supervised exploration, and a combined human-

guided approach defined as self-exploration biased by information provided from human

teachers. Results showed that a combined approach, GIE, can learn affordance models

on par with those generated from exhaustive SE, but using an order of magnitude fewer

interactions with the object. The results of an individual analysis of each user-specific

model provide several interesting pieces of insight that can guide future work for learning

affordances from naı̈ve users.

5.7.1 Variation in Teaching

To characterize the difference between users, we looked at clustering individuals based

off of their demonstrations. However, while clustering the users based off of the EEF

pose clearly showed that users provide very different approaches to teaching an affordance,

merely clustering users based off of this was too simplistic to improve performance across

all affordances. More importantly, we discovered that the impact of positive vs. negative

interactions plays a large role in the performance of the users. We show that having many

successful interactions causes the performance of individual models to decrease. Given

that end-users do not intuitively provide many examples of failure, this suggests we need

to explicitly ask users to provide more examples of failure.

While our hypothesis suggests that we should gather from users very similar successful
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interactions to model the affordance with a low amount of data due to the impact of F/T

sensing, this is misleading because what we really need to learn are all of the different

ways it feels like to find the affordance. This suggests that not only do we need to gather

varied interactions, but we also need to develop new modeling techniques that can capture

the high variability due to F/T sensing (whether that be with a different representation

where we model F/T felt with respect to the object or generate a library of models that

encompasses this variance).

5.7.2 Action Generation

While the results and analysis of this chapter provide concrete guidelines for generating

models from naı̈ve users for object-action pair learning, there remains the open question

on how we can use these models for the ultimate goal of task execution using affordances.

Assuming a robot is given a task plan that requires a series of objects with specific affor-

dances, the robot needs to locate objects in the room with the candidate affordances and

test these objects to see if they can be used to perform the task. Currently, this system only

addresses the first half of the equation where we are answering the question of “how can

the robot learn about the object efficiently”? As we outlined in Section 3.5, the second

half requires the robot to apply an existing learned model to a new object with a similar

affordance and test the object for that affordance. For this to occur, the robot needs to gen-

erate actions from its existing models. While this chapter does not look into generation of

trajectories from learned models, Chapter 6 and Chapter 7 will look at this specific problem

of generating actions for the transfer of affordances.
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CHAPTER 6

AFFORDANCE TRANSFER AND MULTISENSORY INPUT

In Chapter 3, we introduced a framework for affordances that relies on an agent performing

an action on the environment to produce an effect. We defined how this creates a super-

vised learning problem between object-action pairs and effects. Specifically, we looked

at how affordances could be learned and evaluated using binary classification. In Chap-

ter 4 and Chapter 5, we demonstrated that object-action pairs could be used to monitor

unseen interactions with various affordance and sensory inputs. We also demonstrated that

non-expert human teachers could provide demonstrations that the robot could use to gener-

ate exploratory movements. The data collected using these actions produced object-action

pairs that performed well at monitoring the success or failure of an unseen interaction.

In the final chapters of this thesis, we dive deeper into the insights gained from Chap-

ter 4 and Chapter 5. In particular, we look at how robots can generate actions to transfer

affordance models to adapt their actions to novel situations as well as how sensory modal-

ities differ in nature and the impacts of those differences.

6.1 Affordance Transfer

By using the framework outlined in Section 3.5, we were able to explore a diverse range

of objects and actions in Chapter 4 and Chapter 5. From this exploration, we start to gain

insight on how high-level affordances (e.g. open-able) can be broken down into low-level

affordances (e.g. lift-able)

6.1.1 Hierarchy of Affordance

As described earlier, affordances can be broken down into several components seen in

Figure 3.1. The specific (object, action, effect) triple is often used in robotic affordance
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Figure 6.1: Affordances can be broken down into high-level and low-level affordances
that relate directly to the actions and effects used to represent each affordances. High-level
affordances can be broken down into several low-level affordances, which then have simple
primitive actions that are directly related to the low-level affordance.

Table 6.1: Affordance Triple Subcategories

Category Triple High-level Low-level
1 (same object, same action, same effect) Same Same
2 (different object, same action, same effect) Same Same
3 (different object, different action, same effect) Same Different
4 (same object, different action, same effect) Same Different

work (Şahin et al., 2007; Moldovan et al., 2012; Krüger et al., 2011). Within affordance

transfer (where one affordance model is used on another object), the primary focus has been

on detecting object components and features that indicate what subset of primitive actions

should be used on the new object. However, these methods rely entirely on exploration

and breakdown for tasks that require more dexterous manipulation. Instead, we look at the

different components within the affordance triple and decide a transfer scheme based on

what has changed within the triple.

To transfer affordances, it is important to understand how affordance models can be
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associated with two “levels” of affordances. An example of this can be seen in Figure 6.1.

On the “low-level”, a drawer that is opened by pulling on the handle has a “pull-able”

affordance. However, on a “high-level”, a drawer is “open-able”. Understanding how these

levels relate to the affordance triple gives insight on how to transfer an affordance. We

can break down the transfer of affordance into several subcategories, which can be found

in Table 6.1, that relate to “high-level” and ”low-level” affordances. The subcategories do

not contain all combinations of changes that can occur within the triple. In particular, we

do not include any combinations where the effect changes because, in these situations, the

affordance no longer remains the same and the transfer cannot be completed.

For example, let us examine the following combination (same object, same action, dif-

ferent effect): a robot pushes an object on the table with the result being that the object

either slides or tips over. In the former case, the affordance is push-able. In the latter

case, the affordance is tip-able. While it might be tempting to define all objects as their

“low-level” affordance to make transfer easier, “high-level” affordances are critical to task

planning. For example, for a robot to open a jar, the robot needs to understand open-able.

If only the low-level affordance of lift-able were modeled, the robot would not be able to

connect the task of opening the jar to the action of lifting the lid off of the jar.

6.1.2 Affordance Category Breakdown

By breaking down each of the individual categories by their triple, we can now look at how

the categories differ and what role that plays for transfer:

• Category 1 - same object, same action, same effect: In the simplest case, an af-

fordance model trained on a specific object should be able to handle perturbations of

that object.

It is non-trivial to develop controllers that a robot can use to take into account the

current state of the object. For example, if a drawer is already half-way open, the

robot should only pull enough to fully open the drawer.
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In this particular case, the robot uses the object state as feedback. However, it is

important to note that the affordance action primitive remains the same (i.e. the robot

still needs to pull on the drawer). The effect also remains the same. When all three

triples are the same, both the “high-level” and “low-level” affordance remains the

same (e.g. the mechanism for how to open the drawer is the same because the drawer

has not changed).

• Category 2 - different object, same action, same effect: The next progression of

affordance transfer looks at the case where an object has changed, but it still uses the

same action primitive. For example, the two lamps (as shown in Figure 7.5) may be

different from each other but the overall action primitive is the same. The robot still

needs to pull down on the lamp chain to turn on the lamp.

Interestingly enough, even when the object has changed, both the “high-level” and

“low-level” affordance model remains the same because we use the same primitive

action for the new object (e.g. pulling the chain). This type of transfer has been

studied for simple affordances (e.g. pushing, driving around) where controllers are

often custom-generated for each affordance (Hermans et al., 2013a; Dogar et al.,

2008).

• Category 3 - different object, different action, same effect: For this category, you

can imagine having two different types of lamps: a push-button lamp and a pull-

chain lamp. While both lamps have the same effect of increasing the light in the

room, they require very different action primitives to turn on the lamp. Transferring

between affordances becomes less straight-forward. Although the two lamps have

the same high-level affordance of providing light, they have very different low-level

affordances (i.e. push-able vs. pull-able).

• Category 4 - same object, different action, same effect: In the last category, we

can use a breadbox as an example. Different actions can be taken to open the bread-
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box, including pushing the lid or grasping the handle and pulling. Given that the

underlying action has changed, the low-level affordance also changes. To discover

this new action type would require giving the robot new knowledge (i.e. another

demonstration) or allowing it to explore the object.

In this work, we assume the robot is given the category of the object-action pair. Future

work could employ affordance knowledge bases (Zhu et al., 2014) and hierarchal task

planning (Mohseni-Kabir, 2015) to determine the category of an object-action pair.

6.1.3 Transfer by Category

For Categories 1 and 2, the high-level and low-level affordances remain the same. This

allows us to use the same action to find the effects of a particular high-level affordance.

We transfer affordances in these two categories through adaptation. Specifically, we look

at methods that allow us to adapt existing action controllers to different configurations and

novel objects.

For Categories 3 and 4, we believe that transfer between two objects with differing

“high-level” and “low-level” affordances should not be done with the same mechanism as

transfer between the first two cases (Categories 1 and 2). In particular, these categories

of transfer require additional knowledge of the object, such as the articulation mechanism.

To address this additional constraint, we believe transfer in these categories requires an

additional step prior to object adaption. Specifically, the robot should build a library of

object-action pairs. During transfer, the robot could either select the most likely object-

action pair or cycle through its existing library and perform adaptation. However, if none

of the existing object-action pairs in its library work, the robot should perform additional

exploration as seen in (Wang et al., 2014) or ask for additional guidance through demon-

stration (much like how this thesis learns new object-action pairs). While it is possible

to perform transfer for Categories 1 and 2 with this approach, it is inefficient to perform

exploration for these categories as we already know what low-level object-action pair to
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perform.

6.2 Multisensory Feedback

In Chapter 4, we discovered that some haptic affordances were easier to model than others.

One insight from that experiment was that object-action pairs that had a distinct continuous

goal signal (e.g. the weight of the lid vs. no weight) performed better than those that were

discrete (e.g. force change to push the lid of a box open). A wide variety of useful sensory

feedback can be gathered when a robot performs different tasks. Furthermore, within each

modality, feedback can be broken down into two categories: discrete and continuous.

