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SUMMARY

Transactional memory (TM) is a promising new tool for shared memory application

development. Unlike mutual exclusion locks, TM allows atomic sections to execute con-

currently, potentially resulting in improved performance. Commercial releases of hardware

TM (HTM) promises this functionality to end users.

However, the commercial implementations work to provide TM functionality with the

minimum amount of hardware changes required, unlike research prototypes that can work

from a clean slate. As a result, there are significant gaps in performance of the commercial

implementations compared to those proposed by the research community. In this thesis, I

propose to several ideas that keep with this mindset, but still close the gap in performance.

First, I introduce plea bits that can be used to provide enhanced conflict resolution

policies, compared to the basic “requester-wins” policy used in commercial HTM imple-

mentations. These bits are only used by the HTM hardware and ignored by the coherence

protocol, reducing verification overhead that can result from modifying the protocol, which

past work has opted for.

Second, I propose stopping automatic state rollback when the transaction encounters an

abort-causing condition, and calling a pre-abort handler instead. HTMs are forced to abort

valid transactions due to various limitations. By this simple change however, programmers

can insert various code that mitigates such limitations, or even insert non-transactional

work within the transaction.

Last, I propose to change how speculative writes are handled within the transaction,

allowing for lazy conflict detection on an eager conflict detection HTM, which is what

commercial HTM use. Lazy conflict detection promises better performance, but have been

viewed to require changes to the coherence protocol. Instead, by defering the write per-

mission acquisition to the end of the transaction, I show that it is possible to support lazy

conflict detection without such extensive changes.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Mutex locks have long been used as a mechanism to provide atomicity in shared memory

programs. A thread that accesses a shared object in memory is required to first acquire the

mutex associated with that object. The lock allows only one thread at a time to hold it,

thus ensuring atomicity for an operation on the shared object. To simplify programming,

a lock typically protects more than one memory location. This can result in unnecessary

serialization on the lock even when different threads perform operations on disjoint sets of

memory locations, i.e. when the operations could have been performed concurrently yet

atomically. Thus locks represent a pessimistic concurrency control mechanism.

In contrast, transactional memory (TM) provides optimistic concurrency control. TM

allows concurrent transactions to speculatively execute code that accesses shared memory.

Transactions for which no conflict is detected are allowed to commit their work, avoiding

unnecessary serialization. When a conflict is detected, e.g. when two concurrent transac-

tions try to write to the same memory location, the conflict must be resolved, typically by

delaying or aborting one of the conflicting transactions.

Until recently, only software-based TM systems have been available to users, whereas

hardware transactional memory (HTM) was only a (very active) research topic. This has

changed with the introduction of several commercial HTM offerings [1, 2, 3]. However,

while much HTM research has focused on sophisticated HTM proposals that provide strong

guarantees and extensively change the coherence protocol (or completely replace it with

TM-specific coherence [4]), the commercial offerings mostly use much simpler implemen-

tations, often dubbed “best-effort” for their lack of any guarantees that an HTM transaction

will ever commit1, and with a “requester-wins” approach to conflict resolution that does

1Exceptions to this exist, but place severe restrictions on the operations that can be placed in a transaction.
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not require any changes to the underlying coherence protocol [5].

In these HTMs, data conflict detection relies on the coherence protocol. When a trans-

action needs to access a cache block, the block is requested using the unmodified coherence

protocol. If this block is held by another core in a conflicting coherence state, that core gets

an invalidation or downgrade request that forces it to change its coherence state.

A transaction running on the core receiving such a request must be aborted. In other

words, the “requester” transaction has “won” the conflict. However, such a policy can re-

sult in aborting transactions that have done more work instead of those that have done less

work, and creates a strong bias against long running transactions that have already accessed

many blocks. The long running transactions are “vulnerable” to aborts from many small-

/young transactions that may access one of those blocks. Thus requester-wins HTMs can

experience performance degradation when there are many data conflicts between transac-

tions.

The reason best-effort, requester-wins HTMs are popular in commercial offerings is

that they are easier to implement. However, even supposedly simple HTM designs can be

difficult to implement correctly [6]. This argues for focusing performance improvement

efforts on this style of HTM, rather than on more complex HTMs that are less likely to be

used in practice.

Figure 1.1 shows a high-level depiction of our baseline architecture. The HTM En-

gine contains hardware that manages the transaction, such as the Abort Pending bit that

signals whether the running transaction has been aborted, and the Abort Hardware that

rolls back updates by the aborted transaction. In the private cache, each block has an ad-

ditional Transactional (tnx) bit, which indicates whether the line has been accessed by the

transaction (thus adding them to the read or write set).

Coherence messages are sent through the Coherence Layer, which also contains the

Directory. To request read or write permissions, cores send standard coherence protocol

messages down to the Coherence Layer. When a coherence invalidate or downgrade mes-

2



sage for a cache block with its tnx bit set arrives, this means that there has been a data

conflict on that address. This sets the Abort Pending bit, triggering the transaction abort.

Private Cache

Core 0

HTM Engine
Abort Pending

Tnx

Tnx

Abort Hardware

Line 0

Line 1

Coherence Layer

Private Cache

Core 1

HTM Engine
Abort Pending

Tnx

Tnx

Abort Hardware

Line 0

Line 1

Figure 1.1: Baseline HTM Architecture

This type of best-effort HTM has been the dominant mechanism in providing TM sup-

port for commercial offerings [1, 7, 2, 3, 8]. The implementation is relatively low-cost

and when there is little data contention, best-effort HTMs perform very well. Data conflict

checking is done at access time, which means that there is little work required at commit

time.

More importantly, requester-wins HTMs leave the coherence protocol unchanged. There

are no additional message types or coherence states that can complicate the coherence pro-

tocol and its verification. In other words, the coherence protocol is unaware of the HTM.

However, with data conflicts, best-effort HTMs can have lower performance than more

sophisticated HTMs. One problem is that requester-wins HTMs often penalize older trans-

actions that have done more work instead of younger ones. When a transaction conflicts

with another, older, transaction by requesting data already accessed by the older one, the

core running the younger transaction is the requester, and the core with the older one is

3



the responder. The responder core has no option except to honor the request, aborting the

older transaction. In other words, the older transaction “loses” against the younger one.

However, this is often suboptimal because the older transaction has done more work than

the younger one, and this makes it harder for large transactions to succeed in the presence

of many small transactions.

1.1 Limitations of Conventional HTM and Outline of Thesis

conventional hardware TM implementations are designed in this fashion to avoid making

any changes to the coherence protocol. When a transaction needs to access a cache block,

the block is requested using the unmodified coherence protocol. If this block is held by

another core in a conflicting coherence state, that core gets an invalidation or downgrade

request that forces it to change its coherence state. However, there can be several short-

comings with this approach.

A transaction running on the core receiving such a request must be aborted. In other

words, the “requester” transaction has “won” the conflict. However, such a policy can re-

sult in aborting transactions that have done more work instead of those that have done less

work, and creates a strong bias against long running transactions that have already accessed

many blocks. The long running transactions are “vulnerable” to aborts from many small-

/young transactions that may access one of those blocks. Thus requester-wins HTMs can

experience performance degradation when there are many data conflicts between transac-

tions.

In addition, because coherence protocol messages are used to detect data conflicts, the

conflict detection scheme in conventional HTMs are called “eager.” Data conflicts are

detected immediately, as soon as the other thread accesses the said data. A different style

of data conflict detection is called “lazy conflict detection.” Here, transactions do reads and

writes locally, without notifying the other threads. Only when the transaction is ready to

commit are the read and write sets exposed to the others. Because conflict detection is done
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only at the very end, the window of vulnerability is much shorter when using lazy conflict

detetion.

Also, conventional hardware TM implementations can also experience other, non-conflict

aborts as well. For example, speculative data is commonly buffered in a private buffer (such

as the private cache), which isolates it from other cores until the transaction is committed [2,

3, 1]. If the speculative data does not fit within this private buffer, the transaction is unable

to continue because the HTM implementation will no longer be able to roll back if a real

data conflict occurs, so the HTM transaction aborts a transaction upon detecting a private-

buffer overflow. Similarly, a system call result in aborting a transaction for which no actual

conflict has been detected, and no conflict may actually happen at all [9, 2, 3, 1].

As noted earlier, these HTM systems are also best effort, in that they make no forward

progress guarantees. As a result, software needs to provide alternative means of providing

forward progress, called the fallback path [2]. One common implementation of the fallback

path is to execute the transaction as a critical section, whose mutual exclusion is enforced

by aborting all other active transactions, even though no data conflicts have been detected.

The reason best-effort, requester-wins HTMs are popular in commercial offerings is

that they are easier to implement. However, even supposedly simple HTM designs can be

difficult to implement correctly [6]. This argues for focusing performance improvement

efforts on this style of HTM, rather than on more complex HTMs that are less likely to be

used in practice. In this thesis, we discuss three such techniques.

In Chapter 2, we show that it is possible to follow the key tenet of requester-wins HTMs

(thou shalt not modify the coherence protocol) while allowing more sophisticated conflict

resolution policies. The solution we propose, which we call PleaseTM, is to insert a plea

bit (or bits) in each coherence response. These plea bits are transparent to the coherence

protocol (no effect on coherence states, transitions, or verification), and the only change is

the addition of these bits into the coherence message. The plea bit allows a responder core

running a transaction to inform the requester that it will abort a transaction if the requester

5



proceeds. Using this information, the requesting transaction can implement the actual con-

flict resolution policy: it can choose to ignore the request and proceed (the requester won),

but it can also choose to abort itself before using or modifying the block (the requester

gives up, or loses), allowing the responding transaction to avoid the abort.

Later, in Chapter 3, we propose a generic mechanism that can be used to support mit-

igating actions, and possibly other purposes. Thus we propose that the HTM, instead of

simply aborting the transaction upon detecting an action that creates an an abort-causing

condition, instead trigger execution of a pre-abort software handler without aborting the

transaction 2. This handler would execute outside of the speculative context, and can im-

plement mitigating actions that allow the transaction to continue, or simply allow the trans-

action to be aborted, e.g. when abort is actually needed or when the appropriate mitigating

action is not implemented in the handler. To provide the handler with the information nec-

essary to make decide which action to take, the type of the abort trigger and additional

arguments such as relevant instruction and data addresses is passed to the handler.

Then, in Chapter 4, we go back to the issue of conflict detection (as opposed to conflict

resolution, which we discuss in Chapter 2). We propose a technique that allows requester-

wins HTMs to emulate lazy conflict detection. When a transaction needs to issue a specu-

lative write, it does so with read permission (GetS), instead of write permission (GetX) as

normally done. Later, when the transaction is ready to commit, the HTM hardware steps

through each speculative but dirty line, and requests write permission for each. Transac-

tional reads on the other hand are done eagerly as usual.

Lastly, we conclude the thesis in Chapter 5.

2Note that this is different from the regular abort handler, which is called after the transaction is aborted
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CHAPTER 2

PLEASETM: ENABLING TRANSACTION CONFLICT MANAGEMENT IN

REQUESTER-WINS HARDWARE TRANSACTIONAL MEMORY

2.1 Background

2.1.1 Conflict Handling under Conventional HTMs

As discussed earlier, conventional HTMs detect data conflicts by using coherence protocol

messages [10]. When a transaction that speculatively read from an address receives an

invalidation request (GetM request), this indicates a read/write conflict with another core.

Likewise, when a transaction that did a speculative write receives a coherence request,

this indicates a data conflict with another core. As a result of the coherence message, the

transaction is subsequently aborted.

This type of best-effort HTM has been the dominant mechanism in providing TM sup-

port for commercial offerings [1, 7, 2, 3, 8]. The implementation is relatively low-cost

and when there is little data contention, best-effort HTMs perform very well. Data conflict

checking is done at access time, which means that there is little work required at commit

time.

More importantly, requester-wins HTMs leave the coherence protocol unchanged. There

are no additional message types or coherence states that can complicate the coherence pro-

tocol and its verification. In other words, the coherence protocol is unaware of the HTM.

However, with data conflicts, best-effort HTMs can have lower performance than more

sophisticated HTMs. One problem is that requester-wins HTMs often penalize older trans-

actions that have done more work instead of younger ones. When a transaction conflicts

with another, older, transaction by requesting data already accessed by the older one, the

core running the younger transaction is the requester, and the core with the older one is
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the responder. The responder core has no option except to honor the request, aborting the

older transaction. In other words, the older transaction “loses” against the younger one.

However, this is often suboptimal because the older transaction has done more work than

the younger one, and this makes it harder for large transactions to succeed in the presence

of many small transactions.

Figure 2.1 shows a simple example that illustrates this. The example uses two cores,

C0 and C1. The directory is shown as DIR. A transaction execution is indicated by a solid

line in a thread’s timeline, whereas execution outside a transaction is shown as a dotted

line. An empty circle shows when a transaction starts, and a filled circle shows commit.

A filled diamond shows when a transaction has aborted. Actions taken by the core or the

cache controller are indicated by gray boxes. For reference, the lower part of the figure also

shows how the cache’s coherence state changes at each core (using the MESI protocol).

Figure 2.1: Timeline of wasted work in requester-wins HTM

At the beginning (left side of the figure), C0 starts a long transaction T0, and C1 has

just committed a previous transaction. At ¶, T0 does a speculative store to cache block X

(all of our examples work at cache block granularity), so C0 issues a GetM (fetch block
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with permission to modify it) request. The directory finds that the block is not owned by

anyone, and grants the permission to C0. Core C0 now has the block in M state, as shown

in the Cache State part of the figure.

At ·, C1 starts a new transaction T1. When T1 does a speculative store to address X

at ¸, we have a store-store conflict that needs to be resolved. Since T0 and T1 may have

performed other speculative memory accesses, we would violate atomicity if we allow both

to proceed.

However, the unmodified coherence protocol is unaware of this transactional conflict. It

implements the normal behavior for a GetM request received by a cache that has the block

in the M state – C0 responds with the block’s (original) data and invalidates its own cached

version of the block. This response grants C1 the write permission it needs, so when it

receives the response it goes ahead with the write. In this conflict, only C0 (the responder)

is aware of the conflict. Because C1 will simply forge ahead when it gets the response,

correct conflict resolution requires C0 to abort its transaction upon detecting the conflict.

As a result, this type of HTM implements the “requester-wins” conflict resolution policy

out of necessity.

However, the “requester-wins” decision is often a poor one. Transaction T0 is fre-

quently the one that has done more work – after all, it accessed block X first. Even when

the two conflicting transactions are both small, aborting C0 is often disadvantageous be-

cause, given a little more time (by delaying T1’s write), T0 might have committed and no

abort would have been needed.

Aborted transactions may exacerbate problems when they roll back and restart. If an

aborted transaction restarts too soon, it may then re-request the block on which it previously

had a conflict, and thus abort the winner of the previous conflict [1]. In the example in

Figure 2.1, when T0 restarts at º, the hope is that, by the time T0 (re)reaches its instruction

ST X, T1 will have already committed. If T1 has not committed by then, the HTM enters

what can be a live-lock situation, where T0 and T1 repeatedly abort each other. This
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problem is an example of the “Friendly Fire” pathology described in [11].

