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The original input shaping technique developed by Singer and Seering is summarized and 
a different definition for residual vibration is proposed. The new definition gives better insight 
into the ability of input shaping method to reduce vibration. The extension of input shaping to 
a system with varying parameters, e.g. natural frequency, is discussed and the effect of these 
variations is shown to induce vibration. A modified command shaping technique is developed 
to eliminate this unwanted motion. 

Introduction 

The industrial and environmental applications for robots with a relatively large workspace 
has increased significantly in the last few years. To accommodate the demands, the manipulator 
is usually designed with long, lightweight links which are inherently flexible. This flexibility 
allows the links to store potential energy which is returned to the system in the form of kinetic 
energy. Therefore, the end-point vibration, which affects the uncertainty in end-point position, 
is directly related to the flexibility of the links. 

Many different methods, both passive and active, have been investigated to eliminate 
unwanted oscillation to improve end-point positioning capabilities. The most crude passive 
approach to eliminate vibration is to simply wait for vibrations to stop after a desired motion. 
NASA originally used this method on their Space Shuttle Remote Manipulator System but found 
it to be very costly in task completion time requirements. Other passive approaches include 
applying a thin layer of visco-elastic material to absorb energy, using piezo-resistive films to 
resist beam motion and various vibration absorption techniques [1,2,3]. 

The majority of the present day techniques involve active control structures to . minimize 
end-point vibration. Different states of the system are measured and conventional feedback 
schemes are used to control the vibration. Hastings and Book [4] extended active control 
methods by including strain feedback in the control structure. They showed that strain feedback 
can reduce residual vibration during settling time. However, they conclude that the vibrations 
are inevitable with a feedback control scheme because feedback control signals contain high 
frequency components, which excite the system resonances. 

Another method to reduce vibration is the use of inertial devices. Montgomery, Ghosh 
and Kenny [5] propose torque-wheel actuators to reduce overshoot in the Space Shuttle Remote 
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Manipulator. Their results indicate that the wheel can produce a vibration of significant 
amplitude t~ diminish the original unwanted vibration. Lee and Book [6] are studying the effects 

of inertial forces to suppress vibration by mounting a small robot at the tip of a large, flexible 
robot. Using deflection rate control, the small robot generates damping forces to accommodate 
the inertial forces generated at the tip. 

The technique that is discussed in this paper involves the modification of a command 
signal so that the system resonances are not excited. The idea of command altering is not a new 
one. O.I.M. Smith [7] suggested the use of posicast control which takes a step of a given 
amplitude and separates it into two smaller steps, one of which is separated in time. This 
method was shown to reduce the settling time of the system. Meck! and Seering [8] examined 
the construction of the input from a series expansion of ramped sinusoid functions with 
coefficients chosen to minimize a spectral magnitude. The results were reduction in residual 
vibration even for variations in resonant frequencies. 

Singer and Seering [9,10,11] presented a method of generating shaped command inputs 
that utilizes system characteristics. Each sample of the desired input is transformed into a new 
set of impulses that do not excite the system resonances. This procedure, in effect, filters out 
frequency components near the system's resonance to avoid vibration during motion. However, 
their experiments were limited to systems with constant parameters. The ability of the method 
to accommodate slight deviations in system parameters is handled by the derivation of robustness 
constraints. To fully appreciate the method, a more detailed discussion is warranted. 

The Input Shaping Technique 

The original input shaping method developed by Singer and Seering is best explained by 
considering the motion of a flexible system as the linear combination of flexible and rigid body 
motion. The rigid body motion can be modeling using conventional methods, e.g. Newton, 
Lagrange, etc., and consider representing the flexible motion as a simple, second-order system. 
The vibratory response of a linear, time-invariant, underdamped second-order system to an 
impulse can be written as 

xU) = (1) 

where A is the amplitude of the impulse, Wn is the natural frequency of the system, r is the 
damping ratio of the system, t is the time and to is the time when the impulse occurs. Since the 
input shaping technique generates a set of new impulses, the response of the second-order system 
to two impulses can be expressed as 