Take, for example, the task of opening the drawer in Figure 4.4. The interaction of

pulling open the drawer is continuous across all modalities. The robot continuously feels

a force while pulling on the drawer, visually sees the drawer get “larger”, and hears the

scraping of the drawer opening over time. Interestingly, the goal criteria for successfully

opening the drawer is discrete in that there is a sudden increase of force and torque when

the drawer cannot be opened any further and a “thump” sound when the drawer reaches the

end of the rail. By contrast, not all modalities are continuous when you turn on the lamp

in Figure 5.2h. Here, only the force felt while pulling on the chain is continuous whereas

the sound of the lamp turning on and the sudden change in force are discrete. Visually,

the light sends a discrete signal when it first turns on. Later, as it remains on, it becomes

a continuous signal. Understanding these two categories of feedback provides insight on

what goals are harder for robots to detect.

6.3 Contributions

In this thesis, we focus on how to perform adaptation of low-level affordances. In partic-

ular, we perform adaption for Categories 1 and 2. Furthermore, we demonstrate low-level

affordance transfer with more complex tasks than prior work. It is important to note that

this approach supplements existing work where additional exploration is used to transfer
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affordances in Categories 3 and 4 (Wang et al., 2014).

Furthermore, we look at the differences between continuous and discrete sensory modal-

ities. We show that a robot can improve its ability to detect success by combining both

discrete and continuous signals. In the following chapter, we explore two different objects

and the role that sensor modalities plays in adapting object-action pairs to the environment.
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CHAPTER 7

MULTISENSORY AFFORDANCES FOR ADAPTIVE OBJECT MANIPULATION

As we outlined in both Chapter 3 and Chapter 6, the goal of learning affordances is to give

the robot the ability to perform tasks in human environments. In Chapter 4 and Chapter 5,

we focused on the situation where the robot finds the same object it learned the object-

action pair on. In this chapter, we address the second challenge of how the robot can adapt

to objects that it has not previously encountered. Furthermore, we show that multisensory

inputs improve adaptation. Specifically, in this chapter, we address the questions of ”How

can a robot learn adaptable controllers that use multiple sensory inputs, and demonstra-

tions from human teachers? and ‘What role do sensory inputs (visual, haptic, and auditory)

play in affordance representation?” outlined in Chapter 3.

In Chapter 6, we proposed the notion of categories for affordance transfer. In this chap-

ter, we introduce Real-time Multisensory Affordance-based Control (RMAC). RMAC is a

novel approach that enables robots to adapt existing object-action models using multisen-

sory inputs for Category 1 and Category 2 affordances. This transfer is useful in situations

where the robot has already learned an existing object-action pair but still has to modify

existing controllers for slight changes in the environment. For example, a robot mixing

batter may already have an object-action model for stirr-able with a spoon but how can

the robot modify its controllers when stirring with a fork? Furthermore, what feedback

(i.e. sensory channels) should the robot controllers use to determine when the batter is

ready? To address this specific problem, we take a two-pronged approach where we (1) use

the same framework outlined in Section 3.5 to model the robot’s actions using affordances

and (2) expand the aforementioned framework to represent affordances as a sequence of

multisensory segments.

To build a robot controller that can adapt in these situations, we use segmentation to
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Figure 7.1: Robot platform, Prentice, turning on a lamp

break down a robot’s trajectory into subskills (Niekum et al., 2015b; Konidaris et al., 2012;

Kroemer et al., 2015; Righetti et al., 2014; Chebotar et al., 2014). These subskill segments

represent components within a “low-level” affordance. By identifying these components

of the “low-level” affordance, we isolate locations in the affordance where the robot can

modify its trajectory and still successfully manipulate the object. Furthermore, we use a

multisensory representation of the environment. For example, while a robot could rely on

visual information to determine if a lamp similar to the one seen in Figure 7.1 is turned

on, it can also utilize touch to detect the change in pressure and sound to hear the click of

the switch. This allows the robot to naturally develop contingency cases (e.g. light bulb is

broken). A robot could adapt its control schemes to the environment by using feedback on

each of its sensor modalities (e.g. pull until it feels a particular force, hears a click, or sees

light).

This example shows how manipulation skills can be represented as subskills (e.g. pull,

grasp), which connect naturally to the different sensory modalities. Recent work shows

that multiple sensory modalities can be modeled via data collected through robot explo-

ration and improves robot manipulation (Sinapov et al., 2011b; Sinapov et al., 2014a),

especially when it comes to detecting anomolies (Park et al., 2016) and performing failure
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Figure 7.2: Real-time Multisensory Affordance-based Control (RMAC). The robot first
collects multisensory data using human-guided exploration. The data is then broken into
two sets of subskill segments that are used to generate a switching matrix, an action model,
and a sensory model to represent the affordance.

recovery (Kappler et al., 2015).

7.1 Approach: Real-time Multisensory Affordance-based Control (RMAC)

To build a system that can adapt a learned affordance model to changes in the environment,

we look to the hybrid control community where prior work (Mason, 1981; Raibert and

Craig, 1981; Khatib, 1987) has shown that manipulation skills can be broken into segments

that use different sensory spaces as feedback (e.g. position vs. force). Specifically, RMAC

takes the following steps to achieve affordance-based control: (1) Data collection: We ob-

tain a demonstration of the skill, and execute this demonstrated trajectory to collect positive

and negative examples of achieving a particular object affordance. (2) Segmentation: We

segment each trajectory into subskill segments. In this work, we use keyframes to help in

the segmentation process, but this could be easily replaced with other segmentation algo-

rithms (Niekum et al., 2015a; Kroemer et al., 2015). (3) Afforance modeling: For each

segment, we build an action and sensory model. We represent the sensory model using

left-to-right HMMs trained with multisensory positive data. This allows us to determine

(a) over time, where we are progressing within a segment and (b) whether or not we have

progressed to the end of the trajectory for the segment. (4) Adaptive object manipula-

tion: We can recreate the affordance by using these learned subskill segments for object
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manipulation. This section covers each aspect of RMAC in detail. An overview is seen in

Figure 7.2.

7.1.1 Data Collection

We use the same method of data collection as described earlier in Chapter 3. For this chap-

ter, we use human-guided exploration as described in Chapter 4, where the robot executes a

trajectory generated using the provided keyframes while a person modifies the environment

to collect varied interactions.

7.1.2 Segmentation

While recent work in trajectory learning for LfD have had success with automatic seg-

mentation (Niekum et al., 2015b; Niekum et al., 2015a; Kroemer et al., 2015; Chu et al.,

2017), many of the techniques require careful hand-tuning and are specific to the task se-

lected. These methods are noisy enough that state-of-the-art manipulation systems still

provide expert segmented trajectories (Kappler et al., 2015). In this work, we take a dif-

ferent approach and use keyframes (Akgun et al., 2012b) to segment trajectories. As de-

scribed in Chapter 3, people are goal-oriented (Csibra, 2003; Meltzoff and Decety, 2003)

and keyframes provide points in time where important parts of the trajectory are changing.

Furthermore, the trajectories that the robot executes are generated from these keyframes.

Therefore, not only are these snapshots important to the skill, but they are actually used in

the parametrization of the skill. For example, to turn on the lamp seen in Figure 7.3, the

keyframes provided are the start, the approach, the grasp point, the pulling point, the retract

point, and finally the end. Figure 7.7 shows that the changes in the sensory space correlate

well to the keyframe changes. We refer to each of these segments as subskill segments.

In RMAC, we generate two sets of subskill segments. The first set (DA) represents the

actual location the trajectory should be split and the second (DE) represents extended seg-

ments that are slightly longer than the actual segmentation location. This is done to capture
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(a) “Start here” (b) “Go here” (c) “Go here”

(d) “Close your hand” (e) “Go here” (f) “Open your hand”

(g) “Go here” (h) “End here”

Figure 7.3: Kinesthetic demonstration using keyframes for turning on the lamp.
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the sensory input of what the robot should expect when it has successfully completed the

current subskill segment and needs to transition to the next. In this work, we generate DA

from the exact keyframe locations and DE by going 0.5 seconds past the exact keyframe

location. As mentioned previously, we use keyframes to segment in this work, but the

specific segmentation algorithm (e.g. CHAMP, STARHMM, etc.) can easily be replaced.

RMAC does not inherently depend on keyframe based segmentation, it only requires that

actual and extended segments be provided to the algorithm. It is also important to note that

while this work uses simple keyframes, it could also be extended to use hybrid keyframes,

which inherently captures the velocity of a trajectory for tasks where the dynamics of the

action matter.

7.1.3 Affordance Switching Matrix

Once we have identified each of the subskill segments, we generate a “switching matrix”

for each skill that represents the high-level action (i.e. control mode) that the robot uses to

move, similar to those in traditional hybrid control methods (Raibert and Craig, 1981). In

this work, we have two control modes: pose and sensory. When in pose mode, the robot

focuses only on how to get to the pose at the end of the subskill segment and does trajectory

planning using inverse kinematics and end-effector pose. During sensory control mode, the

robot’s movements depend on the direct feedback of the various sensory inputs the robot is

receiving in real-time.

For each object-action pair, we represent the change in control modes as a single MxN

matrix (S) where M represents the number of modes in the controller and N the number of

segments. We can call S a “switching” matrix (a term colloquially used in the traditional

hybrid control community) because S represents the transitional matrix that determines

what modalities should be constrained and what degrees should be free to move for each

segment. For this work, M is two (pose and sensory modes). Traditionally, M represents

the different constraints in Cartesian and sensory space. In this work, we merge the indi-
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vidual constraints into a single value and assume all Cartesian directions or sensory inputs

matter (i.e. the exact vector (x,y,z) is important to each subskill segment) as opposed to

saying only a specific direction is crucial (e.g. only z matters for an EEF to maintain con-

stant contact with a table). While RMAC could still be used without this simplification, we

do not explicitly state each constraint in the switching matrix and instead allow the model

to capture the importance of each direction/modality. An example of S can be found in

Equation 7.1.

