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SUMMARY 

 

Learning in reptiles has been studied with a variety of methods and included 

numerous species.  However, research on learning in lizards has generally focused 

on spatial memory and has used only a few species. No research has specifically 

investigated and documented the use of visual discrimination in monitor lizards. 

The ability of monitor lizards (Varanus spp.) to discriminate between visual stimuli 

was investigated. Subjects were tested on acquisition and two reversals of a 

discrimination task between black and white stimuli. A food-choice procedure was 

used to determine if consistent rankings of food items could be determined using a 

multiple-stimulus choice procedure.  The functional value of the rankings was 

assessed using a progressive ratio technique. The subjects formed stable food 

preferences, which were reflected in increased response requirement completed for 

preferred items and subjects did successfully learn the initial discrimination task 

and the following reversals. 
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CHAPTER 1 

INTRODUCTION 

 

 Learning in reptiles has a long history with the first documented 

experiment by Yerkes (1901) (as cited in Burghardt, 1977). Yerkes ran a single spotted 

turtle (Clemmys guttata) through a maze. The turtle successfully learned the maze, 

decreasing in time required from 35 minutes to a mere 3.5 minutes. This early report, and 

the subsequent century’s worth of work on learning in reptiles (anecdotal and 

experimental), may have stemmed from earlier reports that reptiles were too instinctive to 

be capable of much learning. The studies conducted to disprove this assumption have 

included various subjects ranging from crocodiles to tuatara and include representatives 

from all groups within the reptile class except Amphisbaenia (a limbless, eyeless reptile 

that lives underground). The methods used to study learning in reptiles have ranged from 

habituation to probability learning. Although a large number of reptile learning reports 

exist, they are often rarely referenced or difficult to locate. Burghardt concluded that 

many of these studies remain rarely referenced due to obscure place of publication and a 

hybrid psychology/biology methodology.  

Visual Discrimination in Reptiles 

Within Burghardt’s (1977) review of reptile learning, a section is dedicated to 

visual stimulus discrimination. Several methods have been employed to study visual 

discrimination. Yerkes (1907) invented the discrimination box, which quickly became an 

experimental standard. It consisted of a starting box which would open into a divided 

alleyway. Each alleyway was painted with different colors, or oriented lines, or would 
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have stimuli placed at the end of the tunnels (shapes, colors, etc.) and the animal would 

be required to enter a tunnel. Correct choices were rewarded; incorrect choices either 

ended the trial or were punished with shock or time-outs. The discrimination box was 

used extensively with turtles to study discrimination of brightness, color, form, size, line 

orientation, monochromatic light thresholds, and infrared light versus visible light. This 

method has also been used in one study of crocodilian color discrimination and a few 

lizard studies looking at color, black versus white, form, line width and brightness. 

Another less commonly used methodology to study color vision in lizards was the 

Wagner method (Burghardt, 1977). In this methodology a two tined fork was used to 

present a mealworm with a colored background. Correct stimuli were paired with 

palatable mealworms and incorrect stimuli were paired with mealworms soaked in 

saltwater. Using this method, color vision was examined in several turtle and lizard 

species.  

A few studies examined visual discrimination in crocodilians using T-mazes. The 

T-maze is a modified discrimination box where the subject must make a full 90° turn 

before being able to enter the choice tunnels. Several studies reviewed by Burghardt 

(1977) employed this method to study brightness discrimination and conditioned 

discrimination using the brightness of the ambient light as the stimulus. 

Recent Work on Stimulus Discrimination in Reptiles 

In more recent work, the most comprehensive studies of stimulus discrimination 

in reptiles have been conducted in turtles. Learning studies in reptiles may be biased 

towards turtles for several reasons; turtles are regular eaters and consequently can be 
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reinforced consistently using food, keep well in captivity, and are potentially closer to the 

ancient common ancestor of mammal/reptile than most reptiles (Powers, 1990).  

Researchers have used behavioral methods (as opposed to physiological) to study 

a variety of topics. Some such research areas include: telencephalic function in reptiles 

(reviewed in Peterson, 1980; Powers, 1990), the evolution of taste aversion (Paradis & 

Cabanac, 2004), auditory localization in turtles (Lenhardt, 1981), and visual acuity in 

loggerhead sea turtles (Bartol, Mellgren & Musick, 2003). Even with the variety of topics 

studied, most of the discrimination work in reptiles is done with turtles.  

Recent Work on Stimulus Discrimination in Lizards 

In 1978 Brattstrom reviewed work on lizard learning. While not comprehensive 

(the review did not include much of the work reviewed in Burghardt, 1977 or work 

published in languages other than English), it does illustrate some interesting trends. 

Brattstrom noted early failures to train lizards to discriminate and cautioned against 

testing under non-optimal temperatures as well as using stimuli or rewards that were not 

ecologically relevant. However, he did conclude that lizards are able to learn to perform a 

variety of tasks such as wheel running and lever pressing given appropriate reinforcers.   

