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SUMMARY 

We are interested in uricase for two key reasons. The first is to elucidate 

the evolutionary course of its inactivation in humans (and the great apes). The 

second is to develop a novel uricase therapy that will uniquely meet the needs 

of the biomedical community. Perhaps an appropriate subtitle for this 

dissertation research is: Uricase: An enzyme whose inactivation may have 

enhanced our ancestors’ fitness but now contributes to human disease. This 

research encompasses the emerging field of evolutionary synthetic biology.  This 

interdisciplinary field brings together an evolutionary understanding of how 

biomolecules change over time and adapts those biomolecules for various 

utilitarian applications. Considering those changes that have already been 

tested by nature focuses our efforts in engineering desired biomolecular 

properties. My main research project surrounds the development of a uricase for 

the management of gout and uric acid levels.  

Uric acid is a natural product of DNA breakdown and is normally excreted 

from the body. However, at elevated levels, uric acid may form sharp crystals 

within the joints, resulting in swelling and inflammation characteristic of gouty 

arthritis. This disease afflicts more than 10 million patients worldwide, and its 

incidence is on the rise. Most concerning, is the substantial population of 

treatment-failure gout patients that cannot benefit from or tolerate small 

molecule treatments. My research in developing a uricase for breaking down 

uric acid specifically addresses the unmet needs in gout and other uric-acid 

related diseases.  
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To make a more “human-like,” and therefore safer, uricase we employ the 

evolutionary biology approach of ancestral sequence reconstruction (ASR) to 

reengineer a functional human-like uricase. In short, this approach allows us to 

experimentally “resurrect” ancient proteins and explore functionality with the 

uricase family, thereby combining functionality across modern day uricases. I 

have experimentally synthesized, purified, and characterized a number of 

ancestral uricases.  

Our collaborators at Emory University, Dr. Eric Ortlund and Dr. Michael 

Murphy, have solved the crystal structure of uricase An19/22 (no mammalian 

uricase crystal structures have yet been published). Through kinetic assays, 

ancestral uricase An19/22 was identified as being the most catalytically active of 

those explored, and complete activity was abolished in the more recent 

ancestral uricases, An30 onward, Excitingly, An19/22 uricase also displayed 

improved in vivo stability when tested head-to-head with Krystexxa®, the FDA-

approved uricase, in healthy rats. 
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CHAPTER 1: INTRODUCTION  

This research approaches the challenge of developing a novel protein for 

the treatment of gout by applying an understanding of how proteins change 

over time, and utilizing this information to direct engineering efforts towards 

functional variants. In essence, it is the marriage of the historically disparate 

studies of evolutionary biology with synthetic biology into a new evolutionary 

synthetic biology. The new field can be conceptualized by considering two 

great minds of the 20th century. The prominent geneticist and evolutionary 

biologist Theodore Dobzhansky stresses the intractability of biology with 

evolution, “Nothing in Biology makes sense except in the light of evolution [1].” 

Therefore, we approach biomolecular engineering challenges by considering 

the evolutionary forces that have driven functional differences among extant or 

modern-day proteins. The synthetic biology aspect of this work can be 

conceptualized by the following quote attributed to theoretical physicist Richard 

Feynman, “What I cannot create, I do not understand ”. By bringing an 

evolutionary prospective to synthetic biology problems nature can guide the 

rational design of macromolecules for a number of utilitarian applications.  

1.1 Purine catabolism and causes of elevated uric acid 

Purines are nitrogenous heterocyclic aromatic compounds comprised of 

a pyrimidine ring bound to an imidazole ring. These biomolecules play vital roles 

in the body and are synthesized de novo, obtained from exogenous sources, or 

recovered from salvage pathways. Shown are the structures of several purine 
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nucleosides, where the nucleobase is bound to the sugar ribose at the 9-position 

(Figure 1.1). Purines perform many biological roles including cellular energy 

systems in the form of adenosine triphosphate (ATP), to signaling in the form of 

guanosine triphosphate (GTP). Together adenosine monophosphate (AMP) and 

guanosine monophosphate (GMP) comprise roughly half of the genetic storage 

molecules: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) [1]. Inosine 

monophosphate (IMP) is commonly found in transfer RNA (tRNA), and is essential 

for translation of wobble base pairs [2]. The fourth purine nucleoside shown is 

xanthosine monophosphate (XMP), which is an intermediate in purine 

metabolism, and can be formed from IMP by IMP dehydrogenase (Figure 1.2). 

 
Figure 1.1 Purines are heterocyclic nitrogenous compounds. The four purine 
nucleosides are adenosine monophosphate (AMP), inosine monophosphate 
(IMP), xanthosine monophosphate (XMP), and guanosine monophosphate 
(GMP). Ribose-5’-phosphate (R5P) is shown in blue in each structure.  

The breakdown of purines is a multistep process by which organisms 

remove nitrogenous waste. AMP enters this pathway as a waste product of ATP 

depletion or nucleic acid breakdown. GMP is the other purine found in DNA and 

RNA. AMP is converted to IMP by AMP deaminase and IMP is converted to XMP 

by IMP dehydrogenase. The 5’-phosphate is removed from each purine 

nucleoside’s ribose by a nucleotidase. Adenosine is converted to inosine by the 

action of adenosine deaminase. The ribose sugar is removed from purine bases 
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by purine nucleoside phosphorylase (PRP): when inosine is the substrate 

hypoxanthine is the product of this reaction, and when guanosine is the substrate 

the reaction produces guanine. Xanthine is the direct product of PRP action 

upon xanthosine. The subsequent oxidation by xanthine oxidase yields uric acid 

(UA). The first acid dissociation constant of UA is 5.4; therefore, at physiological 

pH, UA exists as the singly charged monoanion urate [3]. Urate is only modestly 

soluble at neutral pH, and therefore uses minimal water as the nitrogenous waste 

excreted by humans, hominoid primates, birds, reptiles, and terrestrial insects [4]. 

Uric acid’s insolubility at lower pH can explain why patients that suffer from urate 

stones often have urine that is more acidic, as low as pH 4.6, than their healthy 

peers [5]. 

In most monkeys, and in carnivorous flies, urate is converted by three 

enzymes to yield S-allantoin, which is an order of magnitude more soluble than 

urate[6]. It was originally thought that uricase catalyzed the direct conversion of 

uric acid to allantoin. However, in living systems only the S-enantiomer of 

allantoin is found. This stereoselectivity implies that the reaction is enzyme 

catalyzed [7]. To identify the enzymes responsible for the stereospecific 

conversion of uric acid to S-allantoin, researchers performed a comparative 

phylogenetic analysis on gene families of previously unknown function that were 

exclusively present in organisms with a functional uricase and absent in 

organisms lacking a functional uricase [8]. 
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Figure 1.2 Nitrogenous waste is excreted from the body in a form whose 
complexity is dictated by the host organism’s purine metabolism. The enzyme 
responsible for each metabolic step is shown in blue and each product is shown 
in bold. The form by which nitrogenous waste is excreted from the body in 
certain taxa is shown in red. Purines enter this breakdown pathway in four forms 
(Ribose-5-phosphate is abbreviated as R5P). The first is as adenosine 
monophosphate (AMP), which is generated by either nucleic acid breakdown or 
ATP depletion. AMP can be deaminated to form inosine monophosphate (IMP). 
The remaining two purines are xanthosine monophosphate (XMP), which is 
generated by the oxidation of IMP, and guanosine monophosphate (GMP), 
which is liberated by nucleic acid breakdown. The first step involves the removal 
of phosphate from each of the monophosphates by a nucleotidase to yield the 
nucleoside, and adenosine is deaminated to yield inosine. The next common 
enzymatic step is through the action of purine nucleoside phosphorylase (PNP). 
Ribose is removed to yield the free purine base: Hypoxanthine from inosine which 
is converted to xanthine by xanthine oxidase (XO), xanthine from xanthosine, 
and guanine from guanosine. Next, hypoxanthine is converted to xanthine by an 
oxidase. Guanosine is converted to xanthine by a deaminase. Xanthine is 
oxidized by XO to yield urate, the terminal purine waste product in humans. The  
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(Figure 1.2 continued) 
enzyme uricase oxidizes urate to produce 5-hydroxyisoruate (HIU). Two 
subsequent enzymatic steps - first by HIU hydrolase and then OHCU 
decarboxylase yield (S)-allantoin, which is the purine waste excreted by non-
primate mammals. Next, allantoinase breaks down (S)-allantoin to yield 
allantoate, which is excreted by some boney fish. In amphibians, the remainder 
of boney fishes, sharks, rays and skates allantoincase produces urea and (S)-
ureidoglycolate. The least chemically complex nitrogenous waste is ammonia 
generated by the breakdown of urea by urease in marine invertebrates.  

To determine the function of these genes, researchers overexpressed the 

mouse homologs MuraH and MuraD, and their enzymatic products were 

characterized by spectroscopic and NMR analyses. It was confirmed that MuraH 

was a HIU hydrolase and MuraD is an OHCU decarboxylase, respectively [8]. First, 

urate is converted to 5-hydroxyisourate (HIU) by uricase (discussed in greater 

detail in section 1.4). HIU is then converted by a hydrolase to OHCU, which is 

subsequently decarboxylated to form S-allantoin. In organisms that have access 

to unlimited water, purines are broken down into even simpler molecules. S-

allantoin is converted to allantoate by allantoinase, the terminal waste product 

of some boney fish. In amphibians, most boney fish, dipnoans, and 

elasmobranchs, allantoate is broken down to urea and S-ureidoglycolate by 

allantoinase. The simplest nitrogenous waste is ammonia, which is generated 

through the action of urease upon urea in marine invertebrates.  

1.2 Gout and other medical conditions of elevated uric acid 

Gout is a painful form of inflammatory arthritis that is caused when uric 

acid, a natural by-product of DNA breakdown, reaches levels that exceed what 

the body can excrete. The excess uric acid forms crystals of monosodium urate 

within the joints and results in swelling and inflammation (Figure 1.3)  
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Figure 1.3 Gout causes intense pain and swelling. This caricature was produced 
in 1779 by James Gilray and its depiction of gout afflicting the big toe as a biting, 
fire-breathing, demon rings true to patients’ descriptions as the worst pain they 
have ever experienced. 

The study of gout is as old as humans’ study of the body and the history of 

medicine. The first written description of gout is believed to be over 4,000 years 

old from the Egyptian civilization. The great philosopher Socrates was reported to 

have referred to the affliction as the “unwalkable disease”. In 200 AD, the 

Roman physician Galen described the disfiguring swelling, or tophi, caused by 

the deposition of monosodium urate monohydrate crystals in the avascular 

tissue. It was not until the late 17th century that the invention of microscopy 

allowed Leeuwenhoek to observe monosodium urate crystals in gouty tissue. By 

the mid 19th century in The Nature and Treatment of Gout and Rheumatic Gout, 

Sir Alfred Baring Garrod’s asserts that the deposition of urate is the cause and not 

the effect of gouty inflammation [9]. In 1960, George Hitchings and Gertrude 

Ellion developed allopurinol, which is a small molecule inhibitor of xanthine 

oxidase – they were awarded the Nobel Prize in 1988 in recognition for this work. 

Allopurinol served as the standard-of-care for gout management until a boon in 

gout management research over the last decade [10]. To address the specific 

needs of those that do not benefit from conventional treatments, research has 
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really picked up in the management of gout. Febuxostat, is a derivative of 

allopurinol that was approved in 2009, and became the first FDA approved gout 

medication in 40 years [11]. In recent years, attention has turned to enzymatic 

treatments, such as the recent FDA approval of Krystexxa® in 2010 (discussed 

later). 

The saturation point of urate in biological fluids is 6.8 mg/dL and, clinically, 

patients above this level are described as hyperuricemic. While patients that 

manifest gouty arthritis are always hyperuricemic, the fact that a patient has 

elevated urate levels is not enough to predict that a gouty flare-up will occur. A 

normative aging study found that within a 5-year period only 22 % of men with 

high urate levels, greater than 9 mg/dL, ever developed gout [12]. These 

epidemiological studies show that uric acid levels alone are not the whole story. 

There are other local factors that contribute to the development of gout, 

including trauma or irritation, reduced temperature, and prior joint disease [13]. 

The locations of the body most commonly afflicted with gouty arthritis can be 

explained by these various factors. For example, the joint of the big toe and that 

of the elbow are common sites of gouty arthritis because the former is a site of 

mechanical stress and lower temperature, while a patient leaning on the elbow 

joint can mechanically irritate the later. Patients suffering from osteoarthritis in 

their fingers often must also deal with the added pain of gout in those same 

joints. It is believed that the release of urate crystals into the joint space is 

responsible for an acute inflammatory reaction – that is why urate-lowering, 

treatments are often accompanied by an acute gout attack. The synovial lining 

cells appear to phagocytize monosodium urate crystals when they are released 
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into the joint space. Next, an inflammasome complex is formed and releases IL-

1β along with other cytokines and proinflammatory molecules – these 

chemotaxic agents bring an influx of neutrophils into the joint [14]. Interestingly, 

acute gout attacks can resolve spontaneously – this phenomenon is credited to 

the dissolution of the crystals or their sequestration within the tissue and some 

proteins that are exuded into the joint space with the attack. Apolipoprotein B is 

an example of a protein that can coat crystals and reduce their inflammatory 

properties [15].    

There are several trends associated to the increasing prevalence of 

patients showing elevated levels of uric acid. These include a shift in eating 

habits from developed countries with foods high in purines and fructose. 

Furthermore, 90 % of uric acid that is filtered by the kidneys is reabsorbed instead 

of being excreted. This suggests that the human body is not treating the 

presence of uric acid as toxic, but rather as something that is advantageous to 

retain in the biological fluid [56]. The consumption of certain foods and 

beverages can lead to an increase in purines being broken down to uric acid. 

This ties into the historical moniker of gout as the “rich-man” disease, because 

foods such as organ meats, certain seafood and alcoholic beverages 

(especially beer) have high purine content [16]. Another underappreciated 

source of uric acid may be from the consumption of foods that are high in 

fructose (especially high fructose corn syrup and sucrose which are such a large 

part of our diets) whose metabolism was hypothesized to result in increases in 

uric acid concentrations [17].  
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Natural cell turnover also leads to release of DNA (roughly half of which is 

purine DNA) that will be broken down. An extreme case of this outpouring of 

“waste DNA” is experienced by cancer patients in a condition known as tumor 

lysis syndrome (TLS) [18]. This complication is of greatest concern in malignancies 

such as leukemias where there is a large tumor burden. When patients undergo 

aggressive chemotherapy, the large outpouring of tumor DNA can lead to 

immediate and dramatic increases in uric acid concentrations above its 

solubility limit, which, if prophylactic measures are not employed, will lead to 

acute renal failure (ARF) and necessitate dialysis before anticancer therapy can 

be resumed [19]. Furthermore, the healthy level of uric acid is maintained 

through the filtration by the kidneys and any impairment of kidney function, in 

turn, diminishes the body’s ability to excrete UA [20]. Lastly, recent studies have 

begun to explore the genetic component that seems to predispose individuals 

to gout [21].  
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1.3 Unmet medical need in management of gout 

Conventional treatment in the management of gout has approached the 

issue using two distinct avenues. The first approach is to promote the excretion of 

the poorly soluble urate with a uricosuric agent. The only FDA approved 

uricosuric is probenecid, which requires twice-a-day dosing for optimal 

therapeutic effect thus often resulting in patient compliance challenges [22]. 

Probenicid’s therapeutic action is completely negated when glomular filtration 

rates drop below 50 mL/min – especially in older gout patients whose kidney 

function is often compromised [23]. Furthermore, there is a risk of central nervous 

system toxicity at higher doses of probenecid [24]. The second avenue of 

treatment is to block the generation of urate. The standard-of-care for gout 

management for the last 50 years has relied on the small molecule drug that 

inhibits xanthine oxidase, allopurinol, and therefore prevents XO from generating 

uric acid.  However, it does not serve all patients adequately. Approximately, 20 

% of patients treated with allopurinol report side-effects, and it is estimated that 

as many as 5 % of all patients must discontinue taking allopurinol due to the 

severity of experienced side-effects [25]. Allopurinol must be taken routinely to 

maintain the necessary drug concentration to elicit a therapeutic effect. Patient 

non-compliance in following the dosing regimen has been reported to be as 

high as 44 % within a managed care study cohort [26].  

It is estimated that there are more than 10 million gout suffers world-wide, 

and the number of gout patients is growing at an annual rate of approximately 4 

% [27]. Of the five million gout suffers in the U.S alone, more than 100,000 patients 

are described as having treatment failure gout (TFG) since they do not meet 
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therapeutic endpoints with conventional treatment [28]. A clinical metric for 

those patients with TFG is that they are unable to maintain serum urate levels 

below 6 mg/dL [29].  Despite a long clinical study of gout and the debilitating 

nature of the disease, current medications for gout management are unable to 

provide adequate treatment for all suffers What is the driving force behind those 

patients who are categorized as suffering from TFG? The causes for this lack of 

therapeutic response range from allergy, intolerance (2 % of patients prescribed 

allopurinol), inadequate response, and even patient non-compliance [30]. The 

following quote from the American Journal of Managed Care summarizes the 

medical need for the better management of hyperuricemia and gout:  

 “Hyperuricemia, the predisposing condition for gout, is intricately linked 
with the metabolic syndrome (hypertension, glucose intolerance, dyslipidemia, 
truncal obesity, increased risk of cardiovascular disease), and there is mounting 
evidence that hyperuricemia itself may be an independent risk factor for 
cardiovascular disease. Unfortunately, gout is frequently mismanaged, resulting 
in unnecessary morbidity and even mortality [31].” 

1.4 Properties of uricase, its reaction, and evolutionary history 

Treatment with uricase breaks down the urate found in gouty joints and 

disfiguring tophi [25]. For many years, the uricase reaction was described as the 

directed conversion of xanthine to allantoin, and the biomedical literature 

continues to use this oversimplification [32-38]. Through the application of stop-

flow kinetics experiments, reveal that the true product of uricase catalyzed 

oxidation of uric acid is 5-hydroxyisoruate  (HIU) [39]. 5-HIU has poor stability 

under physiological conditions, so it is no wonder that until faster techniques 

were applied, it went undetected [40, 41]. Due to its in vitro instability, HIU 

spontaneously decomposes to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline 



 12 

(OHCU) that, in turn, decomposes to racemic allantoin on the time scale of 

several hours [7]. Uricase performs the oxidation of uric acid to 5-hydroxyisorate 

with the generation of hydrogen peroxide.  One concern that was explored with 

using uricase to treat gout was the potential to raise plasma hydrogen peroxide 

concentrations to a lethal level (Figure 1.4).   

Figure 1.4 Uricase catalyzes a cofactor-less oxidation reaction. The uricase (UOX) 
reaction converts urate (1) to 5-hydroxisoruate (2) with the release of hydrogen 
peroxide. 5-HIU is further degraded into allantoin (3) either spontaneously due to 
its instability under physiological conditions, or enzymatically to the racemically 
pure S-allantoin enantiomer [42]. 
 

Batelli and Stern published one of the earliest systematic studies of uricase 

in 1909 where they cataloged the tissue localization of uricase in domesticated 

animals including the horse, dog and rabbit. They found that uricase was 

ubiquitously detected in the liver, frequently found in the kidneys, and largely 

absent in other tissues (the lung, spleen, pancreas, brain and muscle) [43]. 

Specifically within these tissues, uricase is found in microbodies known as 

peroxisomes. Encapsulated in the peroxisomal single membrane are over fifty 

metabolic enzymes, and the organelle’s name derives from the generation of 

hydrogen peroxide as a byproduct of the oxidation of specific organic substrates 

(i.e. urate) by molecular oxygen [44]. Depending upon the host organism, 

uricase can be found as a soluble tetrameric protein or as paracrystalline array 

within the peroxisome that is visible by electron microscopy. This diverse solubility 

is an intrinsic property of the uricases primary amino acid sequence.  
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 Uricase is a unique enzyme that is able to catalyze the conversion of uric 

acid using gaseous molecular oxygen to 5-hydroxyisoruate in the absence of 

either a cofactor or a transition metal. The seminal work of Peter Tipton and 

coworkers with the soybean nodule uricase began parsing out the reaction 

mechanism employed by this oxidase. Namely that the urate monoanion was 

first activated via deprotonation via a general base system comprised of two 

residues conserved in all known uricase enzymes - Thr 57 and Lys 10 (numbering 

based upon Aspergillus Uox) [39]. The exact mechanism by which this enzyme 

(and other oxygenases like it) are able to bypass the Wigner spin rule which 

prevents the direct reaction of gaseous triplet oxygen with singlet ground-state 

organic substrates (in this case urate monoanion) is not well understood. 

