
Copyright © 2011 by Digital Building Laboratory

Digital Building Laboratory

Formal Methods for Specifying Product Model Views:
Development of a National BIM Standard

&
IFC Semantics for Model Views

By

Chuck Eastman & Manu Venugopal

Project: 60NANB9D9152

GEORGIA INSTITUTE OF TECHNOLOGY

 JULY 2011

2

FORMAL METHODS FOR SPECIFYING PRODUCT MODEL VIEWS:

DEVELOPMENT OF A NATIONAL BIM STANDARD & IFC SEMANTICS FOR

MODEL VIEWS

C. Eastman
1
 and M. Venugopal

2

1
Professor, College of Architecture and Computing, Georgia Institute of Technology

2
Ph.D. Candidate, School of Civil and Environmental Engineering, Georgia Institute of

Technology

Extended Summary

Architecture, Engineering, Construction (AEC) and Facilities Management (FM) involve

domains that require a very diverse set of information and model exchanges to fully realize the

potential of digital design and construction. Industry Foundation Classes (IFC) provides a large

and redundant neutral and open schema to support interoperability. Model View Definitions

(MVD) are needed to specify what subset of the IFC schema is appropriate for different

exchanges. Exchange specifications are expensive to build, test and maintain. A „Guide for

Development and Preparation of a National BIM Exchange Standard‟ capturing current best

practice, was prepared and submitted to the buildingSMART organization by the research team.

Based on the experience gained from development of the precast NBIM Standard, an analysis of

IFC semantics for model exchanges, we have identified a set of weaknesses and issues retarding

the short term and long term effectiveness of NBIMS, and offer a set of recommendations to

improve information exchanges based on IFC. Also introduced is a new software engineering

methodology based on object-oriented, shared, and reusable components and standards that are

applicable to the AEC/FM industry for development of Semantic Exchange Modules (SEM).

This SEM structure is based on engineering ontologies that help to develop more consistent

MVDs. The outcome of this research, is an in initial testable SEM library for the domain of

Precast/Prestressed Concrete Industry. When implemented by software developers, it can provide

the mechanism for a semi-automated approach to model view development. Plans for testing and

validation of SEMs with different export and import implementations are being carried out. This

research is expected to significantly impact the overall interoperability of BIM applications.

Three major research questions raised in this research and investigated are as follows:

1. What are the semantics of model views and IFCs to be considered for information

exchanges?

There is a need to analyze the complexities of embedding semantic meaning in model

exchanges using the IFC schema. The semantics are cause for confusion and errors. Such

an analysis can provide insights into the structuring of information items for future model

view development work.

3

2. How can we develop model views consistently across research teams and domains?

In order to support IFC implementations, the consistency of model views designed is an

important criterion. Lack of which causes an overhead to software developers and

inhibits new IFC implementations.

3. What should be the building blocks of future model views for successful information

exchanges?

The current approaches to model view development create redundant information that

spreads across several domains due to lack of reusability. Defining the building blocks of

model views and packaging them in an object-oriented, modular and reusable manner is

necessary. This leads us to the third question.

The contributions and results of this research can be summarized as follows:

 A study of the NBIMS Model View approach for information exchanges in BIM for

AEC/FM was conducted and best practices identified.

 A semantic analysis of the IFC schema provides insights into the complexities of

embedding information in model exchanges. Some of the issues highlighted are type-

instancing, classification schemes, geometry, relationships and rules. A set of guidelines

is provided to improve the consistency of model views and IFC schema itself.

 Semantic Exchange Modules (SEM) are introduced as the building blocks for defining

future model views. A SEM is defined as a structured, modular subset of the objects and

relationships in each of multiple BIM exchange model definitions. Its raison d‟etre is to

enable BIM software companies to code, import and export functions in modular fashion,

such that a function written to export or import model objects according to any given

SEM can be tested and certified once, and then re-used to fulfill multiple model exchange

exports/imports without modifications. Therefore, a SEM has:

o A definite mapping to a schema,

o Mappings to a native model (when fully defined),

o Methods to map between the IFC and the native models,

o Data access paths and

o Belongs to one or more specific classification hierarchies.

 A Semi-Automated Model View Development Methodology based on SEMs is

proposed. Since each SEM is defined as a modular unit, which is unit tested for

completeness, defining a model view is reduced to plug-and-play of SEMs from a

predefined library. This eases the load on testing and validation as the model views are

built from already tested SEMs. It is envisioned that by following this methodology, the

time and effort required for a new IFC implementation can be greatly reduced.

