
DESIGN, SYNTHESIS AND CHARACTERIZATION OF 

THIAZOLE-BASED CONJUGATED POLYMERS AND THEIR 

APPLICATIONS TO N-CHANNEL ORGANIC ELECTRONICS 

 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Zhibo Yuan 
 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Chemistry and Biochemistry 

 
 
 
 
 
 

Georgia Institute of Technology 
December 2018 

 
 

COPYRIGHT © 2018 BY ZHIBO YUAN 



DESIGN, SYNTHESIS AND CHARACTERIZATION OF 

THIAZOLE-BASED CONJUGATED POLYMERS AND THEIR 

APPLICATIONS TO N-CHANNEL ORGANIC ELECTRONICS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
 
 

  

Dr. Elsa Reichmanis, Professor, Advisor 
School of Chemical & Biomolecular 
Engineering 
Georgia Institute of Technology 

 Dr. Charles Liotta, Professor 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

 
 

  

Dr. David Collard, Professor 
School of Chemistry & Biochemistry 
Georgia Institute of Technology 

 Dr. Stefan France, Professor 
School of Chemistry & Biochemistry 
Georgia Institute of Technology 

 
 

  

Dr. Natalie Stingelin, Professor 
School of Material Sciences and 
Engineering 
Georgia Institute of Technology 

  

   
  Date Approved: October 25, 2018 
 

 



 

 

 

 

 

Dedication 

I dedicate this thesis to my dearest parents, Mr. Yuan, Peizheng and Ms. Lei, Huamin! 

 



 

iv 

ACKNOWLEDGEMENTS 

The Ph.D. training at Georgia Institute of Technology for the past 5 years is a truly 

valuable, memorable, and pleasant journey for me. This experience improved my insight, 

capability, confidence, and courage of discovering, thinking and resolving challenges not 

only in scientific research and development, but also in my entire life. 

Herein, I would like to firstly give thanks to my advisor, Prof. Elsa Reichmanis. It 

was my great honor and pleasure to join Prof. Reichmanis’ research group and to be her 

student over the past five years. During these five years, I received an enormous amount 

of encouragement, guidance, and kind advice from her, both in my academic life and 

personal life. Prof. Reichmanis is not only an innovative, knowledgeable, and insightful 

scholar, but also a patient, friendly, and helpful mentor whom people enjoy and love to 

work with. Countless times can I remember as I sought for help from her, and I have never 

left without her valuable guidance and a “can-do” attitude. I would not have been able to 

finish my Ph.D. without her guidance! 

I would like to also express my sincere thanks to Prof. Charles Liotta, Prof. David 

Collard, Prof. Stefan France, and Prof. Natalie Stingelin for agreeing to be in my thesis 

committee. I have learned a lot in my studies of organic and polymeric syntheses, 

fundamentals of physical organic chemistry, organic electronics, as well as journal 

publication writings. I had an enjoyable time of working with them and their research group 

members; and gained significant amount of guidance and help from them. In addition, I 

would like to thank Prof. Jean-Luc Brédas, Prof. John Reynolds and Prof. Seth Marder for 



 v 

their great guidance, help, and comments on developing my knowledge in polymer 

chemistry and physical organic chemistry. 

I truly appreciate our group members and lab-mates, especially Dr. Boyi Fu, Dr. 

Guoyan Zhang, Dr. Ping-Hsun Chu, Dr. Nabil Kleinhenz, Dr. Dalsu Choi, Dr. Yo-Han 

Kwon, Dr. Rui Chang, Carolyn Buckley, Giovanni DeLuca, Mike McBride, and Brian 

Khau. Also, I would like to thank the undergraduate researchers who worked with me: 

Yundi Jiang, Harrison Kreafle, Lauren Lopez, Amanda Tonnaer, Chase Eckert Neal Patel, 

Chaker Fares, Qianyi “Beth” Qu, Kyle Hamrock, and Kristina Marquardt for their excellent 

and dedicated work. It has been a wonderful time of working with them during the past 

few years in our lab. 

I also would like to gratefully acknowledge all our collaborators and people who 

provided us help and guidance in our research, especially Prof. Jean-Luc Brédas, Prof. 

Carlos Silva, and Prof. Dennis Hess. Special thanks to Prof. E. Kent Barefield at Georgia 

Tech and Prof. Harry Gray at Caltech (fellow Western Kentucky University alumni! Go 

Hilltoppers!) and Dr. Rui Zhang from Western Kentucky University for their inspirations 

and encouragements early in my Ph.D. studies. It was my great fortune to work with and 

share my thoughts amongst these innovative, insightful and helpful scholars, who truly are 

real life role models that I look up to. Also, my gratitude goes to my fellow colleagues: Dr. 

Simil Thomas, Dr. Ilaria Bargigia, Dr. Siyuan Zhang, Dr. Gang Wang, Dr. Brian Schmatz, 

who made this ride much more enjoyable. 

Furthermore, I would like to thank my friends, Zhixian He, Dr. Huayu Li, Dr. 

Chong Han, Dr. Zhen Huang, Dr. Zhanjun Guo, Rui Chen, Hongduo Zhou, Eric Vanover, 

Yutong Wu, and Haochen Yang, who helped me in many different ways during my Ph.D. 



 vi 

studies. Our friendship will be something I cherish for life. Special thanks goes to Zhixian 

and Rui for their excellent graphic designs for illustrations in my publications and my 

thesis! 

My Ph.D. research was funded in part by the National Science Foundation (DMR- 

1507205), the Georgia Institute of Technology, and the Center for Science and Technology 

of Advanced Materials and Interfaces (STAMI) Fellowship at Georgia Tech. GIWAXS 

measurements were carried out at Stanford Linear Accelerator Center. Special thanks to 

Dr. Mike Toney and Dr. Stefan Oosterhout for providing their assistance at Stanford 

University. 

Last, but not the least, I would reserve my deepest gratitude to my dearest family, 

especially to my parents and my grandparents. I appreciate all their contributions and 

sacrifices to my entire life. I feel so loved, supported and fortunate to have such wonderful 

families, and I just could not ask for more! During the ten long years of seemingly endless 

pursue of knowledge in the United States, my family, in particularly my parents, supported 

me both financially and mentally in every way possible. Bearing the pain of missing their 

only child, my parents still encourage me to keep going forward in my life, and constantly 

remind me to become a righteous, kind, and honest person. I always naturally miss them 

whenever I enjoy the happiness or encounter difficulties. I dedicate my Ph.D. dissertation 

to my dearest parents and family.  



 vii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................ iv 

LIST OF TABLES ............................................................................................................ v 

LIST OF SCHEMES ....................................................................................................... vi 

LIST OF FIGURES ........................................................................................................ vii 

LIST OF SYMBOLS AND ABBREVIATIONS ......................................................... xvi 

SUMMARY .................................................................................................................. xviii 

CHAPTER 1. Introduction ........................................................................................... 1 

1.1 Organic and Polymer Semiconductors .................................................................... 1 

1.2 n-Channel Polymer Semiconductors....................................................................... 6 

1.3 Thiazoles and Thiazole-based Conjugated Polymers ............................................. 9 

1.4 Charge Transport in Polymer Semiconductors ..................................................... 11 

1.5 Organic Field-Effect Transistors (OFETs) ........................................................... 14 

1.6 OFET Device Fabrication and Processing ............................................................ 15 

1.6.1 OFET Device Structure and Properties............................................................. 15 

1.6.2 Dielectric materials for OFETs ......................................................................... 23 

1.6.3 Organic and Polymeric Semiconductor Thin-Film Deposition ........................ 25 



 viii 

CHAPTER 2. Design, Synthesis and Characterization of Diketopyrrolopyrrole-

Thiazole All-Acceptor (A-A) n-channel Polymeric Semiconductors and 

Applications in OFETs ....................................................................................... 29 

2.1 Abstract ................................................................................................................. 29 

2.2 Introduction ........................................................................................................... 30 

2.3 Results and Discussions ........................................................................................ 31 

2.3.1 Synthesis and Characterizations of PDPP2Tz and PDPP4Tz ......................... 31 

2.3.2 PDPP4Tz Photophysical Properties ................................................................. 36 

2.3.3 DFT Studies of PDPP4Tz oligomers and their subunits .................................. 39 

2.3.4 PDPP4Tz Thin-film Morphology and Crystallinity......................................... 44 

2.3.5 Thiazole-DPP A-A Copolymers for OFET Applications ................................. 47 

2.4 Conclusion ............................................................................................................ 51 

CHAPTER 3. Design, Synthesis and Characterization of Naphthalene Diimide-

Thiazole n-channel Polymeric Semiconductors and Applications in OFETs 53 

3.1 Abstract ................................................................................................................. 53 

3.2 Introduction ........................................................................................................... 54 

3.3 Results and Discussion ......................................................................................... 55 

3.3.1 Synthesis and Characterization of PNDI2Tz ................................................... 55 

3.3.2 Photophysical properties of PNDI2Tz ............................................................. 57 

3.3.3 PNDI2Tz Electrochemical Properties .............................................................. 61 

3.3.4 Computational Modeling .................................................................................. 62 

3.3.5 Thin-film morphology and solid-state crystallinity .......................................... 65 

3.3.6 Charge Transport Performance ......................................................................... 67 



 ix 

3.4 Conclusion ............................................................................................................ 70 

CHAPTER 4. Nanofiber formation in Naphthalene Diimide-Thiazole based 

conjugated polymer OFETs via Dielectric Surface Processing ...................... 71 

4.1 Abstract ................................................................................................................. 71 

4.2 Introduction ........................................................................................................... 72 

4.3 Results and Discussions ........................................................................................ 74 

4.3.1 Semiconducting polymer synthesis................................................................... 74 

4.3.2 Dielectric layer processing ................................................................................ 75 

4.3.3 Polymer thin-film microstructures and morphology......................................... 77 

4.3.4 PNDI2Tz Charge Transport Performance ........................................................ 81 

4.3.5 Process Versatility-comparison with benchmark D-A conjugated polymers ... 83 

4.3.6 Nanofiber Formation and Charge Transport ..................................................... 85 

4.4 Conclusion ............................................................................................................ 90 

CHAPTER 5. Thiazole-Naphthalene Diimide Conjugated Polymers for Acid 

Sensing Applications ........................................................................................... 91 

5.1 Abstract ................................................................................................................. 91 

5.2 Introduction ........................................................................................................... 91 

5.3 Experimental ......................................................................................................... 93 

5.3.1 Materials and Measurements ............................................................................ 93 

5.3.2 UV-vis Measurements ...................................................................................... 95 

5.3.3 Thin Film Preparation and Device fabrication .................................................. 97 

5.4 Results and Discussion ......................................................................................... 98 

5.4.1 PNDI2Tz Halochromism in Solution ............................................................... 99 



 x 

5.4.2 BF3 Interaction with PNDI2Tz in Solid State ................................................ 103 

5.4.3 PNDI2Tz OFET for BF3 sensor ..................................................................... 105 

5.5 Conclusion .......................................................................................................... 108 

CHAPTER 6. Conclusions ........................................................................................ 109 

CHAPTER 7. Future work ....................................................................................... 112 

7.1 Structure-Property Relationship Study: Impacts of Thiazole/Thiophene on 

Diketopyrrolopyrrole Polymeric Semiconductor Fundamentals and Performance to Their 

Applications in OFETs ................................................................................................. 112 

7.2 Investigation of Dielectric Layer Processing and Molecular Interactions at 

Interfaces and their Impacts to OFET Performance ..................................................... 116 

7.3 Thiazole-based Conjugated Polymers for Metal Ion Sensor Applications ......... 117 

APPENDIX. SYNTHESIS DETAILS ......................................................................... 121 

REFERENCES .............................................................................................................. 145 



 v 

LIST OF TABLES 

Table 2.1. Calculated valence band (VB) width, conduction band (CB) width, band gap, 

and hole and electron effective masses for the PDPP4Tz polymer. ............. 41 

Table 2.2. Electron transport properties of PDPP4Tz fabricated on bottom-gate-bottom-

contact OFETs ............................................................................................... 50 

Table 4.1. Electron transporting properties of PNDI2Tz based OFET devices fabricated 

under high temperature blade coating conditions on processed wafer devices.

 ....................................................................................................................... 80 

Table 4.2. OFET performances of PDPP4T and N2200 under proposed blade coating 

conditions (same as the highest performing condition in Table 4.1). ........... 84 

Table 7.1. Chloroform gel permeation chromatography (GPC) results of DPP-

thiazole/thiophene polymers. ....................................................................... 113 

Table 7.2. Photophysical characteristics of PDPP4T (P1), PDPP2Tz2T (P2) and 

PDPP2T2Tz (P3). ....................................................................................... 114 

  



 vi 

LIST OF SCHEMES  

Scheme 2.1. Stille polymerization of monomer DTzDPP with hexamethylditin or 5,5'-

bis(trimethylstannyl)-2,2'-bithiazole to afford PDPP2Tz and PDPP4Tz, 

respectively. ................................................................................................... 33 

Scheme 3.1. Synthesis of poly(2,7-bis(2-decyltetradecyl)-4-methyl-9-(5'-methyl-[2,2'-

bithiazol]-5-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) 

(PNDI2Tz). ................................................................................................... 54 

Scheme 7.1. Proposed PNDI2Tz-based conjugated polymer and fluoro- surface modifiers.

 ..................................................................................................................... 116 

  



 vii 

LIST OF FIGURES 

Figure 1.1. Applications based on organic semiconductors.34-36 ....................................... 1 

Figure 1.2. Schematic representation of both intermolecular and intramolecular charge 

transport pathways in donor-acceptor (D-A) conjugated polymers. ............... 3 

Figure 1.3. Typical electron rich (top) and electron deficient (bottom) organic 

semiconductor building blocks for p-channel and n-channel organic. ............ 4 

Figure 1.4. Examples of conjugated polymers utilized the concept of side-chain 

engineering.81-83 ............................................................................................... 6 

Figure 1.5. Design principles of DPP-based and NDI-based polymers. ............................ 8 

Figure 1.6. Visualization of nitrogen lone pair and carbon–sulfur antibonding orbitals. 

Reprinted with permission. Reprinted from Chem. Mater. 2013, 25, 4239. 

Copyright 2013 American Chemical Society. ............................................... 10 

Figure 1.7. Schematic representation of four OFET architectures. ................................. 16 

Figure 1.8. Schematic representation of OFET working mechanism and the effect of gate 

voltage (VG) on charge injection into organic/polymeric semiconductors. ... 17 

Figure 1.9. (a) Three-dimensional structure of bottom contact bottom gate OFET showing 

definition of channel dimensions. (b, c, d) Schematic representation of linear 

regime with VD << VG – Vth (b), the onsite of saturation regime with VD,sat = VG 

- Vth, where the pitch-off point exhibits at drain electrode (c); and saturation 

regime with V(x) =VG - Vth, at which VD > VD,sat (d), respectively. Figure 



 viii 

reprinted with permission from Chem. Mater., Vol. 16, No. 23, 2004, 4437-

4439. Copyright 2004 American Chemical Society. ..................................... 18 

Figure 1.10. Schematic representation of self-assembly monolayer (SAM) 

functionalization to SiO2 surface. .................................................................. 23 

Figure 1.11. (a) Schematic illustration of the charge transport model in lamellae 

stacking conjugated polymer; (b) face-on texture of polymeric crystallites; (c) 

edge-on stacking texture, the π-stacking and the chain to chain packing 

of polymers. Reprinted with permission from Mater. Today. 2007, 10 (3), 38-

45. Copyright 2007 Elsevier. ......................................................................... 25 

Figure 2.1. Comparison of 2,2’-bithiazole and 2,2’-bithiophene in HOMO energy level 

and molecular geometry. ............................................................................... 32 

Figure 2.2. Gel permeation chromatography (GPC) characterization of PDPP4Tz with 

TCB under 135 °C. ........................................................................................ 34 

Figure 2.3. (top) TGA of polymer PDPP4Tz in a nitrogen atmosphere (25 mL/min) at a 

heating rate of 5 °C/min; (bottom) thermal transition characterization of 

PDPP4Tz. DSC characterization was based on the 2nd heating and cooling 

process in a nitrogen atmosphere with a nitrogen flow rate of 50 mL/min and 

a heating/cooling rate of 5 °C/min. ................................................................ 35 

Figure 2.4. UV-vis absorption spectra of PDPP4Tz in solution and thin-film state (1 × 

10−6 M; chloroform, p-xylene). Film UV-vis spectra were obtained by 

spincoating solutions onto UV-ozone cleaned SiO2 slides before thermal 

annealing. ....................................................................................................... 37 



 ix 

Figure 2.5. (left) UPS characterization of as-spun PDPP4Tz film on gold-coated Si wafer; 

(right) zoomed-in of lower binding energy region of the UPS spectrum. ..... 38 

Figure 2.6. (a) Illustration of the torsion potentials related to the rotation of the adjacent 

units in the monomer of PDPP4Tz; (b) relative DFT energies at the tuned-

ωB97XD/6-31G(d,p) (dashed lines) and B3LYP (solid lines) levels; (c) tuned-

ωB97X-D/6-31G(d,p) natural transition orbitals with the largest weight (78%) 

for the S0 to S1 transition in the PDPP4Tz tetramer. ..................................... 39 

Figure 2.7. Electron-hole pair natural transition orbitals (isovalue surface 0.02 a.u.) for the 

S0 to S1 transition of the PDPP4Tz tetramer calculated by TD-DFT at tuned-

wB97X-D/6-31G(d,p) level of theory. The weights of the particle-hole 

contribution to the excitation are included. ................................................... 40 

Figure 2.8. Tuned-ωB97X-D spin density plots for the anion of the PDPP4Tz tetramer 

(the red and blue colors represents spin up and spin down electron densities, 

respectively). .................................................................................................. 41 

Figure 2.9. HSEsol//B3LYP electronic band structure of the PDPP4Tz chain. The zero of 

energy corresponds here to the top of the valence band. ............................... 42 

Figure 2.10. Tapping mode AFM height (top row) and phase (bottom row) images of 

PDPP4Tz blade coated films recorded after thermal annealing each film at 150 

oC for 90 min followed by rapid cooling to room temperature in a nitrogen 

filled glove box. ............................................................................................. 44 

Figure 2.11. GIWAXS area detector images of PDPP4Tz films cast from (a,b) chloroform 

by spincoating; (c,d) chloroform by blade coating; (e,f) p-xylene by blade 



 x 

coating. (a,c,e) pristine films; (b,d,f) samples after annealing at 150 oC for 90 

min followed by rapid cooling to room temperature. .................................... 45 

Figure 2.12. Polarized Optical Microscope (POM) images of blade-coated PDPP4Tz films 

on glass slides (chloroform as solvent). ......................................................... 46 

Figure 2.13. Output characteristics of the bottom-gate/bottom-contact (BG/BC) transistors 

fabricated by spincoating p-xylene solution of PDPP4Tz. ........................... 47 

Figure 2.14. Transfer characteristics of the bottom-gate/bottom-contact (BGBC) 

transistors fabricated by spincoating p-xylene solution of PDPP4Tz. .......... 48 

Figure 2.15. PDPP4Tz OFET stability under ambient conditions (25 oC and 50-60% RH). 

Devices are fabricated on Si-wafers based on the BGBC configuration. 

Mobility data were measured in a nitrogen filled glovebox with devices stored 

in vacuum chamber for 12 hours to remove moisture and residual air. ........ 50 

Figure 3.1. Thermal transition characterization of PNDI2Tz. DSC characterization was 

based on the 3rd heating and cooling process in a nitrogen atmosphere with a 

nitrogen flow rate of 50 mL/min and a heating/cooling rate of 5 °C/min. .... 56 

Figure 3.2. a) UV-vis spectra of PNDI2Tz in various organic solvents; b) Comparison of 

PNDI2Tz solution and thin-film UV-vis spectra. ......................................... 57 

Figure 3.3. Ultraviolet photoelectron spectrum (UPS) for PNDI2Tz thin film cast on Au-

coated silicon wafer. ...................................................................................... 58 

Figure 3.4. Temperature-dependent UV-vis spectroscopy on a p-xylene solution of 

PNDI2Tz. ...................................................................................................... 59 



 xi 

Figure 3.5. Photoluminescence of PNDI2Tz in p-xylene and in solid state, compared to 

the UV-vis absorptions in solution and in thin film. ...................................... 60 

Figure 3.6. CV and DPV results for PNDI2Tz thin film drop-cast on a glassy carbon 

button. ............................................................................................................ 62 

Figure 3.7. a) Torsion potentials related to the rotation of the adjacent units in the monomer 

of PNDI2Tz; relative energies determined at the tuned-ωB97X-D/6-31G(d,p) 

level. b) Evolution of the optical gap vs. oligomer size for PNDI2Tz as 

calculated at the TD-DFT (tuned-ωB97X-D/6-31G(d,p)// ωB97X-D/6-

31G(d,p) level of theory). (c) TD-DFT (tuned-ωB97X-D) natural transition 

orbitals (bottom: hole wavefunction; top: electron wavefunction) with the 

largest contribution to the S0  S1 transition in the PNDI2Tz trimer. ......... 64 

Figure 3.8. Atomic force microscopy (AFM) images of PNDI2Tz films cast on UV-ozone 

SiO2 surfaces and OTS-processed SiO2 surfaces. .......................................... 66 

Figure 3.9. Grazing-incidence wide-angle X-ray scattering (GIWAXS) results of pristine 

and annealed PNDI2Tz on Si wafers. ........................................................... 66 

Figure 3.10. PNDI2Tz transfer curves measured on bottom-gate-bottom-contact OFETs 

(devices were coated at 3 mm/s; five device results overlapped showing 

consistent performances; devices are annealed in a N2 glovebox at 150 °C for 

30 min followed by cooling). ......................................................................... 69 

Figure 4.1. Chemical structures of conjugated polymers studied, PNDI2Tz (left), 

P(NDI2OD-T2) (middle), and PDPP4T (right). .......................................... 73 



 xii 

Figure 4.2. a) Chemical structures of hexamethyldisilazane (HMDS), 

phenyltrichlorosilane (PTS) and octadecyltrichlorosilane (OTS); b) Optical 

images showing the contact angles of the HMDS, PTS and OTS processed 

SiO2 surfaces and surface free energy calculation results. Contact angles in 

table is the average value of 8 measured spots. ............................................. 76 

Figure 4.3. AFM images of PNDI2Tz thin films fabricated on HMDS, PTS and OTS 

surfaces showing the development of polymer nanofiber network. Bottom row 

is the three-dimensional representation of the height images for clear view. 

Scale bars are all 400 nm. .............................................................................. 77 

Figure 4.4. a) GIWAXS image of PNDI2Tz thin-films on HMDS, PTS and OTS processed 

SiO2 surfaces; b) 1D line cut along Chi = 15° with zoomed-in plot on qz = 

0.6~1.8 A-1; c) π- π stacking Chi plot from xy-plane (Chi = 0°) to z-axis (Chi = 

90°). ............................................................................................................... 78 

Figure 4.5. PNDI2Tz AFM height and phase image with blade coating speeds. Scale bar 

is 400 nm........................................................................................................ 79 

Figure 4.6. Transfer curve of PNDI2Tz devices coated on HMDS, PTS and OTS 

processed bottom-gate-bottom-contact transistors. Solid dots are ID vs VG 

curve, and hollow-dots are ID
1/2 vs VG curve. Devices were fabricated at a 

blade-coating speed of 3 mm/s. ..................................................................... 82 

Figure 4.7. AFM height and phase images of two other polymers (N2200/n-channel, 

PDPP4T/p-channel) indicating the formation of nanofiber networks on OTS-



 xiii 

processed devices at blade-coating speed of 3 mm/s and 4 mm/s, respectively. 

Scale bar is 400 nm. ....................................................................................... 83 

Figure 4.8. Transfer curves of PDPP4T (p-channel), and N2200 (n-channel) showing 

processing versatility. Solid lines are source-drain current of OFETs, and 

dashed lines are source-drain current square roots. ....................................... 85 

Figure 4.9. Schematic representation of the proposed conjugated polymer nanofiber 

network formation process on OTS-processed substrates. ............................ 87 

Figure 5.1. Chemical structure of PNDI2Tz showing nitrogen atom lone pairs. ............ 92 

Figure 5.2. PNDI2Tz OFET-based BF3 sensor in custom-built gas chamber for sensing 

test. ................................................................................................................. 96 

Figure 5.3. (left) PNDI2Tz halochromic effect in solution with HNO3 addition; (right) 

UV-vis spectra of PNDI2Tz solution during acidification cycles. ................ 99 

Figure 5.4. Stoichiometric addition of HNO3 in PNDI2Tz solution with HNO3 molar 

equivalences. ................................................................................................ 100 

Figure 5.5. PNDI2Tz solution UV-vis relative absorbance (A540/A450) with respect to 

different HNO3 molar equivalences. ............................................................ 101 

Figure 5.6. Proposed mechanism of PNDI2Tz interaction with acids. .......................... 102 

Figure 5.7. (left) PNDI2Tz halochromic effect in solid state with BF3 fume; (right) UV-

vis spectra of PNDI2Tz thin film during BF3 cycles. ................................. 103 

Figure 5.8. Overlaid UV-vis spectra of PNDI2Tz recovery process after BF3 exposure.

