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SUMMARY

The main topic of this thesis is nonrigid image registration for medical applications.

We start with an overview and classification of existing registration techniques. We develop

a general nonrigid image registration algorithm. It uses spline functions to describe the

deformation and uses multi-scale strategy to search for the optimal transformation. Then

we present a new registration operator that is transitive and symmetric. We investigate

the theoretical implication of these properties and apply this operator to the registration of

sequences of MR cardiac images.

In the second part of the thesis, two methods, one 2D and one 3D, for validation of

nonrigid image registration algorithms are proposed and compared to a manual validation

strategy. Both methods provide pairs of deformed images as well as corresponding true

displacement fields with known accuracy. Nonrigid registration algorithms can be run on

the pairs of images and their outputs can be compared to the true displacement fields

that were generated manually by five observers. While these phantom validation studies

do not provide physically correct deformations, they are certainly a useful way to test the

algorithm’s ability to recover various deformation patterns.

x



CHAPTER 1

INTRODUCTION

1.1 What is Image Registration?

Image registration is the process of aligning images so that corresponding features can easily

be related [1].

We will call a registration ”nonrigid”, if the distances between image points are not

preserved under the transformation, i.e. the transformation is not globally isometric.

1.2 Why do We Need Image Registration?

Image registration can serve as a powerful tool to investigate how regional anatomy is altered

in disease, with age, gender, handedness, and other clinical or genetic factors. One of the

most obvious clinical applications of registration is the area of serial imaging. Comparison

of scans from a given patient acquired over various time intervals can be routinely performed

to follow disease progression, response to treatment and even dynamic patterns of structure

change during organ development. Unfortunately, diagnostic imaging scans are not routinely

registered in most radiology department; in contrast, the common practice for an examiner

is to do one’s best to look at film montages of slices that do not match and try to access

disease changes. For gross changes this method of comparison may be adequate. For subtle

changes, visual comparison of unmatched images is not enough.

Image registration can also fuse information from multiple imaging devices to correlate

different measures of brain structures and function. Integration of functional and anatomi-

cal imaging provides complementary information not available from independent analysis of

each modality. Registered high-resolution anatomy in magnetic resonance imaging (MRI),

ultrasound (US), or computed tomography (CT) images provides a much more precise

anatomical basis for the interpretation of functional and pathologic image data, like sin-

gle emission computed tomography (SPECT), positron emission tomography (PET), and
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functional MRI (fMRI). Without registration, the observed activity would be less accurately

mapped to the corresponding anatomical structures. Most importantly, intermodality regis-

tration can aid interpretation of clinical imaging for critically important treatment decisions.

Registration algorithms can encode patterns of anatomic variability in large human

populations and can use the information to create a disease-specific, population-based brain

atlas. This is a standard brain which is constructed from a number of brains and given in a

fixed coordinate system to contain information about physical properties of neuroanatomies.

When we have mapped an object and an atlas to each other, we can remove individual

anatomical variation and pass segmentation or labeling information from the atlas to the

subject image.

Many surgical procedures require highly precise localization, often of deeply buried struc-

tures, in order for the surgeons to extract targeted tissue with minimal damage to nearby

structures. The plan is constructed in the coordinate system relative to preoperative image

data, while the surgical procedure is performed in the coordinate system relative to the

patient. Although methods such as MRI and CT are invaluable in imaging and displaying

the internal structure of the body, the surgeons still face a key problem in applying that

information to the actual procedure. With the help of registration, the relationship between

preoperative data and patient coordinate system can be established, and thus provides the

surgeon information about position of his instruments relative to the planned trajectory,

and allows the surgeon to directly visualize important structures, and act accordingly.

1.3 Classification of Image Registration

Image registration can be classified into rigid, affine, projective and nonrigid, based on the

geometric transformation. A 3D rigid transformation preserves the distances and angles

between points, and can be represented by three translation vectors and three rotation angles

(6 degree of freedom). An affine transformation amounts to a rigid transformation plus

three Cartesian scale factors and shears (12 degree of freedom), which maps parallel lines to

parallel lines but does not conserve the angles between lines. A projective transformation

preserves the straightness of lines but not the parallelism. A nonrigid transformation does
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not preserve the straightness of lines and, in general, maps a line into a curve. For the

remainder of this research, we will consider nonrigid transformations that guarantee that

connected subregions remain connected, neighborhood relationships between structures are

preserved, and surfaces are mapped to surfaces. A nonrigid transformation can not generally

be expressed in a matrix notation and it involves a lot of parameters. Therefore, it has a

much larger number of degrees of freedom than a rigid or affine transformation and has

more flexibility to accommodate local shape differences (see Fig.1).

Figure 1: The classification of image registration: rigid, affine, projective and nonrigid.

1.4 Contributions of This Thesis

The first contribution of this thesis is the implementation of a general nonrigid image

registration algorithm. It uses a set of warping function (thin-plate spline or cubic B-spline)

to model the deformation, and it uses the intensity-based matching to compute the image

similarity by the method of mean square differences or normalized mutual information. A

generalized version of this algorithm that is significantly faster and capable of treating two

dimensional and three dimensional deformations is presented in Chapter 3.

The second contribution of this thesis is the development of transitivity and symmetry

for the nonrigid image registration algorithms. In Chapter 4, we give a definition for these

properties, and in Chapter 6, we quantitatively show that the transitive and symmetric

3



property is achieved in both 2D and 3D nonrigid image registration algorithms.

The third contribution of this thesis is the development of two new methods, one 2D

and one 3D, for generation of validation data for nonrigid image registration algorithms.

In Chapter 5, we describe the strategies for validation and in Chapter 6, we discuss the

experimental results.
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CHAPTER 2

AN OVERVIEW OF REGISTRATION TECHNIQUES

In this chapter we intend to categorize the multitude of existing nonrigid registration tech-

niques. We classify them by the choice of feature space and warp space.

2.1 Feature Space

Many techniques that have been proposed to solve the registration problem in many different

forms can be broadly classified into three types, namely feature-based matching, intensity-

based matching and hybrid approaches. Each of these approaches has its advantages and

disadvantages.

2.1.1 Feature-based registration

Feature-based approaches attempt to find the correspondence and transformation using

distinct anatomical features that are extracted from images. These features include points

([2]; [3]; [4]), curves ([5]; [6]; [7]), or a surface model ([8]; [9]; [10]) of anatomical structures.

Feature-based methods are typically applied when the local structure information is more

significant than the information carried by the image intensity. They can handle complex

between-image distortions and can be faster, since they don’t evaluate a matching criterion

on every single voxel in the image, but rather rely on a relatively small number of features.

The simplest set of anatomical features is a set of landmarks. However, the selection of

landmarks is recognized to be a difficult problem, whether done automatically or manually.

For many images, this is a serious drawback because registration accuracy can be no better

than what is achieved by the initial selection of landmarks. For practical reasons, the

number and precision of landmark locations is usually limited. Hence, spatial coordinates

and geometric primitives often oversimplify the data by being too sparse and imprecise.
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2.1.2 Intensity-based registration

The intensity-based registration methods operate directly on the image gray values, without

reducing the gray-level image to relatively sparse extracted information. The basic principle

of intensity-based techniques is to search, in a certain space of transformations, the one that

maximizes (or minimizes) a criterion measuring the intensity similarity of corresponding

voxels. Some measures of similarity are sum of squared differences in pixel intensities

([11]; [12]), regional correction ([13]), or mutual information ([14]). Mutual information has

proved to be an excellent similarity measure for cross-modality registrations, since it assumes

only that the statistical dependence of the voxel intensities is maximal when the images are

geometrically aligned. The intensity similarity measure, combined with a measure of the

structural integrity of the deforming scan, is optimized by adjusting parameters of the

deformation field. Such an approach is typically more computationally demanding, but

avoids the difficulties of a feature extraction stage. Further discussion of image similarity

measures are given in section 3.3.

2.1.3 Hybrid registration

Further hybrid approaches, based on a combination of feature-based and intensity-based

criteria, are likely to benefit from both the advantages of each strategies. Christensen et al.

[15] introduced a hierarchical approach to image registration combining a landmark-based

scheme with a intensity-based approach using a fluid model. The approach has been applied

to the registration of 3D cryosection data of a macaque monkey brain as well to MR images

of the human brain.

2.2 Warp Space

One of the important factors to categorize registration techniques is the warp space used,

because it contains warping functions. Warping functions are candidate solutions of the

registration problem. These exhibit the wide range of methods developed over the last

twenty years and include the basis-function expansions, physical models, and optical flow

methods.
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2.2.1 Basis function expansions

Nonrigid registration produces a deformation field, giving a mapping for each pixel (voxel)

in the deforming image. The deformation may be expressed in terms of a truncated set of

basis functions. Specific examples include sinusoidal or wavelet basis ([16]; [17]) and radial

basis functions such as thin-plate splines ([18];[19]). Compactly supported basis function

such as B-splines ([20]; [21]; [22]) or other radially symmetric compactly supported basis

functions have also been used. The algorithms of thin-plate spline and cubic B-spline will

be further discussed in section 3.2.

