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ABSTRACT
The objective of this doctoral research is to design multi-
modal task-learning policies for a robotic system that targets
the exchange of task rules between humans and robots. This
objective is achieved through a collaborative task applica-
tion during human-robot interaction where the two partners
learn a task from each other and accomplish a shared goal.
As a first step, a method to model human-action primitives
using a pattern-recognition technique is presented. Next, al-
gorithms are developed to generate turn-taking strategies in
response to human task behaviors. The contribution of this
work is in engaging robots with humans in collaborative play
task by modeling statistical patterns of play behaviors and
reusing previously learned knowledge to reduce the decision
process. Here, results of previous work are presented, and
remaining works including deploying a physically embodied
agent and developing an evaluation platform are outlined.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.6 [Artificial

Intelligence]: Learning; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding

Keywords
Human-robot interaction, Collaborative task learning and
solving

1. INTRODUCTION
The need for robots being able to socially interact with hu-

mans is becoming greater as more applications emerge that
require interactions between human and robot. Robots that
interact with humans or other physical agents by following
social behaviors and rules attached to their roles are defined
as social robots [2]. In 2005, Feil-Seifer and Matarić [3] intro-
duced the term socially assistive robots (SAR) that extends
on this definition. Traditionally, assistive robots referred to

mechanical actuator devices built to assist people with dis-
abilities or help with physical rehabilitations. Compared to
these devices, examples of SAR include robots that create
cognitive bonding with the user by responding to the user’s
touch and sound [9]. The focus of this doctoral research is on
SAR systems that possess the ability to engage in collabora-
tive activity, which in turn promote a subject’s social skills
and mediate the process of transferring the subject’s learned
knowledge for interaction with other people. As a social me-
diator, the child-like humanoid Kaspar has shown potential
in encouraging autistic children to participate in an imita-
tion play [6]. In this work, the child and the therapist take
turns imitating Kaspar’s expressions. Some subjects, after
observing the robot play with a tambourine, start to mimic
the action. The authors also mention how robots generate
a high degree of motivation and engagement in subjects, in-
cluding those who were unwilling to interact with human
therapists. Their subjects showed positive social behaviors,
such as touching, vocalizing, and smiling at the robot. The
result of the study promises that repeated exposure to in-
teractive robots can effectively enhance the social ability of
the subjects. Compared to this work where the robot was
remotely controlled by the therapist, the goal of this re-
search is to develop a robotic system that could observe,
understand the subject’s play, and autonomously generate
its own turn-taking behavior.

In the following sections, the key research questions are
posed, followed by discussions on current accomplishments
and approaches for the remaining work.

2. RESEARCH QUESTIONS
Endowing robots with learning capability is one of the ac-

tive research areas in robotics. Learning from demonstration
(LfD) can greatly reduce time for computing task constraints
or planning manipulation trajectories. In the studies where
LfD was coupled with social machines, it was shown that so-
cial guidance promotes the robot’s learning process [8]. By
building on these previous efforts, this doctoral research fo-
cuses on implementing a task-learning behavior on a robotic
platform where the robot (1) observes and interprets human
motions, (2) deduces the underlying objective, (3) generates
an appropriate response, and (4) takes turns with the human
partner to accomplish a task. Play tasks have been chosen
as the application domain in order to evaluate the proposed
task-learning system. Specifically, the following questions
are posed and answered through this research.



Figure 1: The most frequently observed low-level

motions are defined as play-task primitives.

1. Given a task objective, how should a task behavior be
effectively modeled and recognized?

2. What are the methods to autonomously select and per-
ceive task-learning cues (TLCs) in a scene?

3. In what way should the TLCs be combined to generate
a transferable task-learning policy (TLP)?

4. What metrics should be used to measure learning per-
formance, i.e., task knowledge transfer, of a robotic
agent?

The following two sections report the approaches and find-
ings of the research questions 1 and 3. The future work
focuses on improving the previous results and providing an-
swers to the remaining questions.