Whereas in other oxygenases, molecular oxygen is excited to the reactive singlet 

state using a metal/or other organic cofactor. Gabison and coworkers studied 

the uricase reaction via X-ray diffraction, electron spin resonance spectroscopy 

(electron paramagnetic resonance spectroscopy), and quantum mechanics 

calculations to elucidate how uricase is able to overcome this quantum rule [42].  

Their work has built on Tipton’s work, as well as other structural studies to extend 

Tipton’s proposed catalytic diad to a conserved triad of Thr-Lys-His plus a number 

of water molecules whose positioning acts as a “push-pull” proton transfer 

system. 

In the literature, only microbial uricase crystal structures have been solved 

due likely to the poor solubility of mammalian uricase (Figure 1.5) [45]. These 

crystal structures revealed that uricase is a homotetrameric protein that forms a 

perfect tunnel of 50 Ångstroms (Å) that channels the substrate to the four active 
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sites located at the dimer-dimer interfaces. This defining structural feature is 

known as the tunneling-fold (T-fold) and is formed by an antiparallel beta-sheet 

comprised of 4 beta strands (β) with 2 antiparallel alpha helices (α) sandwiched 

between the sets of beta strands (ββααβ). This fold is responsible for how four 

identical monomers can come together in a head-to-tail fashion to form a 

perfect tunnel at which each dimer interface has an active site for 4 active sites 

per tetramer.  

Figure 1.5 Uricase is functional as a homotetramer with active sites at the dimer-
dimer interfaces The 3-dimensional representation of the crystal structure of the 
microbial uricase solved from Arthrobacter globiformus (PDB: 2YZB) is shown. At 
left, an initial monomer is shown in yellow and the multimeric protein is first 
formed by the coming together of another uricase monomer in a head-to-tail 
fashion (shown in purple) to form a homodimer (above middle). At far right is the 
active homotetramer where the homodimer orientation has been rotated 90° 
along the z-axis and depicts the assembly of a second homodimers (in cyan and 
green). There are four active sites in the active homotetramer at each dimer-
dimer interface where the substrate urate (as orange spheres) binds. 

The uricase gene (Uox) is a well-conserved ancient gene present in 

eukaryotic, bacterial and archaeal organisms [46]. While uricase is found to be 

functional in the liver of most vertebrates, it is lacking functionality in hominoids 

(i.e. humans). It is immunologically undetectable in some New World monkeys 

including the macaque and the wooly monkey but is present in most other 

monkeys [47-49]. The absence of a functional uricase is attributed to genetic 
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lesions that arose independently as an 18-bp deletion in exon 2 within the 

branch leading to the Lesser Apes (siamang and gibbon) and as two nonsense 

mutations in exon 2 and exon 3 in the branch leading to the great apes 

(chimpanzee, gorilla, and human) some 15 – 20 Ma [50]. These inactivation 

events and their potential evolutionary roles are discussed further in chapter 2.   
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1.5 Challenges in therapeutic uricases  

Given that humans do not possess a functional uricase enzyme, 

therapeutic development has been focused on repurposing other functional 

uricases from nature for use in humans (Table 1.1). The first uricases available to 

patients was from the filamentous fungus Aspergillus flavus (A. flavus) and was 

either isolated from the microbe (UricozymeTM) or recombinantly expressed 

(Rasburicase). These fungal uricases are approved as prophylactics to prevent 

tumor lysis syndrome (TLS) in pediatric patients, but cannot be used to treat gout 

because they are too immunoreactive in human patients [51]. Fungal uricases 

from the A. flavus and the yeast, Candida utilis, have a greater affinity for and 

catalytic activity on urate at physiological pH compared to vertebrate uricases 

[52]. Although active in breaking down uric acid, uricases of fungal origin are 

highly antigenic. In the patient population studied for FDA approval, 15 % to 24 % 

of patients either were excluded from the study due to a medical history of 

allergic reactions or developed antibodies to uricase [53]. Repeated 

administration of the uricase results in allergic reactions, anaphylaxis, and 

sometimes death [53].  

The most recent advancement in therapeutic uricases came with the 

approval of the first mammalian uricase for the treatment of TFG.  This uricase is 

marketed under the name Krystexxa© and is a pig-baboon chimeric (PBC) 

uricase. The rationale behind this chimer is that pigs possess one of the most 

catalytically active uricase characterized in mammals to date; however, its 

development as a sole therapeutic was abandoned due to high 

immunogenicity. The researchers combined the amino-terminus portion of the 
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porcine uricase (residues 1-225) with the carboxyl-terminus of the baboon 

uricase (residues 226-304) [54]. The result was a chimeric protein with an 

increased amino acid sequence identity to human uricase (hUox) and an 

increase in its specific enzyme activity (SEA) of 20 %. PBC uricase is also 

covalently modified (via PEGylation) to further mask its foreign protein sequence 

(described in more detail in chapter 5).  

Krystexxa®, the PBC uricase, is administered by the intravenous (IV) route 

due to enhanced bioavailability, efficacy, and tolerability compared to 

subcutaneous administrations. While an improvement over other uricases 

explored to date, Krystexxa® has shortcomings, in both its safety and efficacy. In 

phase III clinical studies, 18 % of patients discontinued treatment in response to 

serious adverse events. Furthermore, less than 50 % of patients met defined 

endpoints in lowering blood serum uric acid levels and resolution of gouty tophi 

[55, 56]. Despite these concerning statistics, the FDA approved Krystexxa® in 

2010.  
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Table 1.1 Several uricase sources have been under clinical development.  This 
table summarizes the major uricases that have been studied in recent years. Prior 
to recombinant technology, uricase was first isolated from the tissue of pigs or 
isolated from fungal sources. In both instances, the isolated uricase was not well 
tolerated and its clinical development was abandoned. The fungal uricase from 
Aspergillus flavus is recombinantly expressed and is only FDA approved for 
pediatric cancer patients to prevent acute renal failure associated with tumor 
lysis syndrome. The surface modification of microbial uricases has ben explored 
to harness their high catalytic activity while masking their intrinsic antigenicity. 
These modifications are performed by masking the surface with long-chain 
polymers of PEG. Modification with PEG units of 5 kDa of the yeast Candida utilis 
and the bacteria Arthrobacter protofomiae was clinically abandoned, while 
modification of the C. utilis with larger 20 kDa PEGs has progressed to late clinical 
studies. The first FDA approved mammalian uricase protein pegloticase, 
marketed under as Krystexxa®, is a chimer of the pig and baboon uricase 
protein sequences. 

 

 
1.6 Scope of this work  

The research described within this dissertation is the efforts to date towards 

both understanding the evolution of the uricase protein family, and applying this 

knowledge to engineer a safer enzyme for the management of gout. Within this 

first chapter the stage for the conducted research is set through a discussion of 

the pathology of gout, the shortcomings of the current standard-of-care and 
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approved uricase therapies – namely their narrow therapeutic windows due to 

high antigenicity. In the second chapter, the fate of the human pseudogene is 

explored first by confirming the presence of uricase transcript in human 

embryonic tissues and then experimentally confirming that recombinant full-

length uricases can be translated in human cells.  

Chapter 3 begins the research efforts to develop the a human-like uricase 

by first attempting to directly reactivate the human uricase, and subsequently 

applying the evolutionary biology approach of ancestral sequence 

reconstruction on the uricase protein family. Ancestral proteins are 

experimentally resurrected and enzymatically characterized to identify active 

human-like uricases that are suitable for further optimization. The most active 

uricase is An19/22, and it differs from the human uricase protein sequence by 22 

amino acids. The effects of these 22 human residues within An19/22 are explored 

in Chapter 4. The individual effects are utilized to further humanize the An19/22 

while minimizing the cost in both enzymatic activity and stability.  

In Chapter 5, the covalent modification of uricases that displayed 

promising in vitro kinetic and stability profiles are covalently modified by 

activated polyethylene glycols (PEGs). The effect of the employed PEGylation 

strategy upon An19/22 and PBC (the protein component of the only FDA 

approved uricase for the treatment of gout) are measured. In addition, 

unmodified- and PEG- An19/22 and PBC uricase are injected into healthy rats. In 

these head-to-head pharmacokinetics studies, An19/22 displays an enhanced in 

vivo stability compared to PBC uricase. The final chapter summarizes the 

research efforts to date to “reengineer a human-like uricase for the treatment of 
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gout”. Specifically, there is a focus upon the work remaining on the path towards 

human clinical trials. 
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CHAPTER 2: EXPLORING THE HUMAN URICASE PSEUDOGENE 

From the following publications in preparation: 

Kratzer, J. T., Lanaspa, M. G., Johnson, R. J. & Gaucher, E. A. Management 
of intracellular triglyceride levels induced by uric acid using ancient 
uricase enzymes.  

 
Kratzer, J.T., Murphy, M. N., Ortlund, E. A. & Gaucher, E. A. Evolutionary 
history of modern and ancient mammalian uricases.  
 

2.1 INTRODUCTION 

 Pseudogenes are classically defined as DNA sequences derived from 

functional orthologs that have accumulated deleterious mutations preventing 

them from functioning within a transcriptional or translational context to yield 

functional RNAs or proteins [57, 58]. These genes have become non-essential 

and, in the absence of functional constraints, they freely accumulate disabling 

mutations including stop codons, repetitive elements, or frame shifts [59]. Until 

recently, pseudogenes had been referred to as “genomic fossils” and dismissed 

as “junk DNA.” However, current research is presenting a picture of pseudogenes 

that are anything but “junk.” These pseudogenes fill many roles in the cell such as 

silencing their parent genes and regulating cancer genes [59]. Furthermore, the 

long held belief that pseudogenes are not transcribed is being questioned 

through the use of tiling microarrays, which identified 20 % of all known 

pseudogenes on human chromosome 22 [60].  

From an evolutionary biology perspective, studying a pseudogene will 

shed light upon the forces that led to uricase inactivation. In the development of 
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a safe and effective uricase therapeutic, an understanding of the mutations 

responsible for inactivating uricase will be valuable. Most therapeutic proteins 

either are human proteins or humanized proteins. In humans, the gene encoding 

uricase is a pseudogene and is non-functional [61]. This chapter details our 

inquiry into understanding what happens to the uricase pseudogene at the 

transcriptional and translational levels. Embarking on this path of inquiry will aid 

us in developing a human-like uricase for the treatment of gout.  

2.1.1 The properties of the human uricase pseudogene  

The inactivation of uricase in the hominoid lineage is attributed to 4 

genetic lesions (Figure 2.1). The earliest lesion is unique to the gibbon uricase and 

is the result of a 13-bp frame-shift deletion in codon 72 [61]. The remaining 3 

mutations are all present in the human uricase pseudogene (hUox). The first is a 

nonsense mutation at codon 33 within exon 2 which is estimated to have 

occurred approximately 13 million years ago (Mya), and is shared between 

humans and the great apes [46]. The remaining two inactivating events 

occurred some 10 Mya: another nonsense mutation at codon 187 in exon 5 and 

a splice site mutation in intron 2 (located between exon 2 and exon 3) [61, 62]. 

When hUox sequence is aligned with functional mammalian uricases the 

positions encoding the two nonsense mutations are conserved arginines (with 

the CGA codon) in orthologous sequences. Both of the premature stop codons 

are TGA, and it thus seems likely that this TGA  CGA mutation is the result of 

spontaneous deamination of cytosine to yield thiamine [63].  
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Figure 2.1 The pseudogenization of human uricase is the result of three genetic 
lesions.  Shown is a phylogenetic tree that represents the evolutionary 
relationship among the uricase gene in hominoids. The baboon uricase is 
catalytically active and is boxed in green. In contrast, the inactive uricases of the 
hominoid lineage (gibbon, orangutan, gorilla, chimp, and human) are boxed in 
gray. The 13 base pair frame-shift deletion is unique to the gibbon sequence, 
and is independent of the human uricase pseudogenization. The earliest 
inactivating mutation found is in orangutans and is a nonsense mutation at 
codon 33. An additional nonsense mutation is also found in the chimp sequence 
at codon 187. The final deactivating mutation is a splice site mutation also found 
in the chimp sequence located in intron 2 (between exons 2 and exon 3). 

What survival advantage was conferred by uricase’s inactivation in our 

ancestors during the Miocene between 5 – 23 Mya?  Some hypotheses that are 

put forth approach this question from the perspective of “planetary biology.” This 

term captures the interdisciplinary threads of evidence from the fields of 

paleontology, geology, chemistry and molecular biology that come together to 

weave hypotheses about early life [64]. Since time-travel is not possible, these 

multifaceted inquiries provide us with a plausible window into the past.   
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2.1.2 Potential advantages of uricase inactivation 

Uricase is a conserved enzyme present in many microbes and most fish, 

amphibians, and mammalian species, but is notably absent among humans. The 

absence of a functional uricase in humans predisposes our species to possessing 

uric acid levels that are between 10 to 50 times greater than those found in other 

mammals – which may have several adaptive advantages – with the 

consequence of gout arising in relatively modern time [29, 65]. A few of these 

hypotheses are now briefly highlighted.   

The end products of purine catabolism reflect the primary nitrogenous 

waste excreted in animals: uric acid (e.g. humans), urea (e.g. fishes), and 

ammonia (e.g. crustaceans) [66]. One hypothesis is rooted in the water 

economy of the host organism. As introduced in Chapter 1, the first exit point of 

purine catabolism is urate in terrestrial animals where water is scarce. [67]. In 

organisms such as fish where water is abundant, the highly toxic ammonia can 

be rapidly removed. However, when water is less abundant, nitrogen is stored as 

a less toxic breakdown intermediate.  

Another hypothesized advantage to elevated uric acid is its ability to 

protect the body from injury. For example, urate is an extracellular antioxidant 

that is able to react with a range of oxidizing agents including hydrogen 

peroxide, hydroxyl radical, peroxynitrite, and nitric oxide [68-70]. Its ability to 

scavenge free radicals may protect humans from cancer and other life-

shortening disorders [71]. Furthermore, urate has been implicated at playing a 

role in regulating blood pressure in animal models - inhibiting uricase in rats results 
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in a decrease in endothelial nitric oxide that, in turn, stimulates the renin 

angiotensin system and leads to a rise in blood pressure. [72].  

There is also a potentially advantageous energy role for uricase 

inactivation, and commensurate urate elevation. Dr. Rick Johnson’s group has 

recently published evidence explaining the previously suspected tie between 

hyperuricemia and metabolic disease [73]. Their work in human liver cells 

identified the loop by which uric acid and fructose are metabolically intertwined: 

uric acid activates the transcription factor ChREBP, which in turn stimulates 

fructokinase (KHK), the first enzyme in the metabolism of fructose. KHK 

phosphorylates fructose leading to transient ATP depletion, and the adenine 

nucleotide which is shuttled through the purine metabolic pathway to uric acid 

[74].   

2.1.3 The fate of the uricase pseudogene is therapeutically important  

The most dramatic translational consequence of the nonsense mutations 

in hUox is that only a fragment of the uricase protein is produced due to 

translational stalling at the first stop codon within exon 2. However, it has been 

established that the sequence-context by which stop codons are positioned 

dictates their strength, and that stop codon read-through is a fairly common 

occurrence [75]. 

Determining the fate of the hUox will direct our efforts to make a safer 

uricase protein. If indeed the non-functioning hUox gene product is ever 

naturally translated in vivo it could still be recognized by the immune system as 

self. A human uricase protein may therefore not elicit the severe, potentially 

lethal allergic reaction that occurs with other uricases.  
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2.2 MATERIALS AND METHODS 

2.2.1 Transcriptional Studies1 

To search for transcripts of the human uricase pseudogene, fetal liver 

cDNA (ClonTech) was used as the template for a series of polymerase chain 

reactions (PCR) using standard PCR reagents (Promega). Custom forward (F1-F8) 

and reverse (R1-R2) primers were designed against the published sequence of 

the human uricase gene and synthesized by Integrated DNA Technologies (IDT)  

[76]. For the sequences of these hUox querying primers see Sequence S1 in the 

supplemental information. All PCR reactions were performed in a total volume of 

50 µL consisting of: 1 µL of template cDNA (1 ng), 2 µL 10 µM each of forward and 

reverse primers, 0.25 µL GoTaq polymerase enzyme (1.25 units), 10 µL 5X 

GoTaq buffer, 1 µL deoxyribonuclotide mix (10 mM), bring to volume with dH2O. 

Products were examined via 1.5 – 2 % (w/v) agarose gel electrophoresis, at 100 V 

for 30 - 45 minutes. Bands were imaged using EpiChem Darkroom system (UVP). 

The bands of produced products were then excised using a sterile razor blade 

and purified using a gel extraction kit (Qiagen). 

2.2.2 Translational Studies 

2.2.2.1 Design of hUox expression constructs 
 

Four different Uox constructs were synthesized to explore the translation of 

the human uricase sequence in human embryonic kidney cells (HEK). These 

constructs were designed to determine the extent to which the number and 

strength of premature stop codons affect uricase translation in mammalian host 

                                                   
1 The transcriptional studies were performed by Christina Graves (a Georgia 
Institute of Technology undergraduate researcher)  
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cells. Each uricase gene construct contains a hexahistidine tag (6xHis), upstream 

of the start codon to assist in the purification using immobilized metal affinity 

chromatography (IMAC). Synthesis of hUox with 2 internal stop codons, and hUox 

with 3 stop codons, including the 2 internal stop codons naturally present in the 

human uricase pseudogene, along with a strong TGA-A stop codon at the 

carboxyl terminus. 

2.2.2.2 The first two hUox expression constructs: two or three stop-codons 
  

The gene corresponding to full-length uricase, according to Wu et al. [61], 

was synthesized with the two nonsense mutations (TGA) at codons 33 and 87.  A 

6xHis tag was added to the N-terminus using multiple rounds of PCR, and the 

required cloning sites for the p3XFLAG-CMV expression vector (Sigma) at the 5’ 

EcoRI site and at the 3’ BamHI were engineered using the following primers:  

hU-F1: CATCACCACCATCACATGGCCCACTACCATAAC 

hU-F2: GCGAATTCATGGCACACCATCACCACCATCAC 

hU-R1: CAGGGATCCCAGTCTTGAAGACAACTTC 

hU-R1_TerminalSTOP: CAGGGATCCTCACAGTCTTGAAGACAACTTC 

The forward primers hU-F1 and hU-F2 added the 6xHis tag (underlined) and the 

EcoRI restriction site (blue) respectively. Whereas, the reverse primers, hUR1 and 

hU-R1_TerminalStop, were used in PCR reactions to introduce the BamHI (red) 

restriction site and strong C-terminal stop (shown in bold), respectively. Using 

these restriction sites, the hUox construct was sub-cloned into P3XFLAG-CMV. The 

hUox containing the two internal stop-codons (found in the pseudogene) is 

referred to as the “2-STOP” construct, and the hUox construct with the strong 

terminal stop is called “3-STOP.” 
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2.2.2.3 The third hUox expression construct: Removing internal stop codons  
 

A series of site-directed mutagenesis (SDM) reactions were performed 

using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies). 

The following sets of primers were used to mutate the two stop codons to 

arginines (the codons to be mutated by these primers are underlined, and the 

point mutations are shown in bold): 

Converting codon 33:  

33toRfor: 5'- GTTCTCCATATTCAGCGAGATGGAAAATATCACAGC -3' 

33toRrev:  5'- GCTGTGATATTT TCCATCTCGCTGAATATGGAGAAC -3' 

Converting codon 187: 

187toRfor:  5'- GGTGAAGGACCGATGCTTTGCCACCCAAG -3' 

187toRrev:  5'- CTTGGGTGGCAAAGCATCGGTCCTTCACC -3' 

Both reactions were performed in parallel, and colonies that grew after 

transformation were sequenced. Successful conversion of two nonsense 

mutations was confirmed by sequencing. The hUox construct with in which both 

of the internal stops found in the pseudogene are converted to arginines is 

called the “NO-STOP” construct.  

2.2.2.4 The fourth hUox expression construct: Removing exon 3 from hUox 
 

This construct models the scenario where the splice site mutation results in 

the cellular machinery skipping over exon 3 entirely by using a downstream 

splice site acceptor as a construct. This gene includes the uricase construct 

where the two stop codons have been mutated to the arginines, with the entire 

sequence encoding exon 3 is missing was synthesized (Epoch). The following set 

of primers were used to generate the “-EXON 3” hUox construct:  
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Eco-F1: CATCACCACCATCACGCTCATTATCACAATAATTACAAG 

hU-F2: GCGAATTCATGGCACACCATCACCACCATCAC 

Eco-R1: CAGGGATCCCAGGCGGCTGCTC 

To this gene, the following set of primers were used to introduce an N-terminal 

6xHis tag (underlined) and the EcoRI  (blue) and BamHI (red) restriction sites for 

sub-cloning into the p3XFLAG mammalian expression system. 