2.2.2 Physical models

Nonrigid image registration can also be performed by modeling the deformation of the

source image into the target image as an elastic physical process. A wide range of these

methods ([23]; [24])are based on Navier-Stokes linear elastic partial differential equation:

µ∆u(x)+(µ+λ)∇(∇·u(x))=k(x,u(x)),

where µ and λ is the Lamé constant, which refer to the elastic properties of the medium.

u = (u1,u2,u3) is the displacement field, and k is the force acting on the elastic body. The

term ∆ = ∇T∇ is the Laplacian operator and ∇(∇·u) is gradient of the divergence of u.

Generally λ is set to zero to ensure that deformations are only effect in the directions of

applied forces; µ takes a value between 0 and 1. The external forces can be derived from

the local optimization of the similarity function which is defined by the intensity values or

by the correspondence of boundary structures.

Navier-Stokes equation has a disadvantage of disallowing extensive localized deforma-

tions due to the modeling of stresses that increase proportionally to deformation strength.

This can be handled by viscous fluid model ([25]; [26]). Instead of using the displacement

directly in Navier-Stokes equation, the deformation velocity v is used.

µ∆v(x)+(µ+λ)∇(∇·v(x))=k(x,u(x)).

The advantage of using the velocity is that we can allow large deformations which can

not be performed by the Navier-Stokes equation alone. A resulting problem is that the

7



likelihood of misregistrations is increased.

2.2.3 Optical flow methods

The optical flow constraint equation was derived to estimate the motion between two suc-

cessive frames in an image sequence. It is based on the assumption that the intensity value

of a given point in the image does not change over small time increments. The constraint

can be expressed as :

(∇I )T ·~v + I t = 0

in which ∇I, ~v, and I t are the intensity gradient of the image, the unknown motion vector

between the images, and the temporal derivative of the image, respectively. This equation

is underconstrained (a problem known as the aperture problem) and a number of regular-

ization scheme have been proposed to address this problem ([27]; [28]).
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CHAPTER 3

A REGISTRATION ALGORITHM

A registration method that determines the correspondences between images by optimizing

an image intensity similarity measure is considered in this research. Fig. 2 is the repre-

sentation of flow of my registration algorithm. Image I 1 is the target image and I 2 is the

deformed image. This algorithm consists of three main stages: 1) a warping function T that

spatially transforms I 2 into I 2
∗. 2) a function that measures the similarity between I 1 and

I 2
∗. 3) an optimization stage that searches for the optimal transformation.

Figure 2: The flowchart of the nonrigid image registration algorithm.

9



3.1 Transformation and Resampling

We call the target image the template (I 1), and the image we want to deform the object

image (I 2). The transformation we seek is actually a transformation of coordinates of each

sampled point to new coordinates which will give us a new intensity value and generates a

deformed image (I 2
∗). The images we will register I 1 and I 2, do not necessarily have the

same number of pixels and pixel size [mm]. Suppose we found a transformation, T, that

will perform the map we want to apply, then this transformation will transform each pixel

(voxel) center of the target image to an new point in the coordinate system of the object

image. This new point is then not necessarily falls on the pixel (voxel) center in this new

coordinate system. Because of this, we have to find the intensity value for the image (I 2)

in each pixel (voxel) center in the coordinate system of the target image. This can be done

by using the inverse transformation on each pixel (voxel) center, and find the corresponding

point in image (I 2).

However, it would be difficult to get the inverse function directly especially for the non-

rigid image transformation functions. Here we used another way to compute the deformed

image (I 2
∗). First, we set (I 2

∗) to be the same dimensions and pixel (voxel) size as the

target image (I 1). Then, through the transformation function T, we map each pixel (voxel)

center in (I 2
∗) to a new point in the object image (I 2), and compute its intensity value

by interpolating with the neighboring pixel (voxel) centers (see Fig.3 ). This relationship

between (I 2
∗) and (I 2) can be expressed as:

I 2
∗ = I 2(T),

3.2 Image Warping Methods

In this research, a deformation is defined on a sparse, regularly distributed grid of control

points placed over the object image and is then varied by defining the motion of each control

point. We implemented two algorithms, thin-plate spline and cubic B-spline, for the nonrigid

image warping. Both the methods have been shown to possess at least C 2 continuity, which

is important in medical image registration problem, since we need continuous and smooth
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Figure 3: A transformation T applied to the pixel center in I ∗2, and the corresponding
point in the coordinate system to the object image I 2.

functions to describe the deformation patterns.

3.2.1 Thin-plate spline

Thin-plate splines have a physical motivation. They interpolate specified points while min-

imizing a 2D bending energy,

∫

(
∂2z

∂x2
)2 + 2(

∂2z

∂x∂y
)2 + (

∂2z

∂y2
)2 (1)

resulting in a smooth deformation without unexpected ripples and variations. The funda-

mental basis function used by the 2D thin-plate spline is given by the following expression,

z(x,y) = -U(r) = -r2 log r2 (2)

where r is the distance
√

(x2 + y2) from the Cartesian origin. The function U( r) satisfies

the following equation.

δ2U = (
∂2

∂x2
+

∂2

∂y2
)2U ∝ δ0,0 (3)

Thus, U is a fundamental solution of the biharmonic equation ∆2 = 0, the equation

for the shape of a thin metal plate vertically displaced as a function z (x,y) above the (x,y)

plane. For the 3-dimensional situation, the fundamental solution of the biharmonic equa-

tion is U(r) = |r |.

11



A component (x or y) of the thin-plate spline displacement field can be expressed as [2]

f(x,y) = a1 + axx + ayy +
n

∑

i=1

wiU(|Pi − (x,y)|) (4)

where a1, ax, and ay define the affine transformation. The unknown parameters W =

[w1, w2, ...wn] in Eq.(4) are determined by solving the linear system of equations that result

by fixing the displacement field values at landmark locations. Let P 1 = (x1, y1), P2 =

(x2, y2),...,Pn = (xn, yn) be n points in the ordinary Euclidean plane, r ij = |P i - P j | for

the distance between points i and j, and build the matrix

L =







K P

PT O






, and

K =



















0 U(r12) ... U(r1n)

U(r21) 0 ... U(r2n)

... ... ... ...

U(rn1) U(rn2) ... 0



















P =



















1 x1 y1

1 x2 y2

... ... ...

1 xn yn



















where O is a 3 x 3 matrix of zeros. Also, define a landmark displacements as D =

[d1, ...dn, 0, 0, 0]
T . The equation formed by substituting the landmark constrains into Eq.(4)

can be written in matrix form as D = LW. The solution W to this matrix equation is de-

termined by least squares estimation since the matrix K is not guaranteed to be full rank.

3.2.2 Cubic B-spline

For the 3D cubic B-spline warping methods, the transformation T is defined by a grid Φ,

a nx × ny × nz lattice of uniformly spaced control points φi,j,k. The spacing between the

control points in x, y and z directions are denoted by δx, δy, and δz, respectively. At any

position X = (x,y,z ) the deformation is computed from the positions of the surrounding 4
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x 4 x 4 neighborhood control points

T (X) = Σ3l=0Σ
3
m=0Σ

3
n=0Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (5)

Here, i,j and k denote the index of the control point cell, containing X = (x,y,z ), and u,v,

and w are the relative positions of x, y, and z, respectively. Where i = bx/δxc - 1, j =

by/δyc - 1, k = bz/δzc - 1, u = x/δx - bx/δxc, v = y/δy - by/δyc, and w = z/δz - bz/δzc.

The functions B0 through B3 are the third-order basis functions of the B-spline.

B0(t) = (1− t)3/6

B1(t) = (3t3 − 6t2 + 4)/6

B2(t) = (−3t3 + 3t2 + 3t + 4)/6

B3(t) = t3/6

In contrast to thin-plate spline, cubic B-splines that define the geometrical transforma-

tion model described above have two different mathematical properties: they are locally

controlled (i.e., changing the position of a control point affects the transformation only in

the 4 x 4 x 4 neighborhood of the control points), and they are approximating rather than

interpolating functions. Related applications can be found in Ref.[29].

3.3 Image Similarity Measure

Nonrigid image registration is an optimization problem, where the goal is to optimize an

image similarity measure with respective to the transformation parameters. This approach

defines an image registration operator. E.g. one can write

Γ(I1, I2) = arg minTE(I1, I2 ◦ T) (6)

where E is a cost (energy) function, and T is a geometric transformation function. Some-

times, in addition to the similarity measure term, the cost function to be minimized contains

as well so-called smoothness term, which help to smooth and prevent folding of the trans-

formation. By adding a smoothness term to the equation, one obtains,
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Γ(I 1,I 2) = arg minT [E (I 1,I 2◦T) + E smooth(T)].