S =

 pose(1) pose(2) · · · pose(n)

sensory(1) sensory(2) · · · sensory(n)

 (7.1)

Each column of S represents a subskill segment within the trajectory. Each row of S

represents the control mode (e.g. pose vs. sensory). For each mode and for each segment

we assign a binary value (0 or 1) to represent if that channel is constrained during that seg-

ment. For example, if the pose row of the S matrix seen above were [1, 1, 0], the controller

would utilize pose control for the first two segments and the third segment would utilize

sensory control.

Although we use an expert to hand label which control mode the robot should use for

each subskill segment, a switching matrix could be learned automatically by computing the

variance through each subskill segment. Future work will explore the extent that this can

be given by human end-users that are not experts with robots. Furthermore, similar to prior

work (Kappler et al., 2015), we assume that the sequence of subskill segments that will be

executed are pre-defined and the system will either naturally progress through each subskill

segments, or stop if something has occurred that cannot be adapted.

7.1.4 Subskill Segment Modeling

Once we have each subskill segment, we create an action model and an effect model of each

subskill. Prior work in this area typically represents the action model of a subskill segment
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using DMPs (Kroemer et al., 2015; Niekum et al., 2015b; Kappler et al., 2015). These

works then learn a high-level policy that dictates what DMPs to execute based on sensory

models. These sensory models typically either utilized time and and use HMMs (Kroemer

et al., 2015) or discretize the effect space and use Support Vector Machines (SVMs) (Kap-

pler et al., 2015; Su et al., 2016). While DMPs can adapt to slight perturbations in the

scene, the goal (i.e. end-effector position) must be clearly defined. To address this issue,

Kappler et al. (2015) build a library of DMPs and select the correct DMP to execute at ev-

ery moment in time by tracking where the robot trajectory is in the DMP and comparing it

to the expected sensory traces. While DMPs can track where along the trajectory the robot

is executing using a phase variable, ρ, Kapper et. al show that it cannot be reliably used

due to noise and perturbations in the environment. Instead, they track the most likely state

of the current subskill segment by using a naı̈ve Bayes classifier and SVMs for each state

to indicate if the sensory traces are as expected. If the traces differ too greatly, the system

selects a new DMP from the library.

In this work, we take a different approach and represent the action model of each sub-

skill segment as a velocity vector vn, where T is the total number of time steps in the

trajectory qn and qnt is the pose of the trajectory for subskill segment n at time t. vn is

generated from the the set of segments DA.

vn =
1

T

T∑
t=1

qnt − qnt−1 (7.2)

This allows us to view each subskill segment in even smaller time steps than that of a

subskill. For example, a subskill segment that has a robot pulling on a handle can be viewed

as a sequence of small incremental steps away from the handle until a specific change in

state is detected (i.e. a large force is felt). Representing the trajectory in the smallest

possible step size increases the adaptability of the motion to changes in the environment.

In particular, we no longer specify in task space where the robot must go, but instead rely

on the effect space to determine if the robot has succeeded. Representing the trajectory
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in the smallest possible time step poses an additional challenge that DMPs avoid: While

DMPs give a clear ending position to the robot, RMAC requires the robot to determine

when to stop.

To model the sensory space, we take a similar approach to that of Park et al. (2016) and

model the sensory space using left-to-right HMMs. We train the HMMs using the segments

(DE). By modeling the sensor space with HMMs, we track both the most likely state within

the subskill segment the robot is in as well as model the likelihood of experiencing the

different sensory inputs in each state. Furthermore, we utilized time in the model whereas

work from (Kappler et al., 2015; Su et al., 2016) do not because they rely on SVMs.

To address the challenge of determining when the robot has finished a particular subskill

segment, we track the current state of the left-to-right HMM. If the robot reaches the final

state of the HMM, we determine that the robot has completed this subskill segment. While

not in the scope of this work, these HMMs also allow us to determine when the robot

has failed by tracking the likelihoods of an anomaly similar to that of (Park et al., 2016).

Once the robot detects that it has completed this subsegment, it moves directly to the next

segment. Although we specify the exact sequence of segments, this could easily be replaced

with a high-level policy similar to ones in (Kroemer et al., 2015; Akgun and Thomaz,

2016).

7.1.5 Execution

Once we have built a switching matrix, action models, and sensory models for each subskill

segment, we can now control the robot to adaptively interact with objects. Specifically,

during execution, the following steps occur:

1. For each switching matrix, segments that have pose control perform an extra step

where the user gives the segment a specific pose that the EEF must reach.

2. For non-adaptive segments, the robot computes a transformed trajectory relative to
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the object and uses planning to get the EEF to the correct pose. Once the pose is

executed, the segment’s HMM determines if we are ready to go to the next segment.

3. For adaptive segments, we execute the velocity, vn, and collect the sensory feedback

at each time step. After each step, we stay in the current segment unless we have

encountered the final state of the left-to-right HMM.

7.2 Offline Validation: Adapting Learned Affordance Models to Changed Objects

and New Objects

To evaluate the ability for the robot to adapt a learned affordance model, we choose two

situations that vary in difficulty. The first looks at how to adapt to changes to a previously

learned object while the second looks at how to transfer a previously learned model to a

different object. Specifically, this looks at the two cases described in Section 6.1.2: Case

1 - same object, same action, same effect and Case 2 - different object, same action, same

effect. Furthermore, for each object, we look at the role the different modalities play in

adaptation and show that RMAC performs better with multisensory input. For this chapter,

we use the “Prentice” robot.

7.2.1 Experimental Setup

For Case 1, we use the same drawer as the one used in Chapter 5. As seen in Figure 7.4,

the drawer has 5 different configurations that are used for testing. Specifically, we have

the robot try to open the drawer with the drawer already open at 2 inch intervals (i.e. 1in,

3in, 5in, 7in). We chose this as the first test of RMAC for several reasons. First, to trans-

fer a learned affordance, there are different stages of transfer that include changes to the

current object. By selecting a drawer, we can systematically determine how the controller

can adapt to environment changes. Furthermore, we chose this drawer because it is light

enough for the robot to drag across the table in the event that the robot does not stop at

the correct location. Allowing the drawer to slide across the entire table prevents the robot
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(a) Closed Drawer (b) Drawer open 1in (c) Drawer open 3in

(d) Drawer open 5in (e) Drawer open 7in (f) Drawer Fully Open

Figure 7.4: The various configurations the drawer is placed in for the robot to adapt its af-
fordance controller. The robot pulls the drawer to fully opened from the 5 different starting
configurations that change in 2 inch increments.

111



(a) Original Lamp - off (b) New Lamp 1 - off (c) New Lamp 2 - off

(d) Original Lamp - on (e) New Lamp 1 - on (f) New Lamp 2 - on

Figure 7.5: The various lamps the robot turns on in this chapter
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from injuring itself if it continues to pull on the drawer past the fully open position. We can

use the distance the robot drags the drawer as a metric to evaluate RMAC.

For Case 2, we use 3 different lamps with varying pull chains as seen in Figure 7.5

with the light on and off. We chose these objects to demonstrate the transfer of a learned

affordance on one object to another object. In particular, we are interested in transfer of

an existing affordance model to a novel object without requiring the robot to re-explore

the object - a subject covered by prior work in affordance transfer (Wang et al., 2014).

We focus on whether the robot can transfer the knowledge of the effects that it is seeking

(e.g. light change, forces felt, etc.) to another object that also has these effects. Similar to

the drawer, lamps were selected to minimize potential damage if the robot pulled too long.

7.2.2 Data Collection

(a) Approach drawer (b) Grab handle

(c) Pulling drawer (d) Finished pulling

Figure 7.6: Prentice executing demonstrated trajectory on the drawer

As described in Chapter 3, we use a keyframe-based LfD approach (Akgun et al.,

2012a). In this chapter, to replay the demonstrations, the keyframes are not splined to-
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gether. Instead, a path is planned through the keyframes using Rapidly-exploring Random

Trees (RRTs) (Kuffner and LaValle, 2000) after the end-effector pose is converted into

joint space using TRAC-IK (Beeson and Ames, 2015). Prentice executes the trajectory

autonomously on the object during playback as seen in Figure 7.6. This guarantees no

external forces or torques are felt during data recording. We collected 50 interactions of

opening a fully-closed drawer (Figure 7.4a) and 50 interactions of turning on a single lamp

(Figure 7.5a).

7.2.3 Multisensory Features

Table 7.1: Sensor Data

Sensor Modality Data Resolution Features
JACO2 Haptic GC Force 100 Hz Raw Forces (Fx,Fy,Fz)
JACO2 Haptic GC Torque 100 Hz Raw Torques (Tx,Ty,Tz)
Robotiq Haptic Position 100 Hz Raw Position (Gp)
Kinect2 Audio Sound 44.1 kHz Power/Energy (Ae)
Kinect2 Visual Point Cloud 7 Hz Color (VRGBA), Volume (Vvol)

We collect data from the sources shown in Table 7.1. From each data source we com-

pute several features that are used to train the sensory model. For touch data, the robot

collects the gravity compensated F/Ts at the end-effector and the gripper position. The

haptic data is left as is, without any data preprocessing and the resulting features are the

raw forces (Fx,Fy,Fz), raw torques (Tx,Ty,Tz) and raw gripper position (Gp). The raw au-

dio data is recorded at 44.1 kHz. We compute root-mean-square (RMS) of the energy of the

Short-time Fourier Transform (STFT) of the audio signal. The specific parameters used to

generated the feature (Ae) are frame length: 2048 and hop window: 512. We use the python

audio library librosa (McFee et al., 2015) to compute the audio feature. For the visual in-

put, we compute two different features from the point clouds: the RGBA (VRGBA) and the

volume of the object (Vvol). We use the segmentation method from Trevor et al. (2013) to

segment the object from the table after the plane is found using RANSAC (Fischler and
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Bolles, 1981). To align the different data sources, we up- or down-sample the data to 100

Hz.