Within the lizard taxon, researchers have continued to employ behavioral methods 

to attempt to test various hypotheses. Often, behavioral methods have been used to test 

the functions of particular portions of the brain. Punzo (1985) tested the role of the basal 

forebrain in the brown anole (Anolis sagrei), Ivanzov (1983) examined the role of the 

hippocampal cortex and dorsal ventricular ridge (DVR) in the scheltopusik lizard 

(Ophisaurus apodus), Day, Crews and Wilczynski (1999) examined whether spatial 

memory in lizards was correlated with medial (MC) and dorsal cortex (DC) size 
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(hippocampal homologues in these species), and Day, Crews, & Wilczynski (2001) 

examined the role of the medial and dorsal cortex on spatial memory in Cnemidophorus 

inornatus. 

Other studies have looked at the effectiveness of different types of cues used with 

lizards. Day, Ismail and Wilczynski (2003) trained whiptail lizards (Cnemidophorus 

inornatus) to escape intense heat by entering a shelter whose position was indicated by 

either visual or spatial cues. The researchers found that the rate of learning and reversing 

the discrimination was affected by cue type, with positional cues more effective than 

feature cues.  

In a similar study, sleepy lizards (Tilqua rugosa) were trained to locate shelters 

based on visual and spatial cues (Zuri & Bull, 2000). Visual cues were used preferentially 

to spatial cues, and black and white signals and triangles and circles were more easily 

discriminated than red and green signals. The reason for the lack of discrimination 

between red and green wavelengths is unknown; however, perhaps these colors are not 

salient cues to refuge location in these animals. 

Some stimulus discrimination work has also been done in the field. For example, 

Martín and López (2003) studied how repeated intrusion by a predator changed the 

escape responses of a lizard (Acanthodactylus erythrurus). They found that the lizards did 

indeed change their escape strategy after repeated intrusions by adjusting their choice of 

refuge. Similarly, Martín and López (2004) found that Iberian rock lizards (Lacerta 

monticola) had a flexible assessment of predation risk, with behavior based on previous 

experiences of that individual. 
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While there has been a reasonable amount of diversity in species and methods 

used in reptile learning studies, biases still exist. After his review of reptile learning, 

Burghardt (1977) noted that turtles were over-represented, and that more diversity in type 

of species used should be considered in the future. Lizards, which are a more diverse 

group than turtles are not nearly as well represented in the reptile learning literature. 

Within lizards, species bias also occurs. While Lacerta spp. and Dipsosaurus dorsalis are 

commonly used as subjects (Brattstrom, 1978), only two monitor learning studies have 

been conducted.  One study looked at the role of the hypothalamus in classical 

conditioning of Varanus griseus and the other examined effective autoshaping (automatic 

training of an animal to engage in an operant response, e.g. lever pressing) in Varanus 

bengalensis (as cited in Burghardt, 1977). While these two studies show that some 

monitors can be classically conditioned and that others can learn to press levers, 

relatively basic knowledge about learning processes in monitor lizards is still missing. 

Additionally, few recent learning studies have examined visual discrimination. Studies of 

the morphology of monitor lizards show that their visual system is well developed with 

the potential for color vision (Underwood, 1970). However there have been no behavioral 

studies designed to test these assumptions. Therefore, the visual capabilities of monitor 

lizards is an area rife with opportunity for study.  

Monitor Lizards and Stimulus Discrimination 

 Stimulus discrimination, as a task, can be compared to foraging behavior (Kamil 

and Roitblat, 1985). For an active predator that searches for their food, certain stimuli 

(olfactory, movement, a particular burrow) should be associated with a higher probability 

of obtaining food. To optimize foraging behavior a forager would need to be sensitive to 
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changes in the probability of obtaining food associated with a particular stimulus. Thus, 

stimuli (visual, spatial, etc.) associated with a higher rate of food should be visited at a 

higher frequency. Most monitors (including those in this study) are active foragers and 

spend much of their day actively searching for food (King and Green, 1999). Being active 

foragers, monitor lizards may be similar to the turtles mentioned earlier, in that they 

might be better suited for behavioral testing using food than other lizards. As well as 

being active foragers, most monitors forage on the ground and are hypothesized to focus 

on particular visual cues such as thick leaf litter or burrow entrances when looking for 

prey. Therefore, monitors should be sensitive to contingencies involving particular visual 

stimuli and food reinforcers. However, few studies have looked at the foraging dynamics 

of lizard species. Although, in one exception, Kaufman, Burghardt and Phillips (1996) 

studied how white-throated monitors discriminate between potential food items. 

Of all the lizards, monitor lizards are touted as being the most “intelligent” and 

“mammal-like” (King and Green, 1999; Sweet & Pianka, 2003). Monitors are thought to 

be highly “intelligent” based on observations from captivity and the field. There are 

reports of monitor lizards intercepting rather than chasing prey, taking food to a protected 

area before swallowing it, recognizing their keepers, and avoiding the scent trails of 

humans (Sweet and Pianka, 2003). One research study mentioned in the Sweet and 

Pianka paper even claims that white-throated monitors may be able to “count” to six. 

However, many of these reports are in the form of popular articles and have yet to be 

supported in the peer reviewed literature. Also, as intelligence is a term hard to define, 

especially in animals, other terms might be better employed such as “less stimulus-

bound,” “less instinctive” or “capable of behavioral flexibility” (Burghardt, 1977). While 
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these are terms that are relative and also warrant further definition, they are at least less 

controversial than the alternative. 