2.2.2.5 HEK-293T culture maintenance and transfection 
 

A cell stock was obtained from Invitrogen and used to seed cultures. They 

were passaged a minimum of 5 times to maintain a healthy cell density. A large 

scale preparation of DNA for transfections was prepared by first transforming 

hUox construct-containing p3XFLAG CMV14 vector (CMV14) from Sigma-Aldrich 

vector into the Nova Blue (NB) E. coli K-12 cloning strain (EMD Millipore). Cells 

were plated on LB agar plates with carbenicillin (CMP) and grown overnight at 

37 °C. A single colony was used to seed a 100 mL culture, which after a high cell-

density was obtained was spun down and plasmid DNA was obtained using a 

Maxi Prep Kit (Qiagen). In addition to CMV14, the p3XFLAG CMV13 (Sigma-

Aldrich) that adds a LLS leader sequence, for secretion of recombinantly 

expressed protein into the cellular media, was also tested.   

A suspension cell line of Human Embryonic Kidney cells (HEK-293T) was 

transiently transfected with hUox-containing expression vectors using the 

FreeStyle 293 Expression system (Invitrogen). The mammalian hUox expression 

workflow began with determining the number of genes to be transformed and 

passaging cells a minimum of 5 times to recover from being rescued from a 

stock, thus ensuring both a proper cell viability and density for transfection. 
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Based upon the number of variants to transfect and desired yield, the amount of 

DNA and the number of cells can be determined from the FreeStyle kit’s manual 

(Invitrogen). The appropriate volume of cells was grown so that each reaction 

would be performed at a cell density of 1 x 106 cells/mL. Cell density was initially 

determined with a Vi-CellTM Cell Viability Analyzer (Beckman Coulter) until the 

doubling times of laboratory stocks was well established. Generally for the data 

presented, 150 μg of DNA was transfected into 75 mL of cells at the appropriate 

cell density. To perform a transfection, the calculated volume of cell culture was 

spun down at 100 x g and at 4 °C. The supernatant was carefully decanted and 

the cell pellet was resuspended in 1 mL of fresh room temperature (RT) Freestyle 

media (Invitrogen). In a separate tube, a predetermined amount of plasmid 

DNA was brought up to 5 mL with the Opti-MEM reduced serum media 

(Invitrogen), and was mixed gently. In another 15 mL conical tube, the 

appropriate concentration of 293fectin, a cationic-lipid formulation to carry the 

DNA to be transfected (Invitrogen), was brought up to volume also with Opti-

MEM. The contents of the two tubes were mixed together and incubated for 20-

30 min after which they were added to fresh media in clean 250 mL erlenmeyer 

flasks and allowed to incubate for 3 days in a shaking incubator at 150 rpm and 

5 % CO2. 

2.2.2.6 Expression and purification of hUox constructs in human cells  
 

Seventy-two hours after transfection, cells were collected by 

centrifugation and protein was purified either under native conditions when the 

secreting CMV13 vector was used, or under denaturing conditions when the 

CMV14 expression vector was used. Cell pellets were either lysed using the native 
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extraction buffer, or denaturing cell extraction buffer (Invitrogen). Regardless of 

the buffer used, a protease inhibitor cocktail (Sigma-Aldrich) was added to the 

extraction buffer as a 1:10 dilution along with PMSF at a final concentration of 1 

mM. The cell and lysis buffer mixture was clarified by centrifugation and the 

supernatant was saved for purification.  

The clarified supernatants were then applied to a pre-packed 1 mL 

HisTrapTM HP column (GE Healthcare) on a AKTATM UPC 10 fast protein liquid 

chromatography (FPLC) system. The buffer system used was 20 mM sodium 

phosphate buffer with 0.5 M NaCl, pH 7.4 with 20 mM imidazole in the binding 

buffer, and 500 mM imidazole in the elution buffer. A 20-column volume (CV) 

gradient from 20 mM to 500 mM imidazole was used, and the purified samples 

were eluted at approximately 250 mM imidazole. The same buffer system was 

utilized for the denaturing purification with the addition of 8 M urea to both the 

binding and the elution buffers. 

2.2.2.7 Protein detection by western blotting 
 

Following purification, samples were loaded onto two separate sodium 

dodecyl sulfate polyacrylamide (SDS-PAGE) gels (12 % resolving and 4 % 

stacking) and run at 150 V for 1 hour at room temperature on a Mini-Protean gel 

apparatus (Bio-Rad). The purity of the preparation was assessed by Commassie 

Brilliant Blue staining. Protein samples were transferred to a polyvinylidine fluoride 

(PVDF)  membrane for western blotting using the semi-wet transfer method. A 

Trans Blot western transfer apparatus (Bio-Rad) was used with Bjerrum and Shafer-

Nielsen transfer buffer (5.8 g Tris-Base, 2.9 g Glycine, 3.75 mL 10 % SDS, 200 mL 

MeOH, and brought to 1 L with dH2O). Transfers were run at 15 V for 1 hour and 
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transfer was monitored by following the migration of the KaleidoscopeTM (Bio-

Rad) pre-stained protein standards from the acrylamide gel to the membrane. 

The Western blot buffers used in membrane blocking, rinsing, and 

antibody incubation are all phosphate buffered saline (PBS) solutions comprised 

of: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 with 0.08 % Tween-

20TM added (PBST). In the membrane blocking and antibody incubation steps, 5 

% (w/v) powered milk is added to make PBSTM. Each incubation step was 

performed with gentle agitation on a rocking platform to ensure complete 

coverage of the membrane. Following transfer a five-minute blocking step, to 

prevent nonspecific antibody binding, was performed by incubating the 

membrane at room temperature in PBST. After the blocking step, the membrane 

was washed 3 times with equal volumes of fresh PBST for 5 min each. For protein 

detection, one of the following antibodies were used at 0.5 mg/mL in PGS: an 

anti-HIS mouse monoclonal antibody, an anti-FLAG (DYKDDDDK) mouse 

monoclonal antibody origin (GenScript), or an anti-uricase (Santa Cruz 

Biotechnology). Primary antibody incubation was performed overnight at 4 °C at 

a concentration of 0.5 mg/mL in PBSTM. Following primary incubation the 

membrane was then washed 3-4 times with PBST for 5 min each. A secondary 

antibody incubation was performed at room temperature for 1 hour with a Ab-

HRP conjugate to enhance the chemilluminescent signal. After washing the 

membrane a final time, it was then incubated for 5 min with super Pico western 

luminol solution (Pierce) and then imaged by either film or the a ChemiDocTM 

XRS+ Imaging System (Bio-Rad). The parallel gel was stained by coomassie and 

was used to confirm the size of the illuminated bands.  
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2.3 RESULTS AND DISCUSSION 

2.3.1 Evidence of hUox transcript in human tissue 

The cell’s transcription and translation machinery can deal with the 

human uricases three inactivating mutations in several possible ways. In the first 

scenario (Figure 2.2, I), the splicesome bypasses the aberrant splice site acceptor 

and uses the proximal one to generate a mature mRNA missing exon 3 of 798 bp 

in length. A database query returned sequencing information of three partial 

human uricase transcripts (GenBank GI#’s 70957646, 76555529, 76555824). 

In the second scenario (Figure 2.2, II), the splicesome completely skips 

over intron 2 and exon 3, which results in an mRNA transcript of 926 bp, longer 

than the full-length gene. In scenario III was found in a database query that 

returned a predicted mRNA (GI# 157412274), which is indicative of both mRNA 

promoter function and a theoretical translational product [61, 76].  

Transcriptional recognition of the aberrant splice site acceptor has been 

illustrated, providing justification that the transcriptional machinery in a human 

cell may recognize an alternative “aa” acceptor site.  Additionally, ribosomal 

read through of the stop codon “TGA-G” and “TGA-T” has also been 

documented as being read-through by the translation machinery some 10 % of 

the time [75]. Such read-through could result in a full-length properly spliced 

human uricase of 915 bp (Figure 2.2, IV). 
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Figure 2.2 Uricase transcripts are present in human tissue  (Panel A) At top is the 
schematic of the unspliced uricase genomic DNA. In this cartoon, each exon is 
numbered and depicted as a blue box with the corresponding size shown in 
base pairs (bp) below, and the intervening intronic sequences are shown as a 
solid black line. The two nonsense mutations are represented by red “Xs” and are 
located within exon 2 and exon 3, and the splice site mutation is yellow starburst 
located in intron 2 before exon 3. Four sequence specific primers were designed 
to query the state of mRNA transcript of hUox in human tissue. Forward primers F1 
and F2 bind at the beginning of exons 1 and 4, respectively. Reverse primers R1 
and R2 bind to the end of exon 8 and downstream of exon 8, respectively. The 
four possible mature transcripts that can be generated from hUox are: I. The 
downstream proximal splice site acceptor located between exon 3 and exon 4 is 
utilized and a mRNA transcript missing exon 3 of 798 bp is generated. II.  The 
upstream proximal splice site acceptor between exon 2 and exon 3 is used 
which gives a mRNA transcript of 926 bp (containing the intronic sequence 
upstream of the splice site mutation along with all of exon 3). III. The downstream 
splice site acceptor located between exon 4 and exon 5 is used resulting in a 
mRNA transcript of 720 bp that is missing both exon 3 and exon 4. IV. The uricase  
genomic DNA is properly spliced giving a full length mRNA transcript of 915 bp. 
(Panel B) The experimental detection of hUox transcript is shown by the specific  
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(Figure 2.2 continued) 
PCR reactions using fetal cDNA as a template and site specific pairs of PCR 
primers F1, F4, R1, and R2 run on a 1.5 % agarose DNA gel. A 10,000 bp DNA 
ladder (lane 1) and actin with a size of 838 bp (lane 6) act as reference points for 
identification of PCR products obtained with hUox transcript probes. A product 
corresponding to size of full-length uricase of 915 bp is obtained with primers F1 
and R1, along with a smaller product (lane 2).  When the reverse primer R2 that 
binds to the intronic sequence downstream of the last exon 8 is used, no product 
is obtained showing that the hUox pseudogene is processed (lane 3). The 
product obtained with the F4 and R1 primer set corresponds to the size of an 
mRNA transcript minus exon 3 and exon 4 (lane 4) and when R2 is used as the 
reverse primer an even smaller product is obtained (lane 5). 
 

We queried human cDNA libraries for uricase transcripts using PCR in 

attempt to better understand the distribution of mRNA transcripts in fetal and 

adult human cells. This experiment demonstrated that hUox of various sizes 

(including full-length and minus exon 3) is present early in development, from 

cDNA prepared from human fetal liver tissue. Future PCR experiments, using 

forward primers specific to only exon 3 may be helpful to further understand the 

population of hUox transcripts present in human tissue – allowing for the 

amplification and sequencing of uricase transcripts containing all functional 

transcripts except those that do not contain exon 3. The aberrant splice-

acceptor site in intron 2 is ignored by the splicesome in favor of the acceptor site 

in intron 3. This splicing event generates a transcript (795 bp) that is in-frame, 

contains the two premature stop codons, but is missing exon 3. 

2.3.2 Human cells can express full-length hUox  

Considering that human uricase is non-functional, would a human-like 

uricase offer an improved safety profile over other foreign uricases? It follows that 

if the human body makes a non-enzymatically active but full-length uricase 

protein by stop-codon read-through, then the major histocompatibility complex 

II (MHC-II) and T-cells would recognize a more human-like uricase protein 
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sequence as ‘self-like’. Thus, it is possible that while a human-like uricase will have 

a lower enzymatic activity compared to other “foreign uricases,” it may also 

elicit a lower immune response making it a safer therapeutic. To explore this 

hypothesis, we needed to ascertain whether humans ever transcribe and/or 

translate their endogenous uricase gene. If so, is it ever a full-length protein or is it 

a partial protein? 

To answer this question, we synthesized human uricase genes containing 

specific combinations of premature and terminal stop codons to determine the 

read-through ability for the different stop codons. The genes were cloned into 

the p3XFLAG CMV vector (Sigma) that constitutively expresses the genes with a 

His-tag at the amino-terminus and a FLAG3x-tag at the carboxyl-terminus when a 

stop codon is not encountered or read through. The constructs were then 

transiently transfected into human 293T cells. Cells were grown and harvested to 

remove recombinant uricases. The uricases were present in the insoluble fraction 

only, and were purified via denaturing nickel affinity chromatography. Western 

Blots were performed using an antibody towards the FLAG epitope since this 

domain is only present upon read-through of the stop codons. The ribosomes in 

293T cells do in fact read-through the premature stop-codons with substantial 

frequency whereas the terminal stop codon is very efficient at terminating 

translation (Figure 2.3). 
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Figure 2.3 Constructs synthesized to test effects of stop codons on hUox 
expression in humans.  The synthesized Uox is shown in blue and there is a 6X His-
Tag at the N-terminus for affinity purification, and a 3X FLAG Tag at the C-
terminus for full-length protein detection. In the 3-STOP variant the first two  
nonsense mutations in the human pseudogene are encoded followed by a third 
strong stop codon at the end of the gene before the C-terminus tag. The 2-STOP 
variant encodes the human uricase pseudogene with its two nonsense 
mutations. In the NO-STOP construct, the two nonsense mutations have been 
substituted with arginine residues that are found in functional homologous 
uricase sequences. Lastly, the –EXON 3 variant contains the full length human 
gene in which the bases encoding exon 3 have been removed to model the 
cellular machinery using a proximal splice site acceptor and bypassing exon 3 in 
its entirety.   
 

To ascertain whether uricase was expressed in the HEK-293T cells a 

polyclonal antibody raised against the full murine uricase was tested (Figure 2.4). 

It would be very advantageous to have a highly selective antibody for going 

after hUox; however, this polyclonal antibody did not display the requisite 

selectivity. There was a lot of noise from the chemilluminescent signal, as 

evidenced by the number of bands in the protein standard lane (Lane 1). In 

addition, despite employing very stringent wash conditions, the polyclonal 

antibody used against the highly purified uricase protein sample in Lane 6, gave 

a strong high molecular weight, non-specific/non-uricase band. This lack of 



 43 

selectivity and poor sensitivity makes this pAb unsuitable for detecting small 

amounts of hUox. Therefore, a more selective antibody must be employed along 

with loading as much hUox as possible. 

Figure 2.4 The rabbit polyclonal antibody against mouse uricase displayed poor 
selectivity for hUox detection. The samples that were run on this western blot 
were obtained from denaturing purification on a HisTrap HP His-binding column. 
The primary polyclonal antibody (pAb) was raised in rabbits against the full-
length mouse uricase sequence. A pAb-HRP conjugate was used for signal 
amplification. There was a high background despite a high wash stringency. This 
background can be observed by the nonspecific bands in the 10-250 kDa 
protein standard, which is free from uricase (Lane 1); Lane 2) 3 –STOP uricase 
construct; Lane 3) 2-STOP uricase construct; Lane 4) No-STOP uricase construct; 
Lane 5) hUox-Exon 3 construct; Lane 6) mammalian uricase control (with 93 % 
sequence identity to hUox); Lane 7) Empty vector.  

Since the Uox pAb gave results that were poorly resolved, we next turned 

to the Anti-FLAG epitope, which is only present when read-through of all stop-

codons occurs (Figure 2.5). This signal worked well to determine when full-length 

product was translated. When a strong terminal stop is employed (Lane 1), no 

FLAG signal is present which is indicative of no read-through. In contrast, when 
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the 2 endogenous premature stop codons in hUox are present, the full-length 

product is generated (Lane 3). As controls, the full-length hUox and the empty 

vector behaved as expected, lanes 5 and 6, respectively. Lastly, the hUox-exon 3 

also generates a product (Lane 6) that runs slightly smaller than the full-length 

uricase (Lane 5).  

 

Figure 2.5 Western blot detection of full-length human uricase expression in 293T 
cells. Samples were run on this gel that were obtained from denaturing 
purification on a HisTrap HP His-binding column. The primary antibody used is of 
mouse origin against the FLAG tag that is only present if the human cells produce 
full-length product. The secondary antibody used for signal amplification is of 
goat origin and is conjugated to HRP. Note: The samples were all concentrated; 
therefore, the intensity of the signal between samples cannot be confidently 
compared. Lane 1) No full-length signal is produced in the 3-STOP construct. 
Lane 3) Despite the two nonsense mutations found in the human pseudogene, 
full-length uricase is detected in the hUox 2-STOP transfected sample. Lane 5) A 
gene product corresponding to the absence of exon 3 is generated by the –
EXON 3 construct. Lane 8) The vector sample confirmed that the specific FLAG 
epitope is required for signal generation by the conjugated HRP, and therefore 
full-length products have been isolated.  

  



 45 

2.4 CONCLUSIONS 

To understand the minimum requirements for termination of transcription 

and translation of human uricase pseudogene we have queried human tissue 

sources for hUox transcripts, and experimentally recreated expression of each of 

these transcripts in human (HEK-293T) cells. The effects of each pseudogene 

feature have been explored in this chapter: 1) the aberrant splice site acceptor 

in intron 2; 2) the nonsense mutations (stop codons) at aa33 and aa187; and 3) 

the extent to which these lesions might be overcome to produce full-length 

human uricase protein. As previously mentioned, although transcription products 

of human uricase have been described, translational products have not been 

characterized. It is unclear whether the described mRNA transcriptional product 

is comprised of complete exonic sequences, or if the aberrant splice site 

acceptor in intron 2 disrupts the transcriptional product and therefore excludes 

parts of exon 3. This mutational acceptor signal in intron 2 may lead to 

recognition of a cryptic splice acceptor site downstream in exon 3, therefore 

excising part of exon 3 in the final mRNA product. Ultimately, this difference 

would affect the size of the transcriptional product currently characterized, as 

well as downstream translational abilities. 

In some regards, our results are not all that surprising since it is known that 

sequence signatures flanking known terminal stop codons influence the 

robustness of the termination signal [77, 78]. Nevertheless, the results suggest that 

the premature stop codons in uricase have not evolved to serve as strong 

termination signals. In total, our results suggest that it is likely that humans express 

non-functional uricase because transcription of the gene takes place, the 
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uricase transcript has an intact ribosome binding site, and the ribosome can 

read through the premature stop codons when over expressed in human cell 

culture. It is not clear at this point how these transcripts evade nonsense-

mediated decay. In total, these experiments suggest that human cells can 

express the hUox in spite of the aberrant splice site acceptor and two non-sense 

mutations. Assuming that the immune system identifies this non-functional uricase 

as self there its presence is a compelling reason for the development of a 

“human-like” uricase that may be safer than uricases from other sources by 

avoiding a dangerous antigenic response. 
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CHAPTER 3: INDENTIFICATION OF AN ACTIVE HUMAN-LIKE URICASE 

From the following publications in preparation: 

Kratzer, J. T., Lanaspa, M. G., Johnson, R. J. & Gaucher, E. A. (2013) 
Management of intracellular triglyceride levels induced by uric acid using 
ancient uricase enzymes.  

 
Kratzer, J.T., Murphy, M. N., Ortlund, E. A. & Gaucher, E. A. (2013) 
Evolutionary history of modern and ancient mammalian uricases.  

 
 

3.1 INTRODUCTION 

The transcriptional and translational features reported in chapter 2 

supports the presence of pseudogene transcripts (hUox) transcripts, and that the 

pseudogene gene product (hUox) is expressed in human cells. Even though the 

pseudogene is catalytically inactive, its presence can be therapeutically 

exploited. We believe that a functional, human-like uricase may be able to 

evade the inactivating immune response that plagues other clinically explored 

uricases. It is well established that humans lack an intrinsically active uricase; 

therefore, those mutations necessary to restore uricase activity to the human 

pseudogene must be identified. Towards this end, chapter 3 reports our efforts to 

directly reactivate the hUox, and identify other mammalian uricases that can be 

explored for further clinical development.  

There are 17 amino acid differences between the last active hominoid 

uricase (baboon) and the inactive human protein. Since none of these 

mutations are in the active site it is a formidable task to select which mutations 

will optimize the sequence identity towards the human protein while achieving 
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maximal enzymatic activity. The highly conserved nature of the uricase protein 

family affords the opportunity to apply the evolutionary biology rooted 

approach of ancestral sequence reconstruction (ASR) to explore those 

sequence combinations that nature has already vetted to obtain active proteins 

before their inactivation in the hominoid lineage.   

3.1.1 Ancestral Sequence Reconstruction (ASR) overview2 

The ASR approach was first proposed by Pauling and Zuckerkandl in 1963 

as a means of testing hypotheses about early life by inferring ancient sequence 

using modern sequences as input into models of evolution, and then resurrecting 

(synthesizing) these ancestral proteins in the laboratory [80]. The first experimental 

ASR study was conducted by Benner and coworkers in 1990 with their 

resurrection of a catalytically active 5 million year old bovid ribonuclease [81]. 