2.1.2 Prior Solutions

If we allow modification to the coherence mechanism, there are ways to reduce the impact

of these issues. For example, in LogTM [12], transactions who access the line later (such as

T1) are sent a negative acknowledgment (Nack) message. While T1 is stalled, the earlier

transaction (T0) is allowed to continue, hopefully committing before T1 asks for the line

again. Stiff-arming [3] is another mechanism to briefly stall requesters by holding on to

the conflicting request at the directory in the hope that the earlier transaction manages to

commit soon.

Instead of simply letting the transaction that accessed the line earlier stall the other

transaction, FasTM [13] proposes a mechanism (called FasTM-Abort) that can instead

abort the requester, or even decide between the transactions which one to abort. FasTM

adds an additional T state to the MESI protocol, and allows cores executing a transaction

to send a Nack message for blocks in the T state (like LogTM). The Nack message can

optionally contain the timestamp when the transactions had started. The recipient of the

Nack uses this information to figure out which transaction started earlier, and aborts itself

if it’s the younger transaction.

In HTMs with lazy conflict detection such as BulkTM [4], data conflicts are only de-

tected at commit time. Among conflicting transactions, the one that reaches the commit

point first wins, which ensures forward progress. However, here again we need to use

TM-specific coherence.

Instead of trying to manage conflicts directly, best-effort HTMs can use fallback paths

instead [14, 15, 16]. When a transaction is aborted, instead of simply trying again the abort

handler can fall back to a mutex lock or other more sophisticated software work-arounds.

Designers of the abort handler can also try to avoid conflicts more proactively by delaying

a transaction that is expected to conflict with another one (transaction scheduling [17, 18,
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19]).

However, abort handlers either act after the fact (when an abort has already occurred)

or require good prediction of future aborts. Such prediction is difficult to do accurately, and

sophisticated prediction code may result in overheads that negate much of the advantages

gained by avoiding aborts.

2.2 PleaseTM

2.2.1 Overview

A key design constraint for best-effort HTMs is to avoid modifying the coherence proto-

col. The problem we are trying to solve is that this constraint seems to require that aborts

are unavoidable when a transaction receives coherence invalidate/downgrade messages for

transactionally-held data. Our solution is to provide a mechanism that decouples the coher-

ence protocol from transaction conflict detection and resolution, which opens the door for

using better conflict resolution policies.

The mechanism we propose is to extend coherence response messages with a plea bit (or

bits). The coherence hardware ignores the plea bit(s) and simply passes them to the cache

controller and the HTM engine of the requester. When a transaction receives a coherence

protocol request that will cause it to abort, it can now use the plea bit to inform the requester

that a conflict has been detected, and that proceeding with the requester’s access will result

in aborting another transaction. The requesting transaction, when it receives the plea, can

elect to abort itself, thus resolving the conflict in favor of the pleading transaction1. We are

in essence providing a conflict resolution mechanism similar to FasTM-Abort, but without

any changes to the coherence protocol.

Because the coherence protocol is unmodified, the pleading transaction needs to inval-

idate/downgrade the conflicting block in its own cache before responding (with the plea).

1The requesting transaction may instead override the plea and continue, which will result in aborting the
pleading transaction. We will investigate this later
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Thus, after responding, the pleading core/cache must discover whether the data has been

accessed by a third core in the mean time. The pleading core must re-acquire the invali-

dated/downgraded permission for the conflicting block and verify that the atomicity of its

transaction is still intact.

Both goals are achieved by re-requesting the block, using GetM if the line was previ-

ously in the M state, or using GetS if it was in E or S state. The permission alone is not

sufficient – the pleading core must check if the block was modified while it was “absent.”

The solution we use is to validate the block’s data when the block is re-acquired [20,

21]. Recall that HTMs with unmodified coherence protocols need to record the original

data separate from the speculatively updated data. The original data is needed to rollback

aborted transactions and respond to the abort-causing request. In PleaseTM, this original

data is now used to verify the data of re-acquired cache blocks. If the data is unchanged, the

work already done in the pleading transaction is still valid and the transaction may proceed.

If the data validation does not succeed, transaction’s work was based on data that is now

stale, and the pleading transaction needs to abort.

Until we have confirmation that the plea was accepted, the transaction can continue

executing, but is not allowed to commit. It the transaction reaches the commit point too

early or receives additional memory requests to blocks pending refetch, it needs to stall

until the block is re-acquired.

Despite a time gap, and possible intervening accesses, between the sending of the plea

and data validation, the pleading transaction is still correct. The behavior of the transaction

is as if the data it accessed and the work it did occurred atomically at the serialization

point [10], when the transaction commits. Since we validated that the refetched data is

unmodified, the speculative work done by the transaction is still valid, and thus may be

committed. In addition, non-transactional accesses will ignore the plea bits and always win

the conflict, providing opacity [10].

Figure 2.2 shows the architecture for PleaseTM, with the additional components shown
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Figure 2.2: Architecture for PleaseTM

in gray. When a coherence request is received for a cache block with its transactional bit set,

the Refetch Address register is set to the block’s address. The responder core (or pleading

core) will send a coherence response as usual, but with the plea bit set. This Refetch Address

register is checked by the HTM Engine when trying to commit the transction, and if set will

stall the commit until the refetch is complete.

The requester core’s Conflict Resolution Hardware takes the plea and makes a local

decision on whether to accept or override the plea. If the plea is to be accepted, the Conflict

Resolution Hardware invokes the abort hardware to abort the transaction. If it is to be

ignored, the execution continues as usual. If the requester is not inside a transaction, the

Conflict Resolution Hardware is not active and the plea is simply ignored.

The pleading core later sends an additional coherence request to recover the line (either

a GetS or GetM) to the requester. The Refetch Validator component will validate the re-

acquired cache block to check whether the data has not changed since. If not, then the
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Refetch Address is cleared and the transaction is free to continue. However, if the data

has changed, this means that the speculative data the transaction was working with is now

invalid, so the transaction has no choice but to abort.

The coherence layer does have one minor change required. The coherence layer needs

to be augmented to include the additional plea bits in the coherence messages. However,

these are treated as strictly payload and the coherence layer does not bother with it (and

simply passes the information up to the conflict resolution layer).

We now describe in detail what needs to be done to handle various conflict resolution

scenarios in PleaseTM.

2.2.2 Write-write Conflict with Plea Accepted

Returning to our example, Figure 2.3 shows what happens with our proposal. At ·, trans-

action T1 executes a store operation to block X. This request is forwarded to the current

owner, which is C0. C0 is executing T0, and wishes to continue with the transaction. When

it responds to the coherence request, T0 inserts the plea, which T1 receives. The directory

now indicates that C1 is the new owner of the address. However, T1 notices the plea bit

sent along with the response, and therefore politely aborts itself (¸).

Cache
State

GetM
Grant M

GetM

Fwd-GetM Grant M
+Plea

GetM
Grant M
+No Plea

Fwd-GetM

Ê ST X

Ë ST X Ì Abort T1

Î Commit T0Í Refetch

C0 IÔM
C1 I

Ê
C0 MÔI
C1 IÔM

Ë
C0 IÔM
C1 MÔI

Í
C0 I
C1 M

Ì
C0 M
C1 I

Î

C1

C0

DIR

Begin T1

Figure 2.3: Write-write conflict with T0’s plea accepted

Core C0 must reacquire write permission for block A (and validate the data) before
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continuing T0. After sending the response to ¸, T0 sends a GetM request (¹). The

directory forwards the request to C1, which responds without any plea bits (since it has

already aborted). When C0 receives the coherence response, it once again holds X in M

state. Now T0 validates the data (successfully) and T0 continues with the transaction and

later commits (º).

2.2.3 Write-write Conflict with Plea Denied

In the previous example, T0 avoided an abort, but this won’t always happen. Figure 2.4

shows T0 conflicting with non-transactional execution from C1. In this example C1 does

a regular store operation at · (recall that we work at cache line granularity, so this can

happen when there is false sharing). Since C1 is not inside a transaction, it ignores the plea

sent by T0 and updates the line (¸).

Cache
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GetM
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GetM

Fwd-GetM
Data
+Plea

GetM Data'
+No Plea

Fwd-GetM

Ê ST X

Ë ST X Ì Ignore

Î Abort T0Í Refetch

C0 IÔM
C1 I

Ê
C0 MÔI
C1 IÔM

Ë
C0 IÔM
C1 MÔI

Í
C0 I
C1 M

Ì
C0 M
C1 I

Î

C1

C0

DIR

Begin T0

Figure 2.4: Write-write conflict with T0’s plea denied
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Transaction T0 does not yet know whether its plea was granted or not. It refetches

the line (for validation) at ¹ through a GetM request. The directory forwards the request

to C1, which returns the modified data (no plea bit here either, since C1 is not inside a

transaction). C0 tries to validate the data, but this time the data does not match its buffered

version. This indicates that there was an intervening write, that C0’s copy of X is now

stale. Even though C0 recovered the original permissions, C0 must abort T0 to guarantee

atomicity, as shown at º.

2.2.4 Read-write Conflict with Plea Accepted

Figure 2.5 shows an example where C0 transactionally reads a line, and C1 later tries to do

a transactional write to the same line. Like in the write-write case, we can use the plea bit to

keep the earlier transaction from aborting. At ¶, C0 issues a GetS request corresponding

to the load, and changes the line state to E or S state. Later, T1 starts, and C1 issues a GetM

request (·). When C0 receives the Inv message from the directory, it sends an Inv-Ack

message back to C1. T0 inserts the plea bit in that message indicating that the line has been

speculatively accessed by an active transaction that wishes to continue.

T1 receives the message and aborts (¸), discarding all speculative updates it had done.

At ¹, C0 later refetches the line using a GetS message. C1, since its transaction has now

aborted, returns the (unmodified) data without any plea bits set. T0 checks the data for

validity, and since the data is untouched, proceeds to successfully commit (º).

Even if there were multiple readers when C1 issued the GetM request, the end result

will still be the same, albeit with pairwise plea bits and refetches between C1 and the

readers. C1 sends an Inv message to the readers, and they all insert the plea bit into the

Inv-Ack response. The first plea-enabled Inv-Ack response will abort T1, with the

latter plea bits simply ignored (since C1 is no longer within a transaction). The readers

each separately re-issue the GetS to C1 and continue with their transactions.

If C1 was not inside a transaction and did the write to cache block X, then the plea is
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Figure 2.5: Read-write conflict with plea accepted

denied, just like in Section 2.2.3. Similarly, multiple readers are aborted after they refetch,

as all their copies are now stale.

2.3 Additional Conflict Resolution Policies

In the previous section we discussed how adding a plea bit to coherence responses for

a core with an active transaction can save longer-running transactions from aborts. By

adding a simple plea bit to the coherence response and validating the data, we changed

a requester-wins HTM to a requester-loses HTM. However, it has been shown [22, 13]

that more sophisticated policies can do better than these simple policies. If the responding

transaction T0 has actually done less work than the requesting transaction T1, then it can

be more beneficial to abort T0 instead.

To realize such policies, the conflicting transactions need information about each other.

For example, the timestamp when the transaction started, the number of aborts, or num-

ber of transactional reads or writes can all be used to estimate the amount of “work” each

transaction has done so far. This information then needs to be communicated to the other

transaction. In FasTM, the authors propose embedding this information in the Nack mes-

sage.
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Figure 2.6: A write-write conflict with a different conflict resolution policy

In PleaseTM, we can expand the plea to include this information instead. Figure 2.6

shows how the system might use multiple bit pleas to support more sophisticated policies.

Cores C0 C1 are each running transactions, and transaction T0 has speculatively written

to X. T1 does a transactional store at ¶. T0 receives the coherence request, and includes

plea Plea0 in the response. Plea0 contains a number estimating the work done by T0.

At ·, T1 receives this plea, and compares the included number with its own value. T1

determines that it had done more work than T0, overrides the plea and continues instead of

aborting.

Later, at ¸, T0 refetches the line by sending a GetM. C1 doesn’t remember or care

that C0 previously owned the line. Instead, it tries to save T1 by sending its own plea,

Plea1. The plea comparison between T0 and T1 still results in T1 winning, so this time

T0 accepts the plea and aborts (¹). At º, T1 refetches the line, and validates the contents,

hopefully committing at a later time.

Since refetch is not instantaneous, by the time the refetch operation arrives at C0, T0

might have restarted and did more work than T1. In this case, T0 will continue. This may

lead to plea bits being sent back and forth between C0 and C1. However, one of these

transactions will either commit, or will eventually exceed the abort limit and invoke the

fallback mechanism.
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Since extra information takes up additional plea bits in each coherence response, we

want to minimize its size. Most transactions are relatively small. Further, we are primarily

interested in preventing a transaction that has done little work from aborting a transaction

that has done a lot of work. Thus, we do not need a fully precise measure of the work done

by a transaction. We investigate various possibilities for the information in Section 2.5.3.

2.4 Correctness

Our PleaseTM proposal makes no changes to the coherence protocol, and thus does not

affect its correctness. Our hardware changes involve the cores sending additional coherence

messages, but they are conventional messages. The plea bits are completely ignored by the

coherence protocol and are simply passed up to the core.

Transactions may occasionally form cycles of aborts (livelock), but requester-wins

HTMs do not guarantee the absence of such situations. For forward progress, they instead

rely on fallback paths like global lock fallbacks. By better managing conflicts, PleaseTM

can reduce such pathological aborts and rely less on those fallback paths.

Data validation is an important factor in ensuring correct behavior of transactions in

PleaseTM. To avoid aborting, a responding transaction must successfully refetch data blocks

in the original coherence state and with the original values.

In some cases, the pleading transaction may miss some write operations, but correct

behavior is still ensured. The validation will not detect silent writes, where the write uses

the same value that was already in that location. The transaction may have read the value

prior to the silent write, but it acts as if it had read the data (whose value is unchanged) after

the silent write. In other words, the serialization point is still at the point of the commit

instruction.

The core still needs to respond to coherence requests while the refetch is outstanding.

If an additional request does not indicate a conflict, we can just complete the refetch. If

any additional requests indicate a conflict, it is theoretically possible to respond with more
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pleas. However, this would require more extensive hardware support to track the multiple

ongoing pleas and validate them all. We limit the complexity of our implementation by

simply aborting the transaction if it receives a conflict-indicating coherence request when

a plea is already outstanding. Note that the refetch to validate the original plea might have

already been sent. Because the refetch is a normal coherence request, it will eventually

complete normally even though the refetched coherence state is no longer needed (transac-

tion had since aborted).

2.4.1 ABA Problem

We’ll look at a more concrete example of a corner case that might occur under PleaseTM,

and show why it does not violate correctness. The example is called the ABA problem,

where data is overwritten, then overwritten back to the original value (“A Õ B Õ A”). This

can occur because the refetch and validation of data blocks is not atomic. Following the

same reasoning as for silent writes, this does not violate correctness. Since the serialization

point is the transaction commit, what’s important is what the value was at that point: all

memory operations appear as they all performed instantaneously: the transaction did work

after reading A.

Figure 2.7 depicts a sequence of events that represents this problem. There are three

cores now; core C0 is running a transaction (T0), while core C1 and core C2 is running

outside of a transaction. In addition to the message diagram and cache state transitions, we

also show the value of the data block in question, X in the bottom row.