(2) 



where 

The response of the system to the two impulse input can be simplified to yield 

x(t) =Bampsin(a;t+l/r) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Since the system is linear and time-invariant, the results from Equations (7) and (8) can be 
generalized to the N impulse case. The resulting amplitude and phase for the response are 
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Since the purpose of the input shaping method is to eliminate vibration, the amplitude of 
vibration given in Equation (9) must equal zero after the last input impulse occurs in time. This 
only happens ifboth the squared terms are independently zero since the sine and cosine functions 
are linearly independent. The resulting equations are 

Simplifying Equations (11) and (12) yields the zeroth-order constraint equations given by 

N .E Ake -C(')II(tN-tOk) cos(Ci)nVl - ,2 tOk ) = 0 
k=l 
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For the constraint equations to produce the correct impulse sequence to eliminate vibration, the 
natural frequency and damping ratio of the system must be exact. Since these system 
characteristics are never precisely known, a robustness constraint is added. The robustness 
constraints are found by taking the partial derivatives of Equations (13) and (14) with respect 
to Wn or S- and setting the result equal to zero. Higher derivative constraints are obtained by 
differentiating the equations to the desired order. The mth-derivative robustness constraints are 
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(16) 

The length of the impulse sequence is now determined by the number of unknowns in a given 
set of constraint equations. For any given set, there will always be two more unknowns than 
equations. To alleviate this dilemma, the starting time of the first impulse is chosen to be time 
zero and the amplitudes of the impulses are normalized so that they sum to unity. This 
particular normalization ensures that the overall amplitude of the new impulse sequence is the 
same as the amplitude of the desired input command. 



Example of Two Impulse Case 

For the two impulse case, the zeroth-order constraint equations are utilized, which are 

(17) 

(18) 

Since any equation involving sines and cosines is transcendental, there are an infinite number 
of possible solutions to Equations (17) and (18). Therefore, only the solution that yields the 
shortest time duration and a positive amplitude for all the impulses is chosen. The solution is 

where 
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Equation (22) states that the second impulse occurs in time at one-half the damped period of the 
system. This seems reasonable to apply an impulse to oppose the vibration of the system. The 
ability of the input shaping method to eliminate vibration can be demonstrated graphically. 
Consider the input given in Figure 1 whose characteristics are given in Equations (19) thru (22). 
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Figure 1. Two Impulse Input 



The second-order system response to each of the impulses in Figure 1 is shown in Figure 2. 
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Figure 2. System Response to Each Impulse 

Since the system is linear and time-invariant, a linear combination of two inputs results in a 
response that is a linear combination of the two responses. Therefore, the net system response 
to the two impulse input is shown in Figure 3. Since the natural frequency and damping ratio 
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Figure 3. Overall System Response to Two Impulse 
Input 

are exact, there is no vibration of the system after the second impulse occurs. The flexible 
motion has been eliminated and all that remains is rigid body motion. 



Robustness of Constraint Equations 

The previous example demonstrated the ability of the input shaping method to eliminate 
vibration when the natural frequency and damping ratio of the system were known exactly. For 
most physical systems, the exact parameters are seldom known. Thus, there is some residual 
vibration after the last impulse has occurred. To determine the amount of residual vibration, 
a new vibration error expression must be defined. The error, denoted err, is expressed as the 
ratio of the actual multiple impulse response magnitude to the actual impulse response magnitude 
of the second-order system. The error expression is defined only for time after the multiple 
impulse input has occurred to ensure that the system has received identical amplitude inputs, i.e. 
the inputs sum to the same value. Mathematically, the vibration error is written as 

err = , jor t ~ tOk (24) 

where k is the number of impulses. The residual vibration is just the vibration error expressed 
as a percentage. 