A general form of such a smoothness term has been described by Wahba[30]. In 3D

situations, the smoothness term often takes the following form:

E smooth = 1

V

∫ X
0

∫ Y
0

∫ Z
0
[(∂

2T
∂x2 )

2 + (∂
2T

∂y2 )
2 + (∂

2T
∂z2 )

2 + 2(∂
2T

∂xy )
2 + 2(∂

2T
∂xz )

2 + 2(∂
2T

∂yz )
2]dxdydz

where V denotes the volume of the image.

Examples of similarity measures are mean square differences, correlation coefficient, and

mutual information. In feature-based registration or in matching of curves and surfaces, it

is common to use a geometric distance as a measure of the similarity.

3.3.1 Mean square differences

One of the simplest image similarity measure is the mean square differences between images

A and B, MSD, which is minimized during registration ([31], [32]). For N pixels (voxels) in

the overlap domain ΩA,B , MSD is given by

MSD =
1

N

√

∑

xεΩA,B

| A(x)−B(x) |2 (7)

It is necessary to divide by the number of pixels (voxels) N in the overlap domain

because N may be vary with each estimate of transformation. It can be shown that this is

the optimum measure when the two images only differ by Gaussian noise. It is quite obvious

that for multimodality registration this will never be the case. The strict requirement is

seldom true in unimodality registration either, as noise in the medical images is frequently

not Gaussian, and also because it is likely that the object being imaged undergoes a change

between acquisitions.

3.3.2 Correlation coefficient

The MSD measure makes the implicit assumption that after registration, the image differ

only by Gaussian noise. A slightly less strict assumption would be that, at registration,

there is an affine relationship between the intensity values in the images. In this case, the

optimum similarity measure is the Correlation coefficient, CC.

CC =

∑

xεΩT
A,B

(A(x)− Ā)(T (B(x))− B̄)

[
∑

xεΩT
A,B

(A(x)− Ā)2(T (B(x))− B̄)2]1/2
(8)
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where Ā is the mean intensity value in image A|ΩT
A,B

and B̄ is the mean of B|ΩT
A,B

. This

measure will give values in the interval [-1,1], and has to be maximized to register the images

([33]).

3.3.3 Mutual information

In recent years, many image similarity measures based on joint entropy, mutual informa-

tion (MI ), and normalized mutual information (NMI ), have shown promising results for

multimodality image registration. Registration of multimodal images is a difficult task, but

often necessary to be solved, especially in medical imaging applications. The comparison of

anatomical and functional images of the patient’s body can lead to a diagnosis that would

be impossible to gain otherwise. The MI, originating from the information theory, is a mea-

sure of statistical dependency between two data sets. MI between two random variables A

and B is given by

MI(A,B) = H(B) − H(B|A) = H(A) + H(B) − H(A,B)

H = −
∑

i

pi log pi

H(A,B) = −
∑

aεA

∑

bεB

pAB(a, b) log pAB(a, b)

where H is the average information supplied by a set of n symbols (image intensities) whose

probability are given by p1, p2, p3,..., pn. H(A,B) is the joint entropy, and the values in

each element represent the probability of pairs of image values occurring together.

In particular, pAB(a,b) is very dependent on the joint overlap ΩT
A,B, which is undesirable.

To reduce the effect of the dependence on volume of overlap we should normalize to the

combined information in the overlapping volume. The following equation defines normalized

mutual information

NMI(A,B) =
H(A) + H(B)

H(A,B)
(9)

For more information about the mutual information based registration of medical im-

ages, see Ref. [34]
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3.4 Optimization

Finding the minimum of dissimilarity measure or the maximum of similarity measure is

a multidimensional optimization problem, where the number of dimensions corresponds

to the degrees of freedom of the geometrical transformation. In case of transformations

with more degrees of freedom or in case of more complex similarity measures, sophisticated

optimization algorithms are required.

3.4.1 Gradient-descent method

When we minimize a cost function, we want to find the global minimum of this transfor-

mation function in a given domain. The most often used methods are gradient-descent

methods. These methods numerically find a minimum by iteratively moving the current

solution in the direction of the gradient by small steps. The gradient ∆ was initially nor-

malized to the length given by the current step size. If no further improvement was possible,

the length of ∆ was successively decreased by a factor of 2 until a user-defined minimum

step size was reached. The optimization terminated when the global step size reached the

user-defined minimum step size.

3.4.2 Hierarchical multi-scale strategy

One of the difficulties with optimization algorithms is that they may converge to an incor-

rect solution called a ”local optimum”. In theory, there will be more local optimum as the

dimension of the transformation increases. A hierarchical multi-scale approach (coarse to

fine strategy) to registration is common, in which the images are first registered at coarse

spatial scale, then the transformation solution obtained at this scale is used as the starting

estimate for registration at a finer one, and so on. The whole process is illustrated in Fig.4.

This multi-scale approach ensures convergence of the optimization method and the trans-

formation model is gradually made more complex so as to best describe the transformation

between images. For many type of optimizers, this strategy for convergence is significantly

faster than a single stage approach.
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Figure 4: Multi-scale strategy: the complexity of the warp increases with the number of
relatively displaced nodes.
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CHAPTER 4

REGISTRATION PROPERTIES

Image registration can also be regarded as an algorithmic problem. It’s very important

to understand some basic properties of these algorithms. In this research, we discuss two

properties: transitivity and symmetry of image registration algorithms.

4.1 Transitivity property

To avoid ambiguity a definition of the composition of two functions is given here.

Definition : The composition of functions f 1 : B 7→ C and f 2: A7→ B is a function denoted

as f 1◦f 2 that is defined by f 1◦f 2: A7→C and (f 1◦f 2)(x ) = f1(f2(x)), ∀x εA

Problem Statement: For any three images, the generated transformation from the second

to the third image composed with the generated transformation from the first to the second

image should be equal to the generated transformation from the first to the third image

(the order of transformations follows the Definition) (see Fig.5). This transitivity property

can be formalized as

Γ(I2, I3) ◦ Γ(I1, I2) = Γ(I1, I3) (10)

The idea of transitivity of three transformations was first introduced in 2003 by Chris-

tensen ([38]). He investigated how an image registration algorithm that reduces the inverse

consistency error can also reduce the transitivity error. The average transitivity error over

a region of interest M was defined as

E(hAB, hBC , hCA,M) =
1

M

∫

M

‖hAB[hBC [hCA(x)]]− x‖dx (11)

Where hAB, hBC and hCA are transformations from image A to B, B to C and C to A,

respectively. Although transitivity is a desirable property of nonrigid image registration

algorithms, the algorithm Christensen used was not transitive.

The proposed approach [40] can be applied to any existing nonrigid (or rigid) image
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Figure 5: Notation used to describe transformations from one coordinate system to an-
other.

registration algorithms, and mathematically guarantees that the transitivity property can

be achieved. The first step is to select an image from the set (ex. a sequence of cardiac

images), and refers it as the ”model”. Let the image registration operator be denoted as Γ

and the model as M. A new image registration operator G is defined as

G(I1, I2) = [Γ(I2,M)]−1 ◦ Γ(I1,M) (12)

This new image registration operator G requires two operation of the original image

registration operator Γ (Γ(I1,M) and Γ(I2,M)), and also depends on the selected model

image M. Thus, rather than registering two images directly, images are registered through

a model (see Fig.6).

It’s not difficult to see that G is transitive over the given set of images. For any three

images (I1, I2, I3) from the set,

G(I1, I2) = [Γ(I2,M)]−1 ◦ Γ(I1,M),

G(I2, I3) = [Γ(I3,M)]−1 ◦ Γ(I2,M),

G(I1, I3) = [Γ(I3,M)]−1 ◦ Γ(I1,M).
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Figure 6: The new registration operator.

It follows that

G(I2, I3) ◦ G(I1, I2) = [Γ(I3,M)]−1 ◦ Γ(I2,M) ◦ [Γ(I2,M)]−1 ◦ Γ(I1,M)

= [Γ(I3,M)]−1 ◦ Γ(I1,M)

= G(I1, I3)

proving that G is indeed transitive. Since transitivity has been proven mathematically, it

means that it will always be satisfied regardless of the accuracy of the registration algo-

rithms.

The procedure used to compute the inverse transformation is as follows. Assume that

T is the forward transformation. It is possible to select a point y and iteratively search for

a point x such that ||y − T (x)|| is less than some threshold provided that the initial guess

of x is close to the final value of x. The following procedure is used to compute the inverse

T−1 of the transformation T.
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For each sample point n do {

Set δ = [1,1,1]T , x = n.

While (δ > threshold) do {

δ = T(x) - n

x = x - δ/8

}

T−1(n) = x

}

4.2 Symmetry Property

Problem Statement: When an image registration operator is applied to two (different)

images, the obtained transformation should be the inverse of the transformation obtained

when the order of images is reversed. This symmetry property can be formalized as

Γ(I1, I2) = [Γ(I2, I1)]
−1 (13)

where Γ denotes the image registration operator and I1 and I2 are any two images. The

forward transformation Γ(I1, I2) from image I 1 to I 2 and the reverse transformation and

Γ(I2, I1) from image I 2 to I 1 are shown in Fig. 7.

