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SUMMARY

Modern communication systems are increasingly demanding better power vs. per-

formance from the radio front-ends in order to meet the increasing throughput and

battery-life demands of a growing consumer base. Today’s RF transceivers must be

designed to operate at high data rates over adverse channel conditions with ultra-low

power consumption. To save energy per transmitted bit, modern wireless systems

are designed to adapt to wireless channel quality by adjusting data transmission

rates, adjusting the output power of the RF power amplifier in wireless transmit-

ter and by automatic gain compensation in RF receiver subsystems. However, the

wireless transceiver still consumes more power than necessary for a specified end-

to-end bit-error-rate (BER) when the wireless channel is not the worst case channel

corresponding to the date rate at which the transceiver is operating.

Previous work has focused on single-input single-output (SISO) communication

systems for low-power adaptation. However a key technology that enables current sys-

tems to meet the stringent demands of the latest communication standards is multiple

input multiple output (MIMO) communication. While MIMO systems provide higher

bandwidth and increased range of operation, due to increased number of transceiver

chains they must also be designed for low energy consumption across diverse operat-

ing conditions. However in current low-power adaptation front-end the nature of the

application which is using the front-end to transmit/receive has no bearing on the

adaptation strategy. Different applications have different throughput priorities when

it comes to data reception/transmission. In this thesis, a channel-adaptive MIMO RF
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front-end that can operate in multiple low-power modes depending upon the through-

put and energy-per-bit needs of different end-user applications is demonstrated.

A key issue in devising such an adaptation strategy is that the control logic thus

devised must depend upon the performance of the device under real process per-

turbations. This becomes especially important at lower technology nodes at which

the front-end sub-blocks exhibit significant variation in key specifications (like gain,

linearity, noise-figure etc.). It is almost impossible to simulate all possible process

corners to provide an optimal control law for each process perturbed device. In this

thesis, an elegant solution to this problem is provided by allowing the device to tailor

the nominal control law during the intitial operational period of the device depending

on the process corner it is at.

Previous research has proposed lookup table (LUT) based controller which suffers

from the disadvantage of requiring extensive design phase optimization compounded

even more by the presence of process variability. Moreover, the table must be m-

dimensional, m being the dimensionality of channels. A better approach to the prob-

lem is to derive analytical expressions of the optimum performance parameters of

the front-end in terms of the channel conditions. This would eliminate any off-line

design phase optimization process. This work demonstrates that this becomes espe-

cially feasible in presence of front-end blocks whose key performance parameters are

independently tunable. However, in general, deducing analytical expressions of the

QoS metric (EVM or BER) in terms of the channel parameters and the front-end

configuration may become computationally intractable. One way to alleviate this

difficulty is to use a control logic which can mimic the decision making capabilities of

a human being through a set of general operational rules. This research proposes a

solution to this problem by designing fuzzy-logic based control systems which track

the changes in channel conditions without requiring extensive characterization of the

system.
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CHAPTER 1

INTRODUCTION

The objective of the proposed research is the design of process tolerant radio frequency

(RF) wireless communication systems which can adapt to changes in its environment

to operate at the minimum possible power consumption levels while maintaining the

minimum quality of service (QoS) desired for effective communication even in the

presence of significant process variation.

In the past few years the amount of data consumed has increased exponentially

due to connected business needs, social media, high fidelity video and audio transmis-

sion, cloud computing and storage. The rapid growth in the demand for connectivity

has driven the development of communication infrastructure and equipments to make

mobile connectivity ubiquitous, easy and cost-effective. Thus mobile communication

devices having become an integral part of daily life. Two key desirable aspects in any

such design are a small ergonomically attractive physical profile and the ability to

transmit, receive and process data for a significantly long time between two re-charges

of the battery. However, the requirement of having small physical dimensions imposes

a restriction on the charge capacity of the battery. While the charge capacities of bat-

teries have improved over the years, they have not been able to keep pace with the

energy requirements of the modern day communication device. Thus a key emphasis

has been there on the design of ultra-low power systems for wireless communication.

Moreover with shrinking transistor geometries the performance of the designed cir-

cuits and systems vary widely from chip-to-chip due to uncertainties in the process

parameters which are difficult to control. Thus the designed integrated circuits should

be able to operate at low-power consumption levels with desired performance in the
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presence of significant process variation.

Traditionally wireless systems have been designed to achieve minimum quality-of-

service (QoS) for worst case channel conditions. When the channel is not at its worst

case condition then the power consumption is more than required for achieving the

minimum QoS. Because the worst case channel condition is not statistically preva-

lent the average power consumption of the system is significantly higher than the

minimum possible average power consumption across channel conditions. Adaptive

systems seek to solve this problem by dynamically modulating the performance of the

system(through built-in control knobs or “tuning knobs”) in real-time using a look-up

table (LUT) based feedback loop to operate at the minimum QoS and the minimum

power consumption possible across all channel conditions. Such adaptation can be

performed in multiple different modes depending upon the throughput and energy-

per-bit requirements of the device. Moreover, the system can learn the optimum

configurations on-the-fly for the entire gamut of channel conditions it encounters.

Since this is done on a per-chip basis the problem of process-resilient adaptation

is resolved. All the above methods make use of look-up table (LUT) to store the

optimum configurations. This research shows that, alternatively, with a proper un-

derstanding of the effect of different sub-circuit parameters across channel conditions

on the QoS metric, a fuzzy logic or analytical expression based feedback systems can

be formulated to achieve channel-adaptive low-power operation.

1.1 Origin and History of the problem

Since the invention and first successful demonstration of the integrated circuit by

Jack Kilby in 1958, a recurring goal in the development of the semiconductor indus-

try has been to shrink the physical dimensions of the transistors and passive devices.

Shrinking transistors sizes have led the industry through small-scale integration (SSI),

2



medium-scale integration (MSI), large-scale integration(LSI), very large scale integra-

tion (VLSI) into the age of ultra-large scale integration (ULSI). The industry leaders

are currently commercially producing chips at 28 nm, 20 nm & 14 nm with 10 nm

chips in the pipeline. Such advances in circuit design and fabrication have been fu-

elled by rising demands of electronic consumer goods like laptops, phones and tablets.

Each of these portable devices have radio-frequency (RF) front-ends for wireless com-

munication and are powered by a battery. Analog and digital circuits designed at

such small process nodes have their benefits in terms of more functionality & higher

frequency of operation. However the power consumption per unit area has gone up

significantly for the lower process nodes. Hence a key area of research has been in

that of low-power RF front-end design. A major downside of having smaller pro-

cess geometries is the effect of process variation becomes more apparent at the lower

technology nodes. Thus circuits deviate from their expected or nominal performance

by a larger degree at lower technology nodes due to the relatively larger uncertain-

ties in the manufacturing process. Thus modern circuits must be designed to be

process-variation tolerant.

1.2 Traditional static RF front-end design

Traditional RF front-ends are designed in a top-down fashion. In this design paradigm,

the performance specifications of the front-end for the worst case channel specifica-

tions are first derived. Thereafter the individual sub-block specifications are appor-

tioned from the front-end specifications. A few key sub-blocks of the modern front-end

are shown in Figure 1. While deriving the sub-block specifications it is ensured that

sufficient margin is kept to account for process, voltage and temperature (PVT) vari-

ations. The sub-blocks have little or no adaptivity built into them and as a result the

entire system consumes the same power for all channel conditions.

Current systems try to maximize the throughput for a given channel by changing
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Figure 1: Simplified diagram of basic receiver front-end.

Figure 2: Traditional modulation and coding rate switching in 802.11n systems.

the modulation and coding rate as shown in Figure 2. While this does lead to a

more optimized energy-per-bit such adaptation is coarse and there exists significant

opportunity even within a fixed modulation and coding rate setting to trade-off power

versus performance. Such front-end designs (with no adaptatation capability in the

front-end blocks) can be referred to as static front-end designs.

RF front-ends can be classified broadly into two categories: single-input-single-

output(SISO) and multiple-input-multiple-output(MIMO). SISO systems have a sin-

gle RF front-end chain to up-convert/down-convert, amplify and digitize the signal.

MIMO systems on the other hand accomplish the same task using multiple RF chains.

While SISO has the advantage of having lower power consumption, MIMO can provide

both extended coverage and higher data rates depending on the channel conditions

and mode of use.
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1.3 Adaptive RF front-end design

The discussion in Section 1.2 clearly points out an opportunity to reduce the power

consumption when the channel is not at the worst case condition. To enable such

power savings, the sub-blocks of the RF front-end (like LNA, mixer, PA , ADC

word size etc.) must be designed to accommodate tuning knobs (for e.g. bias volt-

age,current etc.) which would allow them to trade-off their performance for power

savings. The propagation of a transmitted signal through the channel can be de-

scribed through the equation:

Y = HX +N + I (1)

Here X and Y are transmitted and received signals. In our work they are modelled

as OFDM waveforms. H encapsulates the path loss caused by the channel between

the transmitter and the receiver. It can be subdivided into two major effects:

a) Propagation or Path Loss: This can be approximated by the equation k.d−n

where k is a constant of proportionality, d is distance between the two antennas and

n is an empirical constant which varies between 2.5 to 3 depending on atmospheric

conditions.

b) Fading: Fading is caused by the transmitted signal arriving at the receiver using

multiple paths(and hence having different delays and attenuations) and adding up.

For urban environments with no direct line of sight path between the transmitter and

receiver the strength of received signal can be approximated by a Rayleigh distribu-

tion.

N represents the noise floor of the channel and can be represented by additive white

gaussian noise (AWGN). I represents the interferers present in the channel. Interfer-

ers can be of many types for e.g. adjacent OFDM channels or narrowband signals. In

our discussions we will assume they are adjacent OFDM channels. The system must

be able to sense when to adapt and how much to change the tuning knobs to achieve
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Figure 3: Illustration of possible RF receiver adaptation architecture

minimum required QoS for any given channel. This can be achieved through directly

sensing the channel parameters (like signal and interferer strength) or by observing a

system level metric which measures the quality of the received signal. In either case

a feedback loop (as shown in Figure 3 can use the system level metric or the channel

parameters to set the appropriate pre-configured settings for the tuning knobs. The

pre-configured settings are calculated during the design phase and may be stored in

an LUT on-chip.

Thus from the above discussion the key requirements for designing an adaptive

transceiver front-end can be illustrated in Figure 4. As shown, an adaptive system

requires sensors to determine the channel condition and the quality of the received

signal. The sensors may be implemented in baseband or as additional sensors on the

front-end. Similarly, the adaptive front-end requires sub-blocks like LNA, Mixer and

ADC to be capable of trading-off performance versus power. the third requirement for

the design of the system is to devise a strategy to change the front-end performance

as a function of channel conditions. The simplest implementation of this can be the

deployment of an on-chip LUT which contains the set of optimized front-end tuning

knob values as a function of different channel conditions.
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1.4 Need for use-aware adaptive MIMO front-end design

In prior work, adaptive systems have been proposed to adapt to channel conditions

while achieving lowest power consumption. Thus the goal for the optimization prob-

lem traditionally has been to minimize the power consumption of the system. However

depending upon the applications accessing the front-end to transmit and receive data,

the optimization goal may be different. For example in certain real-time applications

like video/audio streaming the data throughput may be of primary importance. Once

a minimum data throughput is achieved, any additional signal-to-noise ratio (SNR)

may be traded off for power savings. However in certain other applications like (back-

ground downloads and uploads), throughput may not be of primary importance. Here

the emphasis is to achieve the minimum energy-per-bit. Thus while the first case cor-

responds to minimizing power consumption, in the latter case the goal is to minimize

the energy-per-bit. So, it can be seen that depending on the nature of application the

optimum tuning knob configuration for a particular channel would be different. Such

use-aware low-power operation is specially critical for MIMO front-ends which due
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Figure 5: Illustration of inter-chip and intra-chip process variation

to the presence of multiple RF chains for a single transceiver consume significantly

higher power than a SISO front-end. A use-aware MIMO front-end would provide

the flexibility of choosing to minimize energy-per-bit whenever possible while reaping

the benfits of additional throughput and resiliency provided by the MIMO system.

1.5 Need for process-resilient self-learning front-end design

Due to process scaling the parameter variations in the manufactured chips become

significantly large at nanometer nodes. This leads to significant variations in front-

end performance from one chip to the other. These variations can be inter-chip

(wafer-to-wafer and die-to-die on the same wafer) and intra-chip as shown in Figure

5. This poses a significant challenge to RF front-end design in general and adaptive

RF front-end in particular. Firstly, due to performance deviations a certain fraction

of the manufactured chips do not lie within the desired specification bounds. This

leads to significant yield loss, more so at the lowest process nodes. The yield loss
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in turn translates to reduced profitability and thus is extremely undesirable. These

variations are even more critical in adaptive system since they operate at the boundary

of acceptable operation and leave little or no margin for error. Thus for any such

adaptive RF front-end the reconfiguration settings across channel conditions must

be a function of the process corner it is at. Thus this requires multitude of pre-

computed LUTs, one for each process corner. It also requires the test phase detection

of the correct process corner a chip is at. Both of these are significant challenges.

However, if a system can learn its performance characteristics across channel and

tuning knob space on-the-fly then a customized adaptation law can be devised which

is immune to process variations, ageing etc. Such a system can learn their entire

adaptation strategy on-line by generating maps of the power consumption and QoS

(or EVM) versus the different configuration modes and channel conditions during

real-time operation. The system can use these maps to incrementally build a LUT of

optimum configuration settings across the entire gamut of channel conditions. Such

architecture would automatically eliminate the problem of devising control laws under

process variability.

1.6 Alternate control strategies for adaptive front-end design

Previous research has proposed LUT based controller which suffers from the disad-

vantage of requiring extensive characterization of the QoS across channel and tuning

knob space. Such a control strategy has been demonstrated to work adequately when

the channel conditions can be arranged in a linear fashion fron “Good” channel to

“Bad” channel. This is only possible for a uni-dimensional channel. However channel

conditions are a multi-dimensional space , for e.g. having signal strength(or equiv-

alently signal attenuation) and interferer strength as channel parameters. A better

approach to the problem is to try to derive analytical expressions of the optimum

performance parameters of the front-end in terms of the channel conditions for the

9



minimum QoS. These relationships could be used to directly predict the optimum

settings once the channel is estimated resulting in a feed-forward adaptation sys-

tem. This is especially feasible if the key specifications of the front-end(linearity,

gain, noise-figure) can be controlled independent to one another. However in general

deducing such analytical expressions may become computationally intractable. One

way to alleviate this difficulty is to use a control logic which can mimic the decision

making capabilities of a human being through a set of general operational rules. In

this research we try to solve this problem by designing fuzzy-logic based control sys-

tems which track the changes in channel conditions without requiring extensive QoS

characterization of the system across tuning knob space.

1.7 Prior Work

1.7.1 Traditional low-power RF front-end design techniques

Traditional low-power front-end design approaches can be broadly classified into cir-

cuit level & system level techniques.

Circuit level techniques : Several circuit level techniques have been proposed to

achieve low-power in the sub-blocks of the RF front-end, for e.g. in LNA, PA, ADC

etc. In prior literature [2] active and passive g-m boosting has been used to achieve

low NF and large gain, both of which are stable across process variations. In [3]

an active resistor is used to achieve the desired linearity at low-power consumption.

Similarly in PAs several circuit level techniques have been devised to achieve high

efficiency even while attaining the desired gain, linearity etc. Similarly other ana-

log/RF systems [4, 5] have been studied extensively for low-power performance while

operating satisfactorily in the worst case channel conditions and for the worst case

process variability and thermal effects. In PAs the supply voltage can be changed to

track the envelope of the output signal, thereby achieving high efficiency [6]. This can
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be done in one of three ways: slow-tracking, envelope modulation and polar track-

ing. In slow-tracking [7] PAs the supply is kept just above the maxiumum amplitude

of the PA output envelope. In envelope modulation [8, 9, 10] the supply voltage

tracks the PA output envelope providing optimum power consumption. Polar track-

ing [11] is an alternate way to achieve envelope modulation in which the amplitude

and phase of the output waveform is first separated. The phase information is used

by the oscillator to do produce a phase modulated waveform. The phase modulated

waveform passes through a non-linear amplifier whose supply is modulated by the en-

velope information. Thus the output of the amplifier has both phase and amplitude

modulation.

System level techniques : While circuit level techniques can significantly reduce

power consumption, in many cases system level techniques can be equally or more

effective. For example output power of a power amplifier is varied according to the

distance between the communicating transmitter and receiver. The output power

control information can be used at a system level to reduce the power consumption of

the PA when the average output power is not at its peak [12, 13, 14]. Similarly in case

of sigma-delta ADC proposed in [15], the order of the loop filter is varied depending

upon the signal to interferer ratio. In this ADC when the signal to interferer ratio

rises the dynamic range requirements can be relaxed to operate at a reduced power

consumption.

1.7.2 Low-power multiple input multiple output (MIMO) transceiver sys-
tems

In todays harsh radio propagation environments providing high bit rates (for data-

hungry applications) and extended range of mobile signal coverage has become in-

creasingly challenging. Higher data rates demand higher power or larger bandwidth,

both of which are at a premium in modern systems. Since the cell size determines the

number of base stations required to cover a target population or area, the range of

11



h11

h21

h12

h22

T1

x1

x2

T2

-x2
*

x1
*

y1
2

T1

y1
1

T2

y2
2

y2
1

Figure 6: Illustration of Spatial Diversity mode of operation

coverage is intricately tied to the economics of network deployment. A key technology

that enables current systems to meet the stringent demands of the latest communi-

cation standards is multiple input multiple output (MIMO) communication.

MIMO systems can transmit/receive multiple parallel streams of data within the

same channel bandwidth. With the same RF front-end a MIMO system could be

configured to operate in spatial multiplexing(SM)[16] mode for greater data rates or

in spatial diversity(SD) modes for greater reliability and coverage[17].

Spatial Diversity (SD) Mode: In this mode the goal is to combine the SNRs from

multiple MIMO chains (front-end+antenna) to achieve a higher effective SNR for the

received signal. This leads to a more robust communication system which can operate

over more degraded channel conditions as compared to a SISO system. The operation

of SD mode is demonstrated in Figure 6. In this thesis SD mode combines signals

using Alamouti’s technique [17]. To explain how the system works let us consider two

time slots T1 and T2 in which the system is transmitting and receiving symbols. In

slot T1 the system transmits symbols x1 and x2 from antenna 1 and 2 respectively.

In time slot T2 the system transmits symbols −x∗2 and x∗1 from antennas 1 and 2

respectively. The channel can be modelled as a 2x2 matrix (for this 2x2 system)

which encompasses all path loss and fading effects.
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Channel matrix =

h11 h12

h21 h22

 (2)

The symbols received in time slot I by antenna J is denoted as yIJ in Figure 6. It has

been shown that the best way to combine the two received symbols in two time slots

is as follows:

x̂1
x̂∗2

 = (HHH)−1HH



y11

y22

y2∗1

y2∗2


(3)

where H is defined as follows:

H =



h11 h12

h21 h22

h∗12 −h∗11

h∗21 −h∗22


(4)

Thus SD mode allows for communication over degraded channels while providing

the same throughput as a SISO system.

Spatial Multiplexing (SM) Mode: In this mode the 2x2 MIMO system tries

behave as two parallel chains of data. This is shown in Figure 7. The transmitted
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symbols can be estimated using a zero-forcing equalizer as follows:x̂1
x̂2

 = (HHH)−1HH

y1
y2

 (5)

where

H =

h11 h12

h21 h22

 (6)

SM mode provides increased throughput over a SISO system (ideally 2x if the mod-

ulation and coding rates are same). However since there is no SNR combination(like

in SD mode) it requires a higher minimum SNR to operate in a particular modula-

tion as compared to SD mode. While MIMO systems provide higher data bandwidth

and increased range of operation, due to increased number of transceiver chains they

must also be designed for low energy consumption across diverse operating conditions.