This report is intended to help readers gain an understanding of complexities involved in

developing and specifying model views using IFC. Practitioners will be able to follow the

guidelines provided for developing future model views and for validation and testing of IFC

4

implementations. For additional information and detailed discussions on the topics, we list a set

of publications here.

List of publications:

[1] Eastman, C., Panushev, I., Sacks, R., Venugopal, M., Aram, V., and See, R., “A

Guide for Development and Preparation of a National BIM Exchange Standard,”

technical report to buildinSMART, 2011.

[2] Venugopal, M., Eastman, C. M., Sacks, R., and Teizer, J., “Semantics of Model

Views for Information Exchanges using the Industry Foundation Class Schema,”

Advanced Engineering Informatics, (in review), 2011.

[3] Aram, V., Eastman, C., Sacks, R., Panushev, I., and Venugopal, M., “Introducing a

New Methodology to Develop The Information Delivery Manual For AEC Projects,” in

Proceedings of the CIB W78 2010: 27th International Conference – Cairo, Egypt, 16-18

November, 2010.

[4] Venugopal, M., Eastman, C. M., Sacks, R., and Teizer, J., “Improving the Robustness

of Model Exchanges using Product Modeling Concepts for IFC Schema” in Proceedings

of the 2011 ASCE International Workshop on Computing in Civil Engineering: June 19-

22, 2011, Miami, FL, USA

[5] Venugopal, M., Eastman, C., Sacks, R., Panushev, I., and Aram, V., “Engineering

Semantics of IFC Product Model Views,” in Proceedings of the CIB W78 2010: 27th

International Conference –Cairo, Egypt, 16-18 November, 2010.

Acknowledgments

This work was supported by funding from National Institute of Technology Grant number

60NANB9D9152. We thank the members of the Precast NBIMS Advisory Team for their

support. We also acknowledge the support of PCI and Charles Pankow Foundation, and the

software companies for supporting our test cases for IFC export and import implementations.

5

Table of Contents

Extended Summary .. 2

Acknowledgments... 4

1. Introduction ... 6
1.1 Gaps in Interoperability Research .. 6

2. Guide for Development and Preparation of A National BIM Exchange Standard 7

3. Semantic Analysis of IFC Schema .. 7
3.1 Type Casting and Inheritance Structure ... 9
3.2 Classification Schemes ... 9
3.3 Geometry ... 10
3.4 Relations and Rules ... 12
3.5 Results and Recommendations ... 12
3.6 SEM: a New Definition of Concepts .. 15
3.7 Summary: Knowledge Sharing in AEC/FM ... 15

4 Formal Specification of IFC Schemas ... 16
4.1 Component Ontology: Formal theory of parts ... 16
4.2 Connection Ontology: Theory of Topology .. 18
4.3 System Ontology .. 20
4.4 Precast System Ontology .. 20

5. Semantic Exchange Modules .. 25
5.1 What is an SEM? ... 25
5.2 Why are SEM’s needed? .. 26
5.3. Requirements for SEMs ... 28
5.4. Desired Features of SEM: .. 29
5.5 SEM Specification .. 29
5.6. A Semi-Automated Model View Development approach using SEMs 32

6. Testing and Validation .. 34
6.1 Main Objectives ... 35
6.2 List of SEM implementations and corresponding MVD Concepts ... 36
6.3 Sample IFC test files ... 37
6.4 A proposed process outline for implementation toward the demos 39
6.5 Certification Testing .. 40

7. Conclusion ... 41

References ... 43

6

1. Introduction

This study addresses the general issues of developing subschemas and model views for broad

“framework” product models. The recognized method for gaining effective exchanges from a

rich and redundant product model schema is to define the relevant subsets or model views needed

for different classes of exchange. Our work here accepts as a starting point the need to define a

functional specification of an exchange, called in IFC a Information Delivery Manual (IDM) and

its Entity Exchange Requirements and also its mapping to a implementable Model View

Definition (MVD). There are different mapping approaches for going from the IDM to the

implementation of a MVD. Ideally these should enable the unambiguous and accurate mapping

to a MVD. The mapping involved in MVD implementation are often repeated and other

information sub-structures used uniquely in different MVDs. The sub-structures are hierarchical,

composed into higher level re-used „modules‟.