Many nonrigid image registration algorithms are not symmetric in part because the

numerical optimization techniques used to find the optimal image transformation often

get struck in local minima, and can’t uniquely describe the correspondences between two

images. Ideally, the constraint of this symmetry property will overcome the correspondence

ambiguities and reduce the number of local minima because the problem is being solved from

two different directions. The idea of symmetry was first introduced in 1998 by Woods et al.,

[12]. He averages the forward and the inverse linear transformations to reconcile differences

between pairwise registration. In 1999 Christensen [35] proposed a consistent linear-elastic

image registration algorithm ([36], [37], [38]) that jointly estimates the forward and reverse

transformation between two images while minimizing the inverse consistency error between

these transformations. Although this approach can minimize the difference between the

21



Figure 7: The forward transformation Γ(I1, I2) from image I 1 to I 2 and the reverse
transformation Γ(I2, I1) from image I 2 to I 1.

forward and reverse transforation, it still can’t guarantee the symmetric property to be

satisfied exactly.

4.2.1 Symmetry for a sequence of images

If using the definition of Eq.12 to be the registration operator, the symmetric property

will be satisfied and can be proven mathematically. Let the forward transformation be

G(I1, I2) = Γ(I2,M)−1◦Γ(I1,M), and the reverse transformation be G(I2, I1) = Γ(I1,M)−1◦

Γ(I2,M). The inverse function of the reverse transformation is:

G(I2, I1)
−1 = Γ(I2,M)−1 ◦ [Γ(I1,M)−1]−1

= Γ(I2,M)−1 ◦ Γ(I1,M)

= G(I1, I2)

Therefore, the new registration operator G indeed satisfy the symmetric property. The

disadvantage of this model-based approach is the require of the ”model”. Therefore, it’s

only suitable for registering a sequence of images and not for registering two images.
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4.2.2 Symmetry for image pairs

To achieve the symmetric property for registering two images, Skrinjar and Tagare [39]

presented an image registration operator, which is defined as:

Γ(I1, I2) = argminTopt [E(I1, I2 ◦ Topt) + E(I2, I1 ◦ T
−1
opt)] (14)

Let T12 = Γ(I 1, I 2) = arg minTopt [E(I1, I2 ◦ Topt) + E(I2, I1 ◦ T
−1
opt)]. This means that the

minimum of the energy function is E(I1, I2 ◦ T12) + E(I2, I1 ◦ T
−1
12 ). Let T21 = Γ(I2, I1) =

arg minTopt [E(I2, I1 ◦Topt) +E(I1, I2 ◦T
−1
opt)], and the minimum of this energy function will

be E(I2, I1 ◦ T21) + E(I1, I2 ◦ T−1
21 ). If E(I1, I2 ◦ T12) + E(I2, I1 ◦ T−1

12 ) equals to E(I2, I1 ◦

T21) + E(I1, I2 ◦ T
−1
21 ), then T21 = T−1

12 . Thus, Γ(I1, I2) = [Γ(I2, I1)]
−1. They presented the

experimental results by using piecewise-affine warping function to show that it satisfies the

symmetric property with a very small numerical error.

The inverse of a piece-wise affine transformation can be computed exactly, because

we can easily derive the analytical inverse function from the affine transformation matrix.

For the thin-plate spline function, which requires two sets of control points to represent

the deformations. One set of control points is fixed, and the other set represents the

corresponding deformed points. If we reverse the order of these two sets of control points,

we can get exactly inverse mapping over these control points. But the points in between are

not inversive, because they are interpolated. Thus, T21 not equals to T−1
12 . For this reason,

we discuss the symmetric properties based on the model-based approach in this thesis.
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CHAPTER 5

VALIDATION STRATEGIES

One of the challenges in the development of image registration algorithms is their validation.

The goal of rigid image registration in the case of alignment of 3D images is to compute the

six parameters of the rigid body transformation1. The spatial transformation in the case

of 3D non-rigid image registration is typically represented with thousands of parameters

which renders the validation a much more challenging task compared to the validation of

rigid image registration. In most practical situations it is either not possible or it is very

difficult to obtain ground truth data for validation of non-rigid image registration.

Here we address the problem of validation of image registration algorithms. The ideal

validation data for image registration of two images would have the true displacement

vector for each point of the first image that would bring it to the corresponding point in

the second image. In addition, the accuracy of the data has to be known, since validation

data without known accuracy is useless. In most practical cases such data is impossible

to obtain. Researchers have used a number of methods to assess the quality of image

registration algorithms. In the next section we discuss the validation strategies suggested

in the literature for the case of image registration of medical images. After that we present

two methods, one 2D and one 3D, for generation of validation data for nonrigid image

registration algorithms, followed by a comparison of the suggested methods to a manual

validation strategy.

5.1 Validation Strategies Suggested in the Literature

Here we classify the validation strategies suggested in the literature for the image regis-

tration into five groups. For each group we discuss the advantages and disadvantages and

1E.g. these parameters can be the three components of the translation vector and three angles of rotation

around the axes of the Cartesian coordinate system. Other choices of the six parameters are possible.
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provide relevant references.

5.1.1 Visual Assessment

In many situation, the only practical approach for estimation of the registration accuracy is

to visually inspect the images. Observers look at the registered images, using contour over-

lays for inter-modality registration [41], or difference images for intra-modality registration

([28], [29], [42], [36], [43], [44], [45], [46], [47]), then qualitatively classify the registration so-

lution (e.g. as ”good”, ”average”, or ”poor”). This is a subjective and qualitative measure

and it does not provide true displacement vectors between the two images.

5.1.2 Gold Standard

If the true (”gold standard”) geometric transformation between the two images is known,

then the accuracy of the image registration algorithm can be obtained by comparing the

calculated transformation to the “gold standard” one. For rigid image registration, this can

be achieved by using bone-implanted markers [48] or stereotactic frames to provide the gold

standard [49]. The invasive markers can be attached to cadavers or to surgical patients.

After the image acquisition the markers can be removed from the images, followed by a

linearly interpolated reconstruction in each missing region. These images can be used as

test data for algorithms together with the known underlying rigid transformation which has

a relatively high (sub-millimeter) accuracy [48]. While some image information is lost in

the reconstruction, the main obstacle is the invasiveness of the procedure. This approach is

suitable for the validation of rigid registration, since the geometric transformation is defined

by only six parameters in the 3D case, and a relatively small number of markers is needed

for a reliable estimation of the transformation parameters (e.g. in [48] 12 markers were used

for registration). Such a method has not been used for the validation of nonrigid image

registration since it would need a huge number of invasive markers.

5.1.3 Simulation

In the case of simulations, the accuracy of the generated data can be arbitrary high. One

can generate a displacement field (i.e. geometric transformation) that will be referred to

25



as ”true” displacement field, apply it to an image and obtain a deformed image. The im-

age registration algorithm can be run using the original and the deformed image, and the

computed displacements can be compared to the “true” ones ([50]). There are two main

concerns about using simulations in assessment of image registration accuracy. First, the

“true” displacement field is artificially generated, and it might not be a good representation

of real displacement fields. The second problem is that the gray levels of corresponding

points in the original and the artificially deformed image are either identical, or artificially

altered, while in the case of real images the relationship between gray levels of the cor-

responding points can be very complex. To reduce the first problem, researchers in [51]

used biomechanical modelling to generate more realistic displacement fields for validation

of nonrigid image registration algorithms for the case of breast images.

5.1.4 Consistency

Let T (A,B) denote the geometric transformation between images A and B computed by

the image registration algorithm under consideration. If the algorithm is perfect, then

it should be inverse consistent, i.e. T (A,B) = T −1(B,A) should hold for any images A

and B, where T −1(B,A) is the inverse transformation of T (B,A). Similarly, a perfect

image registration algorithm should be transitive, i.e. T (B,C) ◦T (A,B) = T (A,C) should

hold for any three images A, B, C, where ◦ denotes the composition of transformations.

While Christensen and Johnson built in the inverse consistency property into their nonrigid

image registration algorithm [36], some researchers ([52], [53]) used inverse consistency

and transitivity to test the validity of their image registration algorithms. This validity

assessment approach, although quantitative, does not provide the ideal validation data:

true displacements between the two images. However, if using Eq.(12) and (14) as your

registration operator, this validation strategy is no longer valid. Since transitivity and

symmetry are mathematically guaranteed of consistency.

5.1.5 Specialized Methods

These validation techniques are application specific, i.e. they can be used only with certain

type of images. E.g. estimates of displacements representing tissue motion can be obtained
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Figure 8: Optical warper placed in front of the CCD camera generates geometrically
deformed images.

by using MR tagging ([54]) and MR phase velocity ([55]) imaging. These techniques are

used in the deformation analysis of moving objects, like the heart. However, they cannot

be used for validation of registration of e.g. pre- and post-operative brain images.