 ..................................................................................................................... 104 



 xiv 

Figure 5.9. Demonstration of PNDI2Tz OFET-based BF3 sensor with transfer curves. 105 

Figure 5.10. PNDI2Tz OFET-based BF3 sensor stability test and performance summary 

in 50 BF3 treating cycles. ............................................................................. 106 

Figure 5.11. Real-time PNDI2Tz OFET source-drain current (ID) with BF3 fume addition 

and ether fume addition (as blank). ............................................................. 107 

Figure 7.1. Chemical structure of four DPP-thiazole/thiophene polymers and building 

block electron deficiency in an increasing order. ........................................ 113 

Figure 7.2. Solution and thin film UV-vis spectra of DPP-thiazole/thiophene polymers.

 ..................................................................................................................... 114 

Figure 7.3. GIWAXS images of DPP-thiazole/thiophene polymers on UV-ozoned SiO2 

and OTS-processed SiO2 substrates. ............................................................ 115 

Figure 7.4. (left) Synthesis of Poly(1,4-bis-(8-(4-phenylthiazole-2-thiol)-octyloxy)-

benzene: (a) K2CO3, dry acetone, 1,8-dibromooctane, 50 °C; (b) FeCl3, 

nitrobenzene, RT; and (c) K2CO3, 4-phenylthiazole-2-thiol, THF, Reflux, 12 

h; (right) proposed detection mechanism of mercury ion with PPT polymer. 

Reprinted from article ACS Appl. Mater. Interfaces 2013, 5 (6), 2234-2240. 

Copyright 2013 American Chemical Society. ............................................. 117 

Figure 7.5. Color changes of PPT solution in a THF/water solution upon the addition of 

(a) anions and (b) halides; in both panels a and b. (c) Color changes of PPT–

I– solution in a THF/water solution upon the addition of metal salts in water. 

Reprinted with permission from ACS Appl. Mater. Interfaces 2013, 5 (6), 

2234-2240. Copyright 2013 American Chemical Society. .......................... 118 



 xv 

Figure 7.6. Proposed new NDI-thiazole based polymer with vinyl linkage for potential 

metal ion detection. ...................................................................................... 119 

  



 xvi 

LIST OF SYMBOLS AND ABBREVIATIONS 

µ Charge carrier transport mobility, cm2V-1s-1 

µe Electron mobility, cm2V-1s-1 

HOMO Highest occupied molecular orbital, eV 

LUMO Lowest unoccupied molecular orbital, eV 

UV-vis Ultraviolet-visible spectroscopy 

IP Ionization potential, eV 

EA Electron affinity, eV 

ION/OFF Current on and off ratio 

Vth Threshold voltage, V 

VG Gate voltage, V 

VD Source-drain voltage, V 

ID Source-drain current, V 



 xvii 

Eg Bandgap, eV 

Eg
opt Optical bandgap, eV 

Eg
elec Fundamental bandgap (or electronic bandgap), eV 

λ Wavelength, nm 

λmax Wavelength at highest intensity, nm 

DSC Differential scanning calorimetry 

Tg Glass transition temperature, °C 

TGA Thermal gravimetric analysis 

CV Cyclic voltammetry 

DPV Differential pulse voltammetry 

AFM Atomic force microscopy 

GIWAXS Grazing incidence wide angle X-ray scattering 

DFT Density functional theory 



 xviii 

SUMMARY 

In the past several decades, π-conjugated organic and polymeric semiconducting 

materials have attracted significant attention due to their promising electronic and 

optoelectronic properties. Therefore, their potential in applications to electronic and 

optoelectronic devices have been investigated, including applications in organic field-

effect transistors (OFETs), organic photovoltaics (OPVs), and organic light-emitting 

diodes (OLEDs), etc. In the past two decades, a great number of conjugated polymers with 

mobility surpassing that of amorphous silicon have been reported. However, most of these 

high-mobility conjugated polymers are either hole transport or ambipolar (electron and 

hole transport) semiconductors; only a few electron transport conjugated polymers with 

high electron mobility (µe) have been reported to date. The development of high-mobility 

electron transporting conjugated polymers falls behind advances in their hole transporting 

counterparts. However, high‐performance pure electron-transporting conjugated polymers 

for pure n-channel organic electronic devices are highly desirable in applications such as 

metal‐oxide‐semiconductor (CMOS)‐like complementary circuits, organic 

thermoelectrics, and all‐polymer solar cells. Among many electron-poor units, thiazoles 

stand out as a promising building block for high performance organic semiconductors. This 

dissertation discusses the development of thiazole-based π-conjugated semiconducting 

polymers to enhance the electron field-effect mobilities by advancing intra- and inter-

molecular interactions between polymer chains, and the enhancement of ambient stability 

by decreasing the energy levels of frontier molecular orbitals. 



 xix 

The structure-process-property relationships of thiazole-based n-channel 

conjugated polymers are studied in this thesis. Three new thiazole-based conjugated 

polymers, poly(diketopyrrolopyrrole-bithiazole) (PDPP2Tz), poly(diketopyrrolopyrrole-

terthiazole) (PDPP4Tz), and poly(naphthalenediimide-bithiazole) (PNDI2Tz) have been 

developed, as shown in Chapter 2 and Chapter 3. By incorporating thiazole into the 

polymer repeating units, the frontier molecular orbital energy levels were effectively 

reduced, resulting in a new series of n-channel semiconducting polymers. Among these 

polymers, PDPP4Tz and PNDI2Tz showed unipolar n-channel characteristics in OFETs. 

Surface effects of the dielectric layer on device performance were investigated with three 

different self-assembled monolayer (SAM) in OFETs in Chapter 4. Polymer nanofiber 

networks form on hydrophobic SAM-processed SiO2 dielectric surfaces. This promote 

polymer packing in thin film and enhance charge transport in OFETs. In Chapter 5, the 

application of PNDI2Tz as an acid sensor was studied. The lone pair on the nitrogen of 

thiazole can act as Lewis base. PNDI2Tz is shown to be halochromic in the presence of 

Brønsted acids (such as nitric acid and sulfuric acid) or a Lewis acid (such as boron 

trifluoride). A PNDI2Tz OFET-based sensor was designed that showed excellent 

sensitivity and durability. 
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CHAPTER 1. INTRODUCTION 

1.1 Organic and Polymer Semiconductors 

Organic semiconductors have drawn significant attention in the past several 

decades for their major improvements in material design and purification that led to 

a significant boost in the materials performance.1-9 Quite different from conventional 

silicon based electronics, organic semiconductors are light weight, low cost, 

amenable to high throughput processing and exhibit excellent flexibility for the 

potential of fabricating large-area, printable electronics.10-15 Thus, they may lead to a 

new generation of products such as conformable and rollable electronic displays, 

solar energy harvesting devices, radio frequency identification (RFID) tags and 

convenient medical diagnostics devices. 

There are two major classes of organic semiconductors that are mainly 

discussed in this field of research: conjugated small molecules and conjugated 

polymers with advanced optoelectronic performance. Conjugated small molecules 

are attractive because they can be efficiently purified, and their ability to form ordered 

Figure 1.1. Applications based on organic semiconductors.34-36 
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structures (via various deposition techniques) has enabled charge carriers to gain high 

mobilities in the solid state.16 They have also served as model systems for a broad variety 

variety of fundamental studies of exciton diffusion and charge carrier dynamics.17-19 On 

the other hand, conjugated polymers are advantageous for their excellent solubility in a 

variety of solvents allowing for solution processing, and their desirable mechanical 

properties for large-area device fabrication. Currently, conjugated materials receive 

considerable attention due to their applications in organic field-effect transistors (OFETs), 

organic CMOS (complementary metal-oxide-semiconductor)-like logic, and organic 

sensors; displays such as organic light-emitting diodes (OLEDs); solar and thermal energy 

harvesting such as organic photovoltaics (OPVs) and organic thermoelectrics (Figure 

1.1).6, 7, 16, 20-36 

Polymer semiconductors are one class of material that is of interest for such 

applications due to their solution processability, mechanical robustness, inexpensiveness, 

and light weight. Therefore, polymer semiconductors for organic electronic applications 

have been attracting tremendous attention since the 1970’s.10, 11, 37-43 Researchers have 

developed effective design principles for the design of high-performance organic 

semiconductors to enhance their corresponding effectiveness in devices over the past few 

decades.7, 16, 44-47 One of the popular design principles is to incorporate fused aromatic rings 

in the polymer backbone. The fused ring aromatic structures introduce planarity to the 

polymer, which in turn leads to higher order molecular organization.3, 16, 48-50 Such high 

level organization enhances bulk crystallinity and brings with it a strong tendency for the 

polymer to form π-π stacks with a large overlapping area that is preferable for charge carrier 

transport through intramolecular charge transfer and intermolecular hopping.51, 52 Another 
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approach is to synthesize Donor-Acceptor (D-A) copolymers, which consist of an 

alternating arrangement of electron-donating (D) and electron-accepting (A) units. 

Donor-Acceptor copolymers commonly have shorter interchain distances due to 

strong intermolecular D-A interactions in the solid state.41, 53, 54 (Figure 1.2) Partial 

intermolecular charge transfer (ICT) between D and A moieties within these polymers 

can readily manipulate their electronic structures (HOMO/LUMO levels), as well as 

electronic and optoelectronic properties.55 The strength of ICT can be tuned through 

the careful design and selection of D and A building blocks, allowing D-A copolymers 

to possess small band gaps, broad optical absorption bands, short distances between 

the polymer chains and high charge carrier mobilities. 

Owing to the extensive research efforts of materials scientists and device 

engineers, a number of polymer semiconductors showing mobility values over 0.5 

cm2V-1s-1 up to even 10 cm2V-1s-1 have been developed in research laboratories in the 

last few years.53, 55-60 Design and optimization of polymer structures have contributed 

most significantly to the recent improvements in mobility for polymer 

Figure 1.2. Schematic representation of both intermolecular and intramolecular charge 
transport pathways in donor-acceptor (D-A) conjugated polymers. 
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semiconductors. From molecular engineering perspectives, a large number of highly 

efficient donor and acceptor structures that are often seen in modern conjugated polymer 

structures have been developed. Thiophene, alkylthiophene, bithiophene, thienothiophene, 

cyclopentadithiophene, biselenophene, acenes and arylene vinylene are the typical donor 

blocks, whereas diketopyrrolopyrrole (DPP) and its derivatives, isoindigo and its 

derivatives, thiazoles, benzothiadiazole, naphthalene diimide (NDI), perylene diimide 

(PDI) are known electron acceptor blocks. (Figure 1.3) Although the electron donor units 

play an important role for achieving high mobility values, the electron acceptor building 

blocks are considered to be the determining factor. The majority of the high mobility 

polymers are based only on a few types of electron acceptors such as diketopyrrolopyrrole 

Figure 1.3. Typical electron rich (top) and electron deficient (bottom) organic 
semiconductor building blocks for p-channel and n-channel organic. 
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(DPP)56, 61-66 and naphthalene diimide (NDI)14, 67-72. 

One of the main concerns associated with organic electronics is the stability of 

organic semiconductor materials. Elements such as oxygen, UV light, and moisture 

are detrimental to organic semiconductors during manufacturing or operation in the 

ambient environment. The impact of these effects can be alleviated through designing 

different donor and acceptor building blocks to alternate the energy levels of the 

copolymers. By incorporating electron poor units or electronegative atoms, the 

highest occupied molecular orbital (HOMO) energy levels can be effectively 

lowered, leaving the resulting polymer less prone to oxidation. Over the years, 

researchers have developed and synthesized a number of more stable 

organic/polymer semiconductors with high mobility and low bandgaps using the 

concept of molecular engineering.2, 12, 14, 73-77 Another highly important design 

principle in conjugated polymer development is related to solution processability. 

Unlike their small molecule or oligomeric counterparts, conjugated polymers with 

high molecular weights cannot easily be deposited on substrates by vacuum 

deposition techniques. Thin-films are typically cast onto device substrates via 

solution processing, during which a given polymer is first dissolved in a solvent to 

afford the polymer solution; a subsequent casting or printing step is then used to apply 

the semiconductor onto the device substrate.73 Solvent evaporation also impacts 

polymer thin-film formation. Therefore, the semiconductor film morphology and 

electronic performance significantly depend on the solution processing.78 The 

solubility of π-conjugated polymers depends on both the structure of the polymer 

backbone and the side chains incorporated into the structure.3, 25 
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Linear and branched alkyl groups have been widely incorporated into π-conjugated 

polymers with the aim of improving polymer solubility in common organic solvents such 

as chloroform and chlorobenzene.77 (Figure 1.4) Typically, increasing the density of side 

chains will lead to increased solubility.2, 3, 25, 79 The incorporation of side chains, however, 

might induce steric hindrance within the polymer backbone, resulting in a reduction of π-

conjugation along the polymer backbone and thus lowered charge carrier transport 

properties.80-83 

1.2 n-Channel Polymer Semiconductors 

As discussed above, significant advances in OFET device performance have been 

achieved via the development of new conjugated polymers and device optimization, and a 

great number of conjugated polymers with mobility surpassing that of amorphous silicon 

have been reported.9, 84, 85 However, most of these high mobility conjugated polymers are 

Figure 1.4. Examples of conjugated polymers utilized the concept of side-chain 
engineering.81-83 
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hole transport or ambipolar (electron and hole transport) semiconductors; only a few 

electron transport conjugated polymers with high electron mobility (µe) have been reported 

to date.86, 87 The development of high mobility n‐channel conjugated polymers fall behind 

their p‐channel counterparts. Whereas, high‐performance unipolar n‐channel conjugated 

polymers are highly desirable in applications such as complementary metal‐oxide‐

semiconductor (CMOS)‐like complementary circuits,86-90 organic thermoelectrics,91 and 

all‐polymer solar cells.39, 58, 92-94 

Alternately linking an electron donor (such as thiophene, thienothiophene, acenes) 

and a strong electron acceptor, such as diketopyrrolopyrrole (DPP)56, 62-64, 66, 95, 

naphthalenediimide (NDI)67-71, 96-99 and isoindigo (IID) derivatives100-102 via covalent 

bonds to afford donor–acceptor (D–A) conjugated polymers is a practical way to construct 

n‐channel conjugated polymers. However, weak p‐channel characteristics are often 

observed for OFET devices based on n‐channel D–A conjugated polymers.86, 103, 104 The 

unwanted hole injection and transport at biases lower than threshold voltage result in 

devices that are difficult to switch off.105 This phenomenon might be related to the polymer 

highest occupied molecular orbital (HOMO) energy levels (EHOMO), which are not low 

enough to block hole injection from the commonly used Au contacts. 

Diketopyrrolopyrrole (DPP) is a strongly electron‐deficient unit with a relatively 

planar and rigid skeleton.106 The structural characteristics of DPP unit have been reported 

to be more preferable for high mobility conjugated polymers.40, 107, 108 In fact, very high 

hole mobility has been achieved in OFETs by using DPP‐based polymers.109 These 

polymers are generally composed of four parts: (1) the diketopyrrolopyrrole unit, (2) an 
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adjacent aromatic substituent, (3) a π-conjugated segment, and (4) alkyl side chains on the 

DPP unit. (Figure 1.5) The aromatic substituents connect the DPP to the conjugated 

segment and originate from the aromatic nitrile precursors used to synthesize DPP. The π-

conjugated segment may consist of electron rich or electron deficient units or combinations 

thereof. By varying the aromatic substituents or changing the π-conjugated segments, the 

optoelectronic properties (such as optical bandgap, ionization potential, electron affinity, 

etc.) of the DPP polymers can be easily tuned. The side chains attached to the DPP unit 

enhance polymer solubility for solution processing, and provide a handle to modify and 

adjust the aggregation and crystallization of DPP polymers during thin film formation. 

Therefore, DPP-based polymers have been shown to be a promising family of materials for 

high performance electron transporting materials. 

Another heavily studied family of n-channel conjugated polymers are naphthalene 

diimide (NDI)-based conjugated polymers.110 Naphthalene diimide (NDI) is the smallest 

homologue of the rylene diimides.111-113 NDIs possess high electron affinity, good charge 

carrier mobility, and excellent thermal and oxidative stability. In the design of electronic 

Figure 1.5. Design principles of DPP-based and NDI-based polymers. 
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conducting functional materials, NDIs are among the most versatile and fascinating class 

of aromatic molecules.25, 71 Nevertheless, functionalization through core-substitution 

produces NDI analogues whose absorption and fluorescence properties are variable.114 

Furthermore, the electron withdrawing groups at the imide position cause a strong 

polarization of the π-systems, and the aromatic naphthalene core thus possesses a low π-

electron density. Imide substitution has very little effect on the optical and electrochemical 

properties of NDIs, and NDIs can be functionalized with a variety of groups at the imide 

position without changing the electronic properties of the π-scaffold in the development of 

aggregation behavior. Therefore, NDI-based conjugated polymers are promising 

candidates for organic electronics applications, photovoltaic devices, and flexible 

displays.13, 112, 115, 116 

1.3 Thiazoles and Thiazole-based Conjugated Polymers 

Mentioned in the sections above, most commonly studied polymeric materials are 

based on electron-rich aromatic moieties, such as thiophene, selenophene, fluorene, 

pyrrole, carbazole, and thieno[3,4-b]pyrazine, which have been reviewed on numerous 

occasions.2, 3, 7, 23, 79, 117-119 A particularly interesting building block, 1,3-thiazole, for the 

development of high-performing polymeric semiconductors, however, has received 

considerably less attention in current literature.120 

Although thiazole is often considered to be an electron deficient version of thiophene, 

its reactivity is quite different from thiophene and is a factor that has to be considered when 

synthesizing thiazole-based monomers. Due to the asymmetric nature of the thiazole ring, 

the π-electron density is highest on the C5 and lowest on the C2 carbon, which is also 
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reflected in the reactivity of the thiazole moiety.76 Among many thiazole derivatives, 2,5-

dibrominated thiazole is a useful monomer for conjugated polymer design. In addition to 

the more complex reactivity, thiazole-containing building blocks also present a more 

versatile regio-chemistry due to the carbon symmetry of the thiazole ring. 

The 2,2’-bithiazole unit exhibits a number of features that could be attractive in the 

search for electron-transport conjugated polymers.76 The presence of electronegative 

nitrogen atoms lowers the LUMO energy in comparison to analogs that consist of electron-

rich units such as thienyl derivatives.121-125 The trans- conformation of 2,2’-bithiazole (with 

a dihedral angle between the thiazole rings close to 180°, as confirmed by density 

functional theory, DFT, in this study, vide infra) can promote polymer backbone planarity, 

Figure 1.6. Visualization of nitrogen lone pair and carbon–sulfur antibonding orbitals. 
Reprinted with permission. Reprinted from Chem. Mater. 2013, 25, 4239. Copyright 2013 
American Chemical Society. 
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which extends intra-chain π-conjugation and interchain π−π stacking, in comparison to 

analogs such as biphenyl or bithiophene that are not coplanar.118, 126, 127 Thiazole has a net 

zero dipole due to its antiparallel alignment between the two thiazole moieties. Such 

antiparallel conformation leads to a “conformational lock” mechanism, in which the 

nitrogen lone pair of the thiazole ring interacts with the antibonding orbitals in the adjacent 

ring (Figure 1.6), thus favoring the planarization of the ring system.128 Additionally, the 

large dipole of the thiazole unit could impart strong dipole−dipole interactions between 

bithiazole-based polymer chains.129 

The bithiazole unit has been primarily used to build hole transport donor−acceptor π-

conjugated copolymers;76 bithiazole was considered as a weak acceptor. Recent studies 

indicated the feasibility of using bithiazole in developing electron-transport small molecule 

semiconductors;129, 130 and in a few cases, bithiazole-based polymers exhibited ambipolar 

properties.131 Hence, the development of electron-transport polymeric semiconductors 

based on bithiazole could be envisioned.76 One significant challenge lies in the 

development of an efficient synthetic pathway to incorporate bithiazole units into π-

conjugated molecules and polymers.123, 129 

1.4 Charge Transport in Polymer Semiconductors 

Heeger, MacDiarmid and Shirakawa discovered that doping π-conjugated 

polymers could convert them into conductors,8 which is against the common notion 

that polymers are electrical insulators. Unlike the backbone of non-conjugated 

polymers, which relies on the connection of sp3 hybridized carbon atoms, conjugated 

polymers comprise alternating single and double (or triple) bonds. The resultant 
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conjugated π bonds lead to a relatively small energy gap, which is usually in the range of 

1~3 eV, greatly facilitating electron delocalization from HOMOs to LUMOs.5, 6 Similar to 

band transport in inorganic materials like silicon, these delocalized π-electrons may move 

along the polymer chains as charge carriers, resulting in intramolecular transport. (Figure 

1.2) A highly coplanar polymer backbone can provide an extended π-electron 

delocalization pathway for efficient charge carrier transport, while a twisted conjugated 

backbone usually interrupts the intramolecular charge transport resulting in low field-effect 

mobilities.43, 132-136 

Charge carrier transport in polymer semiconductors can be viewed at three levels: i) 

intramolecular (or intrachain), ii) intermolecular (or interchain), and iii) interdomain (or 

intergranular).137 The intramolecular charge transport is mainly determined by the effective 

π-conjugation length along the polymer backbone.1, 138-142 For aromatic ring systems, a 

highly coplanar polymer backbone can provide an extended π-electron delocalization 

pathway for efficient charge carrier transport. A proper choice of building blocks that can 

minimize main chain twisting and enhance backbone planarity is the key for achieving high 

intramolecular charge transport performance. On the other hand, intermolecular charge 

transport is governed by the intermolecular distances as well as the intermolecular π-

π overlapping area. The charge transport between polymer chains is highly anisotropic. 

The most favored path is along the π-π stacks, which usually has the shortest interchain 

distance among all directions and beneficial for charge hopping between chains. Although 

debates on charge transport mechanism still remain, a significant body of evidence suggests 

that charge carrier transport along the π-π stacking direction is not as fast as intramolecular 

charge transport, but it can still be quite efficient if a short π-π distance and a large π-
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overlap area are achieved.139, 143, 144 In an OFET device, an edge-on chain orientation, 

where the π-π stacking direction is parallel to the dielectric surface, is highly 

desirable.134, 143 

Due to weak intermolecular interactions (Van der Waals forces or electrostatic 

forces), intermolecular transport becomes the bottle neck of charge transport in 

organic semiconductors. The intermolecular distance in organic materials is usually 

around 4 Å, which means that electrons have to hop from one molecule to the next 

by overcoming the energy barrier induced by intermolecular separation. Thus, this 

kind of “hopping transport” is strongly field-dependent. This is also the starting point 

for the idea to synthesize D-A polymers with a shorter π-π distances in order to 

improve charge carrier hopping. 

Unlike most inorganic materials and small organic molecules, single crystals of 

polymer semiconductors are extremely difficult, if not impossible, to obtain due to 

their long and polydisperse chains. Consequently, polymer semiconductors inevitably 

comprise a significant fraction of amorphous phase. Polymer chains in the amorphous 

regions are twisted, randomly oriented, and loosely contacted, leading to poor 

intramolecular and intermolecular charge transport properties. In a semi-crystalline 

polymer thin films, the charge transport between crystalline domains, i.e., the 

interdomain charge transport, is determined by the size and the packing density of the 

amorphous region between the crystalline domains.139, 141, 145-147 To design polymers 

with intrinsically high charge transport performance at the intramolecular, 

intermolecular, and interdomain levels is a challenging task for polymer chemists, 

while to obtain highly crystalline, highly molecularly oriented polymer 
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semiconductor thin films requires collective efforts from polymer physicists and device 

engineers. 