The deviation of the actual system parameters from the design parameters can now be 
quantified using Equation (24). By studying the deviations in natural frequency and damping 
ratio from the design parameters, their effects on vibration error can be better understood. To 
demonstrate this point, again considered the two impulse input case. The vibration error from 
Equation (24) is found to be 

( 6>4) ( 6>4) 1-- CJ) 2 I--

I +2M ", cos( "': 1t) +M ", 
(25) !X2a( t)! = 1 

!xa(t)! M+l 

where Wa is the actual natural frequency of the system and Wn is the design natural frequency of 
the system. Figure 4 shows the vibration error as a function of normalized frequency, w/ Wn and 
Figure 5 displays Singer's original vibration error. The two principal differences between the 
definitions are evident when comparing the figures: 

1. The magnitudes achieved by the residual vibration 

2. The behavior of the residual vibration with respect to damping ratio 

From Singer's definition, the magnitude of the residual vibration never exceeds 100 % . This 
phenomenon implies that the input shaping method will never increase the residual vibration of 
the system no matter the variation in natural frequency. Clearly, this is cannot be the case. One 
can envision applying the second impulse at a time equal to the damped period of the system. 
Figure 6 reveals a second-order system response to a single impulse input compared with a two 
impulse input when the actual natural frequency is twice the design natural frequency. The 
residual vibration after the second impulse is actually worse than if the system had only been 
given the single impulse. Therefore, the input shaping method can have a detrimental effect 
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Figure 5. Vibration Error vs. Normalized 
Frequency - Singer's Definition 

when large errors in natural frequency occur. 
The second difference deals with the relationship between the damping ratio and the 

residual vibration. The new definition shows that the residual vibration increases for an increase 
in damping ratio. This fact may seem incorrect since the overshoot of a second-order system 
decreases with an increase in damping ratio. However, manipulation of Equation (1) for 
different values of damping ratio (at a constant value of natural frequency) reveals that the 
amplitude of the impulse response increases for larger values of damping ratio. 
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Figure 6. Single Impulse Response vs. Two Impulse 
Response 

One final note regarding the vibration error is the robustness of the two impulse input. 
Singer defines an acceptable vibration error level of less than 5 % residual vibration for the 
second-order system. After reviewing Figure 4, the two impulse input is robust only for a 
frequency variation of less than 5 % . To improve the robustness with respect to natural 
frequency, more impulses must be used. By solving the higher order derivative constraints 
mentioned previously, the amplitudes and starting times of more impulses can be found. After 
solving set of equations, the vibration error can be calculated. The vibration error graphs for 
the case of three and four impulses are shown in Figures 7 and 8, respectively. Notice that the 
robustness for variations in natural frequency increases for more impulses but there is a larger 
penalty in residual vibration if the parameters are outside the acceptable level. 

The robustness with respect to damping ratio can also be pursued by evaluating the 
vibration error equation for variations in damping ratio. Singer states that the higher order 
derivative constraints also satisfy variations in damping ratio so the derivation will not be 
addressed here. The only point to make is that large variations in damping ratio do not have 
a significant effect on the residual vibration. This fact is comforting since the damping ratio of 
a complex system can be difficult to measure. 

Position Dependent Parameters 

The robustness of the constraint equations demonstrated the ability of the input shaping 
method to reduce vibrations even with deviations from the design parameters. However, the 
method does not consider the issue of changing system parameters. For many flexible, robot 
systems, the natural frequency and damping ratio are functions of position, e.g. joint angles. 
Therefore, a modified command shaping technique is developed to accommodate this deficiency. 

To develop this new method, the implementation of the input shaping technique to a 
discrete-time system is presented. Figure 9 shows a simple block diagram of the input shaping 
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method. For each sample of the desired input, N output impulses are generated. The output 
impulses are equally spaced in time with a continuous-time period, denoted delT, 

(26) 

which is a function of both the natural frequency, Wm and damping ratio, t. To utilize this time 
period information in a discrete-time system, the continuous-time data must be represented in 
discrete-time. From discrete-time signal processing, a continuous-time signal, x(t) , is 
represented mathematically as a sequence of numbers, x[n], where n is strictly an integer. TO 
transform the continuous-time period delT into a discrete time period deln, the sampling rate of 
the discrete-time system, /S, is used. The equation to perform this transformation is 

deln = int (delT * Is) (27) 

where the int function truncates its argument to an integer. 
For the input shaping method, the discrete-time period, deln, never changes because the 

system parameters are assumed constant. But when the input shaping method is applied to a 
system that has time varying parameters, the continuous-time period, delT, becomes time varying 
as well. A significant change in delT will result in a change in the discrete-time period, de In , 
which produces an undesirable vibration in the system. The amount of change in the continuous 
period that causes this change in the discrete period is a function of sampling rate since deln is 
strictly an integer. 