At time ¶, T0 speculatively accesses data block X, reads A and speculatively updates

it to S. Later, at time ·, core C1 does a non-transactional store to the same block X to the

value of B. Since core C1 is outside of a transaction, it ignores the plea bit sent by core C0

(but core C0 hasn’t been notified of this yet). At time ¸, another core C2 writes to X,

turning it back to A.

At time ¹, core C0 attempts to refetch data block X. It sends a GetM message, which
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Figure 2.7: Timeline for A Õ B Õ A

is forwarded to core C2. Since the value of X is A at this point, T0 validates the refetched

data, and proceeds as usual. This is correct because we are ordering the writes by core C1

and C2 before the commit of transaction T0.

2.5 Experimental Results

2.5.1 Setup

We modify SuperTrans [23], a transactional memory simulator built from SESC [24], to

more accurately simulate best-effort HTM similar to Haswell’s Transactional Synchroniza-

tion Extensions (TSX). The L1 cache stores speculative (transactional) data and the L2

cache maintains the original values. Conflicts are detected when coherence invalidations/-

downgrades are received for transactional data. Replacing a transactional dirty line results

in aborting the transaction. Replacing clean transactional data puts the block’s address in an

overflow set, and triggers an abort only if the overflow set is already full. Non-transactional
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lines do not affect the transaction when replaced. Inclusion is enforced between L1 and L2,

so L1 replacements (and transaction aborts) can be caused by L2 replacements.

Each core has private 32KB L1 instruction and data caches, and a private 256KB L2

cache. The L1 caches are 8-way set associative with hit latency of 3 cycles, and the L2

caches are 16-way with 20 cycle hit latency. On transaction abort, speculatively written

lines in the L1 are invalidated, reverting to the version in the L2. On commit, these are

written back to the L2. Invalidation of any speculatively accessed line causes an active

transaction to abort.

We model 36 cores that are connected through a 6 by 6 mesh network with X-Y routing.

Coherence among private caches is maintained using a directory-based MESI protocol. The

shared L3 cache is distributed, with a 1MB slice in each of the 36 tiles, and the off-chip

memory has a 250-cycle latency. The threads are pinned to each core, so that no core runs

with more than 1 thread. Execution time (and speedups) are based on the “Time =” output

in each application. The simulations are run with GNU parallel [25].

We evaluate the benefits of our approach using STAMP benchmarks [26] with recom-

mended simulator inputs (excluding the bayes benchmark, which has a non-deterministic

runtime making it unsuitable for performance comparison). Kmeans and vacation have two

input sets, and we denote the results from high-conflict input with a “+” suffix. Since we

model a best-effort HTM, we need an abort handler to guarantee forward progress. Our de-

fault handler uses a randomized linear backoff between an abort and a retry. After a number

of repeated data conflict aborts (the actual threshold used is the best performing one across

all benchmarks for each policy), the handler takes the fallback path which acquires a global

lock instead of starting the transaction [14].

2.5.2 Overall Results

Figure 2.8 shows the parallel speedup (relative to the single-threaded run) for several

conflict-resolution policies. The first policy shown is the baseline RequesterWins policy
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Figure 2.8: Baseline (RequesterWins) vs. Two Simple Plea-enabled Policies

used in best-effort HTMs, where the transaction requesting the block “wins,” and the trans-

action(s) that receives the invalidation/downgrade request loses (is aborted).

The other two policies are enabled by our plea-based approach. In ResponderWins, a

transaction that receives an invalidation/downgrade for a speculatively accessed line does

not immediately abort, but sends a single-bit plea with the response. When the requester

core receives such a response, if it is executing a transaction, it aborts. In short, this policy

resolves conflicts in the exact opposite way from the baseline RequesterWins approach.

In the MoreReadsWins policy, the responding transaction sends a plea that includes a

few bits about how many blocks it has read transactionally. The requesting core, if exe-

cuting a transaction, compares this to its own number of transactional reads and aborts its

own transaction if it has fewer reads so far. Otherwise, it ignores the plea and continues

executing the transaction, causing the responder to eventually abort when its refetch fails.

In short, this policy resolves conflicts by aborting the transaction that has done less “work,”

for which we use the number of lines read as a proxy.

Overall, we observe that plea-enabled policies tend to outperform the RequesterWins
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baseline, especially in applications whose performance scales well (kmeans and vacation).

The improvement is primarily due to resolving conflicts such that it aborts the transaction

that has done less work, and preserves the one that has done more work. Although Respon-

derWins does not explicitly measure or compare the work done by conflicting transactions,

it aborts the requester, which tends to be the transaction that did less work. On the other

hand, MoreReadsWins explicitly prefers the transaction that did more work. In genome,

intruder, labyrinth, and yada, the information on which transaction should be kept alive

provided by MoreReadsWins gives it an additional benefit above and beyond Responder-

Wins – whereas ResponderWins always aborts the transaction that receives the plea, the

MoreReadsWins policy benefits from being able to do the opposite when the responding

transaction is actually the “smaller” one. Intruder and labyrinth are interesting in that the

ResponderWins policy is inferior to the RequesterWins baseline, whereas MoreReadsWins

makes up the lost ground and even improves upon RequesterWins. Finally, ssca2 experi-

ences so few data conflicts that conflict resolution doesn’t make much of a difference.
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Figure 2.9: Ratio of Friendly-fire Aborts

Figure 2.9 shows the percentage of friendly-fire aborts [11] from the total number of

aborts each benchmark experiences. Friendly-fire aborts are defined as aborted transactions
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who themselves have aborted another. As explained in Section 2.1, when using the baseline

RequesterWins policy, and the aborted transaction restarts too soon, the system can get

caught in a situation where the aborted transaction restarts and aborts the aborter, which

itself then turns around and aborts the first transaction again, resulting in a live-lock.

We can see that with better conflict resolution, we can significantly reduce the ratio of

friendly-fire aborts in most of the benchmarks. The effect is most pronounced in kmeans,

where a simple flipping of the abort decision outcome removed almost all friendly-fire

aborts. This is because conflicts are detected early in the transaction, so once a transaction

starts “winning,” it becomes very likely to commit successfully. In vacation, we do see a

slight increase with MoreReadsWins compared to ResponderWins, but this is compensated

by the reduction in the total number of aborts.

In summary, our proposal to add a plea to coherence responses enables better conflict

resolution policies that significantly improve performance. MoreReadsWins appears to be a

good policy, but even better and/or cheaper policies might be possible; the key takeaway is

that the plea enables improved policies. Put another way, our decision-enabling approach is

important for improving the performance of best-effort HTMs. The baseline RequesterWins

policy, the only choice in today’s best-effort HTM systems, tends to force poor conflict

resolution decisions, so enabling even a simple reversal of these decisions (ResponderWins)

tends to be beneficial. Our plea-based approach allows more sophisticated (and better-

performing) policies to be implemented, as exemplified by the MoreReadsWins results.

Even more sophisticated policies, such as adaptive policies informed by prior behavior,

may do even better, and such policies are only possible for best-effort HTMs once choice

is enabled by a mechanism such as ours.

2.5.3 More Conflict Resolution Policies

As shown previously [22, 13], using more sophisticated conflict resolution policies can

result in better performance. By utilizing the plea bits, PleaseTM can also support better
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conflict resolution decisions by embedding the information in plea bits. We’ve already

shown that the MoreReadsWins policy has a significant advantage over the simple 1-bit

plea in ResponderWins.

Other than these two policies, we also consider the following policies. The OlderWins

policy gives higher priority to transactions that have executed more instructions. It uses

the plea bits to hold the number of instructions the active transaction has executed since it

started or restarted. The WriterWins policy is has the writer always win the conflict. The

MoreAbortsWins policy gives higher priority to transactions that have experienced more

aborts. It uses a plea containing the number of aborts the active transaction has experienced

so far.
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Figure 2.10: Speedup of Various Types of Plea Bits Compared to ResponderWins

Figure 2.10 compares the performance of the different policies, normalized to Respon-

derWins. OlderWins performs similar to MoreReadsWins. This is because the two metrics

of work are highly correlated; executing more instructions generally means executing more

reads. This is especially true when the two transactions share the same static code (i.e., if

the threads were using locks, they would be in the same critical section). While OlderWins

treats all instructions within a transaction as equivalent, in MoreReadsWins only reads have
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weight. The idea behind MoreReadsWins is that speculative accesses are the most impor-

tant measure of work, since they expose the transaction to conflicts. Also, MoreReadsWins

can theoretically use a more compact plea, since not all instructions are reads.

WriterWins largely performs similar to MoreReadsWins, but performs worse in genome.

This is because we always favor the writer, even if the requester sends a GetM request and

conflicts with multiple readers; each of which might have done more work.

MoreAbortsWins performs worse than the other policies, and with kmeans, even worse

than ResponderWins. The reason for this is twofold. First, our use of a global lock fallback

means that, when it is used, all transactions except the one falling back get aborted; this can

skew the notion of work done by the transactions. Second, the granularity of this metric is

too coarse, leading to many transactions having identical plea values.

2.5.4 Overhead of Avoiding Coherence Protocol Modifications

Compared to FasTM-Abort, conflicts in PleaseTM can generate additional traffic due to

refetch. In FasTM, when there is a coherence request to a conflicting data block, trans-

actions can respond with a Nack message that includes information about the responder

transaction. However, instead of the single Nack message required to abort the younger

requester, in PleaseTM the responder transaction needs to send a response (embedded with

the plea bits) and later refetch the data by sending a GetS or GetM message.

We next look at the overhead due to these additional messages. Figure 2.11 compares

the performance of PleaseTM and (coherence modifying) FasTM-Abort. We can see that

although there is a slight performance gap between FasTM-Abort and PleaseTM, it is small

compared to the gap between RequesterWins and MoreReadsWins. Figure 2.12 shows the

number of overhead messages as a percentage of all coherence messages in the system.

An overhead message is either the refetch request and response message in the case for

PleaseTM, or the Nack message in the case for FasTM.

We can see that the number of additional messages sent due to refetch (or Nack) is very
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Figure 2.11: Performance Overhead of Avoiding Coherence Modifications

modest. Recall that these additional messages are only sent when transactions access data

in a conflicting manner. Most of the data are to private data or data unique to that transac-

tion. In addition, recall that in RequesterWins, the conflict always results in an abort. The

aborted transaction will need to redo the work, possibly leading to more messages. This

means that the additional messages due to PleaseTM are not always detrimental. Instead,

by reducing the amount of lost work, proper conflict resolution often compensates for these

additional messages.

2.5.5 Effect on Software Fallback Thresholds

When a transaction experiences repeated aborts, this can imply that the current part of the

application does not have enough parallelism. When a thread experiences more than a

given number of repeated aborts (the threshold), one way out of this situation is to take a

software fallback path that acquires a global lock [14].

Because atomicity needs to be ensured between threads inside a transaction and the

thread taking the fallback path, transactions need to keep the global lock in their read sets.

Acquiring the lock will write to it, forcing all active transctions to abort, and allowing the
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Figure 2.12: Overhead Messages (Refetch/Nack)

critical section to execute in isolation. Aborting all these transactions can have a perfor-

mance impact.

By using PleaseTM with MoreReadsWins, and to a lesser extent with ResponderWins,

we favor transactions that did more work. This means that the conflict resolution results

will not change until one of them completes (unlike in RequesterWins, which depends on

when the cache block was accessed, and is less deterministic). In other words, transactions

that “lost” will continue losing. When the threshold is set too low, the losing transactions

will quickly ratchet up their abort count. This will cause them to prematurely switch over

to the software fallback path, often before the winner transaction has a chance to complete.

In figure 2.13, we compare the mean speedup of each conflict resolution policy, us-

ing fallback thresholds of 8 through 24, to the mean speedup when using the baseline Re-

questerWins with a threshold of 8. We can see that when using these policies, it is beneficial

to have a high threshold value for triggering the software fallback.

Another takeaway is that because restarted transactions can themselves abort their

aborter, it can be tricky to tune the baseline policy for better performance [8, 27]. With the

threshold being too large, conflicting transactions may simply continue to abort each other
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Figure 2.13: Speedup With Different Fallback Thresholds

without increasing the probability of success. However, as we can see from figure 2.9,

MoreReadsWins settles on a certain “winner”, reducing the ratio of friendly-fire aborts.

With fewer friendly-fire aborts, the performance is more stable and thus less sensitive to

the threshold value, reducing the burden of finding the “right balance.”

2.5.6 Conflict Resolution and Software Fallback

Our baseline system uses a global lock fallback, as described in Section 2.5.1. While using

a global lock is simple and straightforward, each use of the global lock can be detrimen-

tal to performance. When the global lock is acquired by someone, this causes all active

transactions to abort, as described earlier.

This performance issue has motivated researchers to explore alternative software fall-

backs. The fallbacks primarily decide if and when to retry a transaction, and thus treat

the problem as a transaction scheduling problem (“when should I start this transaction?”).

Conflict resolution policies such as ours are separate from transaction scheduling policies,

but the two can work together [28]. We now explore how our plea mechanism, and the

various resolution policies we support, interact with these alternative fallbacks.
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One fallback proposal uses a token called the “hourglass” to limit the number of out-

standing transactions without aborting everything [15]. When a transaction experiences

more than a given number of aborts, instead of grabbing a global lock, it atomically sets

a flag (the hourglass) and starts the transaction (needed to detect data conflicts). Once the

hourglass is set, new transactions are not allowed to start (or restart). This is similar to the

global lock fallback. However, unlike the global lock fallback, the hourglass holder does

not abort active transactions. Instead, by blocking starts and restarts from other threads

until the hourglass holder commits, transactions gradually drain out of the system.

Another proposal, called “Serialize-on-Killer” (SOK), tries to serialize conflicting trans-

actions [29]. All threads have associated flags that are set before starting a transaction, and

cleared after the transaction commits. When a transaction aborts, the hardware passes the

ID of the aborter (“killer”) thread to its handler. The software fallback uses this to busy-wait

on the aborter thread’s flag, which a thread clears when it commits a transaction.
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Figure 2.14: Speedup Chart Various Software Fallbacks

Figure 2.14 shows the speedup of MoreReadsWins over RequesterWins with different

fallbacks. Each bar shows the speedup of MoreReadsWins over RequesterWins for that

benchmark and fallback (in other words, each “GlobalLock” bar shows the speedup of
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PleaseTM-enabled MoreReadsWins over the RequesterWins baseline, where both PleaseTM

and the baseline use the GlobalLock fallback path. Likewise for the “Hourglass” bars and

the “SOK” bars).

The benefits of a better conflict resolution policy actually improve with the more so-

phisticated Hourglass policy. The SOK fallback, on the other hand, is more mixed. Since

aborted transactions are stalled until the aborter transaction commits, we see fewer friendly-

fire aborts, and as a result less of a benefit to using MoreReadsWins.