The IDM specification should be defined in a structure that allows them to be mapped and

compared to the Concepts that are generated from it, for verification purposes. All of these

mappings must be equivalence mappings in a many-to-many structure. That is, there needs to be

the ability to trace from any requirement to an implementation and in both directions. Also, no

Exchange Model functionality should exist without a need being defined in the IDM

Requirements.

Two sets of semantics are at the core of any Model View Specification: (1) the user/application

functional semantics defining the information that must be exchanged; (2) the representational

semantics available in IFC or other data modeling schema for representing the user intentions.

Any person defining models in IFC (or other schema) asks and resolves the following example

types of questions: How does one represent in IFC:

- type-instance relations

- shape families (may be different than type instance)

- patterns of layout, such as rebar, tiles, brick (at the level of detail needed for fabrication),

based on forms of aggregation

- embedded relations such as for connections and embedded elements

- non-overlapping but tightly packed relations between objects, such as precast concrete pieces

and slab assemblies

- Relations between objects to reflect different semantics: connection, association, assembly

- alternative model views for the same object, for fabrication, as installed (deformations), and

analytic models

- And others.

These issues require full understanding by the relevant users, and their unambiguous mapping to

IFC for intelligent exchange.

1.1 Gaps in Interoperability Research
IFC is based on the EXPRESS language, which is known to be highly expressive but lacks a

formal definition of its concepts [6]. Similar to many framework-based data schemas, IFC is

highly redundant, offering different ways to define objects, relations and attributes. Thus, data

exchanges are not at an acceptable confidence level due to inconsistencies in the assumptions

different implementers of exchange functions make about how information should be expressed

7

[7]. There are often unpredictable ways in which export and import functions treat the same data,

posing a barrier to the advance of BIM [8, 9]. The National BIM Standard
TM

 initiative (NBIMS)

proposes facilitating information exchanges through Model View Definitions (MVD) [10].

Interoperability enhancement requires (i) common understanding of industry processes and (ii)

the information required for and resulting from executing these processes. The work done on

Precast BIM standard [11], which is one of the early NBIMS, has given insights into the

advantages and issues of the MVD approach. This has enabled us to identify areas that require

attention and led to the research presented in this report.

The current status of model exchanges using IFC is summarized as follows:

1. The development of an Information Delivery Manual (IDM) is based on industry knowledge

and practices and human expertise.

2. The translation from IDM to MVD is manual and tends to be inaccurate in specification

3. The Concepts used to modularly create and define MVDs are not rigorously defined.

4, Implementations are error prone because of limitations in current methods of testing.

5. Not based on logical foundations, hence not amenable to the application of reasoning

mechanisms.

2. Guide for Development and Preparation of A National BIM
Exchange Standard

A report was submitted by the authors of this study to the buildingSMART organization

outlining the current best practices and a step-by-step guide for developing model views. The

process presented generally follows the procedures set forth in The National BIM Standard™

Version 1 Part 1. (The Standard is downloadable from http://www.buildingsmartalliance.org/

projects/products.php.) Section 5 of the National BIM Standard outlines the procedural steps to

be followed. This guide [1] provides detailed information about each phase in an MVD

development process including the requirements collection, design of exchange models,

constructing model views and also its deployment for software implementation. This guide is

based on the authors‟ experience in developing precast NBIMS and offers a practical set of

guidelines that have been tested and followed, with known outcomes. Sample templates for

developing model views in a consistent manner are also included along with Part-21 test files

and supporting IFC documentation. This guide is meant to be embedded in a continuous

development process where improvements will be made as more experience is collected from

MVD development activities.

3. Semantic Analysis of IFC Schema

This section presents the results of an analysis of the IFC data and its suitability for embedding

semantic meaning for model exchanges. The topics are grouped based on type-instance issues,

classification problems, geometry, relations and rules, etc. The analysis is summarized at the end

of this section and recommendations are provided.

http://www.buildingsmartalliance.org/

8

In terms of a programming language the description of how the language is composed and what

its constituents are can be defined as the syntax and semantics. Both the syntax and semantics of

a programming language must be specified precisely. For a successful IFC export or import, the

syntax and semantics should be fully specified in a model view. It is the semantics that specify

the meaning or context of the information. At one end of spectrum, an exchange model can

carry only the basic solid geometry and material data of the building model exchanged. The

export routines at this level are simple and the exchanges are generic. In this case, for any use

beyond a simple geometry clash check, importing software would need to interpret the geometry

and associate the meaning using internal representations of the objects received in terms of the

software‟s native objects. At the opposite end of the spectrum, a semantic-rich exchange file can

be structured to represent piece-type aggregations or hierarchies. Figure 3.1 illustrates this

spectrum of possibilities while defining model views. Different use cases require different

information structures. For example, an architect might group a set of precast facade panels

according to the patterns to be fabricated on their surfaces, manipulating the pattern as a family;

an engineer might group them according to their weights and the resulting connections to the

supporting structure; a fabricator might group them according to fabrication and delivery dates.