5.2 2D Validation Data

The proposed method uses a CCD camera and an optical system that geometrically deforms

the acquired image. A 2D image is selected (in this experiment we used 2D slices from 3D

medical image volumes), printed using a high-resolution printer, and then imaged by the

CCD camera twice. First it is acquired directly, and the second time it is acquired in a

deformed state by placing an optical system (see Fig.8) in between the camera and the

printed image. The same process is repeated for a grid of lines printed on a piece of paper,

which is positioned exactly where the printed image was placed when acquired by the

camera. The grid is imaged first directly and then in a deformed state, where the geometric

deformation is exactly the same as the one applied to the selected image. The intersections

of the grid lines in both grid images (original and deformed) can be detected automatically.

This provides a set of corresponding points between the image and its deformed version.

A number of such validation sets can be generated by modifying the optical system. The

accuracy of the method can be obtained from the thickness of the grid lines.
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We have developed an algorithm for automated detection of the grid line intersections.

We applied this algorithm to both undeformed and deformed grid images. For the six cases

discussed here, the two grid images had 49 markers each. For all the cases the thickness of

the grid lines was about 2 pixels. This means that the accuracy with which the grid line

intersections can be determined is ±1 pixel in each direction.

The grid images and the medical images were placed exactly the same relative to the

CCD camera at the acquisition, and an identical deformation pattern was used to generate

the deformed grid image and the deformed medical image. For this reason, the pairs of

corresponding points obtained by computing the grid line intersections in undeformed and

deformed grid images represent also corresponding points in the undeformed and deformed

medical images. These point pairs can be used as validation points (with a known accuracy

of 1 pixel) for testing nonrigid image registration algorithms.

Fig. 9 (a),(b),(e) and (f) show the undeformed grid and medical image for two cases,

acquired from the printed grid and medical image pictures respectively by the CCD camera.

By placing an optical warper(see Fig. 8 (a)) in front of the CCD camera, we can generate

nonrigidly deformed grid and medical images as shown in Fig. 9 (c),(d),(g) and (h).

5.3 3D Validation Data

To generate ground truth data for validation of 3D nonrigid image registration algorithms

we used a deformable physical model. We imaged the model in an MRI scanner, physically

deformed the model, imaged it in the deformed state, and two more times deformed and

then imaged the model. The model was made of two types of modelling clay and small

pieces of carrot. The three components have different MR signals which made the contrast

in the images and simulated anatomical structures. In addition, 20 small glass beads were

placed throughout the volume of the model, which purpose was to serve as validation points.

The model in pre-deformation and three deformed states is shown in Fig.10. The images

were acquired at Emory University Hospital using a Siemens Magnetom Trio MRI 3 Tesla

scanner with the following parameters: 256 x 256 x 72 voxels, voxel size 0.55 mm x 0.55

mm x 1.0 mm, TR = 2500 ms, TE = 4.4 ms, TI = 1100 ms, FOV = 140 mm, flip angle =
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: (a)(e) Undeformed grid images and (b)(f) undeformed medical images for two
cases acquired by the CCD camera. Using an optical warper we can obtain (c)(g) deformed
grid images and (d)(h) the correspondingly deformed medical images.
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(a) (b)

(c) (d)

Figure 10: A section through the 3D MRI volume of the undeformed model (a), after first
deformation (b), after second deformation (c), and after third deformation (d).

8 deg, 4 averages over signal acquisition.

We have developed a method for automated computation of the bead locations based

on a template matching approach. The size of the beads was about 2 x 2 x 2 mm, which

means that their location can be known with an accuracy of ±1 mm in each direction.

Because the beads show up as clear dark voids in the images, they provide additional

”artificial” strong image features for nonrigid image registration. In order to provide only

”natural” image features we interpolated the surrounding voxel intensities over the bead

voxels (Fig.11). Images with removed beads can be used to test 3D nonrigid image regis-

tration algorithms, while the bead locations can be used as validation points.
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(a) (b) (c) (d)

Figure 11: A 2D section through a bead before (a) and after (b) bead removal by interpo-
lation. Another bead removal example is shown in (c) and (d). The white circles represent
the voxels used for interpolation of the bead voxels. The white cross represents the central
bead voxel.

5.4 Manual Validation

The goal of this study was to assess the accuracy of manual validation and to analyze

variability among observers. Five observers were asked, for 20 points in the undeformed

image, to find the corresponding points in the deformed image. This was repeated for six

2D cases and one 3D case.

To test the reliability of the data provided by the observers, we removed one of the

observers from the statistical analysis and the results didn’t change significantly. This

showed that the observers provided approximately equally accurate data.
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CHAPTER 6

EXPERIMENTAL RESULTS

Three experiments are presented in this section to demonstrate how to implement the spline-

based nonrigid image registration algorithms, how to achieve the transitivity and symmetric

property when registering a sequence of images, and how to generate 2D and 3D validation

data for nonrigid image registration algorithms.

6.1 Nonrigid image registration

The nonrigid registration algorithms were tested on pairs of simulated images with known

deformations. The images were generated by deforming 2D and 3D MR images.

6.1.1 2D nonrigid registration

For 2D analysis, we have implemented the warping functions, thin-plate spline and cubic

B-spline, and the image similarity measures, including mean square differences and normal-

ized mutual information. All the combinations of the warping function and image similarity

measure can easily be done. Here the registration algorithms were tested under two separate

groups, the thin-plate spline with mean square differences and cubic B-spline with normal-

ized mutual information. We used a T1 weighted coronal brain image and a short axis

cardiac MR image as the object images, and artificially deformed these images to generate

the target images with known displacement fields. We applied this method to generate 10

pairs of simulated data for testing the performance of the algorithm. Although these target

images were artificially generated, the deformation patterns were controlled within a phys-

ically reasonable range. For the parameters set here, the initial value of the step size was 4

mm, and an initial control point spacing of 40 mm was chosen. After registration finished

at the first level, the grid spacing was refined to 20 mm. Registration was then run again

using the 20 mm grid and was refine to 10 mm at the final level, where the minimal value

of the step size was 1 mm and only a few iterations were needed because of near-optimal
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Table 1: The maximum error for 2D nonrigid image registration by thin-plate spline with
mean squared differences. The unit for the displacements and errors is mm. The column of
Maximum Disp. represents the maximum displacement between the target image and the
object image.

Case Maximum Disp. Maximum error

1 7.6 2.49
2 10.5 2.82
3 6.86 1.41
4 8.50 2.56
5 7.30 2.31
6 8.97 1.58
7 10.03 2.01
8 6.90 1.48
9 7.57 1.66
10 9.19 1.72

initial condition.

Table 1 shows the registration error measured in terms of the maximal misregistration

by running thin-plate spline warping function with the similarity measure of mean square

difference over the brain images. The images have a size of 256 x 186 pixels and spatial

resolution of 1 mm x 1.5 mm. Fig.12 shows one image pair from the simulated data together

with the computed image and the displacement field. The red crosses in Fig.12(c) represent

the deformation pattern, and the blue vectors and red vectors in Fig.12(d) represent true

vector field and computed vector field respectively. Since the registration algorithm can

effectively capture the deformations between the image pair, most of the true and the

computed vectors overlap.

Table 2 shows another data set of the registration error by running cubic B-spline with

normalized mutual information over the cardiac images. These cardiac images have have a

size of 386 x 323 pixels and spatial resolution of 1 mm x 1 mm. Fig.13 shows one image

pair together with the computed image and the displacement field.

6.1.2 3D nonrigid registration

For 3D analysis, the nonrigid registration algorithm was tested on 3D cardiac short axis

MR images. An example of three orthogonal slices of these 3D images is shown in Fig. 14.
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(a) (b)

(c) (d)

Figure 12: Nonrigid registration for 2D T1 weighted coronal brain images. (a) Target
image (b) Object image (c) Computed image using thin-plate spline with mean square
differences (d) Computed displacement field using thin-plate spline with mean square dif-
ferences. The maximal error for this pair of images is 2.37 mm.

Table 2: The maximum error for 2D nonrigid image registration by cubic B-spline with
normalized mutual information. The unit for the displacements and errors is mm. The
column of Maximum Disp. represents the maximum displacement between the target image
and the object image.

Case Maximum Disp. Maximum error

1 13.89 1.80
2 12.25 1.24
3 11.95 2.08
4 8.06 3.35
5 8.89 3.19
6 8.01 2.82
7 9.55 2.20
8 10.70 1.38
9 9.12 3.23
10 13.3 2.46
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(a) (b)

(c) (d)

Figure 13: Nonrigid registration for 2D short axis MR cardiac images. (a) Target image (b)
Object image (c) Computed image using cubic B-spline with normalized mutual information
(d) Computed displacement field using cubic B-spline with normalized mutual information.
The maximal error for this pair of images is 2.46 mm.
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Figure 14: Three orthogonal slices of a 3D cardiac short axis MR image.

The images have a size of 256 x 256 x 20 voxels and spatial resolution of 1.328 mm x 1.328

mm x 5 mm. In this test, we applied the cubic B-spline warping method with the mean

square difference as the image similarity measure, and set the 3-D grid spacing to be 20

mm and a multilevel step size from 10 mm to 5 mm and ended at 2.5 mm.