Current standards allow for support of up to 8 chains on a single chip demanding high

performance requirements from on-chip battery. Prior work in this domain end has

been reported in [18, 19, 20, 21, 22]. In [18] the power consumption has been optimized

at the transmitter for several Power Amplifiers (PA) topologies through intelligent

power allocation schemes. [19, 20] discuss low-power baseband techniques for MIMO

transceivers. In [21] the system is optimized to maintain a constant throughput across

various channel conditions by switching between SISO, SIMO and MIMO configura-

tions. [22] optimizes the power consumption of the system across channel conditions

by switching between antenna modes and encoding schemes. Hence, all of the RF

front-ends discussed are static in nature, power being saved by switching the number

of chains. Prior work[23, 24] has also attempted to design static MIMO front-ends

which can adapt itself to ro process variations through post-manufacture tuning to

bring device performance back as close to nominal as possible.

However unlike SISO systems, the presence of multiple-modes of operation in
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MIMO RF systems results in different non-monotonically varying performance mar-

gins across different points of operation of a MIMO transceiver system. As illustrated

in [25] the maximum benefit can be derived from a MIMO system if it is used in

Spatial Multiplexing(SM) mode when the wireless channel is good and in Spatial

Diversity (SD) mode when the channel is bad. Depending on wireless channel con-

ditions, current MIMO systems switch across different operational modes and signal

modulation rates in real time to maximize the wireless data transmission rate for

any given channel condition. However, fine-grained co-modulation of the RF circuit

level performance along with the operational modes and signal modulation rates for

MIMO systems has not been fully exploited by prior research.

1.7.3 Channel-adaptive wireless system design

For wireless systems, the probability of encountering the worst case channel conditions

is very small. As a result, for most of the time(or for majority of operating conditions)

the wireless device is over-designed for performance and hence consumes a greater

power than necessary. The solution to this problem is to design systems(RF front-

end, baseband and digital circuits) which can dynamically adapt to changing channel

conditions while maintaining its operation at the minimum acceptable performance

or threshold BER. In the digital domain, physical layer based design methodologies

[26, 27] which modulate the power consumption and frequency of the digital circuitry

depending on throughput requirements have been studied in the past. RF systems

working at a maximum threshold BER have been discussed in detail in [28, 29, 30].

At the media access control(MAC) and network layer power management schemes

have been proposed[31] which estimate the channel quality from training symbols

and adapt the modulation and coding rates to conserve power while maintaining an

acceptable performance. Modern wireless systems also have the option to switch
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between high-power, low-power and shut-down states depending on the channel con-

ditions and usage. However all the above techniques allow only a small number of

discrete steps in adaptation and do not completely exploit the design margins. For the

most optimal power consumption a fine-grained system-level adaptation is required.

This design philosophy was explored in [32], which proposed an energy scalable RF

transmitter, where the front-end is dynamically tuned (supply, bias, resistances) for

each data rate modulation set by the higher-level link layer protocol. The tuning is

driven by channel quality as determined by channel estimation metrics and relies on

simulation of a large number of channel and RF front-end settings. Along with the

above approaches several attempts have been made to holistically design environment

adaptive RF front-end which react to changes in channel conditions in real-time to

reconfigure the device for optimally low-power operation. In [1, 33, 34] an adaptive

power management strategy is discussed which tunes the front-end to maintain the

system at or below the maximum acceptable BER. This technique exploits the built-in

margins in the wireless systems through continuous adaptation based on an optimal

look up table based control law that is computed apriori. The look-up table (LUT)

based adaptation strategy is depicted in Figure 8. Here, the entire gamut of channel

conditions is partitioned into a finite number (say m) of representative channels. In

the design and characterization phase of the system a combination of tuning knob

settings is found for each of the m channels such that, the Error Vector Magnitude

(EVM) is maintained at threshold (EVMth) of acceptable operation while the power

is minimized. These combinations are stored in the form of a m×n table (where n is

the number of tuning knobs). The channels are ordered such that the first row rep-

resents the best channel (and hence minimum power consumption) and the last row

represents the worst case channel (maximum power consumption). This optimization

can be done with a multi-dimensional constrained optimization algorithm (e.g. gradi-

ent search). The table is then stored on-chip. During real time operation the EVM of
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the system is constantly monitored and a control algorithm running on the baseband

processor continuously attempts to maintain the EVM at EVMth by changing the

tuning knob settings using the stored LUT. Such a strategy can be implemented both

at the receiver as well as the transmitter. At the receiver tunable LNA, Mixer etc.

could be used to trade-off power vs. performance [35]. Using the same philosophy

[36, 37] describes a low power multimode transmitter which employs channel depen-

dent dynamic digital PAR reduction in conjunction with adaptive rebiasing of the

Power Amplifier (PA).
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Figure 8: LUT based channel adaptation

1.7.4 Process tolerant channel-adaptive wireless systems

Besides power dissipation, process variations also pose a major design concern with

technology scaling. To compensate for such variations, several built-in RF calibration

techniques have been proposed in the past [38, 39, 40]. The capabilities of Design for

Manufacturability (DFM) is demosntrated for analog/RF circuits in [41]. In [42], a

VCO is demonstrated with a worst case specification variation of 43% and the authors

present optimisation techniques in the design flow to correct these process variations.
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Further design centering[43] can be used to reduce the effect of process variation on

the performance of the device. However despite these measures process variations

might cause the device to deviate from the nominal specifications to a large degree,

specially at the lower technology nodes.Thus these manufacturing variations lead to

a reduced Quality of Service(QoS) in wireless systems.

Specification prediction and tuning of low-speed devices has been discussed in

[44, 45, 46]. Prior work has also explored the tuning of RF specifications through

hardware “tuning knobs” or digital compensation [47, 48, 49, 50, 51, 52, 53, 54, 55].

Tuning of digitally assisted RF/ analog circuits and systems like PLL, frequency

synthesizers and digital radio has also been implemented [56, 57, 58, 59]. Techniques

to simultaneously tune multiple tuning knob parameters to counter small and large

parameter variations in RF systems for yield enhancement are discussed in [60, 61,

62, 63]. However, except for work presented in [64], existing test and tune techniques

are not targeted towards channel-dependent dynamic transceiver power management

and tuning.

Preliminary experiments have shown [64] that the most power-optimal manner

in which an RF transceiver can be dynamically tuned for changing wireless channel

conditions is a direct function of the process corner to which the specific manufactured

wireless IC corresponds to.

The technique proposed in [64] tries to discretize the multi- dimensional process

variation space into finite number of states. As shown in Figure 9, for each of these

states or process condition, [64] proposes a design phase optimization to generate a

reconfiguration table that dictates how the circuit and algorithmic level tuning knobs

should be modulated according to changing channel conditions using closed loop

feedback to minimize power consumption. Prior to system deployment, a built-in

test procedure is invoked to determine the process corner the RF device corresponds

to. The appropriate table that best matches the diagnosed process corner for the
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Figure 9: Illustration of prior process-resilience approach

RF device is then programmed into the device for real-time RF front end adapta-

tion. The problem with the above technique is that this might lead to very coarse

approximations and require a huge amount of design phase computation based on

approximate models. Moreover, the process space is multi-dimensional and a set of

process instances spanning this space is hard to construct.

1.8 Key Contributions of this work

In light of the prior discussions, several key aspects of channel-adaptive low-power

front-ends need to be addressed for its successful adoption and implementation in

modern mobile wireless devices. This thesis adresses each of the following areas in

detail:

First The prior techniques focus on LUT based feedback control which requires ex-

tensive design phase characterization and only works for uni-dimensional chan-

nel space. This thesis proposes alternate fuzzy logic based and analytical equa-

tion based control strategies for RF front-ends. The proposed adaptation control

methodologies are able to accommodate and adjust the front-end for multiple
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independently varying channel parameters (e.g. signal strength and interfer-

ence).

Second Prior discussion on channel-adaptive front-ends has focussed on minimizing

power while always operating at the highest throughput for SISO systems only.

In this thesis it is shown that such an approach does not guarantee the minimum

energy-per-bit. Depending upon the throughput requirements of the application

accessing the front-end one of two modes of low-power adaption can be adopted:

one optimizing power in presence of highest throughput, the other sacrificing

throughput to get the minimum energy-per-bit. Moreover such a use-aware

adaptation methodology is implemented, for the first time, on a MIMO system

for both the receiver and transmitter to demonstrate the benefits and trade-offs

of the multiple low-power modes and compare it versus the existing technology.

Third Process-tolerance is an essential feature for adoption of channel-adaptive low-

power front-ends. In this thesis self-learning front-ends are proposed which can

learn the optimum configuration across channel conditions during the initial

stages of its real-time operation to provide a customized reconfiguration settings

on a per-chip basis (eliminating the problem of inter-chip process variation).

The contributions of the thesis have been summarized in Figure 10
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21



CHAPTER 2

FUZZY LOGIC AND ANALYTICAL EXPRESSION

BASED NOISE-DISTORTION CONTROL TECHNIQUES

2.1 Motivation

In prior literature it has been demonstrated that the power in a RF front-end can be

traded off for performance in real-time to operate at the threshold of acceptable oper-

ation using a lookup table driven controller. LUT based feedback control works well

with uni-dimensional channel models. For uni-dimensional channels, the channels can

be arranged from “Good” to “Bad” in a linear fashion. While this approach leads to

a simplified controller design, this assumption fails for most practical channels which

have more than one independent variable. For example, both the received signal

strength and interferer strength are independent quantities in practical communica-

tion channels. Additionally, the LUT based approach requires extensive design phase

simulation and characterization of the front-end using approximate models to find

the optimum “tuning-knob” combinations for each sub-block of the front end across

a large range of channel conditions. In this work[65] we propose the design of an adap-

tive RF front end that can adapt to changes in channel conditions by modulation of

the noise-distortion characteristics of embedded RF modules. As opposed to prior

designs, a new fuzzy logic based system level control mechanism is proposed that, for

the first time, facilitates RF front end adaptation without a pre-characterized LUT.

A simple control strategy is proposed that alleviates the need for extensive character-

ization of the RF system while ensuring good control and performance for multiple

independently varying channel parameters. It must be noted that RF architectures,

like super-regenerative receivers, have demonstrated low power operation but they
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are limited in their scope and may not be suitable for many wireless standards. How-

ever this work demonstrates low-power operation for existing architectures without

compromising on receiver performance. Further, it is also shown that an analytical

expression based prediction of the values of the tuning knob settings for a certain

channel condition and target SNR may be possible. The advantage of this technique

is that it would do away with the necessity to have a feedback loop and the values

of the tuning knobs can be directly set based upon the values of the channel im-

pairments and the relationship of the analytically derivable front-end performance to

tuning knob settings.

2.2 Adaptation Metric and Reconfiguration Strategy

2.2.1 EVM based adaptation

From experiments we can determine that for a BER of 10−4 the maximum threshold

EVM (EVMth) is 35% for QPSK and is 14% for 16-QAM.To overcome the inherent

uncertainty in calculation of a metric like EVM we can put a guardband of δ to get

EVMgbd. In LUT based approach a much larger guardband over and above this δ is

required due to system oscillations. In our case:

EVMgbd = EVMth − δ (7)

2.2.2 Reconfiguration strategy

The two major specifications that are important in a modern radio receiver are its

linearity and the input referred noise added by the receiver. These two are measured

by the IIP3 and Noise Figure (NF)/Gain of the receiver. Static radio designs optimize

the IIP3 and NF for the worst case channel conditions. In this work, both these

specifications are changed dynamically based on the fidelity of the received signal.

For receiver adaptation, we are interested in determining the received signal SNR

and the strengths of in-band and out-of-band interferers. Interferers cause signal
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degradation in the receiver due to receiver saturation. This results in significant

intermodulation distortion and the resulting intermodulation components raise the

noise floor of the received signal. On the other hand if the received signal has low

signal power then the NF and gain specifications of the receiver become critical due

to the fact that any noise contributed to the received signal by the receiver circuitry

can significantly decrease the SNR of the received signal. In modern receivers, both

received signal power and the signal strength of interferers are estimated by embedded

RF detectors (see Section 2.4.1). These detectors can be used to aid system level

adaptation. We now discuss practical constraints on the linearity and NF of a receiver.

These are used later to formulate the control law for dynamic adaptation of the RF

front-end.

2.2.2.1 Linearity (IIP3) constraints

The linearity of a receiver becomes critical when either the signal or the interferer

strength becomes high. One of the key goals of the adaptation law is to ensure

that the IIP3(≈ P1dB + 9.6dB) of the signal should be high enough so that in the

presence of a strong signal or strong interferer, gain compression or intermodulation

components do not push the EVM (and BER) above the maximum allowable level.

Thus we can say that

IIP3 = f(SignalStrength, InterfererStrength) (8)

More specifically if the signal or interferer is sufficiently below the IIP3 of the receiver

then it has very little effect on the EVM. In dBm scale this means that for IIP3 to

have an effect on the EVM:

Signal Strength > IIP3−∆1 (9)
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Interferer Strength > IIP3−∆2 (10)

Since a high signal strength causes saturation only and a high interferer strength

causes both saturation and intermodulation the margins ∆1 and ∆2 are different.

They are constants (in dBm) whose values are system specific and can be determined

from very simple system simulations.

2.2.2.2 Noise figure (NF) Constraints

The NF of the system becomes critical when the signal strength is close to the noise

floor (SNR is low). In this case the goal is to demodulate the signal without any

further significant addition of noise from the receiver. The NF of a system is given

by:

NF = NF1 +
NF2 − 1

G1

+
NF3 − 1

G1G2

+ ..... (11)

Here NFi and Gi are the Noise Figure and gain of the ith stages in the RF chain.

Thus the NF and Gain of the Low Noise Amplifier (LNA) becomes critical in this

case. However the noise added by the system has very little effect on the EVM of

the system when the signal strength is high. Only when the signal falls below certain

strength, will we start seeing an appreciable effect of NF on the system performance.

So assuming a fixed channel thermal noise floor we can say that NF of the system

becomes critical when

Signal Strength < ∆3 (12)

Again ∆3 is a constant (for a particular system) and can be determined from the

system design through simple simulations.

25



Table 1: Heuristics for Noise-Distortion Modulation

S0 I0 (EVMgbd − EVM) IIP3 NF

> IIP30 −∆1 X
-ve ↑ ↑
+ve ↑ ↓

X > IIP30 −∆2
-ve ↑ −
+ve ↓ ↑

< ∆3 X
-ve − ↓
+ve ↓ ↑

2.2.2.3 Control Strategy

Based on the discussion in Sections 2.2.2.1 and 2.2.2.2 we can now formulate certain

heuristics for modulating the noise and distortion in the front-end so as to power-

optimally operate at the threshold of acceptable operation (i.e. at guard-banded

EVM threshold EVMgbd). Let us take a snapshot of the system at a time instant T0

and formulate the strategy as to how to change the IIP3 and NF of the system. Let

IIP30 and NF0 be the IIP3 and NF of the system at this instant and let the signal

and interferer strengths be S0 and I0 respectively. We formulate this strategy in the

form of a rule table shown in Table 1. Here an ′X ′ denotes a Don’t-Care condition

while a ′−′ means that decision regarding the variable cannot be taken based on that

piece of information. When taking a decision, all the rows of the table are evaluated

and a decision is taken regarding as to how to change the IIP3 and the NF of the

system. Another goal of the control system is to make the transitions in IIP3 and NF

dependent on the difference between the current EVM and the desired one (EVMgbd).

We have assumed that NF and gain of the sub-blocks are correlated (as is usually the

case). An increase in NF is linked with a decrease in gain and vice versa.

2.3 Fuzzy Control Formulation

We can visualize the RF receiver system as a control system as shown in Figure 11.
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Figure 11: A Control Perspective of the RF chain and feedback controller.

One of the disadvantages of the control strategy formulated in section 2.2.2.3 is

that it is essentially based on decisions taken depending on the relationship between

the input variables (Signal Strength, Interferer Strength and EVM) and their decision

boundaries(IIP30−∆1, IIP30−∆2, ∆3 and EVMgbd). This leads to a “Yes” or “No”

decision as to changing the IIP3 and NF and the amount of their change is also fixed.

The disadvantage of such a control is that the system keeps on oscillating around the

desired value like in a thermostat based room heater(bang-bang control). Moreover

the choice of decision boundary becomes very critical in system performance. A more

desirable feature of the control algorithm should be that the increment in IIP3 and NF

for the next interval (T1) should be a function of the deviation of the input variables

from their decision boundaries.

∆IIP3 = g(Ω) (13)

∆NF = h(Ω) (14)

Here Ω is the set of deviations of input variables from their boundaries i.e.

Ω = {IIP30 −∆1 − S0, S0 −∆3, IIP30 −∆2 − I0, EVMmargin} (15)
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EVMmargin = EVMgbd − EVM (16)

This would ensure that the system rapidly corrects any deviation from the desired

steady position (i.e. EVM ≈ EVMgbd) quickly and settles down to a steady state.

This type of control is known as proportional control. In this case the choice of

decision boundaries becomes less critical than in “Bang-bang control”.

In the field of control theory such problems are dealt with by designing a Pro-

portional controller for optimum performance. However to design such a “controller”

one needs to know the transfer function governing the “plant” (which in our case is

the RF front-end) and hence the exact input-output relation i.e. we need to know

the equation k where:

EVM = k(Channel, IIP3, NF ) (17)

However in this case the relationship is highly non-linear and difficult to formu-

late. Hence we cannot design a Proportional control using traditional techniques.

This problem can be solved by the use of intelligent control algorithms like Fuzzy

Controller[66, 67]. A Fuzzy controller “attempts to mimic human control logic” and

creates a robust control logic which is very easy to implement and is computationally

simple and it corrects the problems with the “bang-bang control”. A schematic of a

Fuzzy controller is shown in Figure 12.

The basic chain of fuzzy control starts with the fuzzification of the input. A group

of membership functions is constructed which gives the grade, or degree, of “mem-

bership” within the set, of any element of the universe of discourse. The membership

function maps the elements of the universe onto numerical values in the interval [0, 1].

Fuzzification is the process of decomposing a system input into one or more fuzzy sets.

For example a decision making question “Is S0 < ∆3?” no longer yields a binary value

of 0 or 1(as in bang-bang control) but can be anything in the interval [01]. Thus they
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Figure 12: Block Diagram of a Fuzzy Controller.

convert the input a “Fuzzy value”. The process of fuzzification allows the system

inputs to be expressed in linguistic terms so that rules can be applied in a simple

manner to express a complex system. The next step is to evaluate the rules of the

system using the fuzzified inputs. All the rules that apply are invoked and using the

membership functions and truth values obtained from the inputs the result of the

rule is determined. This result in turn will be mapped into an output membership

function and truth value controlling the output variable. The final step is to combine

the fuzzy output of each output rule into a “crisp” value which is the output of the

controller.

2.4 System Simulation

In order to demonstrate the concepts discussed in previous sections we consider the

test vehicle of a 2.4 GHz OFDM WLAN direct conversion receiver. The block diagram

of the receiver is shown in Figure 13.

2.4.1 Signal and Interferer Strength Estimation

In order to adapt to channel conditions the receiver must first estimate the quality

of signal it receives. Modern radio front-ends already have sophisticated sensors and

baseband algorithms built-in which sense the signal and interferer power.

One such widely-used metric is Received Signal Strength Indicator (RSSI), which
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Figure 13: Detailed schematic of the proposed RF chain and baseband circuit show-
ing signal and interferer estimation points.

gives an estimate of the in-channel power received. [68] discusses a method of de-

tecting the power of in-band interferers. This is done by sensing the total in-band

power by using a power detector between the mixer and the channel-select filter. The

RSSI can then be subtracted from the in-band power to get the in-band interferer

power. [69] discusses the design of a wide-band jammer detector which can be used

to sense the total power received at the receiver. Thus combining both the outputs

of interferer power detectors one can get the idea about the total interferer power at

the input of the LNA.