Figure 7.7 and Figure 7.8 shows the data for the computed features from each of the

sensory channels. It also displays vertical lines for the location of the KF-segmented ver-

sion of the trajectory. For the lamp in Figure 7.7, the frames can be viewed semantically

as: (1) untuck the arm (2) approach the chain (3) close the gripper (4) pull down on the

chain (5) open the gripper (6) back away from the lamp (7) retuck arm. For the drawer in

Figure 7.8, the frames can be viewed as (1) untuck arm (2) approach the drawer (3) close

the gripper (4) pull on the drawer (5) open the gripper (6) back away from the drawer (6)

retuck arm.

Figure 7.7: Computed features from one interaction with the lamp. The different sensory
channels are displayed with vertical lines that indicate the location of the segments of the
subskill segment set DA
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Figure 7.8: Computed features from one interaction with the drawer. The different sensory
channels are displayed with vertical lines that indicate the location of the segments of the
subskill segment set DA

7.2.4 Training Sensory Models

As described in Section 7.1, we build an action and sensory model from the demonstra-

tions. To test the importance of each sensory modality, we build 7 different sensory mod-

els for every combination of the three different sensory inputs (i.e. visual, haptic, audio).

Specifically, we change the observation space O for the left-to-right HMM. The different

combinations and feature spaces for O can be found in Table 7.2. Each observation space

is modeled with a continuous multivariate Gaussian distribution.

Table 7.2: Sensory Model Combinations

Combination Observation Space
Haptic Fx,Fy,Fz,Tx,Ty,Tz,Gp

Visual VRGBA,Vvol
Audio Ae

Haptic, Visual Fx,Fy,Fz,Tx,Ty,Tz,Gp, VRGBA,Vvol
Haptic, Audio Fx,Fy,Fz,Tx,Ty,Tz,Gp, Ae
Visual, Audio VRGBA,Vvol, Ae

Haptic, Visual, Audio Fx,Fy,Fz,Tx,Ty,Tz,Gp, VRGBA,Vvol, Ae
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To train each HMM, we used the successful interactions from the collected runs (lamp:

29, drawer: 32) for each object (i.e. drawer and lamp). We select the best number of

states (between 2-15 states inclusive) for the HMMs by performing 5-fold cross validation.

To score the HMMs, we do not use the log-likelihood of the HMM, but instead use the

distance away from the true segment switching point. The smaller the value (i.e. closer to

stopping at the correct location), the better the score. We normalize each observation space

by removing the mean and scaling the features to have unit variance. Note that we tested

the trained models on a test set that was different from the training set.

7.2.5 Test Set

To systematically compare RMAC using different sensory inputs, we first collect a test set

that can be used to evaluate each trained HMM. In particular, this test set has to be different

from the training set. The training set collected contains data of the robot successfully

finishing the particular skill. However, to fully test how well RMAC adapts to the changing

environment, the robot needs to continue to execute its motion past the point that it should

stop. Then, we can determine if the RMAC stops at the correct point in time or chose an

incorrect stopping location.

To collect this test set, we do not collect data using the demonstration as we do in

Section 7.1.1. Instead, we use the real-time execution controller described in Section 7.1.5

to collect the test set. This allows us to collect data that (a) simulates what the robot

will actually experience when performing execution online and (b) allows us to collect the

data past the actual stopping point (i.e. when the drawer is fully pulled out or the lamp

has turned on). We modify the real-time execution during a sensory feedback subskill

segment to ignore any sensory feedback and keep executing its velocity vector vn to a

specific stopping point significantly past when the robot should have detected the subskill

segment has succeeded.

For each object and configuration, we collect 5 test interactions. Specifically, we collect
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5 test runs for each drawer configuration and 5 test runs for each lamp. This results in 35 test

runs for the drawer object across the 7 drawer configurations and 15 lamp test runs across

the 3 different lamps. With these test interactions, we can compare the importance of each

modality in adaptation. Specifically, the goal is to determine if RMAC can automatically

select what modalities to focus on when given all sensory inputs without requiring an expert

to provide this beforehand. Furthermore, by comparing all combinations of modalities, we

can examine what modalities seem to be most informative to the task.

7.2.6 Results - Case 1: Drawer

Figure 7.9: Opening the drawer comparison across the different modalities when the drawer
is fully closed. The vertical red bars indicate where the model predicted it should stop and
the blue vertical bars indicate where the ground truth stopping point is.

We can compare the result of selecting the correct stopping point using the different
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sensory inputs in Figure 7.9. This figure shows one test run for the drawer configuration

where the drawer is completely closed. Each subplot of the figure contains the data source

(e.g. haptic, haptic and visual, etc.) as well as two vertical bars of differing colors (red and

blue). The blue vertical bar indicates where the robot should have stopped. This value is

hand-labeled by the author. The red vertical bar is where the real-time controller would

have stopped using RMAC. The closer the red vertical bar is to the blue bar, the more

accurate the controller is at stopping when the drawer is open.

Figure 7.10: Average and standard deviation of absolute difference in stopping times for
different drawer configurations across the 7 modalities.

Table 7.3: Drawer Fully Closed Detailed Times

Combo 1 2 3 4 5 Average
Haptic 1.54 1.61 1.38 1.92 1.71 1.63 ± 0.20
Audio 7.46 7.43 7.40 7.90 7.68 7.57 ± 0.21
Visual 2.41 2.53 2.66 2.85 2.83 2.66 ± 0.19

Haptic Audio 1.54 1.61 1.64 1.74 1.87 1.68 ± 0.13
Haptic Visual 0.73 1.08 1.00 0.78 1.25 0.97 ± 0.22
Audio Visual 7.61 9.59 9.12 2.82 2.81 6.39 ± 3.35

Haptic Audio Visual 0.64 1.57 1.38 0.65 1.71 1.19 ± 0.51
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Table 7.4: Drawer Opened 1 inch Detailed Times

Combo 1 2 3 4 5 Average
Haptic 0.33 0.34 0.47 0.25 1.48 0.57 ± 0.51
Audio 7.73 8.41 8.52 7.88 0.06 6.52 ± 3.62
Visual 2.57 0.17 0.19 0.67 9.59 2.64 ± 4.01

Haptic Audio 0.33 0.34 0.25 0.51 1.56 0.60 ± 0.55
Haptic Visual 0.31 0.17 0.27 0.25 1.48 0.50 ± 0.55
Audio Visual 2.56 0.14 0.20 0.68 8.90 2.50 ± 3.71

Haptic Audio Visual 0.33 0.34 0.47 0.24 1.56 0.59 ± 0.55

Table 7.5: Drawer Opened 3 inch Detailed Times

Combo 1 2 3 4 5 Average
Haptic 0.03 0.25 0.08 0.14 0.42 0.18 ± 0.16
Audio 4.09 6.56 6.71 2.18 6.66 5.24 ± 2.04
Visual 1.21 3.04 0.12 6.62 0.36 2.27 ± 2.69

Haptic Audio 0.09 0.25 0.08 0.20 0.46 0.22 ± 0.15
Haptic Visual 0.08 0.79 0.60 1.99 0.42 0.78 ± 0.72
Audio Visual 5.96 5.92 0.11 1.98 5.86 3.97 ± 2.75

Haptic Audio Visual 0.08 0.25 0.08 0.66 0.46 0.31 ± 0.25

Table 7.6: Drawer Opened 5 inch Detailed Times

Combo 1 2 3 4 5 Average
Haptic 1.87 1.74 0.83 0.82 1.48 1.35 ± 0.50
Audio 3.66 4.80 2.81 4.94 4.67 4.18 ± 0.92
Visual 4.14 4.80 2.92 4.94 4.67 4.29 ± 0.83

Haptic Audio 1.68 0.05 0.39 1.00 0.04 0.63± 0.70
Haptic Visual 4.14 4.80 1.27 3.54 2.21 3.19 ± 1.44
Audio Visual 4.14 7.58 5.63 4.94 1.44 4.75 ± 2.24

Haptic Audio Visual 0.13 0.04 1.16 0.20 0.06 0.32 ± 0.47

Table 7.7: Drawer Opened 7 inch Detailed Times

Combo 1 2 3 4 5 Average
Haptic 4.46 0.01 3.56 3.64 3.31 3.00 ± 1.72
Audio 0.33 0.49 2.49 0.56 0.71 0.92 ± 0.90
Visual 0.35 2.25 2.49 2.27 2.51 1.97 ± 0.92

Haptic Audio 4.26 0.03 4.62 2.92 2.63 2.89 ± 1.81
Haptic Visual 8.34 8.07 7.94 4.76 3.31 6.48 ± 2.30
Audio Visual 1.76 2.25 2.49 2.27 2.51 2.26 ± 0.30

Haptic Audio Visual 0.10 0.01 3.33 0.52 0.21 0.83 ± 1.41
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For this particular test run, audio information is not useful at all in determining whether

the robot has opened the drawer. While visual information is helpful, it is not as informative

as haptic information. Furthermore, the best combination of sensory inputs is that of visual

and haptic feedback, which intuitively makes sense when we think about what we pay

attention to when opening drawers. Finally, we can see that the combination of haptic,

visual, and audio data does not perform worse than that of haptic and visual. This shows

that the algorithm can determine what modalities matter automatically, without any external

sources indicating which modalities are important.