1.5 Organic Field-Effect Transistors (OFETs) 

Of many applications of organic semiconductors, organic field-effect transistors have 

drawn quite significant attention by researchers.7, 45, 148 As the fundamental building block 

for electronic circuits, field-effect transistors utilize an electric field to drive and 

manipulate the charge carrier conductivity of semiconducting materials in the transistor 

channel, and thus the signal can be switched and amplified.9 

Transistors are generally classified as p- or n-channel, which refer to transistors 

having hole or electron transport within the transistor channel, respectively. A transistor 

that exhibits both hole and electron mobility simultaneously is called an ambipolar 

transistor, and the corresponding semiconducting material is an ambipolar 

semiconductor.31, 149, 150 In OFETs, electron rich (hole transport) or electron deficient 

(electron transport) organic semiconductors replace the inorganic semiconductors, e.g. 

silicon and zinc oxide, within the transistor channel to afford p-channel and n-channel 

OFETs. The coupling of p- and n-channel transistors allows for fabrication of CMOS-like 

logic devices, which are widely used in digital integrated circuits including 

microprocessors, microcontrollers, and static and dynamic random access memory devices. 

In more recent research, OFETs have been incorporated into artificial electronic skin, 

which has significant potential in robotics, wearable electronics, soft displays, and 

biomedical devices.151, 152 Transistors are often used as electronic switches that control the 

electrical current between the source and drain electrodes via an applied input voltage on 

the third terminal, known as the “gate”. The transistor effect was first observed in 1947 by 
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John Bardeen and Walter Brattain in Bell Labs, and was further studied by William 

Shockley.6, 153 In 1960, Kang and Atalla developed the first metal-oxide-

semiconductor field-effect transistor (MOSFET) based on silicon.6, 153 Transistors 

replaced vacuum tubes shortly thereafter, and became the basic components of 

integrated circuits. 

Today in industry, most transistors are still made of inorganic semiconductors 

(monocrystalline silicon, polycrystalline silicon, III-V elements, rare earth metals, 

etc.).9, 154-157 However, the costly inorganic materials and a complicated fabrication 

process for MOSFETs limit this technology in certain applications. In 1983, Nara and 

coworkers reported the first organic field-effect transistor (OFET).158 In the past two 

decades, OFETs are becoming increasingly attractive since they not only can meet 

the requirements for large area coverage and flexibility, but also have achieved the 

high charge carrier mobility necessary to compete with silicon based transistors.4, 5, 7 

Since then, OFETs have received tremendous attention and are expected to be the key 

elements for next generation flexible electronics. The operation mechanism of OFETs 

is similar to that of MOSFETs.6, 7 However, fabrication of most OFETs does not 

require high vacuum and high temperature. Instead, OFETs can be fabricated using 

low-cost solution processing techniques such as spin coating, blade coating, inkjet 

printing, etc., in ambient conditions.3, 25 

1.6 OFET Device Fabrication and Processing 

1.6.1 OFET Device Structure and Properties 

Four typical organic field-effect transistor (OFET) device configurations are 
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shown in Figure 1.7, including bottom-gate/bottom contact (BGBC), bottom-gate/top-

contact (BGTC), top-gate/bottom-contact (TGBC), and top-gate/top-contact (TGTC) 

architectures, in which organic or polymeric semiconductors are employed as the charge 

carrier transport layers.159 Each configuration consists of a dielectric layer and three 

electrodes including the source, drain, and gate electrodes. The source-drain channels are 

typically 500 - 3000 μm in length and 20 - 100 µm wide. The source electrode is grounded 

and defined as VS = 0. Unlike inorganic semiconductors, which must be, pre- p- or n-doped, 

organic semiconductors used in OFET architectures should be neutral with no free charge 

carriers available within the semiconductor layer. However, in a real system, organic 

semiconducting materials inevitably contain trace amounts of impurities which result from 

syntheses and purification processes, and these impurities will act as dopants. An increase 

in degree of doping can convert organic semiconductors to conducting materials, as the 

bands formed between the HOMO/LUMO extend and eventually fill the bandgap. 

Figure 1.7. Schematic representation of four OFET architectures. 
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Application of a voltage (VG) to the gate electrode leads to polarization of the 

dielectric layer. In BGBC-OFET devices, the injected charge carriers accumulate 

within the semiconductor adjacent to the semiconductor-dielectric interface. 

Similarly, the application of VG > 0 induces electron injection and accumulation 

within semiconductors close to the semiconductor-dielectric interface, as shown in 

Figure 1.8.16 When there is no bias between the source and drain electrodes (VD = 

0), charge carriers are uniformly distributed between the source-drain channel. Once 

VD is applied, the movement of charge carriers takes place under the electric field 

driving force. In the case of VG > 0 and VD > 0, the injected electrons flow from the 

Figure 1.8. Schematic representation of OFET working mechanism and the effect of gate 
voltage (VG) on charge injection into organic/polymeric semiconductors. 
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source to the drain electrode; while for VG < 0 and VD < 0, the injected holes flow from the 

from the source to drain electrodes. 

Charge carrier mobility is the most important parameter for FETs. For commercial 

FETs, the maximum operation frequency of a device mainly depends on mobility of the 

semiconductor, as higher mobility would shorten the response time of the field effect 

Figure 1.9. (a) Three-dimensional structure of bottom contact bottom gate OFET showing 
definition of channel dimensions. (b, c, d) Schematic representation of linear regime with 
VD << VG – Vth (b), the onsite of saturation regime with VD,sat = VG - Vth, where the pitch-
off point exhibits at drain electrode (c); and saturation regime with V(x) =VG - Vth, at which 
VD > VD,sat (d), respectively. Figure reprinted with permission from Chem. Mater., Vol. 16, 
No. 23, 2004, 4437-4439. Copyright 2004 American Chemical Society. 
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transistors.39 When the conducting channel just begins to form between the source 

and drain electrodes under a source-drain voltage (VD), the value of the gate voltage 

is defined as the threshold voltage (Vth). There are a variety of factors, such as built-

in dipoles, impurities, interface states and charge traps, that can impact the value of 

Vth of a FET. Such factors are mainly related to the organic semiconductor materials, 

the insulating materials, and the fabrication process. Ion/off stands for the on-to-off 

current ratio, which is determined by the highest current when an FET is turned on 

and the average current level when an FET is turned off. Usually an adequately large 

Ion/Ioff is required for the transistor to be a qualified switch. The charge carrier density 

QSD hence is represented as:16 

 𝑄𝑄𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑛𝑛ℎ = 𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ) (1.1) 

where Cox refers to the capacitance of dielectrics within unit area with the unit 

of nF·cm-2, e is the charge per charge carrier (hole or electron) with a constant value 

of 1.602 × 10-19 C, n denotes the charge density within unit area, and h is the thickness 

of the charged layer in the channel. 

As VD<<VG-Vth, QSD is reduced from the source (x = 0) to drain electrodes (x 

= L) in a linear manner (Figure 1.9a): 

 𝑄𝑄𝑆𝑆𝑆𝑆 = 𝑛𝑛(𝑥𝑥)𝑒𝑒ℎ = 𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ − 𝑉𝑉(𝑥𝑥)) (1.2) 

where V(x) is the impact of source-drain voltage on QSD with the boundary 

conditions of V(x) = 0 at x = 0 and V(x) = VD at x = L. This regime is defined as the 

linear regime. The electric current within the charged layer (ID) in the channel could 

be noted as: 
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 𝐼𝐼𝐷𝐷 = 𝑛𝑛(𝑥𝑥)𝑒𝑒ℎ𝑊𝑊𝑊𝑊𝑊𝑊 (1.3) 

where W is the width of the channel shown in Figure 1.9a, μ refers to the field effect 

mobility with the unit of cm2V-1s-1. E is the electric field between source and drain electrode 

equals to dV/dx. Thereby, 

 
𝐼𝐼𝐷𝐷 = 𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ − 𝑉𝑉(𝑥𝑥))𝑊𝑊𝑊𝑊

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

 (1.4) 

During the charge transport ID keeps constant along x-direction. According to the 

boundary conditions that V(x) = 0 at x = 0, and V(x) = VD at x = L, equation (1.4) is integrated 

as: 

 
𝐼𝐼𝐷𝐷 = �

𝑊𝑊
𝐿𝐿
�𝐶𝐶𝑜𝑜𝑜𝑜𝜇𝜇((𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)𝑉𝑉𝐷𝐷 −

𝑉𝑉𝐷𝐷2

2
) (1.5) 

As VD<<VG-Vth (linear regime), the equation (1.5) is simplified as: 

 𝐼𝐼𝐷𝐷 = �
𝑊𝑊
𝐿𝐿
�𝐶𝐶𝑜𝑜𝑜𝑜𝜇𝜇((𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)𝑉𝑉𝐷𝐷) (1.6) 

 

As VD = VG-Vth, the “pinch-off” appears inside the channel closed to the drain 

electrode where ID reaches a saturated value (Figure 1.9 b,c,d). This regime is defined as 

the saturated regime. Equation (1.6) is converted to: 

 𝐼𝐼𝐷𝐷 = (𝑊𝑊
2𝐿𝐿

)𝐶𝐶𝑜𝑜𝑜𝑜𝜇𝜇(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)2  (1.7) 

Taking partial derivatives of ID versus VG results in Equation (1.8) : 
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 𝜕𝜕𝜕𝜕𝐷𝐷
1/2

𝜕𝜕𝜕𝜕𝐺𝐺
= (𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜

𝑊𝑊
2𝐿𝐿

)1/2  (1.8) 

where ID is the source-drain current (A); VG is the gate voltage (V) in the transfer 

plot. W and L refer to the channel width and length, respectively; µ represents the 

electron field-effect mobility in the saturation regime. 

Therefore, mobility can be noted as:   

 𝜇𝜇 = ( 2𝐿𝐿
𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜

)(𝜕𝜕𝜕𝜕𝐷𝐷
1/2

𝜕𝜕𝜕𝜕𝐺𝐺
|𝑉𝑉𝐷𝐷)2  (1.9) 

In the saturation regime, µ is proportional to the slope of the plot of ID
1/2 versus 

VG, and the threshold voltage Vth value can be estimated by the intercept. Otherwise 

the mobility will be overestimated.15 Several other factors must be taken into account 

when using the above equations. The mobility obtained by the method above may not 

be accurate, since Equations (1.9) are only valid when the mobility is constant, while 

the mobility in OFETs may depend on the gate voltage. In addition, the mismatch 

between the work function of metal electrodes and energy levels of the organic 

semiconductor would lead to the existence of contact resistance, which would affect 

the mobility value. 

Obvious gate leakage currents are often observed in OFETs. A gate leakage 

current originates from two contributions. The first contribution comes from the 

current flowing from the drain to the gate through the dielectric layer due to the gate-

drain voltage difference, which exists in all transistor operation conditions (on and 

off). This portion of the gate leakage current is insignificant and can be ignored if an 

excellent dielectric such as thermal silicon dioxide is used.160 
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The second contribution only exists when a gate voltage is applied. If the organic 

semiconductor is p-channel, holes would be induced to form a conductive layer with the 

influence of gate voltage, which would act as an electrode to conduct current, causing a 

shift of the onset current on the output plots. This part of leakage current could be reduced 

by patterning the semiconducting material or isolating the individual devices to reduce the 

outside area of the organic semiconductor layer.161 

Among the four OFET configurations depicted in Figure 1.7, BGBC and TGTC have 

source and drain electrodes placed at the semiconductor and dielectric layer interface that 

allows direct charge carriers. Alternatively, semiconductors are placed between the 

dielectric and two (source and drain) electrodes in BGTC and TGTC configurations, where 

charge carriers injected from the source electrode need to move through the 

semiconducting layer (10-100 nm in general depending on coating conditions). In BGBC 

and BGTC architectures, charge carrier transport occurs at the bottom surface of the 

semiconductor layer; whereas in TGBC and TGTC architectures, charges are conducted 

along the top surface of the semiconductor. The morphology of the bottom and top surfaces 

of the organic semiconductor thin film has distinct impact on the four transistor 

configurations. The electron traps commonly exist at the semiconductor-dielectric 

interface, leading to trap states.88, 162 Thereby, these traps have to be first filled before 

charge carriers can flow through from source electrode to drain electrode. The threshold 

voltage (Vth) includes the impacts of impurities within semiconductors, electron traps 

within the semiconductor-dielectric interface, and contact resistance at the metal-

semiconductor interface.46 In general, in p-channel transistors impurities would move Vth 

positively, the direction is reversed in n-channel transistors. 
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1.6.2 Dielectric materials for OFETs 

As discussed above, dielectric materials can significantly impact charge carrier 

transport. BGBC transistors typical test devices use 200-300 nm of SiO2 thermally 

grown onto heavily doped Si gate electrodes.163 In general, defects and electron 

withdrawing functional groups exist on the surface of SiO2 that might negatively 

affect the efficiency of charge carrier transport at the semiconductor-dielectric 

interface. One approach to address this challenge is to grow a silane or amine based 

self-assembled monolayers (SAM) on the top surface of the SiO2.164, 165 The silane 

(active Si-Cl or Si-OMe) or amine (N-H) groups are able to bond to the surface 

functional groups to afford siloxane (Si-O-Si) or silazane (Si-N) bonds, as shown in 

Figure 1.10. 

Typical silane SAMs include alkyltrichlorosilane, perfluorinated 

alkyltrichlorosilane, alkyltrimethoxylsilane, and bis(trimethylsilyl)amine 

Figure 1.10. Schematic representation of self-assembly monolayer (SAM) 
functionalization to SiO2 surface. 
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(HMDS).166-168 The resulting surface turns from hydrophilic (water contact angle < 20°) to 

hydrophobic (water contact angle > 95° for SAMs with alkyl groups and 80-85° for 

HMDS).169 The perfluorinated SAM treated surface in particular shows superhydrophobic 

characteristics, with a contact angle > 130°, which might lead to polymer ink dewetting on 

the substrate. Field-effect transistors often show approximately an order of magnitude 

enhancement in hole mobility when a SAM treatment is used in the device fabrication 

process. Possible reasons include that defects and silanol surface groups were largely 

eliminated through treatment; and/or that the presence of alkyl chains induces polymer 

semiconductor packing to turn from a “face-on” orientation to an “edge-on” orientation,143, 

170 which benefits the in-plane carrier transport from source to drain as shown in Figure 

1.11. 

In the real cases, however, it proves difficult to remove all electron traps with the 

SAM treatment. Therefore, n-channel transistors which are quite sensitive to electron traps 

generally require hydrophobic polymers as dielectrics, such as divinyltetramethylsiloxane-

bis(benzocyclobutene) (BCB),171-173 amorphous fluoropolymer CYTOP,174, 175 polystyrene 

(PS),176, 177 polyvinylpyrrolidone (PVP)178, and poly(methyl methacrylate) (PMMA)179. 

These polymers have no hydrophilic functional groups and thus minimize electron traps on 

the dielectric layers. Compared with inorganic dielectrics such as SiO2, and Al2O3, 

polymeric dielectric materials provide better interfacial interaction with organic and 

polymeric semiconductors.180, 181 The resulting n-channel transistors generally show 

enhanced electron transport characteristics (higher mobility, higher ION/OFF, and reduced 

Vth) and minimized ambipolar features compared with devices fabricated with SAM pre-

treated SiO2 dielectric layers. For instance, P(NDI2OD-T2) (also known as “N2200”) 
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showed an electron mobility close to 1 cm2V-1s-1 based on OFETs with PS as the dielectric. 

Further, these amorphous polymer dielectrics can be used in fabrication of flexible and 

stretchable OFET devices based on PET substrates. It is worthy to mention that BCB needs 

to be formed via polymerization at 300-350 °C. It is thus commonly applied on BGTC 

transistor configurations, before casting organic and polymeric semiconductors; while the 

fluorinated CYTOP which has a low surface tension is primarily used in TGBC transistor 

configurations where it is coated on top of organic or polymeric semiconductors. The 

encapsulation of organic and polymeric FETs is necessary since the devices are in general 

sensitive to humidity and oxygen. Polymers such as CYTOP and perylene can be combined 

with inorganic materials including SiO2 and Al2O3 to form organic- inorganic hybrid 

encapsulation layers.175, 182, 183 

1.6.3 Organic and Polymeric Semiconductor Thin-Film Deposition 

Small molecule semiconductors are frequently deposited onto FET substrates 

under high vacuum, where under optimized conditions it is possible to grow single-

crystal thin-films. This deposition process needs to be conducted under thermal 

Figure 1.11. (a) Schematic illustration of the charge transport model in lamellae 
stacking conjugated polymer; (b) face-on texture of polymeric crystallites; (c) edge-on 
stacking texture, the π-stacking and the chain to chain packing of polymers. Reprinted with 
permission from Mater. Today. 2007, 10 (3), 38-45. Copyright 2007 Elsevier. 
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evaporation rather than electron-beam evaporation conditions due to the high-energy 

associated with electron-beams: exposure of organic materials to an electron-beam often 

leads to film damage. Thin-film deposition approaches have significant impacts on the 

resulting thin-film morphology such as molecular orderings and orientation distributions, 

and thus the charge carrier transport behavior. Previously, it was thought that small 

molecule thin-films grown from vacuum deposition are superior to ones fabricated from 

solution-processes such as spin-coating. The spin-cast films are generally more disordered 

and have multi-crystalline characteristics compared with thermally deposited counterparts, 

which can severely limit charge carrier transport efficiency due to grain boundaries. 

However, studies have shown that for certain organic semiconductors, such as BTBT-C8 

and pentacene, single-crystal thin-films could be formed through inkjet printing and 

solution shearing coating (blade coating).184-188 Giri et al. reported their approach of 

obtaining lattice‐strained TIPS‐pentacene crystals via solution shearing on patterned 

substrates leading to the formation of highly strained, aligned, and single‐crystalline TIPS‐

pentacene regions with mobility as high as 2.7 cm2 V−1 s−1.187 Yuan et al. reported the 

alignment of BTBT-C8 parallel or perpendicular to source-drain electrodes on OFETs 

based on an off-center spin coating approach, during which the centrifugal force aligns the 

thin films.184 The X-ray scattering characteristics unveiled a new packing structure that 

differed from the single-crystal film, demonstrating the feasibility that selected metastable 

molecular packing configurations may possess more efficient charge carrier transport 

pathways compared with the single-crystal packing that is typically observed.184 It had been 

previously believed that the molecular packing associated with single crystal materials is 

the optimum for achieving the highest possible charge carrier transport for any one 
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material. 

The high MW of polymers prevents film formation via thermal deposition. 

Spin-coating is widely used to afford uniform and isotropic thin films in lab 

environments. Film thickness is typically 50-100 nm, depending on the ink 

concentration, solvent, spinning speed (500-5000 rpm), and spinning time. Over the 

past decade, doctor blading, dip coating189, strain stretching190, poor solvent 

addition191, topographical patterning192, and thermal193 or solvent vapor194 annealing, 

among many others, have all been shown to cause significant enhancement of the 

charge carrier mobility in π-conjugated polymer-based OFET devices. The results of 

these studies have revealed the microstructural features that give rise to high-mobility 

devices: (i) highly ordered crystals with a high degree of electronic delocalization142, 

(ii) edge-on orientation relative to the dielectric surface,145, 195 and (iii) long-range 

interconnectivity between crystalline domains to form a percolation network for 

charge transport on the device scale.196, 197 

An alternative approach for polymeric film formation is based on inkjet 

printing. The significant operational parameters include ink viscosity and surface 

tension, which could be manipulated through adjusting the material’s concentration 

in the ink formulation and if necessary, the addition of additives. In comparison to 

traditional coating methods, inkjet printing allows fine control of the dose and 

position of active material and thus, the thickness, size and position of the 

semiconductor film formed on the device substrate, which potentially reduces ink 

consumption and issues associated with ink solvent emission; also, expensive 

photolithographic-patterning of the semiconductor films is avoided. Polymeric field-
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effect transistors based on inkjet printing have been reported, and similar mobilities 

compared with transistors fabricated using the spin-coating approach were 

demonstrated.175 
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CHAPTER 2. DESIGN, SYNTHESIS AND 

CHARACTERIZATION OF DIKETOPYRROLOPYRROLE-

THIAZOLE ALL-ACCEPTOR (A-A) N-CHANNEL POLYMERIC 

SEMICONDUCTORS AND APPLICATIONS IN OFETS 

(This chapter is partially published in Chemistry of Materials (2016), Yuan, Z. B.; Fu, B. 

Y.; Thomas, S.; Zhang, S. Y.; DeLuca, G.; Chang, R.; Lopez, L.; Fares, C.; Zhang, G. Y.; 

Bredas, J. L.; Reichmanis, E., 28 (17), 6045-6049.) 

2.1 Abstract 

In order to investigate the impacts of thiazoles in conjugated polymers, two all new 

thiazole-DPP based conjugated polymers, PDPP2Tz and PDPP4Tz, were designed and 

synthesized via Stille coupling. Unlike traditional donor-acceptor copolymers, thiazole-

DPP based polymers consist of all electron poor units, which independently would act as 

electron acceptors. Frontier molecular orbital simulation results reveal that in PDPP4Tz, 

there is no clear electron donating nor electron accepting unit. Both holes and electrons are 

effectively delocalized along polymer conjugated backbone. Preliminary characterization 

suggested that PDPP4Tz possesses electron mobility reaching 0.07 cm2V-1s-1 when 

incorporated into an organic field-effect transistor. Current n-channel and ambipolar 

conjugated polymers possess a donor-acceptor repeating unit configuration that contains 

electron donors such as bithiophene or vinylene, which dilute the electron deficiency. The 

concept identified in this study that couples one electron acceptor (distannane bithiazole) 

with a second electron acceptor to afford a pure n-channel conjugated polymer can be 
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considered as a general, efficient approach for the development of the next generation of 

n-channel conjugated polymers for device applications. 

2.2 Introduction 

As discussed in Chapter 1, conjugated polymers have attracted considerable 

attention for applications in organic electronic devices due to their easily modifiable 

structures, excellent solution processability, and potential for low-cost device fabrication.7, 

14, 16, 45, 198 Extensive synthetic research has enabled identification of several classes of high 

performance p-channel semiconductors199, 200; however, full realization of many potential 

applications requires access to effective electron transport or rather, n-channel solution 

processed organic/polymeric semiconductors. In particular, demands exist for high 

performance unipolar electron transporting polymers in applications such as organic field-

effect transistors (OFETs), complementary metal-oxide-semiconductor (CMOS)-like logic 

circuits,31, 88, 201 organic thermoelectrics,91 all-polymer heterojunction photovoltaics,200, 202-

204 and organic light-emitting diodes.29, 30 While ambipolar materials are an attractive 

alternative, their development has reached a ‘glass ceiling’ in that their hole and electron 

mobilities and current on/off ratios (ION/OFF) are generally far from equivalent. Thus, 

application of ambipolar organic or polymer semiconductors to devices such as CMOS 

circuits presents significant complications. As a result, it becomes necessary to employ 

both, unipolar p-channel and n-channel semiconductors in the design and fabrication of 

individual devices.76 

Hence, viable approaches towards the design, synthesis and processing of purely 

electron transporting organic semiconducting polymers are critically needed.64, 200, 201, 205-
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207 Not only are such materials essential to achieve advanced device performance, they are 

also required to ascertain critical structure-property relationships that govern the 

performance of active organic materials. This chapter talks about the homocoupling of 

bisthiazole-diketopyrrolopyrrole and the copolymerization of diketopyrrolopyrrole (DPP) 

with thiazole to afford two all-acceptor (A-A) conjugated polymers, PDPP2Tz and 

PDPP4Tz, respectively. Unfortunately, only PDPP4Tz shows promising characteristics 

for potential OFET application, while PDPP2Tz only possesses very low FET mobility. 

Therefore, this chapter mainly discuss the development of PDPP4Tz and its application in 

OFETs. 

2.3 Results and Discussions 

2.3.1 Synthesis and Characterizations of PDPP2Tz and PDPP4Tz 

Currently, examples of n-channel polymeric semiconductor platforms, which 

include P(NDI2OD-T2) and BDOPV-2T based polymers, are quite limited.14, 72, 208, 209 The 

reported materials generally comprise one strong electron withdrawing moiety, such as 

NDI or BDOPV, coupled with one electron rich unit such as bithiophene, or a substituted 

vinylene within the repeating unit. The resulting polymers have typical donor-acceptor (D-

A) features; whereby, the electron rich units tend to elevate the HOMO and LUMO energy 

levels of the system impairing efficient electron transport and oxidation resistance which 

are of critical significance for n-channel semiconductors. 

