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Abstract—Motivated by the desire to mitigate human ca-
sualties in emergency situations, this paper explores various
guidance modalities provided by a robotic platform for instruct-
ing humans to safely evacuate during an emergency. We focus
on physical modifications of the robot, which enables visual
guidance instructions, since auditory guidance instructions pose
potential problems in a noisy emergency environment. Robotic
platforms can convey visual guidance instructions through
motion, static signs, dynamic signs, and gestures using single or
multiple arms. In this paper, we discuss the different guidance
modalities instantiated by different physical platform constructs
and assess the abilities of the platforms to convey information
related to evacuation. Human-robot interaction studies with 192
participants show that participants were able to understand
the information conveyed by the various robotic constructs
in 75.8% of cases when using dynamic signs with multi-arm
gestures, as opposed to 18.0% when using static signs for
visual guidance. Of interest to note is that dynamic signs
had equivalent performance to single-arm gestures overall but
drastically different performances at the two distance levels
tested. Based on these studies, we conclude that dynamic signs
are important for information conveyance when the robot is
in close proximity to the human but multi-arm gestures are
necessary when information must be conveyed across a greater
distance.

I. INTRODUCTION

Emergencies such as building fires, tornados, terrorist at-
tacks and active shooter scenarios happen with little warning
and require quick response from the affected individuals to
maximize survival. As robots become more popular in daily
life, they can be used as dynamic, embodied guidance aids for
victims of these emergencies. Our previous work has shown
that in-situ robots can improve existing technology, such as
static emergency exit signs and alarms, by communicating
the conditions of the emergency site to command posts
while finding and guiding victims of the emergency out
of danger [14], [13], [17]. Robot guidance can adapt to
conditions inside the site to prevent crowding at exits or guide
victims away from dangerous areas. Robots can also provide
guidance in emergencies that require sheltering in place or
moving to a safe location inside a building; responses that
are not currently handled by signs in most buildings.

Prior research indicates that conveying guidance informa-
tion to a small percentage of evacuees drastically improves
survivability [16]. In other work, we have found that robots
are generally accepted and trusted by humans in simulated
emergency situations but the trust levels dropped consider-
ably when participants in the experiments were unable to
determine what the robot was instructing them to do [15].
Building on those results, in this paper we explore various
visual guidance modalities deployed on mobile robot plat-
forms and their effect on human understanding of guidance
instructions.

Three categories of visual methods for conveying guidance
information were identified: static signs, dynamic signs, and
arm gestures. These categories were combined with each
other and a mobile robot base to form five different platforms
with information conveyance packages and one baseline plat-
form with no specialized information conveyance abilities.

The information conveyance ability of these robots was
tested by recording simulations of the six platforms perform-
ing each of four guidance instructions at both an instruction
point near the victim and a point further away from the
victim. Human participants then interpreted the instructions
and thus rated the understandability of the information being
conveyed.

II. RELATED WORK

Considerable research has focused on using robots for
search and rescue applications. Bethel and Murphy studied
how volunteers reacted to rescue robots in a simulated urban
disaster [2], [9]. They created several recommendations for
how robots should approach, contact, and interact with the
victims. For the approach and other motions, the researchers
suggest using smooth acceleration and deceleration. In con-
trast, typical robots are usually jerky when moving in an
unknown environment. The researchers also suggested using
blue lighting around the robot to convey a sense of calm. For
interaction, they note that there are several different “zones”
where the robot can be: the intimate zone (0 to 0.46 meters),
the personal zone (0.46 to 1.22 meters), the social zone (1.22



to 3.66 meters) and the public zone (further than 3.66 meters).
Robots are assumed to stay in the social zone or closer. To
communicate, the researchers assumed that the robots would
have to be in the intimate or personal zones. They suggested
using voice communication to reassure the victim and music
when there is no information to communicate. More recent
work has extended this to UAVs [6].