It must be noted that if interferer power is estimated to be X dBm it could mean

that there is one or more interferers causing this effect. However the worst case can

occur when there are 2 interferers of (X − 3) dBm each causing saturation and 3rd

order intermodulation products which can fall in-channel corrupting the desired signal

and increasing the noise floor. We shall always adapt the system for this worst case

interferer combination for a particular interferer power.

2.4.2 Orthogonally tunable LNA

One of the most important components of the front-end described is the LNA. The

NF of the system is dominated by the NF of the LNA and the linearity of the LNA
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must be sufficient to allow strong input saturation and intermodulation components

from corrupting the signal of interest. [35] demonstrate the design of an orthogonally

tunable LNA where the Gain/NF and the IIP3 of the LNA can be tuned independent

of each other. The NF can tune from 2 dB to 8 dB, while the Gain tunes from 6 dB

to 17 dB. At the same time the IIP3 can be varied from -9 dBm to nearly -28 dBm.

The schematic and the NF, OIP3 and current consumption variation with tuning

knob voltages for the LNA are demonstrated in Figure 14. In the circuit shown

in Figure 14, due to the orthogonal nature of tuning knobs, we can say with high

confidence that NF is a function of VGain and IIP3 is a function of VIIP3. So we can

approximate these functions by polynomials. Given a desired value of NF and IIP3

we can then solve these equations on the baseband processor to get the required value

of tuning knob voltages. Henceforth, in we would discuss about NF and IIP3 tuning

directly. However, actually we are changing the tuning knob voltages to produce these

changes. In our system we attempt to dynamically vary the NF/Gain and IIP3 of the

LNA. As opposed to [1, 37] we want to preclude the locus based adaptation approach

which requires extensive characterization and a bang-bang control algorithm. [70]

discusses adaptation at Variable Gain Amplifier(VGA) and filters keeping the power

in RF blocks (LNA, Mixer) unchanged. Our approach fills in this void by tuning the

power in the RF blocks and along with [70] provides a complete tuning solution for

low-power RF receiver.

2.4.3 System Characteristics

In order to formulate the control law we need to exercise the circuit so as to get an

intuition about its behavior. Using the result of a few simple experiments we can

determine the values of the constants discussed in Section 2.2.

To estimate value of ∆1 we sweep the value of the signal strength over the entire

Spurious Free Dynamic Range (SFDR) of the receiver and observe the system EVM
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Figure 14: Orthogonally tunable LNA and variation of NF, OIP3 and Current with
tuning knobs.

Figure 15: EVM variation with Signal Strength for different IIP3 values.
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Figure 16: EVM variation with signal strength for varying NF.

for different values of LNA IIP3. It can be seen that non-linearity effects start to

assume significant proportions once the signal crosses the level (IIP3-35) dBm. Hence

∆1 = 35 dB. Since interferers behave similarly but also have the added effect of

intermodulation components we can keep ∆2 = 50 dB. In order to determine ∆3 we

sweep the signal over the entire SFDR for various Noise Figures of the system. It

can be seen from Figure 6 that noise figure really starts affecting the signal below

∆3 = −75 dBm. The amount of system simulation required to find these constants

is significantly less than gradient based search for optimum knob setting for each

channel condition in a LUT based approach.

2.5 Fuzzy Controller Design

Using the heuristics formulated in Table 1 and estimating the values of the system

parameters from Section 2.4.3 we formulate input and output membership functions

for the controller (Figure 17). Each input/output membership function is constructed

to have considerable overlap with the adjacent functions in order to prevent abrupt

step changes in the output of the Fuzzy controller. Here PVL, PL, PS, NL, NVL and

NS stand for Positive Very Large , Positive Large, Positive Small, Negative Large,

Negative Very Large and Negative Small. Given a value of S0, I0 the Fuzzy controller

uses the rule set and membership functions to calculate the desired change in IIP3(
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Figure 17: Input and Output Membership Function for IIP3 controller.

i.e. ∆IIP3). Here ∆IIP3 is a function of (IIP3−I0), (IIP3−S0) and EVMmargin. The

surface for ∆IIP3 at EVMmargin = 3% is shown in Figure 18. The use of a Fuzzy con-

troller has ensured the smooth transition of ∆IIP3 across the range of input variables

instead of a step jump at hard decision boundaries (as is for “bang-bang” control). As

there are no hard boundaries (and hence discrete switching points), hysteresis need

not be implemented in the system. Similarly, input and output membership functions

are constructed for NF controller as a function of signal strength and EVMmargin.

For the sake of brevity, we do not show the membership functions of the NF con-

troller. Figure 19 shows the ∆NF surface as a function of signal strength and EVM.

Given an input vector (set of signal strengths, current LNA specifications and EVM),

the controller maps the vector to a particular point on the surface. This corresponds

to the desired change in IIP3 and NF over the next cycle. One must remember that

this fuzzy controller is computationally inexpensive and can run as software on the

baseband processor. Thus no additional hardware overhead is required. Moreover
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Figure 18: Variation of ∆IIP3 with Interferer and Signal Strength for a fixed (3%)
EVM margin.

Figure 19: Variation of ∆NF with EVM margin and Signal Strength .

the controller needs to update the state variables only once per EVM calculation and

hence should consume negligible power as compared to the front-end.

2.6 Simulation Results

In order to demonstrate the operation of the Fuzzy Controller based system adapta-

tion for low-power 2 simple experiments were devised. We set up a RF receiver chain

model with an orthogonally tunable LNA as the tunable element. An OFDM QPSK

signal at 2.4 GHz passes though channel (with variable attenuation, variable strength

interferer addition and constant thermal noise floor) before reaching the receiver. We
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Figure 20: Transient Simulation for Experiment 1 showing Signal and Interferer
Power, EVM and LNA IIP3, NF and Power Consumption .

vary the channel conditions to observe the performance and power consumption of

the RF-chain-Fuzzy feedback control combination.

Experiment 1: We vary the signal strength and interferer strength of the received

signal to show how the system/LNA adapts to the changing conditions. The experi-

ment is demonstrated in Figure 20. Initially the signal becomes strong enough to hit

non-linearity and hence EVM overshoots the threshold (by a small amount). In order

to correct this, the Fuzzy controller increases the IIP3. It should be noted that in

each decision cycle of the controller (denoted in Figure 20 as cycle count), the rate of

rise of IIP3 is dependent on the deviation of the EVM from EVMgbd. Therefore IIP3

changes slowly when EVM is close to EVMgbd equilibrium position and fast when the

system EVM is too low or too high. Once the EVM reaches EVMgbd, the IIP3 is

maintained constant. At cycle count 32, the signal strength decreases but interferer

strength increases to a large value. The controller again adapts to this situation by

adjusting the IIP3 to a high enough level. It must be noted that all through this

experiment the NF remains at the highest possible value due to reasons discussed

in Section 2.2.2.3. The LNA current consumption shows 4× variations (1 mA to 4
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Figure 21: Transient Simulation showing Signal and Interferer Power, EVM, LNA
NF and IIP3 and LNA Current for Experiment 2 .

mA) in this experiment but remains low as compared to the maximum current con-

sumption (≈ 11mA) because NF constraints are relaxed and the circuit is not fully

stretched to its maximum capabilities.

Experiment 2: In this experiment the signal strength is made much smaller so that

the NF becomes critical. Initially there is no interferer and the NF of the LNA reduces

in order to maintain an acceptable BER. Next a high power interferer is introduced

and the Fuzzy controller detects the overshoot in EVM and adjusts both the IIP3

and the NF simultaneously so that EVM can be pulled down below EVMgbd. As is

evident the highest power consumption occurs when the signal is weak (requiring low

NF) and the Interferer is strong (requiring high IIP3) simultaneously.

In such a circumstance both the specifications of the LNA are stretched to their

maximum to ensure acceptable BER performance. However this is just a corner case

and would occur rarely. Thus most of the time the circuit can operate in a low power

mode. As seen from Figure 21 the savings in current can be as large as 10mA as

the highest current is ≈ 11mA and the lowest current being ≈ 1mA. Assuming the

LNA consumes nearly 25% of the total current in a receiver chain we can achieve a
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Figure 22: Relative signal strength, VDD control, LNA Power consumption and EVM
in the hardware setup .

maximum power savings of nearly 23% for the receiver.

2.7 Hardware Implementation

An experiment is performed in hardware to show the feasibility of the proposed con-

cept. A 802.11 RF front end (PA / LNA) from Texas Instruments is used in the

experiment where supply voltage is varied from 2.6 to 3.9 volts in steps of 0.1 volts

and the signal strength is varied from (0.2∗fullscale) to the fullscale swing.

A mixer AD5382 is used for downconverting the 2.4GHz RF signal. With change

in the supply voltage, linearity of the front end also changes which affect the EVM for

a given signal strength. On the other hand, as the signal strength increases, the front-

end goes into nonlinear region and EVM starts increasing. We set a desired EVM

threshold of 14%(pertaining to a BER of 5×10−4 for 16-QAM) and formulate a Fuzzy

control law which tunes the VDD control knob to modulate linearity of the device

as a function of the EVM margin and input signal strength(known). The system is

excited with signal of temporally varying strength and the EVM is measured in the

baseband. Figure 22 shows the results of the experiment. We observe that the Fuzzy
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control law allows for a smooth EVM response (without oscillations). Due to the

supply voltage modulation the maximum power savings that is obtained is 33%(10

mW out of a total of 31mW). Thus these results corroborate the software simulation

of proposed system.

2.8 Analytical deduction of tuning knob values

The Fuzzy logic based front-end adaptation control is a departure from the traditional

LUT based control architecture. It can also be shown that an alternative approach

with analytical solutions of optimum tuning knob settings in terms of channel im-

pairments may be possible. In this section we try to formulate the problem to enable

prediction of optimum tuning knob combinations(or LNA, Mixer performance speci-

fications) as a function of the channel parameters like effective SNR, signal strength

and interferer strength. The received signal consists of the OFDM channel of inter-

est and two other OFDM channels which act as interferers. The intermodulation

component from the interfering channels can reduce the effective SNR of the channel

of interest.Similarly the SNR is also determined by the strength of the channel of

interest. The three channels are centered at f0, f1 and f2 as shown in Figure 23. Also

as shown in the figure each channel has k OFDM sub-carriers. Now let us consider

a typical front-end consisting of an LNA and mixer. Now the different strengths of

the signal and interferer require that we break up our adaptation strategy into the

following four cases:

1. Signal strength is low and Interferer strength is low

2. Signal strength is sufficient and interferer strength is high

3. Signal strength is low and Interferer strength is high

For case 3 we will have to operate at the highest effective NF and linearity(IIP3)

and would lead to the highest power consumption. In this work we will formulate
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Figure 23: OFDM signal and interferer

strategies for the cases 1 and 2 such that the receiver operates at the margin of

acceptable operation.

2.8.1 Low signal strength and low interferer strength

In this case the SNR is dominated by the signal strength to noise floor ratio. The

linearity of the system can be set to the lowest possible value and the NF of the

system must be carefully chosen according to the following relationship:

NFmax = SNRin − SNRmin (18)

Here SNRmin is the minimum required SNR to support an particular modulation

technique. For our case we choose QPSK modulation for all subcarriers for both

channel and interferer. The SNRmin for QPSK is 6 dB.
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2.8.2 Adequate signal strength and high interferer strength

In this case the noise floor is set by the intermodulation components and hence the NF

can be set to a relatively high value while the linearity needs to be carefully adjusted

so that the system operates at the margin of acceptable operation. Assuming the

signal and interferer to be tones it can be shown that:

IIP3min

S0

=

(
SNRmin

SIR3

) 1
4

(19)

Here IIP3min is the minimum value of the IIP3 required, S0 is the signal strength

and SIR is the signal to interferer ratio. This in the log scale these quantities can be

expressed as:

Margin = IIP3min − S0 =
1

2
[SNRmin − 3× SIR] (20)

However equation 20 holds only for single tone based analysis. In practice the

channels consist of multiple OFDM subcarriers. Let us consider the center tone in

the OFDM signal channel at f0. Let us assume that the mth subcarrier from the first

interferer (at f1) and the nth subcarrier from the second interferer (at f2) cause an

intermodulation product which interfers with this center tone at f0. Thus:

f1 +m×∆− [(f2 + n×∆)− (f1 +m×∆)] = f0 (21)

This equation can be simplified to:

∆× (2m− n) = f0 − [2f1 − f2] (22)

For the intermodulation components to fall in the signal channel the following con-

dition must hold:

f0 = [2f1 − f2] (23)

Thus combining equations 22 and 23 we get:

2m = n (24)
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Now in our system let the number of subcarriers be k=128. Thus it can be shown

that there are 64 solutions to the equation 24. Thus a factor of 10 ∗ log10(k/2) must

be added to equation 20 to make it hold for OFDM signals.

Margin = IIP3min − S0 =
1

2
[SNRmin − 3× SIR] + 10log10

(
k

2

)
(25)

2.8.3 IIP3 calculation

For the receiver front-end in our simulation we consider the LNA shown in 24. In this

LNA NF and OIP3 are orthogonally tunable. In the given LNA we can assume that

both stages contribute to the NF while the linearity, which is a large signal quantity,

is primarily a function of the second stage.

M4

M3

M1

M2

Vgain

RFRFin

RFout

VIIP3

Figure 24: Orthogonally tunable LNA

It can be shown that:

AIIP3 =

√
4

3
|α1

α3

| (26)

where,

α1 =
∂Vout
∂Vin

= 1 +
1

ro2
× 1

k′n(Vin − Vout − VT )
(27)

α3 =
1

6

∂3Vin
∂V 3

out

=
−2K ′2n r

2
o

(1 + gm1ro)5
(28)

42



Here K ′n = 1
2
µnCox(W

L
)1 and ro1 = ro1//ro2. Thus equation 26 can be simplified

to:

AIIP3 =

√
4

3

gm1(1 + gm1ro)4

2K ′2n ro
(29)

2.8.4 NF calculation

For the LNA in figure 24 it can be shown that the noise figure can be calculated as

follows:

NF = 1+
γ

Rs(gm3 + gm4)

[
1 +

1

gm1(gm3 + gm4)R2
F

+
gm2/g

2
m1

(gm3 + gm4)R2
F

]
+

1

(gm3 + gm4)2RsRF

(30)

2.9 Simulation results

Exhaustive simulations were carried out on a receiver front-end with the LNA shown

in Figure 24. The results generated from the simulations were then used to character-

ize the minimum required linearity and noise figure for different channel conditions

and compared with the values predicted from theory (equations 18,20 and 25). The

chosen modulation technique is QPSK requiring a minimum SNR of 6 dB. The sys-

tem was first simulated for a low interferer and low signal strength and the NF of the

system was optimized for different signal strengths. The optimum NF for different

signal strengths is shown in Figure 25. As is clearly seen the optimum NF is nearly

identical to the value predicted from analytical expressions.
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Figure 25: NF as a function of signal strength for low interferer strength

Similarly, the system is also simulated for the case of adequate signal and high

interferer as shown in Figure 26. The system linearity is optimized for supporting

QPSK modulation and the difference between IIP3 and signal strength is plotted

versus the SIR for different signal strengths. The ‘Predicted’ curve corresponds to

the equation 20 for single tone signals. The curve when adjusted for OFDM signals

yields the line ‘Predicted (adjusted)’ which gives the result for OFDM channels. As

seen clearly the simulation curves match the predicted result in the range in which

IIP3 can be changed. Thus the analysis provided in previous section yields close

match with simulated result.
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Figure 26: (IIP3min-Signal strength) as a function of SIR for different signal strengths

2.10 Proposed methodology

Since the required linearity and NF can be predicted as a function of signal and

interferer strength the analytical approach can be used to formulate a feedback control

with the following steps:

1. Determine the signal, interferer and noise floor from sensors.

2. Calculate SNR, SIR.

3. Calculate NFmax and IIP3min required using equations 18 and 25.

4. Find current and bias settings to achieve desired NFmax and IIP3min using

equations 29 and 30.

5. Set the appropriate values of voltages and currents.

6. Go back to Step 1.
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The above discussion is summarized in the form of a flowchart shown in Figure 27

Start

Determine Signal, Interferer strength and 
noise floor using sensors

Calculate 
SNR = Signal Strength – Noise floor

SIR = Signal Strength – Interferer strength

Calculate NFmax and IIP3min required to 
achieve BERmax performance

Calculate the required current and voltage 
bias settings for the sub-blocks for achieving 

NFmax and IIP3min  

Set the appropriate values of the voltage and 
current tuning knobs and allow the circuit to 

settle

Wait a pre-determined time interval

Figure 27: Algorithm for proposed analytical expression based adaptation
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2.11 Summary

In this work a methodology for low-power adaptation of the RF front-end with on-

the-fly reconfiguration using Fuzzy Controller has been presented. We use the test

vehicle of an orthogonally tunable LNA to demonstrate the concept of locus-less re-

ceiver adaptation over changing channel conditions. One can implement tuning knobs

in different front-end blocks, each of which tunes a circuit performance parameter or-

thogonally to the other parameters. Thus the concept itself is more generic than the

implementation and can be expanded to incorporate multiple blocks in the system.

The proposed intelligent control algorithm is a significant improvement over Bang-

bang control in terms of steady state response. Further, an analytical expression

based approach to the deduction of the optimum reconfiguration settings based on

channel impairments is presented. Both of these methodologies provide essential tools

for the design and deployment of control strategies for adaptive RF front-ends.

47



CHAPTER 3

REAL-TIME USE-AWARE ADAPTIVE RF

TRANSCEIVER SYSTEMS FOR ENERGY EFFICIENCY

UNDER BER CONSTRAINTS

3.1 Motivation

Prior work in the domain of adaptive low-power systems has focused on achieving

the lowest power consumption possible for the highest throughput possible in a given

channel condition. In traditional systems this is achieved by reducing throughput (by

changing coding rate, modulation, MIMO modes) as the channel degrades while the

power consumption remains constant. Adaptive systems have the capability to also

modulate the power consumption of the front-end simultaneously with the through-

put. In this work[71, 72] we show that for a given channel condition the amount

of power that can be saved is dependent on the data throughput requirements of the

end-user application. Certain end-user applications have constraints of operating at

the maximum data rate possible and require the highest throughput possible (we call

this Data Priority (DP) mode). In this mode energy-per-bit is not guaranteed to

be the lowest possible. However in other applications data rate can be compromised

to achieve optimal energy-per-bit (Energy Priority (EP) mode). Thus multiple low

power modes could exist, each optimized for a different application (data rate vs

energy-per-bit). The above discussion is summarized in Figure 28.

As compared to prior work the key contributions of this work can be summarized

as follows:

1. This work shows, for the first time, that real-time channel adaptive RF transceivers
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Figure 28: Classification of low-power techniques for radio front-ends.

can work in multiple low power modes depending upon the throughput require-

ments of the system to either optimize power consumption or the energy-per-bit

in the system. The work demonstrates this for both transmitter and receiver in

both simulation and hardware experiments.

2. Moreover, prior work has demonstrated channel-adaptation for single-input-

single-output (SISO) systems. However unlike SISO systems, the presence of

multiple-modes of operation in multiple-input-multiple-output (MIMO) RF sys-

tems results in different non-monotonically varying performance margins across

different points of operation of a MIMO transceiver system. While the pro-

posed concepts hold equally for a SISO systems, in this work we demonstrate

use-aware adaptation for the test case of an environment-adaptive 2× 2 MIMO

transceiver as it seamlessly switches between multiple operational modes and

modulation techniques depending on channel conditions to enable low power

operation.

3. Prior work has not considered channel coding when demonstrating adaptive
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Figure 29: Effective SNR versus channel conditions with SNR margins.

systems. This work implements adaptation while switching between coding

rates, modulation and different MIMO modes to show the benefits and trade-

offs in power savings, energy-per-bit and throughput for different low-power

adaptation modes.