Table 3 summarized the registration accuracy of 9 simulated cases in terms of the max-

imum registration error. The experimental results have shown that the nonrigid image

registration algorithm can efficiently recover the deformations. The range of the maximum

displacement is from 10 mm to 30 mm and the maximum registration error is 5.09 mm,

which is close to the voxel resolution 5 mm in z direction. The registration cannot perform

better than the smallest voxel resolution of the image, because there is no more information

available below this scale. Fig.15 and Fig.16 show two examples of the 3D nonrigid image

registration.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: 3D nonrigid registration test for case 1. (a) one slice of the target image in xy
plane (b) one slice of the object image in xy plane (c) one slice of the target image in yz
plane (d) one slice of the object image in yz plane (e) one slice of the computed image in
xy plane (f) the vector field in xy plane (g) one slice of the computed image in yz plane (h)
the vector field in yz plane.

37



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16: 3D nonrigid registration test for case 2. (a) one slice of the object image in xy
plane (b) one slice of the target image in xy plane (c) one slice of the object image in yz
plane (d) one slice of the target image in yz plane (e) one slice of the computed image in
xy plane (f) the vector field in xy plane (g) one slice of the computed image in yz plane (h)
the vector field in yz plane.
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Table 3: The maximum error for 3D nonrigid image registration. The unit for the dis-
placements and errors is mm. The column of Maximum Disp. represents the maximum
displacement between the target image and the object image.

Case Maximum Disp. Maximum error

1 29.93 5.09
2 16.59 4.94
3 10.04 2.31
4 17.17 3.30
5 13.90 3.42
6 14.05 2.79
7 16.52 2.14
8 10.88 4.44
9 14.03 2.45

6.2 Transitivity

The transitivity analysis was performed on two 2-D and one 3-D MRI data set. The

transformations between each pair of images were estimated using the multi-scale cubic B-

spline-based nonrigid image registration algorithm. To validate the method, we have defined

the transitivity error by comparing the identity transformation and the composition of the

transformation from images I 1 to I 2, I 2 to I 3, and I 1 to I 3 as the mean (std, max) over

all r εD of

e(r) = ‖G(I2, I3)(G(I1, I2)(r))−G(I1, I3)(r)‖ (15)

with D being the domain of the transformation. In an ideal situation the error is zero.

6.2.1 2D transitivity

Tables 4 and 5 show the transitivity error for the 2D experiments. These tables show

that the source of the transitivity error is from the error of computing the inverse transform

(Γ(I2,M)−1). If the inverse function could be computed exactly, the transitivity error would

be bound only by the machine precision. In these experiments, the transformations are

represented by thin plate splines, which cannot be inverted analytically. Therefore, we

computed the inverse transformation numerically, with a specified maximal error of 10−6

pixels. Note that this value is similar to the maximal transitivity error in Tables 4 and 5.
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Table 4: The transitivity error (max, mean std) for random triples of images (I1, I2, I3)
with a given model (M ) from the first sequence of 2D short axis cardiac MR images. The
units for the errors are pixels (e.g. 1.0· 10−6 means a millionth part of a pixel). The columns
I1, I2, I3 and M represent respective image indexes from the image sequence.

I 1 I 2 I 3 M max mean std

16 10 8 4 2.0 · 10−6 9.1 · 10−7 1.5 · 10−7

15 13 8 4 2.1 · 10−6 8.7 · 10−7 1.4 · 10−7

1 14 8 4 2.0 · 10−6 8.7 · 10−7 1.3 · 10−7

12 3 7 4 1.5 · 10−6 8.6 · 10−7 1.2 · 10−7

15 7 1 4 1.6 · 10−6 8.6 · 10−7 1.0 · 10−7

6 14 1 4 1.8 · 10−6 8.8 · 10−7 1.2 · 10−7

3 10 5 4 1.3 · 10−6 8.8 · 10−7 8.8 · 10−7

1 12 8 4 2.1 · 10−6 9.0 · 10−7 1.4 · 10−7

15 8 7 4 1.7 · 10−6 9.0 · 10−7 1.3 · 10−7

We have repeated the experiments with the maximal error for the inverse transform set to

10−4 pixels, and the maximal transitivity error was about 10−4 pixels, which confirms that

the error of numerical computation of the inverse transform directly affects the transitivity

error.

Fig.17 and Fig.18 show two triples of images randomly selected from the two sequences of

2D cardiac images together with corresponding transformations computed by the presented

method.

6.2.2 3D transitivity

For 3-D analysis, the maximal error for the inverse transform was set to 10−4 voxels. Table 6

shows the transitivity error for the 3D experiments. The same as the 2-D analysis, the error

of numerical computation of the inverse transform directly affects the transitivity error.

Fig.19 and Fig.20 show two triples of images randomly selected from the a sequences of

3D cardiac images together with corresponding transformations computed by the presented

method.

6.3 Symmetry

Symmetry is a desired property for the image registration algorithms. Without symmetry,

the forward transformation would define one correspondence between the image pairs while
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Table 5: The transitivity error (max, mean std) for random triples of images (I1, I2, I3)
with a given model (M ) from the second sequence of 2D short axis cardiac MR images.
The units for the errors are pixels (e.g. 1.0 · 10−6 means a millionth part of a pixel). The
columns I1, I2, I3 and M represent respective image indexes from the image sequence.

I 1 I 2 I 3 M max mean std

8 10 14 6 6.0 · 10−6 9.6 · 10−7 2.4 · 10−7

8 9 4 6 4.0 · 10−6 9.3 · 10−7 2.0 · 10−7

8 13 5 6 2.5 · 10−6 9.6 · 10−7 1.3 · 10−7

3 4 11 6 6.3 · 10−6 9.6 · 10−7 2.2 · 10−7

11 7 10 6 2.9 · 10−6 9.7 · 10−7 1.8 · 10−7

11 13 12 6 4.7 · 10−6 9.9 · 10−7 2.0 · 10−7

2 8 7 6 8.6 · 10−6 9.5 · 10−7 1.6 · 10−7

3 12 13 6 9.0 · 10−6 1.0 · 10−7 3.3 · 10−7

9 10 3 6 6.2 · 10−6 9.6 · 10−7 2.5 · 10−7

Table 6: The transitivity error (max, mean std) for random triples of images (I1, I2, I3)
with a given model (M ) from the 3D short axis cardiac MR images. The units for the
errors are voxels. The columns I1, I2, I3 and M represent respective image indexes from
the image sequence.

I 1 I 2 I 3 M max mean std

3 13 5 8 2.2 · 10−4 2.1 · 10−5 3.7 · 10−5

7 14 3 13 1.1 · 10−4 1.9 · 10−5 3.4 · 10−5

16 14 5 6 1.2 · 10−4 2.1 · 10−5 3.5 · 10−5

12 7 16 13 1.3 · 10−4 2.1 · 10−5 3.6 · 10−5

15 5 8 7 1.1 · 10−4 2.1 · 10−5 3.5 · 10−5

5 7 16 4 1.4 · 10−4 2.1 · 10−5 3.5 · 10−5

4 6 12 15 2.0 · 10−4 2.2 · 10−5 3.7 · 10−5

2 1 11 9 1.4 · 10−4 2.1 · 10−5 3.6 · 10−5
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(a) (b)

(c) (d)

(e) (f)

Figure 17: 2D transitivity test for case 1. Three randomly selected images from a se-
quence of short axis 2D cardiac MR images are shown in (a), (b), and (c). The computed
displacement field from (a) to image (b) is shown in (d), the computed displacement field
from image (b) to image (c) is shown in (e), and the computed displacement field from
image (a) to image (c) is shown in (f). The mean (max) transitivity error for this triple of
images is 1.0 · 10−6(9.0 · 10−6)pixels.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: 2D transitivity test for case 2. Three randomly selected images from a se-
quence of short axis 2D cardiac MR images are shown in (a), (b), and (c). The computed
displacement field from (a) to image (b) is shown in (d), the computed displacement field
from image (b) to image (c) is shown in (e), and the computed displacement field from
image (a) to image (c) is shown in (f). The mean (max) transitivity error for this triple of
images is 9.0 · 10−7(1.7 · 10−6)pixels.
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(a) (b)

(c) (d)

(e) (f)

Figure 19: 3D transitivity test for case 1. Three randomly selected images from a se-
quence of short axis 3D cardiac MR images are shown in (a), (b), and (c). The computed
displacement field from (a) to image (b) is shown in (d), the computed displacement field
from image (b) to image (c) is shown in (e), and the computed displacement field from
image (a) to image (c) is shown in (f). The mean (max) transitivity error for this triple of
images is 1.2 · 10−4(2.1 · 10−5)voxels.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: 3D transitivity test for case 2. Three randomly selected images from a se-
quence of short axis 3D cardiac MR images are shown in (a), (b), and (c). The computed
displacement field from (a) to image (b) is shown in (d), the computed displacement field
from image (b) to image (c) is shown in (e), and the computed displacement field from
image (a) to image (c) is shown in (f). The mean (max) transitivity error for this triple of
images is 1.2 · 10−4(2.1 · 10−5)voxels.
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the reverse transformation would define a different correspondence. For the 2D and 3D

symmetric analysis, we used the same registration algorithms, the same sequences of cardiac

short axis MR images and set the same maximal error for the inverse transforms as in the

transitive analysis. To quantitatively validate this approach, we have defined the symmetry

error by comparing the composition of forward transformation from images I 1 to I 2, and

reverse transformation from images I 2 to I 1 to the identity transformation as the mean

(std, max) over all r εD of

e(r) = ‖G(I2, I1)(G(I1, I2)(r))− r‖ (16)

with D being the domain of the transformation. In an ideal situation the error will be zero.