Simulated emotions have also been tested to see how
it can improve human responses when a robot instructs a
human to leave a room due to an unexpected emergency [8].
This work began by using videos posted online to determine
if humans could understand the emotions being displayed
by the robot [12]. The robot gave clear, verbal instructions
aided by emotional actions, so participants were only tested
on their ability to understand the robot’s emotional actions
and comply with its requests. Studies in non-verbal robot
communications have found that robots and humans work
better in teams when the robot performs non-verbal cues and
gestures during the interaction [3]. Robots have also been
commanded by human hand gestures [18].

Orkin and Roy were inspired by early chatbots, such as
ELIZA, to create a game to simulate interactions, via the
internet, between two people in a restaurant [10]. Users
would join the game and randomly be assigned as either a
waiter or a client. Then they would proceed to interact as
if they were in an actual restaurant. The researchers noted
that users typically took the game seriously and acted as if
they were in a real social situation. The experiment generated
considerable data related to responses to typical prompts in
the environment. Users were solicited through blogs, web
postings, emails and social media. A total of 3,355 users
played 5,200 games over several months and completed
a survey afterwards. Other research has expanded on this
crowdsourced data gathering process to help train a robot for
a space mission [5]. The simulation sets up two users on a
Mars base, one as the robot and one as the astronaut.

III. ROBOT TO HUMAN INFORMATION CONVEYANCE
MODALITIES

This work is focused on methods to convey instructions
to victims in a potentially noisy emergency situation. The
most useful instructions in an emergency are directional:
either instructing victims to go to a particular location or
instructing them to stay in place. At this point, we only
consider a victim standing in one location observing a robot
giving instructions, so the simplest set of instructions with the
largest utility is: 1) proceed to the left or right (we arbitrarily
chose left in all cases), 2) proceed forward, 3) turn around,
and 4) stay in place. Each modality allowed different actions
to be presented for the four different instructions given to the
participant. The instructions as conveyed by each modality
are given below.

A. Mobile Platform
A simple mobile platform can convey information even

when not equipped with specialized displays and actuators.
For this work, we assume that the mobile platform is non-
holonomic but otherwise a fully controllable ground robot.

(a) Left
Instruction
Screen

(b) Turn Around In-
struction Screens

(c) Forward
Instruction
Screen

(d) Wait Instruction Screens

Figure 1: Dynamic Signs Text and Symbols

For directional instruction (left, forward, turn around) the
robot first turns in the direction it wishes the human to
proceed and then oscillates about that direction by 30 degrees
left and right. In this way it can point in the general
direction that the human should proceed but still indicate that
information is being displayed through action. To instruct the
human to stay in place, the robot spins in place.

B. Static Sign

In [15], we mounted a static sign consisting of an arrow
and the word “Exit” to a holonomic platform and pointed the
robot in the direction of the exit. This was both confusing
to the participants and unrealistic on actual platforms, so for
this experiment the static sign simply consists of information
giving the intent of the robot. The words “Emergency Guide
Robot” were displayed on the static signs.

C. Dynamic Sign

A dynamic sign gives the robot the ability to convey
situation-dependent information including arrows, text, and
animations. Such a sign can consist of a tablet or computer
monitor or even a set of LEDs. For the purposes of this work,
we assume that the sign will give sufficient resolution such
that it can show English words and simple symbols. For the
left and forward directions, the dynamic sign shows the word
“EXIT” and an arrow or set of arrows that point in and grow
along the direction of the instruction (either left or forward,
see Figures 1a and 1c). To indicate that the participant should
turn around, the sign alternates between the u-turn symbol
and the text “TURN AROUND” (Figure 1b) For the stay
in place instruction the sign cycles through three screens:
“WAIT,” “STAY HERE,” and a red octagon (Figure 1d).

D. Arm Gestures

Arm gestures are frequently used by humans in many
different contexts, from police officers guiding cars to airport
personnel directing aircraft to parents guiding children. Arms
also provide the ability to attract attention at a distance by
waving. We developed gestures for robots equipped with a
single arm or multiple arms. For these purposes, we assume
that the arms have at least two degrees of freedom: base
rotation and at least one bend.



(a) Example of
a Single Arm
Waving

(b) Example of a
Single Arm Point-
ing

(c) Example of Multi-
ple Arms Crossing

Figure 2: Examples of Arm Gestures. In each case, the arm
moves from the solid black position to the solid gray position
in the direction of the dotted arrow.