The 2,2’-bithiazole unit is attractive for the development of organic129 and 

polymeric semiconductors76, 122, 210 due to molecular features that impart significant 

differences in electronic characteristics in comparison with bithiophene which is widely 
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used in many current D-A copolymers.68, 124, 129, 210 (Figure 2.1) In particular, the presence 

of electronegative nitrogen atoms lowers the LUMO energy level; while the planarized 

trans-conformation and large dipole benefit intra-chain π-conjugation and inter-chain π−π 

interactions.76, 125, 129, 211 Our recent study discussed a facile approach of metalation of 

bithiazole to afford a distannane monomer, and its facile coupling with brominated 

aromatic moieties to afford high molecular weight and strong electron withdrawing 

polymers was demonstrated.76 

The bithiazole distannane monomer was co-polymerized with a brominated 

dithiazolediketopyrrolopyrrole (DTzDPP) to afford, the unipolar all acceptor n-channel 

conjugated polymer, poly(diketopyrrolopyrrole-tetrathiazole), PDPP4Tz. (Scheme 2.1) 

Figure 2.1. Comparison of 2,2’-bithiazole and 2,2’-bithiophene in HOMO energy level 
and molecular geometry. 
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This polymer is among only a few reported cases of unipolar electron transport, n-channel 

polymers: the preliminary OFET characterization suggests that PDDP4Tz possesses 

promising macroscale, unipolar field-effect electron mobility as high as 0.067 cm2V-1s-1. 

The choice of DTzDPP derives from its strong electron acceptor characteristics and 

recently shown promising electron transport properties in photovoltaic and OFET 

applications.61, 64 To the best of our knowledge, this study, for the first time, demonstrates 

the feasibility of electron withdrawing bithiazole distannane to be coupled with other 

brominated electron acceptors to afford unipolar n-channel polymers; furthermore, 

PDDP4Tz represents the first example of an n-channel conjugated polymer comprised of 

all electron deficient moieties, which could be considered as an acceptor-acceptor, A-A, 

backbone structure. This suggests a potential approach to the development of the next 

generation of "all electron acceptor" A-A conjugated polymers having improved ambient 

stable, unipolar electron transport performance for organic electronic devices. 

S

N N

N N

S

O

O

C10H21C12H25

C12H25 C10H21

Br
Br

S

N N

N N

S

O

O

C10H21C12H25

C12H25 C10H21

S

N N

N N

S

O

O

C10H21C12H25

C12H25 C10H21

Me3Sn SnMe3 N
S

S
NMe3Sn

SnMe3
S

N

N

S

Pd2dba3, PPh3
toluene, 10% DMF

Cu(I)I (cata.)
Microwave 150 oC, 1hr

Pd2dba3, PPh3
toluene, 10% DMF

Cu(I)I (cata.)
Microwave 150 oC, 1hr

DTzDPP PDPP4TzPDPP2Tz

n n

Scheme 2.1. Stille polymerization of monomer DTzDPP with hexamethylditin or 5,5'-
bis(trimethylstannyl)-2,2'-bithiazole to afford PDPP2Tz and PDPP4Tz, respectively. 



 34 

A branched 5-decylheptadecyl alkyl side chain is incorporated into brominated 

DTzDPP monomer to enhance polymer solubility.76, 82 The freshly prepared 

trimethylstannyl bithiazole monomer was copolymerized with DTzDPP to afford the all 

electron acceptor conjugated polymer PDPP4Tz, via Stille step-growth polymerization64, 

76, 205-207 in toluene under microwave irradiation (150 oC for 1 hr) (Scheme 2.1). Gel 

permeation chromatography (GPC; 135 oC with 1,2,4-trichlorobenzene (TCB) as eluent) 

of PDPP4Tz revealed a number-average molecular weight (Mn) of 26 kg mol-1 and 

polydispersity index (PDI) of 1.3.(Figure 2.2) Thermogravimetric analysis (TGA, see S.I.) 

revealed a decomposition temperature greater than 410 oC; and differential scanning 

calorimetry (DSC) shows the presence of an endothermic transition upon heating (T1 = 67 

Figure 2.2. Gel permeation chromatography (GPC) characterization of PDPP4Tz with 
TCB under 135 °C. 
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oC) and an exothermic transition during the cooling process (T2 = 82 oC), suggesting the 

presence of ordered phases.82 Such temperature transitions (higher than room temperature) 

are believed to represent a phase transition attributed to polymer backbone instead of alkyl 

side chains before entering an isotropic phase.82 (Figure 2.3) 

Figure 2.3. (top) TGA of polymer PDPP4Tz in a nitrogen atmosphere (25 mL/min) at a 
heating rate of 5 °C/min; (bottom) thermal transition characterization of PDPP4Tz. DSC 
characterization was based on the 2nd heating and cooling process in a nitrogen 
atmosphere with a nitrogen flow rate of 50 mL/min and a heating/cooling rate of 5 °C/min. 
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The initial approach to afford the A-A copolymer was through homo-coupling of 

brominated dithiazolediketopyrrolopyrrole (DTzDPP) monomer using hexamethylditin 

(Scheme 2.1). Such homo-coupling would afford a new A-A copolymer, 

poly(diketopyrrolopyrrole-bithiazole) (PDPP2Tz) that is likely to possess pure n-channel 

transport characterisitics. Preliminary results indeed show weak pure n-channel transport 

characteristics. However, the mobility was only in the range of 10-5~10-4 cm2V-1s-1 with a 

quite low on/off ratio of 101, leaving PDPP2Tz not suitable for OFET applications. 

2.3.2 PDPP4Tz Photophysical Properties 

PDPP4Tz UV-vis absorption spectra as shown in Figure 2.4 exhibit similar 

absorption bands in both solution and thin films, with a maximum (λmax) at 715 nm, which 

suggests that the polymer backbone experiences significant rigidity and aggregation in 

solution and thin-film form. The broader thin film absorption in the range of 750-770 nm 

suggests the probable self-assembly of PDPP4Tz into ordered aggregates that experience 

enhanced π-π intermolecular interactions.76 A weak shoulder at ~765 nm in the solution 

spectra suggests that aggregates also form in the solution phase. Such low band-gap 

polymers have been found to enhance intramolecular charge transfer, which in turn 

improves charge carrier mobility.7, 130, 212, 213 The optical gap evaluated from the solid-state 

absorption onset is ca. 1.34 eV. 
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Ultraviolet Photoemission Spectra (UPS) were measured on a Kratos Axis 

UltraDLD XPS/UPS system, using He-I lamp radiation at 21.2 eV. All samples were in 

electronic equilibrium with the spectrometer via a metallic clip on the surface, and were 

run at a base pressure of 10-5 Torr. The Fermi level was calibrated using atomically clean 

silver. UPS were acquired at a 5 eV pass energy and 0.05 eV step size with the aperture 

and iris set to 55 µm. The secondary electron edge (SEE) of the UPS the work function (ϕ 

= 21.22-SEE) was calculated for each polymer, and from the emission close to the Fermi 

Figure 2.4. UV-vis absorption spectra of PDPP4Tz in solution and thin-film state (1 × 
10−6 M; chloroform, p-xylene). Film UV-vis spectra were obtained by spincoating solutions 
onto UV-ozone cleaned SiO2 slides before thermal annealing. 
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level the position of valence band maximum was determined. IP (= –HOMO) and ϕ were 

calculated by equations (2.1) and (2.2): 

𝐼𝐼𝐼𝐼 = ℎ𝜐𝜐 − �𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜀𝜀𝑉𝑉𝐹𝐹�                                                            (2.1) 

𝜙𝜙 = ℎ𝜐𝜐 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                                       (2.2) 

where hν, Ecutoff, and εV
F denote the incident photo energy (He I, 21.22 eV), the high 

binding energy cutoff, and the lowest binding energy point, respectively. 

Due to the effect of polymer/gold contact, there is a push-back effect (pillow effect) 

which leads to a significant decrease in work-function for the modified gold surface214. The 

modified work function of gold is closer to 4.3 eV, compared to the (111) surface of super 

clean gold in ultra-high vacuum (ΦAu at 5.2 – 5.3 eV)47, 214. Therefore, the modified gold 

work function is closer to the EA of PDPP4Tz than the IP. The intrinsic ionization potential 

(IP) of PDPP4Tz is estimated to be 5.71 eV suggesting excellent ambient stability towards 

oxidation7.(Figure 2.5) Taking into account an optical gap of ca. 1.34 eV and an exciton 

binding energy in the range of 0.3−0.5 eV, the electron affinity (EA) is estimated to be on 

the order of −3.9 to −4.1 eV76, 215, which implies an electron transport potential with good 

Figure 2.5. (left) UPS characterization of as-spun PDPP4Tz film on gold-coated Si wafer; 
(right) zoomed-in of lower binding energy region of the UPS spectrum. 
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ambient stability86, 216. Compared with our previous investigation on polymer PDBTz76, in 

which the peripheral two thiazoles adjacent to DPP in PDPP4Tz were substituted by two 

thiophenes, PDPP4Tz has a ca. 0.2 eV increase in IP and EA under the identical 

measurement environment. The results indicate more stable charge carrier transport for the 

thiazole analog than thiophene. 

2.3.3 DFT Studies of PDPP4Tz oligomers and their subunits 

(Section 2.3.3 is completed in collaboration with Dr. Simil Thomas and Dr. Jean-
Luc Bredas at King Abdullah University of Science and Technology, Saudi Arabia, 
currently at Georgia Institute of Technology, Atlanta, Georgia, USA. (2016)) 

Figure 2.6. (a) Illustration of the torsion potentials related to the rotation of the adjacent 
units in the monomer of PDPP4Tz; (b) relative DFT energies at the tuned-ωB97XD/6-
31G(d,p) (dashed lines) and B3LYP (solid lines) levels; (c) tuned-ωB97X-D/6-31G(d,p) 
natural transition orbitals with the largest weight (78%) for the S0 to S1 transition in the 
PDPP4Tz tetramer. 
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DFT calculations were carried out on oligomers of PDPP4Tz with the Gaussian 09 

Revision D.01 suite of programs;217 we considered the tuned-ωB97X-D functional along 

with the 6-31G(d,p) basis set for the time-dependent density functional theory (TDDFT) 

calculations (for the sake of comparison with many other results reported in the literature, 

we also considered the B3LYP functional, even though it is well established to wrongly 

overdelocalize wavefunctions and thus maximize torsion potential barriers in conjugated 

polymers). The IP-tuning procedure218, 219 is carried out with chloroform taken as the 

dielectric medium (ε = 4.71) to be consistent with experiment, within the self-consistent 

reaction field (SCRF) framework, to calculate the range separation parameter (ω). The 

Figure 2.7. Electron-hole pair natural transition orbitals (isovalue surface 0.02 a.u.) for the 
S0 to S1 transition of the PDPP4Tz tetramer calculated by TD-DFT at tuned-wB97X-D/6-
31G(d,p) level of theory. The weights of the particle-hole contribution to the excitation are 
included. 
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optical gap of the PDPP4Tz oligomers levels off at 4 repeat units (Figure 2.6); it 

corresponds to 1.74 eV at this oligomer size, which is close to the experimental optical gap 

of 1.72 eV estimated from the UV−vis absorption maxima in chloroform (experimental 

optical gap evaluated from the onset of absorption is ca. 1.34 eV). 

The dominant natural transition orbital (NTO) of the PDPP4Tz tetramer for the S0 

to S1 transition, at tuned-ωB97X-D/6-31G(d,p) level of theory, is well delocalized along 

the polymer backbone for both hole and electron (Figure 2.7); the spin density for the 

unpaired electron corresponding to the electron-polaron (anion) of the PDPP4Tz tetramer 

is calculated to be delocalized over one full repeat unit, or about 8 to 10 rings (Figure 2.8). 

The electronic band structure of the polymer chain has been modeled using the 

CRYSTAL14 code.220 In that instance, the polymer geometry was optimized at the B3LYP 

level,221 and the electronic band structure calculated at the HSEsol functional level.222 The 

Peintinger-Oliveira-Bredow triple-ζ valence plus polarization (POB-TZVP) basis set223 

using 2k points as set by the Pack-Monkhorst method,224 was considered for all these 

Figure 2.8. Tuned-ωB97X-D spin density plots for the anion of the PDPP4Tz tetramer 
(the red and blue colors represents spin up and spin down electron densities, respectively). 

Table 2.1. Calculated valence band (VB) width, conduction band (CB) width, band gap, 
and hole and electron effective masses for the PDPP4Tz polymer. 
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calculations. The effective mass for the polymer chain was calculated at the bottom of the 

conduction band using the band fitting method.225 

The electronic band structure of the polymer chain was also calculated with the 

CRYSTAL14 code226, using the HSEsol functional222. The band structure of the PDPP4Tz 

polymer is shown in Figure 2.9. The band gap of the PDPP4Tz polymer is calculated here 

to be 1.32 eV. The effective mass of an electron (at the bottom of the conduction band) and 

hole (at the top of the valence band) are calculated (See Table 2.1).Importantly, the electron 

effective mass for the polymer chain evaluated at the bottom of the conduction band is very 

small, on the order of 0.15 m0, the free electron mass. This result underlines that well-

oriented PDPP4Tz chains should display very high electron mobilities227. 

Figure 2.9. HSEsol//B3LYP electronic band structure of the PDPP4Tz chain. The zero of 
energy corresponds here to the top of the valence band. 
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The range-separation parameter (ω, in Bohr-1) of the ωB97X-D functional was 

optimized for the oligomers of PDPP4Tz using the IP tuning procedure.228, 229 The alkyl 

chains in the PDPP4Tz unit were replaced with methyl groups to reduce the computational 

time. The geometry was first optimized at the ωB97X-D/6-31G(d,p) level of theory; the IP 

tuning procedure was then applied to calculate the optimal ω-value for this geometry. The 

geometry was then re-optimized using the new ω-value and this procedure was iterated 

until the change in ω became less than 10-3 Bohr-1 (the tuned ω-value for the optimized 

monomer geometry is used throughout the subsequent torsion potential scans). The torsion 

potentials between adjacent units of PDPP4Tz were computed at 5o intervals by fixing the 

dihedral angle and relaxing all other geometrical degrees of freedom (from -180o to 180o) 

using the tuned-ωB97X-D and B3LYP functionals. All the PES curves in Figure 2.6b have 

two minima with the minimum at 0o lower-lying in energy than that near 180o. The energy 

barrier heights separating these two minima are 8.6 [9.6], 2.5 [3.8], 8.5 [10.5], and 7.8 [9.6] 

kcal mol-1 respectively for 1, 2, 3, and 4 using tuned-ωB97XD [B3LYP] functional as 

shown in Figure 2.6a and b. Since these barrier heights are significantly higher than 

thermal energy at room temperature (0.6 kcal mol−1), the PDPP4Tz polymer backbone is 

expected to be largely planar in the solid state. Importantly, the dominant tuned-ωB97X-

D/6-31G(d,p) natural transition orbital (NTO) describing the S0 to S1 transition in the 

PDPP4Tz tetramer, is delocalized along the polymer backbone for both the hole and 

electron (Figure 2.6c). This feature underlines the difference between PDPP4Tz with 

regard to typical D-A copolymers that generally display a localized electron NTO.  
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2.3.4 PDPP4Tz Thin-film Morphology and Crystallinity 

PDPP4Tz thin-film surface morphologies were investigated using tapping mode 

atomic force microscopy (AFM) as shown in Figure 2.10. Polymer films were spin-cast 

and blade-coated onto OTS-18 functionalized SiO2 on Si substrates. All blade-coated 

Figure 2.10. Tapping mode AFM height (top row) and phase (bottom row) images of 
PDPP4Tz blade coated films recorded after thermal annealing each film at 150 oC for 90 
min followed by rapid cooling to room temperature in a nitrogen filled glove box. 
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polymer films exhibited consistent surface morphology patterns, appearing highly ordered 

with a feathery-like texture. The annealed films appeared with a nano-granular character, 

which is consistent with the high crystallinity revealed by GIWAXS. 

Polymer thin-film microstructure was investigated by grazing incidence wide angle 

X-ray scattering (GIWAXS). Films were prepared by spin- and blade-coating solutions of 

PDPP4Tz onto Si-substrates. Both pristine and thermally annealed films were studied and 

exhibited well-defined (h00) diffraction patterns along the qz (out of plane) axis 

corresponding to a highly ordered lamellar structure; and (010) peaks along the qxy (in-

plane) axis arising from π-π stacking of polymer backbones, as shown in Figure 2.11. A 

lamellar d spacing of 26.4 Å was derived from the (h00) peak, and the π-π stacking (010) 

Figure 2.11. GIWAXS area detector images of PDPP4Tz films cast from (a,b) chloroform 
by spincoating; (c,d) chloroform by blade coating; (e,f) p-xylene by blade coating. (a,c,e) 
pristine films; (b,d,f) samples after annealing at 150 oC for 90 min followed by rapid 
cooling to room temperature. 
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peak has an associated d spacing of 3.4 Å. The fact that both (h00) and (010) exhibited 

enhanced intensities after thermal annealing (Figure 2.11) demonstrates an improvement 

in ordering within thin films and a more desirable edge-on orientation due to the annealing 

process, which, in turn, is believed to constructively favor polymer field-effect charge 

carrier transport in solid-state films. 

Given the importance of molecular order in determining the charge transport 

characteristics in π-conjugated polymers, PDPP4Tz exhibits anisotropy within thin films 

fabricated with blade-coating, as observed under polarized optical microscopy (Figure 

2.12). Thin films were cast from both filtered PDPP4Tz chloroform and p-xylene solutions 

(4~6 mg/mL) onto UV-ozone cleaned glass slides at room temperature. The observed 

birefringence indicates that PDPP4Tz polymer chains adopt a highly self-organized 

morphology, which allows the chains to form ordered anisotropic domains in thin-films. 

As intermolecular charge transport across grain boundaries, or through disordered domains 

is not as efficient as within ordered domains, increasing the grain size is expected to be a 

favorable approach to increase charge-carrier mobility. 

Figure 2.12. Polarized Optical Microscope (POM) images of blade-coated PDPP4Tz films 
on glass slides (chloroform as solvent). 
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2.3.5 Thiazole-DPP A-A Copolymers for OFET Applications 

The charge carrier transport properties of PDPP4Tz were investigated using a 

bottom-gate/bottom-contact (BGBC) OFET device architecture. BGBC OFETs were 

fabricated on a heavily p doped silicon wafer (100) as the gate electrode with a 300 nm 

thick layer of thermally grown SiO2 as the gate dielectric. Au source and drain contacts (50 

nm of Au contacts with 3 nm of Cr as the adhesion layer) with fixed channel dimensions 

(50 μm in length and 2 mm in width) were deposited via E-beam using a photolithography 

lift-off process. Prior to deposition of polymer semiconductors, the devices were cleaned 

in acetone for 30 min and subsequently rinsed sequentially with acetone, methanol and 

isopropanol. The SiO2 surface was pretreated by UV/ozone for 30 min followed by 

immersion into a 2.54 x 10-3 M (1 μL mL-1) solution of OTS-18 in anhydrous toluene. The 

devices were then cleaned by sonication in toluene for 10 min, followed by rinsing 

sequentially with acetone, methanol and isopropanol, and drying under a flow of nitrogen. 

The H2O contact angle for the SiO2 surface after OTS-18 treatment was in the range of 95–

Figure 2.13. Output characteristics of the bottom-gate/bottom-contact (BG/BC) transistors 
fabricated by spincoating p-xylene solution of PDPP4Tz. 
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105°; the OTS-18 modified SiO2 dielectric has a capacitance of ca. 1.1 x 10-4 Fm-2. 

PDPP4Tz solutions were then spin-coated onto substrates inside a N2 filled glovebox or 

blade coated in ambient condition. 

In this study, the threshold voltage, Vth, was calculated by extrapolating Vth = VG at 

ID = 0 in the VG vs. ID
1/2 curve. Current on/off ratio, ION/OFF, was determined through 

dividing maximum ID (ION) by the minimum ID at about VG in the range of -20 to 0 V (IOFF). 

It is noted that PDPP4Tz field-effect mobility was more stable and hysteresis was reduced 

after thermal annealing at 150 °C for 90 min in OFETs and no obvious improvement was 

observed at annealing temperatures above 150 °C. The thermal annealing treatment was 

hence fixed at 150 °C for 90 min. 

Unlike many D-A π-conjugated polymers which show ambipolar transport 

characteristics such as PDBTz, PDPP4Tz based OFETs exhibited purely n-channel 

Figure 2.14. Transfer characteristics of the bottom-gate/bottom-contact (BGBC) 
transistors fabricated by spincoating p-xylene solution of PDPP4Tz. 
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transport feature even using Au electrodes as shown in Figure 2.13: no obvious source-

drain current (ID) was detected under negative gate voltage (VG); while ID > 1 µA with VG 

< -40V was observed for a PDBTz based OFET with Au electrodes in a side-by-side 

comparison. PDPP4Tz output scans were performed in range of VG from 0V to 80V with 

VD from 0 V to 80 V (Figure 2.14). Shown in Table 2.2, PDPP4Tz exhibited an electron 

mobility (µe) in a range of 0.02~0.07 cm2V-1s-1 with current on-and-off ratio (ION/OFF) of 

104-105 based on spin-cast and blade-coated films. These results, for the first time, confirm 

the concept of developing unipolar n-channel conjugated polymers via constructing an all 

electron acceptor A-A polymer backbone. It is noteworthy that the field-effect µe of 

PDPP4Tz on OFETs could be further improved after in-depth device design and 

optimization, for example, by incorporation into bottom-gate/top-contact or top-

gate/bottom-contact FETs, such as previously reported for P(NDIOD2-T2)14 and BDOPV 

based polymers.150, 230 Interestingly, µe of PDPP4Tz solution processed from p-xylene is 
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about twice that for devices fabricated from chloroform. These results suggest the 

feasibility to produce n-channel polymeric OFETs using nonhalogenated, more 

environmentally benign solution process options. Thermally annealed films exhibited a 2-

4 fold increase in µe over pristine films, which correlates well with the observed GIWAXS 

Figure 2.15. PDPP4Tz OFET stability under ambient conditions (25 oC and 50-60% RH). 
Devices are fabricated on Si-wafers based on the BGBC configuration. Mobility data were 
measured in a nitrogen filled glovebox with devices stored in vacuum chamber for 12 hours 
to remove moisture and residual air. 

Table 2.2. Electron transport properties of PDPP4Tz fabricated on bottom-gate-bottom-
contact OFETs 
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results. To explore PDPP4Tz air stability, devices were stored at 25 °C and 50−60% RH, 

and were characterized periodically over 4 months. No appreciable decline was observed 

in μe and ION/OFF over this period (Figure 2.15 Effect of OFET stability under ambient 

conditions (25 oC and 50-60% RH). Devices are fabricated on Si-wafers based on the 

BGBC configuration. Mobility data were measured in a nitrogen filled glovebox with 

devices stored in vacuum chamber for 12 hours to remove moisture and residual air.). The 

ambient stability correlates with the low frontier energy levels of the system. 

2.4 Conclusion 

In conclusion, two electron deficient conjugated polymers, PDPP2Tz and 

PDPP4Tz, were designed and synthesized via Stille coupling. Copolymerization of 2,2'-

bithiazole with bithiazole-diketopyrrolopyrrole afforded a new "all-acceptor" (A-A) 

conjugated polymer, PDPP4T. By characterizations based on OFETs, PDPP4Tz was 

proven to be suitable for n-channel organic electronic applications. Another A-A 

copolymer, PDPP2Tz, was also synthesized via homocoupling of bisthiazole-

diketopyrrolopyrrole, but PDPP2Tz showed a very low FET mobility and is not desirable 

for OFET applications.Unlike traditional D-A copolymers, PDPP4Tz provides the first 

case study of a unipolar n-channel polymeric semiconductor comprised of all electron 

withdrawing moieties. For example, in comparison to the D-A PDBTz having electron rich 

thiophenes, PDPP4Tz exhibited unipolar field-effect electron mobility in OFETs even 

using Au electrodes, indicative of enhanced electron deficiency due to the presence of 

thiazole, and thus pure n-channel transport behavior. Current n-channel and ambipolar 

conjugated polymers widely adopt a D-A structure with repeating units that couple one 

acceptor with one donor; the donor moieties in turn dilute polymer electron deficiency. The 
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concept presented in this study that couples one electron acceptor (distannane bithiazole) 

with another to afford an n-channel conjugated polymer can be considered as an alternate, 

effective approach for developing the next generation of electron tranport conjugated 

polymers for device applications. 
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CHAPTER 3. DESIGN, SYNTHESIS AND 

CHARACTERIZATION OF NAPHTHALENE DIIMIDE-

THIAZOLE N-CHANNEL POLYMERIC SEMICONDUCTORS 

AND APPLICATIONS IN OFETS 

(This chapter is partially published in Macromolecules (2018), Yuan, Z.; Buckley, C.; 

Thomas, S.; Zhang, G.; Bargigia, I.; Wang, G.; Fu, B.; Silva, C.; Brédas, J.-L.; Reichmanis, 

E., 51 (18), 7320-7328.) 