In order for the importing application to infer knowledge from the exchange, the exporting

application should structure the data based on the grouping scheme accepted at the receiving end.

This is an important requirement and needs to be taken into account when the model exchange

requirements are specified.

Figure 3.1: Spectrum of possibilities in defining model views.

In preparing a set of MVDs, information modelers must determine the appropriate level of

meaning and the typing structure required by the IDM. If the structure is too simple, the

exchanges will only have value for importing software that is able to apply some level of expert

knowledge to interpret the information. If it is too rigid, then it will only be appropriate for a

narrow range of use cases. This may lead to a need for large number of model view definitions.

This would require software companies to prepare multiple export - import routines. The

following paragraphs elaborate on a number of aspects that must be considered for model

exchanges using IFC schema.

Geometry

only
Rich semantic

structure

Multiple aggregations and inheritance Vertical

inheritance

hierarchy

Precast

Piece 101

Piece Mark

B-1A

Precast Type

Beam AR

Precast

Piece 101

 Precast Type

Beam AR

Production

phase 3

Precast

Piece 101

 Piece Mark
B-1A

Precast

Piece 101

Precast Type

Beam AR

9

3.1 Type Casting and Inheritance Structure
The type of an Object determines its representation and constrains the range of abstract objects it

may be used to represent. Typed systems impose constraints that help to enforce correctness by

respecting the expected properties of data types and operations on data objects. This is a way of

protecting the underlying concepts from arbitrary or unintended use. This is usually achieved by

way of imposing a type structure. IFC is a weak typing system, allowing rich and multiple

representations [2]. IFC allows polymorphic representations but restricts itself to single

inheritance. The lower part of Figure 3.1 (below the axis) identifies the spectrum of possibilities

involved when defining a model view in terms of exchange semantics. The first dimension is the

range of possibilities along the spectrum and denotes the degree of typing that can be required in

a model view definition. This is expressed by the depth or breadth of hierarchical classification

and aggregation to be used. It is possible to layer a classification schema in two ways. The first

method layers them strictly hierarchically, with each instance object belonging to just one type

grouping, while the second method uses a distributed manner, where each instance inherits

properties from multiple object types. The range varies from independent instances (on the left),

through weak typing through relationships between type and instance objects at run-time, to

deeper and stricter inheritance trees with multiple-inheritance on the right. For example, consider

a piece type. This can be a drafting block, or turning an instance into a block (as can be done in

AutoCAD) for two purposes: to both group it in terms of making it a type and placing instances

of it. In the BIM world, the issues and objectives are different. For example, the approach may

require making a column type, then making instances of the column, or a window style. However,

just as often, we are interested in building assemblies and assemblies of assemblies, all at the

type level. It should be possible to reuse these levels in other assemblies (types), and also map

them to instance locations. This capability is not available in IFC (until the implementation of

release 4, which provides IfcElementAssemblyType), although it is possible to design assemblies

in most BIM tools in this same manner. Thus, a type in IFC should be an object class that can be

used to define other types or instances of objects. The issue could be resolved if it were possible

to obtain multiple levels of this type.

To summarize, IFC is a weak- (or loose) typing system and provides multiple ways to type

objects, thereby allowing great flexibility to support multiple representations. There is a strong

need to define MVDs in a much more strictly typed representation.

3.2 Classification Schemes
BIM tools provide another mechanism to structure their data - by using classification schemes. A

classification scheme can be a standard and agreed manner to structure the domain information.

Examples of construction information classification systems (CICS) are MasterFormat,

UniFormat, Uniclass, etc. This is a flexible and informal method implemented at the software

user level as compared to typing, which is formal and implemented at programming language

level.

Classification schemes or simple groupings at user level provide an important means to structure

the data in a model exchange. However, if either this classification is not included in the export

or if the importing application does not support such classification of objects, then the intended

semantics of classification is lost. Hence it is important to specify this classification in the model

views and MVD Concepts should support grouping of objects at different levels of meaning or

10

functionality, thereby allowing model views to specify the classification schemes that are to be

supported in the model exchanges.