6.3.1 2D symmetry

Tables 7 and 8 show the symmetry error for the 2D experiments. These tables show that

the source of the symmetry error is from the error of computing the inverse transform

(Γ(I2,M)−1). If the inverse function could be computed exactly, the symmetry error would

be bound only by the machine precision.

Fig.21 and Fig.22 show two pairs of images randomly selected from the two sequences of

2D cardiac images together with corresponding transformations computed by the presented

method.

6.3.2 3D symmetry

Table 9 shows the symmetry error for the 3D experiments. The same as in the 2-D analysis,

the error of numerical computation of the inverse transform directly affects the transitivity

error.

Fig.23 and Fig.24 show two pairs of images randomly selected from the a sequences

of 3D cardiac images together with corresponding transformations and displacement field

computed by the presented method.
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Table 7: The symmetry error(max, mean std) for random pair of images (I1, I2) with a
given model (M ) from the first sequence of 2D short axis cardiac MR images. The units for
the errors are pixels (e.g. 1.0 · 10−6 means a millionth part of a pixel). The columns I1, I2
and M represent respective image indexes from the image sequence.

I 1 I 2 M max mean std

16 11 6 3.7 · 10−6 8.8 · 10−7 6.2 · 10−7

8 1 6 2.4 · 10−6 1.0 · 10−6 6.0 · 10−7

8 10 6 2.6 · 10−6 1.7 · 10−6 3.1 · 10−7

15 12 6 3.8 · 10−6 9.7 · 10−7 6.4 · 10−7

7 15 6 2.3 · 10−6 8.5 · 10−7 5.7 · 10−7

15 1 6 4.8 · 10−6 1.8 · 10−6 5.8 · 10−7

4 10 6 2.0 · 10−6 7.4 · 10−7 4.7 · 10−7

4 1 6 3.4 · 10−6 1.6 · 10−6 5.0 · 10−7

8 15 6 2.5 · 10−6 9.1 · 10−7 6.2 · 10−7

14 9 6 3.9 · 10−6 8.5 · 10−7 5.9 · 10−7

Table 8: The symmetry error(max, mean std) for random pair of images (I1, I2) with a
given model (M ) from the second sequence of 2D short axis cardiac MR images. The units
for the errors are pixels (e.g. 1.0 · 10−6 means a millionth part of a pixel). The columns
I1, I2 and M represent respective image indexes from the image sequence.

I 1 I 2 M max mean std

14 1 11 6.1 · 10−6 1.7 · 10−6 5.8 · 10−7

14 9 11 3.9 · 10−6 8.5 · 10−7 5.6 · 10−7

7 5 11 2.2 · 10−6 4.9 · 10−7 6.5 · 10−7

4 5 11 3.3 · 10−6 1.8 · 10−6 3.7 · 10−7

3 12 11 4.8 · 10−6 7.9 · 10−7 5.9 · 10−7

14 10 11 3.9 · 10−6 9.3 · 10−7 6.0 · 10−7

15 14 11 5.0 · 10−6 1.9 · 10−6 5.3 · 10−7

5 6 11 1.3 · 10−6 9.5 · 10−7 6.3 · 10−8

12 5 11 3.6 · 10−6 7.9 · 10−7 5.7 · 10−7

10 6 11 1.7 · 10−6 9.7 · 10−7 1.2 · 10−7
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(a) (b)

(c) (d)

Figure 21: 2D symmetry test for case 1. Two randomly selected images from a sequence
of short axis 2D cardiac MR images are shown in (a) and (b). The computed displacement
field from (a) to image (b) is shown in (c), the computed displacement field from image (b)
to image (a) is shown in (d). The mean (max) symmetry error for this triple of images is
1.3 · 10−6(6.1 · 10−6)pixels.
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(a) (b)

(c) (d)

Figure 22: 2D symmetry test for case 2. Two randomly selected images from a sequence
of short axis 2D cardiac MR images are shown in (a) and (b). The computed displacement
field from (a) to image (b) is shown in (c), the computed displacement field from image (b)
to image (a) is shown in (d). The mean (max) symmetry error for this triple of images is
7.9 · 10−7(4.8 · 10−6)pixels.
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(a) (b)

(c) (d)

Figure 23: 3D symmetry test for case 1. Two randomly selected images from a sequence
of short axis 2D cardiac MR images are shown in (a) and (b). The computed displacement
field from (a) to image (b) is shown in (c), the computed displacement field from image (b)
to image (a) is shown in (d). The mean (max) symmetry error for this triple of images is
7.9 · 10−7(4.8 · 10−6)pixels.
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(a) (b)

(c) (d)

Figure 24: 3D symmetry test for case 2. Two randomly selected images from a sequence
of short axis 2D cardiac MR images are shown in (a) and (b). The computed displacement
field from (a) to image (b) is shown in (c), the computed displacement field from image (b)
to image (a) is shown in (d). The mean (max) symmetry error for this triple of images is
7.9 · 10−7(4.8 · 10−6)pixels.
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Table 9: The symmetry error(max, mean std) for random pair of images (I1, I2) with a
given model (M ) from the second sequence of 2D short axis cardiac MR images. The units
for the errors are pixels (e.g. 1.0 · 10−6 means a millionth part of a pixel). The columns
I1, I2 and M represent respective image indexes from the image sequence.

I 1 I 2 M max mean std

10 5 8 1.8 · 10−4 2.5 · 10−5 4.9 · 10−5

12 4 6 2.9 · 10−4 2.9 · 10−5 5.3 · 10−5

14 12 5 2.2 · 10−4 2.9 · 10−5 5.4 · 10−5

8 11 4 2.8 · 10−4 3.8 · 10−5 6.6 · 10−5

4 14 12 4.1 · 10−4 3.0 · 10−5 5.5 · 10−5

5 3 7 2.8 · 10−4 3.5 · 10−5 6.2 · 10−5

16 6 13 2.3 · 10−4 2.7 · 10−5 5.0 · 10−5

10 2 5 2.3 · 10−4 2.5 · 10−5 4.7 · 10−5

8 13 3 6.5 · 10−4 3.3 · 10−5 6.2 · 10−5

9 2 6 5.6 · 10−4 2.5 · 10−5 4.8 · 10−5

6.4 New Validation Strategies

6.4.1 2D validation strategy

For the 2D cases presented in this research, we used one cardiac MR short axis image slices

and one brain MR coronal image slice. By applying the optical warper in different ways we

generated three different deformations patterns for each image, thus producing a total of

six cases. We ran the method described in Section 5.2 on the six cases using grids with 7

by 7 lines, i.e. with 49 line intersections. As described above, the accuracy of the method

is 1 pixel. Fig.25 shows one of the six cases generated by the automated method.

For the manual validation, to decrease the load on the observers, we randomly selected

20 out of 49 markers for each of the six cases. The observers were presented with the selected

markers in the undeformed images and were asked to find the corresponding points in the

deformed images. Thus, each observer extracted a total of 120 markers. For each marker,

the outputs of the five observers were averaged and standard deviation was computed. For

each point in the undeformed image a mean and std (over the points in the deformed image

set by the five observers) were computed. The means were compared against the result of

the automated method (which output is within 1 pixel from the true values; clearly, the

true values are not know).
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Figure 25: A pair of images (left - undeformed image, right - deformed image) and a set of
corresponding points displayed over the images were generated by the automated method.
The accuracy of the data is 1 pixel, i.e. the locations of points in the deformed image are
not more than a pixel away from the true locations. This data can be used for validation
of nonrigid image registration algorithms.

In Table 10, we listed the average error for the five observers in x direction, ex, y

direction, ey, and error magnitude, ‖e‖, over the twenty markers for case 2. The errors

are differences between the means over the five observers and the output of the automated

method (which for this purpose can be considered “true” data since its accuracy is known).

Additionally, the standard deviation, Std, of the five observers and the displacement, Disp,

between the “true” points in the two images are given in the same table. All values are

in pixels. Table 11 was generated using the same statistical analysis as in Table 10, but

only the mean and maximum value over the twenty markers for cases 1 to 6 are given.