2.5.7 Conflict Resolution and Software

Optimizations

Another approach developers can take to improve performance when using transactional

memory is by revising the software to experience fewer data conflicts. Nakaike et al. [30]

analyzed the STAMP benchmarks and proposed several software changes. Genome is mod-

ified to use shorter transactions, while in kmeans care was taken to make the data align on

cache lines better, reducing potential for false sharing. Intruder and vacation were modified

to use data structures more suitable for HTM.
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Figure 2.15 shows the parallel speedup of each modified benchmark. On the far right,

it also shows the mean as “Opt”, and as reference, the mean speedup of the original code

as “Orig.” We can see that the software changes do improve overall speedups, but better

conflict resolution policies enabled by PleaseTM still provide an additional benefit over

RequesterWins.

2.6 Related Work

LogTM is an HTM scheme that detects data conflicts using a modified directory-based

coherence protocol [12]. Like our scheme, LogTM attempts to keep older transactions

from getting aborted by younger ones. However, unlike PleaseTM, LogTM does this by

extending the coherence protocol (transactional values are immediately updates, with the

original values in an undo log). When a transaction requests data that is currently held

by another transaction, it sends a negative acknowledgment message (Nacks) to stall the

requester.

FasTM [13] removes the software undo log requirement and simplifies the changes

needed by LogTM, but still requires the Nack messages and acknowledgments. In addi-

tion, instead of stalling nacked transactions, FasTM has the ability to abort them (FasTM-

Abort). By inserting timestamps in the Nack messages, FasTM allows longer-running

transactions to abort shorter ones on a conflict. Akpinar et al. [22] and Shriraman et al. [28]

use a similar mechanism to FasTM-Abort and investigate a variety of conflict resolution

policies.

Constrained transactions in System Z assure forward progress for a small subset of

transactions that comply with certain restrictions [3]. In addition, System Z also provides

“stiff-arming” that allows transactions to temporarily stall an access. However, this is done

through modifying the coherence protocol, complicating verification.

Instead of modifying the coherence protocol, there has also been work on separating

conflict detection from the coherence protocol. Transactional conflict decoupling [31, 21]
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predicts that invalidated cache lines result from false conflicts, and uses the stale values

as if they were still valid. This allows speculative execution to continue without aborting,

but requires a refetch and validation similar to our proposal. Suppressing silent stores [32]

instead tries to eliminate unnecessary aborts from silent writes. When a core writes a value

to shared memory that is the same as the old value, then the transaction keeps the data in

shared state and avoids broadcasting coherence messages.

After the release of various commercial HTM systems, there have been several pieces

of work on how to take advantage of these best-effort style HTMs. Yoo et al. [8] investigate

the performance Intel’s best-effort HTM system and briefly discuss how to tune for perfor-

mance. Diegues and Romano [27] look at tuning parameters such as the fallback threshold

at runtime using machine learning. Diegues et al. [33] discuss the challenges involved in

extracting the best performance from transactional memory in general, and find that HTMs

perform very well for certain transaction types (e.g., shorter ones), whereas fine-grained

locking and software TM systems perform better in others.

After a transaction aborts, restarting too soon can lead to more aborts, especially in

best-effort HTMs. Many schemes have been proposed to make better decisions on when

to schedule the restart of a transaction. Adaptive Transaction Scheduling [16] takes a feed-

back driven approach and forces transactions into a run queue when the conflict intensity

is too high. The run queue limits the number of active transactions, reducing conflicts.

Toxic Transactions [15] proposes a software mechanism called the hourglass to throttle

starting of new transactions when conflicts are frequent, but allowing those already active

to complete. This is the same hourglass token used in Section 2.5.6. Software-assisted

Conflict Management [34] is a contention management scheme that uses an auxiliary lock

acquired by transactions that experience conflicts, forcing them into a run queue, while

leaving non-conflicting transactions alone.

Instead of globally adjusting the number of active transactions, there are also proposals

to predict likely conflicts and schedule transactions around them. Armejach et al. [29] look
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at several proposals that serialize transactions so that restarted transactions happen one after

another. Proactive Transaction Scheduling [17] uses the past history of transactions and the

threads that execute the transaction to predict potential data conflicts and schedules trans-

actions accordingly. Bloom Filter Guided Transaction Scheduling [18] uses Bloom filters

of the read and write sets to inform the conflict predictor. Preventing versus Curing [19]

instead uses the past history of the read and write operations to predict the transactions’

access set to predict conflicts.
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CHAPTER 3

TRANSACTIONAL PRE-ABORT HANDLERS

IN HARDWARE TRANSACTIONAL MEMORY

3.1 Background

In a transaction, a thread optimistically works on shared data while checking for conflicts

that (may) violate the transaction’s atomicity. The TM system keeps track of which data

each transaction has accessed: the read set and write set. Using these sets, transactions

identify any potential read-write or write-write conflicts, and abort one (or more) of the

conflicting transactions when a conflict is detected.

A transaction abort involves discarding its speculative state, placing some information

about the cause of the abort in a status register, and then passing control to an abort handler.

This handler chooses the desired course of action, e.g. retry the transaction immediately,

retry after a brief wait, or use the fallback path.

The fallback path is an alternative to retrying the transaction, and is needed because

commercial HTM implementations are “best-effort,” i.e. they do not in general guarantee

forward progress of transactions. For example, a transaction whose working set is larger

than the private storage will be aborted on every retry, so the abort handler must eventually

use the fallback path for such a transaction. A typical fallback path acquires a mutex lock,

the fallback lock. The thread then executes the same code as the transaction’s body, but

non-speculatively, as a critical section.

The life a typical transaction is shown in Figure 3.1. First, it checks the status of the

fallback lock (¶). This must be done inside the transaction to eliminate the race between

the check and the start of the transaction, and to add the fallback lock to the transaction’s

read set. This ensures that the transaction will detect a conflict (and be aborted) if another
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Figure 3.1: Life of a Transaction with the Baseline Fallback

thread acquires (writes to) the lock.

A busy lock (·) means that another thread is using the fallback path, so the transaction

aborts itself to ensure mutual exclusion for that other thread. Otherwise (lock is free, ¸),

the transaction enters the actual body of the atomic section.

The transaction is executed speculatively by the TM hardware while checking for aborts.

If it completes all of its work, the thread executes the commit operation/instruction, causing

the TM hardware to atomically write to non-speculative state all of the data that was specu-

latively written. If an abort does occur, the speculative state is automatically discarded (¹)

and the thread switches control to the abort handler, which can retry the transaction (º) or

use the fallback path for it (»).
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3.2 Pre-abort Handlers

In Figure 3.1, note that the speculative state is automatically discarded when an abort con-

dition is met. For aborts caused by data conflicts, this is a reasonable approach. Data

conflicts can lead to partial work being exposed and atomicity being violated. However,

in many cases, the transaction is aborted because it cannot continue, discarding the work

done so far even though that work is still valid. For example, a transaction that overflows

the speculative buffer cannot continue because, if a data conflict does occur later on, the

transaction’s writes can no longer be rolled back.

This does not mean the work must necessarily be discarded. For example, when a

transaction overflows the speculative buffer, the other threads could be paused by a hard-

ware mechanism [35] to allow the overflowing transaction to complete correctly. The same

effect can be achieved by atomically converting the transaction into an irrevocable trans-

action just before it overflows the speculative buffer. However, it is difficult to do so by

anticipating the overflow in the transaction’s own code [36]. Reactive approaches (con-

version when buffer overflow is just about to occur) are precluded by the TM hardware

automatically aborting the transaction without giving the software any opportunity to rem-

edy the situation and possibly avoid the abort.

As a solution, we propose to allow the hardware TM to invoke a function, a pre-abort

handler, when the transaction encounters an abort-causing condition (in other words, be-

fore ¹ in Figure 3.1). This will allow the programmer to decide whether to take mitigating

action to avoid the abort-causing situation, or keep the default behavior and discard the

speculative work.

Figure 3.2 depicts a high level view of the steps taken. Before we start the transaction,

the entry point of the handler function is registered to the HTM system (À). Later, when

the transaction encounters a situation that can trigger an abort (Á), say a capacity overflow,

we treat it as if the instruction had an exception; the instruction is quashed and the PC value
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Figure 3.2: Flowchart With Pre-abort Handler

of the trigger operation is saved (Â). Note that unlike typical exceptions or interrupts on

processors that support HTM, this exception does not itself trigger an abort.

The thread is then diverted to the handler entry point. The handler is provided argu-

ments such as the type of abort-causing situation, which can be used to decide which mit-

igating action to take (Ã). After the situation has been resolved, the handler returns. The

PC of the trigger operation is restored, allowing the thread to re-attempt the operation (Ä).

Hopefully, the abort-causing condition has been fully resolved, and the transaction is no

longer threatened.

In some cases, the situation is unresolvable and the transaction has no other option

but to abort. In this case, the handler code calls abort explicitly (Å), causing the thread to

follow standard abort handling procedure (i.e. abort and rollback the transaction, then enter

the abort handler).
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The fact that the pre-abort handler was triggered does not mean that the transaction is

immune from abort. Other abort-causing conditions, such as regular data conflicts, are still

tracked. If there is an additional abort causing condition during execution of the pre-abort

handler (nested aborts), the transaction is aborted and speculative state discarded, with the

program control passed directly to the (regular) abort handler. Pre-abort handlers must be

carefully written, since they execute non-speculatively, but may be interrupted (and never

continued) at any time.

3.2.1 Supported Abort Types

Table 3.1 shows what abort types we handle, and what additional arguments are passed (if

any).

Table 3.1: Abort Types with Pre-abort Handlers

Cause Handled? Additional Arg
Syscall Yes Number

Capacity Yes None
Manual Abort Yes Abort Argument

Conflict on Clean Yes Conflict Address
Conflict on Dirty No N/A

When a system call is attempted we call the pre-abort handler instead of aborting. The

handler is passed syscall as the cause argument, and an additional argument, the system

call number.

When a transaction hits its capacity limit, the handler is called with the cause argument

as capacity.

Many HTMs allow transactions to be aborted explicitly, e.g. by executing an XABORT

or TABORT instruction [2, 1], along with a user-defined abort-cause argument. We also call

the pre-abort handler in this case. The user-provided argument is passed as the additional

pre-abort argument. In this case, the handler is set to return to the instruction after the abort
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instruction (as opposed to returning to the instruction itself), since it makes no sense to

retry the instruction and return right back to the handler.

The pre-abort handler is also invoked for conflicts on lines that were only read by a

transaction handler (transactional and clean). In this case, the virtual address of the cache

block that experienced the conflict is also supplied to the pre-abort handler. This is some-

what similar to interrupts from Alert-on-Update[37]. However those interrupts focus on

monitoring the state of software TM metadata, and are not for general HTM.

However, a data conflict on a transactional but dirty line implies that the transaction has

already done work that, if committed, could violate transactional semantics (unless there

was false sharing, which is outside the scope of this work, or unless the conflict resolution

policy is changed). Therefore, in this case we allow the HTM to automatically abort without

pre-abort handler invocation, but we envision this behavior to be software-configurable to

permit further uses of pre-abort handling, e.g. to avoid false-sharing-induced aborts.

3.2.2 Hardware Support

To support pre-abort handlers, the first hardware change that is needed is a mechanism

to provide the processor core with the handler’s address. One option is to reuse exist-

ing interrupt/exception vector tables and user-space signal handler mechanisms. Another

way, which we use in our evaluation, is to add a new register [38], which we call the

Pre-abort Handler Entry register. To put the address of the handler into this reg-

ister, we can use an existing instruction for accessing control registers or, if no such in-

struction exists, introduce such an instruction.

The hardware already must track whether a thread is inside a transaction or not, e.g.,

to control the behavior of reads and writes. We add a third possible state, HANDLER. We

change the hardware such that, when an abort-causing condition is detected by a thread in

the TRANSACTION state, it doesn’t automatically discard speculative state and transition to

the NON-TRANSACTIONAL state. Instead, it saves the PC and transitions to the HANDLER
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state.

As the system enters the HANDLER state, the stack pointer is also advanced by the

cache line size to prevent the handler’s non-speculative accesses from interfering with the

transaction’s speculative data. Without such precautions, the handler and the suspended

transaction may end up sharing the same cache line (the top of the stack). This will result

in the line being in some sort of anomalous state.

When entering the pre-abort handler, the PC is set to the entry point of the pre-abort

handler (effectively jumping to that instruction). The arguments of the handler function

need to be set as well, which we do so by following function calling convention and setting

R1 to the abort cause and R2 to the abort-specific additional argument.

While in the HANDLER state, memory is accessed speculatively or non-speculatively

depending on the status of the cache line. Reads or writes to cache lines with the trans-

actional bit set are done speculatively, whereas non-transactional lines and lines not being

tracked yet (e.g., cache misses) are done non-speculatively [39, 40]. In other words, the

transactional bit is left as-is for each access 1.

The eventual fate of the handler can be one of three things. First, if the handler returns

without the transaction getting committed or aborted, the transaction is resumed. The saved

PC is restored and the stack pointer is moved back one cache line. If the abort was due to

a clean data conflict, the line is added back to the read set. Lastly, the transaction state is

changed from HANDLER to TRANSACTION.

Second, the handler may call the transaction commit instruction. In this case, the

thread commits all speculative state as usual and moves from the HANDLER state to the

NON-TRANSACTIONAL state. However, the thread has not yet left the handler function;

returning triggers the same stack pointer and PC adjustment as in the “resume” case.

Lastly, the thread can encounter another abort-causing condition while still inside the

pre-abort handler (nested abort). For example, while handling a system-call event a data

1This means that the handler can silently modify speculative state.
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conflict occurs. In this case, we make no attempt to handle this nested abort situation

and take the normal abort path (i.e. discard speculative content and call the regular abort

handler).

In summary, while in the HANDLER state, the hardware behaves as if it’s executing a

transaction, except:

• The stack pointer is advanced and returned when entering and exiting the handler.

• Detecting additional abort causing conditions will abort the transaction.

• Accesses to cache lines not yet tracked as part of a transaction’s read set or write set

are done non-speculatively.

The HANDLER state is similar to transaction suspension provided by IBM’s Power ar-

chitecture [1]. However, in our scheme the suspension is done as part of the pre-abort

handler, instead of being done explicitly.

It is important to note that the changes proposed above are isolated within the processor

core itself, including both the TM hardware and private cache, and no changes are needed

for the coherence protocol. In addition, if the entry point is not registered, there will be

no handler call. The program behavior in this case is identical to the baseline: speculative

state is discarded and control passed to the (regular) abort handler, allowing for backward

compatibility.

In the following sections, we describe various use cases of the pre-abort handler.

3.3 Pre-abort Handler Use Cases

3.3.1 Handling System Call Aborts

Including system calls inside transactions is problematic because they are hard or impossi-

ble to undo [9]. As a result, conventional HTM systems [2, 3] simply abort when encoun-

tering system calls, forcing the transaction to discard the work done so far and take the
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fallback path. The thread then re-executes the code before the system call, although now

inside a critical section.

However, system calls are highly useful in debugging and for other purposes [41]. In-

deed this is one reason why the C++ Transactional Memory proposal included the

optimize-for-synchronized keyword to handle transactions that include system

calls. Without them, a TM-aware compiler will fail to generate transactions and use critical

sections instead [42].

By using pre-abort handlers, instead of automatically aborting, we can atomically con-

vert the transaction into a critical section. Specifically, the handler is invoked when a

transaction attempts a system call. This handler then attempts to acquire the fallback lock.