3.3 Geometry
Exchanging geometry using IFC entities is possible in different solid modeling forms. Some of

these forms include boundary representations (B-Rep), extrusions and CSG. Figure 3.5 shows

the solid modeling entities available in IFC. Consider as an example a manifold solid B-rep. This

can be of two different types: The first type is to represent as a faceted B-Rep in IFC release 2x3,

or as an advanced B-Rep in release 4. The construct for representing a face in Advanced B-rep

can be free-form geometry including NURBS, or B-splines. Another form of representation

involves definition of entities by procedural sweeping action on a planar bounded surface. This is

called the swept-area solid and in special cases, such as rebar, a circular disk can be swept along

a curve, called a directrix. Usually the swept area is given either by profile definitions and

position in space. The other option, namely CSG, is to perform Boolean operations on shapes to

obtain more complex shapes. CSG combines geometric, solid models based on B-Rep or Swept

Area or Disk or Half-Space and CSG primitives, and structural information in the form of a Tree

structure. All these constructs can be used in different combinations to represent a parametric

shape. However, in the case of round trip exchanges or two one-way exchanges, the receiving

application should be able to logically interpret the design intent and the original shape

composition; otherwise the original information is lost. This leads to the research question of

when is the requirement of using more than just boundary definitions justified? This question

needs to be answered based on the exchange requirement and should be specified in the model

views.

Modelers need to specify what representations are needed in building and represented in building

modeling. Different aspects of the building that need to be modeled usually require different

geometric representations. Three main divisions can consist of

1. building components such as walls, slabs, columns, etc.,

2. abstract geometrical forms used for conceptual models,

3. control lines and points that are used as parameters in controlling geometry and placement.

The best known examples is the lines and aisles of a structural grid, and

4. building spaces, which are often derived, defined by the components that bound them.

The boundary representation is the foundation representation used to display and possibly

exchange information. Building components generally require all three types (B-Rep, CSG,

extrusions) of geometric representation [21] and these representations are embedded in all BIM

design tools. For example, in the case of two-way exchanges or two one way exchanges, the

recipient needs to select the entity instances to be incorporated into the new model. These

instances are exchanged back to the sender, in order for the recipient to be able to browse and

interactively select the entities to be downloaded to his or her application. However, if the

geometry is simple B-Rep, the recipient will not be able to obtain any detailed object information

such as opening dimensions within a parent piece, edge conditions, or parametric values, etc. In

such scenarios, there is a need for geometry to be exchanged in a manner allowing reference to

all parametric details so that the full semantics of the model can be accessed. Therefore, the

exchange of more complex geometric representations is important to many specific applications.

Some of the semantic issues identified in exchanging geometry information are as follows:

11

1. Shape method - B-Rep, CSG solid, extrusion, or other sweep.

2. Shapes needed as fabricated, or as deployed: deflections, cambering, warping.

3. All unique or is some of the geometry shared? - profiles, features, connections.

4. Surfaces - approximated, faceted, tolerances.

5. General accuracy of geometry.

6. Need for control geometry: grids, control lines or surfaces, control points, or local origins.

7. Reference coordinate system: project, assembly, longitude-latitude.

8. Performance model view: structural, energy, CFD and their geometric representations.

Figure 3.2: Representing reinforcing bar with a) B-Rep geometry with non-circular cross-section,

b) extruded geometry, c) errors – corners are not rounded (orthogonal joints if IfcPolyLine is

used as directrix, d) errors – the end of line segments are getting tapered.

Reinforcing bar can also be defined as a type with extruded geometry. This allows for multiple

rebar to be instantiated from the same IfcReinforcingBarType. Multiple mapped representations

allow for several rebar to be represented by a single instance of IfcReinforcingBar and the

number of mapped items corresponds with the rebar count in element quantity. However, this

approach does not consider the case of rebar arrays, patterns or cages. Unless the representation

scheme is specified and supported by the importing application, there is a chance that the

associated semantics are lost, leading to misrepresentations.

12

To summarize, modelers need to specify what representations should be contained in building

and building modeling. There is a need for geometry to be exchanged in a rich object oriented

manner with all parametric details so that the knowledge can be inferred from it, for use in

diverse applications. These solid representations should be packaged in the form of SEMs with

clear mappings to IFC schema. Such a SEM structure will help specify the exchange

requirements clearly in the model views on the basis of SEMs. These plug-and-play SEMs for

geometry allow building elements to be assigned to various geometry concepts based on the

requirements without additional overhead. Further, the completeness and independence of these

SEMs allows them to reusable in various building elements. The different solid shape

representations and their corresponding implementations using IFC present challenges, as

discussed above in this section, that need to be addressed for meaningful model exchanges.