Attention is attracted by a platform with a single arm by
holding it upright and waving it horizontally 20 degrees left
and right (Figure 2a). For directional instructions, the whole
platform turns to face the direction it wishes the human to
proceed and the arm points forward (Figure 2b). The arm
then oscillates slightly along the vertical axis to “wave” the
participant in the required direction. For the stay in place
instruction the robot faces the participant and waves its arm
in the same manner it used to attract attention from this
stationary position.

Multi-arm gestures are very similar to the single arm
gestures in directional instructions: two arms wave in the
direction in which the participant should proceed. For the
stay in place instruction, the robot faces the participant and
alternates between both arms straight up and arms crossed
(Figure 2c). Attention is attracted by waving upright arms.

E. Hypotheses

We hypothesize that a simple mobile platform will be
unable to provide clear guidance instructions to humans
but the addition of information conveyance devices will
allow for increasing understandability. The static sign is
not expected to provide any specific guidance information
but the dynamic sign is expected to produce significantly
better results for the near case where text and symbols will
be legible. For the far case, the arm gestures are expected
to produce significant increases in clarity, with multi-arm
gestures being more understandable than single arm gestures.
Finally, we hypothesize that a combined approach featuring
a dynamic sign and multi-arm gestures will convey guidance
information best at both distance levels.

(a) Baseline (b) Static Sign (c) Dynamic Sign

(d) Single Arm
Gesture

(e) Multi-Arm
Gesture

(f) Multi-Arm
Gesture with
Dynamic Sign

Figure 3: Robot Guidance Platforms

IV. ROBOT PLATFORMS

To test our hypotheses we developed platforms based on
each of the information conveyance modalities above as well
as one platform that combined several modalities. We started
with a Baseline robot (Figure 3a) to test the mobile platform
instructions. We then created the Static Sign platform (Figure
3b) to determine if these signs produced any differences from
the Baseline. All further platforms used static signs as well
as other modalities. A Dynamic Sign platform (Figure 3c)
as well as both Single Arm Gesture (Figure 3d) and Multi-
Arm Gesture (Figure 3e) platforms were developed to test
each of those modalities alone. Two arms were selected for
the multi-arm platform to be as close as possible to human
gestures. A final platform combined a dynamic display with
multi-arm gestures to fully test our hypothesis (Figure 3f).

V. INFORMATION CONVEYANCE DEVICES

A. Mobile Platform

All robot platforms were based off of the Willow Garage
Turtlebot 2 due to its ease of use and general availability.
The Turtlebot 2 is a 42 cm tall platform with a Kobuki
base, a netbook running ROS for control and a Microsoft
Kinect for sensing. The Tutlebot used in this experiment was
simulated with 3D models of all components. This platform
was tested without modification to determine the baseline
understandability of guidance instructions.



B. Static Sign

All robots except the Baseline carried signs that declared
the robot’s purpose as an emergency guidance aid. The signs
were in two cylindrical components: one on the top of the
Turtlebot and one covering the netbook just above the base.
The top sign displayed “Emergency” in each of the four
cardinal directions around the cylinder and the bottom sign
displayed “Robot Guide” in the same manner.

C. Dynamic Sign

An 11” Samsung Galaxy Tab was used as the dynamic
sign. The tablet was mounted upright on top of the Turtlebot
in landscape orientation. The tablet displayed instructions to
the user in a combination of arrows, stop-signs and English
words.

D. Gesture Arms

The PhantomX Pincher AX-12 arm was used in all plat-
forms that required arms. This arm has five degrees of
freedom and a maximum reach of 35 cm. For the Single
Arm Gesture platform, the arm was mounted to the center of
the top of the Turtlebot. For the Multi-Arm Gesture platform,
the arms were mounted on the left and right sides of the top
of the Turtlebot. For the Multi-Arm Gesture with Dynamic
Sign platform, the arms were mounted as in the Multi-Arm
Gesture platform but on a box approximately 12 cm high
such that no arm gesture would collide with the display.