Because all transactions hold the lock status in their read sets (¶ in Figure 3.1), the ac-

quisition will force the other threads to abort any active transaction and prevent them from

starting new ones. Once the lock is acquired, the thread then commits its work in isolation

and returns to the system call instruction. As a result, the transaction’s already-performed

work can be considered to logically happen inside the critical section. At the end of the

(now) critical section, the overall state of the thread is equivalent to what would have hap-

pened if the fallback path was used instead of starting the transaction.

This conversion of transactions into critical sections is similar to Irrevocable Transac-

tions [43] that were used in the context of a lock-based software transactional memory

(STM). However, instead of relying on the STM implementation’s centralized contention

managers and software locking protocols, pre-abort handlers provide similar benefits for

best-effort HTMs.

Figure 3.3 shows the code, somewhat simplified for clarity, of how we might implement

this idea using pre-abort handlers. When a transaction encounters a system call instruction,

under the baseline system, the transaction is aborted and speculative state automatically

rolled back. With pre-abort handlers, the instruction is instead quashed, just as is done for

ordinary exceptions. The thread’s control is then passed to the pre-abort handler.
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1 handler(cause, argument) {
2 if(cause == SYSCALL) {
3 rc = trylock(fallback_lock);
4 if(rc == SUCCESS) {
5 HTM_COMMIT();
6 in_fallback = TRUE;
7 return;
8 } else {
9 // Lock taken by another thread

10 HTM_ABORT();
11 }}}

Figure 3.3: Pre-abort Handler For System Calls

The handler code first checks the reason for the exception (line 2) and then requests

the fallback lock (line 3). When the lock is acquired and transaction successfully commit-

ted (line 4 – line 6), the transaction can no longer conflict with other transactions. The

fallback lock is acquired and held by our thread, so active transactions are aborted and new

ones prevented from starting. Since speculative state is also committed, the thread is now

outside of a transaction, and the thread’s state is as if it had been executing all along as a

critical section.

When the thread returns from the handler, it continues executing non-speculatively,

starting with the system call operation that originally triggered the conversion. The thread

continues execution until the end of the “critical section,” at which the fallback lock is

released, just like it would be if the critical section had been executed using the fallback

path in the first place.

Note that it is possible for the lock acquisition to fail, because the lock was already

acquired by another thread (line 8). In this case, the pre-abort handler simply aborts, which

leads to the speculative state being aborted and the regular abort handler being called.

It is even possible (but extremely rare) for a thread to successfully acquire the lock,

but get aborted before the transaction was able to commit. For example, a conflicting

access in another thread may occur just before the handler reaches the commit point. Since
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transactions inside the pre-abort handler are still vulnerable to data conflicts, the transaction

will simply be aborted, and control diverted to the regular abort handler. The thread still

holds the lock (non-speculatively), so the regular abort handler simply needs to start the

critical section body.

In all of these unsuccessful conversion cases, although the thread’s speculative work is

not salvaged, the overall resulting behavior is correct; in fact, it is the same behavior that

occurs without transaction conversion.

If needed, we can also check the cause-specific argument, which according to Table 3.1

is the system call number, and take different action depending on which system call was

the trigger. However, we choose not to do so in this implementation.

One advantage of our solution is that transaction conversion does not need to be done

ahead of time. Other solutions [1, 43] require code modification that inserts transaction

conversion just before the system call is attempted. However, as we shall see next, there

are other types of non-conflict aborts that are more difficult to predict.

Another advantage of our solution is that when a transaction encounters a system call,

the transaction does not need to discard work and retry. This is because in some cases

system calls are issued due to a rare condition being triggered, perhaps an error condi-

tion. However, the condition may no longer be valid when the transaction was aborted

and restarted as a critical section. By allowing the transaction to seamlessly convert into a

critical section right then, the program can be in better shape to act on the situation.

3.3.2 Handling Capacity Aborts

When a core executing a transaction runs out of buffer space, the transaction is unable to

proceed further without compromising its ability to abort and roll back. In this case, the

cache-overflowing transaction is forced to abort before proceeding further. These are called

capacity aborts. Capacity problems have been observed to be a major cause of aborts in

commercial HTM systems [8], and an obstacle to broader use of HTM [44].
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In addition, capacity aborts can be especially detrimental to performance. Existing

best-effort HTM systems handle capacity aborts in the same way as system call aborts: the

fallback path is taken. The fact that a transaction has accumulated enough read or write

addresses to overflow buffer capacity means that it has probably done a lot of work. All

that work is discarded and re-done on the fallback path, simply because of a limitation in

the hardware. Even though the transaction has not conflicted with another thread and the

already-done work is correct up to that point. If we instead have a mechanism to catch the

capacity overflow before it occurs, we can take abort-avoidance action (e.g. convert the

transaction into a critical section), we can avoid discarding the work.

However, unlike with system calls, which have a clear point in the code where it is clear

that an abort-causing situation is going to take place, capacity issues are more difficult to

predict. For system calls, this means that mitigating action can be inserted just before

the system call through manual inspection [43], or even through some type of compiler

analysis.

For capacity aborts, any memory access may be a possible abort site, depending on the

size and other characteristics of the transactional state buffer (e.g. the private L1 cache),

and the actual mix of addresses accessed by the transaction, etc. [40, 36]. This type of inter-

action is implementation dependent and hard to predict ahead of time – in many ways this

problem is similar to the cache performance analysis problem, which is usually measured

at runtime [45] rather than predicted statically.

This makes our handler-driven mechanism much more important. Instead of relying

on a prediction mechanism that may or may not be correct, the pre-abort handler is only

triggered when the buffer capacity overflow is actually imminent. Other than including

a check for capacity abort, the pre-abort handler for transaction conversion just before a

capacity abort is very similar to the one for system calls (Figure 3.3).
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3.3.3 Inserting Non-transactional Work

Another use case of pre-abort handlers is to include non-transactional work within a trans-

action. One challenge with debugging hardware transactions is due to isolation provided

by the hardware [41]. Even if there is a bug within the transaction, the state is discarded on

abort, lost to the developer.

If there was a mechanism to log thread state non-transactionally, this state will still

be available after the abort, making it easier to write correct transactions. This can be

done by either adding special memory instructions [39] that execute non-speculatively,

or instructions that suspend and resume speculative execution [1]. Unfortunately, these

proposals require special hardware changes.

In comparison, the same pre-abort handler mechanism can also be used to provide such

functionality. To do so, the developer manually triggers the pre-abort handler, by calling

the XABORT or TABORT instructions. The argument passed to this abort instruction is

passed as an additional argument to the handler (see Table 3.1). This can be used to pass

information about the current transaction to the handler. Section 3.4.2 contains an example

handler, which non-transactionally logs actions done by the active transaction, which can

be inspected later on.

3.3.4 Pausing Transactions on

Fallback-lock Activity

When a thread is using the fallback lock, the correct behavior is to disallow other trans-

actions from executing, either by aborting or pausing them. This is because the critical

section executes non-speculatively and does not rely on buffering to provide isolation. If

other transactions are allowed to continue, this will result in undetected conflicts, which

would violate transactional guarantees, as described in Section 3.1. However, other in-

flight transactions have not (yet) conflicted with the critical section, so aborting them can

be inefficient.
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Instead, it is actually sufficient to pause the other transactions, rather than abort them

immediately [4]. When the other transactions are notified of the fallback lock being ac-

quired, they are paused, prevented from doing any additional work that can update the read

or write sets. Only when the critical section is completed and the lock released are the

transactions allowed to complete.

By using pre-abort handlers, we can implement transaction pausing. We use the fact that

the pre-abort handler can be called when transactional but clean data is written to. Since

fallback locks are only read (at the beginning of the transaction) but not written to, when

there is lock activity, this will lead to the pre-abort handler being triggered. Transactions

can then wait inside the handler, waiting for the lock to become free again. Once the lock is

freed, the paused transactions are allowed to return from the handler, and resume operation.

1 handler(cause, argument) {
2 if(cause == ADDRESS &&
3 argument == fb_lock) {
4 while(test_lock(fb_lock) == BUSY)
5 DELAY();
6 return;
7 } else {
8 // Unrelated conflicting write, abort
9 HTM_ABORT();

10 }}

Figure 3.4: Pre-abort Handler for Fallback-lock Conflicts

Figure 3.4 depicts a handler that handles conflicts on the fallback lock. The transaction,

as shown in Figure 3.1, starts by testing the fallback lock status and adding the address to

the transaction read set. Before the transaction completes, the HTM hardware is notified of

a write to a cache line that was part of its read set. The current operation is quashed and

the pre-abort handler is triggered.

Since the handler is passed the address of the data conflict, we use this to see if it

matches the address of our fallback lock (line 2–line 3). If the address does not match (line 8),

this means the pre-abort handler was triggered by a write to another address. This is a gen-
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uine data conflict, and the pre-abort handler aborts the transaction right away (line 10).

If the address does match, this means there was a change to the lock status (line 4). The

handler loops until the busy lock is now free, effectively pausing the transaction (line 4 –

line 5).

Once the lock becomes free, the loop ends and the handler returns (line 6). The PC is

now back at the original operation and resumes normal execution. The transaction resumes,

as if nothing has happened.

Pausing transactions, rather than aborting them, still results in correct execution. As

noted earlier, a transaction paused within the pre-abort handler is still vulnerable to data

conflicts. A paused transaction can have a data conflict with the critical section in one of

two ways: with data that transactions had accessed before the lock acquisition, or after the

lock release.

The first type of data conflict occurs when data the transactions had accessed is later

accessed by the critical section. In this case, this is a standard type of data conflict; if the

conflict was on dirty data, the transaction is automatically aborted, if it was on clean data,

this is a nested abort and the transaction will (again) be aborted.

The second type of data “conflict” occurs when the data accessed by the critical section

is later accessed by the transaction. In this case there is no atomicity violation because such

execution is equivalent to serialized execution of these transactions in completion-order:

first the critical section completes and releases the lock, afterwards, paused transactions

eventually commit, after the critical section.

An important property we are taking advantage of is the fact that lock states are re-

versible; a lock that is busy will later be released and become free. Transactions are paused

only while the fallback lock is busy, but when the fallback lock is freed, they are allowed

to resume.

When the fallback lock shares a cache line with other data or locks, this can result in

many more data conflicts being detected. Although this can hurt performance, this does
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not mean the program is incorrect. Transactions will be unnecessarily aborted or have their

pre-abort handlers triggered unnecessarily. The test lock operation will return that the

lock is free, and the transaction will be allowed to continue, albeit delayed somewhat.

One might be tempted to take this idea further and allow transactions to continue, block-

ing only when they try to commit. This is called lazy lock subscription, as opposed to early

subscription which is what we use. However, lazy subscription can lead to problems [46].

Specifically, note that the critical section runs non-speculatively, updating values immedi-

ately. If the other transactions are not paused, they will be observing inconsistent state,

breaking atomicity of the critical section. Since this can lead to further incorrect behavior,

we avoid taking this route and simply pause the other transactions while the fallback lock

is held.

3.3.5 Pausing Transactions on Critical Section Conversion

Interestingly, pausing transactions can be combined with converting transactions into crit-

ical sections. In Figure 3.3, when a transaction is converted into a critical section, the

other active transactions are aborted immediately. This is done to keep the relationship be-

tween fallback lock activity and transactions identical: when the lock is acquired all active

transactions are aborted.

Sometimes, multiple transactions can request being converted into a critical section at

the same time. However, under the previous version of the pre-abort handler, only the first

transaction succeeds; the others are aborted. Instead of doing so, we can try to pause them

instead. When multiple transactions need to be converted into a critical section, we allow

each of them to do so (one after the other), instead of needing multiple attempts before

finally running as one.

We can do so through a simple change to the handler in Figure 3.3. Instead of trying and

giving up after the first attempt, lock acquisition is attempted repeatedly. The successful

thread will be converted into a critical section, while the other threads will be paused,
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waiting for the lock to become free again (or be aborted while waiting).

3.3.6 Other Possibilities

In addition to the cases discussed so far, one can think of additional possibilities for pre-

abort handlers. For example, one might use such pre-abort handling to avoid transactional

aborts due to “housekeeping” activity, such as maintaining thread-local memory pools.

When the memory pool is exhausted, accessing the global pool can lead to data conflicts.

Instead, the transaction can be suspended while the thread-local free memory pool is re-

plenished from the global pool. This is safe because even if the transaction is aborted, this

expansion of the local free memory pool is safe (and usually beneficial) to keep rather than

undo.

As another example, we can implement transaction early release with pre-abort handlers

as well [26, 47]. Early release allows transactions to drop addresses from its read set,

allowing the transaction to ignore conflicts on such addresses. We can do so by maintaining

a per-transaction set of “dropped addresses.” Later, when there is a read-write conflict

interrupt and the addresses are confirmed to be part of the dropped addresses set, the conflict

can be ignored, allowing the transaction to continue.

3.4 Evaluation Setup

We evaluate pre-abort handlers using SESC, a cycle-accurate architecture simulator [24],

with an HTM model based on SuperTrans [23] modified to more closely match Intel’s TSX.

The processor cores are 4-way out-of-order, with private L1 and L2 caches. The L1 cache

is 32KB, 4-way set-associative, with hit latency of 4 cycles. The L2 is 64KB per core with

a hit latency of 18 cycles. The shared L3 cache is 1MB, with a hit latency of 34 cycles. The

memory takes a constant 200 cycle latency.

Each L1 cache block is augmented with a bit indicating its transactional status. If a line

with the bit set is to be evicted from the cache set, this is a capacity overflow. If it receives
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a coherence request, this indicates a data conflict.

When a transaction encounters an abort-causing condition, the hardware checks if the

pre-abort handler entry point is set. If it is, the program control is switched to the pre-abort

handler. If not, the transaction is aborted immediately and program control switched to the

regular abort handler. If the pre-abort handler decides to give up, the transaction is also

aborted and program control switched to the regular abort handler. The abort penalty we

used is a pipeline flush.

Three different configurations are studied. The Baseline configuration does not have

the pre-abort handler specified and aborts on system calls, capacity limits, and fallback

activity. Hndl uses a pre-abort handler to avoid system call aborts and capacity aborts

by converting the transaction into a critical section (see Section 3.3.1 and Section 3.3.2).

Hndl+ additionally avoids aborting on fallback lock activity by pausing transactions (Sec-

tion 3.3.4 and Section 3.3.5). In all three configurations, the regular abort handler uses

random linear backoff, and takes the fallback path after 12 conflict aborts or 1 system call

abort or capacity abort.

In Section 3.4.1, we first use microbenchmarks to demonstrate the utility of using pre-

abort handlers. The first microbenchmark studies the impact of system call aborts and the

benefits of handling them through pre-abort handlers. The second microbenchmark studies

the impact and benefit of handling capacity aborts.

We then look at an application, vacation, from STAMP [26] and add non-transactional

logging using pre-abort handlers, and quantify the overhead required.

Lastly, we use the STAMP benchmarks in section 3.4.3 to further quantify benefits on

capacity aborts and fallback lock activity aborts; STAMP does not include system calls

or non-transactional work within transactions. We exclude kmeans and ssca2, because

their read/write set sizes are small and constant regardless of input, limiting the number of

capacity aborts we can catch. In addition, they do not have many aborts in the first place

and would not benefit from fallback activity mitigation techniques either. For measuring
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performance, we used the ”Time” output from the program itself, which shows the wall

clock time of the application’s parallel region.