Several characteristics, including behavioral flexibility, make monitors good 

candidates for visual stimulus discrimination studies using food as reinforcement. 

Monitor lizards are highly food motivated (Gaalema & Benboe, 2005) and have 

physiological metabolic control similar to mammals, making them more active and 

responsive than most lizards (Porges, Riniolo, McBride, & Campbell, 2003). Also, 

monitors have been shown to use visual cues while foraging, with white-throated 

monitors (Varanus albrigularis) discriminating between prey items based on static visual 

cues (Kaufman, Burghardt, and Phillips, 1996). Accordingly, monitors should be 

sensitive to contingencies involving food reinforcement and visual stimuli.  Thus, for all 

the reasons listed, monitors are ideal candidates for studying visual stimulus 

discrimination using positive reinforcement techniques in reptiles.  

Food Choice and Reinforcer Preference 

One way to increase the effectiveness of a behavioral learning study is to employ 

a preferred reinforcer (Treichler, 1967). A reinforcer is defined as a stimulus (food, heat, 

social interaction, etc.) that when it follows a behavior, increases the probability of that 

behavior occurring. Therefore, identifying a stimulus (a preferred reinforcer) that is more 

effective at increasing a target behavior should increase the effectiveness of a learning 

study by increasing the probability of the target behavior from the subject. Research has 

shown that highly preferred items tend to function as reinforcers (Piazza, Fisher, 

Hagopian, Bowman & Toole, 1996), and that preferred items sustain greater levels of 

behavior and faster acquisition of target behaviors, than items that are rated as less 
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preferred (Caldwell, Taylor & Bloom, 1986; Treichler, 1967). Research has also shown 

that animals can form stable rankings of items (e.g., Silberberg et al., 1998), suggesting 

that one should be able to identify preferred food items for monitor lizards. 

Several methods have been developed to ascertain preference for an item. 

Stimulus choice procedures measure a subject’s theoretical preference for an item. 

Preference can be represented by bias in behavior. Perfect matching of behavior between 

two options shows indifference between reinforcers obtained by those schedules, thus 

bias in behavior implies preference for one of the reinforcers (McDowell, 1989).  

Preference is often measured by presenting stimuli singly, in pairs, or in sets of 

multiple items and choice can be determined by measuring, for example, latency to 

approach an item, amount of time an item is interacted with, or choice of that item to the 

exclusion of other items (e.g., Aaker, Bagozzi, Carman & MacLachlan, 1980; Green et 

al., 1988; Pace et al., 1985). Usually stimulus preference results in a ranking of items 

within the tested item set. 

Related procedures, such as food preference tests, have been used with a variety 

of animals, including reptiles (e.g. Morpurgo, Gvaryahu, & Robinzon, 1991). However, 

these tests are usually run to test palatability of food, determine taste thresholds, or see if 

animals are choosing food based on nutrient content, not to determine usefulness of a 

food item as a reinforcer (Molloy & Hart, 2002; Matson, Milliam, & Klasing, 2001; 

Bosque & Calchi, 2003).  

Although occasionally used synonymously, food (or stimulus) preference and 

reinforcer preference are two different procedures with different implications. While food 

preference might measure what an animal would consume first, a reinforcer preference 
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assessment would measure the effects of that item on behavior. Additionally, most 

reinforcer preference assessments have the added benefit of measuring preference instead 

of simply ranking items. For example, Bron, Sumpter, Foster, and Temple (2003) studied 

opossum preference for food items by looking at bias in responding on concurrent 

schedules as a measure of preference. The possums responded more to schedules that 

resulted in food items with a lower salt content. The possum study would be an example 

of a reinforcer preference test because the effect on behavior as a function of different 

food items was examined. 

Reinforcer preference identification techniques have been used to test theories for 

economics (Silberberg et al. 1998), drug addiction (Nader and Woolverton, 1992), and 

animal welfare (Sumpter, Foster and Temple, 2002), as well as used for many years to 

increase the effectiveness of teaching children and the disabled (Tighe and Tighe, 1969; 

Pace et al. 1985). However, this technique has never been used for reptiles, even though 

it could have easily been employed in studies of learning in reptiles using behavioral 

methods (e.g., Bartol, Mellgren & Musick, 2003; Lenhardt, 1981; Benes, 1969). Using an 

effective reinforcer is especially important when the number of trials required to 

complete a project run from hundreds to thousands, which can occur when using reptiles 

(e.g., Ishida & Papini, 1997). In a salient example, Lenhardt (1981) trained two species of 

turtle to locate an auditory cue in a Y-maze. The researcher found that the turtles could 

use an auditory cue to navigate the maze, but an average of 240 trials was needed to reach 

about 60% correct performance. With such a large number of trials required to reach only 

60% performance, using a preferred reinforcer may have been very useful.  
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The three main objectives for this project were as follows.  First, to see whether 

monitor lizards form stable preferences for food items while testing the feasibility of 

using a multiple choice preference procedure in reptiles. Second, to test whether these 

preferences translate into increased work output for preferred food items. Third, to train a 

simple visual discrimination in monitor lizards. It was hypothesized that stable food item 

hierarchies would be found, effective reinforcers established, and that the discriminations 

and their reversals would be successfully learned. 
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CHAPTER 2 

EXPERIMENT 1: FOOD CHOICE 

  

Methods 

Subjects 

 Subjects involved in this experiment included 1.0 Komodo dragon (Varanus 

komodoensis), 2.1 rough-necked monitors (Varanus rudicollis), and 1.1 desert monitors 

(Varanus griseus) housed at Zoo Atlanta.  