3.1 Abstract 

Conjugated monomers and polymers containing 2,2’-bithiazole (BTz) and 

naphthalene diimide (NDI) units in the main chain were prepared. Polymer PNDI2Tz was 

obtained via palladium-catalyzed Stille polycondensation of a dibromo-substituted NDI 

derivative with distannyl-2,2’-bithiazole. The optical and electronic properties were 

investigated using UV-vis absorption spectroscopy and ultraviolet photoelectron 

spectroscopy. It was found that the polymers show very broad absorption bands in the 540 

nm region, and PNDI2Tz has an optical bandgap of 1.87 eV. Computational analysis 

demonstrates that holes and electrons are mainly localized on the 2,2’-bithiazole and NDI 

units, respectively. Organic field-effect transistors (OFETs) fabricated with PNDI2Tz 

exhibit unipolar n-channel characteristics with mobility as high as 0.05 cm2V-1s-1. 
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3.2 Introduction 

Organic semiconducting materials, and the organic field-effect transistors (OFETs) 

they facilitate, have received tremendous attention in recent years because of their 

promising future applications in several technology sectors.119, 231-234 As a number of 

organic p-channel (hole transporting) and ambipolar semiconductors with relatively high 

hole mobilities (µ > 1 cm2V-1s-1) have become commercialized,62, 63, 65 attention is shifting 

to the design and development of their n-channel (electron transporting) counterparts.119, 

235, 236 Potentially useful n-channel building blocks can be found among the various electron 

deficient organic structures.16 Among these, naphthalene diimide (NDI) has been 

extensively studied for its planarity and high ionization potential (i.e., low lying HOMO 

energy level) that can significantly contribute to the n-channel characteristics of resulting 

polymers.14, 67, 69, 70, 98 Another electron deficient building block, 2,2’-bithiazole (BTz) has 

attracted growing interest.64, 76, 90, 120, 121 For instance, Fu et al. demonstrated that compared 

to electron-rich bithiophene (BT), bithiazole can significantly increase the ionization 

Scheme 3.1. Synthesis of poly(2,7-bis(2-decyltetradecyl)-4-methyl-9-(5'-methyl-[2,2'-
bithiazol]-5-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (PNDI2Tz). 
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potential and electron affinity (lower the HOMO and LUMO energy levels) of resulting 

copolymers comprising the thiazole and diketopyrrolopyrrole conjugated polymers.76 

In this chapter, the synthesis and characterization of the naphthalene diimide-

bithiazole based conjugated polymer, PNDI2Tz (Scheme 3.1) via palladium-catalyzed 

Stille polycondensation is reported. Computational studies were conducted to characterize 

the nature of the frontier energy levels, electron density distributions, and molecular 

geometries. The polymer electronic performance was also evaluated by incorporating the 

conjugated polymer as the semiconducting layer in organic field-effect transistor (OFET) 

devices. 

3.3 Results and Discussion 

3.3.1 Synthesis and Characterization of PNDI2Tz 

The electron deficient thiazole ring was recently introduced as a viable acceptor in 

the search for efficient electron transporting semiconducting polymers.76, 90, 120, 121, 237 

Previous studies explored the copolymerization of thiazoles with electron donors such as 

thiophene213, 238 and thienothiophene48-50 and the electron acceptor, diketopyrrolopyrrole 

(DPP)56, 63, 65, 205, revealing the potential of thiazoles as viable units that could be 

incorporated into organic and polymeric electronic materials.90, 121, 239-241 As bithiazole is 

intrinsically planar (with a torsion angle between the two thiazole rings of essentially 180 

°C),90 integrating bithiazole into the design of semiconducting polymers would be expected 

to promote electron delocalization and afford higher electron affinities (lower resultant 

polymer lowest unoccupied molecular orbital (LUMO) energy level). In this study, thiazole 

was co-polymerized with an alkyl substituted NDI through Stille step-growth 
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polymerization in a microwave reactor to afford the polymer, poly(2,7-bis(2-

decyltetradecyl)-4-methyl-9-(5'-methyl-[2,2'-bithiazol]-5-yl)benzo[lmn][3,8]phenan-

throline-1,3,6,8(2H,7H)-tetraone) (PNDI2Tz) (Scheme 3.1). The as obtained PNDI2Tz 

had a mass average molecular weight of 45,000 g mol-1 and polydispersity index (PDI, Ð) 

of 3.5. The 2-decyltetradecyl side-chain was introduced to enhance solubility in common 

organic solvents,76, 90 such as chloroform, dichlorobenzene, and xylenes. Note that the 

polymer chemical structure is such that the thiazole nitrogen atoms point away from the 

NDI moieties: this molecular architecture minimizes the possibility of unfavorable thiazole 

nitrogen – NDI oxygen interactions. 

PNDI2Tz exhibited excellent thermal stability up to 427 °C as determined by 

thermogravimetric analysis (TGA). Differential scanning calorimetry (DSC) was used to 

elucidate additional polymer physical properties such as glass transition temperature (Tg) 

Figure 3.1. Thermal transition characterization of PNDI2Tz. DSC characterization was 
based on the 3rd heating and cooling process in a nitrogen atmosphere with a nitrogen flow 
rate of 50 mL/min and a heating/cooling rate of 5 °C/min. 
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and melting behavior. PNDI2Tz has a Tg at 63.7 °C which most likely originates from the 

branched alkyl side chains. No melting transitions were identified within the temperature 

range from -60 °C up to 250 °C, suggesting that PNDI2Tz has a low degree of crystallinity. 

TGA and DSC scans are provided in Figure 3.1. In addition to exhibiting high thermal 

stability, PNDI2Tz was found to be chemically stable in both the solid and solution states 

for at least 12 months when stored under ambient conditions. No efforts were made to 

exclude light during this period. 

3.3.2 Photophysical properties of PNDI2Tz 

PNDI2Tz optical characteristics were evaluated through UV-vis (Figure 3.2) and 

ultraviolet photoelectron spectroscopy (UPS) (Figure 3.3). The solution spectra (Figure 

3.2a) display no significant solvatochromism in common organic solvents (chloroform, 

toluene, p-xylene, chlorobenzene, and dichlorobenzene). A minor bathochromic shift was 

observed for solution spectra of PNDI2Tz in 1,2,4-trichlorobenzene (TCB), which is 

believed to be due to lower solubility of the polymer in TCB leading to enhanced polymer-

Figure 3.2. a) UV-vis spectra of PNDI2Tz in various organic solvents; b) Comparison of 
PNDI2Tz solution and thin-film UV-vis spectra. 
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polymer interactions. For PNDI2Tz p-xylene solutions, the polymer absorption maxima 

remained at ~540 nm (2.3 eV) even when the temperature was increased to 100 oC (Figure 

3.3), suggesting that the copolymer does not tend to self-assemble into aggregated 

structures at room temperature. The small 5 nm blue-shift in λmax and decreasing intensity 

over the 25 – 100 oC temperature range can be attributed to decreases in conjugation length 

with increasing molecular disorder at higher temperatures.148, 242, 243 

Figure 3.2b provides a perspective on differences observed in the UV-vis spectra 

of PNDI2Tz in solution vs. solidified thin-film state. Spectra of thin-films prepared from 

the polymer in p-xylene solution and then blade coated onto glass substrates at room 

temperature, displayed an increase in the onset of absorption upon thermal annealing above 

the polymer Tg. Pristine PNDI2Tz thin films exhibit an optical bandgap (Eg
opt) of ca. 2.04 

eV as determined from the UV-vis absorption onset at ca. 608 nm (2.03 eV). After thermal 

annealing, the absorption onset shifted to ca. 657 nm, resulting in a narrower optical 

bandgap of 1.89 eV. As shown in Figure 3.2b, Eg
opt for the thermally annealed films was 

ca. 0.2 eV (55±13 nm) lower than that for samples that had not been subject to the 

Figure 3.3. Ultraviolet photoelectron spectrum (UPS) for PNDI2Tz thin film cast on Au-
coated silicon wafer. 
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annealing step. It can thus be inferred that the thermal treatment enabled the polymer chains 

to rearrange themselves more effectively into more highly ordered states. For comparison, 

thin films of the copolymer of NDI with bithiophene, namely N2200, exhibited an 

absorbance with λmax at 594 nm with an onset of absorption at 642 nm (Eg
opt = 1.93 eV).69, 

72 PNDI2Tz solution temperature-variable UV-vis spectra were collected in p-xylene (2 

mg/mL) at 10 oC intervals from 25 oC to 105 oC. (Figure 3.4) Results show no clear 

bathochromic shifts in main absorption peak of PNDI2Tz, but a decrease in peak intensity 

at 540 nm was recorded. 

PNDI2Tz was further evaluated by ultraviolet photoelectron spectroscopy to 

extract an estimate of the polymer’s ionization potential (IP). As presented in Figure 3.3, 

the bithiazole based conjugated polymer exhibited an IP of 5.78 eV, compared to 5.36 eV 

Figure 3.4. Temperature-dependent UV-vis spectroscopy on a p-xylene solution of 
PNDI2Tz. 
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for N2200.67, 72 The high IP observed for PNDI2Tz suggests that the system should possess 

excellent ambient stability toward oxidation, and supports the anecdotal observations that 

PNDI2Tz is stable in ambient environments for over 6 months (vide supra).7  

Photoluminescence spectroscopy was used to further understand the photophysical 

properties of PNDI2Tz in solution and thin film form (Figure 3.5). A 532 nm continuous-

wave laser was used as the light source, and the light was focused on the sample with a 

lens of 75 mm focal length. PNDI2Tz fluorescence spectra exhibit a λmax at 601 nm in 

solution, while thin-films exhibit a bathochromic shift to 656 nm. PNDI2Tz exhibits a 

small degree of fluorescence in solution with a quantum yield of 0.06, displays a large 

Figure 3.5. Photoluminescence of PNDI2Tz in p-xylene and in solid state, compared to 
the UV-vis absorptions in solution and in thin film. 
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Stokes shift, and polymer thin-films were found to be weakly emissive. Note that the 

Stokes shifts observed in the photoluminescence spectra were 0.23 eV and 0.41 eV for the 

solution and thin-film, respectively (61 nm for solution, and 116 nm for thin film). This 

large Stokes shifts strongly suggests that the structures of the emitting state and ground 

state are substantially different. 

3.3.3 PNDI2Tz Electrochemical Properties 

The electrochemical potentials of PNDI2Tz thin films were evaluated using cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV) (Figure 3.6). Cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV) measurements of PNDI-2Tz 

were performed in a one-compartment three-electrode electrochemical cell with a platinum 

flag as the counter electrode and an Ag/Ag+ reference electrode. Polymer films were drop-

cast onto a glassy carbon button (0.02 cm2) working electrode from a 2 mg/mL polymer 

solution in CHCl3. All measurements were taken in a 0.5M TBAPF6/PC supporting 

electrolyte solution at a scan rate of 50 mV/s. For DPV experiments, a step size of 2 mV, 

step time of 100 ms, and a pulse amplitude of 100 mV was used. 

PNDI2Tz exhibits two reversible reduction peaks, with the onset for reduction at -

0.69 V (vs. Fc/Fc+) by CV, and -0.64 V (vs. Fc/Fc+) by DPV. No oxidative potentials were 

observed out to a potential of 1.2 V. Using the approximation of the formal potential of 

Fc/Fc+ to be -5.1 eV on the Fermi scale,102, 244, 245 the reduction potentials would correspond 

to an electron affinity of 4.40 to 4.46 eV. These values are lower than the LUMO estimates 

of the bithiophene analog N2200 (4.0 eV), which is an expected result of replacing the 

bithiophene with bithiazole.72 Interestingly, the recently reported isomeric P(NDI2OD-
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Tz2) with a 5,5’-bithiazole unit exhibited a slightly lower estimated LUMO energy of 4.10 

eV.246 Conceivably, the 5,5’-bithiazole analog may have a relatively higher degree of 

torsional disorder compared to PNDI2Tz (vide infra), which would result in a lower degree 

of electronic coupling along the linear chain. PNDI2Tz photophysical characterization 

suggests that PNDI2Tz has potential as an ambient stable electron transport material.86, 216 

3.3.4 Computational Modeling 

(Section 3.3.4 is completed in collaboration with Dr. Simil Thomas and Dr. Jean-
Luc Bredas at Georgia Institute of Technology, Atlanta, Georgia, USA. (2018)) 

Figure 3.6. CV and DPV results for PNDI2Tz thin film drop-cast on a glassy carbon 
button. 
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In order to fully characterize the molecular geometry, nature of the frontier 

HOMO/LUMO energy levels, and first optical absorption of PNDI2Tz, a series of Density 

Functional Theory (DFT) calculations were conducted at the long-range corrected ωB97X-

D/6-31G(d,p) level using the Gaussian 09 (Revision D.01) code.247 The range-separation 

parameter (ω) was optimized following the IP tuning procedure.218, 219 The value of ω for 

the isolated PNDI2Tz repeat unit is 0.17 Bohr-1. Using this ω value, the torsion potentials 

(PES) between (i) the NDI and BTz units and (ii) the two thiazole units were calculated at 

5° intervals (from 0° to 180°), by fixing the dihedral angles as shown in Figure 3.7a and 

relaxing all other geometric degrees of freedom. The N-substituted side-chains of the NDI 

units were replaced with methyl groups to reduce computational cost since these side 

chains have negligible impact on the geometric and optical properties of the isolated 

polymer backbone. The torsion potential between NDI and BTz (Figure 3.7a) has a 

minimum around 120o dihedral angle (with the nearest thiazole sulfur pointing towards an 

NDI oxygen), and is relatively flat (within 0.6 kcal/mol, i.e., kT at room temperature) 

between 60º and 140º. 

On the other hand, the torsion potential between the two thiazole units strongly 

favors the anti-coplanar structure. Overall, the NDI-thiazole interactions point to the 

PNDI2Tz polymer backbone being non-planar in the solid state. This contrasts with the 

N2200 backbone that is expected to be more planar.248, 249 In comparison, the 5,5’-

bithiazole analog P(NDI2OD-T2), where the thiazole nitrogen atoms point towards the 

NDI units, has a broad and flat potential profile at θ ≈ 90o, making for a nearly orthogonal 

torsion angle between the NDI and 5,5’-BTz units and indicating a large degree of 

conformational disorder.246 These results demonstrate the significant impact isomeric 



 64 

structures can have on the equilibrium geometry of the final polymers, which in turn can 

influence the electronic performance of the materials. 

The optical properties of PNDI2Tz were calculated at the time-dependent DFT 

(TD-DFT) level. The influence of the dielectric medium was modeled within the self-

consistent reaction field (SCRF) framework (taking into account a dielectric constant, ε = 

4.71, equivalent to chloroform, to maintain consistency with experiment) and using the 

Figure 3.7. a) Torsion potentials related to the rotation of the adjacent units in the monomer 
of PNDI2Tz; relative energies determined at the tuned-ωB97X-D/6-31G(d,p) level. b) 
Evolution of the optical gap vs. oligomer size for PNDI2Tz as calculated at the TD-DFT 
(tuned-ωB97X-D/6-31G(d,p)// ωB97X-D/6-31G(d,p) level of theory). (c) TD-DFT (tuned-
ωB97X-D) natural transition orbitals (bottom: hole wavefunction; top: electron 
wavefunction) with the largest contribution to the S0  S1 transition in the PNDI2Tz 
trimer. 
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integral equation formalism of the polarizable continuum model (IEF-PCM).250 Figure 

3.7b illustrates the convergence of the optical gap as a function of the oligomer length of 

NDI2Tz; convergence is nearly reached at the level of the trimer already and extrapolation 

to the polymer gives a value of 2.26 eV, which is to be compared with an experimental 

optical absorption onset of 2.04 eV in the pristine thin-film. Figure 3.7c displays the DFT-

calculated tuned-ωB97X-D natural transition orbitals (with the largest weight) for the S0 

to S1 transition in the trimer of PNDI2Tz. The hole localizes essentially over bithiazole 

units and the electron over NDI units; this coupled-oscillator picture of the lowest optical 

transition rationalizes the weak solvatochromism experimentally observed.251 

3.3.5 Thin-film morphology and solid-state crystallinity 

PNDI2Tz thin-film microstructures were investigated by two-dimensional grazing 

incidence wide angle X-ray scattering (GIWAXS) (Figure 3.8). Films were prepared by 

blade coating p-xylene-solutions of PNDI2Tz onto Si substrates (300 nm SiO2 dielectric 

on heavily p-doped Si). PNDI2Tz is a predominantly face-on polymer evidenced by the 

diffraction peak on the z-axis (out-of-plane). Polymer thin films are largely amorphous, 

with limited crystallinity as suggested by the absence of well-defined diffraction patterns 

along the qxy (in-plane) axis. Thermal annealing (150 °C, 30 min) does not appear to 

improve the molecular packing as well as expected. This is likely due to the twisted 

conjugated backbone that prevents packing of polymer molecules into highly ordered 

aggregates. A lamellar d-spacing of 29.76 Å and π-π stacking distance of 3.60 Å can be 

derived from the diffraction peak at qxy= 0.211 Å-1 and qz = 1.75 Å of the pristine film. The 

annealed film (150 °C, 30 min) possesses more well-defined peaks with higher peak 

intensities for both lamellar packing and π-π stacking diffractions. The π-π stacking 
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distance for annealed films was similar, 3.58 Å, to that for as-deposited polymers, while 

the lamellar stacking distance was shorter, 29.18 Å. 

The surface morphologies of PNDI2Tz polymer films were explored using 

tapping-mode atomic force microscopy (AFM), as shown in Figure 3.9. Polymer films 

Figure 3.9. Grazing-incidence wide-angle X-ray scattering (GIWAXS) results of pristine 
and annealed PNDI2Tz on Si wafers. 

Figure 3.8. Atomic force microscopy (AFM) images of PNDI2Tz films cast on UV-ozone 
SiO2 surfaces and OTS-processed SiO2 surfaces. 
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were blade coated onto either UV-ozone cleaned Si substrates (300 nm SiO2 dielectric on 

heavily p-doped Si), or Si substrates processed with octadecyltrichlorosilane (OTS). Films 

fabricated on UV-ozone treated Si substrates exhibit larger sized features than films cast 

onto OTS surfaces. Films on OTS display a more nanofibrillar morphology with short 

nanofibers. Also, films coated on OTS treated substrates displayed significantly lower 

surface roughness (Ra = 0.87 nm ± 0.15 nm) than films cast on UV-ozone cleaned SiO2 (Ra 

= 1.72 nm ± 0.43 nm). Thermal annealing up to 150 °C did not appear to alter thin film 

surface morphology, possibly due to the amorphous nature of PNDI2Tz polymer leading 

to no change in crystallinity before and after thermal treatment. 

3.3.6 Charge Transport Performance 

PNDI2Tz was dissolved into p-xylene (4-6 mg/mL) and blade-coated onto Si/SiO2 

substrates with pre-evaporated source and drain electrodes to fabricate bottom-gate-

bottom-contact (BGBC) organic field-effect transistors (OFETs). For blade-coated films, 

8-15 μL of polymer solution (4-6 mg/mL) was added on one side of a glass slide or wafer 

that had been sitting on the heating stage for at least 5 minutes to ensure the substrate was 

at the programmed temperature. In this study, only blade coating was performed due to 

poor film formation via spin coating methods. For the fabrication of bottom-gate/bottom-

contact organic thin-film transistors, highly n-doped (100) silicon wafers with a 300 nm 

thermally grown oxide gate dielectric film were used as device substrates. Au source and 

drain contacts (50 nm of Au contacts with 3 nm of Cr as the adhesion layer) with fixed 

channel dimensions (50 μm in length and 2000 μm in width) were deposited via e-beam 

evaporation using a photolithography lift-off process. The Si/SiO2 substrates were washed 

via bath sonication (Branson® Ultrasonic Bath, 230 Vac, 50 Hz) sequentially in acetone, 
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methanol and isopropyl alcohol for 15 min, followed by treatment in UV-ozone for 30 min 

(Novascan® PSD-UV - Benchtop UV-Ozone Cleaner). The general treatments 90 were 

employed for the treatment of gate dielectric layers using three self-assembled monolayers. 

The capacitances of the dielectric layers were measured using an Agilent 4284A Precision 

LCR meter. 

Semiconducting thin films were fabricated via blade-coating at 100 °C to improve 

solvent evaporation and thin film formation on passivated surfaces. During the blade-

coating process, 5 to 10 μL of semiconductor solution (4-6 mg/mL) was cast onto a heated 

substrate (1.5 cm × 1.5 cm). The angle between the glass blade and the substrate was set to 

be ca. 8°. Thin film formation was optimized by controlling different solution-shearing 

conditions such as substrate temperature and blade-coating speed. The blade-coated 

substrates were placed in a vacuum oven at 55 °C overnight to remove residual solvent. 

Film thickness was characterized using a Bruker DektakXTTM Stylus Profilometer. Film 

thickness varied with respect to fabrication methods. 

OFET electronic characteristics were measured using an Agilent 4155C 

semiconductor parameter analyzer inside a N2 filled glovebox. Charge carrier mobilities 

(μ), threshold voltages (Vth) and on/off ratios (Ion/off) were calculated in the saturation 

regime. he reported values are the average of 15 different devices with the standard 

deviation recorded. Each mobility data point was obtained by casting PNDI2Tz thin films 

onto 10-12 separate OFET devices. Electron mobilities were measured on all devices 

prepared on octadecyltrichlorosilane (OTS) passivated substrates. It is noted that no 

electron mobilities were measurable on bare SiO2 surfaces, most likely due to the presence 
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of hydroxyl groups which serve as charge traps.252 OTS treated devices displayed the 

highest mobilities. 

While OFETs were fabricated with shearing in both directions (parallel and 

perpendicular to channel width); shearing direction had no apparent impact on charge 

carrier mobility, most likely due to the relatively amorphous nature of the films. Note that 

conjugated polymer charge transport performance is known to depend on overall film 

morphology, which includes polymer orientation, polymer-polymer orientation, polymer 

domain orientation, and aggregated domain connectivity.253 As noticed in Figure 3.10, 

transfer curves show consistent performance with hysteresis which derives from the 

imperfect morphologies between thin film and OTS-processed dielectric layers.252, 254, 255 

We believe that the slightly twisted conjugated backbone in PNDI2Tz compared to the 

Figure 3.10. PNDI2Tz transfer curves measured on bottom-gate-bottom-contact OFETs 
(devices were coated at 3 mm/s; five device results overlapped showing consistent 
performances; devices are annealed in a N2 glovebox at 150 °C for 30 min followed by 
cooling). 
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more planar backbone of N2200 hindered effective organization of PNDI2Tz into 

structures having a higher degree of π-π interactions that would be expected to lead to 

effective intramolecular charge transport. Future studies focused on X-ray scattering of 

PNDI2Tz and N2200 thin films are expected to elucidate fundamental differences in 

PNDI2Tz and N2200 OFET charge transport behavior. 