3.4.1 Microbenchmark Results

We first use microbenchmarks to show what benefits can be realized using our abort miti-

gation techniques. In Figure 3.5 we see the results from the first microbenchmark, which

has transactions that may issue system calls. An AVL tree with objects, each 64-bytes

large (1 cache line) and with a unique search key, is generated. A list of random search

queries is generated as well, with a 50% probability of missing, and distributed to each

thread. Each thread issues (read-only) search queries against the tree, and when the key is

not found, an error message is logged to stdout. We compare the throughput of each of the

three configurations.
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Figure 3.5: System Call Microbenchmark Results

From the results, we can see that there is a 70% speedup when using transaction con-

version compared to the baseline when running single-threaded. This is because the mi-

crobenchmark issues a system call at the end of a transaction when it fails to find the query

key. This means that a failed query will result in the thread executing a transaction almost

to the end, abort due to the system call, and re-attempt the same code all over again.

At 16 threads, even though we have the threads all attempting transactions, under Base-

line many of them eventually issue system calls and trigger further aborts on the fallback

path. Unfortunately for Hndl, converting a transaction still results in the other transactions

54



getting aborted, even if none of them encountered any conflicts. By pausing these other

transactions instead, Hndl+ allows the microbenchmark to achieve a total of 9.5x speedup

over the single-threaded result.
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Figure 3.6: Capacity-scaled Microbenchmark Results

In Figure 3.6 we see the results from the second microbenchmark, which demonstrates

capacity aborts. The microbenchmark has a randomly generated array along with a se-

quence of search queries generated beforehand. Similar to the previous microbenchmark,

each entry is 64-bytes, and the search query has a 50% chance of missing. Each thread

performs linear searches through the shared array, with one search per transaction. A larger

search key will force the transaction to read more of the array and eventually run up against

the capacity limit. We compare the throughput of the three configurations against GLOCK,

which uses a single global lock instead of a transaction and therefore does not have any

capacity issues.

When running with 1 thread, as we scale the input size, the performance of Baseline

drops significantly, whereas the other two configurations are able to keep up with the global

lock version. As we go from an input size of 448 to 576, Baseline suffers from a perfor-
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mance dropoff of no performance loss to almost 24% performance loss due to increased

capacity aborts. Using pre-abort handlers, we are able to salvage the work done by the

overflowing transaction, and recover most of that performance loss, a 30% increase over

Baseline.

When running with 16 threads, the impact of capacity overflow aborts becomes more

prominent. In the same range of 448 to 576, Baseline goes from providing a 12x speedup

over GLOCK down to 2x speedup, a 6-fold performance drop. If we allow transactions

that hit the capacity limit to be converted into a critical section, the impact is reduced,

resulting in a 10 – 30% performance improvement over Baseline. If we are able to pause

them instead, as with Hndl+, we are able to greatly reduce the impact of the performance

drop. The reason is because when one transaction hits the capacity limit, we are able to

preserve the others by pausing instead.

In addition to improving performance for transaction sizes that are past the capacity

limit, pre-abort handlers are able to provide a more graceful degradation just past that

threshold.

3.4.2 Non-transactional Work Results

We investigate the benefits of including non-transactional work within transactions by mod-

ifying the vacation application from STAMP. Vacation simulates a travel reservation sys-

tem, and randomly issues requests to an in-memory database: make reservation, delete

customer, add and remove from item tables. We add a log entry to every customer deletion

operation, as shown in Figure 3.7.

The manual abort is provided a customerId argument, which is then passed on to the

pre-abort handler. The handler then logs this information, non-transactionally to standard

output. Running with the simulator input, of the 4096 requests, 5% of the them resulted

in a customer delete request. Logging these requests resulted in 2.0% runtime overhead,

which is quite limited.
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1 long bill = QRY_CUST_BILL(mngrPtr, customerId);
2 if (bill >= 0) {
3 HTM_ABORT(customerId);
4 DLTE_CUST(mngrPtr, customerId);
5 ...
6 void handler(int cause, int argument) {
7 if(cause == MANUAL) {
8 printf("[LOG] Customer %d Deleted\n",
9 argument);

10 }}

Figure 3.7: Adding non-transactional logging to vacation

3.4.3 STAMP Results

Figure 4.6 show the overall performance improvement provided by our mechanism when

running STAMP, running with recommended simulator input. Since STAMP does not issue

system calls within transactions, our experimental setup will only help on capacity aborts

and fallback lock activity. We compare the execution times of the region of interest between

Baseline and Hndl+.
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Figure 3.8: Overall Results

Using pre-abort handlers to convert transactions that overflow capacity, and pause them

upon fallback lock activity, Hndl+ shows an average speedup of 25% over Baseline. Genome
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sees the most benefit (2.4x speedup). This is because a significant portion of its abort cy-

cles are attributable to capacity-related issues, either directly because a transaction hits its

capacity limit and aborts, or indirectly because capacity-aborting transactions later take the

fallback path and abort other non-conflicting transactions. Vacation and yada also shows

good gains (22%, 47%, and 18%).
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Figure 3.9: Contribution of Capacity Aborts

Figure 3.9 shows the percentage of all aborted cycles that can be attributed to capacity

overflow when running the STAMP benchmarks with the baseline system. Capacity shows

cycles directly attributable to capacity aborts, i.e. cycles spent reaching the capacity abort,

as a percentage of all aborted-execution cycles (due to capacity, conflicts, etc.). Cpty FB

shows the cycles indirectly attributable to capacity aborts: work lost in other transactions as

they are aborted when the capacity-aborted transaction enters the fallback path. Cpty Abort

%, shows the percentage of all transaction aborts that are directly attributable to capac-

ity overflows (in other words, transaction attempts in this category contribute to Capacity

cycles).

As we can see, in applications that do experience capacity overflow, the impact to lost

work (cycles) is consistently larger than the fraction of capacity overflow aborts. This

means capacity aborts are typically more costly than other aborts. Capacity aborts come
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from a transaction having done a lot of work, even too much work, which is then discarded.

In contrast, conflict aborts may happen very early in a transaction. The sole exception is

labyrinth; capacity overflows occur so early in the transaction that threads are serialized

and the benefit is minimal.

Interestingly, the results also show that that a significant fraction of aborted cycles are

indirectly attributable to capacity overflows. These aborts are caused by the fallback path

being taken by overflowing transactions. As noted earlier, in the baseline system, transac-

tions are required to abort when the fallback path is active, to ensure atomicity.
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Figure 3.10: Other Statistics

Figure 3.10a shows the survival rate of paused transactions, i.e. the fraction of paused

transactions that are eventually resumed (as opposed to being aborted while paused). A

high survival rate indicates that the active thread (a critical section or a converted transac-

tion) is less likely to conflict with paused transactions. These benchmarks can be expected

to show increased benefit to those that have a lower survival rate. Indeed, genome and

vacation have very high survival rates, and therefore see more benefit from pausing. Other
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benchmarks have lower survival ratios and their benefit from pausing is lower.

Figure 3.10b shows what percentage of pre-abort handler activity was triggered by the

fallback lock, compared to the total number of clean conflict handler calls (writes to trans-

actional but clean data). Benchmark applications that have a high ratio means most pre-

abort handlers were actually due to fallback lock activity. This is the case for many of our

STAMP applications, although we can see that in bayes, intruder, and yada we see that

many address handler invocations are due to actual data conflicts instead.
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Figure 3.11: Overhead of Pre-abort Handlers

Because we call the pre-abort handler instead of automatically discarding a transac-

tion’s state and aborting it, one might be concerned about the overhead caused by the han-

dler. To measure this overhead, we compared the runtime of the baseline implementation

(automatically roll back the transaction) with an empty pre-abort handler (in other words,

the pre-abort handler doesn’t do any mitigating action and always aborts).

The results are shown in Figure 3.11, which shows that the overhead of invoking a

pre-abort handler is relatively small and is easily outweighed by the performance benefits

enabled by these handlers.

3.5 Related Work

Alert-on-Update [37] describes a mechanism that triggers an interrupt when a cache line is

evicted from the private cache. It relies on new instructions that adds a cache line to an alert
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set, which can cause an interrupt handler to be called when written to. Unlike our pre-abort

handler, Alert-On-Update’s handlers are limited to monitoring its software TM metadata.

Irrevocable Transactions [43, 48] is an STM system that converts a transaction into

a special irrevocable mode. When a transaction is converted to this mode, it always has

highest priority in data conflict resolution. At a high level this is similar to our transaction

conversion. However, because it targets lock-based STM systems, the changes required

are simpler. In addition, it does not need to support transaction capacity issues, which is

difficult to predict without using pre-abort handlers.

Even though they are enclosed within a transaction, many memory operations are not

required to be marked as speculative and be tracked by the HTM system. Some exam-

ples are read-only data or private stack data. Instead of treating all memory operations as

speculative, some architectures such as ASF allow the software to selectively choose which

operations are speculative, and which are non-speculative [39, 40].

Transaction Suspension [1] is a mechanism in Power’s implementation that allows spec-

ulative execution to be temporarily suspended. Although this can also be used to take miti-

gating action against certain type of aborts, this requires the transaction to predict the abort

situation and preemptively take action.

Between All and Nothing [49] proposes transactional resurrection, which allows aborted

hardware transactions to resume. However, their default mechanism only steps in after the

working set is cleaned up. The system then replays the software log and “resurrects” the

aborted transaction. There is also mention of a “messy” version, which does not discard

the working set (like with pre-abort handlers). However, it is only intended only intended

for short delays, such as TLB misses, and is not discussed further.

System calls are challenging to support within transactions due to the side effects in-

volved [50]. xCalls [9] allow transactions to use system calls, but require extensive software

changes to work.

FasTM [13] tracks transaction metadata in hardware, but falls back to the software log
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when a transaction exhausts its capacity. However, this requires the hardware understand

how to manage the log and add an additional coherence state, which makes it less attractive

for commercial HTM systems.

OneTM [35] introduces an overflowed state, which stalls other transactions while the

first transaction attempts to complete. Conceptually, this approach is similar to paused

transactions with transaction conversion, but requires transaction logging in software. TCC [4]

is another approach related to transaction pausing. It allows other transactions to continue

when a transaction encounters a capacity limit, blocking only their commit. However, com-

mit blocking has problems similar to lazy subscription. In addition, TCC also requires a

commit arbiter, which is not available in conventional HTM.

Proactive Transaction Scheduling [17] and Preventing versus Curing [19] model the

probability of conflict and use this to guide a transaction scheduler. Similarly, Bloom

Filter Guided Transaction Scheduling [18] use predicted read and write sets to avoid likely

conflict aborts. These proposals focus mainly on predicting and avoiding data conflicts,

and is largely orthogonal to our work.

Hybrid transactional memory [51, 52, 53] augments transactions running on conven-

tional HTM with software TM. A transaction can decide before starting whether to run

as software TM or hardware TM, and care needs to be taken to make sure data conflicts

between transactions in either mode are properly tracked.
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CHAPTER 4

FORGIVE-TM: SUPPORTING LAZY CONFLICT DETECTION

IN EAGER HARDWARE TRANSACTIONAL MEMORY

4.1 Background

While a transaction is running, it needs to make sure it does not conflict with the speculative

data of other transactions before it commits. Under requester-wins conventional HTMs, the

data conflicts are detected through coherence messages [2, 3, 1].

When a transaction speculatively writes to a cache line, it sends a GetM coherence

request message [54, 55]. Later, the same core may receive a coherence message destined

for that line (i.e. GetS or GetM). This means that another thread is accessing the same

data at the same time. This means transaction atomicity is broken, so the transaction is

forced to abort.

Likewise, if a transaction has speculatively read from a cache line, it initially sends

a GetS request. Later, when it receives a downgrade message (GetM), this means that

another thread is writing to the same data. Here again the transaction is forced to abort.

Figure 4.1a depicts what happens in detail. There are two transactions, and the lefthand

transaction first issues a speculative read (¬). Later, when the righthand transaction issues

a speculative write (), its core sends a GetM message, which is later received by the first

core. This notifies the lefthand transaction that it conflicted with another core, which aborts

itself (®).

As can be seen, the transaction is notified immediately of a data conflict. In other

words, the conflict detection is done eagerly. The advantage of this mechanism is that it

needs minimal support from the coherence protocol. From the protocol’s point of view, the

core has write or read permission, regardless of being done as a transaction or not.

63



In contrast, there are TM systems that do lazy conflict detection instead. Under lazy

detection, transactions are not notified of data conflicts while executing. Data conflicts are

checked for only at the end, when the transaction is ready to commit.

Figure 4.1b depicts how the behavior of lazy conflict detection TMs differ compared to

that of eager conflict detection TMs. As before, we have two transactions, and each issues

speculative reads and writes (¶, ·). Note that at this point, neither of the two transactions

notice that there is a data conflict.

Later, the righthand transaction is ready to commit. The transaction starts the commit

phase and notifies the lefthand transaction which indicates a possible data conflict (¸).

However, by this time, the lefthand transaction has already committed, so there is no abort.

The lefthand transaction “happened” before the righthand transaction, and both committed

without any issue.

TnxBegin

Rd(A)
Wr(A)

Abort

TnxBegin

TnxCmit

TnxCmit

GetM

(a) Eager Detection

TnxBegin

➊ Rd(A) ➋ Wr(A)

TnxBegin

TnxCmit
TnxCmit

➌ Notify

(b) Lazy Detection

Figure 4.1: Conflict Detection

Broadly, there are two mechanisms for implementing lazy conflict detection. First is

the TCC family of HTMs [56]. These HTMs buffer all writes locally without telling the

other cores. When the transaction needs to commit, commit permission is requested. Once

this has been granted, the write set is broadcast. Other transactions compare their read set

with this and get aborted if there is a conflict. The differences between implementations lie
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in how commit permission arbitration is done and how the write set is broadcast.

The second is the EazyHTM family [57]. These modify to the coherence protocol to

include message types which are used to construct local conflict sets. In other words, the

conflict may be detected eagerly, but are not immediately acted on. On commit, conflicting

transactions are sent explicit abort messages. More advanced implementations attempt to

reduce the number of such messages.

As can be seen, both types of proposals require changes to the coherence protocol.

The TCC solution requires commit arbitration messages, and the EazyHTM solution re-

quires conflict messages. However, coherence protocols are difficult to design correctly,

and every additional message type has the potential to significantly increase verification

complexity [58].

Instead, we propose Forgive-TM, which allows lazy conflict detection, while keeping

the existing coherence layer intact. The hardware changes required are isolated within the

processor cores themselves, which can be independently tested and verified.

4.2 Related Work

TCC [4] are one of the first proposals for lazy transactions. It works by issuing writes

locally without notifying the other cores. Later, when the transaction is complete, the core

sends a commit request on the shared bus. The commit phase works by broadcasting the

transaction’s write set on the bus, aborting any conflicting transactions in the process.