Apparatus 

Subjects were tested in their home cages. Some of these animals are handled 

infrequently and were assumed not likely to respond if removed to be tested in a novel 

environment. Removal for simple husbandry procedures, such as weighing, has resulted 

in thrashing, clawing, and tail whipping in the smaller animals (personal observation). 

Because of this, it was assumed that removal of these animals from the home cage is 

detrimental and should be avoided. Additionally, while in their cage these animals have 

been responsive to a keeper with tongs, approaching the edge of the cage and orienting 

towards the tongs, which provides evidence for the likelihood of the subjects reacting to a 

testing regime in this modality. For the duration of the testing phase, all subjects were 

housed singly, although part of the pre-testing training for the two male rough-necked 

monitors was conducted while they were housed together. 

Procedure 
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 For this experiment, food items were chosen as the possible reinforcers. Food was 

chosen because previous work with the Komodo dragon had shown the subject to be 

highly food motivated (unpublished results). Only food reinforcers were used to avoid 

potential issues inherent in testing preferences between items affecting different sensory 

modalities (DeLeon, Iwata, Goh & Worsdell, 1997). Food items used in these trials were 

all meat items, as all the animals in this study are carnivorous, as are most monitor lizards 

(Struck, Altenbach, Gaulke, & Glaw, 2002). Potential reinforcers were taken from the 

animals’ usual diets. All items had been consumed by the subjects prior to this procedure, 

so no item was novel and items of equal size were used. Equal size was used as opposed 

to nutritional content for several reasons. The items varied in their nutritional content and 

choosing to match on calorie, fat, or protein content would have resulted in different 

proportions. Also matching on any one of those items could result in a large disparity in 

size between items. Food items in this study were matched on size because previous 

research has shown that white-throated monitors choose food items almost exclusively 

based on size (Kaufman, Burghardt & Phillips, 1996). During testing the subjects’ diets 

were obtained only through the testing procedure. By removing access to food items 

outside the testing procedure, the possible issues of selective food satiation were 

controlled (Warren, 1958). 

All possible reinforcers were tested in a multiple-stimulus without replacement 

(MSWO) presentation format choice procedure based on work by DeLeon and Iwata 

(1996). The MSWO presentation has been found to share the advantages of other choice 

procedures with the added benefits of taking less time than the pair-choice procedure and 

identifying more possible reinforcers than a free operant procedure (Oritz & Carr, 2000). 
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Choice procedures have been used successfully in other reptiles, for example, to assess 

food preference in Nile crocodiles (Crocodylus niloticus) (Morpurgo, Gvaryahu & 

Robinzon, 1991). Preference for food items was tested for each subject over six sessions. 

Previous work has shown that five sessions of preference testing were sufficient to 

identify reinforcers in a population of developmentally disabled individuals (Graff & 

Ciccone, 2002) and that food preferences are very stable over a period of months in both 

people and non-human primates (Harlow & Meyer, 1952). Therefore, it was assumed that 

the six sessions of preference assessment would be sufficient to identify food items and 

these items would function as reinforcers over the testing period. 

Trials were run in the home exhibit (smaller monitors) or in an adjacent holding 

area (Komodo dragon), and potential reinforcers were placed on the floor of the holding 

area, the floor of the exhibit, or held in front of the monitor on three sets of tongs. At the 

beginning of each session, the food items were placed in a pre-determined, quasi-

randomized order. The subject was then allowed to approach, and preferences were 

determined by the order in which the reinforcers were consumed. Previous evolutionary 

work on lizards suggests that for active foragers, chemical identification of a food item 

may be particularly important (Cooper Jr., 2003) and that visual inspection may not be 

sufficient for item identification and thus preference. As such, consumption was used as 

the definitive choice behavior. If the subject did not make a choice within 60 seconds the 

trial was ended. This procedure was conducted to ascertain the most highly preferred 

food item as well as to habituate the subjects to the experimental context. This procedure 

was repeated six times and preference scores were calculated using an alternate MSWO 

scoring method resulting in a ranked order of food preferences (Ciccone, Graff, & 
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Ahearn, 2005). The highest rated item was then used as a subject-specific reinforcer to 

train the animal on the visual discrimination task.  

Results 

Food item preferences were assessed using an alternate scoring method for the 

MSWO procedure (Ciccone, Graff, & Ahearn, 2005). Scores for food items were 

weighted based on the trial in which they were consumed. Items chosen on the first trial 

received a score of three, items chosen on the second trial received a two, items chosen 

on the third trial received a one, and items not consumed within a session received a 

score of zero for that session. Scores were totaled for the item across sessions with the 

total being divided by the total points possible. Preference was determined by the 

percentage score an item received with categories based on the following scores: high 

preference 80-100%, moderate preference 50-79%, non-preferred 0-49% (Pace, Ivancic, 

Edwards, Iwata, & Page, 1985).   A high preference item was identified for each subject 

(Table 1) and this item was the same for all subjects. However, due to varied diets, the 

third item available was different for different subjects. 