For example, consider the input shaping method shown in Figure 9 that produces four 
new impulses for each sample of the desired input. Assuming that the discrete-time period 
evaluates to an integer value of four, the method would produce a steady-state impulse output 
shown in Figure 10. Each output impulse is designated {a,b} where a indicates the discrete-time 
location of the input sample responsible for the four output impulses and b indexes the four 
resulting output impulses. Now assume that the system configuration has changed enough to 
alter the value of the discrete-time period. Figure 11 shows the steady-state impulse output for 
a change in the discrete-time period, deln, from four to five. After examining Figure 11, it is 
obvious that the change in deln has caused gaps in the output for discrete values of n. At n=4, 
for example, only three impulses are contributing to the overall output. To make matters worse, 
this problem is repeated five more times at a discrete-time period near the system's natural 
period. This phenomenon induces a vibration into the system that is caused solely by the 
application of the input shaping method to a system with time varying parameters. 

This induced vibration is also present when the value of deln decreases. Consider a 
change in deln from five to four. The resulting steady-state impulse output is shown in Figure 
12. For this situation, a surplus of output impulses is generated at a discrete-time period near 
the system's natural period. These extra impulses also cause a vibration that is produced by the 
input shaping method. 

To eliminate the induced vibration, a modified command shaping method is proposed to 
make the impulse output more uniform when a change in deln is encountered. To compensate 
for a change in the discrete-time period, extra impulses are added for an increase in deln and 
impulses are removed for a decrease in deln. The choice of which impulses are affected is based 



on the number of output impulses from the shaping algorithm and the old and new values of the 
discrete-time period. 

Modified Command Shaping 

The modified command shaping method can be explained by designating the discrete-time 
value when the discrete period increases as n=O. For the next N-l samples of the input, i.e. 
o ::;;; n < N-2, the modified command shaping technique shapes each sample using both the old 
and new values of deln to create a smooth steady-state impulse output. Using the new value of 
deln, the input sample is shaped to create N output impulses that are added to the overall output 
at their respective discrete-time values. Using the old value of deln, the same input sample is 
also shaped to create N output impulses. However, only the last N-(n+ 1) output impulses are 
added to the steady-state output at their respective discrete-time values. For discrete-time values 
of n ;;::: N-l, each sample of the input is shaped normally using the new value of deln to generate 
the N output impulses. 

The modified command shaping method also works for a decrease in the discrete-time 
period, deln. For this situation, the input sample is shaped only once using the new value of 
deln to produce the four output impulses. Instead of adding all four of the output impulses, only 
the first (n+ 1) output impulses are added to the steady-state output at their respective discrete
time values. By manipulating the overall output in this way, the extra impulses that are added 
for the case when deln increases are the same impulses that are removed when deln decreases. 

One final case to consider is when the value of deln changes more than once within one 
discrete-time period. For this situation, a new modified technique must be devised. For 
instance, if the discrete-time period length changes from one value to another and back again, 
the best method to smooth the steady-state output may be to ignore the change in discrete period 
if it is relatively short. 

To understand the modified command shaping procedure, consider the example given in 
Figure 11. The value of deln increases from four to five for this input shaping scheme that 
produces four output impulses. Since N=4 for this case, the next three (i.e. N-l) input samples 
will be shaped twice. At discrete-time n=O, the input sample is shaped using the new value of 
deln (Le. 5) to create four (Le. N) output impulses that are added to the overall output. At the 
same discrete-time value, the input sample is shaped using the old value of deln (Le. 4) to create 
four (L e. N) output impulses. However, only the last three (L e. N-(n + 1» impulses are added 
to the overall output at their respective discrete-time values. For the next discrete-time value, 
Le. n=l, the input sample is shaped using the new value of deln to create the usual four output 
impulses that are added to the overall output. When the input sample is shaped using the old 
value of deln, only the last two (Le. N-(n+ 1» output impulses are added to the general output. 
This process of shaping the input samples twice is repeated until the discrete-time value, n, is 
greater that N-2. After n > N-2, the shaping continues normally using only the new value of 
deln to produce the output impulses. The steady-state impulse output for an increase in discrete
time period using the modified command shaping is shown in Figure 13. The impulses due to 
the modified method are darkened to show emphasis only. 