To determine how the robot performs overall, we can look at Table 7.3, where the

absolute difference in time between the ground truth stopping point and estimated stopping

point is computed for each of the 5 test runs across all 7 modality combinations for the

configuration where the drawer is completely closed. Since we want the estimated point to

be as close to the ground truth stopping point, the smaller the distance away in time, the

better the score. Overall, we can see the same trend across all test runs: the combination

of haptic and visual performs best while merging all modalities results in similar, though

slightly lower, performance.

This trend can be seen across all five configurations in Table 7.4, Table 7.5, Table 7.6,

and Table 7.7. We can also see this in Figure 7.10 where the average distance away in time

to ground truth are shown for all five configurations. It is interesting to note that while

the configuration of having the drawer 7 inches open is the most difficult to detect because

there is only a short amount of time the robot is pulling before it stops, it does equally as

well as when the drawer is fully closed. Furthermore, these results show that the robot can

adapt to different configurations and, importantly, this adaptation occurs without the robot

ever being trained on any configurations other than fully closed.
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Figure 7.11: Comparing turning on the New Lamp 2 across the different modalities. The
vertical red bars indicate where the model predicted it should stop and the blue vertical
bars indicate where the ground truth stopping point is. For Haptic, Haptic+Visual, Hap-
tic+Audio+Visual, the robot stops after turning on the lamp. For Audio + Visual the robot
never stops pulling. For Audio, Visual, Haptic+Audio the robot stops too early.
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7.2.7 Results - Case 2: Lamps

For this second case, we compare a more difficult situation where the object has changed.

While the interactions with the drawer occurred with the particular drawer, the lamp re-

quires that the object-action model be transferred to an entirely different object that has

never been seen before. Furthermore, it is important to note that the sensory readings for

this object-action pair is more difficult to detect than that of drawer opening. As described

in the previous chapter, sensory modalities can either be discrete or continuous. With the

drawers, all of the modalities are continuous (e.g. visually the drawer is increasing in size,

the force steadily increases once the end is reached, the drawer slowly scrapes along when

moving). Continuous values are easier to model; discrete signals are short so the models

have only a short time window to capture any change. Furthermore, discrete signals are

harder to distinguish from noise. Unlike the drawer, the lamp has two discrete changes

that must be modeled: the audio and haptic signal when the lamp switch clicks. The only

continuous signal is the visual change in light.

This situation is also slightly different from the drawer in that the lamp will not turn

on if the algorithm stops prior to the ground truth location. By contrast, there are few

consequences, in the case of the drawer, if we stop before it has reached the full 9 inches. In

fact, it can be argued that stopping slightly sooner is better than stopping too late. However,

for the lamps, if the robot stops too soon, this creates an event where the robot does not

achieve the task of turning on the lamp. We can see in Figure 7.11 that there are several

instances where the robot stops too early and would have failed in deciding when it had

succeeded at turning on the lamp. We can also see an example of the robot not stopping

even though the robot had reached the point past when the lamp would have toppled over

(i.e. visual and audio condition). For the example seen in Figure 7.11, haptic and visual

information are critical to the lamp although audio also plays an important role in stopping.

Similar to the drawer, the absolute distance in time between the ground truth and stop-

ping point for the different lamps can be found in Table 7.8, Table 7.9, and Table 7.10. We
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Figure 7.12: Average and standard deviation of absolute difference in stopping times for
different lamps across 7 modalities.

Table 7.8: Original Lamp Detailed Times

Combo 1 2 3 4 5 Average Success
Haptic 0.33 0.36 0.02 0.04 0.13 0.18 ± 0.16 4
Audio 0.24 2.04 0.64 2.52 1.27 1.34 ± 0.95 1
Visual 0.06 2.04 2.57 2.52 2.41 1.92± 1.06 1

Haptic Audio 0.22 0.26 0.02 0.11 0.08 0.14± 0.10 4
Haptic Visual 1.32 1.51 1.69 1.17 0.77 1.29 ± 0.35 3
Audio Visual 0.06 2.04 2.57 2.52 2.41 1.92± 1.06 1

Haptic Audio Visual 1.16 0.87 1.76 0.56 0.33 0.94± 0.56 3

Table 7.9: New Lamp 1 Detailed Times

Combo 1 2 3 4 5 Average Success
Haptic 0.69 0.87 0.42 0.61 1.03 0.72 ± 0.24 0
Audio 0.49 0.48 0.18 0.97 0.64 0.55 ± 0.29 1
Visual 2.77 3.00 0.24 2.87 3.22 2.42 ± 1.23 1

Haptic Audio 0.85 0.91 0.70 0.75 1.16 0.87 ± 0.18 0
Haptic Visual 0.11 0.12 0.92 2.87 0.60 0.92 ± 1.14 3
Audio Visual 2.77 3.00 0.26 2.87 3.22 2.42± 1.22 0

Haptic Audio Visual 0.49 0.48 0.18 2.87 0.64 0.93± 1.10 1
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Table 7.10: New Lamp 2 Detailed Times

Combo 1 2 3 4 5 Average Success
Haptic 0.40 0.10 0.16 0.34 0.16 0.23 ± 0.13 4
Audio 0.18 0.36 0.51 0.30 0.71 0.41± 0.20 0
Visual 2.08 2.34 2.38 2.12 2.56 2.30 ± 0.20 0

Haptic Audio 0.18 0.34 0.51 0.26 0.71 0.40± 0.21 0
Haptic Visual 0.80 0.74 0.86 1.36 0.50 0.85± 0.32 5
Audio Visual 2.08 2.34 2.38 2.12 2.56 2.30 ± 0.20 0

Haptic Audio Visual 0.44 0.38 0.52 0.74 0.20 0.46± 0.20 5

add an additional metric in the final column to represent how many runs out of the 5 pulled

far enough past the ground truth stopping point. We can see in the test case of the original

lamp that the haptic channel is most successful in determining when to stop and has the

lowest times. This is interesting because the haptic data for the lamp turning on is a dis-

crete signal. However, if we look at Figure 7.7, we can see that there is a distinct increase

in force that is felt that over time until the light turns on. This shows that the haptic signals

are not just discrete, but also continuous leading up to the moment the lamp turns on.

If we look at the Figure 7.12, we can see that this trend roughly holds true across all

three test cases. Similar to the drawer situation, the full sensory model (visual, haptic, au-

dio) performs on par with the models that use a smaller subset of modalities (e.g. only hap-

tic or haptic and audio). This shows the algorithm can automatically select the modalities

that are important to the task without having an expert provide this information. Finally,

we can see that overall, the models perform well but not perfectly at predicting when to

stop pulling on the lamp. This is expected as this task requires much higher accuracy to

successfully turn on the lamp as opposed to opening the drawer.

7.3 Online Validation: Adapting Learned Affordance Models in Real-time

For our final evaluation, we implement RMAC on Prentice and validate the offline results.
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7.3.1 Real-time Controller

For this section, we use the controller described in Section 7.1.5 that was used to collect

the offline test set described in Section 7.2.5. However, for this evaluation, we connect the

data streams to a real-time feature extractor and connect it to the sensory models trained

as described in Section 7.2.4. Specifically, we load the trained HMMs using all modalities

(haptic, visual, and audio), and during the adaptive subskill segment playback, determine

whether the robot has completed the particular subskill segment or if it should continue

executing at the velocity vn. The specifics of the real-time controller are broken down into

the follow components:

1. State Tracking: The controller constantly tracks the current subskill segment.

2. Plan Generation: The controller loads the specified switching matrix S for the par-

ticular object-action model. At the beginning of each subskill segment, the controller

generates a motion trajectory for the current subskill segment by either using the end-

effector pose relative to the object (pose mode) or the vn of the subskill trajectory

(adaptive mode).

3. Real-time Data Collection: We create a real-time data collector that merges the

different sensory streams into a single feature vector. This is implemented using a

message filter built into ROS (Quigley et al., 2009) that triggers a callback when the

incoming data streams are within a time range. In this work, that time range is set to

0.1 seconds. The data streams occur at different sample rates as seen in Table 7.1.

The data is either down-sampled (audio) or up-sampled (visual) to match 100 Hz

when the callback is triggered. The data is then stored in a buffer with the current

subskill segment number.

4. Action Execution: Once the controller is loaded and has generated the plan for the

current subskill, the robot executes either a long plan (pose mode) or a very short
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trajectory created by vn. If the controller is in an adaptive segment, the robot com-

pletes the small motion and queries the data collector to predict if it should continue

or move on to the next subskill segment. When querying, the following two steps

(Steps 5, 6) are executed.

5. Feature Computation: When requested, the controller selects all stored data streams

from the current state and computes the 13 different features specified in Section 7.2.3.

The features are normalized by removing the same mean and scaling factor computed

during training.

6. Prediction: Once all of the features for the current subskill segment are generated,

they are fed into the current subskill segment’s sensory model. The model determines

the most likely path (Viterbi) through the left-to-right HMM given the feature vector

over time. If the likely path reaches the final state of the HMM, the predictor returns

stop. If the last state is not reached, the predictor returns continue.