3.4 Conclusion 

In this chapter, we reported the synthetic route to, and key properties of, a thiazole-

based n-channel conjugated polymer, PNDI2Tz. The polymer featured low HOMO (-5.78 

eV) and LUMO (−3.39 to −3.59 eV) levels; and based upon computational studies, 

possesses a slightly twisted backbone with clear donor-acceptor character. PNDI2Tz 

OFETs were also fabricated and characterized demonstrating unipolar n-channel 

characteristics with a field-effect mobility as high as 5.30×10-2 cm2V-1s-1, a slightly lower 

value compared to the benchmark n-channel material N2200. Further studies related to the 

polymer solid state packing and charge transport mechanism are under way. Computational 

modeling revealed significant differences in the equilibrium geometries of NDI polymers 

synthesized with isomeric bithiazole units. These differences would be expected to 

influence materials electronic performance and demonstrate how seemingly minor 

molecular structural differences can influence polymer organization and self-assembly, 

which in turn impacts electronic performance in devices. The fundamental insights derived 

from synergistic, tightly coupled computational and experimental investigations presented 

here are expected to provide a foundation for the identification of robust and 

manufacturable materials for flexible electronics applications. 
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CHAPTER 4. NANOFIBER FORMATION IN NAPHTHALENE 

DIIMIDE-THIAZOLE BASED CONJUGATED POLYMER 

OFETS VIA DIELECTRIC SURFACE PROCESSING 

4.1 Abstract 

Self-assembled monolayers (SAMs) are becoming an essential component of 

organic electronics devices, such as organic photovoltaics (OPVs) and organic field-effect 

transistors (OFETs), due to their impacts on interface energetics and thin film interfacial 

morphology. This chapter focuses on interface engineering and its influence on thin film 

morphology and OFET performance. SAMs of three organic molecules presenting 

different surface properties were prepared on silicon dioxide surfaces to explore the impact 

of surface effects. The charge transport performance of three different, but structurally 

similar donor-acceptor conjugated polymers were studied as a function of SAM molecular 

composition in OFET applications. Seemingly, the formation of conjugated polymer 

nanofiber network is promoted by SAM layer surface effects. A combination of surface 

energy effects and buried interface effects promotes desirable polymer packing in solid 

state. In addition, surface energy seems to have direct impact that can enhance molecular 

packing and conjugated polymer π-π interactions. Low energy surfaces appear particularly 

favorable from an energetic standpoint for conjugated polymers to form tight nanofiber 

networks that enhance charge carrier mobilities. 
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4.2 Introduction 

As discussed in the chapters above, organic semiconducting materials, and the 

organic field-effect transistors (OFETs) they facilitate, have received tremendous attention 

in recent years because of their promising future applications in several technology 

sectors.119, 231-234 As a number of organic p-channel (hole transporting) and ambipolar 

semiconductors with relatively high hole mobilities (µ > 1 cm2V-1s-1) have become 

commercialized,62, 63, 65 attention is shifting to the design and development of their n-

channel (electron transporting) counterparts.119, 235, 236 In addition, investigations associated 

with semiconductor solution processing methods, device fabrication techniques and device 

architectures are of significant interest.14, 256-258 Notably, n-channel organic semiconductors 

are sensitive to electron charge traps that can negatively impact device performance.63, 259 

Thus, methods to reduce such traps, particularly in organic photovoltaic (OPV)20, 21, 204 and 

OFET devices are required for the development of robust systems.260, 261 As one example, 

surface defects and surface functionalities such as hydroxyl groups are known trap sites, 

which can be reduced through substrate surface passivation prior to semiconductor 

deposition using commodity chemicals such as octadecyltrichlorosilane (OTS) and 

hexamethyldisilazane (HMDS).63, 262 

Operationally, surface passivation simply changes the nature of substrate surface 

chemical functionalities, which may in turn impact substrate surface energy. For instance, 

OTS, with its long alkyl side chain, more effectively reduces substrate surface energy when 

compared with HMDS.263 In turn, surface chemistry coupled with surface energy will 

impact polymer orientation (edge-on vs. face-on), surface wetting, the thin film formation 

process and ultimately final film morphology264-266, all of which are determining factors 
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for device performance. Frequently, OTS has been used as an adhesion promoter and 

dielectric surface passivation agent in the fabrication of polymer semiconductor based 

OFETs; additionally, the alkyl silane has been reported to afford improved charge carrier 

mobility in comparison to other surface passivation layers.267, 268 Bao and co-workers have 

developed patterned substrates with hydrophobic and hydrophilic sections to promote 

conjugated small molecule single crystal formation which leading to high performing small 

molecule OFETs. 186, 187 Fu et al reported that the long alkyl chains in OTS can interact 

with side chains on polymers, promoting polymer molecules to form desirable face-on 

orientation when polymer PDBTz and pTBTD-5DH are deposited onto OTS-processed 

SiO2 surfaces.76, 82, 169 Kline et al reported the buried interface effect with SAM-processed 

substrate surface which significantly varies the concentration of highly oriented conjugated 

polymer crystalline phases. Their study revealed that the polymer morphology at the buried 

interface can be different from that in the bulk of the thin films, and further impact charge 

transport in thin-film devices.170 Studies have also shown that processed substrate surface 

energies can impact grain size and surface morphology of organic semiconductor thin films 

Figure 4.1. Chemical structures of conjugated polymers studied, PNDI2Tz (left), 
P(NDI2OD-T2) (middle), and PDPP4T (right). 
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and subsequently, device performance.101, 269, 270 Nevertheless, definitive relationships 

between processing conditions, surface passivation effects and OFET performance have 

not been identified; and thus guidelines for the design of effective process protocols remain 

elusive. 

In this chapter, the impacts of substrate surface energy, processing conditions and 

device performance were investigated and key relationships have been identified. 

Specifically, the phenomena were interrogated using thin-film transistor devices fabricated 

using the recently reported n-channel polymer, poly (naphthalenediimide-bithiazole) 

(PNDI2Tz) (structure shown in Figure 4.1).271 In addition, the applicability of the findings 

for effective processing of alternative donor (D) – acceptor (A) polymers was demonstrated 

using a naphthalene-diimide based n-channel material, namely poly(naphthalene-diimide) 

(PNDI2OD-T2, “N2200”)14 (synthesized by Carolyn Buckley in collaboration) and a 

benchmark p-channel conjugated polymer, poly(diketopyrrolopyrroledione-terthiophene) 

(PDPP4T)56. Substrate surface energy was manipulated using three commonly used silane 

surface passivation agents, namely, OTS, PTS (phenyltrichlorosilane), and HMDS. The 

results provide significant insight into key structure-process-property relationships 

surrounding the use of surface passivation materials and their consequential impact on 

semiconducting polymer charge transport performance. 

4.3 Results and Discussions 

4.3.1 Semiconducting polymer synthesis 

The electron deficient thiazole ring was recently introduced as a viable acceptor in 

the search for efficient electron transporting semiconducting polymers.76, 90, 120, 271 Previous 
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studies explored the copolymerization of thiazoles with electron donors such as thiophene 

and thienothiophene, and the electron acceptor, diketopyrrolopyrrole (DPP), revealing the 

potential of thiazoles as valuable units in organic electronic materials.90, 121, 239-241 Recently, 

thiazole was co-polymerized with a 2-decyltetradecyl substituted NDI through Stille step-

growth polymerization to afford PNDI2Tz.271 Synthesized PNDI2Tz has a molecular 

weight (number average molecular weight, Mn) of 49.3 kD and polydispersities (PDI, Ð) 

of 3.3. N2200 and PDPP4T were synthesized via literature procedures56, 69 (N2200: Mn = 

53 kD, PDI = 1.3; PDPP4T: Mn=29.1 kD, PDI = 2.4). 

4.3.2 Dielectric layer processing 

Processed SiO2 surface energies were as follows: OTS (21.99 ± 1.97 mJ/m2), PTS 

(28.63 ± 0.83 mJ/m2), and HMDS (35.77 ± 2.23 mJ/m2) (Figure 4.2). For blade-coated 

films, 8-15 μL of polymer solution (4-6 mg/mL) was added on one side of a glass slide or 

wafer that had been sitting on the heating stage for at least 5 minutes to ensure the substrate 

was at the programmed temperature. In this study, only blade coating was performed due 

to poor film formation via spin coating methods. For the fabrication of bottom-gate/bottom-

contact organic thin-film transistors, highly n-doped (100) silicon wafers with a 300 nm 

thermally grown oxide gate dielectric film were used as device substrates. Au source and 

drain contacts (50 nm of Au contacts with 3 nm of Cr as the adhesion layer) with fixed 

channel dimensions (50 μm in length and 2000 μm in width) were deposited via e-beam 
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evaporation using a photolithography lift-off process. The Si/SiO2 substrates were washed 

via bath sonication (Branson® Ultrasonic Bath, 230 Vac, 50 Hz) sequentially in acetone, 

Figure 4.2. a) Chemical structures of hexamethyldisilazane (HMDS), 
phenyltrichlorosilane (PTS) and octadecyltrichlorosilane (OTS); b) Optical images 
showing the contact angles of the HMDS, PTS and OTS processed SiO2 surfaces and 
surface free energy calculation results. Contact angles in table is the average value of 8 
measured spots. 
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methanol and isopropyl alcohol for 15 min, followed by treatment in UV-ozone for 30 min 

(Novascan® PSD-UV - Benchtop UV-Ozone Cleaner). The general treatments 90 were 

employed for the treatment of gate dielectric layers using three self-assembled monolayers 

(OTS, PTS and HMDS). The capacitances of the dielectric layers were measured using an 

Agilent 4284A Precision LCR meter. 

4.3.3 Polymer thin-film microstructures and morphology 

PNDI2Tz thin-films were prepared by blade coating the respective polymer 

solutions at elevated temperature (100 °C). At room temperature, resultant films were 

inhomogeneous, while no film formation was obtained using spin-coating due to poor 

wetting of polymer solution on SAM-treated SiO2. The microstructure and thin-film 

Figure 4.3. AFM images of PNDI2Tz thin films fabricated on HMDS, PTS and OTS 
surfaces showing the development of polymer nanofiber network. Bottom row is the three-
dimensional representation of the height images for clear view. Scale bars are all 400 nm. 
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morphology were studied by atomic force microscopy (AFM) (Figure 4.3) and grazing-

incidence wide angle X-ray scattering (GIWAXS) (Figure 4.4). AFM phase and height 

images of blade coated PNDI2Tz (Figure 4.3), demonstrated the evolution of thin- film 

morphology from a relatively featureless film to one with clearly defined PNDI2Tz 

networked nanofibers. In the current investigation, similar nanofiber network formation 

was observed, and more detailed discussion is presented in Chapter 4.3.4 – “Process 

Versatility”, below. 

Figure 4.4. a) GIWAXS image of PNDI2Tz thin-films on HMDS, PTS and OTS processed 
SiO2 surfaces; b) 1D line cut along Chi = 15° with zoomed-in plot on qz = 0.6~1.8 A-1; c) 
π- π stacking Chi plot from xy-plane (Chi = 0°) to z-axis (Chi = 90°). 
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PNDI2Tz nanofibers exhibited large, substrate surface chemistry dependent 

variations in density and scale (Figure 4.3). On either bare SiO2 or HMDS treated surfaces, 

only nanoscale granular-like features were observed upon blade coating the PNDI2Tz 

solutions; PTS passivation afforded polymer surfaces with only somewhat more structure. 

In contrast, OTS treated substrates facilitated PNDI2Tz nanofiber formation at blade 

coating speeds above 1 mm/s (Figure 4.5). As the coating speed increased up to 4 mm/s, 

an interconnected nanofiber network was formed. When the coated speed was increased 

further, no homogeneous film formation was discerned. The AFM results highlight the 

influence of substrate interface chemistry and likely, surface energy on the development of 

conjugated polymer thin-film morphology. In addition, AFM height images (Figure 4.3) 

show clear variations in surface morphology. The results suggest that more surface features 

Figure 4.5. PNDI2Tz AFM height and phase image with blade coating speeds. Scale bar 
is 400 nm. 
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derived from nanofibers can be attained via high temperature solution shearing, especially 

under higher blade coating speed (3 mm/s). (Figure 4.5). 

GIWAXS profiles of PNDI2Tz thin-films presented (100) reflection peaks along 

the out-of-plane (qz) direction, corresponding to polymer lamellar stacking orientated 

normal to the substrate (Figure 4.4). However, halo-like patterns are apparent along the 

azimuthal angle at (100) peak, indicating a distribution of polymer orientations within the 

film.258, 272. GIWAXS scans also revealed that blade-coated films possess a low degree of 

order compared to many semi-crystalline conjugated polymers; note the faint (010) 

diffraction and absence of higher order (300) and (400) lamellar packing peaks. This may 

be due to the larger dihedral angle between the thiazole and NDI units, which introduces 

twisting in the conjugated backbone. In addition, the alkyl side chain branch point is closer 

to the NDI units and thus steric hindrance effects may prevent formation of a semi-

crystalline film.82 The 1D GIWAXS integration profiles (with background strip) are 

presented in Figure 4.4b. Strong (100) peaks at qz = ca. 25 Å were observed for all thin 

Table 4.1. Electron transporting properties of PNDI2Tz based OFET devices fabricated 
under high temperature blade coating conditions on processed wafer devices. 
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films. The calculated average (100) d-spacing for high temperature blade-coated polymer 

films on OTS treated surfaces was slightly smaller than that obtained for PTS counterparts, 

namely, 24.74 Å vs. 25.86 Å, respectively. Further on OTS, PNDI2Tz exhibited a 

significantly stronger signal in the (010) direction, as the signal along q = 1.5-1.7 Å-1 was 

integrated across all azimuthal angles. OTS treated substrates also provided for PNDI2Tz 

films having a somewhat shorter π-π stacking distance of 3.87 Å (q = 1.623 Å-1). Together, 

GIWAXS and AFM data strongly suggest that the lower energy OTS surfaces promote the 

formation of tightly packed conjugated polymer structures. 

4.3.4 PNDI2Tz Charge Transport Performance 

Blade coated PNDI2Tz based OFET devices were fabricated by shearing polymer 

solutions in both the parallel and perpendicular direction relative to channel width. 

Shearing direction did not appear to impact mobility (μ), conceivably due to the somewhat 

isotropic nature of the as formed nanofiber network (AFM results, vide supra). For each 

processed surface (including the pristine SiO2), 10 devices were coated with each 

PNDI2Tz solution at 100 °C and each coating speed. The electron transport performance 

results are presented in Table 4.1 and Figure 4.6. No electron mobility (μe) was discernable 

on bare SiO2 surfaces, most likely due to the presence of hydroxyl groups which serve as 

charge traps. 
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No OTS treated devices consistently displayed the highest mobilities, and the 

results appear well-correlated with enhanced nanofiber formation as observed by AFM. 

Upon increasing shearing speed from 1 to 3 mm/s, average μe increased from 1.57×10-2 

cm2V-1s-1 to 7.05×10-2 cm2V-1s-1. Continuing to increase shearing speed from 4 to 5 mm/s 

led to decreased μe (1.06×10-2 cm2V-1s-1) as a result of poor film formation, i.e., formation 

of isolated polymer domains. As a result, 3 mm/s was selected as the optimized coating 

speed. From examination of the results in Table 4.1, films fabricated on OTS treated 

surfaces exhibited a 2-to-5 fold increase in μe vs the same semiconducting polymer 

deposited on PTS or HMDS treated substrates. 

Figure 4.6. Transfer curve of PNDI2Tz devices coated on HMDS, PTS and OTS 
processed bottom-gate-bottom-contact transistors. Solid dots are ID vs VG curve, and 
hollow-dots are ID

1/2 vs VG curve. Devices were fabricated at a blade-coating speed of 3 
mm/s. 
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4.3.5 Process Versatility-comparison with benchmark D-A conjugated polymers 

To investigate whether the trends identified for PNDI2Tz are generally applicable 

to other D-A polymer semiconductors, two alternative conjugated polymers were 

evaluated, namely, the hole transport conjugated polymer, PDPP4T56, and the electron 

transport material, PNDI2OD-T214, 69, also known as N2200 (Figure 4.7). Polymer 

solutions having a concentration of 4-6 mg/mL were prepared using p-xylene as solvent. 

Thin films were blade coated under optimized speeds (2 - 4 mm/s) at 100 °C on OTS-

passivated surfaces. AFM images (Figure 4.7 2 to 5 μm viewing area) confirmed the 

Figure 4.7. AFM height and phase images of two other polymers (N2200/n-channel, 
PDPP4T/p-channel) indicating the formation of nanofiber networks on OTS-processed 
devices at blade-coating speed of 3 mm/s and 4 mm/s, respectively. Scale bar is 400 nm. 
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presence of high density nanofiber networks in both systems. Due to polymer solubility 

differences, however, the morphologies differed somewhat from those observed for 

PNDI2Tz. Importantly, AFM images of both polymers showed similar network structure 

emerging under the blade coating conditions used here. 

While overall morphology was different, the fabrication strategy developed for 

PNDI2Tz effected an increase in mobility for both PDPP4T and N2200 (Table 4.2 and 

Figure 4.8). Further process optimization is expected to provide for additional 

enhancements. Similar to PNDI2Tz transport performance, improved hole and electron 

transport performance for PDPP4T and N2200, respectively, is attributed to enhanced 

nanofiber network formation, particularly on low energy surfaces. For instance, PDPP4T 

mobility was only 0.28 cm2V-1s-1 on HMDS passivated surfaces, while OTS-processed 

devices exhibited μ = 1.41 cm2V-1s-1, or in other words, a 5-fold increase. Similarly, N2200 

exhibited a 4-fold increase in mobility, from 0.047 cm2V-1s-1 to 0.216 cm2V-1s-1, for HMDS 

vs. OTS-processed OFETs. The mobilities measured here were lower than the highest 

values reported due to differences in device architecture, significant enhancements in 

Table 4.2. OFET performances of PDPP4T and N2200 under proposed blade coating 
conditions (same as the highest performing condition in Table 4.1). 



 85 

OFET performance, directly correlated with interface chemistry and surface energy, were 

achieved in all three systems examined in this study. 

4.3.6  Nanofiber Formation and Charge Transport 

Semiconducting polymer charge transport performance is generally believed to be 

highly dependent upon overall film morphology, which includes the orientation of 

individual polymer chains relative to the substrate surface, orientation of chains with 

respect to each other, the level of aggregation of polymer chains into π-π stacked 

structures/domains and connectivity between aggregated domains.253 Blade coating 

semiconductors from solution is a readily scalable thin-film deposition method known to 

enhance fiber alignment, fiber long-range and short-range order, and charge transport due 

Figure 4.8. Transfer curves of PDPP4T (p-channel), and N2200 (n-channel) showing 
processing versatility. Solid lines are source-drain current of OFETs, and dashed lines are 
source-drain current square roots. 
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to shear force.273-275 The versatility of blade coating also allows for use of a wide range of 

solvents and easy control of substrate temperature. While the impact of shear forces on 

selected D-A conjugated polymers has been investigated, few studies have explored the 

role of substrate surface energy. 

Here, three different, yet structurally similar D-A conjugated polymers were used 

to demonstrate the impact of substrate temperature, shear forces and interface 

chemistry/surface energy on charge transport performance. In all cases under optimized 

shear conditions, passivation of the device substrate to afford a lower energy surface led to 

fibril formation and enhanced charge transport performance. For the polymers investigated 

in this study, fabrication of thin-films on any processed surface was problematic when 

using p-xylene as solvent at room temperature. While solution deposition on higher energy 

surfaces (HMDS and PTS) vs. the OTS lower energy counterpart afforded more continuous 

semiconductor films, charge transport was impeded. With an increase in substrate 

temperature to enhance solvent evaporation, the polymer inks were able to consistently 

form uniform films, even on low energy surfaces. As temperature increased, more reliable 

and consistent film formation was achieved on HMDS surfaces and PTS surfaces; high 

quality films on OTS surfaces were formed up to100 °C. 

Substrate temperature, blade speed and substrate surface energy, in combination 

impacted ultimate thin-film morphology, nanofiber formation in particular. As 

demonstrated by AFM imaging (Figure 4.3 and Figure 4.5), nanofiber formation, density 

and orientation varied significantly with shearing speed. An ‘optimized’ microstructure, 

favorable to charge transport was obtained at a blade speed of 3 mm/s, which afforded the 

highest observed mobility for all polymer examined here. Under these conditions, 
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particularly on the lower energy OTS surface, networked nanofiber structures were 

attained. At higher blade coating speed, film formation was impacted due to solvent 

cohesion effects, relative to solvent evaporation. As substrate temperature increases, the 

solvent evaporates at a faster rate, leaving many microvoids in the film, thus exposing the 

substrate as the solute polymer chains self-assemble into tighter bundles driven by surface 

tension. Therefore, as solvent evaporates, polymer nanofiber formation was enhanced on 

lower energy surfaces. While this process enhances polymer nanofiber formation, overall 

processing conditions must be balanced to afford interconnected, uniform films. In 

addition, AFM results indicate the presence of aggregated nanofiber interactions within the 

fibril network. More obvious interactions were found in samples fabricated with a coating 

speed of 3 mm/s. (Figure 4.3) GIWAXS results revealed that the lamellar and π-π stacking 

distance both decreased for PNDI2Tz films fabricated on OTS vs. PTS and HMDS 

Figure 4.9. Schematic representation of the proposed conjugated polymer nanofiber 
network formation process on OTS-processed substrates. 
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surfaces, which implies that the molecular backbones and side chains became increasingly 

close-packed under the ‘optimized’ conditions. 

Figure 4.9 presents a mechanistic, schematic representation of the evolution of film 

morphology with enhanced polymer nanofiber formation on an OFET device substrate. 

The synergistic effects of shear stress, cohesion, and high temperature aided film formation 

were expected to promote formation of a microstructure favorable for charge transport. 

Here, thin film devices fabricated on different energy surfaces were studied: shear at high 

temperature combined with use of a lower energy surface was favorable for thin film 

deposition and enhanced nanofiber network formation. From a fluid dynamics perspective, 

flow viscosity varied significantly with a change in the dimensions of the confined 

structure.276 Molecular chain extension and intense π-π intermolecular stacking can be 

expected due to the effects of shear stress, solvent evaporation behavior, and polymer-

substrate interfacial interactions. The hypothesis presented here is supported by AFM and 

GIWAXS analysis, as well as photophysical characterization. To further understand the 

synergistic effects of shear stress and low energy surface effects, in-situ characterization 

strategies, e.g., X-ray diffraction and neutron scattering, will be utilized in the future 

studies. 

The phenomenon observed with high temperature blade coating is closely related 

to flow-induced changes in solvent evaporation and polymer conformation. In particular, 

enhanced solvent evaporation on low energy surfaces would be expected to promote self-

assembly in polymer films. Below room temperature, solvents evaporate at slower rates 

which can lead to the formation of more uniform wet thin films. As solvent dries gradually, 

polymers would precipitate out and form a homogeneous polymer thin film. Under high 
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temperature blade coating condition, solvent evaporates much faster leaving voids within 

thin films. On higher energy surfaces, the polymer solution wets the surface well enough 

to form wet uniform films under shear stress. Low energy surfaces suppress the wetting 

phenomenon leading to inhomogeneous film formation. As polymer solution dries out, 

certain areas on the surface are left uncovered. Nevertheless, the polymers are ‘pushed 

together’ due to cohesion of the solvent so that the overall driving force enhances nanofiber 

formation. 

These studies further support the design concept and hypothesis presented for 

solution based processing of conjugated polymers.277 The shear speed dependent 

experiment (surface structure analysis in Figure 4.5 and charge transport performance in 

Table 4.1) supports the importance of shear stress. Combined with the GIWAXS and AFM 

images, inter-fiber connections may have been formed during the high temperature coating 

process. Furthermore, the inter-fiber connections that would be afforded by the nanofiber 

network morphology provide additional support to the growing body of evidence that inter-

grain polymer nanofibers play a major role in determining polymer macroscopic mobility, 

given the improved charge transport performance demonstrated. A similar mechanism is 

expected to be at play for the electron transport materials, obvious bundle-like structures 

can be observed in Figure 4.9. Thus, blade coating on low energy surfaces will lead to 

desirable microstructures on the molecular scale through to the mesoscale, and up to the 

macro scale with a range of a few hundred micrometers. 
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4.4 Conclusion 

In this chapter, we reported the enhanced conjugated polymer nanofiber formation 

on low energy surfaces. Through experiments on multiple conjugated polymers in non-

halogenated solvents, significant mobility enhancements were attained. By systematically 

analyzing polymer thin film morphologies, a mechanistic explanation of previously 

reported results of performance enhancements in OFETs fabricated on low energy surfaces 

was provided. The formation of conjugated polymer nanofiber bundles on low energy 

surfaces are due to the synergistic effects of solution shearing and interface chemistry / 

surface effects. Given the synergistic effects of shear flow with surface processing 

techniques, such processing studies can play an important role in the desired large scale 

fabrication of soft electronics on various surfaces. 
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CHAPTER 5. THIAZOLE-NAPHTHALENE DIIMIDE 

CONJUGATED POLYMERS FOR ACID SENSING 

APPLICATIONS 

5.1 Abstract 

Functional π-conjugated materials, especially stimuli-responsive π-conjugated 

materials have been used extensively for chemical sensors, and a π-conjugated system leads 

to a change in molecular geometry and/or electronic structure that can be detected as a 

change in either the optical or electrical properties. In this chapter, PNDI2Tz is reported 

as an acid sensing material. In addition, PNDI2Tz n-channel OFETs were fabricated and 

device electronic responses against gas phase Lewis acid, boron trifluoride were 

investigated. PNDI2Tz shows high response to BF3 gas by forming Lewis acid-base 

adduct which can significant reduced electron transport in OFETs. PNDI2Tz-based OFET 

exhibit a pure electron mobility of 0.05 cm2V-1s-1 at normal working state. In the presence 

of 60 ppm BF3, PNDI2Tz OFET-based gas sensor is turned off within 100 seconds. The 

turn-on/turn-off cycle can be repeated for over 50 times with insignificant harm to 

PNDI2Tz OFET sensor. 

5.2 Introduction 

Functional π-conjugated materials, especially stimuli-responsive π-conjugated 

materials have been used extensively for chemical sensors,278 where selective interaction 

between a target analyte (i.e. biological macromolecules, ions, particles) and a π-

conjugated system leads to a change in molecular geometry and/or electronic structure that 



 92 

can be detected as a change in either the optical or electrical properties. For example, π-

conjugated compounds have been used for selective ion sensing of iodine/mercury279 and 

zinc280, 281, where specific compound-analyte interactions lead to a change in either the 

absorption or fluorescence of the complex system. Interactions between π-conjugated 

compounds and stimuli, such as biological systems, can also be used to for sensing 

applications282. In addition, π-conjugated materials can detect pH changes in solution 

through the halochromic effect, in which materials changes color upon addition of 

protons283. 