VI. EXPERIMENTAL SETUP

To evaluate human understanding of the robot guidance
modalities we utilized a between-subjects experiment. Par-
ticipants were recruited and the study conducted using Ama-
zon’s Mechanical Turk service. Other studies have found
that Mechanical Turk provides a more diverse participant
base than traditional human studies performed with university
students [11], [4], [1], [7]. These studies found that the
Mechanical Turk user base is generally younger in age but
otherwise demographically similar to the general population
of the United States (at the time of those studies, Mechanical
Turk was only available in USA). A total of 192 participants
performed this survey.

Participants began the study by reading and acknowledg-
ing a consent form. Next, they completed a demographic
survey collecting information about gender, age, nationality
(Mechanical Turk is currently available for residents of both
USA and India), occupation, and education. Then, the par-
ticipants were presented with videos of one particular robot
performing each of the four instructions (one instruction for
each video). A victim’s ability to understand visual displays
of guidance information depends on the distance between the
victim and the display. For this reason, robots were tested at
both a near and a far distance (see Figure 7 for the layout).
Each participant was only shown the videos for one robot
at one distance level. For each video, participants indicated
which instruction they thought was being performed, esti-
mated their confidence in that answer (a number 1 through 7),
and gave an explanation for their answer (see Figure 4 for the

Figure 4: Questions Asked for Each Video

(a) Actual Size on Screen (b) Entire Scene

Figure 5: Dynamic Sign Platform at Near Instruction Point
Displaying Wait Instruction

exact questions and layout). Several instructions were given
as multiple choice answers for each video, including some
that never appeared in the test so that participants could not
use process of elimination to give an answer. The dependent
variable being measured was their answer to the multiple
choice question and the comments were used to understand
that answer. The order of the videos was randomized. The
videos were each between 15 and 19 seconds long. Each
video was 800 x 600 pixels in size. Participants were paid
$0.50 for completing the survey. IRB approval was obtained
before the study began.

Videos of the instructions were created in the Unity Game
Engine. The videos were hosted on YouTube and embedded
into the survey form on Mechanical Turk. Each commercially
available component of each platform was simulated using
CAD files provided by the manufacturer. These components
were assembled into robot platforms in the Blender 3D
modeling software and imported into Unity for simulation.
Custom components, such as the signs on the robot, were
created in Blender and Unity.

The testing environment was a long hallway with open
areas (potential exits) immediately to the left of the camera
view, at the far end in front of the camera, and behind the
camera. Screenshots of the robot in the near and far positions
can be found in Figures 5 and 6, respectively. A map of the
environment can be seen in Figure 7.

Sixteen participants viewed each robot at each distance
level. No participant was allowed to perform the experiment
more than once, so participants did not have any information



(a) Actual Size on Screen (b) Entire Scene

Figure 6: Dynamic Sign Platform at Far Instruction Point
Displaying Wait Instruction

Figure 7: Map of Testing Environment

about the other robots or their actions.

VII. RESULTS

In general, adding features to the baseline platform im-
proved understandability of instruction (Figures 8 and 9).
As expected, the Multi-Arm Gestures with Dynamic Display
platform had the best overall understandability (75.8% over-
all) but, unexpectedly, the Static Sign platform performed
worse than the Baseline (18.0% and 28.1%, respectively).
Unfortunately, the confidence values reported by the partic-
ipants had no consistent base and thus could not be used
to give insight into the results. Some participants ranked
their confidence with a high number on the Likert scale
but indicated uncertainty in their comments, others did the
opposite.

We expected that there would be little or no difference
between the Baseline and Static Sign platforms; however,
the results show that the Baseline performed considerably
better than the Static Sign for the left instruction at the near
distance. Based on comments, it seems that participants were
able to infer the rotation of the robot by the position of the
Kinect. As such, since the top sign on the Static Sign platform
partially obscured the Kinect, participants were not able to
observe any orientation of the robot. The other results are
very similar between the two robots. Participants were unable
to see which direction the robot was pointing for the near
distance forward and backward instructions, even when the
Kinect was not obscured. For the far condition, participants in
the surveys for both of these robots indicated that they could