This first study validated the potential of ASR to generate functional ancestral 

proteins for modern-day study. Since its advent, ASR has allowed researchers to 

“travel back in time,” by resurrecting ancient macromolecules in the laboratory 

to study diverse phenomena ranging from the evolution of ultraviolet vision [82], 

the origin of steroid hormone signaling [83], and the paleoenvironment of the 

ancient Earth [84], among others [85].  

When put in practice, ASR is a hybrid computational-experimental 

approach that is comprised of two distinct components (Figure 3.1). The 

computational component encompasses the analysis of extant homologous 

protein sequences and putting these sequences within a phylogenetic 

                                                   
2 Adapted from Kratzer, J.T., Cole, M.F., and E.A. Gaucher, Protein engineering 
guided by natural diversity, in Protein Engineering Handbook, S. Lutz and U.T. 
Bornscheuer, Editors. 2013, Wiley-VCH: Weinheim, Germany.  
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framework using explicit models of protein evolution. Once a phylogeny is 

established, statistical methods are then used to infer the most probabilistic 

ancestral sequences at nodes within the phylogenetic tree. During the 

experimental component of ASR, the inferred ancestral sequences are 

synthesized, characterized, and studied to address the posed evolutionary 

hypotheses [86].  

 
Figure 3.1 Ancestral sequence reconstruction allows researchers to travel back in 
time and explore ancient proteins. This approach first involves a computational 
element which involves 1) Generation of a multiple sequence alignment (MSA) 
to put the proteins of interest into the appropriate phylogenetic context. 2) 
Evolutionary models are used to infer the ancestral sequences with high 
statistical support. The second, experimental, component of ASR involves 3) The 
overexpression and purification of ancestral proteins. Using standard chemical 
synthesis techniques the inferred ancestral genes are synthesized and put in an 
expression vector. The proteins are expressed in the system of choice (e.g. E. coli) 
and then purified using standard molecular biology techniques. 4) The proteins 
are then assayed using a specialized functional test to answer posed questions 
about the proteins evolutionary past, or to search sequence space for variants 
with desired biomolecular properties for further development. 
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The first step in ASR is to collect homologous sequences of the parent 

protein from sequence databases such as NCBI, PFAM, EBI, GenBank, RefSeq, 

TPA, SwissProt, PIR, PRF, and PDB. A multiple sequence alignment (MSA) is then 

created using software such as ClustalW [87] or T-Coffee [88]. This alignment is 

refined, as needed, to obtain a trustworthy alignment. A high quality MSA is 

generated by including homologs from a large number of different species, 

along with an out-group sequence. It is important to choose an out-group 

sequence that is only moderately related to the query sequences; since its 

longer genetic distance translates into a longer branch in the inferred 

phylogenies - aiding in rooting the tree and trimming down the tree-search 

space which can be computationally demanding [89].  

The MSA is then used as the input for phylogenetic analysis to determine 

the relationships and evolutionary distances among homologous sequences. An 

evolutionary algorithm is used to construct a phylogenetic tree from the MSA. 

There are several algorithms for constructing phylogenetic trees such as 

maximum parsimony[90], maximum likelihood [91], distance-based approaches 

such as neighbor joining, or Bayesian approaches. While the underlying statistical 

methods used in each of these tree-building approaches vary, the underlying 

goal is the same: to search the ‘tree-space,’ to generate a tree that best 

recapitulates the evolutionary relationships and histories of the sequences. One 

popular software tool that applies Bayes Theorem to the tree-building search is 

MrBayes [92]. A generated gene/protein phylogenetic tree can then be 

checked against alternative hypotheses of evolutionary relationships (e.g. the 

species tree derived from 16S ribosomal sequences) to check for consistency. In 
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order to get the most robust MSA, and accompanying phylogenetic tree, it is 

often required to repeat cycles of adding/removing sequences from the 

alignment to correct inconsistencies (disagreements with known evolutionary 

theory) and ambiguities (resolving polytomies) and then rebuilding the 

phylogenetic tree until a consistent tree structure is resolved.  

The final computational step in ancestral sequence reconstruction is to 

infer the ancestral sequence. These tools often include various models of 

molecular sequence evolution that the user must choose to analyze the data 

with in order to best fit the data to a model  (Figure 3.2). 

 

 
Figure 3.2 Phylogenetic tree highlighting distribution and relationship of modern 
and ancient sequences. This simple phylogenetic tree shows 3 modern 
sequences in which there are two bifurcation events, places where the tree has 
split. The first gave rise to modern sequence AATA and the second gave rise to 
AATC and AAGA. Using evolutionary models and specific computer algorithms 
the ancient sequence is inferred to be AATA because it is the most parsimonious 
answer – since it explains the character states of the modern sequence with the 
minimum number of changes in the topology.  

Once the ancestral sequences have been inferred, they can then be 

synthesized by traditional DNA synthesis techniques, cloned into an 

overexpression system, expressed in a modern organism, purified, and then 

characterized in the laboratory. It is important to note that unique challenges in 

expressing and purifying protein from ancestral nodes compared to modern-day 

proteins may exist.	
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3.1.2 Successful examples of ASR application 

The application of ASR in the field of applied protein engineering studies is 

relatively new, but it offers the advantage of searching sequence space for 

changes that have already been vetted by natural selection. Scientists may find 

the greatest utility of ASR when designing more theromostable and/or acid-

tolerant proteins because it is hypothesized that ancient life flourished under a 

much hotter and more acidic environment [93, 94]. Furthermore, ancestral 

sequences may serve as better ‘parent’ sequences for directed evolution 

libraries due to their increased stability. This increased stability allows these 

proteins to be more receptive to accepting more destabilizing mutations, and 

this, in turn, may allow the protein to adopt novel biomolecular properties [95, 

96].  

In the most recent example, a diverse team of researchers set out to 

answer fundamental questions about how enzymes evolve over time, and the 

influence that environment had upon their stability and catalytic evolution. 

Towards this goal, the team chose to study the protein thioredoxin (Trx), which is 

an oxido-reductase enzyme present within all domains of life and reduces 

disulfide bonds in proteins [97]. The researchers used ASR to resurrect seven 

ancient Trxs - including those enzymes from the last bacterial common ancestor, 

last archael common ancestor, and the archael-eukaryotic common ancestor 

(which are hypothesized to have last inhabited Earth some 4.2 - 3.5 billion years 

ago) [98]. The thermostabilities of these ancestors were determined by 

differential scanning calorimetry and the catalytic ability of these ancestors to 

reduce disulfide bonds was studied by atom-force microscopy. This is of 
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particular significance because Trxs have a wide range of industrial applications 

where enhanced acid- and thermo- stability would be valued. Some of the 

industrial uses of Trxs include grain processing, allergen deactivation, antibiotic 

production and venom deactivation [99].  

 Ancestral Sequence Reconstruction (ASR) follows a present-day-

backwards strategy, whereby genomic sequences from extant (modern) 

organisms are incorporated into evolutionary models to computationally infer 

the extinct (ancient) sequences of genes no longer present on Earth [84, 98]. To 

date, approximately 20 studies have emerged where specific molecular systems 

from extinct organisms have been resurrected for study in the laboratory [64]. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Direct reactivation of the human uricase pseudogene 

The first logical step in reactivating the human pseudogene was to 

replace the two premature stop-codons with the conserved arginines found in 

the other functional mammalian uricases. The full-length human uricase where 

codons 33 and 187 code for arginines in lieu of stops was codon optimized for 

expression in E. coli. This construct was synthesized and cloned into the pET21A+ 

expression vector. To confirm that human uricase could not encode a highly 

functional gene, we engineered a human uricase for recombinant expression in 

which the two stop codons were replaced with arginine (the amino acid found 

at these two positions in homologs), and the introns were removed from the 

gene. We confirmed bacterial expression of our engineered human protein by 

western blot against a 6xHis tag. Unfortunately, the protein resides in the insoluble 
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fraction and we have not been able to solubilize it under numerous buffer 

conditions. Regardless, activity assays performed with the buffer suspended 

insoluble fraction from uricase overexpression showed that no functional human 

uricase was present within the insoluble fraction. 

3.2.2 Computational inference of ancient uricases  

Ancestral sequence reconstruction was performed following our 

laboratory protocols [84, 98]. Modern uricase sequences from 17 taxa were 

retrieved from public databases and were aligned using ClustalX [87]. The 

evolutionary relationship between the uricase genes (i.e. DNA sequences) was 

modeled using MrBayes [92]. The following biological assumptions were used to 

define the model of character change used: the generalized time reversible 

DNA substitution model [100], and a proportion of the nucleotide sites are 

invariable while the remaining sites are drawn from a gamma distribution [101]. 

To search tree-space, two independent Metropolis-coupled Markov chain 

Monte Carlo (MCMCMC) simulations, four chains each were performed for 

1,000,000 generations with parameter sampling every 100 generations. The first 

100 samples were discarded during the burn-in phase of the MCMCMC analysis.  

Next, the ancestral sequences were inferred on the codon level using the 

previously prepared DNA MSA and the phylogenetic topology built by MrBayes. 

The software application used was Phylogenetic Analysis by Maximum Likelihood 

(PAML) [102]. The Jukes and Cantor model of nucleotide substitution was used 

[103]. In addition, the substitution rates were allowed to vary between lineages 

with omega being the only free parameter.  The following parameters were 
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based upon our laboratory’s previous experience and expertise: an alpha 

parameter of 0.8, an ncatG of 8, and kappa was fixed at 2.789.  

3.2.3 Uricase expression and purification 

Uricase encoding genes were codon-optimized for expression in E. coli 

and were synthesized by standard methods (Epoch Laboratories).  These genes 

were cloned into the pET-21a vector (Novagen) using the N-terminus restriction 

site NdeI and XhoI site at the C-terminus.  E. coli Tuner (DE3) (EMD Millipore) cells 

were freshly transformed with uricase containing vector.  A single colony was 

used to inoculate a 5 mL overnight culture.  This overnight culture was used to 

seed a 1 L of Luria broth (LB) with 100 µg/mL carbenicillin (CARB) and 100 µg/mL 

chloramphenicol (CMP). Cells were grown to an OD600 between 0.6 and 0.8 at 

which point they were induced with 1 mM IPTG. Expression was carried out 

overnight (16-20 hours) at 37 ° C with shaking of 250 rpm. Cells were then 

collected by centrifugation at 5,000 x g for 30 min at 6 °C and stored at -80 °C in 

a 500 mL centrifuge bottle.   

The frozen cell pellet was removed from the freezer and allowed to thaw 

for 15 minutes at room temperature. Two alternative protocols were employed 

for the lysis of these pellets depending upon the scale of expression. The first 

protocol for very large preparations (used by our collaborators for crystallization 

screening) began by resuspending the pellet in 20 mL of Phosphate Buffered 

Saline (PBS), pH 7.4.  The cells were then ruptured by sonication on ice.  

Sonication was performed with a Branson Sonifier 150 (Emerson) and was carried 

out in 4 cycles of 40-second bursts at maximum intensity with 1-minute rests in 

between. After sonication, insoluble material was isolated by centrifugation at 
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10,400 x g for 10 min at 6 °C. PBS-insoluble contaminants were removed by a 

series of five PBS washes.  For each wash the inclusion body (IB), was 

resuspended in 20 mL of PBS and vortexed for 1 min at maximum speed, 

centrifuged at 10,400 x g for 10 min at 6 °C, and the supernatant was discarded. 

The removal of PBS soluble contaminants was confirmed by SDS-PAGE analysis. 

For smaller scale purifications, a non-ionic detergent lysis procedure was 

employed. Cell pellets were again removed from the freezer and allowed to 

thaw. These cells were lysed by the addition of BugBusterTM with BenzonaseTM  

(BB) lysis buffer with 1 mM PMSF protease inhibitor added (10 mL of BB per each 1 

L worth of cell pellets. This cellular suspension was rocked at room temperature 

for 30 min. After incubation, the lysate was transferred to a 30 mL 

microcentrifuge tube and was spun down at 16,000 x g for 15 min at 6 °C. The 

now clarified extract was saved for SDS-PAGE analysis. The insoluble IB was then 

washed by first adding a 55% (v/v) BB made in advance, then vortexing for 1 min 

and centrifuging again at 16,000 x g, the supernatant was saved for analysis. The 

next wash 3 wash steps were performed in a similar manner but using 10 % (v/v) 

BB solutions in place of the 55% BB solution. 

Regardless of which lysis procedure was employed, the now-clean IBs are 

resuspended in a 0.1 M to 1 M sodium carbonate buffer at a pH between 10 and 

11 and 1 mM PMSF. The resuspended inclusion bodies were rocked at 4 °C 

overnight to liberate trapped functional uricase from the IB. Carbonate-insoluble 

debris were then removed by centrifugation at 20,190 x g for 30 min at 6 °C.  The 

carbonate extraction supernatant contained active uricase as confirmed by the 

Amplex Red Uricase/Uric Acid Activity Kit (Invitrogen). 
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Uricases were purified on the AKTADESIGN UPC 10 with inline UV and 

conductivity detectors (GE Healthcare) at 4 °C. Two different purification 

chromatographic schemes were employed. The first program used was modeled 

after the two-part purification scheme reported for the Pig Baboon Chimeric 

uricase [54]. In brief, this method involved an initial extraction step into 1 M 

Na2CO3 that was followed by a complex capture/refining step via anion 

exchange chromatography (AEX). This AEX step was performed on a HiLoad 

16/10 Q-Sepharose HP column (GE Healthcare) pre-equilibrated with 0.075 M 

Na2CO3, pH 10.2.  The uricase-containing carbonate extract was filtered through 

a 0.2 µM filter and diluted to 267 mL with 1 mM PMSF to lower the sample buffer 

concentration to 0.075 M Na2CO3.  The sample was applied directly to the 

column with a sample pump at a flow rate of 1.6 mL/min.  After sample 

application, unbound sample was washed with binding buffer until absorbance 

at 280 nm approached baseline levels. Next, the pH of the column was lowered 

by a wash step with 1 column volume of NaHCO3, pH 8.5. An initial wash step 

with 1 column volume of NaHCO3, pH 8.5 with 0.150 M NaCl was performed.  

Major contaminants were washed from the column as two large peaks by a 2-

column volume salt gradient from 0.15 M NaCl – 1.5 M NaCl in 10 mM NaHCO3, 

pH 8.5.  A 3-column volume wash with 10 mM NaHCO3, pH 8.5, 1.5 M NaCl 

ensured that all major contaminants had been eluted from the column media.  

This was followed by a 3-column volume wash with 10 mM NaHCO3, pH 8.5.  In 

preparation for the elution of purified uricase, the pH was raised with 1 column 

volume of Na2CO3, pH 11.  Uricase was then eluted by a 10-column volume salt 

gradient from 0-0.6 M NaCl in 0.1 M Na2CO3, pH 11. Uricase was collected in 2 mL 
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fractions using connected Frac-950 (GE Life Sciences).  The eluted uricase peak 

was pooled and concentrated to less than 5 mL by centrifugation with 20 mL, 9 

kDa molecular weight cut-off spin concentrators (Pierce). 

The final purification step was performed by size exclusion 

chromatography on a HiLoad 16/60 Superdex 200 prep grade column pre-

equilibrated with 0.1 M Na2CO3, pH 10.2 (GE Life Sciences).  Sample was applied 

using a 10 mL superloop at a flow rate of 1 mL/min.  This polishing step separated 

active vs. inactive oligomeric states of uricase. Tetrameric uricase was eluted 

with 0.1 M Na2CO3, pH 10.2 at approximately 140 kDa, and was monitored via an 

in-line ultraviolet (UV) detector at 280 nanometers (A280).  This peak was 

collected in 2 mL fractions and was pooled and concentrated by centrifugation 

with spin concentrators (Pierce).   

3.2.4 Measuring uricase enzymatic activity 

The enzymatic activity of purified tetrameric uricase was determined 

spectrophotometrically by monitoring the decrease of absorbance at 293 nm 

(A293), the absorption maxima of uric acid.  Reactions were performed in 1 mL 

reaction volumes in a quartz cuvette at room temperature. A freshly prepared 1 

mM uric acid stock in 0.1 M sodium phosphate buffer, pH 7.4, was diluted with 0.1 

M sodium phosphate buffer, pH 7.4 to prepare a range of uric acid 

concentrations. Specifically, the assays were performed at the following uric 

acid concentrations: 1 µM, 2.5 µM, 5 µM, 10 µM, 15 µM, 20 µM, 25 µM, 50 µM, 75 

µM, and 100 µM.  The amount of enzyme added to the reaction was empirically 

determined to give a linear decrease in urate (A293) over the 6 min time course 

of the assay. Plotting the decrease in A293 versus time (min) and determining the 
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slope in linear portion of the curve was used to determine the initial velocities of 

these reactions (MS Excel).  The averages from triplicate runs of initial velocities at 

each urate concentration were used to plot a hyperbolic regression curve to 

determine the Michaelis constant (KM) and the maximum velocity (Vmax) of the 

purified uricase variant (Hyper32 Kinetics Application). The concentration of 

purified tetrameric uricase was determined by the Quick Bradford Assay (Bio-

Rad).   Lastly, the kcat was determined by dividing the Vmax by the concentration 

of tetrameric uricase used in the kinetics experiments. 

3.2.5 Uricase storage stability assays 

Equal masses of cell pellets were lysed and the inclusion bodies were 

washed with BB detergent. Each sample was separated out into a separate 

extraction tube to which one of six different carbonate buffers were utilized to 

extract uricase and subsequently used for its purification by SEC. These 

carbonate buffers were prepared at concentrations of 0.1 M, 0.5 M, or 1 M and 

adjusted to either pH 10.2 or pH 11. Once purified, the total protein 

concentration was determined by Bradford assay using IgG protein mass 

standards. The specific enzyme activity (SEA) was determined at a urate 

concentration of 100 µM in triplicate. Uricase preparations were stored at 4 °C in 

their respective purification buffers and were kept on ice during the SEA 

determination. 

3.2.6 Making uricase variants based upon the inferred ancestral sequences 

We explored a range of expression conditions including: growth 

temperatures ranging from 4 °C to 37 °C, IPTG induction concentrations, auto 

induction, as well as the CD41 and CD43 overexpression strains for toxic proteins 
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(Lucigen). All of the conditions explored did yield recombinantly expressed 

soluble uricase. We therefore employed a protocol to exploit the purity of the 

insoluble protein in the inclusion body and after several washes with dilutions of 

BB; the functional uricase was extracted with a pH 11 carbonate buffer.  

3.2.7 Uricase structural modeling and solving mammalian uricase crystal 
structure3.  

A homology model of one of our mammalian uricases was generated 

using SWISS Model [104]. Briefly, the amino acid sequence of An19/22 (our oldest 

soluble uricase see Figure 3.6) was thread onto chain A of the X-ray crystal 

structure of uricase from Arthrobacter globiformus (PDB: 2YZB). This procedure 

was repeated for the remaining four chains of the tetrameric structure. The four 

generated output PDBs were all loaded into the same PYMOL session from which 

structural inferences could be made [105]. 

For crystallization screening experiments, a large 6 L preparation of 

An19/22 and its variant with 2 surface lysine mutations An19/22_LysII (described 

later) were expressed and purified following standard experimental procedures 

(See 3.2.3). This preparation’s purity was confirmed by SDS-PAGE analysis and its 

functional activity was confirmed by in vitro assay. The crystal screens were 

performed using a Phoenix drop setter (Rigaku) and Formulator screen maker 

(Formulatrix). The X-ray structure was solved for both the inhibitor 8-azaxanthine 

bound to uricase, and the apo structure. Initial X-ray diffraction data was 

obtained on a local source at Emory University. High-resolution X-ray diffraction 

                                                   
3 Crystallization experiments were performed by Emory University collaborators: Dr. Eric 
Ortlund and Dr. Michael Murphy.  
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data was obtained from the Advanced Photon Source (Argonne National 

Laboratory). 

 
3.3 RESULTS AND DISCUSSION 

3.3.1 Development of uricase controls 

One natural and one engineered uricase were selected to serve as 

standards for method development and benchmarking of protein activity. As a 

control for working with mammalian uricases, the pig uricase was overexpressed, 

purified, and characterized. The pig uricase was chosen because it has 88 % 

sequence identity to the hUox, but is dissimilar enough to preclude its use as a 

therapeutic. In addition, pig uricase has long been studied in the context of 

uricase research, and it is quite active relative to other mammalian uricases [43, 

106, 107]. The engineered pig-baboon chimeric (PBC) uricase, is the active part 

of the FDA-approved Krystexxa®, and serves as a therapeutic benchmark to 

compare human-like uricases. In addition, PBC uricase has a higher sequence 

identity to hUox than pig uricase (89 % vs. 87 % identity).  