In all cases, the maximal displacements are between 11 and 22 pixels. The mean error

magnitudes are between 0.6 and 1.4 pixel, but the maximal error is up to 5.4 pixel in case

3. For markers located in homogeneous regions, it was difficult for the observers to set the

corresponding points due to a lack of image features. For this reason, we manually selected

markers located at stronger image features. The results of the same statistical analysis done

on these markers for cases 1 to 6 are shown in Table 12. Now the maximal error magnitude

is down to 2.0 pixel and the mean errors are between 0.6 and 1.0 pixel. Fig. 26 (a) is the

plot of the standard deviation versus error magnitude for case 2. From the plot it seems
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Table 10: The average error for five observers in x direction, ex, y direction, ey, error
magnitude, ‖e‖, standard deviation, Std and displacement, Disp, for twenty markers for
case 2. All values are in pixels.

Marker ex ey ‖e‖ Std Disp

1 0.8 -0.4 0.9 0.2 7.4
2 0.3 -0.8 0.9 0.7 4.1
3 1.0 0.0 1.0 0.8 10.3
4 0.9 -0.3 0.9 1.8 10.0
5 0.9 -0.0 0.8 0.5 3.5
6 -0.3 -0.8 0.8 0.5 5.6
7 0.0 -0.3 0.3 0.3 10.5
8 -0.3 1.1 1.2 0.8 17.5
9 -2.6 0.1 2.6 1.0 5.0
10 0.7 0.0 0.7 0.4 1.1
11 0.2 0.1 0.2 0.5 3.4
12 -0.9 -1.3 1.6 1.8 17.5
13 0.4 -0.8 0.9 0.9 18.8
14 -1.0 -1.0 1.4 1.5 10.5
15 3.0 3.0 4.2 1.9 13.6
16 1.3 0.3 1.4 3.2 14.5
17 1.2 -1.3 1.7 1.0 7.6
18 1.2 -1.5 1.9 0.8 4.9
19 0.0 -0.7 0.7 0.9 14.8
20 0.8 -0.6 1.0 0.6 21.4

mean 0.4 -0.3 1.3 1.0 10.1
max 3.0 3.0 4.2 3.2 21.4

that there exists some correlation between the two variables. The correlation coefficients of

all six cases are listed in Table 13. In case 1, the correlation coefficient is almost equal to

zero, which means that practically there is no relationship between the two variables. The

correlation coefficient values from Table 13 indicate that the standard deviation is not a

reliable measure of the error for individual points. However, when the standard deviation is

averaged over all the points in one image then it becomes highly correlated with the mean

error. A plot of the average std (averaged over all the points in one image) versus the mean

error is given in Fig. 26 (b). The six points in the plot correspond to the six cases. The

correlation coefficient between the two variables is .95 for this situation.

54



Table 11: The mean and maximum value of the average error for five observers in x direc-
tion, ex, y direction, ey, error magnitude, ‖e‖, standard deviation, Std and displacement,
Disp, over the twenty markers for case 1 to case 6. All values are in pixels.

Case ex ey ‖e‖ Std Disp

mean/max mean/max mean/max mean/max mean/max

1 0.4/2.3 0.0/1.4 1.0/2.7 1.0/2.4 11.5/17.9
2 0.4/3.0 -0.3/3.0 1.3/4.2 1.0/3.2 10.1/21.4
3 -0.1/2.1 0.0/5.3 1.4/5.4 1.4/3.8 11.0/18.8
4 -0.1/1.1 0.0/0.9 0.6/1.1 0.5/0.9 8.1/11.1
5 -0.4/2.8 0.5/2.4 1.0/3.4 0.8/2.6 12.1/21.3
6 -0.2/1.0 0.1/1.3 0.7/1.7 0.7/1.3 7.6/15.2

Table 12: The mean and maximum error value of markers with salient anatomical features
for cases 1 to 6. All values are in pixels.

Case ex ey ‖e‖ Std Disp

mean/max mean/max mean/max mean/max mean/max

1 0.4/2.0 -0.1/1.1 1.0/2.0 0.8/1.3 11.1/17.9
2 0.4/1.3 -0.2/1.1 0.9/1.4 0.9/3.2 12.2/21.4
3 0.2/1.2 0.3/1.2 0.9/1.7 0.8/1.7 11.3/17.2
4 -0.0/0.8 0.0/0.9 0.6/0.9 0.5/0.9 8.8/11.1
5 -0.5/1.3 0.2/1.0 0.7/1.4 0.6/1.3 9.6/17.5
6 -0.1/0.9 0.1/0.7 0.6/1.0 0.5/1.0 8.5/15.2

(a) (b)

Figure 26: (a) A sample scatter plot of the standard deviation versus error for case 2 of
markers with salient anatomical features. (b) The scatter plot of the average value of the
mean standard deviation versus the errors for all six cases.
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Table 13: The correlation coefficient of standard deviation and error for markers with
salient anatomical features from case 1 to case 6.

Case 1 2 3 4 5 6

Correlation coefficient -0.09 0.67 0.77 0.39 0.73 0.56

Table 14: The mean and maximum value of the average error for four observers in x
direction, ex, y direction, ey, z direction, ez, error magnitude, ‖e‖, and standard deviation,
Std over the twenty markers. All values are in millimeters.

Case ex ey ez ‖e‖ Std

mean/max mean/max mean/max mean/max mean/max

1 -0.1/6.7 0.0/2.1 0.3/2.6 1.5/6.7 1.4/10.8

6.4.2 3D validation strategy

For the 3D case, the result of the same statistical analysis as in the 2D cases is shown in

Table 14 but only for 20 validation points for one case. The mean errors in x, y and z

direction are between -0.1 and 0.3 mm, but the maximal error is 6.7 mm in x direction for

one of the points. Due to the proximity of a dark small region to a bead, observers may

have mistaken the dark region for the bead. The Std is highly correlated with the mean

error magnitude, and the correlation coefficient between these two variables is .96.
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CHAPTER 7

DISCUSSION AND CONCLUSION

Nonrigid medical image registration can serve as a powerful tool for combining information

from multiple imaging modalities, monitoring changes in size, shape, or image intensity over

time intervals, relating preoperative images and surgical plans to the physical reality of the

patient in the operating room during image-guided surgery, and relating an individual’s

anatomy to a standardized atlas.

In this thesis we have defined the registration problem and given a general survey of

the registration methods. An introduction to some common methods are given and the

nonrigid registration methods have been further discussed. The intensity-based approach

is preferable for automatic registration because it alleviates the need for a difficult feature

detection step. The mean square differences and normalized mutual information are rea-

sonable measures of the quality of the fit, and we have found it to perform well both in the

2D and 3D applications. Thin-plate spline and cubic B-spline have good warping properties

and lend themselves well to a multi-scale optimization strategy. The described automatic

algorithm takes advantage of all these properties; it is robust, efficient, and has been tested

on different deformation patterns both in 2D and 3D simulations.

We also have proposed a method for achieving transitivity and symmetry of image

registration algorithms. Transitivity and symmetry are desired properties that should be

satisfied by any image registration algorithm. We have implemented the proposed method

and quantitatively tested it on a sequence of images. The transitivity and symmetry error

can be made arbitrary small, since they are directly affected by the error of numerical

computation of the inverse transform. In our tests on triples of images from short axis

cardiac MR image sequences, the maximal transitivity error of the 2D experiments was

9.0 · 10−6 of a pixel and the 3D experiments was 2.2 · 10−4 of a voxel. For the symmetry

tests, the maximal transitivity error of the 2D experiments was 4.8·10−6 of a pixel and the 3D
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experiments was 6.5 ·10−4 of a voxel. In this research, we have theoretically and practically

demonstrated that the proposed method indeed achieves transitivity and symmetry of a

nonrigid image registration algorithm. It remains to be tested if the proposed approach

improves the registration accuracy over nonrigid image registration algorithms that are

not transitive or symmetric. The drawback of the presented method, in addition to the

computation of the inverse transform, is the requirement of registering through a ”model”,

which limits the registration to be performed on a sequence of images and not available for

registering only between two images.

The method for obtaining validation data for nonrigid image registration algorithms

is similar to simulations in the sense that the deformation is artificial. However, the im-

ages are obtained using a real acquisition system, rather than applying a mathematical

model. By changing the optical warper and the clay model we can generate various 2D

and 3D deformation patterns respectively. While these phantom validation studies do not

provide physically correct deformations, they are certainly a useful way to test the ability

of registration algorithms to recover various deformation patterns.

The analysis of the manual validation showed that the observers, when averaged, were

able to come close in accuracy to the presented methods (both in 2D and 3D) for points

located at strong image features, while they produced much less accurate results for points in

image regions with poor or no features. At the other hand, the presented methods generate

equally accurate validation data everywhere in the image regardless of the strength of the

image features. Another finding was that the standard deviation (over the observers) was

not a reliable prediction of error for single points, while when averaged over all the points

in the set it was highly correlated with the mean error of the points. These conclusions can

be used as guidelines when designing validation strategies for nonrigid image registration

algorithms based only on the input of observers.
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