Figure 8: Percent Instructions Understood at Each Distance
Level and Overall by Platform Type

Table I: Pairwise Chi-Squared Results Comparing Guidance
Instruction Modalities (p-Values)

Platform Baseline Static
Sign

Dynamic
Sign

Single
Arm

Gesture

Multi-
Arm

Gesture
Static
Sign

0.054

Dynamic
Sign

< 0.001 < 0.001

Single
Arm

Gesture

< 0.001 < 0.001 0.798

Multi-
Arm

Gesture

< 0.001 < 0.001 0.086 0.049

Multi-
Arm

Gesture
with

Dynamic
Sign

< 0.001 < 0.001 0.011 0.005 0.396

Note: p < 0.05 is significant

not see any understandable action. Many guessed that they
should follow the robot (an option included in the survey even
though it was not shown as an instruction). They reasoned
that the robot moved away from them and waited, thus
indicating that they should proceed in that direction. Overall,
results from the Baseline and Static Sign platforms did not
show statistical difference in a Chi-Squared test (p = 0.054).
There were, however, significant differences between both of
these robots’ understandability and every other platform (p
< 0.001) (Table I).

As expected, the Dynamic Sign platform performed very
well for the near instructions. Every participant indicated that
the screen simply told them what to do and thus the answer
was easy. The distance for the far instructions was specifically
chosen such that a tablet or other screen about this size
could not be clearly read from that instruction position. Each
participant in the far survey confirmed that they were unable
to discern any instruction from the Dynamic Sign platform,
even when the large red octagon was displayed. Examples
of the Dynamic Sign platform at near and far distances
in Figures 5 and 6, respectively, show that participants in
the far case were at a great disadvantage here. Recall that



Figure 9: Percent of Instructions Understood by Platform Type

participants only viewed instructions from one robot at one
distance level, so no participants were able to observe an
instruction while close to the robot and then recognize it from
a distance. A majority of the participants did not even realize
that a display of any type was mounted on the platform. They
wrote that there was simply an indecipherable red light on
top. As in the previous cases, confused participants tended
to assume that they should follow the robot if they could
not understand a particular instruction. Overall, this platform
was significantly different from the Baseline, Static Sign and
Multi-Arm Gesture with Dynamic Sign (Table I).

The Single Arm Gesture platform performed about as well
at the Dynamic Sign platform overall (59.4% and 60.9%,
respectively, p = 0.798) but had much lower variance between
the near and far conditions. This indicates that guidance
robots should be equipped with at least one arm unless the
environment is conducive to individuals reading a screen.
Participants had difficulty determining which direction the
arm was pointing when it was giving forwards or back-
wards instructions. This difficulty increased with distance.
Some of the difficulty could have been an artifact of the
simulation. Participants also had difficulty understanding the
stay instruction in both near and far cases. This is because
the single arm is not able to articulate any standard stop
gesture. In addition to the previously reported statistical
results, the Single Arm Gesture platform had statistically
significant differences between the Multi-Arm Gesture (p =
0.049) and Multi-Arm Gesture with Dynamic Display (p =
0.005) platforms (Table I).

The Multi-Arm Gesture platform solved the problem with
forwards, backwards, and stay gestures by adding a second
arm to provide instructions in the same style as airport ground
crews. This produced an overall understandability of 71.1%
of instructions. There was some confusion still with the
forward and backward commands that was also exacerbated
with distance, but comments indicated a greater confidence
with the answers chosen. The stay instruction was confusing
to some but most still recognized it as indicating to not
proceed in that direction, even if they did not understand that
they were supposed to stay in place. Otherwise, confusion
generally resulted in the participant choosing the follow
option.

Surprisingly, the Multi-Arm Gesture with Dynamic Dis-

play platform had no statistically significant differences from
the Multi-Arm Gesture platform (p = 0.396). Overall, 75.8%
of its instructions were recognized correctly. We expected the
near results to be identical to the Dynamic Sign results, but
comments from two participants lead us to believe they con-
fused the robot’s reference frame with the camera’s reference
frame and thought that the robot was indicating right instead
of left and backward instead of forward. In those two cases
the robot also turns such that the tablet cannot be seen after
the robot arrives at the instruction point, which might have
increased the confusion. The robot performed as expected at
the far distance level. Overall, after accounting for qualitative
results gleaned from the comments, the combined approach
of using a dynamic display and multi-arm gestures produced
the best results for both near and far conditions.