3.2 Problem Formulation

To explain the need for use aware adaptation let us consider the operation of a

adaptive RF front-end operating over a range of channel conditions. Here the word

“channel” signifies the sum total of electromagnetic effects affecting the communica-

tion signal between the process of transmission of signal at the transmitter antenna(s)

to the reception of the signal at the receiver antenna(s). Every particular channel

condition results in an effective signal to noise ratio (SNR) due to combined signal

degradation in channel and front-end combination. Thus when the channel is good

available SNR is much more than the minimum required SNR (SNRmin). In such a

case the front-end could be degraded to reduce power consumption while operating

at the required maximum BER (BERmax) or EVM threshold (EVMth). It must be
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noted that the relationship of the power savings to the SNR slack (SNR− SNRmin)

is highly non-linear. Also, let us assume that the receiver be capable of operating

in two different data rates Mod1 (high throughput) and Mod2 (low throughput).

The two data rates have different minimum SNR requirements, SNRmin,Mod1 and

SNRmin,Mod2 respectively. A higher data rate requires a higher fidelity signal and

hence SNRmin,Mod1 >SNRmin,Mod2. This situation is illustrated in Figure 29. Now

let us consider the different illustrative channel conditions Ch1-Ch4 shown in Figure

29.

As shown in the figure for a good channel (Ch1) there is a lot of SNR margin

(SNR1 for Mod1 and SNR1 + ∆SNR for Mod2) and hence the front-end can be

degraded to a low performance-low power mode. The front-end can continue to

operate in Mod1 (higher data rate) upto Ch3 (where SNR=SNRmin,Mod1) . However

as channel degrades to Ch2 the SNR margin for Mod1 has decreased to SNR2 (low)

while the margin for Mod2 (SNR2 + ∆SNR) is still relatively high. Thus, at this

channel condition, with Mod1 operation the front-end cannot be degraded much,

resulting in very high power consumption (shown in Figure 30). However for Mod2

operation significant SNR margin still exists and the power consumption can be made

significantly lower through front-end degradation.
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Now let us consider the metric energy-per-bit for the front-end. Energy-per-bit is

defined as:

Energy − per − bit =
Power consumption

Throughput

Energy-per-bit is an effective measure of how much energy the front-end spends to

transmit or receive a fixed amount of data. The lower the energy-per-bit the longer

the battery life of a device. For traditional systems (power consumption remaining

constant), a low energy-per-bit necessitates a high throughput. Thus the best strategy

is to operate at the highest data rate possible. However, this strategy is not necessarily

optimal for modern adaptive systems which have adaptive power consumption. This

is because energy-per-bit is no longer a sole function of the throughput. Assuming a

SISO front-end in this case:

Power consumption = f(SNR, SNRmin) (31)

where,

SNRmin = g(Modulation) (32)

SNRmin = k(Channel, frontend configuration) (33)

Again,

Throughput = T (Modulation) (34)

Here f, g, k and T are functions which depend on the channel, front-end and proto-

col level parameters. A device may have relatively low energy-per-bit while operating

at a low throughput (if power consumption is low). For our example, as shown in Fig-

ure 30 the crossover point for energy-per-bit occurs at or before Ch2. Thus although

operating in Mod1 at Ch2 would ensure a higher throughput, switching to Mod2 at

or before Mod1 would lead to a lower energy-per-bit.
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Thus the above example illustrates that depending on the constraints on data through-

put, the low-power operation can optimized in multiple ways. We formalize two

different low-power modes as the following:

1. Data Priority (DP) mode: In certain applications the data rate is of prime

importance. For example in a video or voice call the degradation in data rate may

cause a drop in call. Hence in this mode the mandate is to:

• a. Ensure that the system operates always at the highest possible data rate for

the given channel condition.

• b. Excess SNR is traded off for lower power consumption in the front-end while

ensuring condition (a) is satisfied.

This mode would lead to the highest possible throughput. However the energy per

bit of the data may not be optimal across all possible channel conditions.

2. Energy Priority (EP) mode:

In contrast with DP mode, there are certain applications where data rate is not of

prime importance. These applications include background downloads of updates on

mobile devices and synchronization of data across cloud platform devices. In these

applications since the restriction on data rate is relaxed the same can be optimized

to obtain lowest energy per bit of the RF front-end. This ensures that the battery

lifetime is extended for the longest possible time. This is called the Energy priority

mode. Figure 31 shows the operational boundaries for the two different modes for

the example discussed earlier.

3.3 MIMO modes and performance margins

One of the primary reasons for the commercial success of MIMO systems is that they

provide the flexibility to operate in both Spatial Multiplexing (SM) [16] and Spatial

Diversity (SD) [17] Mode. In SM Mode, MIMO systems transmit two parallel data

53



Ch1 Ch2 Ch3

E
ff

e
c

ti
v

e
 S

N
R

SNRmin,mod1 

SNRmin,mod2 

Degrading Channel

Ch4

Operate in Mod2
Operate 

in Mod1

Operate 

in Mod2Operate in Mod1

EP 

mode

DP 

mode

Figure 31: MIMO Data Rates and Switching Order .

Relative Data Rate

SM SD

QPSK

16-QAM

64-QAM

4 2

48

612

Used modulation 

techniques

& MIMO modes 

Direction of 

progressively 

degrading channel 

condition

Figure 32: Switching points for different modes.

streams over the two spatially separated antennas thereby doubling the data rate over

the same frequency bandwidth. When the wireless channel degrades, SM operation

fails to meet system level performance specifications (BERmax) for values of the SNR

metric below a predetermined level. Consequently, the MIMO system switches to SD

mode of operation which can support lower SNR values while operating at an effective

data rate of a SISO system. During the operation of the transceiver in each of these

modes the higher protocol layers adaptively change the modulation technique (and

channel coding rate) depending on the channel SNR so as to always transmit at the

maximum data rate possible. This is shown in Figure 32.
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Figure 33 shows the effective SNR versus distance plot, annotated with SNR

margin required for each mode and modulation technique used. As evident the SNR

reduces with degrading channel conditions (for e.g. due to distance). For the best

received SNR the system operates at the highest data rate possible and remains

in this mode till the signal strength is just sufficient to support the the minimum

required SNR to maintain an acceptable BER (SNRmin) for this mode of operation.

Thereafter it switches to a mode having a lower data rate and hence a lower SNRmin.

While switching between modes the system follows the order shown in Figure 32.

However, as shown in Figure 33, even after adaptive modulation a significant signal

margin (hatched region) is available which is not exploited by modern front-ends to

reduce power consumption. It can be seen in Figure 33 that at the point of switching

from SM to SD mode or from one modulation technique to the other, the effective

SNR margin (SNR−SNRmin) is increased by the diversity gain due to the fact that

signals are combined in SD mode or due to reduction in SNRmin. This provides further

headroom for trading-off power versus performance in the MIMO architecture. By
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carefully tracking the channel conditions we propose to achieve “Zero-SNR-margin”

operation at ultra-low power levels. In this work we demonstrate that such adaptive

low-power operation can be achieved in two separate modes as discussed in Section

3.2, with each of these modes catering to a different throughput requirement.

3.4 Adaptation methodology

3.4.1 Adaptation Metric

In order to trade-off power for performance it is necessary to determine the threshold

of acceptable operation (or maximum acceptable BER) during the real-time opera-

tion of the device. However a large number symbols is required to calculate BER

accurately and hence is not amenable for real-time feedback system. EVM requires

significantly less time to determine from received symbols and is thus more suitable

as a real-time metric for system-level performance. Thus, EVM which has a strong

correlation with BER, is used as a metric. EVM is defined as:

EVM =

√
1

N

∑N
i=1 ||yi − xi||2
||xmax||2

(35)

Here yi and xi are received and transmitted complex data in (I + jQ) form, xmax

is the transmitted outermost constellation point and N is the total number of symbols

received. The relation between EVM and BER (Pb) for an M-QAM system with only

AWGN noise is as follows [73]:

Pb =
2
(
1− 1

L

)
log2L

Q

[√(
3log2L

L2 − 1

)
2Es

N0log2M

]
(36)

Pb ≈
2
(
1− 1

L

)
log2L

Q

[√(
3log2L

L2 − 1

)
2

EVM2
RMSlog2M

]
(37)

where, L = M ( 1
2
) is the number of levels in each dimension of the M-ary modula-

tion system, N0

2
= noise spectral density, Es=signal energy per symbol=Eblog2M and

Q[.] is the Gaussian co-error function as defined in [74]. Since, Q[] is an monotonically
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decreasing function of its argument, BER increases with increase in EVM. Note that,

EVM successfully captures all non-idealities in the channel and transceiver. It has

been shown in [35, 71, 36] that a limit on the BER for a modulation rate translates to

a threshold on the corresponding EVM. Prior work in [36] shows that for an accept-

able maximum BER threshold of 10−4 the EVM thresholds for 64-QAM, 16-QAM

and QPSK are 5%, 14% and 33% respectively.

3.4.2 Optimum tuning knob selection

In order to always operate at this EVM threshold, the specifications of the front-end

must be adaptively varied with time. To achieve this, the RF front-end modules like

LNA, Mixer, ADC and PA are designed to have tunable specifications such as Gain,

IIP3, ADC resolution and P1dB. In the proposed methodology, the entire gamut

of channel conditions is partitioned into a finite number (say m) of representative

channels. In the design and characterization phase of the system a combination of

tuning knob settings is found for each of the m channels such that, the Error Vector

Magnitude (EVM) is maintained at threshold (EVMth) of acceptable operation while

the power is minimized. These combinations are stored in the form of a mn table

(where n is the number of tuning knobs). The table is then stored on-chip. During

real time operation the EVM of the system is constantly monitored and a control

algorithm running on the baseband processor continuously attempts to maintain the

EVM at EVMth by changing the tuning knob settings using the stored LUT (Figure

34). For minimum power operation, the EVM of received constellations is monitored

in real-time and performance such as gain, noise figure and linearity of the MIMO

receiver is dynamically traded off for power consumption using a feedback control loop

such that EVM is maintained close to (but below) EVMth. Since this optimization is a

one-time exercise performed during the design phase the complexity or time involved

for this procedure is not a major concern.
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Figure 34: Offline characterization phase optimization .

The problem of finding a tuning knob combination for a given channel condition for

near-zero EVM margin operation is a constrained global optimization problem. One

approach to solve such an optimization problem is to use a multi-start constrained

optimization [16]. In this approach multiple points (say k) in the n-dimensional

search space are generated which comply with the constraints of the problem (EVM

<EVMth for this case). Each of these points is then used as a starting point by a local

optimizer to converge to a local basin of attraction. Thus at the end of the process

a list of minima is obtained, each minima corresponding to a different starting point.

If sufficient number of starting points is selected then it can be stated with a high

confidence that the minimum of the local minima so obtained is the global minima.

This work utilizes this approach to solve for the minimum power point. For a system

with tuning knobs T = [T1, T2, ..., TN ], power consumption PDC, EVM and given

channel condition Ch, our goal is to:

Minimize PDC = f(T ) s.t. EVM(= g(T,Ch))<EVMth
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Here we assume that the each tuning knob Tp (p=1 to N) has multiple states

separated by an increments of ∆p. Let the final optimized tuning knob combination

be called Topt and the optimized power consumption as PDC,opt. Also, we shall refer

to the value of the p-th tuning knob after the q-th iteration as Tp,q. Let there be

nstart number of starting points. The pseudocode for the above optimization for the

channel condition Ch is as follows:

for (g = 1 to nstart)

choose T0 = [T1,0, ..., TN,0]

iter = 1

while (|EVM − EVMth| > ε and iter < maxIter)

Calculate grad(j) = ∂PDC/∂Tj,iter−1

Choose ′m′ s.t. abs(grad(m)) = max{|grad(j)|, j = 1toN}

Tm,iter = Tm,iter−1 + ∆j × sign{−∂PDC/∂Tm,iter−1}

Tj,iter = Tj,iter−1 forj 6= m

Titer = [T1,iter, ..., TN,iter]

EVM = g(Titer, Ch)

PDC = f(Titer)

iter = iter + 1

end while

Tsave(g) = Titer, Psave(g) = PDC

end for

PDC,opt = min{Psave(1), ....., Psave(nstart)}

Topt = Tsave(k), s.t. PDC,opt = Psave(k)
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Figure 35: Convergence of multistart optimization.

The optimization is carried out in the off-line characterization phase of the device.

Since it is not done in real-time, the time to convergence is not a critical criterion to

evaluate the effectiveness of the algorithm. Moreover the algorithm must work with

discretely spaced values of the tuning knob variables (since in practice only discrete

states of the bias, supply and other tuning knob values is implementable). Considering

these requirements a gradient search algorithm is chosen as the local optimizer for

the algorithm. The multi-start technique serves to increase the confidence of finding

the global optimum to a large extent. The starting points are chosen at random

(while satisfying the EVM constraint). The nominal operating knob combination

(corresponding to the highest power consumption) is always included as a starting

point. The convergence of power for a particular channel condition with three starting

points for the system described in Section 3.5.1 is shown in Figure 35.

3.5 Transceiver Adaptation

3.5.1 Receiver adaptation

3.5.1.1 System Description

The system considered here is a 2× 2 WiMAX MIMO OFDM transceiver operating

at 2.4 GHz. In this system, the modulation schemes used are 64-QAM, 16-QAM and
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Figure 36: Adaptive MIMO receiver RF front-end.

QPSK. The transmitter is modeled as transmitting with a fixed power level through-

out the course of operation. As shown in Figure 36 there is a feedback information

path from the receiver to the transmitter which enables adaptive modulation and

adaptive MIMO modes.

3.5.1.2 Tunable circuit design and system model

The receiver incorporates 2 chains, each with an LNA, Mixer and ADC. The output

of ADC feeds to the baseband unit. For simulating the system the tunable circuit

elements (except the ADC) are designed and simulated at the SPICE level, their

behavioral models are extracted and subsequently used in MATLAB to perform com-

plete system simulation.

• LNA: The LNA has been designed to have the Gain-NF and the linearity to be

orthogonally tunable to each other [35]. This LNA is used as a tunable front-end

block in the receiver chain. Figure 37 shows the design and layout and Figure

38 shows the current consumption across tuning knobs for the LNA. The LNA

has 2 tuning knobs VGain and VIIP3 which are used to change the gain-NF and

linearity of the LNA almost independent to one another. This also results in
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Figure 37: Schematic and layout of orthogonally tunable LNA .

Figure 38: Current consumption across tuning knob combinations.

significant variation in current across the tuning knob space, from a maximum

of 18.5 mA (lowest NF, highest linearity) to a minimum of 0.76 mA (highest

NF, lowest linearity).

• Mixer: A tunable Gilbert-cell mixer with 2 tuning knobs (VT and Vdd) is used

(Figure 39). The two bias voltages can be used to trade-off Gain-NF versus

Power. It has a maximum gain of 11.84 dB and an IIP3 of 21 dBm. The

maximum power consumption is 33.75 mW.
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Figure 39: Tunable mixer schematic with VT and Vdd as tuning knobs .

• ADC: An 10-bit ADC is implemented with a capability to reduce power by

reducing resolution through bit-dropping. The power consumption is modelled

to scale linearly with the number of bits dropped.

The channel is modeled to have attenuation due to Path Loss (PL), noise floor

and multipath fading characteristics. The current channel model consists of the

following components:

– Path loss (PL): Relatively slow changing signal attenuation with distance

of the mobile station (MS) from the base station (BS). If d is the distance

between the BS and MS antennas then: PL ∝ d(−n) where n ≈ 2.5− 3

depending on atmospheric conditions.

– Noise Floor: The channel is modeled to have fixed additive white Gaussian

noise (AWGN) floor.

– Non-Line of Sight (NLOS) multipath fading: In an urban environment

there is no direct line of sight path from the base-station to the mobile-

station. In such an environment multiple reflected indirect signal paths are

summed at the antenna to get the effective signal. This can be modelled

as a signal whose amplitude has a Rayleigh distribution. Such a Rayleigh
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faded attenuation is much more rapidly changing than path loss because

small variations in position of the antenna causes changes in the phases of

the summing signals.

A key assumption here is that fading does not change significantly over the du-

ration of a packet. The system is designed to track the effective attenuation due

to different channel impairments. Each of the h parameters (shown in Figure

36) follows a similarly distributed (but not temporally identical) fading chan-

nel. Modern radio front-ends already have sophisticated sensors/circuits and

baseband algorithms built-in to evaluate the magnitude of channel impairments

like effective path loss and interferer strength. Two such widely-used metric is

Received Signal Strength Indicator (RSSI) and Received Channel Power Indica-

tor (RCPI), which gives an estimate of the in-channel power received and hence

the total attenuation from the channel. Given the strength of the transmitted

signal (usually specified by standard and hence is known in advance), the path

loss can be computed.

3.5.1.3 Receiver adaptation results

In order to demonstrate channel adaptive low-power operation we must identify the

EVM margins that inherently exist in the MIMO RF front-end. Figure 40 shows

the working of a static MIMO RF system across varying channel conditions. For a

given MIMO mode (say SM 16-QAM) as PL increases, the SNR degrades resulting

in a reduced EVM margin. This continues until the EVM is equal to EVMth for that

MIMO mode. If the PL increases any further, the system must switch to a lower

data rate (SD 64-QAM in this case) to operate within the maximum BER constraint.

Let us denote the PL at which a system switches from i-th mode to the (i+1)-th

mode to be PLi. The maximum EVM margin for a particular mode occurs at the

switching point between the previous (higher data rate mode) and the particular
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mode considered. This is because switching from a higher data rate to a lower data

rate opens up new SNR headroom through:

• reduction in SNRmin requirement across modulation rates and hence an increase

in EVM threshold (EVMth)

• an increase in effective SNR (when switching from multiplexing to diversity).

Thus the maximum power savings can be achieved at this point of transition

PLi. Figure 40 shows the variation of EVM as Path Loss increases from 90dB to

150dB. The graph also shows the EVMth for different modulation techniques. The

difference between the EVM at any PL and the EVMth for the modulation technique

used at that PL gives the EVM margin for that PL. As shown in Figure 40 , the

system switches between different modes and modulation techniques in the sequence

illustrated in Figure 32. The EVM margin at a particular PL is a key indicator of

how much power can be saved at that particular PL. We next analyze and present

the results for the two modes of low-power operation.

i) Data Priority (DP) Low-Power Mode: In this mode the system operates

at the highest data rate possible at any particular channel condition. Hence the EVM

margins illustrated in Figure 40 are traded-off for power using a multi-dimensional

constrained optimization algorithm discussed in Section 3.4B. Figure 41 shows the

optimized power consumption versus the PL for the MIMO RF front-end. It can be

seen from Figure 41 that the maximum power consumption takes place at those values

of PL where EVM is nearly equal to EVMth. That is maximum power consumption

occurs when the channel is just good enough to sustain a certain communication

mode and thus the block level specifications of the receiver components cannot be

degraded any further. The channel-adaptive receiver leads to 3× power savings over

a static-receiver.
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Figure 41: MIMO Receiver Power consumption in DP mode .
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ii) Energy Priority (EP) Low-Power Mode: In Energy Priority mode the

restriction to operate at the highest data rate is relaxed. The energy-per-bit in a

MIMO system is proportional to a metric M defined as follows:

M =
Power

Bits per Symbol ∗Multiplexing factor
(38)

Here bits per symbol is log2(xi) where xi = 64, 16 or 4 depending on whether

the modulation used is 64-QAM,16-QAM or OPSK. In this work, in order to achieve

lowest Energy per bit the metric M has been be minimized in the EP mode.

Let Pkj be the optimized power consumption for the k-th communication mode

for the j-th channel condition. Then for the j-th channel the mode of operation should

be such that the optimum proxy metric M is achieved, i.e.