By incubating the insoluble pellet from recombinant overexpression in 

carbonate buffer pH 11 overnight, uricase could be solubilized for downstream 

purification and subsequent characterization. The purification scheme resulted in 

obtaining high purity tetrameric uricase by size exclusion chromatography (SEC) 

(Figure 3.3). 
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Figure 3.3 Tetrameric uricase is obtained by SEC. The insolubility of the uricase 
protein was exploited for purification since it was highly enriched for target 
protein. This size-exclusion chromatography trace on a HiLoad 16/60 (Superdex 
200 PG) shows large aggregates that are removed during the purification 
process on the left the above trace. The large sharp peak contains functional 
tetrameric uricase (based upon column calibration) whose purity is evidenced in 
the adjacent SDS-PAGE. 

The kinetics assays provide a quantitative means of comparing the extant, 

ancestral, and engineered uricases. These enzymatic assays were performed in 

triplicate until a suitable curve was generated. While the free Hyper32 

application was used for the majority of the analyses – the same results were 

obtained when the more feature-rich Origins (OriginLab) was used. To deal with 

outliers replicates were performed when experimenter error (e.g. pipetting) was 

likely to have occurred.  
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Figure 3.4 The activity of uricase proteins was assessed using UV-Vis 
spectrophotometry. The above plot represents the average of triplicate runs of 
enzymatic assays performed on a Cary 50 UV-Vis spectrophotometer. The 
uricase reaction is monitored by following the reaction via the disappearance of 
uric acid (as monitored at its emission maxima of 293 nm). Shown above is the 
average of triplicate runs at a urate concentration of 1 μM, 2.5 µM, 5 µM, 10 µM, 
15 µM, 20 µM, 25 µM, 50 µM, 75 µM, and 100 µM plotted as the V0/[S]. From these 
plots each enzyme’s kinetic parameters: the Vmax maximal velocity determined 
by hyperbolic regression and KM the urate concentration at which the enzyme 
performs at half its maximum velocity.  
 
3.3.2 Human uricase has accumulated deleterious mutations 

As discussed in Chapter 2, hUox contains two nonsense mutations. To 

ensure that the human pseudogene could not encode for a functional enzyme 

these two nonsense mutations were replaced with codons for arginine (the 

residue in functional homologs). While it could be overexpressed, the human 

uricase in which the two nonsense mutations were mutated to arginines was 

insoluble and resistant to extraction in numerous tested buffer systems. In 

addition, no uricase activity could be detected in the resuspended inclusion 

bodies of the insoluble fraction. These results suggest that there are deleterious 
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mutations that are responsible for the inactivation of the human uricase in 

addition to the two nonsense mutations. The overarching therapeutic goal is to 

develop a “human-like” uricase and there are 17 amino acid differences 

between baboon, the last active primate uricase, and the human uricase 

(Figure S1). The biomedical goal of “humanizing” uricase by minimizing the 

amino acid differences from hUox while retaining a therapeutic level of activity 

presents a unique challenge. Since, hUox enzymatic activity cannot be directly 

rescued by replacing the two nonsense mutations the ASR approach was 

applied to the Uox family.  

3.3.3 Resurrecting ancestral uricases  

A multiple sequence alignment containing 17 uricase sequences from 

modern-day, or extant, sequences was used to generate a robust phylogenetic 

tree of the uricase protein family (Figure S1). From this MSA and implemented 

biological assumptions (see Materials and Methods), a consensus tree with 

branch lengths and posterior probabilities at each bifurcation was obtained 

using MrBayes (Figure 3.5.) This gene tree is in agreement with the evolution of 

mammals reported in the literature [108].  
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Figure 3.5 Phylogram of uricase genes constructed by the maximum likelihood 
method This phylogram of uricase proteins generated from a DNA MSA. Branch 
lengths are scaled to genetic distance between nodes. The internal nodes are 
labeled with the posterior probability, a measure of statistical support, for each 
bifurcation event. This generated gene tree agrees with the species tree for 
these organisms.  (See Appendix Figure A.2. for a larger version of this figure) 

 
PAML was used to infer the ancestral sequences with the topology shown 

above. Note: the models and the input data did not differ in their output of 

inferred ancestral sequences. These sequences are from a diverse set of taxa 

that represent mammals with a functional uricase, diminished uricase activity, 

and ultimately abolished uricase activity [48, 49].  Nine internal nodes were 

inferred from the uricase mammalian phylogeny; however, two of these internal 

nodes were conserved on the amino acid level. The first set of ancestors that 

coding for identical uricase proteins are An19 and An22, and only one ancestor, 

An19/22, was resurrected. The second set of ancestors coding for identical 
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uricase proteins are An32 and An33, again only ancestor, An32/33, resurrected 

(Figure 3.6).  

 
Figure 3.6 Cladogram tree showing the ancestral sequence space explored. The 
same topology (e.g. evolutionary relationship between uricase sequences) as in 
Figure 3.5 is shown – only the branches are no longer scaled for clarity and the 
common organismal names are used at the leaf nodes. The ancestral nodes are 
numbered (above a gray background) and represent the sequence space that 
has been searched for a novel uricase therapeutic. The protein sequence of 
nodes 19 and 22 is identical and is referred to as An19/22. In addition, the protein 
sequence of nodes 32 and 33, are identical as well and are referred to as 
An32/33. The numbers in square braces are the number of amino acid changes 
that occur along each branch (the lines connecting the ancestral nodes in the 
cladogram). Lastly, as a point of reference the Pig/Baboon Chimer (PBC) uricase 
sequence is shown on the phylogenetic tree, as well as the five hominoids which 
were used in ASR in which uricase is a pseudogene (human, chimpanzee, gorilla, 
orangutan, and gibbon). 

The accuracy of the inferred ancestral mammalian uricases (excluding 

An18) ranged from 97.6 % to 99.9 % indicating high confidence in the predictions 

of ancient residues based on the models implemented (Table 3.1). 
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Table 3.1 The age of and accuracy of inferred uricase sequences. The time tree 
of life was utilized to approximate an age for the ancestral proteins studied in the 
laboratory [109]. 

 
Uricolytic activity assays were first performed on inclusion bodies 

generated from the overexpression of each ancestral uricase. These assays 

involved the resuspension of the insoluble fraction in buffer to determine whether 

functional uricase was sequestered within these insoluble masses (Figure 3.7). 

These assays were performed in a 96-well plate format and could be measured 

by a multiplate reader. Therefore, we could get data simultaneously from 

multiple ancestral uricases.  One will notice that An18, the oldest inferred uricase 

has been omitted from the cladogram in Figure 3.7 because it could not be 

experimentally characterized. While, An18 could be overexpressed it could not 

be isolated as a purified preparation under any of the conditions explored. 

Furthermore, the inclusion bodies from An18 overexpression were void of 

detectable uricase activity. Since, we are interested in a human-like (i.e. 

mammalian) uricase, it was not very disheartening that An18 was unable to be 
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characterized, because it likely would be highly immunogenic and unsuitable for 

therapeutic development.  However, it was essential to include the amphibian 

sequence from our ASR protocol in order to confidently root the uricase tree. 

Working with ancestral proteins affords the researcher the opportunity to survey 

unique sequence space and provides insights into which human residues that 

can be tolerated in a functional uricase. Like their descendant proteins, 

ancestral uricases differ greatly in their activities and solubilities. 

 
Figure 3.7. Enzymatically active mammalian uricase is trapped within the 
inclusion body produced during overexpression in E. coli.. Equal masses of 
resuspended insoluble fractions were assayed using the Amplex Red fluorometric 
assay for uricase activity. The soluble fractions had no observable activity in the 
assay (data not shown). The activity is expressed in terms of specific enzyme 
activity in units of nmoles urate/min mg of total protein. The modern day pig 
uricase has a comparable amount of uricase trapped within its inclusion body 
compared to An19/22. A substantial hit in activity is observed and An30 is just 
above the detection limit of the employed high throughput assay. 
 

The ancestral uricases insoluble SEA serves as a proxy for their intrinsic 

activity. When assayed under physiological conditions (37 °C and pH 7.4), a 
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stepwise decrease in SEA along the branches from An19/22 to An26 and to An27 

was observed. While An30 barely registered activity in the insoluble fraction and 

the remaining ancestral nodes of An31 and An32/33 were below the detection 

limit of the Amplex Red fluorometric uricase activity assay. It seems that not only 

are the more recent ancestral uricases largely inactive but they also present a 

unique experimental challenge due to their insolubility. These ancestral uricases 

were determined to be insoluble under an array of expression conditions. To 

further explore the effects of these apparent decreases in SEA in the insoluble 

fraction, the extraction efficiency of each ancestral protein was explored. While 

the uricase inclusion bodies are enriched with uricase, they do contain large 

uricase aggregates along with other contaminants. These contaminants are first 

removed by a series of detergent washes and then uricase is extracted with a 

high pH carbonate buffer, and large aggregates are subsequently removed by 

subsequently by size exclusion chromatography (SEC) (Figure 3.8).  

 
Figure 3.8 More recent ancestors are the least soluble under experimental 
conditions. Western blot using a 6xHis primary antibody conjugated to HRP. The 
samples were each expressed overnight and then subjected to a 4 hour  
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(Figure 3.8 continued) 
extraction in 0.1 M carbonate, pH 11. Equal volumes were loaded into each 
lane. While the 6xHis hindered our ability to isolate enzymatically active ancestral  
proteins, this analysis provides a qualitative assessment of the decrease in 
solubility during the evolution of the uricase protein family. Lane 1) Pig uricase 
Lane 2) An18 Lane 3) An19/22, Lane 4) An26 Lane 5) An27 Lane 6) An30  Lane 7) 
An31 Lane 8) An32/33.  
 
3.3.4 The structure of mammalian uricases  

At the inception of this research program, no mammalian uricase 

structure had been published; therefore, we relied upon a homology model 

generated using SWISS Model [104]. To date no mammalian uricase structure has 

been published. This may be due to the poor solubility and the difficulty in 

obtaining crystals with high-resolution diffraction. However, as we seek to identify 

the effects of individual mutations, a solved structure of a mammalian uricase 

would prove invaluable. Our collaborators at Emory University (Dr. Eric Ortlund 

and Dr. Michael Murphy) solved the structure of the ancestral uricase variant 

An19/22_LysII (An19/22 with the following two lysines introduced by mutations 

R147K and E220K) was solved at a resolution of 2.4 Angstroms (Figure 3.9). The 

structure of An19/22 did not diffract to as high a degree as An19/22_LysII 

(personal communication). This crystal structure was instrumental in analyzing the 

effects of individual mutations and developing additional variant. 
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Figure 3.9 Solved mammalian crystal structure shows structural similarity to 
published microbial structures. (Left) Shown is the homology model of An19/22 
uricase generated by Swiss Model. The amino acid sequence of An19/22 was 
thread onto the published structure of uricase from Arthrobacter globiformus  
(PDB: 2YZB).  Each of the four monomers that make up the functional uricase are 
shown in the cartoon representation in a different color, and the bound substrate 
uric acid is shown as cyan spheres. (Right) Shown is the wire representation of the 
overlay of our solved mammalian uricase, An19/22_LysII, on-top of the microbial 
(Bacillus sp, Aspergillus flavus, and Arthrobacter globiformus) structures available 
from the Protein Data Bank (PDB: 1J2G, 3LD4 ,2YZB). Shown in blue are the 
variable regions located in the hinges. This variability is important to consider as 
the effects of individual mutations are considered in a structural context.  
 

We have obtained kinetic data for purified An19/22, An26, and An27. 

However, An30, An31, and An32/33 were insoluble under tested conditions and 

showed negligible activity in their insoluble fraction (Table 3.2). An19/22 is the 

most promising of the ancient uricases to serve as a potential therapeutic. This 

enzyme displayed comparable kinetic and stability properties in parallel 

enzymatic preparations and assays [110]. Advantageously, An19/22 has a 

greater sequence identity to the human sequence than other therapeutic 

uricases (discussed below) and may elicit a weaker immune response when 

introduced to human patients and be a safer treatment for the management of 

gout.  
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The most active mammalian uricase is An19/22. This ancestor is inferred to 

have diverged from humans some 94 Mya old [109]. Its catalytic efficiency was 

determined by Michaelis-Menten kinetics experiments to be 1.4E6 M-1S-1, and has 

a stability in excess of 1 year when stored at 6 °C in carbonate pH 11 buffer 

(Figure 3.10). There are 21 amino acid differences between An19/22 and hUox. 

Figure 3.10 An19/22 is the common ancestor of placental mammals. This uricase 
protein is estimated to correspond to a protein that is 94 million years old. It 
possesses a high catalytic activity and a stability that makes it an ideal protein 
for further engineering. Shown at left is the active uricase tetramer, An19/22_LysII, 
where each identical monomer is shown as a different color: cyan, sea green, 
gray and yellow. The dashed line runs through the center of the barrel of the 
active tetramer. At right, is one monomer in the identical orientation as the 
yellow monomer in the tetrameric representation. The structure differs by two 
surface lysine residues that are both shown as sticks: site K147 is in blue and site 
K220 is in green. The 21 amino acids that differ from An19/22 and human uricase 
are shown as red spheres. 

 

To establish the best conditions for working with An19/22 uricase, various 

buffer conditions were tested for its purification and long-term storage at 4 °C. 

These stability assays were routinely performed over the course of three months 

(even samples that were stored over a year displayed a minimal change in their 

specific activities). For An19/22, the greatest extraction efficiency, in terms of the 

specific activity of uricase activity recovered, was observed in 0.1 M carbonate 

buffer was at pH 11 was used for both extraction and SEC purification  
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Figure 3.11). This same extraction buffer was employed with other uricase 

constructs, and the extraction efficiency varied between variants (Figure 3.8). A 

correlation exists between those IBs isolated from preparations of uricases in 

which uricolytic activity could be detected and those ancestors that could be 

solubilized using a carbonate buffer.  

Figure 3.11 An19/22 extraction efficiency and storage buffer stability. Assayed 
with 100 µM urate in 1X PBS, pH 7.4. Samples were kept in their purification buffer 
at 4 – 6 ° C. Assays were performed in triplicate and error bars correspond to 
sampling range.  
 

The next ancestor that was experimentally characterized was the 

common ancestor of primates, An26 (Figure 3.12). This uricase contains seven 

human residues in addition to those found in An19/22. The functional uricase was 

much more difficult to extract from An26 than it had been for An19/22. The 

catalytic efficiency of An26 is 7.7E5 M-1s-1, which is a reduction of approximately 

50 % relative to An19/22. An26 is stable or at least 3 months at 4 ° C in 0.1 M 

carbonate buffer, pH 11.  



 77 

Figure 3.12 An26 is the common ancestor of primates.  Shown is the monomer 
from our solved An19/22_LysII variant. The seven human residues that are 
introduced in An26 are highlighted in bright orange. The remaining 14 residues 
that differ from hUox are shown in red. 

 

The last ancestor that could be isolated from its inclusion bodies and 

purified for enzymatic characterization is An27 (Figure 3.13). This ancestor is 29 

Ma and only substituted one human residue with the consequence of dropping 

the catalytic efficiency by another order of magnitude to 7.9E+04 M-1s-1. 

Furthermore, An27 was too unstable to serve as a therapeutic (upon retesting 4 

days after initial kinetics experiments there was no detectable activity with either 

the cuvette based assay, or the enzyme-coupled Amplex Red Assay (Invitrogen) 

which amplifies the uricase signal yielding a greater sensitivity.  

 

Figure 3.13 An27 is The common ancestor of the Old World monkeys and 
hominoids. Shown is the monomeric form our solved An19/22 variant (yellow).  
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(Figure 3.13 continued) 
Two additional human residues are introduced in An27 (shown as orange 
spheres). These two mutations significantly comprised both the activity and the 
stability of An27. When the purified sample was re-assayed less than a week after 
purification, it was enzymatically dead – no activity could be detected by 
laboratory activity assay. 
 

It had already been observed that An27 was an unstable protein, but 

purified functional uricase had been obtained for enzymatic characterization. 

An30 contains one additional human residue compared to An27 (Figure 3.14). 

This single point mutation yielded a protein that could not be solubilized from the 

inclusion body, even though its overexpression was confirmed by denaturing the 

IB. However, a small amount of uricase activity was determined in the insoluble 

fraction near the detection limit of the Amplex Red assay kit. 

Figure 3.14 An30 the common ancestor of apes is highly unstable. Shown is the 
monomer (yellow) from our solved An19/22_LysII variant. The single human 
residue is introduced in An30 (shown as an orange sphere) is shown. This single 
mutation completely abolished the solubility of the An30 uricase in the employed 
carbonate buffers, and the activity of the insoluble fraction was at the detection 
limit. 
 

The use of ASR to study ancient proteins can be a double-edged sword. 

On the one hand, you are able to explore sequence space that has the 

potential to bring about new functionality [79]. On the other hand, as we 

traversed the branches of the uricase phylogeny towards the human sequence, 
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we were unable to obtain soluble protein to characterize enzymatically. An30 

barely gave a fluorescence signal above background. The most recent uricases 

An31, An32/33 and the hUox (in which the stop-codons have been mutated to 

arginines) uricase were inactive, or at the very least near the detection limit of 

the employed enzymatic assays.  

An19/22 has the greatest activity under the employed experimental 

conditions (Figure 3.15). This ancient protein can also be extracted in its active 

form from inclusion bodies in high yield by overnight incubation at 4 °C in 0.1 M 

carbonate buffer. As evidenced by the results from each ancestor, as residues 

from hUox are incorporated, both the stability and activity are compromised. By 

increasing the “human-like” character of the uricases studied (i.e. resurrecting 

more recent ancestors), the catalytic efficiency drops by an order of magnitude 

from An26 to An27, and is completely demolished in An30. 

 

 
Figure 3.15 Soluble activity of purified tetrameric uricase. The catalytic efficiency 
(kcat/KM) for the modern-day pig uricase control, the PBC chimera (Krystexxa®),  
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(Figure 3.15 continued) 
and 3 ancestral uricases were obtained. Assays were performed in triplicate in 1 
mL reactions in a 1X PBS buffer at pH 7.4 and at 37 °C. There is a stepwise 
decrease in activity before the introduction of the two nonsense mutations, the 
first of which occurs on the branch leading from An30 to An31. 
 

The main appeal of using ASR is that we can identify a uricase with a 

greater balance of human residues, while retaining a greater catalytic activity to 

have a therapeutic effect in patients. Considering the results obtained from 

resurrecting ancient mammalian uricases several observations can be made 

(Table 3.2). The first is that the most recent ancestors (i.e. An30, An31, An32/33) 

were insoluble under the experimental conditions employed. The next 

observation, is that last ancestor with detectable activity was An27, which was 

highly unstable, losing all of its activity within 4 days of purification. The absence 

of activity in the most recent uricases (An30, An31, An32/33, and hUox) has 

halted our path to obtaining a humanized functional uricase. In total there are 

twelve human residues that are found exclusively in these nonfunctional uricases. 

The fact that these “inactive” uricases all contain the destabilizing mutation 

present in An27, suggests that some of these dozen human residues might be 

tolerated in a more stable uricase background.  

  



 81 

Table 3.2. Summary of modern and ancient uricases. Each uricase was assessed 
for its solubility in the 0.1 M carbonate, pH 11 buffer used for extracting uricase 
from inclusion bodies as either low, medium, or high based upon the extracted 
yield of protein as a fraction of total inclusion body. In addition, the results from 
Michaelis-Menten kinetics experiments are tabulated showing that Pig, PBC, and 
An19/22 all have a catalytic efficiency of 106 M-1s-1 and comparable stabilities at 
4 °C in the extraction buffer of around 4 months. As additional human residues 
arise in the resurrected ancestors, the activities, as well as the stabilities decrease 
– the 12 human residues from An30 onward were not present in any functional 
resurrected uricase.  

 
3.3.5 Properties of chimeric uricases  

To this point, we have focused exclusively upon our main objective of 

identifying a “human-like” uricase for the treatment of gout. We had not 

considered any mutations that were not present in the human sequence. We 

were encouraged by the stability of An19/22 and next sought to explore whether 

or not this variant could tolerate additional modifications.  We turned our 

attention to the literature to identify specific mutations that were reported to 

have a stabilizing effect upon other uricases. The rationale being that those 

mutations might counterbalance the destabilizing effect that some of the 
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human residues impart on the protein. The first mutant of An19/22 uricase 

incorporated three mutations that had been identified in Candida utilis to 

enhance oxidative stability and thermostability: K175R, Q177E, and F178Y [111]. 

The second round of mutations incorporated a set of mutations in An19/22 

uricase that were reported to improve the Bacillus sp. (TB-90) specific activity: 

Y265L, I276G and D286S [112]. With the final variant we sought to fully test 

An19/22’s resilience to mutations by mutating a number of residues to those 

found in the soybean uricase (Glycine max): Y111N, V112I, E113V, K158E, K161S, 

F178Y, V184T, K185R, F189V, Q192E, Y194T, C195A and K196L.  