The application of the modified command shaping method to a decrease in discrete-time 
period is much simpler. Considering the example in Figure 12, the steady-state impulse output 
from the modified method is given in Figure 14. The impulses that are created but not added 
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are drawn in the figure without tails to distinguish them from the normal impulses. Notice that 
the extra impulses that are added for the increase in discrete-time period are the same impulses, 
i.e. the same indices, that are eliminated for a decrease in discrete-time period. Although the 
amplitudes of the impulses are not exactly the same (since they originated from different samples 
of the desired input), this method provides a unique means for maintaining continuity of the 
steady-state output impulses. 

Experimental Verification of Induced Vibration 

To verify that the input shaping method does induce vibration for variations in discrete
time period, the method was applied to an existing adaptive P.D. control strategy developed by 
Yuan [12] that controls a two DOF flexible manipulator (RALF) located at Georgia Tech. The 
block diagram of the comprehensive control scheme is shown in Figure 15. 

P.O. 
U, ,U. 

RALF r-----r-- 8, •. 82• 

+ error M.C.S. 

+ tL 
Ado.ptlve 

Control 

Figure 15. Block Diagram of Control System 

The main control unit is a Micro VAX II containing AID boards that can sample a single 
channel at 6000 Hz. However, the boards are limited to 300 Hz if multiple channels are 
accessed. After the computation time of the control routines is considered, the sampling 
frequency is reduced to 50 Hz. This sampling rate is acceptable since the first natural frequency 
of RALF that is to be controlled ranges from 3.7 to 5.5 Hz. 

To demonstrate the elimination of the induced vibration, a desired trajectory in joint 
space is precomputed to ensure an equivalent basis for comparison. For this example, the 
desired path is a circle in cartesian space that is three feet in diameter with a period of nine 
seconds. An accelerometer is mounted at the tip of the robot to measure transverse vibration 
of the second link. The robot is commanded to follow the desired trajectory eight times which 
allows for reliable averaging of the data. A HP Signal Analyzer records the time response of 
the accelerometer and computes the frequency response of the data. 

Figure 16 shows a comparison of the frequency response between the original P.D. 
control routine without command shaping and the original input shaping method of Singer's 
substituted for the modified command shaping method in Figure 15. Notice that the frequency 
response of the input shaping method is greater than for the P.D. routine alone. At the 
frequency range the input shaping method is designed to control (3.7-5.5 Hz), the response is 
12 dB larger. This is due to a change in the discrete-time period which induces vibration at the 
system resonances. It is also worth pointing out that the second resonance of RALF occurs near 
10 Hz and is evident in the frequency response. 
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Figure 16. Frequency Response of RALF 
P.D. vs. Input Shaping 
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Figure 17. Frequency Response of RALF 
P.D. vs. Modified Command Shaping 

Figure 17 compares the frequency response between the P.D. routine and the modified 
command shaping method. The modified command shaping has reduced the magnitude of the 
resonant vibration by 20 dB compared to the original P.D. routine. Therefore, this modified 
method reduced the vibration by nearly 32 dB over the input shaping method. Again, this 
increase in performance is due to the inability of the input shaping method to accommodate a 
change in the discrete-time period. A visualization method that clearly shows the induced 
vibration can be found in [13]. 



Conclusion 
The original input shaping method developed by Singer and Seering was presented and 

robustness criterion described. A different vibration error expression was presented and shown 
to better represent the ability of the method to reduce residual vibration. The input shaping 
method was shown to induce vibration in systems with varying parameters and a modified 
command shaping technique was developed. The ability of the modified method to eliminate the 
induced vibration was shown using frequency response analysis of the transverse vibration of 
the tip of a flexible manipulator. 
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