Recruiting participants through Mechanical Turk did not
seem to have a major effect on the results. Most participants
took the survey seriously and gave considered, thoughtful
comments for each question. Some indicated frustration when
they were unable to understand the robot. One even requested
that the participants receive training on robot gestures if
we would like the results to be improved. There was some
confusion as to exactly what the robot arms were, but the
participants ability to understand the instructions did not
depend on whether they referred to the arms as “antennas”,
“cranes” or even “tentacles.” Only one participant gave
bizarre answers, writing “I believe that the robot is trying
to say that the walls are dirty and [that] they need to be
cleaned.” and “The reason I chose [to] follow [the] robot is
because I think that the robot is attempting to communicate
with the human.” for two different questions. Those results
were still included for completeness.

A total of 122 males and 69 females participated in
the experiment (one participant declined to give his or her
gender). Gender was not found to have a significant effect
on the results (p = 0.183). Participants spanned all education
categories with a majority indicating that they had at least
some college experience. This, too, was found to not have a
significant effect on the results (p = 0.758). Most participants
reported that they were in their 20s but 10 were over 50 years
of age, so the age range in this study is likely much more
broad than would be found in testing on a college campus.
Occupations spanned a wide range. We grouped them into the



following categories for analysis: self-employed, technical,
customer service, clerical, unemployed and other. Neither
occupation nor age were found to have a significant effect
on the results (p = 0.441 and p = 0.446, respectively).
There was not enough variability in nationality to test for
statistical differences. Expected results for Chi-Squared tests
were calculated by taking an average of the results of all
platforms weighted by the number of participants in that
demographic who participated in that survey.

Across all robot platforms the backward instruction was
understood the worst (39.6%) and the left instruction was
understood the best (65.6%). The instruction did have a
significant effect on the results (p < 0.001) but all instructions
were tested for each robot, so the results are still valid.

VIII. CONCLUSIONS AND FUTURE WORK

Our survey explored the capability of different robotic
platforms in instructing humans to find a safe exit in an
emergency. We focused on visual guidance to avoid potential
problems with audio instructions in a noisy emergency envi-
ronment. Platforms were varied by adding signs to indicate
function, a tablet to display instructions in written language
or recognizable symbols, and an arm or arms to gesture to
the victim.

Through quantitative and qualitative results we found that
a ground platform with a dynamic display and multi-arm
gestures provides the clearest instructions to victims in an
emergency. The addition of single arm gestures or a dynamic
display by itself also performed considerably better than
an unmodified ground robot. A surprising result provides a
word of caution to fellow roboticists: adding seemingly trivial
aesthetics such as signs can produce differences in outcomes
of human-robot interaction experiments.

These results were obtained by soliciting volunteers on
Amazon’s Mechanical Turk service. As a consequence, our
participant pool was significantly different from traditional
experiments with university students. We maintain that these
results are more general than on-campus studies but it must
be noted that the Mechanical Turk population is mainly
composed of young adult Americans with above average
education.

These tests all focused on a wheeled ground platform
with modifications. Despite other differences, the Multi-Arm
Gesture platform is likely to be very similar to a humanoid
robot in terms of understandability of guidance instructions
given that the action set is very similar. Nevertheless, this
assertion should be tested. We also plan to perform real-
world tests to verify that the simulations presented here are
reliable indicators of understandability.

These results will prove valuable when designing any sort
of automated guide. When combined with audio instructions,
the Multi-Arm Gesture with Dynamic Sign platform could
be used as a source of information in malls, a tour guide in
museums, or a director of traffic in city streets, as well as a
source of guidance for humans during emergencies. Dynamic
signs can also be used to customize instructions for nearby
humans to overcome language and cultural barriers. Arm

gestures remove the need for language in communication and
provide larger motions that help when communicating with
confused or even panicked humans.
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