While the previous variants sought to enhance the stability and/or activity 

of An19/22, this next set of variants was focused on introducing solvent-

accessible lysine residues that might prove useful for conjugating moieties to the 

protein surface at later stages of development (e.g. PEGs). Furthermore, 

charged surface residues (i.e. lysines) can act as gatekeepers to prevent 

aggregation of the hydrophobic patches on a protein’s surface [113]. By 

aligning mammalian uricase sequences, we identified sites in homologs where a 

lysine was introduced and based upon our homology model selected those sites 

that were likely on the protein’s surface. The first lysine variant is, An19/22_LysI, 

introduces three lysines on the protein surface with the following three mutations: 

N103K, E230K, R303K. The second lysine variant, An19/22_LysII introduces two 

surface lysines with by mutating sites R147K and E220K. These lysine variants were 

expressed, purified, and characterized using our standard laboratory protocol.  
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Table 3.3. Using An19/22 as a stable backbone for exploring non-humanizing 
mutations. The first set of variants LysI and LysII sought to introduce additional 
lysine residues on the protein surface. The introduction of these sites will be 
valuable for later modification and it was important to determine whether they 
had a deleterious effect upon the protein’s affinity for the substrate and catalytic 
efficiency. The USPTO variant introduced 3 residues that were reported to 
improve the stability of a bacterial uricase and resulted in a 50 % decrease in 
catalytic efficiency compared to the An19/22 background. Both variant JPO 
and Glycine max (G. max) introduced to many “foreign” mutations that led to 
uricases with no detectable activity. 
 

 
3.4 CONCLUSIONS 

Working with ancestral uricases effectively allowed us to travel back in 

time to the point before the uricase protein became functionally absent in 

hominids. It was the longstanding belief that the two nonsense mutations were 

solely responsible for the inactivation of the human uricase. However, we 

demonstrated that there was a significant decrease in uricolytic activity prior to 

An30, when the two premature stop codons are thought to have occurred. This 

data supports the gradual step-wise decrease in the activities of uricases among 

mammals, especially those that we have studied so far. 
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By working with these ancestral uricases, we have shed some light upon 

the history of uricase inactivation in the human lineage. In addition to exploring 

this evolutionary story we have also identified two “human-like” uricases that 

have a greater sequence identity to the hUox than Krystexxa®, the PBC uricase. 

The first is An19/22 which has a comparable in vitro activity and stability, at 4 ° C, 

to PBC uricase. This most ancient resurrected uricase, An19/22, contains 22 

amino acid differences from hUox - versus PBC uricase, which differs from the 

hUox by 32 amino acids. Furthermore, while less catalytically active, An26 

contains only 15 amino acid differences from hUox, and while it has an order of 

magnitude lower catalytic activity compared to An19/22 it is still quite stable and 

may be another viable lead for a safer uricase therapeutic. 
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CHAPTER 4: OPTIMIZING A HUMAN-LIKE URICASE 

From the following publication in preparation: 

Kratzer, J.T., Murphy, M. N., Ortlund, E. A. & Gaucher, E. A. Evolutionary 
history of modern and ancient mammalian uricases.  
 

4.1 INTRODUCTION 

The goal of this chapter is to take the most active resurrected uricase, 

An19/22, and begin to individually incorporate human residues into its 

backbone. By examining each individual point mutation, will allow us to better 

pinpoint which mutations are the most least deleterious and should be 

incorporated in humanized variants of An19/22, and conversely those mutations 

that are the most deleterious and should be avoided entirely. Furthermore, by 

robustly stepping through the mutations that occurred in the This will also help to 

parse out the specific mutations that occurred after the nonsense mutations 

arose and explain why in Chapter 3 simply replacing the stop-codons with 

arginines was insufficient to restore activity to hUox.  

4.2 MATERIALS AND METHODS 

4.2.1 Synthesis of branch mutants 

Including one revertant there are 22 amino acid differences between 

An19/22 and hUox; therefore, 21 variants were synthesized and cloned into the 

pET21A+ expression vector using the NdeI and XhoI restriction sites.  
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4.2.2 Protein expression and purification 

The protocol utilized with ancestral uricase was again applied was 

employed for the IPTG-induced expression, and SEC purification of each variant 

(3.2.3). For each of the single mutants a 250 mL LB culture was expressed and the 

insoluble IB, after cell lysis, was isolated by centrifugation. The IB was washed with 

BB detergent dilutions and then extracted into 0.1 M Na2CO3 pH 11 for 4 hours at 

4 °C. After extraction, the uricase in the soluble fraction was clarified by 

centrifugation and purified by SEC.  

4.2.3 Enzymatic activity assay  

The enzyme activity assays were performed as described previously 

(3.2.4). 

4.2.4 Quantifying effect of individual branch mutations  

Several properties of each branch mutation were utilized to quantify the 

effect that the effect of each human residue substitution had relative to the 

robust An19/22 background. The first metric considered was the ratio of 

tetrameric uricase to other larger aggregates. An approximation for this ratio was 

determined by using the peak integration feature of the evaluation module of 

the UnicornTM chromatography software (GE Life Sciences). This feature 

integrates the UV absorbance at 280 nm as the protein is eluted from the size-

exclusion column. Specifically, the total area in milliabsorbance units (mAU) that 

corresponds to tetrameric uricase, which elutes around 69 mL, divided by the 

protein absorbance that elutes before the tetrameric uricase peak.  The specific 

activity for each uricase preparation was determined by running triplicate 

cuvette-based assays at 100 μM urate and 37 °C.  The last parameter used to 
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characterize these single mutant variants was the catalytic efficiency, which was 

determined by doing a full set of Michaelis-Menten kinetics experiments.  

4.2.5 Humanizing ancestral uricase 

Based upon the characterization of the individually introduced mutations 

in An19/22, additional humanized variants were synthesized (Table 4.2). The sites 

chosen where those that promoted the purification of tetrameric uricase versus 

larger aggregates, a specific enzyme activity close to that of An19/22, and 

where the catalytic activity was marginally diminished relative to the parent 

An19/22.  These An19/22-Human chimeras were then purified using standard 

methods and characterized by enzymatic assays.  

4.3 RESULTS AND DISCUSSION 

4.3.1 An19/22-Human chimeras: introducing solvent-accessible human residues 
into the An19/22 background  

The most active ancestral uricase, An19/22, had the highest stability and 

activity under the assayed conditions. The rationale behind selecting the stable 

and catalytically active An19/22 as the backbone to test subsets of surface 

accessible branch mutations was that the effects of these mutations would be 

easily interpreted. Therefore, we introduced several of the mutations from the 

more recent ancestral uricases to determine if they would be tolerated within 

the An19/22 background. To further explore the effects of these mutations, 

several variants were designed in which a few select mutations were introduced 

into the background of An19/22. Sites selected for mutation included those that 

were solvent accessible, and not at the oligomerization interfaces (dimer or 

tetramer). We primarily focused on surface residues because of their potential 
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role in an immune response, and how they might impact aggregation of the 

uricase protein. The first variant addresses a subset of mutations along the 

branch of An32 to the human protein (Figure 4.3). In variant A19/22-26 three of 

the 7 mutations that occur along the branch from An19/22 to An26 were 

introduced: M92V, M146L, and G202C. The second variant An19/22_31-32 

mutates two of the seven sites that occur along the branch of An31 to An32. A 

third variant An19/22_32-H with mutations E121G and P233T was also explored.  

In variant An19/22_19-26, three out of the six mutations that occur along 

the branch from the common ancestor of non-primate mammals (An19/22) to 

the common ancestor of primates (An26) were introduced: M92V, M146L, 

G202C. This resulted in a protein that was insoluble under experimental 

conditions and whose insoluble fraction had no detectable catalytic activity. 

However, by introducing these 3 mutations, we actually observed a reduction in 

activity by one order of magnitude. Perhaps the effect of all 7 mutations allows 

for some compensation of the deleterious effect observed with these chosen 

three. 

  



 93 

 

  
Figure 4.1 Dissecting branch changes: An19/22_19-26 Shown is the crystal 
structure of our An19/22_LysII variant. The homotetramer is shown with each 
identical chain shown in the cartoon representation in a different color. The 
seven mutations that occur along the branch from An32-H are shown as spheres 
on one uricase monomer (purple). The subset of mutations introduced in variant 
An19/22_19-26 is shown in orange. 

In variant An19/22_31-32, two out of the seven mutations that occur along 

the branch from the common ancestor of hominoids (An31) to the common 

ancestor of the great apes (An32/33), G83E and E208K, were introduced (Figure 

4.2). This resulted in a protein that had a diminished catalytic efficiency by two 

orders of magnitude from 4.07E+05 M-1s-1 for An19/22 to 1.05E_04 M-1s-1 when the 

two sites were introduced (Table 4.1). However, it was a functional protein with 

the combination of these sites introduced into An19/22; whereas, An32 itself was 

both insoluble and catalytically inactive.  
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Figure 4.2 Dissecting branch changes: An19/22_31-32 Shown is the crystal 
structure of our An19/22_LysII variant. The homotetramer is shown with each 
identical chain shown in the cartoon representation in a different color. The 
seven mutations that occur along the branch from An32-H are shown as spheres 
on one uricase monomer (purple). The subset of mutations introduced in variant 
An19/22_31-32 is shown in orange. 
 

In variant An19/22_32-H, two out of the six mutations that occur along the 

branch from the common ancestor of great apes (An32) to humans the E121G 

and P233T are introduced (Figure 4.3). This resulted in a protein that was insoluble 

under experimental conditions and suggested that these two sites in 

combination were deleterious (Table 4.1). 
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Figure 4.3 Dissecting branch changes: An19/22_32-H. At left is the solved crystal 
structure of An19_LysII (with each monomer shown as a different color. The seven 
mutations that occur along the branch from An32-H are shown as spheres along 
the purple uricase monomer. The subset of mutations introduced in variant 
An19/22_32-H is shown in orange. 

Table 4.1 Summary of An19/22-Human chimeras’ kinetics Given the high stability 
and catalytic activity of An19/22 several variants were constructed to introduce 
mutations from later branches in the phylogeny.   

 

It became apparent that by introducing only two mutations in the 

An19/22_3-H variant. By simply including two point mutations that occur along 

the branch from An32 to the human protein, the recovered variant was highly 

unstable. Thus revealing that An19/22 stability and activity to be quite sensitive to 

a single set of mutations (which are not in the active site).  
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4.3.2 Exhaustively testing the effects of individual branch mutations within the 
An19/22 background 

In the first An19/22 variants only the solvent accessible residues were 

considered. This focus was largely governed by the erroneous assumption that 

those surface residues play a major role in the immune response to Uox However, 

the human body’s mechanism for generating antibodies to non-self proteins 

often involves their phagocytosis and processing [114, 115]. Therefore, any 

residue within the 304 amino acid sequence of a recombinant uricase could 

serve as an epitope to which and immune response is mounted. Since An19/22 is 

the most robust ancestor characterized (in terms of both its activity and stability 

profile), it was chosen as the template into which each of the 21 mutations that 

occur along the phylogeny from An19/22 to the human sequence. The three 

properties studied were the ratio of tetramer to larger aggregates therapeutic 

uricases are more effective as highly purified tetramers [116], and large uricase 

aggregates can lead to rapid uricase clearance [117]. The next property 

reported is  
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Figure 4.4 Individual branch mutations in the stable An19/22 showed that single 
human residues could completely kill activity. To better understand the effects 
of individual mutations, which occur during the uricase protein’s evolution, each 
of the 21 point mutations (the number of differences between An19/22 and the 
human uricase pseudogene) were made. Each variant was characterized as 
follows: 1) The proportion of tetrameric uricase that was obtained from SEC 
purification (pink bar); 2) The specific enzyme activity of the purified preparation 
(blue bar); 3) The catalytic efficiency (kcat/KM) of the purified single mutant. All of 
the reported values are relative to the An19/22 protein (shown by the dashed 
line at 100 %). Two mutations, F222S and Y240C completely abolished activity 
and the ability to purify the An19/22 mutants. The single An19/22 mutant with the 
S232L could be purified, however, its relative activity was severely diminished. 
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Table 4.2 Effects of individual branch mutations in An19/22 background. Below 
are summarized the results of each single branch mutation relative to its 
unmodified An19/22 background. 
 
 

 
One of the likely reasons that the replacement of the two stop codons 

with arginines did not rescue uricase activity is that once hUox became a 

pseudogene, it was free from selective pressure and accumulated additional 

deleterious mutations. Three single mutants (F222S, S232L, and Y240C) and 

exhibited significant decreases in activity relative to An19/22  (Figure 4.4 and 

Table 4.2). 

4.3.3 Human residue that kills the activity of An19/22 

The mutation S232L is located within a loop and has a solvent accessible 

surface area (SASA) of 6 % calculated using the solvent accessible calculation 

program GET AREA [118]. The surrounding residues that may make contact are 
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S168, Y231, and P233. Through the introduction of a nonpolar residue, this polar 

environment may be responsible for the abolished activity. Furthermore, it 

resulted in the lowest relative enzyme efficiency of any of the active branch 

mutations. 

Figure 4.5 Deactivating mutation S232L is only present in the human pseudogene. 
At the left is the An19/22_LysII crystal structure showing the global context of this 
mutation at the dimer interface of two uricase monomer subunits. Site 232 is 
shown as spheres within one monomer (purple). This residue is located at the 
dimer interface of two uricases and its local environment includes two polar 
resides: S168 and Y231. The introduction of a threonine at this position is a non-
conservative mutation. 

The deleterious mutation Y240C did not yield any tetrameric enzyme 

during the SEC purification. This mutation is located at the dimer interface and 

has a SASA of 23 %.  
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Figure 4.6 Deleterious mutation Y240C arose in the last common ancestor of 
gorilla, chimpanzee, and human Shown on the left is the global context of this 
mutation at the dimer interface of two uricase monomer subunits (shown as 
purple spheres). 
  

The deleterious mutation F222S is located at the tetrameric interface and 

is buried with a SASA of 7 %, and is surrounded by hydrophobic residues. A 

tetrameric uricase was purified but was not active. It is possible that this mutation 

has destabilized the protein complex, and as a result, killed activity. 

 
Figure 4.7 Deleterious mutation F222S arose in the common ancestor of 
hominoids. The An19/22 lysine crystal structure is shown with residue 222 shown as 
spheres in the purple monomer. This mutation occurs at the tetramer interface, 
and this residue is surrounded by hydrophobic residues (F120, F189, and V162). 
The introduction of a polar serine may be disruptive to the assembly of the four 
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monomers to form the active tetramer. This may explain why this variant could 
not be extracted or purified.  
 

In contrast to these detrimental mutations, several sites only seemed to 

exert a mild to even slightly advantageous effect compared to An19/22. The first 

mutation that seemed to confer a boost in the desired properties of our “human-

like” uricase was G83E (a much longer residue and a charged residue) seems 

likely to impact packing at the tetramer interface (Figure 4.8). 

Figure 4.8. The G83E mutation is located at the packing interface of uricase 
tetramers. The crystal packing of solved variant An19/22-LysII is shown. Each 
tetrameric uricase is shown as a different color cartoon representation. 

4.3.4 Properties of “human-like” uricases 

By taking into consideration the effects of individual mutations in the 

background of An19/22, we developed several chimeric proteins.  From the 

exhaustive single mutant variants, we identified D24E, occurring in the branch 

from An32 to human as the only mutation that improved the performance of 

An19/22 (Table 4.3). We therefore elected to include the D24E mutation in all of 

the chimeric proteins. In our first chimera, An19/22Med, those sites that had a 
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neutral to slightly negative effect relative to An19/22 were selected: M92V, F120L, 

and V214I (from An26); D7N (from An27); D24E (from the human sequence). This 

resulted in a protein that retained 97 % of the SEA of An19/22 while incorporating 

five additional human residues into the backbone.  

Secondly, we introduced a set of sites that seemed to have a neutral to a 

positive effect upon the properties of An19/22 in a variant referred to as 

An19/22Plus. This chimeric protein had the following four mutations introduced 

into the An19/22 backbone: from An26 M146L; from An27 A91G; from An32 G83E; 

and from the human sequence D24E. This mutation increased the SEA to 120 % of 

An19/22. An26 contains seven additional human residues than are present in 

An19/22; at the expense of roughly half the enzyme activity.  

Lastly, we wondered whether incorporating our sole “advantageous” 

mutation D24E into An26 would improve the enzymatic properties of An26. 

Indeed this mutation resulted in an An26 mutant that retained 80 % of An19/22 

specific activity. 

 
Table 4.3. The stable An19/22 and An26 will accommodate select subsets of 
human residues while retaining its specific enzyme activity. The An19/22Plus 
variant actually had a higher SEA than its parent An19/22. 
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4.4 CONCLUSIONS 

By rigorously querying each mutation that occurred along the tree 

topology from An19/22 to hUox, the individually detrimental residues were 

identified. This information is valuable on multiple levels. First, it tells us which 

residues to avoid as we seek to further humanize An19/22. Secondly, it also tells 

us something about the evolution of the protein family – in particular, that there 

were individual mutations that led to a stepwise decrease in uricase activity from 

An19/22 to An26, to An27, and it’s deadening at An30. Of particular importance 

is the fact that these mutations that diminished uricase activity occurred before 

the two nonsense mutations silenced the hUox. While evaluating only single 

mutants does not account for allosteric effects or other interactions, it did shed 

some light upon several residues that were particularly deleterious.  

This research walked thorough the point mutations that have occurred 

during the evolution of the human uricase. By doing this, we identified chimeric 

ancestral human uricases that still maintain catalytic activity, and may serve as 

viable therapeutics.  
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CHAPTER 5: Modifying and testing uricases in vivo    

Will support the filing of a US patent application: 

Kratzer, J. T., Gaucher, E. A. Use of PEGylated ancestral uricases. US 
PATENT APPLICATION. In preparation. 
 

5.1 INTRODUCTION 

Polyethylene glycol (PEG) is a hydrophilic functional group (CH2CH2O)n 

with FDA approval as an additive for food and as a protective group for drugs 

destined for human consumption because it is largely regarded as being 

biologically inert [119]. PEGs are long-chain polymers of controlled length. This 

control is exerted during the synthesis process to enrich for PEG polymers of a 

desired average molecular weight and are then purified to varying degrees of 

homogeneity (depending on the size of the chain) [120]. PEGylation, or the 

attachment of a PEG moiety to a protein, is achieved by incorporating an 

activating group at one or both ends of the PEG molecule [121]. By utilizing 

different activating groups and modifying the reaction conditions, a protein 

chemist can exert control over the number of PEG molecules that attach to the 

monomeric subunit of a protein, also known as the degree of PEGylation (N) 

[122].  

By coating a protein surface with PEG, several therapeutically valuable 

characteristics may be conferred to the biologic such as reduced toxicity and 

immunogenicity, prolonged circulation time, resistance to proteolysis, increased 

chemical stability and improved solubility [123]. The benefits of enzyme 

PEGylation can come at the cost of reduced catalytic power. This reduction 
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may, for example, be attributed to limiting a substrate’s access to an enzyme’s 

active site. Therefore, by varying reaction conditions and utilizing activated PEG 

groups of diverse chemistries, a balance can be struck between improving a 

proteins drug-like character while retaining a sufficient therapeutic level of 

activity. Notwithstanding, there are scenarios where a substantial loss in 

enzymatic activity is perfectly acceptable, provided a therapeutically relevant 

increase in elimination half-life, a reduction in the clearance rate, and an 

increase in the absorption half-life[124].  

There are examples in the literature that describe the empirical nature of 

the PEGylation process [125]. It is highly protein-specific because the number 

and identity of which surface residues are modified can have a grossly different 

effect on protein activity. Several of the key parameters that direct the reaction 

are the activating group on the PEG molecule, the reaction buffer pH, and the 

molar excess (ME) of activated PEG to target protein [126]. The PEGylation 

reaction is a stochastic process whose heterogeneity is dictated by the length of 

each PEG, the number of PEGs, and the location of PEGs on each natively 

folded protein [127]. 

There are reports that the advantages conveyed by PEGylation are a 

function of the net mass of PEG that has been attached to the protein rather 

than the number of attached strands [128]. For the same benefit of improved 

solubility, the attachment of a single 30 kDa PEG can be replaced by attaching 

6 different 5 kDa at six different sites on the protein surface. However, in the later 

case, the activity is significantly diminished compared to the former [129].  
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Modification of uricases by the addition of PEG groups is an area of 

research that has garnered a fair amount of consideration in the scientific 

literature[130]. A Web of Science (Thomson Reuters) citation search for 

“PEGylation” and “urate oxidase” or “uricase” returned an average of 50 new 

publications every year for the last decade. As mentioned earlier, uricase from 

hog liver, has been a staple in uricase research and the effects of modification 

by PEG with a molecular weight of 5,000 g/mol shows that it suffers a decrease in 

specific activity ten-fold with a benefit of doubling the half-life from only 3 h to 6 

h [131]. A more beneficial outcome occurred with the modification of C. utilis 

uricase by PEG of a molecular weight of 20,000 g/mol. This modified microbial 

uricase’s SEA more than doubled from 3.3 IU/mg to 8.5 IU/mg (international unit 

(IU) is defined as the amount uricase required to oxidize 1 µmole of uric acid to 

allantoin in one minute under the specified assay conditions). Not only did these 

researchers achieve an increase in the SEA they also increased the enzymatic 

half-life from 3 hours to 3 days - 24-fold increase [52].    