Mopt,j = min({Pkj/(bk ∗mk)}) (39)

Here bk is the bits per subcarrier in an OFDM system and mk is the multiplexing

factor (1 for SD and 2 for SM). However Pkj is a very complicated non-linear func-

tion of channel conditions and the power versus tuning knob profile of the individual

blocks in the receiver. Moreover power consumption and bit rate do not scale lin-

early. Thus the approach adopted for the optimization is to plot the metric M for

all communication modes over the entire gamut of channel conditions. This is shown

in Figure 42. The power consumption is optimized for the MIMO front-end for all

modes of operation over the set of discrete PL conditions spanning the entire gamut

of channels. Thereafter the corresponding values of M are plotted. The value of M

for a operational mode (say SD 64-QAM, i.e. point “A” in Figure 42) peaks sharply

near the boundary of its operation (PL=135 dB) i.e. where EVM =EVMth. Near

these points the M values for this mode of operation are higher than the next lower

mode (i.e. SD 16-QAM). Thus although it is possible to transmit at the higher data
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rate near this boundary, in order to have the lowest energy per bit it is required to

switch to a lower data rate. In summary, EP mode is achieved by following the curve

having the trajectory of lowest M value at any point of time (in Figure 42) at any

particular path loss.

Figure 43 shows the plot of M versus the quantized channel index for both EP and

DP modes of operation. Each of the discrete PL points, for which the front-end is

optimized, is a channel condition and can be denoted by a channel index. The highest

channel index corresponds to the maximum PL and hence the worst case channel.

Similarly, the lowest Channel index corresponds to the lowest PL and hence the best

case channel. EP mode can save upto 2× energy per bit over the DP mode. The

penalty is paid in terms of data throughput. The relative throughput of both modes

versus the channel index is shown in Figure 44. It is seen that for certain channels

EP mode can be 1.5×slower than the DP mode.
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Figure 45: Adaptive low-power MIMO transmitter.

3.5.2 Transmitter adaptation

3.5.2.1 System Description

Figure 45 shows the schematic for a MIMO transmitter front-end with tunable power

amplifiers. The power amplifier (PA) is one of the most power-hungry blocks in the

system. Requirement for large output power and high linearity in the PA means

that the power consumption is very high. However the highest power consumption

of the PA often corresponds to the highest output power and highest linearity (we

take P1dB as metric of linearity) of the PA. This peak performance is only required

for the worst case channel. For other channels (when the effective SNR is more than

the minimum required SNR) the output power can be reduced. This in turn reduces

the linearity requirement of the PA. Thus if the PA can be reconfigured to operate at

a lower linearity (shown in Figure 46) along with output power back-off, significant

savings in d.c. power consumption can be achieved.

3.5.2.2 Tunable PA design and system model

An adaptive PA (2.4GHz, 16 dB gain) has been designed in TSMC 0.25µ CMOS

process for single-stage class A operation (Figure 47). The operating point trajectory

for changing gate and drain bias voltages is shown in Figure 48. Lower values of
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biasing points reduce the signal swing, in turn reducing P1dB. But this reduction in

P1dB allows reduced DC power consumption in the PA. Hence, depending on the

channel conditions when high P1dB is not required, the PA can be operated at lower

power consumption levels without compromising linearity.

The variation in PA power consumption with changing linearity P1dB is shown

in Figure 49. The channel model used in these simulations is the same as for the

receiver adaptation case discussed in Section 3.5.1. The behavioral model of the
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Figure 47: Adaptive class A PA circuit.
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Figure 48: PA operating point trajectory.
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Figure 49: Power consumption versus Linearity of the PA

PA is extracted from circuit simulations and used in MATLAB for complete system

simulations.

3.5.2.3 Transmitter adaptation results

The transmitter system is optimized for both highest throughput low-power operation

(DP mode) and lowest energy-per-bit-mode (EP mode). As shown in Figure 50 across

degrading channel conditions the relative energy-per-bit (quantified by the quantity

M described in equation 38) in DP mode can be upto 4× larger than in EP mode.

The savings in energy-per-bit comes at the cost of reduced throughput of up to

2× as shown in Figure 51. Thus, depending on the throughput requirements of
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Figure 51: Relative throughput across different channel conditions for adaptive trans-
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the application accessing the RF transmitter front-end different low-power strategies

could be adopted to prioritize either throughput or energy-per-bit.

3.5.3 Effect of Coding Rate

So far, in this work it has been assumed that the front-end adapts its power con-

sumption, while switching between MIMO modes and modulation techniques. Thus

variation in throughput is due to change in MIMO modes and modulation techniques
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only. However in addition to the above, modern communication systems employ cod-

ing techniques [75] to lower the SNRmin for a given BER and modulation technique.

Through coding redundant bits are added to the transmitted data stream so that

these could be used for error correction at the receiver. Thus for certain channel con-

ditions for which the BER (without coding) was above the maximum acceptable value

(BERmax), could have BER at or below the BERmax with coding. This is equivalent

to a gain in SNR due to coding. However since additional bits need to be transmitted

in excess of the information bits, coding leads to a degradation of the throughput of

a system. In this section we demonstrate that the proposed DP and EP modes of

adaptation can lead to significant savings even when coding is considered in addition

to the MIMO modes and modulation techniques. We demonstrate this with the help

of a MIMO transmitter, but the results hold for SISO and MIMO transmitter and

receiver systems.

In order to determine the effect of coding rate on the BER of a system, the BER

of an OFDM system in AWGN channel is studied for QPSK for different coding rates.

The coding has been implemented with the help of a convolutional encoder with a

constraint length of 7 to get a code rate of 3/4, 2/3 and 1/2. Code rate is defined as

follows:

Code rate =
Information bits transmitted

Total bits transmitted
(40)

Therefore to transmit every 10 information bits, 20 bits are to be transmitted to

achieve a coding rate of 1/2. This leads to significant SNR gain over the uncoded

data stream. The rates 2/3 and 3/4 are achieved by “punctured coding” which

involves dropping a fraction of the extra bits added by the encoder, thereby boosting

the effective throughput at the cost of a reduced SNR gain. a software-controlled

adaptive coding and decoding system can be implemented as shown in Figure 52

Initially a convolutional encoder encodes the raw data to a rate 1/2 code. Thereafter
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Figure 52: Implementation of software controlled dynamic coding rate selection

depending upon the desired coding rate some bits appended by the convolutional

encoder is dropped. At the receiver end the baseband processor inserts dummy bits

in place of the bits dropped to get a 1/2 rate code. Thereafter a viterbi decoder

decodes this 1/2 rate code to extract the original raw data transmitted. The BER

vs. SNR plot for QPSK modulation techniques is shown in Figure 53. For QPSK, at

a BER of 10−4 a code rate of 1/2 gives 6 dB coding gain over the uncoded stream.

Rate 2/3 and 3/4 have higher effective throughput than rate 1/2 code but provide

less SNR gain. Similar results can be observed for 16-QAM and 64-QAM.

Due to the SNR gains of different coding rates, the EVMth for these coding rates

also increase from the uncoded EVMth . Figure 54 shows the simulation results for

EVMth for different modulation and coding rates for a BER of 10−4. These EVMth

are used in system level simulations to demonstrate the efficacy of the DP and EP

modes for a RF transmitter in a MIMO system (described in Section 3.5.2) in presence

of coding gain. For the simulated system, Table 2 shows the possible choices of the

MIMO mode, modulation technique and coding rate which are available to higher

protocol layers and the baseband processor.
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Table 2: Possible choices of mode, modulation and code-rate

MIMO mode Modulation Coding rate

SM 64-QAM 3/4

SD 16-QAM 2/3

QPSK 1/2

Each combination of MIMO mode, modulation and coding rate has its own EVMth

and throughput. The relative throughput for all combinations has been tabulated in

Table 3 arranged in decreasing magnitude. During optimization phase, for a channel

condition the mode giving the highest possible throughput (DP mode) or lowest

energy-per-bit (EP mode) is chosen. The resultant relative energy-per-bit is shown

in Figure 55. The result has been compared to traditional front-ends which have

a constant power consumption but variable throughput (channel dependent MIMO

mode, Modulation and coding rate). It can be seen that DP mode performs worse

than EP mode in terms of energy-per-bit. However DP mode has lower energy-per bit

than traditional system for most channel conditions. The throughput of the system

is plotted in Figure 56. Traditional systems would have the same throughput as the

SP mode, however EP mode has significantly lower throughput for many channel

conditions.

3.6 Hardware Validation

3.6.1 Receiver adaptation

In order to prove the feasibility of the proposed concept a hardware demonstra-

tion consisting of a 2 × 2 MIMO system operating in spatial multiplexing and di-

versity modes at 2 GHz is setup. In the setup, a tunable RF MIMO front-end is

setup as shown in Figure 57. Each front-end chain consists of an up-conversion
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Table 3: Relative Throughput For Different Mode, Modulation And Code Rate

MIMO mode Modulation Coding rate Relative Throughput
SM 64-QAM 3/4 9
SM 64-QAM 2/3 8
SM 64-QAM 1/2 6
SM 16-QAM 3/4 6
SM 16-QAM 2/3 5.33
SD 64-QAM 3/4 4.5
SM 16-QAM 1/2 4
SD 64-QAM 2/3 4
SD 64-QAM 1/2 3
SD 16-QAM 3/4 3
SM QPSK 2/3 2.67
SD 16-QAM 2/3 2.67
SM QPSK 1/2 2
SM QPSK 3/4 1.5
SD QPSK 3/4 1.5
SD QPSK 2/3 1.33
SD 16-QAM 1/2 1
SD QPSK 1/2 1
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Figure 55: Relative energy-per-bit comparison with coding.
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Figure 56: Relative throughput comparison with coding.

mixer (MAX2039) (part of the transmitter) and the RF receiver front end with

LNA (RF2370) and down-conversion mixer (ADL5801). Each of the LNA and the

down-conversion mixer has tunable bias and supply knobs (a total of 4 knobs per

RF chain) to trade-off performance versus power. An OFDM modulated random

data stream is generated in MATLAB and sent across the RF chain through a DAC

(NI PXI − 5412). The output of the RF chain is acquired by an ADC card (NI

PXI − 5105). A 2× 2 channel is implemented in software after the signal is acquired

by the digitizer. Fifteen different channel conditions are created through attenuation

and noise addition. Channels are ordered from best to worst, with channel 1 being

the best and channel 15 the worst.

In the setup the performance of the system in terms of power consumption and

EVM is recorded across all possible combinations of the 4 tuning knobs for 15 differ-

ent channel conditions (enumerated by channel index). This is done for both spatial
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diversity and spatial multiplexing mode for QPSK modulation. Subsequently, as-

suming an EVM threshold of 33%, the tuning knob combination with lowest power

consumption is selected for each channel. The relative power consumption in an

adaptive RF front-end across 15 channels is shown in Figure 58. From this graph it

can be seen that substantial savings (up to 2×) in power by real-time tracking of the

channel conditions can be obtained. The operation in EP mode is shown in Figure

59. EP mode demonstrates additional energy per bit savings (upto 10%) over DP

mode operation. This hardware setup thus demonstrates the efficacy of the proposed

low-power technique for MIMO RF front-end.

3.6.2 Transmitter adaptation

Although, in this work the concept of use-aware front-end adaptation has been demon-

strated in simulation for a MIMO transceivers, it holds true for SISO transceivers as

well. To demonstrate transmitter adaptation we use a SISO front-end as shown in

Figure 60. The key tunable element in the front-end is the tunable PA (MAX2242)

whose linearity can be traded off with power consumption by changing the VBIAS set-

ting. As VBIAS is changed from 1V to 2V the linearity of the PA reduces and so does
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Figure 60: Transmitter adaptation hardware setup.

the current consumption. The relationship of VBIAS with linearity back-off and cur-

rent consumption is shown in Fig 61. The OFDM base-band signal generated by the

PC and PXI 5412 DAC is upconverted to a center frequency of 2 GHz by MAX2039

upconversion mixer. The channel is emulated through attenuation and noise addition.

Different channel conditions are created by addition of different amount of noise is

generated through the setup shown in Figure 60. The received signal is downconverted

by HMC687LP4 downconversion mixer and captured by PXI5105 digitizer. Both the

DAC and the digitizer are mounted on the same chasis and operate at 60 MSPS. The

system is setup to operate with QPSK modulation for two different code-rates: 1 and

1/2. From prior simulation data it is determined that for a BER of 10−6 the EVMth

for the 2 code-rates are 19.5% and 42.5% respectively. The details of the setup are

summarized in table 45.

The band-limited channel noise is synthesized through the algorithm suggested in
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Figure 61: Transmitter characteristics .

Table 4: Adaptive Transmitter Hardware Setup

Transmitter Baseband signal generation PC (MATLAB)
DAC PXI 5412 (60 MSPS)

Upconversion (@ 2 GHz) MAX2039
Tunable PA MAX2242

Channel Attenuation 20 dB (Fixed)
Noise generation @ 2 GHz Noise generator setup

Receiver Downconversion (@2 GHz) HMC687LP4
Digitizer PXI5105 (60 MSPS)

83



[76] with a single DAC matrix model. By setting discretely sampled digital data of

the desired type of channel noise as the target waveform, the algorithm is capable of

digitally controlling the noise characteristic of the synthesized waveform even in the

high-order Nyquist zones. This is achieved by optimizing the input data sequence

to the DAC in such a way that the distortion, noise floor and unwanted spectral

spurs within the given bandwidth of a certain image tone at DAC’s output is min-

imized. This targeted image spectrum is then used as the primary output of the

band-limited noise generator. Other possible methods for test generation and test

response acquisition have been discussed in [77, 78, 79]

The noise generation setup injects variable amounts of noise into the system to

create three different channel conditions which are labelled as “good” (Channel 1),

“bad” (Channel 2) and “worst” (Channel 3). Both the output power and linearity

of the PA can be changed simultaneously depending upon channel conditions. The

power consumption or Energy-per-bit of the PA can be optimized depending on the

channel condition and the type of operational mode (DP or EP) selected. Figure 62

and 63 shows the power consumption and relative energy-per-bit of the adaptive PA

at different channel conditions for the 2 different code rates.

The PA cannot operate at channel 3 with a code-rate of 1 because the EVM

>EVMth for even the highest power consumption. As can be seen the power con-

sumption increases with worsening channel conditions. At channel 2 the power con-

sumption is 3.3× higher for a code-rate of 1 as compared to a code-rate of 1/2.

However the throughput is only 2× higher (for code-rate=1). This results in a 40%

less relative energy-per-bit when operating in code-rate 1/2 (as compared to 1). Thus

depending on the mode of operation selected (EP or DP) at channel 2 the code-rate

selected would be different. This would lead to a benefit in throughput (2×, if op-

erating in DP mode) or energy-per-bit (40%, if operating in EP mode). Table 5

summarizes the above discussion.
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Table 5: Code-Rate Used For Different Channel Condition And Modes

Channel Good(1) Bad(2) Worst(3)

DP 1 1 (2× throughput compared to EP ) 1/2

EP 1 1/2 (40% less energy − per − bit compared to DP ) 1/2

3.7 Summary

This work establishes that low-power channel adaptive front-ends may be designed

to operate in multiple modes to either guarantee highest throughput operation or

to ensure lowest energy-per-bit operation. The concept is illustrated using a low-

power MIMO transceiver, with adaptive RF front-end, switching between multiple

modulation techniques, MIMO modes and channel code-rates. The same principles

also hold for SISO systems. The proposed theory is then demonstrated in hard-

ware systems for both receiver and transmitter. Depending upon the throughput

requirements of the application using the front-end one of the proposed modes could

be used for communication. The results presented in this work assume a particular

channel model. Optimization of baseband processors for more complicated channel

models have been demonstrated in prior literature [80]. A higher dimensional or more

complicated model of the channel space would change the variation of EVM across

the tuning knob space for different channel parameters. This would lead to differ-

ent values of optimal tuning knob combinations across channel space. However the

underlying concept of use-aware adaptation proposed in the current work would still

drive the optimization process and the different trade-offs for the DP and EP modes

of operation. A study of the two proposed adaptation modes for different types of

channel models (for e.g. correlation effects, Doppler effects, presence of interferers)
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could be an interesting subject of future research. Thus this work presents a key ad-

vancement in the domain of adaptive front-end design which is critical for low-power

communication system development.
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CHAPTER 4

ADAPTIVE RF FRONT-END DESIGN VIA

SELF-DISCOVERY: USING REAL-TIME DATA TO

OPTIMIZE ADAPTATION CONTROL

It has been established in prior research that significant power can be saved by dynam-

ically trading off the performance of individual RF modules for power consumption

across changing channel conditions. It has also been shown that the control law that

reconfigures the RF front end must take into account the process corners from which

the RF devices are selected in order to trade off performance for power in an optimal

manner (minimum energy/bit at prescribed data throughput). Design of such an op-

timal control law is virtually intractable due to the complexity of simulating the RF

front end across all possible channel and device process conditions. Hence, existing

control algorithms are based on a coarse sampling of the channel × process space,

suffer from modelling inaccuracies and are inherently sub-optimal from a performance

vs. power perspective. In contrast, in this work, we propose a RF front end control

methodology that is optimized during real-time operation, does not require up-front

simulation across all channel × process conditions and is not susceptible to simulation

inaccuracies. This results in far more robust/optimal control as opposed to current

practice. A simulated annealing (SA) based framework for process optimization is

proposed along with the use of built-in sensors for monitoring of performance and

power. Simulation results and hardware data are presented to show the feasibility of

the proposed approach.
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4.1 Problem Formulation

A key difficulty in formulating the control law above is that of determining how multi-

ple RF module “control” parameters (e.g. bias currents/voltages) must be modulated

across different channel conditions to save power without compromising bit error rate.

Assuming N control parameters [p1, p2, .., pN ] in a feedforward control system, N func-

tions are determined p1 = f1(CQ), p2 = f2(CQ), ..., pN = fN(CQ) to compute the

values of the parameters [p1, p2, .., pN ] from the current estimated value of wireless

channel quality CQ with the objective of minimizing system level power consumption

across all channel conditions CQ. Determination of the functions f1(), f2(), ..., fN(),

is currently performed via simulation of the nominal RF system across diverse chan-

nel conditions and by a nonlinear optimization algorithm for minimizing RF system

level power consumption [1, 35]. This is possible only via use of (approximate) be-

havioral level RF models along with statistical channel models and is inherently very

compute-intensive. A Fuzzy Logic based approach to solve the same problem has been

proposed in [81]. The modelling accuracy and computational complexity problem is

made worse by the observation in [64] that in addition to the channel quality CQ,

the functions f1(), f2(), .., fN() must also include as input, the process conditions

corresponding to each RF device. In fact, it is shown that if the control law for a

nominal device is applied to a process-perturbed device, as much as 50% excess power

may be consumed by the latter for specific channel conditions (50% excess power over

a control law for the process perturbed device that also takes process conditions into

account).

Assume that we are concerned with M RF modules (LNAs, mixers, PA) and that

we associate M process conditions [PC1, PC2, ..., PCM ], with each of these M RF

modules. To accommodate process conditions along with channel quality CQ, the

control law formulation can be restated as determining the functions f1(), f2(), .., fN()

such that pi = fi(CQ,PC1, PC2, .., PCM), i = 1, 2, ....N in such a way that system
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Figure 64: Low-Power Channel-adaptive RF Receiver proposed in [1]

level power consumption is minimized across all channel and process conditions. This

results in an explosion of simulation and optimization complexity across all channel
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and process conditions and clearly requires that in addition to channel quality CQ,

the process condition (or specifications of individual RF module that are related to

the process conditions/aggregate threshold voltage) must also be known for all the

RF modules concerned. The latter requirement is not easy to satisfy due to the

difficulty of measuring the performances of embedded RF devices and requires the

use of sophisticated BIST techniques [38] with performance/area overhead.