3. TASK-BEHAVIOR MODELING
Baranek et al. list in their work a subset of toy manip-

ulations that could be used towards screening a child’s de-
velopmental stage [1]. Based on the list, a study has been
conducted with public sources from the web to identify the
kinds of basic motions that form these manipulations when
people interact with various types of toys. With regards to
a robotic partner, these basic motions are further defined as
play-task primitives. The fourteen most distinct primitives
found from the study are the renditions of the behaviors in
the list of Baranek et al. (Figure 1).
Much of the prior literature refers to hidden Markov model

(HMM) as a very effective gesture pattern-recognition algo-
rithm [7]. The HMM provides a probabilistic framework for
modeling a time series of multivariate observations. The
power of the algorithm comes from the characteristic that
defines a Markov process. In a Markov process, the condi-
tional probability distribution of the future event only de-
pends on the current event and not on the sequence of pre-
decessor events. In modeling play actions, it might not be
valid to assume that the entire play sequence has a Markov
property. However, the assumption is still useful when con-
sidering the constant changes in motion gradients and ob-
ject appearances that form the play motions. The contri-
bution of this approach is in decomposing a large action to

Figure 2: Steps of training the hidden Markov mod-

els and recognizing the sequence of play-task primi-

tives.

temporally-sequenced primitives with a first order Markov
process, thereby providing recognition of unpredicted behav-
iors.

The task-primitive recognition algorithm is depicted in
Figure 2. The features used to model the primitives are mo-
tion gradients and object spreads. What defines the move-
ment of an object is the directional difference in the object’s
center of mass in adjacent frames. The term motion gradi-
ent is used to describe the normalized direction of the task
motion. Besides the x and y directional changes of the ob-
ject movement, the variation in the object size is used to
distinguish whether the object has been inserted, stacked,
or dropped. Detailed algorithm and results are discussed in
[5].

4. GENERATING A TASK TURN
Case-based reasoning (CBR) is a concept that solves new

problems based on the solutions of similar past problems. By
comparing the current task to some past task cases stored
in memory, the best solution is retrieved and adapted to the
current task. This process allows the system to bypass a long
complicated decision process. One of the issues associated
with CBR is that complexity of retrieving a data from a
database increases exponentially depending on the size of
the database. Therefore, efforts have been made to maintain
database size under threshold by re-building the database for
each new task and grouping cases by task objectives. Also,
low-dimensional feature descriptors have been proposed to
reduce data size.

The first phase of CBR is acquiring knowledge, i.e., train-



ing the database. During this phase, the system observes
a play task performed by the subject and generates a case
(problem-solution pair) for each turn which is then saved in
the database. In the second phase when a new problem is
introduce, the most similar past problem and its solution
are retrieved from the database. The distance between the
two problems Ci and Cj is computed as the sum of weighted
distances between each feature descriptor:

δ(Ci,Cj) = w1 · δ(pAi
,pAj

)
︸ ︷︷ ︸

primary-object SD distance

+ w2 · δ(pBi
,pBj

)
︸ ︷︷ ︸

secondary-object SD distance

+ w3 · δ(ρi, ρj)
︸ ︷︷ ︸

size ratio distance

+ w4 · δ(γAi
, γAj

)
︸ ︷︷ ︸

primary-object color distance

+ w5 · δ(γBi
, γBj

)
︸ ︷︷ ︸

secondary-object color distance

The weight coefficients w1, · · · , w5 provide factor informa-
tion of the task objective. For example, if w1 and w2,
which are the shape descriptors (SD) of the objects, are
greater than other weights, the task objective most likely
involves shape matching. Next is the reuse step where the
retrieved solution is compared to the current task. Using
the distance function δ(Ci,Cj), a new solution is generated
that adapts to the current scene. During the last phase,
the new problem-solution pair is revised and retained in the
database. Using double-thresholding variables, the new case
is either discarded, saved in the database, or prompted for
human input.
The preliminary result of the proposed system in generat-

ing a task turn during collaborative play has been published
in [4]. The results were compared between the two distance
metrics using equally distributed weights and task-adaptive
variable weights. An example in Figure 3 shows that when
the weights are equally distributed, the system does not cope
well in situations when there is no exact match to a retrieved
solution in the current scene. The proposed framework was
able to deduce a solution within a second with a successful
solution rate of 92% using the distance metric with task-
adaptive variable weights.