7.3.2 Results

To replicate the offline results using the full multimodal model we execute five trials un-

der each condition of the drawer (i.e. closed, 1in, 3in, 5in, 7in). During these trials, the

robot executes the real-time controller to determine when to stop pulling on the drawer. To

measure how successful the robot was at stopping at the right position for the drawer to

be open, we measure two things: how far the drawer is open (9 inches is fully open) and

how far the robot dragged the drawer set. The first metric tells us if the robot stopped too

early (i.e. if the drawer is open less than 9 inches) and the second metric tells us if the robot

stopped too late (i.e. if the robot starts to drag the drawer set across the table because it has

not realized it should stop pulling). The average values across the 5 trials can be seen in Ta-

ble 7.11. We can see in the online case that as the configuration gets more difficult (i.e. the

controller has a smaller amount of time to make a decision), the distance the robot pulls the
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Table 7.11: Online Drawer Results Using Full Multisensory Model

Configuration Average Movement Open Size Non-Adapt Movement
0 inch 0.05 in 8.3 in 2 in
1 inch 0.08 in 8.36 in 3 in
3 inch 0.04 in 8.48 in 5 in
5 inch 0.16 in 9.0 in 7 in
7 inch 0.25 in 8.8 in 9 in

Table 7.12: Online Lamp Results Using Full Multisensory Model

Object Accuracy
Orig Lamp 0.7

New Lamp 1 0.6
New Lamp 2 0.9

drawer increases. However, we can also see that if the robot did not perform adaptation,

the distance pulled would be much greater.

The robot executed the controller 10 times for each online lamp evaluations. We report

the accuracy of these interactions in Table 7.12. For the Original Lamp and New Lamp 2,

the online results are fairly similar to the offline results. Interestingly, New Lamp 1 per-

forms better than the offline results suggested. We believe this is related to the slight time

delay between the real-time signals and the controller stopping. In the offline evaluation,

we measured the exact moment the algorithm chooses to stop. However, in the real-time

controller, there can exist a slight delay (up to one vn motion). This appears to be enough

to increase the success rate for the New Lamp 1 object.

We can see with the online evaluations that the controllers using the full multisensory

model can be executed in real-time with results similar to those found offline. Furthermore,

this evaluation gives a sense of scale to the offline evaluations. While some test configu-

rations did not perform perfectly (e.g. the absolute difference in expected time and ground

truth were greater than 0), this does not translate into large errors in real-time. In particular,

we can see that the robot opens the drawer fully in all cases (i.e. between 8.3 and 9 inches)

with only a few instances where the robot pulled slightly too long, which only translates to
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dragging the drawer no greater than 0.25 inches. For the lamp evaluation, the difference in

expected and ground truth stopping points is also small enough to not significantly impact

the overall success rate of turning on the lamp.

7.4 Findings of Multisensory Affordances for Adaptive Object Manipulation

In this chapter, we introduced a novel approach to learning and executing affordances -

RMAC. Specifically, we show that affordances can be adapted in certain situations where

the object state or object have changed, but the other components (e.g. action, effects)

have not. Furthermore, we show that using multisensory input improves the quality of the

adaptation. The work shows that RMAC can be used across two very different objects and

can select the modalities that are important to each task automatically without an expert

specifying those modalities in advance. Furthermore, RMAC allows a robot to learn and

execute affordances without explicitly specifying any objective function.

We demonstrate RMAC in two separate evaluations (offline and online) across two very

different objects (drawer and lamp). The evaluations show that the combination of using

haptic, audio, and visual information with RMAC allows the robot to open a drawer at

5 different configurations and turn on two never-before-seen lamps. The real-time online

evalutions verify the offline evaluations and show that RMAC allows the robot to accurately

open different configurations of the drawer (within 1 inch of perfect) and can turn on novel

lamps with an average accuracy 0.75%.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Commercial robots available today may still struggle to operate in complex, human-centric

environments but the algorithms and approaches described in this thesis will bring us closer

to a world where that is no longer the case. Using human guidance and multisensory

input in conjunction with a framework that models the world as affordances, robots can

continuously learn how to manipulate objects in human-centric environments.

This thesis makes the following contributions to the field of robot learning: (1) a human-

centered framework for robot affordance learning that demonstrates how human teachers

can guide the robot in the modeling process throughout the entire pipeline of affordance

learning; (2) several novel human-guided robot self-exploration algorithms that use hu-

man guidance to enable robots to efficiently explore the environment and learn affordance

models for a diverse range of manipulation tasks; (3) a multisensory affordance model that

integrates visual, haptic, and audio input; and (4) a novel control framework that allows

adaptive object manipulation using multisensory affordances.

8.1 Human-Centered Framework for Robot Affordance Learning

Without a framework for robot affordance learning, the problem space can quickly become

intractable. To address this challenge, we introduced a robot learning framework that used

guidance from human teachers during various stages of the affordance modeling pipeline:

• Human-guided exploration allowed the robot to learn haptic affordances and build

multisensory affordance models.

• Human-guided robot self-exploration - seeded by demonstrations from 10 naı̈ve hu-

man teachers - allowed the robot to efficiently sample the infinitely large action space
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for manipulating objects.

• Kinesthetic LfD using keyframes allowed the robot to quickly build action models of

various object-action pairs.

This framework ultimately allowed us to teach robots five different affordances across

11 different objects and actions in a tractable manner.

8.2 Human-Guided Robot Self-Exploration

Human-guided robot self-exploration allowed robots to utilize human guidance (e.g. re-

duced time to explore the environment) while minimizing the costs (e.g. human effort

required). We developed several novel algorithms that enabled robots to efficiently explore

the environment without requiring a human teacher to constantly adjust the environment

and compared the impact of three types of exploration on affordance-learning performance:

(1) learning through self-exploration, (2) learning from supervised examples provided by

10 naı̈ve users, and (3) a combined approach of self-exploration biased by user input. By

analyzing aggregate performance of the teachers, we showed that a combined approach is

the most efficient and successful (Chu et al., 2016b).

Additionally, through a deep analysis on individual human teachers (Chu and Thomaz,

2017), we concluded that teachers that provided demonstrations with a relatively limited

set of ways to interact with the object resulted in data that could be used to create a model

with consistently good recognition capabilities. By contrast, teachers whose guided explo-

ration resulted in a large number of different ways to successfully interact with the object

generated data that created a poorly-performing model.

8.3 Multisensory Affordance Model

Robots need the ability to integrate and use multisensory input to more robustly interact

with the world. Multisensory affordance models provide robots with a more robust under-

131



standing of their environment.

Through careful study of multisensory (i.e. haptic, visual, and audio) input for robot

manipulation, we built a unified representation for object manipulation using affordances,

including the insight that not only can sensory input vary between continuous and dis-

crete signals but also that this difference can impact the overall quality of an affordance

model (Chu et al., 2016a). Furthermore, modeling multiple sensory modalities using

HMMs improved the overall accuracy of adaptive object manipulation and allowed the

robot to automatically determine what modalities to focus on for each object-action pair.

8.4 Adaptive Object Manipulation using Multisensory Affordances

Much in the same way that humans build upon previously learned skills to adapt to a new

situation, robots need to learn this ability if they are to be effective in human-centric envi-

ronments. This thesis tackled the affordance learning problem of how to transfer a previ-

ously learned object-action pair to a novel configuration or object.

We developed a novel approach to adapting object-action pairs by using segmenta-

tion and hybrid control: Real-time Multisensory Affordance-based Control (RMAC). We

demonstrated that RMAC can be used across two very different objects without an expert

having to specify the differences in advance. Furthermore, we showed that the combina-

tion of using haptic, audio, and visual information with RMAC allowed the robot to open a

drawer in five different configurations and turn on two never-before-seen lamps.

8.5 Discussion and Future Work

There are several insights gained from the contributions of this thesis that lead to interesting

future questions. We discuss them in this section.
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8.5.1 Human Guidance

Throughout this thesis, we utilize human input - in the form of demonstrations and environ-

mental scaffolding - to help the robot learn affordances. We show that this input plays a key

role in allowing robots to interact with the environment. In Chapter 5, we looked deeper

into how these demonstrations can be provided by non-experts and showed that naı̈ve hu-

man teachers could provide primitive actions to manipulate several objects. We also gained

insight into how individuals can differ significantly when providing demonstrations. We

concluded that this variation was not successfully captured in the models and future work

needs to address this limitation by looking into approaches that can capture the various

ways robots can execute skills.

In Chapter 5, we limit the demonstrations to pick and move. This provided a concrete

set of subgoals that the human teachers can provide. However, in both Chapter 4 and

Chapter 6, we rely on demonstrations that are not limited in the number of keyframes. It

remains an open question whether, given complete freedom in the number of keyframes for

a demonstration, (1) a non-expert human teacher can provide demonstrations that correctly

highlight the subgoals of an affordance and (2) the highlighted subgoals can be used to

generate meaningful subskills for adaptive object manipulation. Future work in this area

should look into whether naı̈ve human teachers can provide open-ended keyframe demon-

strations. Interestingly, as we do show that limiting demonstrations to specific subgoals

can be taught by naı̈ve teachers, we can also look at the question of whether we can break

down all actions for affordances into a specific set of limited primitives.

This thesis focused on using keyframes as the primary input for kinesthetic teaching.

However, it remains an open question whether other forms of LfD could be used to guide

robots in learning affordances. LfD allows robots to quickly acquire actions to interact with

the world. While Human-Guided Affordance Learning and RMAC do not solely rely on

keyframes, future work should look at the viability of other LfD approaches that do not use

keyframes. In particular, could other inputs provide the crucial subgoals of the affordance
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that keyframes inherently provide? Additionally, this thesis assumes that demonstrations

provided from teachers are high-quality. Future work should seek to understand how low-

quality demonstrations could be enhanced or identified and whether the method of LfD

impacts the quality of the demonstration.