The existing low-power channel adaptive RF system[1] is shown in Figure 64. Here,

the entire gamut of channel conditions is partitioned into a finite number (say m) of

representative channels. In the characterization phase of the system a combination of

tuning knob settings is found for each of the m channels such that, the Error Vector

Magnitude (EVM) is maintained at threshold (EVMth) of acceptable operation while

the power is minimized. These combinations are stored in the form of a m×n table

(where n is the number of tuning knobs) as shown in Figure 64. The channels are

ordered such that the first row represents the best channel (and hence minimum

power consumption) and the last row represents the worst case channel (maximum

power consumption). This optimization can be done with a constrained optimization

algorithm [1]. The table is then stored on-chip. During real- time operation the

EVM of the system is constantly monitored and a control algorithm running on

the baseband processor continuously attempts to maintain the EVM at EVMth by

changing the tuning knob settings. If the EVM increases the feedback loop attempts

to bring it below EVMth by moving the pointer to the following row of the table

(having higher power consumption). Similarly it moves the pointer back when the

EVM is below EVMth, saving power.

As explained earlier a critical drawback of this method is that it does not consider

process variations. In order for this scheme to be process tolerant, the table must be

modified for every device on which it is stored. [64] proposes that this problem may

be tackled by constructing a number of such tables for different processes (based on
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simulations) and storing only one of these tables on-chip by process detection at time

of testing. However this results in very coarse approximations and hence sub-optimal

results.

One way to resolve this problem is to allow the system itself to “discover” the

optimum nature of the functions f1(), f2(), .., fN() so that simulation and power opti-

mization across all channel and process conditions are not required. We call this “Self-

discovery” and in the proposed methodology the system automatically customizes

these functions for each process perturbed front-end based on real-time EVM (from

baseband processor) and power (from current sensor) measurements. The system

uses nominal settings obtained in off-line simulations as a starting point to converge

to the optimized channel-adaptation control for each individual front-end.
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4.2 Methodology

The proposed methodology for RF system control is illustrated in Figure 65. In this

scheme, the system tries to “discover” the optimal channel-dependent low-power con-

figuration in presence of process variations while simultaneously adapting to channel

conditions. It uses the stored table for nominal device as the starting point of process

optimization. During real time operation the system detects the channel conditions

using sophisticated sensors and switches to the tuning knob settings stored on the

appropriate table row. The real-time process adaptation engine perturbs the tun-

ing knob settings around the stored value in the table, to find other settings in the

N -dimensional knob space which might give a better performance for the particular

device. This exploration continues till the channel conditions change. At that point,

it updates the particular row of the table with the best combination it has found
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Figure 66: Flowchart illustrating optimization algorithm
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over the search time. Thereafter it resets the optimizer’s internal state values to start

working on the table-row corresponding to the changed channel conditions. This

“load-search-save” process carries on till a sufficiently large predefined number of it-

erations are exceeded. Thereafter the process optimization is deemed to be complete

and the optimizer may be bypassed. Henceforth, the device continues to adapt to

channel conditions with process optimized tuning knob combinations loaded directly

from the table (Figure 65). The above discussion is summarized in the form of a

flowchart in Figure 66.

The underlying algorithm used for such an optimization is Simulated Annealing

(SA) (discussed in Section III) which is a stochastic optimization technique. Since the

channel keeps on changing for a mobile device the optimization for a particular row

of the table cannot be completed in one uninterrupted sequence of operations. Thus

the entire table optimization is actually an aggregate of a number of optimizations,

one for each row of the table, each of which is temporally distributed according to

the sequence of channel condition occurrences.

4.2.1 Stochastic Optimisation:Simulated Annealing(SA)

In a real world scenario the tuning knobs can only be changed in fine discrete steps

starting from a stored initial condition. Moreover the relationship between the EVM

and tuning knob parameters and process is computationally intractable; the algo-

rithm needs to be implemented on the system without significant overhead and the

optimization should converge quickly. For these reasons, we use SA optimization

technique [82, 83]. A SA process starts with a system in a known tuning knob config-

uration (s0) at known “energy” (or cost function, say F ) and an initial “temperature”

(T0). The energy of the system is dependent on the current configuration(s) of the

system. The system is perturbed slightly to a new state (snew) to get a new energy

(Fnew). The amount of perturbation is directly proportional to the temperature T
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(which decreases continuously). If Fnew is less than F we take snew to be the new

configuration. However, if Fnew is greater than F then we can accept the new state

snew with a certain probability, which decreases with decreasing temperature. This

algorithm when run for sufficient time converges to an optimal configuration giving

minima for the energy function F.

4.2.2 Heuristics used in Simulated Annealing

In this section the heuristics used in the various functions used in the simulated

annealing algorithm are described.

4.2.2.1 Temperature

In SA the slower the rate of cooling of T the more time it takes for the solution

to converge. However it also means the search space is more thoroughly explored

forming a fundamental trade-off. In the proposed system the temperature T at any

iteration is given as:

T ← Tprev ∗ 0.95 (41)

4.2.2.2 Neighbour selection

The ‘neighbour’ function takes the current tuning knob combination and perturbs it

by a random amount depending on the temperature of the system to produce the

next state of the system. The amount of perturbation is directly proportional to the

instantaneous temperature(T ) of the system.

4.2.2.3 Energy function F

The aim of the algorithm is to find the optimum configuration for a system given

a particular channel condition so that it may maintain the system at a maximum

allowable EVM(EVMth) with minimum power consumption.The initial estimate of

the optimal knob configuration(s0) for the system is obtained through offline charac-

terisation for nominal device. The initial EVM for a particular channel (and hence a
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particular row in the table) is given by:

EVM0 = f(s0, process) (42)

The initial EVM(EVM0) solely determines the nature of Energy function to be

used in the subsequent optimization process.If the device performs worse than nominal

then EVM0 >EVMth , we want to reduce EVM to close to EVMth ,choosing our

Energy function to be:

F = abs(EVM th − EVM) (43)

If the device performs better than nominal we have EVM0<EVMth and we can

trade-off some additional power for performance. Hence we choose the power con-

sumption value obtained as in Section IIIC:

F = Power (44)

4.3 System Description

4.3.1 Receiver Architecture

The receiver chain with the feedback loop for the control circuitry is shown in Figure

67. The feedback loop consists of the forward receiver chain, the channel EVM

calculation and the control logic which tunes the LNA gain and IIP3, ADC over

sampling ratio(OSR) and the FFT word size to operate at the threshold of acceptable

BER(EVM). Some of the most important building blocks are described below:

• LNA:The system has a tunable LNA with a bias knobs Vcs (0.5V − 0.8V ) and

tunable supply Vdd (1V − 1.8V ) which can be use to modulate its performance.

It has a nominal Gain, IIP3, NF and Power of 17.9dB,−12dBm, 3.3dB and

32.7mW respectively. The tuning knobs were selected to achieve maximum

tunability for the circuit.

• Mixer and Filter: We use a mixer with [69] operating at 2.4 GHz with 1.1dB

power gain, 19.7dBm IIP3 and 13.6dB NF.
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• Sigma-Delta ADC: The output of the VGA is sampled and quantized by a

continuous time sigma-delta converter. For an nth order continuous time delta-

sigma modulator with a quantization step of 4 the in-band quantization noise

is given by:

n0 =
erms ∗ πn[√

2n+ 1.OSR
(2n+1)

2

] (45)

where erms =
4√
12

(46)

For our work we use a second order delta-sigma modulator (n = 2) with a 3−bit

quantizer. Thus by varying the sampling rate we vary OSR (= 2, 4, 8) and hence

the quantization noise added n0. The power consumed by a Continuous-time

Sigma Delta ADC can be decomposed into 3 parts, i.e. power consumed by

the analog circuitry (Pana consumed by OTAs), power consumed by the digital

circuitry (Pdig consumed by ADC and DACs) and the power consumed by the

decimation filter following the modulator (Pfilter). We assume Pdig and Pfilter

scale linearly with OSR.

• FFT Processor:The post-distorted output is passed through a FFT processor

with an adaptive word size. The word size can be traded off with power [84].

The power values given in [85] are for 64 point FFT. For our case we have a

128 subcarrier signal. Hence we scale the power numbers to fit our case.
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Thus effectively in our system we have 4 tuning knobs Vcs and Vdd (LNA), OSR

(ADC) and bit drop (FFT Processor). All the models in this study are simulated in

MATLAB.

4.3.2 Channel Model and Channel Quality Estimation

In order to adapt to channel conditions the receiver must first estimate the quality

of signal it receives. In our system the channel is characterised by several effects like

attenuation, fading , interferer addition and noise addition. For the sake of brevity

the detailed modelling of channel effects is not discussed in this work.

Modern radio front-ends already have sophisticated sensors and baseband algo-

rithms built in which sense the channel quality. One such widely-used metric is

Received Signal Strength Indicator (RSSI), which gives an estimate of the in-channel

power received. [68] discusses a method of detecting the power of in-band interfer-

ers.This is done by sensing the total in-band power by using a power detector between

the mixer and the channel-select filter. The RSSI can then be subtracted from the

in-band power to get the in-band interferer power. [69] discusses the design of a

wide-band jammer detector which can be used to sense the total power received at

the receiver. Thus combining both the outputs of interferer power detectors one can
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Figure 68: Detailed schematic of the proposed RF chain and baseband circuit show-
ing signal and interferer estimation points.
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get the idea about the total interferer power at the input of the LNA. Combining in-

formation from both RSSI and interferer strength estimation the system can estimate

the appropriate configuration in the loci which it needs to adopt.

4.3.3 Current Consumption Estimation

At every iteration of the optimization, it is required to monitor on-chip power con-

sumption at different knob values as tuning knob vs. power relation changes from

device to device with process variation. The RF front end is powered by a dedicated

voltage regulator where the error amplifier senses the difference between the refer-

ence voltage and the supply voltage.In [86] the output voltage of the error amplifier

changes as the supply current changes so that it can maintain the supply voltage to

the fixed level. By monitoring this error voltage at different tuning knob settings,

current flow and hence power consumption can be computed.

4.3.4 Resource overhead

The main tasks involved in the algorithm are Neighbor selection (random number

generation), Temperature calculation (iterative multiplication) and Energy function

calculation (very simple function of the EVM and Power sensors). Thus SA algorithm

can be implemented as a software routine on the digital processor which can easily

handle such a task. If required the random number generation hardware could also be

implemented as an ultra-low power, low-area block as in [87]. In terms of additional

memory the algorithm requires the storage of Iteration counter, Temperature and

Energy functions for successive iteration for every channel(3 ∗m additional bytes of

memory for every m channels). If we assume that each OFDM symbol is 4µs long and

it takes approximately 10000 symbols for EVM calculation, then we only need to run

one iteration every 40ms (∼ 25Hz). Moreover this process-adaptation mechanism

can be switched off once a predetermined number of iterations are complete.
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4.4 Results

In this work a set of 8 channels ranging from bad to good (channel 1 is worst and

channel 8 is best) is constructed and the proposed idea is demonstrated on these set

of channels. For a BER of 5 × 10−4 the EVM threshold for QPSK modulation is

35%[1]. We keep a guardband of 2% to get an EVMth = 33%.

4.4.1 Nominal Table

During design and characterization phase of the transceiver system a nominal table

is constructed. Since this is a one-time procedure the time taken to optimize is not of

major concern. In our case we use a simulated annealing technique to obtain the initial

table. The methodology is similar to the “EVM0<EVMth case” described in section

II. In SA a slower cooling schedule tends to give a more accurate optimized value.

Thus a much slower cooling schedule (as compared to the real-time optimization) is

used. Here in every iteration:

T ← Tprev ∗ 0.98 (47)

The optimized channel dependent power consumption for the nominal case and

EVM and Power convergence with iteration for a particular channel is shown in Figure

69.

4.4.2 Real-time evolution of the table

In order to demonstrate the real-time temporally distributed stochastic process adap-

tation procedure we assume that the receiver encounters the channels with a certain

probability distribution. In this work all channels are assumed to occur with equal

probability. However the adaptation works for all types of probability distribution of

occurrence of channels. Using Monte-Carlo simulations a number of process variant

instances of the LNA are generated. Starting from the nominal settings, the system is
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simulated with randomly occurring equiprobable channel conditions to observe how

the table is modified with time. We demonstrate the adaptation using 2 instances of

the LNA at two extreme ends of process variation.

(1) Instance 1 results in the system performing better than the nominal and

EVM0<EVMth across the 8 channels with the settings of the nominal table. Hence

there is scope to trade off additional power versus performance(use cost function in

equation (44)). The simulated annealing algorithm adapts the table in real time with

successive perturbations. This is shown in the Channel versus EVM and Power curves

in Figure 70. Here for N iterations the receiver is expected to encounter each of the

8 channels for N/8 iterations(given uniform likelihood of occurrence). Thus we see

that in the case of Instance 1 we can achieve significant savings in power (≈ 33%).

(2) Instance 2 results in the system performing worse than the nominal. Hence

EVM0 >EVMth for all the 8 channel conditions when operating with nominal knob
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Figure 69: Optimized Power Consumption for nominal device across channels and
EVM and Power convergence for a particular channel
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settings. Thus the process adaptation algorithm(using cost function described in

equation (43)) tries to bring the EVM close to EVMth, thus leading to an increase

in power consumption across different channels. This is shown in Figure 71. In this

case the performance of the LNA is so degraded, that the receiver might not work for

some channels even after process adaptation. In this case we observe that initially the

device does not perform within the 33% EVM bound for any channel whereas after

process adaptation it operates correctly for 4 channels(index 5 to 8) and is inoperable

in the remaining 4. Thus it operates in a reduced capability as compared to total

failure without process adaptation.

103



0 10 20 30 40 50 60
0.7

0.71

0.72

0.73

0.74

0.75

0.76

Iteration

Po
w

er
(in

 m
W

)

INSTANCE 1

0 10 20 30 40 50 60
0.67

0.68

0.69

0.7

0.71

0.72

Iteration

Po
w

er
 (i

n 
m

W
)

Instance 2

Figure 72: SA based optimization demonstrated on hardware.

In this setup it was observed that for each channel setting the algorithm converged

to a steady state within 70 iterations. Hence the maximum number of iterations re-

quired would be 560(= 70 ∗ 8) for a set of equally likely channels. However in this

case study the instances with the most widely varying performances have been cho-

sen. It may be noted that the perturbation process may lead to reduced throughput

during the duration of process optimization. However since this process would last

for first few seconds of the radio device lifetime, this is a minuscule loss considering

the significant benefits achieved.
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4.5 Hardware Validation

A SISO transceiver is constructed in hardware. The baseband processing of the

system implemented in MATLAB. The system consists of an up-conversion mixer

(RF 2638) followed by a highly linear amplifier (MAX2247). A down-conversion

mixer (MAX 2039) was used. A NI-DAQ system is used for signal delivery and

response acquisition. It consists of an arbitrary waveform generators (PXI 5112) and

one digitizer (PXI 5412), which were used to perform the data conversion operations.

To emulate process variation effects in the receiver chain, the amount of noise added

to the input signal was varied and 2 process instances were created. Instance 2 had

better performance (due to lower noise addition) than Instance 1. The supply of the

amplifier was used as a tuning knob and varied between 2.5V -2.9V . Instance 1 is

taken as the nominal device. QPSK OFDM stimulus was used to calculate EVM of

the system. Setting an EVMth = 35% the power of Instance 1 is optimized using SA

algorithm. This forms the nominal tuning knob setting. Then using the knob setting

for Instance 1 as an initial condition, the SA algorithm was applied on Instance 2

to optimize for process. Nominal knob setting was 2.79V and Power = 0.71mW .

The knob setting for Instance 2 converged to 2.7V for a power of 0.675mW . The

best Power values found during SA run on Instance 2 are demonstrated in Figure 72.

As the optimization proceeds new low-power values are found and power decreases.

Although in this case only one tuning knob is used, this method is generic and can

be easily expanded to multiple knobs, giving significantly more savings.

4.6 Summary

This work presents a methodology which allows an RF front-end to dynamically

trade-off module level performance with power even in the presence of significant

process variations. As compared to previous approaches this requires no simula-

tion/characterization for process or embedded BIST techniques. Two contrasting
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cases are studied. Instance 1 shows considerable power savings (33%) over the non-

process tolerant adaptation. Instance 2 demonstrates that in presence of process

variability, this new scheme ensures that the device works for a much larger set of

channel conditions than otherwise possible in [1]. Hardware results also demonstrate

power savings in presence of process variability. Thus this work addresses the impor-

tant area of low-power adaptive RF system design at very small design nodes where

process variations become critical.
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CHAPTER 5

SELF-LEARNING RF RECEIVER SYSTEMS: PROCESS

AWARE REAL-TIME ADAPTATION TO CHANNEL

CONDITIONS FOR LOW POWER OPERATION

Prior research has established that dynamically trading-off the performance of the

radio-frequency (RF) front-end for reduced power consumption (Figure 73) across

changing channel conditions, using a feedback control system that modulates circuit

and algorithmic level “tuning knobs” in real-time based on received signal quality,

leads to significant power savings. It is also known that the optimal power con-

trol strategy depends on the process conditions corresponding to the RF devices

concerned. This leads to an explosion in the search space needed to find the best

feedback control strategy, across all combinations of channel conditions and receiver

process corners, making simulation driven optimal control law design impractical and

computationally infeasible. Since this problem is largely intractable due to the above

complexity of simulation, we propose a self-learning strategy for adaptive RF systems.

RF Front-end

Signal

Channel 

Metrics

Tuning knobs 

Baseband 

(process signal + 

adaptation 

control)

Figure 73: Adaptive receiver front-end architecture.
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In this approach[88] a system is presented which harnesses the computational ca-

pabilities of general purpose microprocessors in today′s wireless devices to implement

a neural network based learning methodology which formulates the optimum reconfig-

uration strategy across channel conditions during the operational life-time of the de-

vice. Single-input-single-output (SISO) and Multiple-input-multiple-output (MIMO)

receiver front-ends are used as test vehicles to prove that with minimal additional

infrastructure the RF systems could learn the optimum tuning knobs for minimum

Quality-of-Service (QoS) operation over the entire gamut of channel conditions.

5.1 Motivation

In the technique proposed in [64], the combination of simulating all channel con-

ditions across all process corners becomes infeasible as the dimension and desired

granularity of the process space becomes moderate. Moreover process detection with

fine granularity also becomes a critical to the low-power operation of the front-end.

Process variations are due to manufacturing uncertainties in values of several inde-

pendent parameters such as effective channel length (Leff ), the oxide thickness (tox),

the dopant concentration (Na), transistor width (w), interlayer dielectric thickness

(tILD), interconnect height and width etc. Moreover process variation maybe both

inter-die and intra-die [89]. Thus for each such process variant RF front-end a table

of optimized tuning knob settings across all channel conditions needs to be calcu-

lated. This clearly becomes intractable with rising process space dimensionality and

increasing granularity of channel characterization.

To get an estimate of the number of process instances required to span the process

space with desired granularity let us take the following example: let the dimensionality

of the process space be P for each RF chain of a MIMO front-end. In each dimension

let there be L levels (or L bins) to quantize the amount of variation in that particular

dimension. Hence for each RF chain the number of process instances to span the
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entire process space should be:

X = LP (48)

Considering intra-chip variations for a front-end with M chains the total number

of process instances assuming intrachip variation is:

N = LPM
(49)

Assuming that the channel is m-dimensional with Ki (i = 1 to m) bins in each

channel-dimension, to quantize the channel conditions then, the total number opti-

mizations needed to be solved in an n-dimensional tuning knob space is given by:

Optimization count = LPM
m∏
i=1

Ki (50)
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Figure 74: Rise in design characterization complexity with process variation dimen-

sionality in simulation driven optimization

5.2 Learning based process resiliency

As shown in 74 with increasing dimensionality of the process space the number of pre-

characterized tables (N) reaches impractical proportions (assuming M = 2, L = 5)
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and the number of optimizations is even higher. To solve the above problems, we

propose a self-learning approach in which the RF device “learns” how to best adapt

to changing channel conditions under the process corner the device corresponds to

(unknown at the start of the learning process) to save power. Self-learning based

techniques have been used in model- update problems [28] but have not been used

in the domain of adaptive front-end design. This technique has two benefits. Firstly,

this eliminates any design phase optimization using channel models. Secondly, since

the online real-time learning algorithm learns the characteristics of the particular

device it is running on, it ensures the adaptation mechanism is optimum for the

process conditions the RF device corresponds to. This is particularly important in

MIMO systems where the large number of tunings knobs and process variables due

to multiple RF chains makes design phase characterization nearly impossible. The

proposed self-learning methodology uses built-in sensors and learning algorithms to

incrementally build the real-time adaptation strategy for the entire gamut of channel

conditions leading to significant power savings in the long run.