 

 

 

 

 

 

 

 

 14



 
Table 1: Preference scores for food items by each subject 
 
 
Subject 1 Mouse Fish Chick 
 100% 44% 50%
Subject 2 Mouse Fish Cricket 
 100% 61% 39%
Subject 3 Mouse Fish Cricket 
 100% 56% 33%
Subject 4 Mouse Fish Cricket 
 100% 44% 50%
Subject 5 Mouse Fish Egg 
 83% 22% 28%
Subject 6 Mouse Fish Egg 
 100% 39% 44%

 
 
 

 

Discussion 

The success of the food choice procedure demonstrates that multiple stimulus 

presentation can be employed successfully with monitor lizards. A high preference item 

was determined for all subjects in the free choice procedure. The top rated item was 

consistent across all subjects, however only two of the three items were consistent across 

all six subjects. Similarly, other research has found consistent food item rankings within a 

species of primate (Fay, Miller & Harlow, 1953). These consistencies could be explained 

by the subjects having been exposed to similar environments. For example, previous 

studies of food preference have shown that the more a food item was offered to an animal 

early in its life the more that item will be preferred later (Vargas & Anderson, 1996). 

Early diet may explain the preference for mice in this population as these animals’ diets 

have primarily consisted of rodents (personal communication). 
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  Usually, food preference tests in animals outside of the learning paradigm, are 

done as a pair choice or cafeteria-style (several types of food simultaneously and 

continuously available) procedure (Morpurgo, Gvaryahu, & Robinson, 1991; Berteaux, 

Crête, Huot, Maltais, & Ouellet, 1998). The results of this experiment suggest that the 

more efficient MSWO procedure could be used with a variety of animals for food choice 

experiments. The success of this procedure has implications for many possible 

applications with animals. This procedure could streamline palatability and 

discrimination tests. Similar procedures could be used to test preference for flavors alone 

instead of for whole food items (e.g. Dwyer, 2005). By identifying flavor preferences, 

less preferred items (i.e., medicine), could be made more palatable. 
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CHAPTER 3 

EXPERIMENT 2: REINFORCER PREFERENCE 

  

Methods 

Subjects 

Subjects involved in this experiment included 1.0 Komodo dragon (Varanus 

komodoensis) and 2.0 rough-necked monitors (Varanus rudicollis) housed at Zoo Atlanta. 

All animals had previously been run in the food choice experiment. 

Apparatus 

The testing stimulus consisted of a wooden circle painted gray that attached to a 

wooden rod (rough-necked monitors) or to the mesh wall of the holding area (Komodo 

dragon). The stimuli were made too large to be swallowed and were painted with non-

toxic, water soluble paint.  Reinforcers for this experiment consisted of items rated as 

either low-preference (fish) or high-preference (mouse) in the food choice experiment. 

Procedure 

To test the effectiveness as reinforcers of these food item choices, a reinforcer 

preference assessment was run with three of the subjects; the Komodo dragon and the 

two male rough-necked monitors. Research has shown that people can rank items by 

preference and that ranking is fairly predictive of the amount of work they would be 

willing to do to obtain that item (e.g., Wilder, Ellsworth, White & Schock, 2003). 

However, stimulus preference and reinforcer preference do not always produce the same 

results (e.g., Logan et al., 2001). A more rigorous reinforcer preference test was run to 
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see if stimulus and reinforcer preference were correlated in these monitor lizards. The 

functional effectiveness of the reinforcer was tested by measuring the breaking point of 

both a high rated and low rated item using progressive ratios. In a progressive ratio the 

response requirement needed to obtain each reinforcer is increased until the subject stops 

responding. Preference for an item should correlate with a higher sustained progressive 

ratio for that item. Additionally, increased schedule requirements can magnify relatively 

small preference differences, which might be missed by using some other methods 

(DeLeon, Iwata, Goh & Worsdell, 1997). 

For this assessment, each subject was presented with a single stimulus. Response 

to the stimulus was reinforced on a progressive scale with the first reinforcer requiring a 

single response, the second two responses and so on. Six sessions were run for each 

subject, three sessions each with either a low-preference item (fish) or a high-preference 

item (mouse). Sessions lasted until the subject did not respond for 60 seconds. The 

highest ratio successfully completed for each item was averaged across sessions for each 

subject. 

Results 

 The highest progressive ratio completed for each item for each subject was 

averaged across the three trials (Table 2). For all subjects, the ratio reached for the higher 

preference item was greater than the ratio reached for the lower preference item. 
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Table 2: Highest ratio completed for each subject for each item across trials. 
 