While naı̈ve human teachers were able to provide demonstrations for various objects in

a brief period of time (i.e. 5 and 10 minutes), it is unclear how novelty plays a role in the

teaching. In particular, over a longer period of time, could we expect people around a robot

to continue to provide guidance in learning tasks? During the study in Chapter 5, users

could cease teaching a particular affordance earlier than the time limit. We discovered that,

for simpler affordances, some users got bored quickly and moved on before the alloted

time had elapsed. For the more difficult interactions, users seemed more engaged and ex-

perimented with more techniques. In particular, users tackled the challenge of turning on a

lamp by slowly adapting and changing their approach when the robot initially failed. How-

ever, it is unclear if, over time, users would get frustrated with these harder affordances.

Future work should look at understanding how people’s demonstrations and willingness to

teach robots change over multiple interactions during a long time period.

8.5.2 Multisensory Input

There are many challenges in dealing with modalities of varying frequencies; this thesis

depends on carefully hand-selected features. Future work should look at how to best gen-

erate features from the different sensory spaces and account for the difference in frequency

without human intervention.

Additionally, while multisensory information is important throughout the execution of

the trajectory, this thesis does not explore the robustness of RMAC if it only receives a

partial set of sensory cues. Specifically, how could the robot adapt to a situation where

it turns on a lamp that does not make any noise? This situation highlights an important

component of multisensory adaptation: the primary goal or objective of the robot. In the
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case of turning on a lamp, the primary sensory signal is light. Even if the robot were to

hear a click and feel the correct amount of pressure, if there is no light, then the primary

objective of turning on a lamp has not been achieved. Conversely, if the robot does see light

but the lamp makes no noise, it should be able to reason that it has nonetheless achieved

the goal of turning on the lamp. Future work should explore this notion of primary and

secondary sensory modalities and enhance RMAC by adding an additional layer (i.e. high-

level policy) on top of RMAC to determine primary and secondary success and failure.

8.5.3 Tasks

Affordances provide the basic building blocks that enable a robot to understand how its

actions can change the environment and thus complete tasks. For robots to complete tasks

robustly, however, they need to plan: this includes understanding when to perform a specific

type of transfer and how to break down a task into basic steps (e.g. to water a plan, the robot

should fill a containable object before pouring the water out of that object over the plant).

Future work should look at how a robot can connect to a database of prior knowledge,

ground this knowledge base with the multisensory adaptable controllers learned in this

thesis, and execute these controllers in a manner that allows for robust task completion.

8.5.4 Summary

Through novel frameworks, algorithms, and multisensory models, this thesis enables robots

to more quickly and effectively complete tasks in human-centric environments while simul-

taneously requiring less human intervention. Building upon the technical contributions in

this thesis (which itself was built upon a strong foundation of prior work), we can continue

to progress toward a future where robots can effectively respond to any request, regardless

of the environment, the teacher, or the complexity of the task.
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APPENDIX A

USER STUDY

• Experimenter protocol

• Post-study questionnaire

• Experimenter data collection form

• IRB consent form
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Experiment 
1. Object-Actions-Effects (Affordance) 

 

 Object Action Effect Low Affordance 

1 Bread box lid Move Moves up Lift-able 

2 Pasta jar Move Slides Push-able 

3 Drawer unit Move Slides Push-able 

4 Drawer shelf Pick Slides out Pull-able 

5 Lamp string Pick Clicks down Pull-able 

 
 
Subject Protocol 

1. Person comes in - Sign consent forms 
2. Explain study 

a. Looking for affordances on specific objects. I will walk you through the specific 
affordances that I want you to teach the robot 

3. You will do this through KLfD 
a. Play with the robot and the commands to get a feel of how to move the robot 

around 
i. Get them to move the arm to 2-3 specific poses (need to test) 

1. Elbow up 
2. Turning the wrist 
3. Closing the hand 
4. Lifting 

4. To do the experiment you need to play with objects 
a. Here is a test object (lift jar) (insert) 

 
 
  



System Protocol 
1. Initial Startup 

a. Startup robot - (sync time if needed) 
b. Startup vision system 

i. ASUS launch 
ii. Filtering 
iii. Object Tracking 

c. Startup c6 
i. Select object + action 

1. Practice object + Move 
2. Run through practice of KLfD 

a. Commands (Release, hold, go here, end here, close your hand) 
3. Run through practice of actual primitive 

a. Go here 
b. End here 

i. I need to press “Generate Primitive” 
c. Show me what you learned 

i. Joint level playback so that we don’t have issues with IK and collisions 
d. Play with the actual practice object 

i. Insertion 
ii. Lift jar lid 

4. Setup system for actual experiment 
a. Restart c6 

i. Select the object+action  
b. Start data logging 
c. Start video recording 

5. Walk through each interaction 
a. Have one interaction where the object location does not change 

i. ie just have people demonstrate on the object with the object set on the 
predefined markers 

ii. Then let them move the object around 
1. Do we want to let them re-teach? 

a. Might get the height wrong for certain objects? 
b. Hand record which interaction was successful vs. failure 

i. Have a pre-printed sheet to write this on 
 
 
 
 
 
 
 
 



Subject Instructions 
 

● Welcome to lab - this is Curi the robot 
● Goal is to teach affordances 

○ Define Affordances 
■ Action + Object = Effect 

● We are teaching the robot about what the affordance looks like 
and feels like to the robot 

● Action is a primitive or “action template” 
○ Pick 
○ Move 

● To each the action we’ll be using Kinesthetic Learning from Demonstration 
○ Physically guide the robot through the action 

● Practice 
○ KLfD 

■ Try to move such that palm is up 
■ Try to move such that thumb up, thumb down, palm down 
■ Play with the elbow 
■ Try to move towards the body 
■ Try to move away from the body 
■ Open and close hands - release and hold arms 

○ Overall 
■ You’ll provide one demonstration 
■ Then adjust the environment until we can teach the robot about the 

affordance, whether that means success or fail 
● I’ll be recording if the action on the object was a successful 

affordance or failed affordance 
○ Insertion 

■ Insertable using the move primitive 
○ Lift 

■ The lid is liftable using the pick primitive 
 
 



Powered by

See how easy it is to create a survey.

Affordance Survey

1. What strategy did you use when teaching affordances to Curi? How did you decide what
to show the robot? 

Feel free to provide multiple strategies if you had different strategies for each object or
primitive.

*

Done



User Object Action Demo Type User Object Action Demo Type
Success/Fail Success/Fail

Demo Explore Count Result Notes Demo Explore Count Result Notes
0 0 0 0
0 1 0 1
0 2 0 2
0 3 0 3
0 4 0 4
0 5 0 5
1 0 1 0
1 1 1 1
1 2 1 2
1 3 1 3
1 4 1 4
1 5 1 5
2 0 2 0
2 1 2 1
2 2 2 2
2 3 2 3
2 4 2 4
2 5 2 5
3 0 3 0
3 1 3 1
3 2 3 2
3 3 3 3
3 4 3 4
3 5 3 5
4 0 4 0
4 1 4 1
4 2 4 2
4 3 4 3
4 4 4 4
4 5 4 5
5 0 5 0
5 1 5 1
5 2 5 2
5 3 5 3
5 4 5 4
5 5 5 5
6 0 6 0
6 1 6 1
6 2 6 2
6 3 6 3
6 4 6 4
6 5 6 5



Consent Form Approved by Georgia Tech IRB:  July 30, 2014 - July 29, 2015

Georgia Institute of Technology 
Project Title: Learning from Demonstration for Cloud Robotics
Investigators: Andrea L. Thomaz 
Consent title: Main 07/13v1 
Research Consent Form

You are being asked to be a volunteer in a research study.

Purpose: 
The purpose of this study is:

• Evaluate the effectiveness of robot technology that is designed to learn
new things by interacting with a human partner and investigate human
preferences in the design of such technology. 

• We estimate that 300 people will participate in this research over the 
course of the project.  We are including only adults 18 years and older 
in this study.

Procedures: 
If you decide to be in this study, your part will involve:

• The study will take between 30 minutes and an hour. 
• You will first be given an introduction by the experimenter. 

• If your experimental condition involves interacting with the robot 
the experimenter will explain the functionality of the robot 
technology that will be used in the study. A demonstration of the 
interaction will be given by the experimenter. Then you will be 
asked to interact with the robot technology to complete a task in 
the robot’s workspace in our lab. In this interaction you might be 
asked to physically move the robot’s arms in the workspace or to 
collaborate with the robot on an object-directed task.

• Otherwise you will be asked to teach a similar task but in a remote 
setting, where you are located in a separate room from the robot 
and have to operate it with a web-based interface in order to 
complete the teaching task.

• We will collect audio and video of the session. These tapes will remain 
confidential, and will not be distributed in any way without your 
permission (there is a video release option at the bottom of this form). 
They will only be used for human-robot interaction analysis. 

• After the interaction there will be a short survey about your 
experience.

• Finally you will have an exit interview with the experimenter where you
can ask questions and learn more about the goals of this research.

Risks/Discomforts
The following risks/discomforts may occur as a result of your
participation in this study:



Consent Form Approved by Georgia Tech IRB:  July 30, 2014 - July 29, 2015

• The risks involved are no greater than those involved in daily activities,
such as operating a microwave or using a computer. Any physical 
interactions will occur while the robot is in a compliant mode. Our 
hardware is specially designed to be compliant for safe physical 
interactions and the robot’s movements can be stopped by the 
participant. Additional precautions include an emergency stop button 
near the experimenter at all times, and conservative speeds of 
operation.

• The video recording from this study might be viewed by the members 
of our research team other than the experimenter.

Benefits
The following benefits are possible as a result of being in
this study:

• The potential benefits of this research, to society at large, are in the 
pursuit of humanoid robots that are able to work alongside human 
partners in natural and intuitive ways.  This could lead to robots in 
society that can help us solve problems in the domain of healthcare, 
eldercare, education, smart manufacturing, among others.

