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Abstract. In compliance to the Clean Water 

Act, each US state compiles a list of water bodies 
not meeting regulatory criteria. The most common 
impairment in US water bodies is elevated patho-
gens measured by fecal indicator bacteria (FIB). 
Reasons for this prevalence probably include the 
true magnitude of pathogen contamination, moni-
toring bias from human health concern, inaccuracy 
of FIB monitoring compared to other parameters, 
and difficulty estimating background condition. In 
practice, identification and citation of impairment 
is extensive, while development of plans that iden-
tify the source with certainty and implement high-
probability remediation lags behind. The difficulty 
in confidently identifying sources of impairment is 
an impediment to the protection of water bodies 
and increases the cost of remediation due to the 
need for casting a wider net of lower probability 
solutions. With a high proportion of resources di-
rected to pathogen contamination, it is important to 
confidently identify sources. Increased confidence 
will improve efficacy of remediation and ability to 
secure funding. To achieve these objectives, we 
designed a study method to investigate Rocky 
Creek, a pathogen impaired stream in Augusta, 
GA. This method applied a Lagrangian FIB sam-
pling approach to reduce confounding variability 
and a high sampling density to identify high con-
tribution watershed areas. We then layered typical 
pathogen sources (e.g. septic, pet waste, sewer, 
wildlife) and alternative sources (e.g. sediment, in-
stream growth) along with their GIS data over the 
FIB data. In this way, we were able to target reme-
diation efforts on the convergence of sources and 
regions and thereby decrease the scale of remedia-
tion efforts. 
 

Introduction. In regulatory compliance to the 
Clean Water Act, each US state is required to 
compile a list of water bodies that are not meeting 
regulatory criteria for their designated use. Moni-
toring efforts take place in order to accomplish this 
directive. These efforts identify those water bodies 
that are not meeting their designated use, cite the 
monitored parameter that is out of compliance, and 

develop a plan that both identifies the source of the 
impairment and proposes remediation steps for that 
source of impairment. In practice, the identifica-
tion of impaired water bodies and the designation 
of a particular impairment has proceeded in large 
numbers, while the development of plans that iden-
tify, with any certainty, the exact source of the im-
pairment have lagged behind. Remediation steps 
that can produce measureable improvements have 
lagged even further behind. There is probably im-
provement to be made at all levels of this process 
but the relative difficulty in accurately identifying 
and locating sources of impairment is a major im-
pediment to the protection of our water bodies. A 
lack of source specificity increases the cost of re-
mediation due to the need to cast a wider net of 
lower probability solutions in hope of achieving 
some measureable improvement.  

The most common impairment in US water 
bodies is elevated concentrations of pathogens 
measured by fecal indicator bacteria (FIB). The 
reasons for the prevalence of this impairment are 
probably multidimensional, including not only the 
true magnitude of pathogen contamination, but 
also monitoring bias for pathogens before other 
parameters based on real or perceived human 
health concerns, relative inaccuracy of FIB moni-
toring compared to other parameters such as pH or 
sediment, and difficulty in developing estimates 
for background condition. Due to the high propor-
tion of time any money applied to pathogen con-
tamination relative to other potential water quality 
impairments, it is critically important to do as 
much as possible to correctly identify the back-
ground conditions, hone the list of water bodies to 
those truly in need of remediation, and improve 
our ability to confidently identify and locate the 
specific sources of elevated FIB. This confidence 
and specificity will then improve the efficacy of 
remediation and the ability to appropriate funding 
from tight municipal budgets. In an effort to 
achieve these objectives, we designed a new study 
method to investigate Rocky Creek, a pathogen 
impaired stream in Augusta, GA.  While there are 
several pathogen impaired streams in Augusta, 
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