Following TCC, there have been various extensions with the goal of improving the per-

formance of the commit phase. Scalable TCC [59] and BulkSC [60] take a similar approach

to TCC, but overcome the requirement of a shared bus by adding a commit arbiter. Scal-

ableBulk [61] and BulkCommit [62] divide the commit phase into smaller pieces, called

chunks so that multiple commits can be done in parallel.

Instead of adding an explicit commit phase, EazyHTM [57] adds explicit transaction

abort request messages to the coherence protocol instead. While executing a transaction,
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the core sends txMark requests and txAccess requests to notify other cores that its

transaction is currently working on a given address. These messages are received by other

cores, and allows the transactions to build a list of conflicting transactions. When the

transaction is ready to commit, abort requests are sent to each conflicting transaction.

PI-TM [63] extends EazyHTM by adding bits called pi bits to the private cache. Eazy-

HTM has a disadvantage when recovering from a transaction abort: which part of the

speculative data had actually conflicted with another core is not known, therefore abort

recovery can be complicated. pi bits can accelerate this phase; however, fundamentally

PI-TM is similar to EazyHTM and has similar characteristics.

LV* [64] also tracks sets of conflicting transactions at each core. During execution,

transactions snoop coherence messages to keep track of which other transaction it conflicts

(a killer map). At commit, a commit message is broadcast to abort conflicting transactions,

whereas at abort, an abort message is broadcast to its clear killer map entry in the other

cores.

SI-TM [65] is a more ambitious proposal that provides snapshot isolation in hardware

TM, instead of the usual opacity guarantees that other systems provide [55]. Snapshot

isolation is a weaker correctness guarantees and therefore can allow additional scalabil-

ity. In addition to snapshot isolation, SI-TM also provides lazy conflict detection, through

multiversioned memory and transaction timestamps. However, supporting such a system

requires extensive changes, including changes to the memory controller.

There have also been proposals that allow a mix of both eager and lazy transactions.

FlexTM [66] detects conflicts eagerly and keeps track of which transactions conflict

with which in hardware. However, although detection is done eagerly, management can be

done lazily. A software routine, instead of a hardware one, is called to determine what to

do with the conflict, including explicitly aborting the other transactions at commit time.

DynTM [67] takes a similar approach to FlexTM. Lazy transactions detect conflicts

eagerly, but the conflicts are managed lazily by sending explicit AbortTx requests at
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commit time. Eager transactions on the other hand manage conflict eagerly, by aborting or

stalling the conflicting transaction. Which mode to run as is determined in the hardware.

Speculation-Based Conflict Resolution [68] also detects conflicts eagerly but handles

them lazily. Unlike other schemes, however, transactions with write-after-read conflicts are

ordered. Later, when conflicting transactions attempt to commit, the commit is done in the

write order, and aborts are avoided.

SEL-TM [69] is most similar to our work. Like Forgive-TM, SEL-TM allows for a mix

of eager and lazy conflict detection and manages lazy requests through a lazy set (called a

Lazy Address List) and a lazy store buffer. However, unlike our scheme SEL-TM only after

the commit arbitration is done. In addition, in SEL-TM, once an access is done lazily it

cannot be converted into an eager access. In addition, the eager access in SEL-TM is based

off of LogTM, which allows for NACKing of conflicting memory access and therefore is

less sensitive to data conflict aborts.

In general, prior work in supporting lazy conflict detection in hardware TM requires

changes to the coherence protocol. However, coherence protocols are generally difficult

to design correctly [58]. these designs design has a disadvantage that requires adding ad-

ditional coherence messages and states, which complicates design [70]. In addition, the

additional messages and states are specific to hardware transactions (i.e. not used outside

of transactions), which acts as a disincentive for additional effort in validating design.

4.3 Forgive-TM

In comparison to the prior work on lazy conflict detection, Forgive-TM is a mechanism that

allows support for lazily detected writes to be done by transactions, without modifications

to the coherence protocol. The changes are limited to the existing TM hardware, which

lies within the core itself, whereas the coherence hardware is kept the same. This allows

hardware vendors to take a more gradual approach in providing hardware TM support.
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What Forgive-TM does is “act first, ask forgiveness later 1.” Speculative writes are

done with only read permissions, not write permissions. Only later, when the transaction

is about to commit, are the write permissions acquired. This is allowed because as long

as the operations collectively “appear” to happen instantaneously, the operations can be

rearranged [55]. In addition, transactions that read speculative data are notified of any

other writers, and can be aborted.

In detail, Forgive-TM divides speculative writes into two categories: writes done ea-

gerly and writes done lazily. If the write is to be done eagerly, it will be done in the con-

ventional manner. The processor first checks for write permission and acquires it if needed

and updates the local private cache. Because acquiring write permission entails sending a

coherence message (GetM messages), this notifies the other cores of any potential conflict

eagerly.

Actually, most of the writes will be done eagerly.This is because not all writes need to

be handled in this special manner [69]. Many of the writes will be to private data. However,

some of the writes will be to data that many of the threads will needed to access. In addition,

each additional write done lazily can impact the commit latency can add up [71].

If not eagerly, the write is to be done lazily. Under this scheme, the processor initially

requires read permission only (by sending GetS requests). This will allow the transaction

to be notified of any other writers and abort. However, it unlike in the conventional case, it

does not require write permission, but instead keeps silent of its own (lazy) write.

The address of this cache line is then added to a set, the LazySet. Later, before the

transaction commits, the processor requests write permission (by GetM requests). In other

words, the lazy write is now converted to an eager one. Any other transactions that also

accessed the line will be aborted. From the core’s point of view, although the operations

are rearranged (the write permission request was delayed), the end result is still the same:

the core had speculatively updated data with the correct write permissions.

1also known as “it’s easier to ask forgiveness than it is to get permission” – Grace Hopper
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Note that when the conversion to eager write is not specified. It can be done at any time,

as long as the transaction is not completed (“committed”). This means that a write can be

done lazily at first, but later released as an eager write to make room for another lazy write

(the address was evicted from the LazySet).

At commit time, the hardware begins the commit operation. Commits are divided into

two phases. The first phase is the Commit-Prep phase. During this phase, the hardware

steps through each entry of the LazySet and acquires write permission for each of them (by

sending the GetM request).

From the recipient’s point of view, this is as if data conflict detection was done later,

or “lazily.” Recall that transaction data conflicts can occur between a read and a write

operation, or two write operations. Since write operations are not announced to other cores

until later, the conflict is not detected until the GetM messages are sent.

As noted earlier, not all writes are equal. Some do not need to be done lazily, while

others will see benefit. Forgive-TM includes a scoring mechanism that determines which

writes to be done eagerly and which to be done lazily (details explained later in Sec-

tion 4.3.3).

4.3.1 Hardware Overview

Figure 4.2 shows the hardware overview of our proposal. The items in white are common

with the baseline commercial HTMs. Each processor has HTM hardware that manages the

transaction state and checks for any data conflicts. The private caches contain the Data and

Dirty bits for each cache line, and additionally have Tnx bit, which indicates whether the

cache line was accessed speculatively or not. A speculatively read line has only the Tnx

bit set, whereas the speculatively written line has both Tnx bit and Dirty bits set.

The items in gray are new. First is the LazySet, which contains a set of addresses

that were written to lazily. At the start of the transaction, this set is empty. As the trans-

action issues more and more writes, the set fills up. Each time a new entry is added to the
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Figure 4.2: Architecture

set, its score is computed using the Scoring Mechanism and the MinEntryIdx and

MinEntryScore is updated. Later, when the transaction is complete the Commit-Prep

phase pulls entries from the LazySet one by one and issues GetM requests.

Second, is the Scoring Mechanism. Because the LazySet is of limited size,

each write operation is computed a score. The score is a proxy that attempts to model the

probability that the destination address will be involved in a data conflict with another core.

The higher the score, the more likely it is to experience a data conflict.

The scores are computed using various statistics collected over the course of the pro-

gram. In Forgive-TM, we use the number of aborts caused by a data address as the overall

score of the operation. However, other variables can be used as well, such as the PC of an

write instruction that is likely to cause aborts, and so on. How exactly the scoring is done

and the table populated is discussed in more detail later in the paper.

Each cache line is also augmented with a Lazy bit. This bit indicates whether the line

has been written to lazily or not.
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4.3.2 LazySet Maintenance

The LazySet is a structure that stores a set of addresses (of cache lines) which were

lazily written to. This set serves two purposes. First, it determines whether an address was

previously written to. Second, it determines which addresses the Commit-Prep phase needs

to handle.

During transaction execution, every time a write operation is about to be done, the

LazySet is consulted to see if the address was already added. If so, this means that

the address was already written to lazily before, and the cache line is already part of the

speculative store (the private L1 cache in our case). All subsequent writes to this cache line

is to be done lazily.

If the address is not already part of the LazySet and misses in the private cache,

this is a new write operation. As long as the LazySet has space available, all writes are

initially done as lazy. The destination address of the operation is added to the set, and the

score of the operation is then computed using the Scoring Mechanism, and updates

the MinEntryIdx and MinEntryScore if needed.

when the LazySet is full and misses in the cache will need to see if its eligible for

lazy writing. The score of the new write operation is computed, and if it is higher than the

smallest entry already in the LazySet, the old entry is evicted from the set, and destination

address of the new write takes its place. The old entry is converted into an eager write, by

sending GetM request for the address. The new entry is done lazily as usual, by acquiring

read permission instead of write, and getting added to the LazySet.

On the other hand, if the score of the new write is smaller (or equal to) the smallest

entry, then the new write operation is the one that’s done eagerly.

Although both the private cache and the LazySet can experience evictions, the end result

is different. If a cache line was evicted from the private cache and the line was speculative

and dirty, the transaction needs to be aborted. This is because if the line is evicted, there

is no way to recover the speculative data. This is the case for both writes done eagerly or
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lazily. In addition, because the transaction is aborted, this means all lazily written lines will

be always exist in the private cache.

4.3.3 Scoring Mechanism

Not all writes behave in the same way [69]. Some of the memory writes are for managing

the call stack, for pushing and popping function local variables. Other writes will be to

private data. However, some of the writes will be to data that many threads will share, and

it is these writes which transactional memory should be interested in.

In addition, specifically for HTMs that detect and handle conflicts lazily, the number of

writes can directly impact the commit latency. Each lazy write results in more operations

that need to be handled during the commit phase [71, 69].

As a result, Forgive-TM limits the size of the lazy set and includes a mechanism to

rank write operations and do lazy writes on only a subset of them. Each write operation

is given a score. The score acts as a proxy to the likelihood that the write operation will

trigger a data conflict abort. The higher the score, the more likely doing the write eagerly

will result in data conflicts (lazy writes can result in data conflicts as well, but as shown in

Figure 4.1b, writes done lazily can reduce many of them).

Forgive-TM use the number of aborts triggered by the given destination address as the

write operation’s score. The number of aborts are obtained using the following mechanism.

For each incoming coherence request that results in a data conflict abort, the corresponding

entry within the table is incremented. Since there can be an unlimited number of addresses

that can result in such an abort, entries can be evicted from the address table, least-recently-

used entries first.

For each new write operation, the score is computed and compared with existing entries

already in the LazySet. If the lazy set has space available, we always do the write lazily.

If, on the other hand, the lazy set is already full, the newly computed score is compared

against the minimum score of the set. If the new score is greater than the current smallest
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entry, then the entry is evicted and replaced with the new one. On the other hand, if the

new score is equal to or smaller than the current smallest entry, then we do not consider

the operation for lazy write, and do it eagerly instead. Note ties result in favoring the

older entry, since keeping the older entry will allow for larger overall laziness for the entire

transaction.

There are other possibilities in computing the score of these operations, and in Sec-

tion 4.4, we study other alternatives.

4.3.4 Operation Flowcharts
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Figure 4.3: Operation Flowcharts

In this section, we describe in detail how certain operations are handled. First, Fig-

ure 4.3a depicts a flowchart of how write handled under Forgive-TM. The items in white

are common with conventional HTMs, whereas the ones in gray are new to Forgive-TM.

Dark gray items are specific to the lazy write path, whereas light gray items can be for

either eager writes or lazy writes.

When a transaction executes a speculative store, the processor first checks if the cache

line already exists in the cache. If the line does not exist, the processor starts the write miss

procedure, which is shown in more detail in Figure 4.3b.

If the line does exist, the processor then checks the lazy bit. If the bit is set, this means
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the line was previously written to lazily. In this case, the current store operation simply

updates the cache line data (lazily) and completes.

If the bit is not set, the dirty bit is next checked. If the bit is not set, then although the

cache line does exist in the cache, the coherence permissions might indicate that we have

write permission. Therefore, the write miss procedure is taken.

On the other hand, if the bit is set, then we further check if the transactional bit is set. If

the bit is clear, this indicates the contents of the line was written to prior to the transaction.

In other words, the data contents of this line is not speculative. Therefore, the data needs

to be written back before the write miss procedure is handled.

If the transactional bit is also set, then we simply update the line. This case indicate a

line that was eagerly written, being written to again.

Figure 4.3b specifically details a flowchart of how write misses are handled are done

under Forgive-TM. When the processor needs to acquire the cache line and/or coherence

permissions for speculative writes, it goes through the process shown here. First, the

LazySet is checked to see if space is available. If the LazySet is not full, the write

can be done lazily. The ScoringMechanism computes the score for this write, and add

the address and the score to the LazySet. The processor then sends a request for read

permission, a GetS request, if needed, and updates the data contents of the line.

On the other hand, if the LazySet is full, then we might need to evict an existing

entry. The newly computed score of this write operation is compared against the current

minimum entry (prev min) within the lazy set. If the score is greater than the previous

min, then this operation has higher probability of being a source of data conflicts than the

previous min. The previous min is converted into an eager write, by requesting getM

permissions. Once this is complete, prev min is evicted from the LazySet and the new

address is added.

If the new score is not greater than the score of prev min, this means the new write

operation has low probability of triggering a conflict abort. The write operation is done as
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usual, by sending the getM request and updating the cache line contents.

Figure 4.3c looks at what needs to be done in the Commit-Pref phase. Recall that

at the end of a transaction, Forgive-TM inserts an additional phase, the Commit-Prep

phase to ensure that all lazily written lines are accounted for. Each entry within the lazy set

requests write permission, one after the other. All of this is while still inside the transaction,

but before the official commit phase. Once all of the addresses are properly converted into

eager writes, the regular commit starts.

4.3.5 Examples

In this section, we go through a few examples and show how various operations work under

our proposal.

TnxBegin

① Rd(A)
① Wr(A)

TnxBegin

TnxCmit ④CmtPrep

➁ GetS

➄ GetM

③Lazy(A)

TnxCmit

(a) Writing Lazily

TnxBegin

Rd(A)
➊ Wr(A)

TnxBegin

➌ Abort

TnxCmit

TnxCmit

➋ GetM

(b) Ineligible Lazy Write

Figure 4.4: Timeline of Writes in Forgive-TM

First, Figure 4.4a depicts an example of how writes can be done lazily. Like before,

we have two transactions that each do speculative read and writes (¬). This time however,

the core issues a GetS request () instead of a GetM request. In other words, the core is

requesting read permission only, not write permission (yet). At the same time, the address

A is added to an internal set, called the lazy set ®.
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Later, when the transaction is ready to commit, the TM hardware starts the Commit-

Prep phase (¯). The TM hardware steps through each entry within the lazy set and issues

GetM requests to each (¯).