Among a variety of π-conjugated structures, thiazoles have recently gained 

increasing attention since nitrogen incorporation in the thiazole rings can impart control 

over frontier molecular orbital energies284, and also facilitate directed intermolecular 

interactions in both solutions285, 286 and the solid-state75, 287. The basic nitrogen of thiazoles 

can be utilized for developing halochromic materials which show a change in optical 

absorption as a result of acid-base interactions. The general mechanism for the halochromic 

Figure 5.1. Chemical structure of PNDI2Tz showing nitrogen atom lone pairs. 
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response of thiazole-based compounds is based on the activation of intramolecular charge 

transfer absorption that results from protonation (or interaction with Lewis acid) of the 

nitrogen in thiazole. Therefore, π-conjugated structures with strong built-in donor–acceptor 

interactions tend to exhibit a more pronounced halochromic effect due to an enhanced 

ability to redistribute charge density and promote charge-transfer (CT) absorption283. In 

addition, thiazoles have been proven as a promising building block for new generation 

conjugated polymers for organic electronic applications, such as organic photovoltaics 

(OPV)64, 207, 288, and organic field-effect transistors (OFET)76, 90, 121. 

In this study, we focused on investigating the halochromic effect of a newly 

synthesized donor-acceptor (D-A) conjugated polymer, PNDI2Tz with respect to acids in 

solution and acidic gas fumes in the solid state (Figure 5.1). We discovered a pronounced 

halochromic behavior where significantly different optical responses were observed. By 

investigating PNDI2Tz’s halochromic behavior, we proposed PNDI2Tz’s acid sensing 

mechanism. Furthermore, we studied PNDI2Tz for promising OFET-based sensor for an 

acidic gas, boron trifluoride (BF3). 

5.3 Experimental 

5.3.1 Materials and Measurements  

PNDI2Tz was synthesized and prepared by previous literatures69, 70. All reagents 

and solvents were purchased from commercial sources, and were of reagent grade. All 

acids were purchased from commercial sources, and were of reagent grade. Chloroform, 

dichloromethane, toluene, p-xylene (PX), isopropanol, tetrahydrofuran (THF), 

dimethylformamide (DMF), chlorobenzene, 1,2-dichorobenzene (o-DCB), and 1,2,4-
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trichlorobenzene (TCB) were purchased as anhydrous grade solvents from Sigma-Aldrich. 

THF was distilled from sodium benzophenone in a solvent purification system (SPS). 2-

Bromothiazole was purchased from Scientific Matrix. Tetrabutylammonium bromide (n-

Bu4NBr), n,n-diisopropylethylamine (DIPEA), diisopropylamine (DIPA), palladium(II) 

acetate (Pd(OAc)2), tris(dibenzylideneacetone)- dipalladium(0) (Pd2(dba)3), tri(o-

tolyl)phosphine (P(o-tolyl)3), sodium diethyldithiocarbamate, and tetra-n-butylammonium 

hexafluorophosphate ([n-Bu4N]+[PF6]-) were purchased from Sigma-Aldrich. N-

octadecyltrichlorosilane (OTS), was purchased from Gelest, Inc. Silica gel was purchased 

from Sorbent Technologies (Premium Rf™, porosity: 60A; particle size: 40-75 μm). 

Anhydrous chlorobenzene was degassed prior to use by a freeze-pump-thaw process. 

All polymer thin films for UV-vis absorption characterization were prepared by 

spin-coating polymer solutions in p-xylene (5 mg/mL), and chloroform (5 mg/mL), onto 

pristine SiO2 glass substrates and pre-treated glass coverslip substrates. Low concentration 

OTS solutions (0.1% v/v in toluene) were prepared within a glovebox filled with N2. UV-

ozone cleaned device substrates were transferred into a N2 filled glovebox immediately 

after cleaning, and then submerged in the as prepared surface treatment solutions overnight 

at room temperature. The passivated substrates were then bath sonicated in toluene for 30 

min, followed by blow drying with compressed air (after passing through a molecular sieve 

to filter off water and oil). 

Thin films were blade-coated onto the substrates using an in-house blade coater 

(DMX-UMD-17/23 Firmware, Arcus Technology) equipped with a glass blade and 

temperature controlled heating stage. Polymers were first dissolved in p-xylene to prepare 

the active ink (5-10 mg/mL) and then coated onto processed glass slides (for UV-vis 
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studies), processed p-doped Si wafers (for GIWAXS studies), or processed OFET device 

substrates (for electronic property studies) at 100 °C. Blade coating speeds were 

programmed and precisely controlled by a DMX-UMD 23 controller from Arcus 

Technology. Blade height was controlled to be within a range of 45-55 μm, and blade angle 

was set to be 8° ± 1°. Heating during blade coating was achieved by embedded 

thermocouples with precise temperature control. For chloroform samples, the heating 

temperature was set at 45 oC; for p-xylene samples, the temperature was set at 100 oC. 

5.3.2 UV-vis Measurements 

For solution UV-vis spectroscopy, PNDI2Tz stock solution was prepared at a 

concentration of 0.5 mg/mL, equivalent of a repeating-unit molar concentration of 4.5×10-

4 mol/L. Prepared stock solution was heated in a N2 filled glovebox for 30 min to break all 

aggregates, followed with passing through a 0.2 μm PTFE filter. 1.8 mL diluted PNDI2Tz 

solution (4.5×10-5 mol/L) was then transferred to a 1 cm × 1 cm quartz cuvette with seal. 

Diluted acid solutions (1.02 × 10-3 M) in acetonitrile (MeCN) were prepared in similar 

fashion. A 5 μL GC gas tight syringe was used to transfer 2 μL of diluted solution to UV-

vis cuvette. Between adding acid to UV-vis cuvette, gas tight syringe is rinsed with pure 

MeCN for 3 times, and then acid stock solution for 3 times. 

For thin film UV-vis spectroscopy, PNDI2Tz in chloroform and p-xylene stock 

solution (4-6 mg/mL) were blade coated on UV-ozoned cleaned SiO2 glass slides. For BF3 

exposure experiments, we purged chamber with N2 for 3 min to ensure anhydrous 

environment. Then, we injected 20 μL of anhydrous BF3·OEt2 as source of BF3 

(concentration calculated by BF3 as 281 ppm), and record the change in thin film UV-vis 

spectra. All waste BF3 gas was properly neutralized by trimethylamine (TEA), and all 
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measurements were performed with good ventilation. A special gas chamber is built to fit 

in the N2 glovebox with two gas inlets (BF3 and N2), and one outlet connected to a vial of 

trimethylamine solution to neutralize BF3 (Figure 5.2). 

 

 

 

Figure 5.2. PNDI2Tz OFET-based BF3 sensor in custom-built gas chamber for sensing 
test. 
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5.3.3 Thin Film Preparation and Device fabrication 

All electrode evaporation processes were conducted on single-crystalline (100) Si 

wafers at Marcus Nanotechnology Center at Georgia Institute of Technology. For blade-

coated films, 8-15 μL of polymer solution (4-6 mg/mL) was added on one side of a glass 

slide or wafer that had been sitting on the heating stage for at least 5 minutes to ensure the 

substrate was at the programmed temperature. In this study, only blade coating was 

performed due to poor film formation via spin coating methods. For the fabrication of 

bottom-gate/bottom-contact organic thin-film transistors, highly n-doped (100) silicon 

wafers with a 300 nm thermally grown oxide gate dielectric film were used as device 

substrates. Au source and drain contacts (50 nm of Au contacts with 3 nm of Cr as the 

adhesion layer) with fixed channel dimensions (50 μm in length and 2000 μm in width) 

were deposited via e-beam evaporation using a photolithography lift-off process. The 

Si/SiO2 substrates were washed via bath sonication (Branson® Ultrasonic Bath, 230 Vac, 

50 Hz) sequentially in acetone, methanol and isopropyl alcohol for 15 min, followed by 

treatment in UV-ozone for 30 min (Novascan® PSD-UV - Benchtop UV-Ozone Cleaner). 

Bottom-gate, bottom-contact architecture OFETs were fabricated as sensor devices. 

The polymer semiconductors were blade-coated from a 5 mg/mL p-xylene solution, and 

then were annealed at 150°C for 30 min in the glovebox. Au source/drain electrodes 

(W=2000 μm, L=50 μm) were used to measure the electrical performances of PNDI2Tz-

based devices. The field-effect mobilities were calculated from the transfer curves for more 

than six devices in the saturation regime (VG=45 V). 

Semiconducting thin films were fabricated via blade-coating at 100 °C to improve 

solvent evaporation and thin film formation on passivated surfaces. During the blade-
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coating process, 5 to 10 μL of semiconductor solution (5 mg/mL) was cast onto a heated 

substrate (1.5 cm × 1.5 cm). The angle between the glass blade and the substrate was set to 

be ca. 8°. Thin film formation was optimized by controlling different solution-shearing 

conditions such as substrate temperature and blade-coating speed. The blade-coated 

substrates were placed in a vacuum oven at 55 °C overnight to remove residual solvent. 

OFET electronic characteristics were measured using an Agilent 4155C 

semiconductor parameter analyzer inside a N2 filled glovebox. Charge carrier mobilities 

(μ), threshold voltages (Vth) and on/off ratios (Ion/off) were calculated in the saturation 

regime. The reported values are the average of 15 different devices with the standard 

deviation recorded. The microstructure and surface morphology of the thin-films were 

analyzed by atomic force microscope (AFM, Bruker Dimension Icon® Atomic Force 

Microscope, Mikromasch® AFM probe tips, 3.5 N/m, 135 kHz). 

5.4 Results and Discussion 

The synthesis of PNDI2Tz was reported previously,271 PNDI2Tzand purified by 

Soxhlet extraction. The low-molecular-weight portions and residual catalyst impurities 

were removed by dissolution in ethanol, acetone, and hexane. The chloroform extracts were 

concentrated and precipitated in ethanol, and then the solids were collected as a product. 

PNDI2Tz shows a number-average molecular weight (Mn) of 49.3 kD with a PDI of 3.33, 

as determined by gel permeation chromatography (GPC) relative to polystyrene standards 

with chloroform as eluent. 
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5.4.1 PNDI2Tz Halochromism in Solution 

PNDI2Tz-acid interactions were first investigated in solution with a variety of 

acids including sulfuric acid (H2SO4), trifluoroacetic acid (TFA) and nitric acid (HNO3). 

We selected HNO3 to study the mechanism associated with PNDI2Tz. Within 5 seconds 

subsequent addition of methanol (MeOH) resulted in an immediate change in color of the 

solution back to the original pink. (Figure 5.3) Such cycle could be repeated more than 5 

times. In order to further investigate the mechanism associated with the observed color 

change, stoichiometric addition of nitric acid (1.02 × 10-3 M) in MeCN was performed, and 

the resultant changes were monitored by UV-vis spectroscopy. 

As presented in Figure 5.4, when a total of 0.3 equivalents of nitric acid (relative 

to mole of PNDI2Tz in system) is added to a solution of PNDI2Tz in p-xylene, the color 

change was completed, and no further changes in color as determined by UV-vis were 

observed, suggesting a saturation threshold. Subsequent addition of MeOH, which acts as 

a Lewis base to bind with H+, the PNDI2Tz solution immediately switches back to its 

Figure 5.3. (left) PNDI2Tz halochromic effect in solution with HNO3 addition; (right) 
UV-vis spectra of PNDI2Tz solution during acidification cycles. 
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original pink color though some solution haziness was apparent, presumably due to 

polymer aggregation induced by MeOH, a poor solvent for PNDI2Tz. The result also 

indicates that PNDI2Tz is a weak Lewis base (LB) that forms a weak Lewis acid-Lewis 

base (LA-LB) adduct with H+. 

The addition of complementary ions (NaNO3, KNO3 in acetonitrile) results in no 

halochromic effect, confirming that H+ is the active species involved in PNDI2Tz solution 

color change (NaNO3 solubility in MeCN is 3 mmol/kg, and KNO3 solubility in MeCN is 

2.3 mmol/kg289). In the presence of H+, the UV-vis absorption at 540 nm decreases in 

intensity, while that at 450 nm increases, indicating a gradual shift in the absorbing species.  

Figure 5.4. Stoichiometric addition of HNO3 in PNDI2Tz solution with HNO3 molar 
equivalences. 
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The relative absorbance of (A540/A450) was used to evaluate the sensitivity of 

PNDI2Tz toward HNO3 (Figure 5.5). At the incremental equivalence of 0.025 (relative to 

mole of PNDI2Tz in system), the PNDI2Tzsystem equilibrates after 12 aliquots of acid 

solution are added to the polymer, enabling a colorimetric sensing of H+. The absorption 

measurements were taken immediately upon addition of acid, and the results are depicted 

in Figure 5.5. With increasing H+ content in the solution mixture, PNDI2Tz response 

PNDI2Tzincreases, and a linear relationship between (A540/A450) and the equivalence of 

H+ (R2=0.985) is observed. Thus, PNDI2Tz is may facilitate quantitative detection of H+ 

in solution within the investigated concentration range290. 

Figure 5.5. PNDI2Tz solution UV-vis relative absorbance (A540/A450) with respect to 
different HNO3 molar equivalences. 
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During acidification, PNDI2Tz optical bandgap increased from 2.12 eV to 2.26 eV 

(pristine onset absorption at 584 nm, after acid onset absorption at 549 nm). In addition, 

we noticed an isosbestic point at ca. 485 nm. (Figure 5.4) The appearance of an isosbestic 

point indicates that the stoichiometry of the reaction remains unchanged during the course 

of the reaction or the physical change of the sample, and that no secondary reactions occur 

during the considered time range291. Since there are two nitrogen items in 2,2’-bithiazole 

for every PNDI2Tz repeating unit, the stepwise protonation of both bithiazole nitrogen 

species would lead to the formation of a mono-protonated intermediate species, resulting 

an absence of the isosbestic point. Therefore, the presence of this point indicates that the 

acidification process does not form any intermediate species. With respect to each 

repeating unit, the proton can only bind to one thiazole nitrogen atom, not both. (Figure 

5.6). 

 

Figure 5.6. Proposed mechanism of PNDI2Tz interaction with acids. 
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5.4.2 BF3 Interaction with PNDI2Tz in Solid State 

We further extended the scope of the investigation of PNDI2Tz interaction with 

acidic species to include neutral Lewis acid (LA) species. BF3 represents one industrially 

relevant and readily candidate. PNDI2Tz thin films were exposed to BF3 fumes at room 

temperature, and the recovery process was studied. Due to the volatile nature and toxicity 

of BF3 gas, fresh BF3·OEt2 was used as the source of BF3. A PNDI2Tz covered glass slide 

was treated with BF3 fume in an isolation chamber, as described in Section 5.4.1. Prior to 

exposure to the Lewis acid, the PNDI2Tz thin film appears pink. As 20 μL BF3·OEt2 

(equivalent to 0.16 mmol BF3) was added to the chamber, the thin film slowly changes 

color to yellow. Assuming BF3 uniformly disperses throughout the chamber, the equivalent 

BF3 concentration in the chamber was 281 ppm. 

Subsequently, the PNDI2Tz film was transferred out of the chamber and left in the 

ambient at room temperature for 5 min. PNDI2TzThe color of PNDI2Tz switched back to 

Figure 5.7. (left) PNDI2Tz halochromic effect in solid state with BF3 fume; (right) UV-
vis spectra of PNDI2Tz thin film during BF3 cycles. 
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the original pink. (Figure 5.7) The process appeared spontaneous, and addition of base was 

not required. As BF3 evaporated from the PNDI2Tz film, the color change could be 

monitored by UV-vis spectroscopy. During the recovery process, the PNDI2Tz absorption 

at 543 nm increases in intensity, while the 455 nm band decreases, and an isosbestic point 

is apparent at 490 nm. The shoulder at 387 nm that is apparent in the Lewis acid treated 

film, eventually disappears after 240 s. The starting state and end state absorption patterns 

in the BF3 exposure experiment are very similar, if not identical, to the PNDI2Tz 

acidification process in solution. Similarly, the PNDI2Tz optical bandgap increased from 

2.04 eV to 2.16 eV (pristine PNDI2Tz thin film onset absorption at 607 nm, after BF3 onset 

absorption at 575 nm). (Figure 5.8) 

Figure 5.8. Overlaid UV-vis spectra of PNDI2Tz recovery process after BF3 exposure. 
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5.4.3 PNDI2Tz OFET for BF3 sensor 

PNDI2Tz OFET sensor is tested against BF3 in a custom chamber. OFET was first 

cycled for 3~4 minutes by sweeping with gate voltage from -25 V to 80 V (15 to 20 front-

and-back scans). When OFET transfer curve is stabilized, 5 μL BF3·OEt2 fume is injected 

Figure 5.9. Demonstration of PNDI2Tz OFET-based BF3 sensor with transfer curves. 
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in chamber (equivalent BF3 concentration at 60 ppm). While OFET detects BF3 fume, the 

transistor is turned off, showing reduced source-drain current (ID) current to 10-8~10-10 A, 

a 4~6 order of magnitude drop. For blank control experiments, anhydrous ether was 

pumped in chamber while OFET source-drain current is simultaneously monitored. OFET 

performed normally during the whole run, indicating BF3 is the active species that turned 

off the transistor. After transistor is turned off, the transistor was transferred into the 

antechamber and left in vacuum (-30 mmHg) for 3 min and purged with pure N2. Post 

testing on OFET shows that the OFET regains its transistor characters with similar ID. 

(Figure 5.9). 

Figure 5.10. PNDI2Tz OFET-based BF3 sensor stability test and performance summary 
in 50 BF3 treating cycles. 
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We tested the transistor for 50 cycles and recorded the mobility, highest ID and 

threshold voltages of each run. (Figure 5.10) The ID gradually decreased after 10 runs, but 

stayed above 20 μA, with increased threshold voltage (Vth) from -1 V to -4 V. OFET 

mobility stayed within a reasonable range with a slight drop, indicating the OFET sensor 

possess exhibits stable and robust performance. Control experiments with ether fumes were 

also conducted to ensure that the observed changes in OFET performance are not due to 

the addition of complementary species. Results shown in Figure 5.11 illustrate the OFET 

source-drain current during the first 6 min after each species is added to the chamber. With 

anhydrous BF3·OEt2, PNDI2Tz OFET soon loses its transistor characteristics and the ID 

Figure 5.11. Real-time PNDI2Tz OFET source-drain current (ID) with BF3 fume addition 
and ether fume addition (as blank). 
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remained low for the remainder of the experiment; while with addition of anhydrous ether, 

PNDI2Tz OFETs perform well with no observed drop in ID. 

5.5 Conclusion 

In conclusion, a newly synthesized conjugated polymer, PNDI2Tz, is reported as 

an acid sensing material. In addition, PNDI2Tz n-channel OFETs were fabricated and 

device electronic responses against exposure to the gas phase Lewis acid, boron trifluoride 

were investigated. PNDI2Tz shows high response to BF3 gas through formation of a Lewis 

acid-base adduct which can significantly reduce electron transport in the semiconducting 

polymer. PNDI2Tz-based OFETs exhibit a pure electron mobility of 0.05 cm2V-1s-1 under 

normal working conditions. In the presence of 60 ppm BF3, the OFET is turned off within 

60 seconds. The system appears robust, where the cycle can be repeated for over 50 times 

with insignificant harm to PNDI2Tz OFET performance. It is believed that the interactions 

between the nitrogen lone pairs in the bithiazole moiety and acids is the primary reason for 

both the halochromic effect and changes in electronical signals. This study revealed that 

PNDI2Tz possesses significant potential to pave the way for new, low-power OFET-based 

sensor designs aimed at detecting acidic species. 
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CHAPTER 6. CONCLUSIONS 

This dissertation discusses the design, synthesis, and characterization of thiazole-

containing π- conjugated semiconducting copolymers, the structure-process-properties of 

those polymers and their applications to OFET and OFET-based sensor devices. 

Chapter 1 introduced the background of organic semiconductors and focused on 

recent advances with respect to the development of high-performance n-channel 

semiconducting polymers and summarized crucial methodologies in semiconducting 

polymer synthesis, characterization, and OFET device fabrication and processing. 

Chapter 2 discussed the all-acceptor (A-A) design through homo-coupling of the 

electron deficient monomer, dibromo-bisthiazole-diketopyrrolopyrrole (DTzDPP) to 

afford PDPP2Tz, and incorporation of an electron deficient 2,2’-bithiazole moiety into 

an electron deficient DPP-thiazole system to afford PDPP4Tz. Even though the homo-

coupled polymer PDPP2Tz did not show desirable OFET characteristics, the A-A 

copolymer, PDPP4Tz has a low HOMO energy level owing to the overall electron-poor 

nature of all building blocks. Polymer side chains impact the polymer solution 

processability and polymer inter-chain π-π interactions. A branched side chain having the 

branching position remote from the polymer backbone has the advantages of both 

improved solubility from branched units and effective π–π intermolecular interactions 

compared with those having branched chains close to the polymer backbone. A branched 

5-decylheptadecyl (5-DH) side chain was incorporated into the polymer structure to 

enhance its solution processability, resulting a highly soluble polymer not only in 

common halogenated solvents, but also in more environmentally benign solvents 
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(xylenes, tetralin, toluene), which is more desirable for potential industrial applications. 

In addition, DFT calculations reveals that PDPP4Tz exhibits excellent planarity due to 

the small torsion angles between all ring units. X-ray scattering proves that PDPP4Tz 

thin films possess a high level of crystallinity in the solid state, which greatly enhanced 

its electron mobility (highest mobility measured as 0.067 cm2V-1s-1 on BCBG OFET). 

This result indicated the potential of developing high-performance n-channel 

semiconducting polymers via an all-acceptor approach. This study demonstrated that 2,2’-

bithiazole is a promising building block for future n-channel semiconducting polymers. 

In Chapter 3, 2,2’-bithiazole is copolymerized with the electron deficient 

naphthalene diimide (NDI) group to afford a donor-acceptor (D-A) copolymer, 

PNDI2Tz. Polymer PNDI2Tz was obtained via palladium-catalyzed Stille 

polycondensation of a dibromo-substituted NDI derivative with distannyl-2,2’-bithiazole. 

The optical and electronic properties were investigated using UV-vis absorption 

spectroscopy and ultraviolet photoelectron spectroscopy. It was found that the polymers 

show very broad absorption bands in the 540 nm region, and PNDI2Tz has an optical 

bandgap of 1.87 eV. Computational analysis demonstrates that holes and electrons are 

mainly localized on the 2,2’-bithiazole and NDI units, respectively. Organic field-effect 

transistors fabricated with PNDI2Tz exhibit unipolar n-channel characteristics with 

mobility as high as 0.05 cm2V-1s-1. 

In Chapter 4, we focused on interface engineering and its influence on thin film 

morphology and OFET performance. Self-assembled monolayers (SAMs) of three 

organic molecules presenting different surface properties were prepared on silicon 

dioxide surfaces to explore the impact of surface effects. The electronic properties of three 
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different, but structurally similar donor-acceptor conjugated polymers were studied as a 

function of SAM molecular composition. Surface energy is shown to have direct impact 

on the formation of conjugated polymer nanofiber networks that can enhance molecular 

packing and conjugated polymer π-π interactions. Low energy surfaces are particularly 

favorable from an energetic standpoint for conjugated polymers to form tight nanofiber 

networks that enhance charge carrier mobilities. 

In Chapter 5, we utilized PNDI2Tz as an acid sensing material, and studied its BF3 

sensing capability with an OFET-based gas sensor. PNDI2Tz was found to be a 

halochromic polymer when exposed to a variety of Brønsted acids and Lewis acids. We 

studied PNDI2Tz halochromic behavior in solution to understand the color changing 

mechanism. Furthermore, PNDI2Tz n-channel OFETs were fabricated and device 

electronic responses against the gas phase Lewis acid, boron trifluoride were investigated. 