• The robots being used in this research are state-of-the-art humanoid 
robots.  The primary benefit that individuals typically find in 
participating in these studies is that this is an opportunity to get hands 
on experience interacting with a sophisticated robot and learning more
about robotics at Georgia Tech.

Compensation to You Participants will receive $10/hour in compensation, or 
when applicable participants will instead receive extra credit in an associated
class (e.g., in the past CS 3600 students have received 1pt of extra credit 
toward their final grade for participating in similar research studies). If a 
participant decides to withdraw early, they will receive $5.00 (or similar fraction of extra 
credit) for each half hour of participation.

U.S. Tax Law requires a mandatory withholding of 30% for nonresident alien 
payments of any type. Your address and citizenship/visa status may be collected for 
compensation purposes only. This information will be shared only with the Georgia Tech
department that issues compensation, if any, for your participation.

Confidentiality
The following procedures will be followed to keep your personal information 
confidential in this study: The data that is collected about you will be kept 
private to the extent allowed by law. To protect your privacy, your records 
will be kept under a code number rather than by name. Your records will be 
kept in locked files and only study staff will be allowed to look at them. Your 
name and any other fact that might point to you will not appear when results
of this study are presented or published.
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• The video/audio tapes collected as part of the evaluation will be stored 
on an external hard drive for the duration of the analysis period.  Dr. 
Thomaz and the student researchers involved with the project will 
have access to this data for the purpose of analyzing the human-robot 
interaction. This project is funded in a collaborative research grant with
Dr. Sonia Chernova at Worchester Polytechnic Institute (WPI).  Data 
from our experiments at Georgia Tech may also be shared with the 
broader research team of Dr. Chernova and her student researchers. 
This data will be backed up on a server managed by the College of 
Computing’s Technology Services Organization.  Credentials will be 
required for access to the data, ensuring that only the appropriate 
researchers have access. The sponsor organization, the National Science 
Foundation, may also review study records.

To make sure that this research is being carried out in the proper way, the 
Georgia Institute of Technology IRB may review study records. The Office of 
Human Research Protections may also look at study records.

Costs to You There are no costs involved with participating in this study.

In Case of Injury/Harm 
If you are injured as a result of being in this study, please contact Dr. Andrea 
Thomaz at telephone (404) 385-3365. Neither the Principal Investigator nor 
Georgia Institute of Technology have made provision for payment of costs 
associated with any injury resulting form participation in this study.

Subject Rights
• Your participation in this study is voluntary. You do not have to be in 

this study if you don't want to be. 
• You have the right to change your mind and leave the study at any 

time without giving any reason, and without penalty.
• Any new information that may make you change your mind about 

being in this study will be given to you. 
• You will be given a copy of this consent form to keep.
• You do not waive any of your legal rights by signing this consent form.

Questions about the Study or Your Rights as a Research Subject
• If you have any questions about the study, you may contact Dr. Andrea

Thomaz at telephone (404) 385-3365. 
• If you have any questions about your rights as a research subject, you 

may contact Ms. Melanie Clark, Georgia Institute of Technology at 
(404) 894-6942.

If you sign below, it means that you have read (or have had read to you) the 
information given in this consent form, and you would like to be a volunteer 
in this study.



Consent Form Approved by Georgia Tech IRB:  July 30, 2014 - July 29, 2015

________________________________ 
Subject Name

________________________________                    ______________________
Subject Signature Date 

________________________________                    ______________________
Signature of Person Obtaining Consent Date

Video Release
I consent to the use of video recordings from this study in conference 
presentations and research promotion videos to be displayed on a project 
webpage.

YES  ____  NO ____

Initial_________



APPENDIX B

CODE BASE

The software packages written and used throughout this thesis can be found in several

Github organizations.

• HLP-R Organization: HLP-R Github Codebase

• Other: Socially Intelligent Machines Lab Github Codebase and Personal Github

The packages are listed below with their respective organization as well as a high-level

description of the package. Each package has its own README or documentation can be

found in the specific documentation repository on Github.

B.1 HLP-R

• hlpr common: repository that stores the launch scripts to bringup basic Prentice func-

tionality

• hlpr documentation: wiki that documents the full setup of Prentice and all of the

packages that are part of the HLP-R organization.

• hlpr kinesthetic teaching: package that contains the kinesthetic interaction pipeline

where voice commands are used to interact with the robot (e.g. release the arm,

open/close the gripper, etc.). It also contains the keyframe playback package that

generates and plans trajectories using MoveIt!

• hlpr lookat: Package that controls pan/tilt unit on Prentice. Locations in robot task

space can be translated into pan/tilt commands.
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• hlpr manipulation: API and core scripts to interface the trajectory controller of the

Jaco2 arm with the MoveIt! planning interface.

• hlpr perception: Point Cloud library that performs object segmentation and basic

feature computation (e.g. color, volume, centroid)

• hlpr simulator: Gazebo simulator repository that fully simulates Prentice and a sim-

ple room environment.

B.2 Other

• data logger bag: Complete library that provides API for easy data logging using

rosbag and conversion of bag files into HDF5 format for processing.

• sklearn suite: API and scripts for all machine learning related code
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APPENDIX C

DATA

The data sets collected throughout this thesis can be found on Github. Each dataset is listed

with individual READMEs about how and what data was collected: Dataset Github
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Dillmann (2009). “Combining force and visual feedback for physical interaction tasks
in humanoid robots”. In: 2009 9th IEEE-RAS International Conference on Humanoid
Robots, pp. 439–446.

161



Wilcox, Teresa, Rebecca J. Woods, Catherine Chapa, and Sarah McCurry (2007). “Multi-
sensory exploration and object individuation in infancy.” In: Developmental psychology
43 2, pp. 479–95.

Wood, David, Jerome S. Bruner, and Gail Ross (1976). “THE ROLE OF TUTORING IN
PROBLEM SOLVING*”. In: Journal of Child Psychology and Psychiatry 17.2, pp. 89–
100.

Zech, Philipp, Simon Haller, Safoura Rezapour Lakani, Barry Ridge, Emre Ugur, and Jus-
tus Piater (2017). “Computational models of affordance in robotics: a taxonomy and
systematic classification”. In: Adaptive Behavior 25.5, pp. 235–271.

Zhu, Yuke, Alireza Fathi, and Li Fei-Fei (2014). “Computer Vision – ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
II”. In: ed. by David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars. Cham:
Springer International Publishing. Chap. Reasoning about Object Affordances in a Knowl-
edge Base Representation, pp. 408–424.

162


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Approach
	Affordances
	Robot Exploration and Environmental Scaffolding
	Multisensory Input

	Thesis Overview
	Thesis Statement
	Contributions


	Background and Related Work
	Robot Affordance Learning
	Learning from Demonstration
	Human-Guided Exploration for Affordance Learning
	Multisensory Representations of Affordances
	Learning Multisensory Robot Controllers
	Model-free Learning
	Environmental Model-based Learning
	Segmentation Based Skill Learning


	Human-Guided Affordance Learning
	Challenges in Robot Affordance Learning
	Affordance as a Learning Problem
	Human-Centered Approach
	Hardware
	``Curi'' Robot
	``Prentice'' Robot

	High-Level Pipeline
	Action Generation
	Data Collection: Robot Exploration
	Affordance Modeling
	Evaluation


	Learning Haptic Affordances from Demonstration and Human-Guided Exploration
	Approach: Learning Haptic Affordances
	Hardware Platform
	Action Acquisition
	Human-Guided Exploration
	Learning Haptic Affordance Models
	Hidden Markov Models
	Training
	Modeling Results

	Affordance Testing
	Experiment Setup
	Results

	Findings of Learning Haptic Affordances with Human Guidance
	Action Variability
	Action Generation
	Contributions


	Human-Guided Robot Self-Exploration
	Exploration Space for Affordance Learning
	Objects and Actions
	Affordances

	Baseline Exploration Strategies
	Self-Exploration (SE)
	Human-Supervised Exploration (HSE)
	Active Exploration Baselines

	Guided Exploration Strategies
	Guided Aggregate Exploration (GAE)
	Guided Iconic Exploration (GIE)
	Guided Boundary Exploration (GBE)

	Affordance Modeling
	Model Representation
	Training and Testing

	Aggregate Results
	Exploration Coverage
	Model Performance

	User Specific Results
	Exploration Coverage
	Clustering
	Clustering Performance
	Ratio of Success and Failure
	Affordance Effect Space
	Qualitative Observations

	Findings of Human-Guided Robot Self-Exploration
	Variation in Teaching
	Action Generation


	Affordance Transfer and Multisensory Input
	Affordance Transfer
	Hierarchy of Affordance
	Affordance Category Breakdown
	Transfer by Category

	Multisensory Feedback
	Contributions

	Multisensory Affordances for Adaptive Object Manipulation
	Approach: Real-time Multisensory Affordance-based Control (RMAC)
	Data Collection
	Segmentation
	Affordance Switching Matrix
	Subskill Segment Modeling
	Execution

	Offline Validation: Adapting Learned Affordance Models to Changed Objects and New Objects
	Experimental Setup
	Data Collection
	Multisensory Features
	Training Sensory Models
	Test Set
	Results - Case 1: Drawer
	Results - Case 2: Lamps

	Online Validation: Adapting Learned Affordance Models in Real-time
	Real-time Controller
	Results

	Findings of Multisensory Affordances for Adaptive Object Manipulation

	Conclusions and Future Work
	Human-Centered Framework for Robot Affordance Learning
	Human-Guided Robot Self-Exploration
	Multisensory Affordance Model
	Adaptive Object Manipulation using Multisensory Affordances
	Discussion and Future Work
	Human Guidance
	Multisensory Input
	Tasks
	Summary


	User Study
	Code base
	HLP-R
	Other

	Data
	References