Once each line is properly accounted for, the TM hardware starts the regular commit

operations. Since from the core’s point of view, the transaction is complete, with read

and write permissions for each core. In other words, the transaction’s state is as if all write

operations were done eagerly, and there were no conflicts. Therefore, the commit operation

remains unchanged.

On the other hand, sometimes lazy writes can be deemed ineligible. This case is de-

picted in Figure 4.5b. The first transaction is attempting to do a lazy write (¶). However,

the HTM hardware determines that the address is not eligible to write lazily. This can be

because the address had a low score in the scoring table, for example. In this case, the core

issues a GetM request instead of a GetS request, since the write is done eagerly (·). This

request is received by the other transaction, which subsequently aborts (¸).
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① LzWr(A)

TnxBegin

➁ CmtPrep

① GetS

③ GetM

TnxCmit

➄ GetS
⑥ Abort
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➏ GetS_B

➍ GetM_A

(b) Lazy Overflow

Figure 4.5: Other Scenarios

Figure 4.5 depicts various cases that can happen under Forgive-TM that can differ from

baseline.

The first case depicted in Figure 4.5a is a transaction failing to commit. Initially, the
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transaction proceeds as normal, by doing a lazy write and sending a GetS request (¬).

Later, the transaction starts the Commit-Prep phase (). This steps has the HTM hardware

step through each entry in the lazy set and requesting write permission for each line (®).

However before all of the addresses in the lazy set were successful in acquiring write per-

mission, let’s say another core requested read permission for the same line (¯). This will

cause the other core to send a GetS request (°). The first transaction, before it was able

to commit, receives this coherence message and aborts as a result (±).

Under baseline, speculatively written lines can abort transactions when they are evicted

from the private cache. This is because when the line is evicted, there is no place to store

the speculative updates. Under Forgive-TM, this does not change. Any lines written spec-

ulatively, either eagerly or lazily, will abort transactions when evicted. This means that if a

address is added to the lazy set, the line will always exist in the private cache.

The second case in Figure 4.5b shows a case where the lazy set had overflowed. In ¶,

the transaction issues a lazy write to address A, which leads to a GetS request being sent

for that address. Later, the transaction tries to issue a write to address B ·. Unfortunately,

the lazy set is already full at this point. The scoring table indicates that the new write to B

is of higher priority than the older write to A. Therefore, the address A is evicted from the

lazy set (¸, ¹). This results in the GetM request being sent for address A, which can lead

to the lefthand transaction detecting the conflict eagerly, and aborting (º). The transaction

then reattempts the write to B, which is done properly as a lazy write with a GetS (»).

4.3.6 Discussion

Table 4.1 shows an overview of the various types of conflicts that can occur under Forgive-

TM and how they are handled. Each row indicates the state of the operation that the trans-

action is currently attempting. It can be one of four cases: eagerly loading (E-Load),

eagerly storing (E-Store), lazily storing (L-Store), or attempting to commit a lazily

written address (L-Cmmt). Each column on the other hand indicates the state of the ad-
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dress as viewed by the other transaction. It can be either eagerly read (E-Read), eagerly

written (E-Wrtn), or lazily written (L-Wrtn).

Table 4.1: Types of Data Conflicts

E-Read E-Wrtn L-Wrtn
E-Load N/A Abort Delayed
E-Store Abort Abort Abort
L-Store Delayed Abort Delayed
L-Cmmt Abort Abort Abort

When a transaction is attempting to eagerly load an address, it can encounter 3 different

state: the address was eagerly read, eagerly written, or lazily written. If the address was

eagerly read, there is no data conflict to worry about. If the address was eagerly written to,

the transaction triggers a data conflict abort, right then and now. However, if the address

was lazily written to, the data conflict is delayed. The address looks as if it was read

from, not written to, and therefore no conflicts were detected. Only later, when the other

transaction attempts to commit is the data conflict exposed.

When a transaction is attempting to eagerly write to an address, the other transaction is

always aborted, no matter which state the address was in.

When a transaction is doing a lazy write, is appears as an eager read to the other trans-

action. Therefore, transactions that did an eager write to that same address will be aborted.

However, those that only read from the address, or did an lazy write, will not notice the

conflict until later.

Last, when the transaction is finally at the end, the Commit-Prep phase is started and

all lazy writes need to be converted into eager writes. The core acquires write permission

for all of them, and aborts any concurrent transactions that accessed the same address.

In summary, under conventional eager HTMs, any pair of operations that are not load

operations can lead to a data conflict abort. However, under Forgive-TM, several of these

operations can delay the detection of the data conflict. This can allow much better paral-

lelism, because the window of data conflict is now tightened to during the Commit-Prep
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phase, and futile aborts, transactions that are aborted by transactions which are themselves

aborted, can be avoided [71].

4.4 Evaluation and Results

To evaluate the effectiveness of detecting writes lazily, we modified an architecture sim-

ulator to support hardware transactions similar to Intel’s TSX [24, 23]. The simulated

architecture is a 8 core, 4-way out-of-order processor with private L1 and L2 caches. The

L1 cache acts as a private cache for speculative data, while the l2 cache stores the original

data. The L3 cache is shared with all cores.

For applications, we use the STAMP benchmarks, with updates to more closely match

the draft C++ transactional memory support [26, 72]. Heap allocations calls were converted

to use per-thread pools to reduce data conflicts on these items. Transactions were also

augmented to support randomized linear backoff, and after 12 conflict aborts the fallback

path is take. All experiments were run with recommended simulator input.

Table 4.2: Benchmark Characteristics
* indicates average per transaction

NumTnx ReadSet* WriteSet* HotAddrs* TopAddr(%)
AVG MAX AVG MAX AVG MAX

yada 3521 38.4 366 15.0 168 4.4 194 14
bayes 621 87.2 795 42.9 461 5.6 202 44

intruder 11267 17.6 53 4.4 24 1.6 35 96
labyrinth 229 17.7 50 6.7 37 0.4 1 100
genome 5914 34.6 100 5.1 30 0.4 47 29

ssca2 47277 10.1 11 3.9 4 0.07 1 55
kmeans+ 8214 12.6 15 2.97 3 6.2 8 90
kmeans 10952 12.6 15 2.97 3 8.4 14 96

vacation+ 4096 81.0 129 10.8 19 0.06 10 57
vacation 4096 68.6 92 10.3 14 0.02 10 47

Table 4.2 describes some characteristics of the benchmarks. NumTnx indicates the

number of transaction instances in the benchmark (with the simulator input). ReadSet
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and WriteSet show the size of the read set and write set. We show both the arithmetic

mean and the maximum set size for both of these. HotAddrs show the number of times a

transaction wrote to a “hot address.” By hot address we mean an address that has ever been

responsible for a conflict during the entire execution time of an application. Last, we show

TopAddr, which looks at how skewed conflict abort addresses are. This is computed by first

generating a histogram of how many aborts each address was responsible for. Once the top

10 addresses are generated, the total number of aborts these addresses are responsible for

is computed. This total is divided by the total number of conflict aborts.
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Figure 4.6: Overall Results

The overall performance improvement can be seen in Figure 4.6. Forgive-TM achieves

around 50% performance improvement in bayes and genome, and almost 2.1x improve-

ment in intruder and yada. Although there is limit improvement with kmeans, ssca2, and

vacation, this is more due to the fact that there is very limited number of conflict aborts in

these benchmarks in the first place. As a result, there is a 29% performance improvement

overall shown in the sTAMP benchmark suite.

Figure 4.7 looks at the distribution of the types of aborts that were detected. Eager/Ea-

ger aborts are data conflict aborts between eagerly accessed (and detected) read and write

operations. Eager/Lazy aborts are between an eagerly accessed data, and a lazily accessed
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Figure 4.7: Abort Types

data. This commonly happens when a lazy write conflicts with an eager write (because the

lazy write acts like an eager read), or a eager write conflicts with a lazy write. Commit

aborts occur when a transaction with lazy writes start the Commit-Prep phase. For each

entry within the LazySet the transaction issues a GetM request, which can lead to a data

conflict with another transaction which accessed the same data. Obviously the baseline

scheme will have no Eager/Lazy aborts or Commit aborts. Fallback aborts can occur be-

cause the fallback path was activated. This commonly occurs when a transaction is aborted

12 times due to a conflict abort (for capacity aborts the fallback path is taken immediately).

Each of these aborts were categorized, and then summed up and compared against the

baseline scheme. The first thing that can be noticed is that lazy conflict detection can

significantly reduce the number of aborts, in some cases up to a 5th. Another thing that can

be noticed is that many of the data conflict aborts are converted from an eager abort to the

lazy abort. In all but bayes and yada, all of the conflict abort were converted. This leads to

the high performance gain that was shown in Figure 4.6.

In figure 4.8, we investigate in more detail how lazy conflict detection improves per-

formance over the baseline configuration. We look at the histogram of the number conflict

aborts due to eager writes. The trigger address for each conflict abort was counted, and
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Figure 4.8: # Eager Aborts Triggered by Each Address
X axis is sorted by #aborts from baseline

look at the top 50 addresses, and yada in particular.

There are two things that can be noticed here. First, under the baseline configuration,

there is significant skew in the number of aborts each address causes. In comparison, under

Forgive-TM, the distribution of such aborts are much flatter. Some of the addresses are

shifted over to lazy write aborts. However, as can be seen in Figure 4.7, the total number

of aborts are reduced as well so this is not the entire explanation. Second, it also shows

that the scoring mechanism does a good job in selecting only the addresses that can be

problematic. After experiencing a few aborts, the system quickly learns which addresses

are problematic and preemptively shifts them over to the lazy set. If the lazy set was less

effective, this would result in addresses getting evicted and potentially triggering more

eager aborts.

In Figure 4.9, we look do a sensitivity analysis of two aspects of the lazy set: the size

of the lazy set, and the scoring mechanism. First, in Figure 4.9a, we look at how the

size of the lazy set affects to overall performance. For each configuration we compute the

average relative speedup over the baseline configuration. We exclude results from kmeans

and vacation, since lazy writes do not have much of an impact.

As we can see, the larger the size of the lazy set, the more writes can be done lazily.

Although the large lazy set can result in a longer Commit-Prep phase overhead, the aborts

avoided by doing lazy writes can more than overcome the Commit-Prep overhead.
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s just been shown, having a larger lazy set is beneficial since more write instructions can

be done lazily. However, some write operations are more “conflict-prone” than others [69].

Therefore, it makes sense to have a scoring policy where the lazy set discriminates writes

and prefers certain write operations over others. This is where the scoring policies make a

difference. In Figure 4.9b we compare the various scoring policies. We use a lazy set size

of 16 for each.

The Age policy prefers older writes over younger writes. It does this adding all writes

to the lazy set until the set is full, and never evicting any entry once it’s added. This policy

is the simplest, and acts as a baseline policy to any scoring scheme.

The Inst policy keeps track of the number of aborts each write instruction eventually

triggers, and uses that number as its score. The idea is that store instructions that are likely

to trigger data conflict aborts are likely to trigger them again.

When the data address for a given write instruction exists in the score table, the PC

of the write instruction is saved in the instruction score table. Later, when a coherence

request results in a data conflict abort, the PC is looked up and the corresponding entry is

incremented. Later, when the instruction score is computed, the following equation is used:

InstScore =


2 if num aborts is non-zero

0 if num aborts is zero

The Addr policy looks at the number of aborts for each destination address, and is the
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used in Forgive-TM. The idea is that a data address that triggers a lot of aborts, that is “hot,”

will continue to be popular. This is the one used in Forgive-TM, and is described in more

detail in Section 4.3.3.

Last, the Inst+Addr policy uses the sum of the InstScore and the AddrScore. This policy

tries to take the best of both the instruction-based scoring policy and the address-based

scoring policy.

As can be seen in Figure 4.9b, there is benefit to be had with a more sophisticated scor-

ing policies. Although there is some benefit by discriminating write operations based on

the instruction, which is done by Inst and Inst+Addr, using the address score is more than

enough to overcome any performance disadvantages due a small scoring policy. In addi-

tion, the instruction-based scoring policies require additional complexity by maintaining a

table of write instructions to every cache line. As a result, in Forgive-TM we simply use

the Addr policy.
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One performance pathology of lazy conflict detection is the extended commit phase [71].

Whereas under eager conflict detection the write operations are executed as they are en-

countered, under lazy conflict detection, the operations are bunched together at the end
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of the transaction. Therefore, it is important to make sure that the overhead due to the

Commit-Prep phase is limited.

In figure 4.10, we look at the ratio of useful work done by Forgive-TM compared to

baseline. Useful work in this case means the transaction body (transaction begin to the

start of Commit-Prep) and the time spent in the Commit-Prep phase. The total cycles

of these two phases are added up and compared against the total cycles from the transaction

body in baseline.

As can be seen, in most cases this ratio is limited. Kmeans (both versions) and ssca2

do have a larger percentage than the others, though. This is because the transaction sizes in

these benchmarks are very short.

Note however, that unlike TCC-style HTMs where commit arbitration can result in

serialization of transaction commits, Forgive-TM relies on the conflict detection of the

existing HTM hardware and thus can commit multiple transactions in parallel. A side

effect of our mechanism is that even though a transaction may encounter a data conflict

during the Commit-Prep phase and be aborted, however, this was rare in our experiments.
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CHAPTER 5

CONCLUSION

Commercial HTM offerings are becoming common. However, the design decisions made

to support HTM remain obstacles for good performance. First, many use a requester-

wins style of conflict resolution. However, requester-wins can lead to suboptimal results

when deciding which transaction to abort. Second, the transactions get aborted due to

many reasons other than data conflicts, resulting in transactions that were still valid being

aborted. Last, conflict detection is done eagerly, although it has been shown that lazy

conflict detection tends to perform better.

In this thesis, we propose a set of modifications to improve the situation. PleaseTM is

a mechanism that can provide greater freedom in conflict management, while still leaving

the coherence protocol untouched. It uses plea bits that are inserted in coherence response

messages as a simple payload, untouched by the coherence protocol. These bits are for-

warded to the requester, and enable hardware to make more intelligent decisions about

deciding which transaction to abort. PleaseTM, by allowing better conflict management,

can provide a significant performance improvement compared to baseline requester-wins

HTM, and can work in concert with a variety of software fallbacks.

Pre-abort handlers provide the programmer an opportunity to intervene when an abort-

causing situation is encountered. When inside the non-transactional handler function, mit-

igating action can be taken to avoid the abort, or non-transactional work can be included,

which has previously required custom hardware support. Pre-abort handlers allow support

such additional functionality, through a simple addition to best-effort HTM.

Lastly, Forgive-TM emulates lazy conflict detection over conventional HTM, which

uses eager conflict detection. Lazy conflict detection allows better performance by reducing

the window of vulnerability and avoiding futile aborts. It does this by doing speculative
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writes immediately, acquiring write permission later, just before the commit. This is when

the data conflicts are detected, lazily.

Through these modifications, conventional HTMs are able to close the gap with more

sophisticated HTMs, all while keeping the coherence protocol intact.
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