Since we are working with a mammalian uricase that is fairly similar to the 

PBC uricase (having only 13 amino acid differences between the two) we sought 

to first screen the conditions PBC researchers report [132]. Namely, what they 

screened was the use of 5, 10, or 20 kilodalton (kDa) PEG groups attached to 

uricase. While they used an in-line scattering light detector to develop a 

universal calibration curve to determine the extent of PEGylation, we relied on a 

more qualitative measure by following the reaction based on a SEC trace and its 

motility in a native gel [128].  
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To improve the drug-like characteristics of PBC uricase (i.e., establishing 

the requisite stability and tolerance necessary for human administration), these 

researchers covalently modified the protein via the addition of an average of 10 

strands of molecular weight (MW) 10,000 Dalton (Da) PEG groups [129, 133-135]. 

This work ultimately resulted in the first FDA-approved uricase for the 

management of TFG due in part to improved half-life and bioavailability 

achieved by masking the protein through the covalent attachment of PEG) 

groups on surface-exposed lysines. The PEGylation reduces antigenicity and thus 

prolonged the circulating half-life of the protein. It is curious that these 

researchers elected to use a Pig/Baboon chimer since the pig uricase is 

substantially more active than the baboon uricase. Maybe the key is that this 

chimera is more ‘human-like’ compared to pig alone.  

 

5.2 MATERIALS AND METHODS 

 
5.2.1 PEGylation of “human-like” uricases 

Three activated PEGs were selected based on the literature of uricase 

PEGylation [131, 136-138], and purchased from Laysan Bio, Inc . Each of these 

activated PEGS were used in a series of experiments to modify An19/22 uricase, 

and the PBC uricase (Laysan Bio Inc.). All of these were methoxy-poly (ethylene-

glycol) chains with an average molecular weight of 5,000 g/mol; however, the 

analysis sheet provided with the activated PEGs (which was determined by gel 

filtration chromatography by the manufacturer) was used when calculating the 

mass of activated-PEG required for each reaction. These activated PEGs 
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covalently attach to the epsilon amine of solvent exposed lysine residues in a 

non-specific manner.  

The solved crystal structure of the An19/22 variant was used as input for 

the web implementation of the GET AREA solvent accessible area calculator. 

There are a total of 29 and 30 lysines in An19/22 and PBC, respectively. Three key 

parameters govern the setup of these PEGylation parameters: the buffer pH 

selected, the activated PEG group used, and the molar excess of activated-PEG 

to target protein.  

The PEGylation reactions were performed on freshly purified An19/22 and 

PBC uricase (using methods described in 3.2.3). The concentrations of both 

uricases were adjusted to 5 mg/mL by concentration using a 30 molecular 

weight cut-off (MWCO) centrifugal filter (Thermo Scientific). The following 

calculation was employed to determine the amount of activated PEG for each 

PEGylation reaction: 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑  𝑃𝐸𝐺  (𝑚𝑔) =
𝑀!

𝑆!"#
∗

𝑃
𝑀! ∗ 𝐾!" ∗𝑀!

 

Mn:  average molecular weight (g/mol) of activated PEG determined 
by gel filtration chromatography  

SNMR:  degree of substitution (%) of activated PEG determined by nuclear 
magnetic resonance (NMR) 

P:  the mass (mg) of target protein to react 
Mw: the molecular weight (g/mol) of each target protein subunit 
KSA:  the number of surface (i.e. solvent accessible lysine residues) in 

target protein 
Mr: the molar ratio of activated PEG to target protein 
 
The reactions were performed in 2 mL microcentrifuge tubes at a total 

volume of 1.5 mL in SEC buffer of 0.1 M Na2CO3 pH 11. Three activated PEG 

groups were utilized PEG-NPC, PEG-SG, and PEG-SVA. For An19/22 reactions with 

the three activated PEG groups were used at five molar excesses to solvent 
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accessible surface lysines An19/22: 0.5x, 1x, 2x, 3x, or 4x. For PBC uricase the three 

activated PEG reactions were performed at only three molar excesses relative to 

solvent accessible surface lysine residues of: 1x, 2x, or 3x (Supplemental Table S1).  

The reactions were gently mixed by micro-stir bars and incubated for either 1 

hour or overnight at 4 ºC. The next day, the reaction was quenched by the 

addition of a large molar excess of 250 mM glycine (pH 7.4), to scavenge any 

unreacted PEGs from the solution. The reaction was then passed through a size-

exclusion column to remove small side products and separate the various 

degrees of modified uricase.  

Both denaturing and native PAGE were employed to follow the 

PEGylation reactions. Standard 12 % Tris-Glycine gels with 1X SDS-PAGE running 

buffer were used. For native page, the CAPS/Ammonia buffer system was used 

as described in the Mini-Protean manual (BioRad).  

 

5.2.2 Pharmacokinetics experiments with unmodified and PEGylated uricases 

 Sprague Dawley (SD) rates (Charles River Laboratories) were obtained 

and acclimated after delivery for at least one week before testing. The rats were 

housed in pairs in a hermetically sealed cage, fed a standard laboratory chow, 

and given free access to water. Each set of pharmacokinetic experiments was 

completed during a single 6 – 8 hour period. For each uricase tested, 5 age and 

weight matched male rats served as biological replicates. The rats were 

anesthetized using isofluorane and minor surgery was performed to place a 

catheter made of silicone rubber tubing into the rat’s jugular vein, and a 
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baseline 100 µL blood samples were collected. A sterile 24-gauge tail vein 

catheter is placed into the tail of the rats in preparation for uricase delivery.  

The uricase preparations were kept on ice and then immediately diluted 

in room temperature PBS, pH 7.4 to a concentration of 0.2 mg/mL. Using a 

syringe and ensuring no air bubbles are present, the tail catheter was used to 

inject 1 mL of a 0.2-micron (PALL) filter sterilized uricase preparation. Post-

injection blood samples were collected via the jugular catheter at 5 minutes and 

every 60 minutes for a minimum of 5 hours. Between each sampling, the 

surgically placed jugular catheter was flushed with a heparin/saline solution to 

avoid clotting, and a syringe was used to remove a minimum of 200 µL of blood 

and set aside to be replaced immediately after sample collection. A fresh 

syringe was then used to remove 100 µL of fresh blood which was immediately 

transferred to lithium heparin coated MicrotainerTM blood collection tubes (BD) 

and mixed by rocking at room temperature and centrifuged for 5 min at 5,000 

rpm to separate plasma from whole blood. Samples were stored on ice until 

being assayed.). After final collection, all animals are euthanized by the carbon 

dioxide method.  

Uricase remaining in plasma was measured with a commercial 

fluorometric uricase assay kit (Cell Bio Labs). This kit utilized an optically pure flat-

bottom cuvette and the concentration of uricase was determined from a 

standard curve of a uricase of known activity provided with the kit. One milliunit 

(mU) is defined as the amount of uricase needed to oxidize 1 nanomole of 

urate/min under assay conditions. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 The effects of PEGylation on the uricases  

The extent of modification via the covalent attachment of PEG was 

attempted by removing aliquots after the first hour of the reaction, quenching 

the reaction, and comparing the migration of the band of various reacted 

samples versus an unreacted sample. First, denaturing SDS-PAGE gels were 

employed which is a standard approach used in the literature. The expectation 

was that a heterogeneous mixture containing PEG-uricase would run as a series 

of bands: the unmodified enzyme has a MW of 34 kDa and the PEGs used had a 

MW of approximately 5 kDa. There are approximately 15 solvent accessible lysine 

residues, therefore a denatured samples should run the gambit from 34 kDa 

(unmodified) to over 100 kDa. However, as will be shown in both the native and 

denaturing gels presented in this section PEG groups add a much larger surface 

area to proteins than a globular protein of the same molecular weight. Despite 

the qualitative nature of gel electrophoresis it is routinely used to assess the 

“degree” of protein modification by PEG group attachment [139, 140].   

A standard denaturing PAGE gel can grossly differentiate between 

protein samples that have been modified by PEG groups from unmodified 

proteins (Figure 5.1). Notably, lane 2 contains the quenched 4-hour reaction 

mixture of An19/22 with a two-fold molar excess of PEG-NPC. While the six bands 

between 250 kDa and 37 kDa in the molecular weight ladder in lane 1 were 

resolved, the modified uricase barely migrated within the gel. This same crude 

sample was separated from the un-reacted protein and excess PEG by SEC into 

1X PBS at pH 7.4, and is loaded in lane 4. Also on this gel are the crude reaction 
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mixtures of An19/22 with PEG-SG or PEG-SVA (lanes 8 and 9, respectively). Lastly, 

lane 10 contains the unreacted An19/22. So, at least qualitatively, a standard 12 

% SDS-PAGE gel can be used to differentiate un-PEGylated from PEGylated 

uricase based upon the retarded mobility of the modified protein through the 

gel. The fact that a highly modified uricase can be calculated to be around 100 

kDa in but runs at over twice that size on a SDS-PAGE gel is an example of the 

phenomenon of how PEG groups retard protein migration via molecular sieving 

due to their large surface area to mass ratio. As a result, when a protein is 

modified with a large number of relatively small 5 kDa PEG groups, it becomes 

increasingly difficult to separate proteins with only a few PEG modifications, or 

heterogeneous mixtures proteins with high degrees of modification [125].   

Figure 5.1 12 % SDS-PAGE gel can only differentiate between reacted and 
unreacted protein samples. The PEGylated products are too large to migrate into 
this SDS-PAGE gel All reactions are with 2x molar excess activated PEG to protein: 
Lane 1) 250 kDa protein standards Lane 2) An19/22 + PEG-NPC 4 hr reaction 
Lane 4) Size-exclusion An19/22 + PEG-NPC Lane 8) An19/22 + PEG-SG 4 hr 
reaction Lane 9) An19/22 + PEG-SVA 4 hr reaction Lane 10) Unmodified An19/22 
control.  

By running a standard concentration SDS-PAGE gel it became apparent 

that the large degree of modification coupled with the relatively low molecular 

weight PEG group only allowed a qualitative comparison of high to low degrees 
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of modification. A 6 % SDS-PAGE gel was also attempted but the unmodified 

uricase control ran off the gel while the PEGylated samples still barely migrated 

into the gel (not shown).   

Based the literature, there are several examples of using native PAGE to 

obtain a better separation between proteins of various degrees of PEGylation 

[141]. The theoretical isoelectric point (pI) of An19/22 and PBC uricase was 

computed using the ExPASy ProtPram tool to be around 8 [142]. A new buffer 

system had to be selected for this purpose. To this end, a 4 % continuous native 

PAGE was run using the CAPS-NH4OH running buffer.  This buffer system has a pH 

of around 11 and this was necessary to ensure the folded uricase would have a 

net negative charge, since there is no detergent added to ensure a net 

negative charge on the protein surface in native gel electrophoresis. Samples 

from several different PEG-uricase reactions that differ in both the molar excess 

of activated PEG to protein present in the reaction, as well as, the activated PEG 

employed were determined (Figure 5.2). Each pair of lanes from 2 – 7 are loaded 

with the An19/22 PEGylated uricase while the PBC PEGylated uricase is in the 

next lane to the right. Lanes 2 and 3 contain the PEG-NPC reactions. Lanes 4 and 

5 contain the PEG-SG reaction, and the final two lanes contain PEG-SVA 

reactions in lanes 6 and 7. The PEG-SG reactions ran as a much broader smear 

than the other uricase-PEG reactions and suggests that under the reaction 

conditions PEG-SG covalently modifies these uricases to a lesser extent than its 

activated PEG counterparts (PEG-NPC or PEG-SVA). The samples in lanes 9 and 

10 contain unmodified tetrameric uricase and also SEC separated octomeric 
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uricase thereby confirming that this native buffer system does in fact effectively 

separate native uricase. 

Figure 5.2 A 4 % Native PAGE gel run with CAPS-NH4OH running buffer shows a 
better separation between PEG-protein species.  Lane 1)Native protein standard 
of 158 kDa Lane 2) An19/22 + PEG-NPC 4 hour reaction Lane 3) PBC + PEG-NPC 4 
hour reaction PBC Lane 4) An19/22 + PEG-SG 4 hour reaction Lane 5) PBC + PEG-
SG 4 hour reaction Lane 6) An19/22 + PEG-SVA 4 hour reaction Lane 7) PBC + 
PEG-SVA 4 hour reaction Lane 8) Native protein standard of 158 kDa Lane 9) 
Unmodified An19/22 Lane 10) An19/22 unmodified octomer peak from SEC.  

Perhaps the experimental conditions of employing a molar excess of 

activated PEG dictated that all of the reactions went to completion within a 

short amount of time, and the separation techniques employed did not allow us 

to differentiate between a heterogeneous mixture of highly modified uricase 

tetramers. The following set of gels look at this scenario by evaluating at both a 

range of molar excess of activated PEGs as well as comparing a single hour 

reaction with one that was allowed to progress for much longer before being 

quenched (Figure 5.3).  

This first gel shows a series of An19/22 (lanes 2-5) and PBC (lanes 7-10) 

uricase reactions with NPC-PEG molar excess from left to right of 3x, 2x, 1x, and 

0.5x. Separating these two sets of reactions is the unmodified An19/22 uricase at 

5 mg/mL – the same concentration at which the PEGylation reactions were 
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performed. It is apparent that a 2-fold molar excess is sufficient to get the 

maximum covalent modification of either uricase since using the samples 

reacted with a 3-fold molar excess ran almost identically (comparing lanes 2 and 

lanes 3). As the molar excess was decreased gradually to 0.5-fold, a small 

amount of modified uricase was now visible on the gel. 

Figure 5.3 Extent of PEGylation can be modulated by altering the molar excesses 
of activated PEG relative to the protein’s surface lysines available for 
conjugation. This SDS-PAGE gel (4 % Stack and 6 % resolve) looks at varying the 
molar excess of activated PEG and the reaction is quenched after four hours. 
Lane 1) 250 kDa protein ladder Lane 2) 3 x molar excess (ME) PEG-NPC + 
An19/22 Lane 3) 2 x ME PEG-NPC + An19/22 Lane 4) 1 x ME PEG-NPC  + An19/22  
Lane 5) 0.5 x ME PEG-NPC Lane 6) Unmodified An19/22 Lane 7) 3 x ME PEG-NPC 
+ PBC Lane 8) 2 x ME PEG-NPC + PBC Lane 8) 2 x ME PEG-NPC +PBC Lane 9) 1 x 
ME PEG-NPC + PBC Lane 10) 0.5 x ME PEG-NPC + PBC.  

Figure 5.4 examines the effect of incubation length on the extent of 

PEGylation as visualized by denaturing gel electrophoresis. In this case each pair 

of lanes from left to right are for molar excesses of PEG-SVA reacted with 

An19/22 of 3x ME, 2x ME, 1x ME, and 0.5x ME. Within each set of lanes, the left 

lane is half that reaction removed after 1 hour and quenched, and the right lane 

of that pair is the remaining reaction quenched after a total of 19 hours of 

incubation. For all molar excesses of PEG-NPC, PEG-SG, and PEG-SVA reacted 
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conducted with either An19/22 uricase or PBC uricase the reaction was 

complete after only an hour of incubation.  

 
Figure 5.4 The PEGylation reactions reach completion after a single hour. This SDS-
PAGE gel (4 % Stack and 6 % resolve) looks at varying the effect of incubation 
time prior to reaction quenching on PEGylation extent of An19/22 uricase. Lane 
1) 250 kDa protein ladder Lane 2) 3 x molar excess (ME) PEG-NPC + An19/22 
incubated for 1 h Lane 3) 3 x molar excess (ME) PEG-NPC + An19/22 incubated 
for 19 h Lane 4) 2 x molar excess (ME) PEG-NPC + An19/22 incubated for 1 h Lane 
5) 2 x molar excess (ME) PEG-NPC + An19/22 incubated for 19 h Lane 6) 1 x molar 
excess (ME) PEG-NPC + An19/22 incubated for 1 h Lane 7) 1 x molar excess (ME) 
PEG-NPC + An19/22 incubated for 19 h Lane 8) 0.5 x molar excess (ME) PEG-NPC 
+ An19/22 incubated for 1 h Lane 9) 0.5 x molar excess (ME) PEG-NPC + An19/22 
incubated for 19 h Lane 10) Unmodified An19/22   
  

The next set of experiments were performed to get a sense for the effects 

that the three activated PEG groups have on the solubility and activity profile of 

An19/22 or PBC. Each uricase was exchanged into a physiological buffer of 1x 

PBS, pH 7.4 for 1 hour, and after dialysis was complete the samples were 

collected and the protein concentration was determined by a Bradford assay. 

Finally, the initial velocity of the enzymatic reaction was measured to determine 

whether or not PEGylation had improved the stability and activity of uricases 

incubated at pH 7.4 (Figure 5.5). For both An19/22 and PBC, the catalytic activity 
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did improve upon PEGylation by either NPC-PEG or SVA-PEG relative to the 

unmodified uricase. 

 

 
Figure 5.5 PEGylation improves uricase activity at sub-optimal pH. This quick 
assay reveals the enhancement that PEGylation has upon the pH stability. All  
samples have been dialyzed against 1X PBS (pH 7.4) and were assayed at 0.3 
mg/mL. Shown in the chart are the unmodified uricases (Unmod) in blue, the 
uricases modified with the nitrophenylcarbonate (NPC) PEGs in red, uricases 
modified with succimidylgluterate (SG) PEGs in green, and uricases modified with 
succimidylvalerate (SV) PEGs in purple. 

To ultimately decide which PEGylation scheme would be pursued for the 

first animal studies, we decided to compare the specific activity of each 1 hour 

PEGylation reaction that had been quenched by an excess of a neutral pH 

glycine stock solution. Both An19/22 and PBC were reacted with molar excesses 

of activated PEG of 0.5x, 1x, and 2x. Since a greater yield was obtained from the 

preparation of An19/22 additional PEGylation reactions using molar excesses of 

0.25x and 4x were also explored. The crude reaction mixtures were first assayed 

to determine their specific activities via enzymatic assays at 100 µM urate 

performed in triplicate (Figure 5.6). This initial set of assays exhibited the trend 

that, at all molar excesses, explored reactions with PEG-NPC retained the highest 

extent of specific activity relative to unmodified uricase. This suggested that a 1x 
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ME of PEG-NPC was optimal for An19/22 whereas a 3x ME of NPC-PEG 

maintained the highest residual activity when reacted with PBC.  

Figure 5.6. Crude PEGylation reaction mix in 0.1 M carbonate buffer pH 11  
Assayed at 100 μM urate; 1X PBS pH 7.4 in triplicate. The retention of activity of 
both An19/22 and PBC uricase was greatest when the NPC-PEG was employed 
compared to SG-PEG or SVA-PEG. Note: due to unequal yields in starting protein 
material (reactions for 0.5x and 3x molar excesses of activated PEG were only 
performed with An19/22). 

The next is that the separation of the PEGylated uricases from unreacted 

protein and PEG groups, minimally modified proteins, or even large protein/PEG 

aggregates - that can trigger an immune response themselves [116, 143]. This is 

achieved by taking the crude reaction mixtures whose assays are shown above 
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and performing SEC chromatography under physiological conditions of 1X PBS, 

pH 7.4 (Figure 5.7).   

 

Figure 5.7 Various PEGylation strategies effect on the SEA An19/22 uricase at 
physiological pH Each quenched PEGylation was purified into pH 7.4 1X PBS. 
Based upon the SEA activity assays of the crude reaction mixtures several of the 
reaction mixtures were not purified into 1X PBS pH 7.4 and do not appear in the 
above graph (e.g. An19/22-SG at 3x ME). Note: due to unequal yields in starting 
protein material (reactions for 0.5x and 3x molar excesses of activated PEG were 
only performed with An19/22). 

 
5.3.2 Pharmacokinetic data of unmodified and PEGylated uricases 

The goal of this first in vivo testing of uricases is to obtain simple 

pharmacokinetic data regarding the safety and stability of the various uricases. 

The animal model selected for these experiments was the rat since it is 

commonly used for such early studies. These animals were each injected with 

equal amounts of An19/22 or PBC uricase and the stability of these enzymes was 
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determined by assaying the uricase activity present in blood samples taken over 

the course of 5 hours (Figure 5.8).  