5.3 Problem Formulation

Let us consider a general RF receiver system 8 which has multiple operational con-

figurations based on the values of n tuning knobs (T1, T2, ..., Tn) (bias, supply etc.).

Let the dimensionality of the process parameter (PC) space be p, where PCi is the

i− th process parameter. Therefore:

T = {T1, T2, T3, ....Tn} (51)

PC = {PC1, PC2, PC3, ....PCp} (52)

Let us assume that the receiver adaptation is driven by m channel parameters

(e.g. signal strength, noise, interference):
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F = {F1, F2, F3, ....Fm} (53)

The power consumption (PDC) of the RF front-end is a function of the front-end

configuration (T) and also the process conditions. Thus:

PDC = f(T, PC) (54)

Receiver adaptation is performed in a way such that the received symbol bit error

rate (which is determined by the quality of the wireless channel as well as the fidelity

of the RF receiver) is less than specified upper limit value. It has been shown in [4,

8, 9] that the error vector magnitude (EVM) of received symbols can be used as an

alternate metric since it has a strong correlation with BER and takes significantly

less time to determine with high accuracy. If we consider the RF front end as an

extension of the wireless channel, we can write:

EVM = g(F, T, PC) (55)

Here, the EVM is due to the combined effects of the wireless channel quality,

determined by F as well as the fidelity of the tunable RF front end (determined jointly

by the tuning knob settings T as well as the process parameters PC). We desire to

find the set Topt = {T1opt, T2opt, ..., Tnopt} of optimal tuning knob values for any given

set of channel conditions determined by F and process conditions determined by PC

that minimizes power consumption while maintaining EVM < EVMth (large values

of EVM are associated with higher BER values), where EVMth is determined by the

specified upper limit of allowed BER of the wireless receiver. Stated mathematically

the problem is as follows: Find the mapping function µ(),

Topt = µ(F, PC) (56)
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Such that receiver power consumption PDC (function of Topt and process param-

eters PC) is minimized and:

EVM = g(F, Topt, PC) < EVMth (57)

Note that the function µ(), varies from chip to chip due to the fact that each

chip corresponds to a different set of process parameter values PC. To determine

µ(), it is necessary to know the functions f() and g() described above. As discussed

earlier, finding µ() using simulation driven optimization across the space of parameters

F × PC × T is intractable. In the following section, we propose a novel real-time

learning based approach in which the function µ() is learned on-the-fly on a per-

chip basis, resulting in significantly improved power savings across a wide range of

operating conditions.

5.4 Overview of the approach

Our goal is to derive the mapping function µ (Eq. 56) on-the-fly using a real-time

learning algorithm. The system can acquire knowledge about the nature of the func-

tions f and g (described earlier) through simple experiments (random perturbations

of the tuning knobs T ) during real-time operation. Initially, only partial and localized

information (in the F×T space) regarding f and g is available. As time proceeds, the

receiver encounters a greater variety of channel conditions and hence, builds a more

complete picture of the functions f and g. The functions f and g are “discovered” by

the learning algorithm incrementally over time over a subspace of F ×T that is most

relevant to the process corner corresponding to device under test. As increasing levels

of knowledge about the functions f and g become available, the mapping function

µ is updated to cover larger domains in the F space. After this process runs for a

length of time across which the wireless device is expected to experience the major-

ity of channel conditions it will see during normal day-to-day operation, the system
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automatically develops a complete low-power adaptation strategy based on its own

performance and on the channel occurrence statistics it is operating under. During

this training period, the device operates as designed, delivering service to the end

user with marginal high power consumption overhead, with the overhead reducing

significantly as the learning process is completed. As a consequence of the learning

strategy, if the user operates the receiver in close vicinity of a cellphone tower the

majority of the time, the wireless system will consume less power than when the user

is located in an urban “cluttered” environment inside buildings with significant path

loss. Note that the system can also be “retrained” to adapt to different working

environments as desired.
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Figure 75: Operational states & phases of proposed learning based adaptation

The proposed self-adaptation methodology can be split into two states: EX-

PLORE and ADAPT (Figure 75). The EXPLORE state encompasses the time during

which the device is not actively communicating data with the base-station and is not

charging. During this state, the device intermittently requests for specific “explo-

ration/training packets” (EXP packet, incorporated into communication protocol) to
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be transmitted to itself from the wireless base-station. During these EXP packets

the device randomly perturbs the tuning knobs (Trand), computes the EVM, senses

the channel and power consumption (PDC) and stores these data in an on-chip buffer

(Figure 76). Thus, such pre-designed exploration packets are used to record the de-

vice performance across a range of channel conditions and tuning knob combinations.

ADAPT state is the period of time during which the device is charging and not being

used. This gives the opportunity for more computation intensive tasks without sig-

nificant effect on battery charge level. The information recorded in EXPLORE state

is used in ADAPT state for finding the optimum knob setting for adapting to each

channel condition.
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Figure 76: System operation in the EXPLORE state
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In all other packets except the EXP packets, normal adaptive operation is main-

tained i.e. the tuning knobs are either set to the optimized tuning knob setting (Topt)

or the nominal knob setting (Tnom) depending on whether optimization for the cur-

rent channel is complete or not. In order to determine if the optimization is complete

for the current channel, the algorithm uses an on-chipcluster table which continu-

ously tracks the sub-space (Fsub) of the channel (F ) space for which optimization is

complete.

Each time the system enters the ADAPT state, the system executes three consec-

utive operations (or phases) (Figure 77). All the operations in the ADAPT state are

executed in software (on the general purpose processor) while the device is charging.

Firstly, the information stored in EXP buffer is used in the MAP phase to incremen-

tally build a model (in software) of the power consumption and EVM performance of

the system across channel and tuning knob combinations. Also, the new data is used

to calculate an updated cluster table to reflect the current Fsub. Thereafter, using

this incrementally emerging model, the optimum tuning knob combinations (Topt) are

discovered in the OPT phase.

Care is taken to do this optimization only over the region of F space where suf-

ficient experimentation has already been done in EXP phase (as indicated by the

cluster table). Finally, the optimum knob combinations (Topt) and the updated clus-

ter table are used to update the channel vs Topt LUT (µ) and cluster table stored on

baseband processor in UPDATE phase. The individual phases are described in detail

in Section 5.5

The EXPLORE and ADAPT states are executed iteratively until the optimum tuning

knob combinations are discovered over the entire channel space (Figure 78).

Comparison with Simulated Annealing(SA) based approach

Prior work [90] proposes a random perturbation (through simulated annealing)

based method to modify the stored optimum knob combinations for the nominal
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Figure 77: System operation in the ADAPT state.

process instance to tailor it for the device of interest. The technique proposed in

[90] starts off with the nominal “locus” (or channel vs tuning knob table for nominal

process) and gradually modifies it on- the-fly to reach the optimum locus for the

process varied instance. In contrast to the technique proposed in this work, the prior

technique starts off with a nominal locus and also does not employ a neural network

based mapping technique. The prior technique has a number of drawbacks. Firstly,

since the technique starts off with the LUT optimized for a nominal process, in case

the performance of the device is worse than nominal device, it will be unable to

perform within the QoS bounds for many channel conditions. This continues until

the technique arrives at the optimal knob combinations for those channels. This

complete loss of data connectivity for many channels may be unacceptable for the

end-user and is not at all desirable in a front-end. Secondly, as discussed earlier, the

data collected in EXPLORE state is used to find the optimum knob settings. It can be

argued that this data can be used directly to find the optimum knob settings without

resorting to any mapping/modeling techniques. This can be done by maintaining
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running registers for different channel conditions which record the best tuning knob

combination amongst the EXP data encountered thus far. However it can be shown

that such an approach would require significantly larger time to optimize for the entire

channel space. This is because, the EVM and PDC surfaces in the {F, T} space are

generally well- behaved curves without abrupt variations. Such surfaces hence can be

approximated by a neural net using a much sparser sample (compared to the entire

set of points) in {F, T} space).

EXP MAP OPT UPDATE EXP MAP OPT UPDATE EXP MAP OPT UPDATE

SYSTEM BECOMES MORE SELF AWARE : MORE POWER SAVINGS 

ADAPT STATE

INCREASING AGE OF DEVICE

ITERATION 1 ITERATION 2 ITERATION N

EXPLORE 

STATE
INCREASING CLUSTER COVERAGE IN F SPACE

Figure 78: Iterative operation of the different phases.

Figure 79 shows how the optimized power consumption changes with increasing

number of EXP packets encountered when no mapping technique is used for the setup

discussed in Section 5.7. Each curve corresponds to a different channel condition and

hence a different optimized power consumption (PDC,OPTi, i = 1 to 4). It be seen

that the number of EXP packets required for each channel condition for the optimized

power consumption to reach its lowest value ranges from 100 to 2000. Assuming an

average EXP packet requirement of 500 the total number of packets required for

total optimization of the entire channel space (assuming channel is 2 dimensional

with 16 quantization levels in each dimension) is 128,000. Using a neural net based

mapping technique the same task can be achieved in 10,000 EXP packets (a 10×

reduction in optimization time). Hence mapping with neural nets leads to a much

faster optimization as compared to prior techniques.
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Figure 79: Optimized power as a function of the number of EXP packets encountered

across different channel conditions.

5.5 Detailed discussion of adaptation states/phases

In this section we discuss the individual states/phases in greater detail:

5.5.1 Exploration State (EXPLORE)

The goal of this state is to acquire information regarding PDC and EVM characteristics

of the front-end across different channel conditions and reconfiguration modes. When

the RF receiver is communicating with a transmitter (e.g. a base station) during real-

time operation, the system perturbs the tuning knobs values (e.g. bias and supply

voltages) during reception of predetermined “training packets” (EXP packets) to

record the EVM and PDC . These “training packets” are requested when the front-

end is not being used by system applications for active data transfer. The tuning

knobs are perturbed such that the entire range of permissible tuning knob values is

explored over time. The recorded information can be stored in a buffer (file) on-chip

in the form of a table as shown in Figure 77 and 80.
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Figure 80: Ilustration of the EXPLORE state.

Here, the vector F (channel quality) is estimated by on-board sensors and built-

in metrics (RSSI, RCPI interferer strength). The perturbation of the tuning knobs

is performed by the baseband processor which also records the T vector in the EXP

buffer shown. Since, the EXP packet is requested when no active data communication

is going on no throughput penalty is paid for incorporation of these packets into the

communication architecture. In most cases, the mobile devices are not used for voice

or data communication for a large fraction of the total device “ON” time. Thus these

time periods can be conveniently used for experimentation.

5.5.2 Map Phase (MAP)

The goal of the system in the MAP phase is to use the information gathered in

the EXPLORE state to build a map of its power and EVM characteristics across

different channel conditions and tuning knob values (entirely in software). These

characteristics are related to the T and F vectors through the functions f and g

defined earlier. However, it is difficult to find an analytical expression to model the

equations f and g. Alternatively, the functions are constructed using two artificial

neural nets (ANN) implemented in software as shown in Figure 81. These neural nets

can be trained through supervised learning algorithms using the data stored in the
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EXPLORE state.

It must be noted that the set of channel conditions experienced by the RF device

grows with time. At any point of time, the maps will have the integrated information

from all previous experiments, which may not have covered the entire {F, T} space.

Thus, it is important to also keep a track of the region in the {F, T} space for which

the ANNs have been adequately trained. This can be done by using an Evolving

Clustering Method (ECM) [31] to build a table of clusters formed from the data

gathered in the EXPLORE state. ECM requires some amount of computation and

must be done in software (during offline state, not during real-time communication).

The final cluster table is however stored on-chip. The ECM performance and its

features have been discussed in Section 5.6.
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Figure 81: Illustration of the MAP phase.

Every mobile device today has a general-purpose processor for running applica-

tions and a baseband processor for communication tasks. The MAP phase (and the

subsequent OPT and UPDATE phase) can be executed on a software running on the

general purpose processor. They can be implemented to run only during the ADAPT

state (i.e. when device is charging). It may be pointed that modern mobile devices
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(phones, tablets etc.) goes through such an ADAPT state (when battery is charging

and device is idle) for several hours every day. Once the data in the file is incorporated

into the neural net through training, the on-chip file/buffer may be flushed (wiped

clean) to prepare for the next EXPLORE state.

5.5.3 Optimization Phase (OPT):

NN1a
PDC

Find 

Topt

NN1b

EVM
Set F

Topt

F
1

F
k

T
1
opt

Optimizer

Choose F values only 

within formed clusters

F

T
k
opt

In software

Minimize PDC 

such that 

EVM<EVMth

Figure 82: Illustration of the OPT phase.

In the OPT phase, the objective is to use the knowledge base developed in the MAP

phase to generate the optimum configuration strategy. It must be noted that at any

point of time, the neural net map is correctly trained only for a subspace Fsub of the

entire channel space F. This subspace, Fsub, is the set of channel conditions for which

the device has already encountered and performed a large number of tuning knob

perturbations. The system can confidently predict the performance of the front-

end for all tuning knob combinations in the subspace Fsub. Trying to predict a

configuration strategy for a channel condition outside Fsub can lead to erroneous

results. In OPT phase, a set of channel vectors F1 to Fk are selected spanning Fsub

(Figure 82). Thereafter, for each of these channel vectors, Fi, the optimum tuning

knob combination is found such that PDC is minimized and EVM ¡ EVMth. This

optimization is done with the help of the neural nets trained in the MAP phase using

a constrained optimization algorithm (e.g. gradient search).
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5.5.4 Update Phase (UPDATE):

The set of optimized tuning knobs (T i
opt ) generated in the OPT phase are used to

update the reconfiguration strategy (µ) stored in a LUT associated with the baseband

processor. The LUT is an m-dimensional table with each of the entries being an n-

tuple of tuning knob combinations. After each UPDATE phase, the n−tuples in the

m-dimensional space are updated with the optimum configurations corresponding to

different channel conditions for low power operations. Additionally, in the UPDATE

phase the updated cluster table is written to the on-chip cluster table. After each

iteration of EXPLORE state and MAP, OPT and UPDATE phases, more entries in

the LUT are updated with the optimum configuration setting. This allows the system

to react to increasingly diverse channel conditions with optimum power consumption

and performance.

5.6 Cluster formation

As explained in Section 5.5, in order to prevent erroneous prediction of EVM and

PDC from F and T we need to track the subspaces Fsub for which relevant data has

been learned. One way to achieve this is by storing every point encountered in the

F space during EXP phase. However this leads to a huge memory requirement and

also is inefficiently slow in terms of processing. A more efficient way to achieve this

is by clustering the observed F values and maintaining a table containing the list of

clusters on-chip. A cluster is a multi- dimensional hyper-sphere which enables us to

keep track of the subspace Fsub which has been adequately explored. The advantage

of clustering, in this case, is that the system does not need to maintain a list of all

the previous F values it has encountered. Instead, only a set of centers and radii

of hyper- spheres needs to be stored. These spheres encompass all the points in the

m-dimensional hyperspace corresponding to channel conditions encountered before.
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Figure 83: Clustering in F space.

K-means clustering [91] is the most popularly used clustering technique used.

However, it requires the system to store all the data points and thus, is not suitable

for iterative adaptive cluster generation. The Evolving clustering method (ECM) [92]

alleviates the problems of K-means clustering because it does not require the storage

of all the possible data points. This algorithm requires a pre-defined maximum cluster

radius (rmax) and maintains a list of the existing cluster centers and radii. Given an

m-dimensional data point, ECM calculates the distance of the point from the centers

of the stored pre- existing clusters (Figure 83). Thereafter, it does one of the following:

(a) If the point is inside any existing cluster it does nothing.

(b) If the point is outside all existing clusters but within a pre- defined maximum

radius of a cluster, the radius of the cluster is increased to include the particular

point and the center is updated.

(c) If the point is outside all existing clusters and there are no clusters which can
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grow (upto the pre-defined maximum radius) to include the data point, then a

new cluster is created with zero radius and with the new point at its center.

The above discussion is summarized in the form of a flowchart as shown in Figure 84.
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Figure 84: Cluster evolution flowchart.

In our system, we have modified this algorithm to additionally count the number

of data points in a particular cluster. This is done to ensure that- given a value

of F value lying within a cluster, the system has complete knowledge of the PDC

and EVM for all possible tuning knob combinations in T at that particular F . If

Tcomb is the total number of possible tuning knob n-tuples (each knob can have finite

number of discrete settings) then an F value from a cluster can be used to predict

PDC and EVM only if the cluster has had k×Tcomb (k is a pre-defined number greater
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than 1) number of hits (since perturbations in T are random, just Tcomb number of

perturbation experiments may not suffice).

5.7 Overhead and protocol level implications

Channel impairment sensing: In the methodology presented in this work, sensing

the channel quality is an important task that needs to be performed during the real-

time operation of the device for the iterative learning to work accurately. As shown

in [93] modern RF front-ends can adapt efficiently to effective signal strength (equiv-

alently effective path loss given a constant transmit power) and interferer strength.

The wireless channel is a multidimensional quantity with propagation loss, shadow-

ing, multi-path fading and interferer strength as its components. The effect of the

channel components (attenuation, shadowing and fading) is encapsulated in the form

of a channel matrix H such that if X and Y be the transmitted and received sig-

nal then Y = H.X + N + I where N and I are the noise and interference vectors

respectively. Preamble and pilot tone based techniques can be used to estimate the

channel matrix H in RF systems [94]. From an estimate of H (Ĥ) one can solve for

the estimated transmitted symbols X̂. Moreover Ĥ can also be used to calculate the

effective signal strength (or effective path loss (PL)). Modern radio front-ends already

have sophisticated sensors/circuits [95] and baseband algorithms built-in to evaluate

the magnitude of channel impairments like effective path loss and interferer strength.

Two such widely-used metric is Received Signal Strength Indicator (RSSI) and Re-

ceived Channel Power Indicator (RCPI), which gives an estimate of the in-channel

power received and hence the total attenuation from the channel. The key difference

between the two is that while RSSI calculates signal strength over the preamble (and

hence uses Ĥ), RCPI calculates signal strength over the entire frame and is thus more

accurate. [68] discusses a method of detecting the power of in-band interferers. This

is done by sensing the total in-band power by using a power detector between the
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mixer and the channel-select filter. [69] discusses the design of a wide-band jammer

detector which can be used to sense the total power received at the receiver. Thus

combining both the outputs of interferer power detectors one can get the idea about

the total interferer power at the input of the LNA.

To summarize, a combination of both RSSI/RCPI and interferer strength esti-

mation enables the system to estimate the quality of the channel. Since modern

front-ends already implement such sensors and metrics, the proposed methodology

will not consume additional power or silicon area over existing infrastructure.

Memory requirement: The proposed methodology requires on-chip memory to

store the EXP buffer (Figure 76) and the table of nominal knob settings. As explained

earlier, that the vector F is two dimensional and let us assume that each quantity is

quantified by a byte of data. Let us also assume that there be a total of ten tuning

knobs (say) in the RF front-end. Also let us assume that the buffer can store the

results of 500 EXP packet experimentation data (buffer is wiped clean after each

UPDATE phase). Then the memory requirement for the buffer is approximately of

the order of 5 kilobytes. Similarly for the optimum configuration table if the number

of levels in each dimension of F be 20 with 10 tuning knobs then the total memory

requirement is 4 kilobytes (20× 20× 10 = 4000 bytes). For the on-chip cluster table

assuming the maximum number of clusters to be 100, the total memory required is

400 bytes (storing center, radius and count). Thus, the combined on-chip memory

requirement is less than 10 kilobytes.