 
   Trial 1 Trial 2 Trial 3 Mean SD 
Subject 1 Mouse 8 8 9 8.33 0.471 
 Fish 6 5 6 5.67 0.471 
Subject 2 Mouse 12 10 9 10.33 1.247 
 Fish 8 6 6 6.67 0.943 
Subject 3 Mouse 10 10 9 9.67 0.471 
 Fish 6 6 7 6.33 0.471 

 
 
 
 

 

Discussion 

In addition to the stimulus preference test, the effectiveness as reinforcers, of 

these top rated food items was tested. The higher ranked item did indeed sustain higher 

progressive ratios than a lower ranked item for all three subjects tested. This is consistent 

with the human literature showing that highly preferred items do tend to function better 

as reinforcers than less preferred items (Piazza, Fisher, Hagopian, Bowman & Toole, 

1996). The current results showing the consistency between ranking and response 

requirements is encouraging. This suggests that if there is not time to conduct a reinforcer 

preference assessment a stimulus preference assessment can still be used to identify 

potential reinforcers. Given that consistent rankings were obtained, and that these 

rankings translated into more work for preferred items, this methodology is an effective 

way to test food preferences and possibly choose more effective reinforcers. Although a 

comparison of the effectiveness of the chosen reinforcers versus a random reinforcer 

would be needed to test this definitively.   
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It is important to systematically test food and reinforcer preference. Research has 

shown that caregiver reports do not necessarily coincide with actual preferences of the 

subjects (Green, Reid, White, Halford, Brittain, & Gardner, 1988). Similarly, in this 

experiment, the top rated food item for the desert monitors was mice, instead of the quail 

eggs the staff predicted. Also, items that are chosen in a stimulus choice procedure do not 

always function as reinforcers, (e.g. Logan, Jacobs, Gast, Smith, Daniel & Rawls, 2001). 

As such, if possible, the efficacy of a chosen stimulus as a reinforcer should be tested. 

Additionally, although only food items were used in this experiment, future testing of 

reinforcer preference in reptiles should include stimuli of other modalities (Logan & 

Gast, 2001). Past studies with reptiles have used food, water, heat, escape, and changes in 

illumination as possible reinforcers (Burghardt, 1977) though none of them has been 

tested against the others for effectiveness. Given past issues of finding appropriate 

reinforcers when working with reptiles (Brattstrom, 1978), cross-modality reinforcer 

preference could be a fruitful avenue for future research.   

Recently there has been increased interest in using applied behavior analysis 

techniques developed for working with people for working with captive animals 

(Bloomsmith, Marr & Maple, 2007). One of the techniques mentioned that could easily 

be applied to the animal side is reinforcer preference assessments. Some progress has 

been made in this area (e.g., Fernandez, Dorey, & Rosales-Ruiz, 2004; Harlow & Meyer, 

1952), however, these techniques have been mostly restricted to primates (for an 

exception see Hudson, Foster & Temple, 1999). When working with humans, reinforcer 

preference techniques have been used for decades and copious amounts of research has 

shown that items chosen more frequently tend to function as better reinforcers than items 
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chosen less (Caldwell, Taylor & Bloom, 1986). Opportunity exists for the testing of 

reinforcer preference outside of the restricted taxa in which they are normally employed. 

Many applications exist for testing reinforcer preference in animals. For example, 

if more preferred reinforcers are more effective at maintaining higher rates of behavior 

(Caldwell, Taylor & Bloom, 1986) then using reinforcer preference has the potential to 

increase the effectiveness of several techniques already in use with captive animals such 

as environmental enrichment, positive reinforcement training, as well as possibly 

increasing the efficiency of some types of behavioral research. In fact, operant techniques 

have been used to test preference for types of enrichment (Harris, Briand, Orth & 

Galbicka, 1999), why should we not test preference for the results from interacting with 

enrichment? For example a highly preferred item could be used to encourage interaction 

with a particular enrichment device (Tarou & Bashaw, 2007). Extrinsic reinforcement 

(which would include food) has been hypothesized to be the most effective way to 

encourage interaction with an enrichment device; thus a highly preferred food item 

should be even more effective.  

Additionally, just having a chance to choose between reinforcers has been shown 

to be preferred over just having access to a reinforcer (Catania & Sagvolden, 1980). So, 

adding choice (e.g., a stimulus preference procedure) to any event has the potential to 

make it more preferable. For example, Fisher and Mazur (1997) found that adding an 

element of choice to treatments improved clinical interventions.  

Another application of reinforcer assessment is use in training using positive 

reinforcement. Reptile training in zoos has been slowly gaining momentum in recent 

years. No longer is it assumed that reptiles are incapable of learning, or too fixed in their 
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behavioral patterns for training to be practical (Burghardt, 1977). Instead a national 

conference has been formed around the topic of training and enrichment for reptiles and 

amphibians (RATE). With this increased amount of training comes an opportunity to 

increase the effectiveness of training. Brattstrom (1978) stated that a major limitation of 

working with reptiles was identifying appropriate reinforcers.  

 

 22



CHAPTER 4 

EXPERIMENT 3: VISUAL DISCRIMINATION 

  

Methods 

Subjects 

Subjects involved in this experiment included 1.0 Komodo dragon (Varanus 

komodoensis) and 2.0 rough-necked monitors (Varanus rudicollis) housed at Zoo Atlanta. 

All animals had previously been run in the food choice and reinforcer preference 

experiments. 