 
Figure 5.8. In healthy rats unmodified An19/22 displayed enhanced 
pharmacokinetics over the PBC uricase. 10 male SD rats (5 rats for each uricase) 
were each injected with 1 mL (0.2 mg/mL) of recombinant uricase preparations 
(An19/22, or PBC the basis for Krystexxa©). One milliunit (mU) is the amount of 
uricase needed to oxidize 1 nanomole of urate/min under assay conditions. The 
An19/22 uricase had a statistically improved half-life compared to PBC uricase. A 
student T-test was performed with a p-value of 0.02.  
 

The An19/22 uricase shows a higher activity than PBC uricase in plasma, of 

healthy rats, at all samples taken post injection. A student T-test was performed 

with a p-value of 0.02. The following assumptions were employed in the 

calculation of the plasma uricase activity estimation: The average weight of the 

rats used was 284 g in the An19/22 set of replicates and 272 g in the PBC 

replicates. Using the reported value for the Norwegian rat of 3.38 mL plasma/100 
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g gives a plasma volume of 9.6 and 9.2 mL for An19/22 and PBC, respectively.  

The specific enzyme activities were determined before dosing to be 1.4 for 

An19/22 and 0.9 for PBC. A total of 0.230 mg of each uricase was administered 

which comes out to a hypothetical initial concentration of 34 mU/mL for 

An19/22, and 24 mU/mL for PBC given the above assumptions. 

Based upon our in vitro work presented earlier (Figure 5.7) An19/22 

reacted with a 1x ME of PEG-NPC retained the greatest percentage of the 

unmodified enzyme’s specific activity. Therefore, we took both An19/22 and PBC 

modified with 1xME PEG NPC and injected it into rats to ascertain the effects 

PEGylation had upon these uricases’ in vivo stabilities (Figure 5.9). Unfortunately, 

the uricase standards that were run during these assays had become degraded 

so was not possible to report these assays in terms of uricase activity. However, 

by comparing the assay’s raw output, relative fluorescent units (RFUs) plasma 

samples from rats injected with An19/22 are reporting a higher signal than those 

collected from animals injected with PBC uricase. Furthermore, the residual 

uricase activity in An19/22 injected rats seems to be decreasing at a slower rate 

than PBC uricase injected rats.  
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Figure 5.9. PEGylating an ancestral uricase improves its circulation time in 
healthy rats Biological duplicates were each dosed with PEG-NPC modified 
An19/22 or PBC. The raw fluorescent signal (RFU) is reported because the uricase 
standards did not generate a well-fit standard curve. A student T-Test (2-tailed, 
heteroscedastic = two-samples of unequal variance) was performed and the 
error bars are the standard deviations among samples (p = 0.24*). 
 

These experiments need to be repeated with a larger sample set and as 

the PEGylation scheme/purification is better optimized, there will be a need to 

follow the reactions for a greater duration of time. This obviously will require that 

the animals not be anesthetized for the entire period – since a previous run for a 

longer time period of 10 hours led to irregularities with the laboratory animals and 

difficulty in interpreting the results.  As cited in the literature, PEGylation has been 

reported to dramatically increase the half-life of PBC uricase [144] . Therefore, it 
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will be necessary to allow the animals to recover so that a longer duration of 

sampling may be conducted.  

 
5.4 CONCLUSIONS 

These experiments demonstrate that ancestral uricase An19/22 appears 

to be more stable in rat regardless of whether it is PEGylated or not. The non-

PEGylated An19/22 is statistically more stable after injection into rats than the 

non-PEGylated PBC protein. Although the PEGylated uricase tests suggest that 

An19/22 retains its longer half-life in rats, these experiments will require follow-up 

tests in order to determine the robustness of the results. The homogeneity of the 

PEGylation reactions that were performed by covalent modification of both 

An19/22 and PBC uricase were not determined. All that could really be said is 

that, even after 1 hour the proteins were fully modified based on PAGE gel 

electrophoresis. While the FDA does not require that all uricases be covalently 

modified with PEG uniformly they do require reproducibility in the batch-to-batch 

range of this modification, usually expressed as the average number of 

covalently attached PEG moieties per protein subunit [145]. Therefore, it will be 

necessary for further refinement to explore other more analytical methods such 

as tandem mass spec to characterize these reactions.  

Furthermore, the small scale (in terms of volume) at which these reactions 

were performed will likely not translate well to larger scale preparations. 

Therefore, other separation schemes such as diafilitration/ultrafiltration should be 

explored since SEC is both time-consuming and there is a risk that PEG will foul 

the column.  
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In these experiments, we looked at three attachment chemistries; NPC, 

SG, and SVA, all at a constant molecular weight. The next step is to look at using 

additional molecular weights. While historically PEG has been deemed 

“biologically inert”, there are reports that antibodies against the PEG moiety itself 

have resulted in rapid clearance of PEG-biotherapeutics [146]. Furthermore, a 

recent publication by the researchers that developed the PEGylation 

technology employed in Krystexxa® report that the antibodies resulting in the 

accelerated clearance of mPEG protein conjugates recognize the methoxy 

group of the PEG moiety, and they suggest that using a hydroxy-PEG (HO-PEG) 

conjugate may prevent may prevent this unwanted consequence [147] [148]. 

Excitingly, this initial work suggests that An19/22 is more active in rat blood than 

PBC over the 5 hours sampled. 
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CHAPTER 6: FUTURE DIRECTIONS AND CONCLUDING REMARKS 

6.1 FUTURE DIRECTIONS 

6.1.1 Going after the expressed human “pseudogene” 

Based upon our HEK-293T experiments, we believe that human cells may 

naturally express a uricase gene product. However, the translation process is 

encumbered by two premature stop codons lying in the way of full-length 

uricase. Therefore, we would require an antibody in order to detect the small 

amount of human uricase that might be expressed in human cells naturally. In 

our early work with HEK-293T cells, we tried using a polyclonal Ab (pAb) from 

rabbits raised against rat uricase. This polyclonal antibody gave a very 

nonspecific signal to a large number of proteins on the membrane. The noise of 

this signal abrogated the sensitivity required to detect if small amounts of uricase 

are present and in are earlier studies we turned to the much more selective Anti-

FLAG and Anti-His antibodies. A natural extension therefore would be to raise our 

own anti-hUox antibody so that we can detect, or pull-down, human uricase. To 

this end, we have already shown that, under denaturing conditions, cation 

exchange chromatography can be employed to isolate full-length human 

uricase recombinantly expressed in E. coli. 

 
6.1.2 Optimization of PEGylation strategy  

We have only scratched the surface using conventional non-specific 

chemistries with three linear active PEGs of molecular weight 5,000 g/mol. 

Chemistry that is more specific can be explored in the future. Also, additional 
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sized PEG moieties also need also to be explored in hopes to better evade a 

human immune response.  

Furthermore, there are reports about antibodies against the PEG moiety 

itself. These antibodies compromise the active protein component by essentially 

promoting recognition by the body and enhancing clearance from the body 

(the exact opposite of their designed intent). Another area that would have 

been beneficial is to develop an in-house expertise for the ability to determine 

the average molecular weight, and by extension, the degree of PEG-

modification (N) of the different uricases. 

For these small-scale preparations, we relied heavily on preparative size-

exclusion. It may be worthwhile to perform analytical grade size-exclusion in 

conjunction with an in-line light scattering detector. Methods are available to 

generate two calibration curves in the same experimental system (i.e., same 

sizing column and buffer conditions) whereby these two calibration curves can 

then be combined to generate a universal calibration curve[128]. Once such a 

calibration curve is generated, the sample of interest can be run and the 

amount of PEG can be more quantitatively determined. Furthermore, we have 

only performed the most preliminary studies in terms of the number of biological 

replicates, as well as the duration of plasma sampling. Since PEGylation has 

been shown to dramatically increase the half-life of other uricases, it will be 

important to alter our PK studies to accommodate a longer monitoring/sampling 

period.  
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6.1.3 Testing therapeutic effect 

We have already begun using rats as a healthy model to study the in vivo 

stability of our uricase preparations, rodents are commonly used in the field for 

such testing [131, 149-151]. The only true disease gout-like model is a strain of 

mice having a double uricase knockout [110]. Mice usually have an active 

uricase so the uricase knockout mouse’s diet must be supplemented with 

allopurinol, otherwise it will not live to adulthood (The Jackson Laboratory, Bar 

Harbor, ME). The FDA approval process for new drugs, including a new uricase 

protein to treat gout and manage hyperuricemia, requires first in human testing 

in the form of a Phase I clinical trial. For gout, it is possible to conduct clinical 

studies to get some preliminary efficacy data from first in human studies in 

addition to safety data. 

 

6.1.4 Determining the safety of uricases  

While we have tested our most ancient uricase An19/22 in healthy rats, it is 

a poor proxy for the human – especially considering that we are interested in 

avoiding a uniquely human immune response. Therefore, it will be invaluable to 

determine if approaching the human uricase protein sequence has imparted 

any reduction in the immunogenicity over An19/22 versus the FDA approved PBC 

uricase. There are commercially available cell-based Dendritic/T-cell activation 

assays from a representative donor population, epitope mapping and T-cell 

activation assays (ProImmune). These assays would allow for the direct 

comparison between the humanized ancestors and the PBC uricase of the black 

box prescribed Krystexxa®.  
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6.1.5 Explore the co-administration of uricase’s downstream enzymes  

Those organisms with functional uricases also have the downstream 

enzymes, HIU hydrolase and OHCU decarboxylase to catalyze the stereospecific 

conversion of urate to S-allantoin. While HIU decomposes non-enzymatically into 

racemic allantoin, there is evidence that the accumulation of HIU may be 

potentially harmful [152]. Therefore, it may be worthwhile to explore the possibility 

of concomitantly administering these hydrolases and decarboxylases to rapidly 

generate S-allantoin, and avoiding the accumulation of HIU. 

  

6.2 CONCLUDING REMARKS 

Our first major endeavor was to explore the transcriptional and 

translational features of a human uricase pseudogene. To this end, we queried a 

fetal human cDNA library and obtained a product that corresponds to human 

uricase minus exon 3. The translational part of this study was addressed by 

transiently transfecting Human Embryonic Kidney cells with constructs containing 

the two premature stop codons. Using western blot, we confirmed that, despite 

the two premature stop codons, the human uricase pseudogene can be 

translated as a full-length product.  

Another key aim of this research was to develop a “human-like” uricase to 

exploit the possibility that a functional uricase with a high sequence identity to 

the human pseudogene would be recognized as self and would not elicit an 

immune response. We initially attempted to recombinantly express in E. coli the 

human uricase where the two stop codons had been mutated to the arginines 

found in functional orthologs. However, this protein could not be solubilized and 



 133 

there was no detectable uricase activity within the insoluble fraction. Since we 

could not directly reactivate the human uricase, we applied Ancestral 

Sequence Reconstruction to identify the last functional ancestral uricase whose 

descendent path leads to the human lineage. We then were able to understand 

the effects individual mutations had on a functional ancestral mammalian 

uricase (An19/22) as we traversed the evolutionary path to the human 

sequence. 

The final thrust of this research focused on the identification of functional 

human-like ancestors and a knowledge of which mutations have a neutral or 

slightly positive effect on preventing protein aggregation, promoting protein 

stability, or enhancing protein activity in order to generate additional Ancestral-

Human chimeric proteins. In addition, we tested our most active ancestral 

uricase An19/22, which has a sequence identity of 94 % compared to the human 

uricase, in healthy rats against PBC which is the active protein component of 

Krystexxa® - the FDA approved uricase for the treatment failure gout. These 

pharmacokinetics studies showed that unmodified An19/22 is more stable at 

physiological pH than PBC and displays a statistically significant increase in its 

half-life. In addition, we have begun to identify functional PEG groups that 

should be explored to further improve the solubility, stability and activity of our 

engineered uricases.  

In total, this research has encompassed an evolutionary synthetic biology 

approach by bringing the evolutionary grounded backwards-to-today 

approach of Ancestral Sequence Reconstruction to bear on the medical 
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problems caused by elevated uric acid levels, especially gout to develop a 

novel uricase that is both safer and more effective for human patients.  
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Sequence S1 Primers used to query cDNA library for hUox  

Forward primer exon 1 - UOX_Hs_F1 
Sequence: 5’ ATG GCC CAC TAC CAT AAC AAC 3’ 
 
Forward primer exon 2 - UOX_Hs_F2 
Sequence: 5’ GAT GAG GTG GAG TTT GTC CGA ACT G 3’ 
 
Forward primer exon 3 - UOX_Hs_F3 
Sequence: 5’GCA TAG AAG CCT TTG GTG TG 3’ 
 
Forward primer exon 4 - UOX_Hs_F4 
Sequence: 5’ GGA GTT AAG CAT GTC CAT GC 3’ 
 
Forward primer exon 5 - UOX_Hs_F5 
Sequence: 5’ GGA CCC CAA GTC ATT CAT TCT GG 3’ 
 
Forward primer exon 6 - UOX_Hs_F6 
Sequence: 5’ GGA CAC CAT TCG GGA CCT TG 3’ 
 
Forward primer exon 7 - UOX_Hs_F7 
Sequence 5’ GAT ATG GAA ATC AGC CTG CC 3’ 
 
Forward primer exon 8 - UOX_Hs_F8 
Sequence: 5’ GTC TTG CTG CCA TTA GAC AAT CC 3’ 
 
Reverse primer inside of exon 8  - UOX_Hs_R1 
Sequence: 5’ GAG GAA GTT GTC TTC AAG ACT GTG A 3’ 
 
Reverse complement (primer): 5’ TCA CAG TCT TGA AGA CAA CTT CCT C 3’ 
 
Reverse primer outside of exon 8 - UOX_Hs_R2 
Sequence: 5’ GCT GAG ATT GGA CTC CTA TTG 3’ 
Note: these primers and cDNA can be found in “XTINA box #3, cDNA uricase, in 
lanes A1-A9, B1-B9, C1-C9, D1-D9, and E9 and F9. 
  



 143 

Sequence S2 Protein sequences of functional uricases used for ASR. Seventeen 
modern day uricase encoding sequences were retrieved from databases. 
Shown below are the encoded amino acid sequences used to generate the 
multiples sequence alignment for the computational component of the 
Ancestral Sequence Reconstruction (ASR) Approach). 

>Papio_hamadryas (Baboon) 
MADYHNNYKKNDELEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFGVNICEYFLSSFNHVIRAQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWGTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>Macaca_mulatta (Rhesus Monkey) 
MADYHNNYKKNDELEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFGVNICEYFLSSFNHVIRAQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGTKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWGTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>Macaca_fascicularis (Rhesus Monkey) 
MADYHNNYKKNDELEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFGVNICEYFLSSFNHVIRAQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWGTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>Aotus_trivirgatus (Owl Monkey) 
MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHALAKFKGIKSIEAFAVNICQHFLSSFNHVIRTQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFAAQVYC
KWRYHQCRDVDFEATWDTIRDVVLEKFAGPYDKGEYSPSVQKTLYDIQVVSLSQVPEIDDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>Canis_lupus_familiaris (Dog) 
MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYVYGDNSDI
IPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHA
FIHNPTGTHFCEVEQMRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATKVYC
KWRYHQGRDVDFEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVHSLSRVPEMEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGRITGTAKRKLASKL 
 
>Bos_taurus (Cow) 
MAHYHNDYQKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLNSRREYLHGDNSDI
IPTDTIKNTVQVLAKFKGIKSIETFAMNICEHFLSSFNHVIRVQVYVEEVPWKRFEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFLKDQFTTLPEVKDRCFATQVYC
KWRYHQGRDVDFEATWEAVRGIVLKKFAGPYDKGEYSPSVQKTLYDIQVLSLSQLPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGRITGTVKRKLTSRL 
 
>Sus_scrofa (Pig) 
MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDV
IPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLSSFKHVIRAQVYVEEVPWKRFEKNGVKHVHA
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FIYTPTGTHFCEVEQIRNGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLTLGQVPEIEDMEISL
PNIHYLNIDMSKMGLINKEEVLLPLDNPYGRITGTVKRKLTSRL 
 
>Mus_musculus (Mouse) 
MAHYHDNYGKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLRSKKDYLHGDNSDI
IPTDTIKNTVHVLAKLRGIRNIETFAMNICEHFLSSFNHVTRAHVYVEEVPWKRFEKNGIKHVHA
FIHTPTGTHFCEVEQMRNGPPVIHSGIKDLKVLKTTQSGFEGFLKDQFTTLPEVKDRCFATQVYC
KWRYQRRDVDFEAIWGAVRDIVLQKFAGPYDKGEYSPSVQKTLYDIQVLSLSQLPEIEDMEISLP
NIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLPSRL 
 
>Rattus_norvegicus (Rat) 
MAHYHDDYGKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLRSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIETFAMNICEHFLSSFSHVTRAHVYVEEVPWKRFEKNGVKHVHA
FIHTPTGTHFCDVEQVRNGPPIIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYQNRDVDFEATWGAVRDIVLKKFAGPYDRGEYSPSVQKTLYDIQVLTLSQLPEIEDMEISLP
NIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVRRKLPSRL 
 
>Equus_caballus (Horse) 
LVSKWLLCNQNDEVEFVRTGYGKDMIKLLHIQRDGKYHSIKEVAASVQLTLSSKKEYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFAMSICEHFLSSFNHVIRAQVYMEEVSWKRFEKNGVKHVHA
FIHTPTGTHFCEVEQMKNGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFDATWDTVRDIVLEKFAGPYDKGKYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKDEVLLPLDHPYGRITGTVKRKLTSRL 
 
>Oryctolagus_cuniculus (Rabbit) 
MATTKKNEDVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKQDYVYGDNSDIIPTD
TIKNTVHVLAKFKGIKSIEVFAMNICEHFLSSFNHVVRVHVYVEEVPWKRLEKNGVQHVHAFIHT
PTGTHFCEVEQRRSGLPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRY
QHSQDVDFEATWDIVRDTVLEKFAGPYDKGEYSPSVQKTLYDIQVLTLSRVPQIEDMEISLPNIH
YFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>Xenopus_tropicalis (Frog) 
MAQYHGRLSKDSDVEFAHTAYGKNAVKVLQIKRNGKQHFIKEIEVSVQLTLKSKKDYLEGDNSDI
IPTDTIKNTIYALTKLKGIQTIEEFSVEIARHFLTSFNHVTEVKVFINEAPWRRMEKNGMSHVHA
FIYSPEGVHFCELQQKRGGQPAIFSGIKELRILKTTQSGFEGFIKDRFTTLPEVKDRCFSTIVNC
KWKYGTSKAVDYDAVWKTILETILDTFAGPYDKGEYSPSVQKTLYDIQVLSLRKVPEIEEIEIIL
PNKHYFTIDMSKMGLTNQDEVLMPTDIPYGNIAGTLRRNPSSKL 
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Sequence S3 Inferred ancestral uricase protein sequences.  

>An18 
MAHYHGHLTKNAEVEFVRTGYGKDVVKVLHIQRDGKHHIIKEVATSVQLTLNSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKTIEAFAMNIGKHFLSSFNHVIRAQVYVEEVPWKRFEKNGVNHVHA
FIHTPTGTHFCEVEQKRGGPPVIHSGIKDLKVLKTTQSGFEGFIKDRFTTLPEVKDRCFATQVYC
KWRYDQSRAVDFEAIWDTVLDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
 
>An19/22 
MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFAMNICEHFLSSFNHVIRAQVYVEEVPWKRFEKNGVKHVHA
FIHTPTGTHFCEVEQMRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQGRDVDFEATWDTVRDIVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>An26 
MAHYHNDYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFAVNICEHFLSSFNHVIRAQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWDTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>An27 
MAHYHNNYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFGVNICEHFLSSFNHVIRAQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWDTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>An30 
MAHYHNNYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFGVNICEHFLSSFNHVIRAQVYVEEIPWKRLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWDTIRDLVLEKSAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>An31 
MAHYHNNYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKGIKSIEAFGVNICEHFLSSFNHVIRAQVYVEEIPWKHLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFEATWDTIRDLVLEKSAGPYDKGEYSPSVQKTLYDIQVLSLSRVPEIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
 
>An32 
MAHYHNNYKKNDEVEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDI
IPTDTIKNTVHVLAKFKEIKSIEAFGVNICEHFLSSFNHVIRAQVYVEEIPWKHLEKNGVKHVHA
FIHTPTGTHFCEVEQLRSGPQVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQCRDVDFKATWDTIRDLVMEKSAGPYDKDEYSPSVQKTLCDIQVLSLSRVPAIEDMEISL
PNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKLSSRL 
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>Pig 
MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLTLSSKKDYLHGDNSDV
IPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLSSFKHVIRAQVYVEEVPWKRFEKNGVKHVHA
FIYTPTGTHFCEVEQIRNGPPVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYC
KWRYHQGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLTLGQVPEIEDMEISL
PNIHYLNIDMSKMGLINKEEVLLPLDNPYGRITGTVKRKLTSRL 
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