5. REMAINING WORK
The remaining work to achieve the aforementioned goals

are detailed in the following sections. In each section, the
current status is summarized, and the expected approach to
complete each goal is proposed.

5.1 Designing a Task-learning Policy
It was discussed in the preliminary research that carefully

selected problem descriptors are able to characterize a play
task. A new solution was created using the CBR system by
retrieving a similar problem and its solution. This approach
is capable of generating solutions in a fast pace by reusing
the retrieved solutions. However, the current design of the
case structure has the following limitations: First, if the
problem space in the case-base is sparse, the effectiveness of
the retrieval process reduces significantly. Second, the sys-
tem tends to generate consistent, biased solutions depending
on the current case-base. Therefore, the general flow of the
task, i.e., the task objective, is difficult to be understood
or learned. These limitations will be investigated further
and a system that is capable of deducing a task rule will

Figure 3: Example result comparing the solutions

deduced by using equally distributed weights and

task-adaptive variable weights.

be developed. The previous problem descriptors will serve
as task-learning cues (TLC), and the corresponding task-
learning policy (TLP) will be deduced in a form of logical
equation from observing the patterns of these cues.

5.2 Physically Embodied Interactions
The physically embodied interactions, when compared to

telepresence robots or an on-screen simulation, produce deeper
engagement for the user [10]. Such engagement provides
a better understanding of the robot’s capabilities and in-
creases the subject’s enjoyment in a task-oriented setting. In
the previous work, video sequences were collected for train-
ing and evaluating the system. In the proposed work, a
robotic platform will be used for the evaluation of the pre-
sented algorithms.

5.3 System-evaluation Application
Whether the robotic agent has achieved a successful task

learning should be evaluated through the use of interac-
tive applications. The previous evaluation method using
video sequences will be modified to engage both humans
and robots. An application will be developed on a tablet
computer which will function as a shared workspace. TLP
will be demonstrated through a touchscreen interface where
the subject and the robot take turns interacting with the
objects within the application. The tablet application pro-



Figure 4: A touchscreen tablet computer will func-

tion as a shared workspace for human-robot collab-

orative task solving.

vides versatility in designing different tasks, and using tablet
computers reduces expensive kinematic computations of the
robot manipulators.
Tablet computers are becoming more available to general

populace, and the demand for tablets as assistive-technology
platforms is increasing. Therefore, developing a robotic plat-
form that can interact with touchscreen computers provides
great potential in deploying robots as companions, thera-
peutic devices, and playmates.

5.4 Subject Testing and Evaluation
In this section, methods for measuring the effectiveness of

a task-policy transfer from human to robot are proposed.
First, a study will be conducted with multiple video se-
quences that demonstrate different tasks. Subjects will be
invited to predict what the underlying task rules are for each
video sequence. The objective of this study is to identify how
humans perceive learning cues in a scene, what kinds of vi-
sual cues the subjects focus on, and how the subjects link
the cues to understand the task rules. The visual cues used
for learning the tasks will be added to the previously defined
features. The second evaluation will measure how effective
the demonstrated task cases are in transferring task policies.
The researcher will provide the same set of demonstrations
using the tablet application to the subject and the robot.
The task rules predicted by the subject will be compared to
the task policy generated by the robot. The final experiment
will also be conducted with the tablet application. The sub-
ject will first demonstrate a given task and take turns ma-
nipulating objects in the application scene with the robot
(Figure 4). The task policy generated by the robot will be
compared to the one that was originally intended by the hu-
man subject. The performance of the robot executing the
learned task will be measured, and the subject will be asked
to complete a survey that focuses on evaluating the interac-
tiveness of the robot.

6. CONCLUSION
This thesis work focuses on developing an autonomous

system that generates collaborative task-solving behavior
through understanding a human’s task. This work seeks to
contribute to defining a general task-learning policy through
observed visual task-learning cues. The system is applied to
a play-task domain using a tablet application as a shared

workspace between human and robot. Additionally, this
work anticipates positioning the tablet workspace as a con-
venient multimodal-interaction research platform in the near
future.
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