Apparatus 

The testing stimuli consisted of wooden circles painted either white or black that 

attached to a wooden rod (rough-necked monitors) or to the mesh wall of the holding area 

(Komodo dragon). The stimuli were made too large to be swallowed and were painted 

with non-toxic, water soluble paint. These stimuli were chosen because in a previous 

study researchers found that black and white were discriminated more easily by a lizard 

than red and green (Zuri and Bull, 2000). Having tong-mounted stimuli has several 

benefits. When an exhibit housed multiple animals, the stimuli could be brought to the 

animal currently being tested. Additionally moving the stimuli made the stimuli more 

salient and encouraged responding in the initial training phases (Washburn, 1993).  The 

highest rated items from the food choice procedure were used as subject-specific 

reinforcers to train the animals on the visual discrimination task. 

Procedure 

Training:  
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 The reinforcer used in the discrimination training and testing was the highest rated 

food item determined by the food preference assessment. Subjects were first exposed to 

pre-training sessions to encourage responding in the experimental testing phase. During 

pre-training, responding to both of the stimuli was reinforced. Pre-exposure to the testing 

stimuli has been shown to increase the salience of those stimuli, possibly increasing 

responding to the stimuli in the testing phase (Jagadeesh, Chelazzi, Mishkin & Desimone, 

2001). A single stimulus was used and alternated between white and black within a 

session. Subjects were reinforced for coming into contact with the stimulus and were run 

in this phase until they respond at criteria for both stimuli. Criteria was defined as 

responding correctly to each stimulus at 80% or above for two sessions in a row.   

Testing: 

 Subjects were then tested using the black and white stimuli. Subjects were 

randomly assigned to either black or white as the positive stimuli. Sessions were run 

three times a week, prior to feeding, with either 20 (Komodo dragon) or ten (rough-

necked monitor) trials per session. Prior to this experiment subjects were fed two or three 

times a week. During testing, the diets of the monitors were obtained only through the 

discrimination procedure, unless not all of the reinforcers were earned, in which case the 

remaining items were fed an hour after the session ended. By only feeding during and 

after the session motivational levels were controlled. Position of the positive stimuli 

within a trial was determined using a preset value table from Fellows (1967) (Table 3). 

These stimulus sequences have been specifically formulated to ensure that a position bias 

will not produce better than chance performance on a two-choice discrimination task. 
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Table 3: Sample stimuli presentation sequences. 
 
 

Position of positive stimulus 
 
Session 1 1 2 1 1 2 2 2 1 1 1 2 2
Session 2 2 1 2 2 1 1 1 2 2 2 1 1
Session 3 1 1 2 2 2 1 1 1 2 2 1 2
Session 4 2 2 1 1 1 2 2 2 1 1 2 1
Session 5 1 2 2 1 1 1 2 2 2 1 1 2
Session 6 2 1 1 2 2 2 1 1 1 2 2 1
Session 7 1 1 2 1 1 1 2 2 1 2 2 2
Session 8 2 2 1 2 2 2 1 1 2 1 1 1

 
 

 

 

At the start of the session, the stimuli were placed in the cage, in front of the 

subject. Responses were scored as the subject coming into contact with a stimulus by 

touching it with their snout. Correct choice was reinforced, whereas an incorrect choice 

ended the trial and resulted in a 20 second time-out where the stimuli were not available. 

In addition, a correction procedure was employed, if the subject responded incorrectly the 

order of the stimuli was preserved for the next trial. The time-out and correction 

procedures were used to attempt to reduce random responses and position biases. If the 

subject did not respond within 30 seconds, the trial was ended. Three consecutive non-

response trials ended a session. Once a subject reached criterion (80% or higher correct 

for two consecutive sessions), the correct stimulus was reversed. Two reversals were run 

for each of the subjects. 
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Results 

To ensure that acquisition of the task was not due to chance, the calculation of 

reaching criterion based on random chance was made.  For pre-training, training and 

reversal phases, in a given set of trials, the criterion was 80% correct, 8 out of 10 (for the 

rough-necked monitors) and 16 out of 20 (for the Komodo dragon).  For criteria to be met 

the subject had to respond correctly at 80% or above for two consecutive trials. Using a 

binomial distribution, the probability of the subject correctly selecting the positive 

stimulus by random chance on 16 or more trials out of 20 was equal to .0059, less than 

1% and for 32 out of 40 trials .00009, less than a hundredth of a percent. All three 

subjects successfully reached criteria for the initial discrimination and two reversals 

(Figures 1-3). However, due to subject 2’s lack of progress at completing the first 

reversal a secondary reinforcer (clicker) was introduced for that subject at session 24. All 

subjects completed the second reversal in the minimum time possible (two sessions). The 

number of trials required for initial discrimination, first reversal and second reversal for 

each subject was as follows. For the Komodo Dragon the number of trials required were 

nine, seven and two. For the first rough-necked monitor the number of trials required 

were three, twenty-eight and two. For the second rough-necked monitor the number of 

trials required were eleven, five and two. 
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Figure 1: Male Komodo Dragon discrimination trials  

 
 
 
 

Male Rough-Necked Monitor 1
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Figure 2: Male rough-necked monitor 1 discrimination trials  

 27



Male Rough-necked Monitor 2
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Figure 3: Male rough-necked monitor 2 discrimination trials 

 

 

 

Discussion 

The results of this study show that roughneck monitors and Komodo dragons can 

discriminate using visual stimuli and successfully learn reversals of that discrimination. 