Neural network implementation: The neural network required for learning

the power and performance of the front-end can be implemented as a software appli-

cation on the general purpose processor in the mobile device. Modern mobile devices

have extremely capable processors which can easily handle the neural network imple-

mentation. Since this is a software application which runs when the system is charging

and not being used it contributes very little to the overall system overhead, both in
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terms of throughput and power consumption. Moreover even this small overhead

reduces to zero once the training is complete.

The neural network is implemented as a multi-layer feed-forward (MLF) neural

network [96]. The network consists of neurons which are ordered into layers. The first

layer and the last layer are known as the input and output layers respectively. Between

these layers, there are additional layers known as hidden layers. Figure 85 shows the

structure of a MLF neural network with two hidden layers. In this illustration there

are n inputs with d1 and d2 being the number of neurons in the two hidden layers.

The i−th neuron in one layer is connected to the j − th neuron in the next layer by

the weight w(i, j). Here the vector Mk is the input to the k − th layer. As shown in

the figure, the inputs of a layer k (k = 1, 2, 3) are weighted and combined using the

weight matrix wk (a 2-dimensional matrix containing the elements w(i, j)) and bias

values (bk) are added to it. The sum is then passed through a transfer function fk to

obtain the input of the next layer (Mk+1). Thus from the above description:

Mk+1 = fk (Mk.wk + bk) , k = 1, 2, 3 (58)
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W2 

(d1×d2)

W3 
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f1
f2 f3

Input Hidden Layer 1 Hidden Layer 2 Output Layer

M1

1×n M4

1×1 

M3M2

1×d2 1×d1 

Figure 85: MLF neural network with 2 hidden layers.

The overhead and speed of prediction using the neural network is discussed in

section [5.8].

Throughput overhead: As discussed in Section 5.5, during the EXPLORE state
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system is not actively communicating data. Since the system is idle (more likely) then

there is no effect of the incorporation of EXP packets on throughput.

Power overhead: For the ADAPT state, the battery is charging and hence

there is no significant effect on the battery charge. For the EXPLORE state a small

power overhead will be present due to the extra EXP packets the front-end has

to process over and above the data packets. However this can be made a small

number (implementation specific). For our implementation we assume a 10% overhead

in power consumption during EXPLORE state. However once the optimization is

complete this overhead reduces to zero since no more EXP packets are required.

EVM calculation: To calculate EVM with high confidence the calculation must

be performed over a sufficient number of OFDM symbols. An EVM calculation over

a small number of OFDM symbols has a large uncertainty as shown in Figure 86.

Let, ∆ is the guardband to deal with the uncertainty in EVM calculation. Then:

EVMth,actual = EVMth −∆ (59)

0 50 100 150 200
2

4

6

8

10

12

OFDM Symbols per EVM calculation

U
nc

er
ta

in
ty

 in
 E

V
M

(%
) 

ca
lc

ul
at

io
n 

(r
an

ge
)

Figure 86: Variation of uncertainty in EVM with the number of OFDM symbols

used for EVM= 33%.
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Figure 87: Fractional uncertainty in EVM across a range of EVM values.

So the system must be designed to have a larger guardband around the threshold

for a smaller number of OFDM symbols per EVM calculation. Therefore, this would

mean lesser power savings as the EVMth,actual is lower than EVMth. The uncertainty

in EVM as a fraction of the actual EVM remains relatively constant across the entire

range of EVM as shown in Figure 87 . For our system we assume a guardband of 2%

on the EVMth of 35% (QPSK modulation with BER of 10−4).

5.8 Simulation setup and results

5.8.1 MIMO Front-end

a) RF front-end: In order to demonstrate the efficacy of the proposed methodology,

we use a 2.4 GHz MIMO OFDM front-end (Figure 88) as a test vehicle. Each chain

contains a tunable LNA with a bias voltage and supply which can be used as tuning

knobs. Figure 89 shows the schematic and gain of the 2 LNAs in the 2 RF chains

across a range of Vbias (Vbcs) for Vdd = 1.8V . A Gilbert cell mixer provides tunability

through adaptive bias settings. Through Monte Carlo simulations process variant

instances of LNA and mixer are generated for each of the two chains. The circuits
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Figure 88: Process dependent adaptation of MIMO front-end.

Figure 89: LNA Schematic and LNA Gain (in dB) in the 2 RF chains for VDD

=1.8V.

are designed in ADS and their behavioral models are used in MATLAB for complete

system simulation.

b) Channel Model: The channel is modeled as a non-line- of-sight (NLOS)

Rayleigh fading channel with interferers. The modulation used is QPSK with an

EVMth,actual of 33%. The interferers are modeled as adjacent OFDM channels.

The channel factors that lead to reconfiguration of the front-end are path loss (PL)

(and hence signal strength) and interferer strength (I0). In the setup, we assume that

PL can vary between 100 dB to 147 dB and I0 is between −40dBm and −55dBm.

Any lower interferer does not significantly affect the circuit EVM performance.

c) Neural network: The complexity of the neural network determines to a large

extent the uncertainty in EVM prediction from the neural net model. In Figure 90
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we show the uncertainty in prediction of EVM as a function of the number of hidden

layers and the number of neurons per layer. However more complex the network is,

the more memory it requires and the more number of operations are required for

calculating the output from the neural network for a particular input. For a neural

network with h hidden layers with di being the number of neurons in the ith hidden

layer the total number of weights and biases which are needed to be stored in memory

is given by:

Memory required =
h∑

i=0

[di.di+1 + di+1] (60)

Here d0 and dh+1 correspond to the number of inputs and output (= 1) to the neural

network. Figure 91 shows the total combined number of weights and bias values

needed to be stored for a MLF neural network as a function of the number of hidden

layers and the number of neurons in each layer.
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Figure 90: Variation in MSE (of EVM prediction) with neural net complexity.
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Figure 91: Total number of weights needed to be stored.

Similarly, the speed of output computation of a neural network also decreases with

increasing complexity of the neural network. The speed of computation is critical both

for faster training as well as a faster prediction capability of the neural network. It

can be shown that for the MLF neural- network with h hidden layers the total time

taken is given by:

Total time =
h∑

i=0

[di.di+1 + di+1.(tmult + tadd) + ti+1] (61)

Here tmult, tadd and ti are the time taken to execute a multiplication, addition and pass

through the ith transfer function (fi). To estimate the speed of computation we assume

a processor of 1 GHz clock frequency. We also assume that in latest processors each

floating point multiplication takes 5 clock cycles , each addition takes 3 clock cycles

[97] and each pass through the transfer function takes 10 clock cycles (conservative

estimate).With this reference processor the time taken for 1 computation is calculated

for different neural network topologies as shown in Figure 92.
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Figure 92: Time taken for single prediction for different neural net configurations.

In our system the weights are stored in a file on the Random access memory

(RAM) of the general purpose processor. The number of weights is small and not a

bottleneck in modern systems. However since the speed of computation affects both

training and prediction, in our system we try to achieve a balance between accuracy

and speed. From this study, we found that the neural nets NN1a and NN1b shown

in Figure 81 can be best represented by neural networks with 2 hidden layers with

15 neurons in each hidden layer. With such a configuration, the neural net NN1a

can produce one output every 3µs.This results in a throughput of more than 300,000

outputs per second. Thus such a neural network will lead to rapid learning and

prediction.

d) Simulation results: In order to demonstrate how the set of optimum tuning

knob combinations for different channel conditions builds up over time, we would like

to illustrate the state of the system at an intermediate time tint. For generating the

cluster table using ECM, we need to set the maximum radius of the clusters. For

our system we chose a cluster radius of 0.1(normalized over the range of the PL and

I0). The system, at the intermediate time tint, has experienced only a partial set of

channel-conditions amongst the totality of channel-conditions possible. The cluster
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table tracks this information by storing the cluster centers, radii and effective no. of

experiments in each cluster. This cluster table is shown graphically in Figure 93 and

maps out the region of the entire channel space already experienced by the front-

end. Here, each cluster is represented by a circle with a marked center. This cluster

table is used by the system in association with the partially trained neural nets to

generate optimum configuration settings for the clustered set of channel conditions.

The optimum power consumption thus obtained is shown in Figure 94.
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Figure 93: Clusters formed at time tint.

Figure 94: Partially complete optimized power surface at tint.
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As is evident, the optimization is partially complete at tint. For channel con-

ditions outside the current set of clusters, the system operates at maximum power

consumption (i.e. nominal knob setting). This methodology runs iteratively and af-

ter sufficiently time, it can optimize the system performance over the entire channel

space. In Figure 95, we see that the cluster circles finally cover the entire channel

condition space. The power is also optimized over the entire channel condition space

as shown in Figure 96. Here, the red mesh corresponds to the power consumption in

a non-adaptive system. We get a maximum power saving of 2.5× over a non-adaptive

system.
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Figure 95: Clusters covering entire channel-space.

Figure97 shows how the number of clusters increases over the number of EXP

packets received and the radius of the largest cluster increases to a predefined max-

imum and then becomes constant. To illustrate the performance of the proposed

technique we illustrate in Figure 98 the average power consumption (across the entire

gamut of channel conditions) as a function of time. As shown in the figure, there is

a 10% overhead due to the presence of the EXP packet required by the technique.

As time proceeds progressively optimum tuning knobs are discovered for larger sub-

spaces in the F space and hence the average power consumption (across the gamut of
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Figure 96: Completely optimized power consumption surface.
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Figure 97: Cluster statistics as a function of the number of EXP packets encountered.
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Figure 98: Progressive reduction of average power consumption with time.

channel conditions decreases). When the optimization is complete across the entire

channel space, the EXP packet is no longer required and can be switched off at the

protocol level. This causes a further savings in average power consumption ( 10%)

due to reduction in protocol overhead. In this particular experiment we have assumed

a very slow rate of learning and adaptation. In practice the adaptation rate depends

on the usage and is expected to be significantly faster (converging within a few days).

5.8.2 SISO Front-end

A SISO front-end with tunable LNA and mixer is setup to act as a test vehicle for the

proposed methodology. The LNA used in the front-end is an orthogonally tunable

LNA [35] shown in Figure 99.

The LNA is a 2−stage device with 2 bias knobs, VGAIN and VIIP3 that are used

to modulate the performance and power- consumption of the LNA. The current con-

sumption variation of the LNA across tuning knobs is shown in Figure 100. The mixer

used in the simulation setup is a Gilbert cell mixer with VBIAS and VDD tuning knobs

as shown in Figure 101.
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Figure 99: Orthogonally tunable LNA schematic and layout.

Figure 100: Current consumption of the LNA across tuning knob values.
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Figure 101: Mixer circuit used in simulation setup.

Figure 102: Power consumption across channel conditions for SISO setup.
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The power is also optimized over the entire channel condition space as shown in

Figure 102. Here, the red mesh corresponds to the power consumption in a non-

adaptive system. Thus we get a maximum savings of 3× power consumption through

process resilient learning based adaptation.

5.9 Artificial neural net training

The methodology presented in this work relies on artificial neural networks (ANN) to

construct the functions f and g (discussed in Section 5.3) in software. These functions

are then used to find optimum tuning knob configurations for the mapped channel

space Fsub. The ANNs are trained using experiment data from the EXP phase. This

is done during the MAP phase of operation using supervised learning. The algorithm

used to train the ANNs is Levenberg-Marquardt backpropagation [98]. This is an

iterative algorithm which adjusts the weights in an ANN to achieve the minimum

mean square error (MSE) possible. The performance of the algorithm for the two

neural networks in Figure 81 is shown in Figure 103. The input dimensionality of

NN1a (Figure 81) is less than that of NN1b. Moreover EVM is a much more sharply

changing function across the {F, T} space compared to PDC . Hence, EVM has a

higher (but satisfactory) mean square error as compared to PDC . It may be noted

that depending on the dimensionality of the problem and the accuracy required, a

more complicated neural network may be chosen to represent the functions f and g.

5.10 Hardware validation

The key contribution of this work is the self-learning methodology presented in earlier

sections. In order to validate the proposed methodology, we used the hardware setup

shown in Figure 104. Although this hardware setup is demonstrates the methodology

on a SISO chain, it can be extended without any modifications to a MIMO front-end.

Here, the receiver consists of a down-conversion mixer (ADL 5801) with VDD and

VBIAS as tunable knobs. The baseband of the system is implemented in MATLAB
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Figure 103: Mean Square Error across training iterations for Power and EVM.

working on a PC. The baseband output of NI DAC (PXI 5412) is upconverted by

an upconversion mixer (MAX 2039) and fed to ADL 5801. Figure 105 shows the

power profile of the down-conversion mixer ADL5801 across the tuning knobs VDD

and VBIAS.

The system is operated at 2 GHz using OFDM modulated data. The channel

emulation is done in baseband by adding different amounts of noise to the received

signals. A higher amount of noise corresponds to a worse channel.

Using the methodology developed in this work, the system self-learns its charac-

teristics and over time and constructs a table of optimum tuning knob combinations

across varying channel conditions. The power consumption across different channel

conditions is shown in Figure 106. The different settings of VBIAS and VDD across

different channel conditions are shown in Figure 107. We get 3× power savings across

varying channel conditions leading to low-power operation.

5.11 Summary

In this work, we have presented a methodology which enables the system to incre-

mentally learn its power consumption characteristics and QoS performance across
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Figure 107: Tuning knob settings across different channels.
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different channel and knob configurations. Thereby, the methodology consolidates

this knowledge through a neural network and cluster table implemented in software.

The trained neural network can then be used in conjunction with the cluster table

to generate an optimum reconfiguration strategy on-the-fly. Unlike prior literature,

this methodology is inherently process resilient (without the need for process detec-

tion and characterization) as it finds the optimum configuration for the device on

which it operates. This may be particularly useful for low-power RF systems where

the combinations number of process and tuning knob variables may be too high for

feasible design phase optimization. Thus, this methodology leads to channel-adaptive

process-resilient low-power RF front-ends which are crucial to the success of modern

low-power portable devices.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

A key goal in modern wireless system design is to enable the longest operation of

the portable communication terminal on a limited amount of battery capacity. This

has lead to a significant emphasis on the design of ultra low-power communication

systems. Several techniques have been explored to design low-power power wireless

systems including protocol level techniques, digital baseband low-power design and

low-power RF front-end circuit design. However wireless front-ends are still designed

for worst case channel conditions and thus consume more power than required for

most of their operational period. Prior work has demonstrated that channel adaptive

wireless front-ends can consume significantly reduced power on an average. Prior

work has also demonstrated that the reconfiguration settings for the wireless front-

end across channel conditions are dependent on the process corner. Hence process

dependent adaptation is a key to optimum adaptation across channel conditions.

Although prior work has proposed the concept of channel adaptive RF front-ends,

several key challenges regarding the implementation of such systems have remained

unaddressed so far. This thesis explores the concept of channel adaptive systems

in detail and attempts to solve the issues to make practical implementation of such

systems feasible.

The techniques presented in prior literature have dealt with LUT based adapta-

tion techniques. LUT based feedback control proposed in prior literature have been

demonstrated for uni-dimensional channels. Such adaptation control cannot accom-

modate multiple independently varying channel parameters. Another drawback of the
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LUT based technique is that it requires significant design time computation based

on approximate models of the transceiver and channels. Chapter 2 presents a Fuzzy

logic and analytical expression based adaptation technique which does not require a

pre-computed channel vs tuning knob table while adapting to multiple channel pa-

rameters like received signal strength and interferer strength. The Fuzzy logic based

adaptation technique mimics an intelligent being who can take decisions based on

the current tuning knob combinations, channel conditions and the current EVM. It

employs a set of heuristics to determine the dynamics of the systems. The chap-

ter presents a formulation in which proportional control is implemented. However

alternate proportional-integral(PI) and proportional-integral-derivative(PID) formu-

lations may be possible. The concept of non-LUT based adaptation is taken a step

ahead by attempting to predict the optimum tuning knob settings as a function of

channel conditions analytically. Using analytical expressions the performance of the

front-end to circuit level parameters to find the optimum tuning knob combinations.

In Chapter 3 the concept of use-aware adaptive RF front-ends is introduced. Tra-

ditionally the channel adaptive systems have tried to optimize power consumption

while operating at the highest throughput possible for the given channel conditions.

However this work demonstrates that when throughput is not the highest priority the

adaptation configurations can be tailored to optimize the energy-per-bit. Thus the

adaptive system can operate in two possible modes: (i) Data Priority(DP) and (ii)

Energy Priority(EP) mode. While DP ensures highest throughput operation (also

minimizing power consumption), EP ensures lowest energy-per-bit operation. This

results is a trade-off, DP cannot ensure lowest energy-per-bit while EP does not nec-

essarily ensure highest throughput. The benefits and trade-offs are demonstrated for

MIMO transmitter and receiver in simulation. Moreover, prior work has not been

done while taking into account channel coding for error resilience. The simulation
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results presented show the power savings in presence of different MIMO modes, chan-

nel coding and modulation techniques. Finally the results are corroborated with the

help of hardware demonstration.

In Chapter 4 and 5, the issue of process dependent adaptation is discussed and 2

different techniques are provided to tackle the issue. Firstly, Chapter 4 demonstrates

a Simulated Annealing(SA) based learning technique for process aware adaptation. In

this technique, the system starts with a table containing the reconfiguration settings

for the front-end at nominal process. Over time the system performs perturbations of

the nominal settings and records the performance to find the settings optimal for the

actual front-end (which might not be at the nominal process corner). Thus over time

the system learns better tuning knob settings settings and thus over time the power

consumption slowly approaches the optimal power consumption. However there are a

few drawbacks of this technique. Firstly, since it starts from a settings corresponding

to the nominal process corner, for some devices the quality of service metric would

be below the minimum acceptable value. Secondly, the simulated annealing based

process adaptation may take a long time to converge and needs to be speeded up.

Both of these issues are tackled in Chapter 5 where a better neural network based self-

learning technique is proposed. In this technique the system starts off from the highest

performance tuning knob combination at the start of its real-time operation, thereby

guaranteeing quality of service. Thereafter the device performs random experiments

over time and records the results of these experiments in an on-chip buffer. During

the time when the device is charging the device can use this stored data to train neural

nets to build a map of the performance (EVM) and power consumption (PDC) across

tuning knobs and channel conditions. This map is built up incrementally over time.

Evolving Clustering Method(ECM) is used to track the region in channel-tuning knob

space for which the system has been well-trained. Periodically the neural networks

are used to find the optimum tuning knobs for the region in channel space which has
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been sufficiently explored. It is shown that this leads to much faster training than the

simulated annealing. The technique is demonstrated for MIMO and SISO receiver in

simulation. It is also demonstrated in hardware.

To summarize, the key contributions of the thesis are as follows:

1. The thesis introduces non-LUT based control strategies for adaptive low-power

front-end operation including Fuzzy logic based control and equation based

predictive control.

2. The thesis proposes two low-power adaptation modes with their corresponding

benefits and trade-offs in terms of energy-per-bit and throughput.

3. Two learning based techniques are proposed to overcome the problem of process

variation in lower technology nodes.

6.2 Future Work

The thesis proposes two low-power adaptation modes, each of which prioritizes either

throughput or energy-per-bit. More such modes could be possible which could at-

tempt to maintain a balance of both throughput or energy-per-bit without attempting

to maximize one only. The proposed fuzzy logic control concepts in this thesis could

be further extended implement proportional-integral (PD) and proportional-integral-

derivative (PID) implementations of the control logic. Future work could also include

an integrated circuit implementation of the proposed concepts to understand and

study the performance and constraints.
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