PNDI2Tz shows high sensitivity to BF3 gas through forming a Lewis acid-base adduct 

which can significant reduce electron transport in OFET configurations. PNDI2Tz-based 

OFETs exhibit a pure electron mobility of 0.05 cm2V-1s-1 at normal working state. In the 

presence of 60 ppm BF3, the OFET turns off within 60 seconds. The turn-on/turn-off cycle 

can be repeated for over 50 times with insignificant negative impact on PNDI2Tz OFET 

performance. 
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CHAPTER 7. FUTURE WORK 

7.1 Structure-Property Relationship Study: Impacts of Thiazole/Thiophene on 

Diketopyrrolopyrrole Polymeric Semiconductor Fundamentals and Performance to 

Their Applications in OFETs 

In this thesis, thiazole has been recognized as a promising building block for n-

channel conjugated polymers. Thiazole-based conjugated polymers have shown to be 

suitable acceptor semiconductors for OFETs and sensors. One future project is to 

synthesize a series of thiophene/thiazole based conjugated polymers to systematically 

understand the structure-property relationships in terms of energy levels, solution 

processability, and device performance. In recent years, a series of high-efficiency donor 

polymers have been developed for single-junction organic photovoltaics (OPV) pushing 

power conversion efficiency (PCE) up to over 17%.26, 27, 292-295 Nevertheless, the accepting 

components are still limited to mainly PCBM derivatives, N2200 and a few other options.28, 

296, 297 Preliminary results have shown that PDPP4T (P1) and PDPP4Tz (P4) are unipolar 

polymers, while PDPP2Tz2T (P2) and PDPP2T2Tz (P3) are ambipolar polymers. 

(Figure 7.1) It is noted that P1, P2 and P3 are with 2-decyltetradecyl (2-DT) side chain, 

and P4 is with 5-decylheptadecyl (5-DH) side chain. Preliminary characterization was 

conducted at this stage. 
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All DPP-thiazole/thiophene polymers were characterized by gel permeation 

chromatography (GPC). (Table 7.1) P1 and P4 have lower molecular weights, meanwhile 

P2 and P3 have substantially higher molecular weights. As shown in solution and thin film 

UV-vis, DPP-thiazole/thiophene polymer absorption patterns exhibit a clear trend in their 

onset absorption and bandgap (Figure 7.2 and Table 7.2). With ionization potentials 

Figure 7.1. Chemical structure of four DPP-thiazole/thiophene polymers and building 
block electron deficiency in an increasing order. 

Table 7.1. Chloroform gel permeation chromatography (GPC) results of DPP-
thiazole/thiophene polymers. 
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measured from ultraviolet photoelectron spectroscopy (UPS), the DPP-thiazole/thiophene 

polymer electron affinities were estimated.76, 215 

GIWAXS results demonstrate that all DPP-thiazole/thiophene polymers 

investigated here possess a high degree of crystallinity and preferable edge-on orientation 

in solid state. Polymer thin films cast on OTS-processed SiO2 show enhanced crystallinity 

compared to those fabricated on UV-ozone treated SiO2. (Figure 7.3) In the future, these 

polymers can be further characterized to further understand the impact of 

thiophene/thiazole on the energy levels of the polymers, the impact of nitrogen substitution 

via thiazole on the suitability of the polymers for incorporation into bulk heterojunction 

devices for the realization of all-polymer solar cells. 

Figure 7.2. Solution and thin film UV-vis spectra of DPP-thiazole/thiophene polymers. 

Table 7.2. Photophysical characteristics of PDPP4T (P1), PDPP2Tz2T (P2) and 
PDPP2T2Tz (P3). 
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Figure 7.3. GIWAXS images of DPP-thiazole/thiophene polymers on UV-ozoned SiO2 
and OTS-processed SiO2 substrates. 
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7.2 Investigation of Dielectric Layer Processing and Molecular Interactions at 

Interfaces and their Impacts to OFET Performance 

Fluoroalkyl side chains are of interest in conjugated polymers because they have 

unique properties, such as hydrophobicity, rigidity, and thermal stability, as well as 

chemical and oxidative resistance and self-organization.298-300 Alkyl and fluoroalkyl 

segments are both hydrophobic. When fluoroalkyl and alkyl chains are simultaneously 

introduced into a polymer, the two segments usually segregate, producing a highly ordered 

crystalline material.301-303 Such behavior allows control over the molecular packing and 

may lead to highly ordered polymer thin films that can promote charge transport. 

In order to further understand the surface effect, my proposed study is to synthesize 

two naphthalene diimide-bithiazole based conjugated polymers, one with an alkyl side 

chain and the other with a fluoroalkyl side chain. Three surface modifiers are proposed to 

Scheme 7.1. Proposed PNDI2Tz-based conjugated polymer and fluoro- surface 
modifiers. 
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be used to understand the surface-polymer interaction: Trichloro(3,3,3-

trifluoropropyl)silane (TFPS), trichloro(perfluorooctyl)silane (PFOS), and 

(pentafluororphenyl)triethoxysilane (PFES). (Scheme 7.1) This study will help to 

understand if the fluoro-surface modifiers could induce more order into the solid state 

structure and packing of conjugated polymers, and further, to enhance the OFET device 

performance of conjugated polymers. With different fluoro-alkyl chain length, it is possible 

to further understand the buried interface effect and surface energy effect on conjugated 

polymer self-assembly and orientation. PFES SAM may additionally interact with 

conjugated polymers through the π-system of the pentafluorophenyl ring which may lead 

to provide insights on the significance of electrostatic interactions between the dielectric 

layer and polymer. 

7.3 Thiazole-based Conjugated Polymers for Metal Ion Sensor Applications 

Figure 7.4. (left) Synthesis of Poly(1,4-bis-(8-(4-phenylthiazole-2-thiol)-octyloxy)-
benzene: (a) K2CO3, dry acetone, 1,8-dibromooctane, 50 °C; (b) FeCl3, nitrobenzene, 
RT; and (c) K2CO3, 4-phenylthiazole-2-thiol, THF, Reflux, 12 h; (right) proposed 
detection mechanism of mercury ion with PPT polymer. Reprinted from article ACS 
Appl. Mater. Interfaces 2013, 5 (6), 2234-2240. Copyright 2013 American Chemical 
Society. 
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Hussain and co-workers report their synthetic approaches of a new conjugated poly-

p-phenylene derivative strapped with 4-phenylthiazole-2-thiol, which can optically and 

visually detect the presence of iodide (I) and mercury (Hg) over a wide range of other 

competing ions in an aqueous medium.279 (Figure 7.4) The neutral conjugated polymer 

poly(1,4-bis-(8-(4-phenylthiazole-2-thiol)-octyloxy)-benzene) (PPT) showed high optical 

activity in the presence of I- and Hg2+, which could be detected by fluorescence 

spectroscopy as well by colorimetric responses.  

In the presence of very dilute Hg2+ salts, the yellow color of the solution disappears. 

(Figure 7.5) The PPT-based detection platform was further extended to solid state thin 

films. PPT-PS film also showed the ability to detect and respond to both iodide and 

Figure 7.5. Color changes of PPT solution in a THF/water solution upon the addition of 
(a) anions and (b) halides; in both panels a and b. (c) Color changes of PPT–I– solution in 
a THF/water solution upon the addition of metal salts in water. Reprinted with permission 
from ACS Appl. Mater. Interfaces 2013, 5 (6), 2234-2240. Copyright 2013 American 
Chemical Society. 
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mercury salts. With such premise, thin films of such polymers can be cast onto OFET 

substrates. By incorporating the phenylthiazole units in the conjugated polymer design, we 

can expect the new conjugated polymer to respond to electronic signaling, such as a current 

change when sensing I- and Hg2+ in aqueous or organic media. The detection limit of Hg2+ 

salt using the PPT polymer was found to be 2.1 nM in water. The detection of both iodide 

and mercury was also possible in solid state by using a membrane film prepared by mixing 

1% PPT in polystyrene. This membrane changes color in the presence of iodide as well as 

mercury salts. These results confirm that the PPT polymer can be applied for the 

colorimetric as well as fluorometric sensing of I− and Hg2+ ions in a complex environment 

in solution, as well as in the solid state, using a membrane film rapidly.  

Given the reported results, one design approach for a thiazole-based conjugated 

polymer metal sensor is to introduce halides to the detection system. (Figure 7.6) In terms 

of synthesis, vinyl linkages between thiazole rings in 2,2’-bithiazole can be introduced to 

separate the nitrogen lone pair and sulfur antibonding orbital interactions and allow a 

change in polymer conformation without breaking the conjugation. The halochromism of 

Figure 7.6. Proposed new NDI-thiazole based polymer with vinyl linkage for potential 
metal ion detection. 
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the new polymer as well as OFET performance in the presence of acid can then be studied 

and compared with PNDI2Tz.
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APPENDIX. SYNTHESIS DETAILS 

In this chapter, materials, instrumentation, and detailed synthesis of materials are 

provided. 

A.1  Materials and general methods in PDPP2Tz and PDPP4Tz synthesis 

Chloroform, dichloromethane, toluene, p-xylene (PX), isopropanol, 

tetrahydrofuran (THF), dimethylformamide (DMF), chlorobenzene and 1,2-

dichorobenzene (o-DCB) were purchased as anhydrous grade solvents from Sigma-

Aldrich. THF was distilled from sodium benzophenone in an solvent purification system 

(SPS). 2-Bromothiazole was purchased from Scientific Matrix. Tetrabutylammonium 

bromide (n-Bu4NBr), N,N-diisopropylethylamine (DIPEA), diisopropylamine (DIPA), 

palladium(II) acetate (Pd(OAc)2), tris(dibenzylideneacetone)- dipalladium(0) (Pd2(dba)3), 

tri(o-tolyl)phosphine (P(o-tolyl)3), sodium diethyldithiocarbmate, and tetra-n-

butylammonium hexafluorophosphate ([n-Bu4N]+[PF6]-) were purchased from Sigma-

Aldrich. N-octadecyltrichlorosilane (OTS-18) was purchased from Gelest, Inc. Silica gel 

was purchased from Sorbent Technologies (Premium Rf™, porosity: 60A; particle size: 

40-75 μm). 

The synthetic procedures for the preparation of the 5-decylheptadecyl bromide side 

chains, 5,5'-bis(trimethylstannyl)-2,2'-bithiazole, and 2,5-bis(5-decylheptadecyl)-3,6-

di(thiazole-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione were modified from literature 

procedures64, 76, 82. Details of side chain synthesis and characterization can be found in 

previous literature82, 90, 169, 271. Nuclear magnetic resonance spectra of side chains, 

monomers and resulting polymers are listed in Figure A1-A12. Commercially available 2-

bromothiazole was homocoupled to afford 2,2’-bithiazole304, followed by metalation to 
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afford the distannane monomer, 5,5'-bis(trimethylstannyl)-2,2'-bithiazole 124. The 

following content is the synthesis results and characterizations of precursors, monomers 

and polymers: 

A.1.1 Synthesis of 5,5'-bis(trimethylstannyl)-2,2'-bithiazole 

DIPA (0.45 mL, 3.12 mmol, 3.50 eq.) in THF (2 mL) was maintained under an 

argon atmosphere and cooled to -78 ˚C using a dry ice/acetone bath. Then, n-butyllithium 

(1.00 mL of a 2.5 M solution in hexane, 2.50 mmol, 2.80 eq.) was added in a dropwise 

manner. The resulting solution was then warmed to 0 °C using an ice-water bath and stirred 

at 0 °C for 30 min to afford lithium diisopropylamide (LDA). It was subsequently cooled 

to -78 ˚C in dry ice/acetone bath. Then, 2,2’-bithiazole (150 mg, 0.9 mmol, 1.00 eq.) in 

THF (3.9 mL) was added in a dropwise manner generating an orange solution. After 

stirring at -78 ˚C for 2 h, SnMe3Cl (3.25 mL of a 1.0 M solution in THF, 3.25 mmol, 3.64 

eq.) was added in a dropwise manner. The resulting solution was then warmed to room 

temperature and stirred for 12 h. The solution was then poured into D.I. H2O (50 mL), the 

mixture was extracted into CH2Cl2 (3 x 15 mL), washed with brine (3 × 15 mL), dried over 

anhydrous MgSO4, filtered and then concentrated under reduced pressure using a rotary 

evaporator. The final product was washed with hexane at -78 ˚C and the final compound 

was isolated as a pale yellow solid (370 mg, yield: 85%). 1H NMR (400 MHz, CDCl3) δ 

7.77 (s, 2 H), 0.41 (s, 18H). 
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A.1.2 Synthesis of 3,6-Bis-thiazol-2-yl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-

dione 

1.00 g of sodium metal were diced and carefully added into a 2-neck round bottom 

flask fit with a condenser. 40 mL of t-amyl alcohol was added in the flask with a stirrer. 

The reaction mixture was heated then overnight at 125 oC. 2.22 g (2.12 mL, 12.8 mmol) of 

diethyl succinate and 2.0 g (18.2 mmol) of 2-cyanothiazole were added into to 20 mL of t-

amyl alcohol, then slowly added dropwise. The reaction mixture was then stirred at 110 oC 

for 8 hours. Mixture was cooled to room temperature afterwards, and the product was 

precipitated by pouring slowly into a mixture of 4.0 g glacial acetic acid, 100 mL of water, 

and 50 mL of methanol. The product was then filtered and washed with methanol followed 

by drying in a vacuum oven at 45 oC overnight to yield the product as a purple solid (1.18 

g, 43%). MALDI-TOF calculated m/z = 301.99, found m/z = 301.47. 

S

N H
N

N
H N

S

O

O

N

S
CN

O

O

O

O

3a
 

reflux



 124 

A.1.3 Synthesis of 2,5-bis(5-decylheptadecyl)-3,6-di(thiazol-2-yl)-2,5-

dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (3) 

5-decyl-heptadecyl-bromide (6.08 g, 13.23 mmol, 4.00 eq.) was added into the 

mixture of 3,6-Bis-thiazol-2-yl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione (1.00 g, 3.30 

mmol, 1.00 eq.) and a 60% mineral oil suspension of NaH (0.39 g, 9.75 mmol) in anhydrous 

DMF (40 mL) under argon. The mixture was heated at reflux for 24 h, before cooling to 

room temperature. D.I. H2O (100 mL) was added and the mixture was extracted into CHCl3 

(50 mL). The organic solution was washed with brine (3 x50 mL), dried over anhydrous 

MgSO4, and concentrated under reduced pressure. The resulting dark residue was purified 

by column chromatography (silica gel, DCM). The product was recrystallized from 

isopropanol to afford the alkylated product as a purple solid (yield: 42 %). 1H NMR (400 

MHz, CDCl3) δ: 8.07 (d, J = 2.4 Hz, 2H), 7.70 (d, J = 1.6, 2H), 4.40 (m, 4H), 1.68 (m, 4H), 

1.32–1.19 (m, 90H), 0.87 (t, J = 6.8 Hz, 12H). 13C NMR (400 MHz, CDCl3) δ (ppm): 160.9, 

155.3, 144.4, 137.6, 123.9, 110.5, 42.9, 37.3, 35.6, 33.3, 31.9, 30.2, 29.7, 26.2, 24.0, 22.7, 

14.1.  MALDI-TOF: calculated m/z = 1058.84, found 1057.71. 



 125 

A.1.4 Synthesis of 3,6-bis(5-bromothiazol-2-yl)-2,5-bis(5-decylheptadecyl)-2,5-

dihydropyrrolo[3,4-c]pyrrole-1,4-dione 

Sodium bicarbonate (0.435 g, 5.17 mmol) was added into a solution of alkylated 

bisthiazole diketopyrrolopyrrole (0.5 g, 0.47 mmol) in CHCl3 (9 mL). A solution of Br2 

(0.75 g, 4.72 mmol) in CHCl3 (9 mL) was added during a course of 20 min at 0 °C. The 

reaction mixture was stirred at 60 °C for 2 hr, followed by cooling to room temperature. A 

sodium thiosulfate solution (5.0 g in 20 mL H2O) was added into the reaction mixture and 

stirred for 30 min to remove residual Br2. The mixture was washed with brine (50 mL), 

followed by drying over anhydrous MgSO4. The resulting solid was subjected to column 

chromatography (silica, eluent heptane/CHCl3, v/v 60:40) to afford brominated monomer 

as titled product. The solid was dissolved in CHCl3 (5 mL) and precipitated into methanol 

(100 mL) to afford pure product (0.32 g, 34 %) as a red solid. 1H NMR (400 MHz, CDCl3) 

δ (ppm): 7.93 (s, 2H), 4.31 (d, 4H), 1.65 (m, 2H), 1.50-1.20 (m, 90H), 0.87 (m, 12H). 13C 

NMR (400 MHz, CDCl3) δ (ppm): 160.7, 156.3, 136.6, 115.9, 110.7, 42.9, 37.3, 33.3, 30.2, 

29.7, 26.7, 22.7, 14.1.  MALDI-TOF: calculated m/z = 1216.66, found 1215.43. 
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A.1.4 Synthesis of poly(2,2’-bithiazole-3,6-bis(5-bithiazol-2-yl)-2,5-bis(5-

decylheptadecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (PDPP4Tz) 

To a degassed solution of monomer 3 (94.97 mg, 0.078 mmol), 5,5´- 5,5'-

bis(trimethylstannyl)-2,2'-bithiazole (38.5 mg, 0.078 mmol) in toluene (2 mL) and DMF 

(0.2 mL), tris(dibenzylideneacetone)dipalladium(0) (2.11 mg, 2.3 µmol) and 

triphenylphosphine (2.44 mg, 9.3 µmol) were added. The mixture was set in a microwave 

reaction tube and reacted at 150 °C for 1 h, after which it was precipitated in methanol and 

filtered through a Soxhlet thimble. The polymer was extracted sequentially with acetone 

(24 hr), MeOH (24 hr), hexane (24 hr) and dichloromethane (12 hr), and then dissolved in 

chloroform. The chloroform solution was then precipitated into MeOH. Finally, the 

resulting polymer can be solubilized in chloroform and xylene for physical property 

characterization and device fabrication. Yield: 85.4 mg (87%) as a dark blue-green solid. 

1H NMR (400 MHz, CDCl3) δ (ppm): 7.99, 7.89, 3.67, 1.51, 1.17, 0.80. Elemental analysis: 

calculated: C, 70.88%; H, 9.65%; N, 6.70%; found: C, 70.85%; H, 9.52%; N, 6.56%. 
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A.1.5 Synthesis of poly(3,6-bis(5-bithiazol-2-yl)-2,5-bis(5-decylheptadecyl)-2,5-

dihydropyrrolo[3,4-c]pyrrole-1,4-dione)(PDPP2Tz) 

To a degassed solution of monomer (247.2 mg, 0.20 mmol), hexamethylditin (65.6 

mg, 0.20 mmol) in toluene (6 mL) and DMF (0.6 mL), 

tris(dibenzylideneacetone)dipalladium(0) (3.3 mg, 3.60 µmol) and triphenylphosphine 

(3.83 mg, 14.6 µmol) were added. The mixture was stirred at 120 °C for 16 h, after which 

it was precipitated in methanol and filtered through a Soxhlet thimble. The polymer was 

extracted sequentially with acetone (24 hr), MeOH (24 hr), hexane (24 hr) and 

dichloromethane (12 hr). The hexane portion and chloroform portion were collected. The 

more concentrated chloroform solution was then precipitated into MeOH, resulting a dark 

green solid. Finally, the resulting polymer can be solubilized in chloroform for physical 

property characterization. Yield: 85.4 mg (70%) as a dark blue-green solid. 1H NMR (400 

MHz, CDCl3) δ (ppm): 8.00, 7.91, 3.70, 1.50(br), 1.20(br), 0.79. 

A.2  Materials and general methods in PNDI2Tz synthesis 

Chloroform, dichloromethane, toluene, p-xylene (PX), isopropanol, 

tetrahydrofuran (THF), dimethylformamide (DMF), chlorobenzene, 1,2-dichlorobenzene 

(o-DCB), and 1,2,4-trichlorobenzene (TCB) were purchased as anhydrous-grade solvents 

from Sigma-Aldrich. THF was distilled from sodium benzophenone in a solvent 
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purification system (SPS). 2-Bromothiazole was purchased from Scientific Matrix. 

Tetrabutylammonium bromide (n-Bu4NBr), n,n-diisopropylamine (DIPEA), 

diisopropylamine (DIPA), palladium(II)acetate (Pd(OAc)2), tris(dibenzylideneacetone)-

dipalladium(0) (Pd2(dba)3, tri(o-tolyl)phosphine (P-(o-tolyl)3), sodium 

diethyldithiocarbamate, and tetra-n-butylammonium hexafluorophosphate ([n-

Bu4N]+[PF6]-) were purchased from Sigma-Aldrich. N-octadecyltrichlorosilane (OTS) 

was purchased from Gelest, Inc. Silica gel was purchased from Sorbent Technologies 

(Premium Rf™, porosity: 60A; particle size: 40-75 μm). Anhydrous chlorobenzene was 

degassed prior to use by a freeze-pump-thaw process. 

Monomers were synthesized according to literature procedures.14, 69, 70 PNDI2Tz 

was synthesized using modifications to reported procedures.14, 90 Monomer and polymer 

nuclear magnetic resonance spectra were shown in Figure A7-9, Figure A13 and Figure 

A14. 

A.2.1 Synthesis of Poly(2,7-bis(2-decyltetradecyl)-4-methyl-9-(5'-methyl-[2,2'-

bithiazol]-5-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone): 

4,9-dibromo-2,7-bis(2-octyldodecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H, 7 

H)-tetraone (500 mg, 0.44 mmol), 5,5’-bis(trimethylstannyl)-2,2’-bithiazole (218 mg, 0.44 
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mmol), tris(dibenzylideneacetone) dipalladium(0) (12.1 mg, 0.013 mmol), 

triphenylphosphine (27.8 mg, 0.11 mmol), toluene (5 mL), dimethylformamide (0.5 mL) 

were added to a microwave reaction tube under nitrogen and sealed. The reaction tube was 

placed in a CEM Discover SP microwave reactor (1 hr, 150 °C) and then removed. After 

cooling to room temperature, the viscous dark red reaction mixture was dissolved in 

chloroform and added dropwise to 250 mL methanol, and stirred vigorously for 1 hour. 

The precipitated solid was collected by vacuum filtration, and dried under reduced pressure 

for 24 hours. The solids were purified via subsequent Soxhlet extractions in 300 mL each 

of acetone, ethyl acetate, hexane, chloroform, and 1,2-dichlorobenzene (24 hours each). 

The chloroform fraction was concentrated and precipitated into methanol (350 mL), 

collected by vacuum filtration, and dried under reduced pressure for 24 hours to yield a 

deep red solid (216 mg, 44%). Mn = 49.3 kD (PDI = 3.33). 1H NMR (CDCl3, 400 MHz, 

ppm): δ= 8.85(s, 2H), 7.95 (s, 2H), 4.13 (br, 4H), 2.18 (br, 2H), 1.23 (br, 80H), 0.84 (br, 

12H). Elemental Analysis: (Calculated) C, 73.87; H, 9.48; N, 5.07; S, 5.80; (Found) C, 

73.93; H, 9.48; N, 5.01; S, 5.80; S, 5.71.  
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Figure A1. 1H NMR of 11-(bromomethyl)tricosane 
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Figure A2. 1H NMR of 11-(but-3-en-1-yl)tricosane 
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Figure A3. 1H NMR of 5-decylheptadecan-1-ol 
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Figure A4. 1H NMR of 11-(4-bromobutyl)tricosane 
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Figure A5. 1H NMR of 2,5-bis(5-decylheptadecyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-
c]pyrrole-1,4(2H,5H)-dione 
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Figure A6. 1H NMR of 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(5-decylheptadecyl)-
pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 
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Figure A7. 1H NMR of 2,2'-bithiazole 
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Figure A8. 1H NMR of 5,5'-bis(trimethylstannyl)-2,2'-bithiazole 
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Figure A9. 13C NMR of 5,5'-bis(trimethylstannyl)-2,2'-bithiazole 
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Figure A10. 1H NMR of poly(3,6-bis(5-bithiazol-2-yl)-2,5-bis(5-decylheptadecyl)-2,5-
dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (PDPP2Tz) 
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Figure A11. 1H NMR of poly(2,2’-bithiazole-3,6-bis(5-bithiazol-2-yl)-2,5-bis(5-
decylheptadecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (PDPP4Tz) 
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Figure A12. 13C NMR of poly(2,2’-bithiazole-3,6-bis(5-bithiazol-2-yl)-2,5-bis(5-
decylheptadecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (PDPP4Tz) 
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Figure A13. 1H NMR of 4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]-
phenanthroline-1,3,6,8(2H,7H)-tetraone 
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Figure A14. 1H NMR of Poly(2,7-bis(2-decyltetradecyl)-4-methyl-9-(5′-methyl-[2,2′-
bithiazol]-5yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (PNDI2Tz) 
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Figure A15. 13C NMR of Poly(2,7-bis(2-decyltetradecyl)-4-methyl-9-(5′-methyl-[2,2′-
bithiazol]-5yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (PNDI2Tz) 
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