All three animals successfully learned an initial discrimination and two reversals of the 

discrimination. Despite success across subjects, differences in training and testing did 

arise in this study, although with the small sample size all the following comments are 

purely speculative. Pre-training progressed faster with the rough-necked monitors than 

with the Komodo dragon. One possible explanation for this difference is that the visual 

stimuli for the Komodo dragon were less salient as they had to be presented on the other 
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side of a mesh wall. This visual occlusion as well as the inability to make physical 

contact with the stimulus may have reduced its saliency.  

The female roughneck had been selected to also participate in the discrimination 

procedure. However, she was not nearly as food motivated as the males. She consumed 

much less, and was less willing to move to obtain a food item. As such she was only used 

in the food preference tests. Her behavior during testing may reflect a general tendency in 

the females of this species to engage in less risky behavior (e.g., Cooper Jr., Vitt, Hedges, 

& Huey, 1990) or it may be an individual difference based on personal history. Not 

enough female subjects were included in this project to be able to make this distinction. 

One interesting difference that arose in the testing phase was the number of trials 

the first male rough-necked monitor required to learn the first reversal compared to the 

number of trials required to learn the initial discrimination. This subject took the longest 

time learning the first reversal, eventually requiring the addition of a conditioned 

reinforcer to encourage responding to the white stimulus in the presence of the black 

stimulus. One possible explanation for the difficulty with the reversal is that this subject 

learned the initial discrimination so quickly that it interfered with learning of the reversal.  

The rapidity of learning the initial discrimination may be due to a response bias to 

the color black. Various response biases have been reported in the learning literature 

including biases towards certain colors, positions (Alves, Chichery, Boal & Dickel, 

2007), and even novel stimuli (Lynn, Cnaani & Papaj, 2005). It has also been shown that 

some lizards and turtles have shown a bias towards responding to black in discrimination 

training paradigms (Burghardt, 1977). This bias may have influenced the quick initial 

learning of the discrimination for this subject and thus interfered with subsequent reversal 
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learning. This perseverant behavior may be similar to that seen in errorless learning; 

discriminations that have been learned with fewer errors may take longer to reverse as 

subjects continue to respond to the previously correct stimulus after the contingencies 

have changed (McCoy and Pratt, 1976; Robinson & Storm, 1978). 
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CHAPTER 5 

GENERAL DISCUSSION 

  

Testing Advanced Concepts in Reptiles 

 The experimental set-up used in this study can serve as an example of how 

behavioral testing might be approached in a zoo setting. This technique, which is 

employed inside the home cage, may be particularly useful when testing fragile, flighty, 

or temperamental animals. Additionally, these methods could be adapted to allow for the 

testing of more advanced concepts. Similar operant techniques have been used to 

behaviorally test various hypotheses ranging from visual acuity to olfactory 

discrimination (Bartol, Mellgren, and Musick, 2003; Slotnick and Bodyak, 2002).  

A similar set-up could also be used to demonstrate concept learning in these 

animals, as well as allow for definitive tests of some of the hypothesized abilities of 

monitors.  For example, Phillips and colleagues hypothesized that white-throated 

monitors (Varanus albigularis) can “count to six” (as cited in Sweet and Pianka, 2003). 

The monitors had been trained to walk through a room and eat snails. The monitors were 

consistently exposed to the same number of snails per room and after several sessions the 

number of snails was altered. If the number the monitor had been trained on was 6 or less 

it would “act surprised” (continue searching) if the number present was less than they had 

been trained on. A similar setup to the one described in the current study could be used to 

further test this assumption. Additionally testing more advanced concepts would also 

allow for discovery of species differences between lizards and other animals, as has been 
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demonstrated for other species using operant techniques (e.g., Mazur, 2005; Bron, 

Sumpter, Foster and Temple, 2003). 

Reptile Research in Zoos 

While reptile research continues to be conducted, there is a trend in research 

publications from zoos to focus on mammals, especially primates (Maple, Anderson, and 

Kelling, in press). Only 7% of the publications in Zoo Biology over the past 20 years 

included reptiles. Therefore, research with reptiles should be encouraged; an endeavor for 

which the diverse collections kept in herpetology departments would be an incredible 

asset. Zoological institutions continue to be an important resource for herpetological 

research. One of the benefits of zoo herpetology departments is the variety and diversity 

of the animals that make up their collections. This diversity could be used to promote 

learning of understudied species. As such, research with these animals should be 

increased to make use of this unrealized potential. Card, Roberts & Odum, (1998) stated 

that most zoo herpetology departments are not reaching their formal research potential 

given that 44% of the 164 technical reports and 42% of the 101 non-technical reports 

they had examined had originated from a single institution. They also note that research 

done in zoos is disseminated mostly to people in the zoo world and attendance of zoo 

herpetologists to herpetological conferences has been declining.  

A trend also exists concerning the amount of basic research conducted in zoos. 

Hosey (1997) found that 40% of the articles published in Zoo Biology between 1989 and 

1994 were behavioral studies, but only 35% of these articles reported basic research. Like 

Card et al., Hosey states that zoos are not reaching their research potential, and that 

research conducted at zoos, especially basic research, should be increased. As such, 
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increasing the amount of basic research that is done in zoos and the dissemination of the 

results to the herpetological world as well as the zoo world should be encouraged. 
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