3.4 Relations and Rules
The IFC schema does not determine the behavior of entities within applications, apply

parametric constraints or fix behavior, such as cleaning up wall corners, etc; this is at the

discretion of the internal logic of each application. The condition of rebar and other embeds

within concrete elements is similarly not dealt with in any manner that determines whether or not

their volumes should be subtracted from the host element. The volume of concrete is the volume

of the aggregate piece minus the volume of its embeds. Correspondingly, the weight of the

concrete overlapping with the embeds must be subtracted to get the total object weight.

Two shapes can have one of three following relations:

1. Disjoint: the objects do not occupy the same space - anywhere. (A special case is where they

share a surface, which could be treated separately.)

2. Nested: one shape is completely inside of the other - everywhere. (The special case applies

here as well)

3. Overlapping: one shape is partially inside and partially outside the other. These different

conditions were not distinguished in Release 2x3. The researchers were able to get added these

distinctions in 2x4.

3.5 Results and Recommendations
There are plans to elevate IFC into an ISO compatible standard (ISO/IS 16739) in the future [22].

However, until then, it would remain an industry-led undertaking to provide model exchange

capabilities to AEC-FM industries. IFC is a rich model that addresses the needs of different

applications and provides a variety of ways to define the same building part. Hence additional

layers of specificity such as model views are required for effective IFC implementations. This

brings to the forefront the need for a more logical framework to specify model views. The

number of research and industry-based initiatives to develop model views in different areas

underlines the growing importance of this need. The PCI team utilized the IFC Solutions Factory,

which is a web-based repository of bindings and model view development efforts that are being

pursued in different parts of the world. A number of these areas have overlapping information;

however, lack of strict definitions makes it impossible to reuse most existing bindings, which

adds to the overhead for software developers. For example, precast and cast-in-place concrete

should have different sets of model view definitions as they involve different sets of processes

for erection or casting of the piece, but the reinforcement requirement could be largely the same,

and should share common bindings. This implies that whenever in-place concrete model views

are developed, there is a potential for reuse from the already defined precast model views. The

13

introduction of Concepts is seen as a positive development in terms of their intended re-usability

and modularity. Other potential benefits of Concepts is to modularize testing and to provide a

semantically well-defined set of definitions that could be used in IDM definition. However, the

desired uses of Concepts and the requirements to realize these potential uses have not been

defined; thus these uses are not realized – they do not come about automatically. The range of

information defined in Concepts is quite large and are being generated by many groups of people.

Hence, a formal and rigorous framework on how to define Concepts is a critical need. Moreover,

IFC is an extensible data schema, where new extensions to the schema are proposed and

accepted based on new technologies, practices or business requirements. It is typical for a gap-

analysis to be performed and new extensions to be proposed during the development of model

views [23]. There is criticism that some of the extensions are done in an ad-hoc manner. This

claim is in fact justified by the number of IFC entities that are introduced and then deprecated,

while moving from one version of IFC to another.

The issue of semantic robustness of model exchanges using IFC, illustrated by the varied

examples in this chapter, needs to be seriously considered for advancing interoperability within

the AEC industry. The discussions provide insights into the conundrum of embedding semantic

meaning in exchange data. Based on the work conducted in developing the Precast National BIM

Standard and further analysis of the past and present work in this area, a set of recommendations

are presented in the journal paper. These are grouped into categories.

3.5.1 MVD Concepts

 The BLIS group and others recognized early the need for modularization of model
view definitions, developing these modules in the form of Concepts (10)
(NBUIMS,2007). Concepts came in multiple flavors: Variable Concepts for top level
information object classes; Adapter Concepts as intermediate level Concepts that
related the Variable Concepts to implementations in various ways, and Static
Concepts that were fixed binding of an implementation to a data model or
subschema. Concepts have been widely implemented The IFC Solutions Factory
website provides numerous examples of Concepts at each level, but no guidelines
for their regular development. The Concepts were promoted for their re-use, but
each was tailored in practice to a specific use, leading to multiple concepts with
slight variations. At this time there are over 1580 Concepts on the Solutions Factory
website. It was also hoped that Concepts could be used as units of specification at
the IDM level by domain users. However, the redundancy, over-specificity of their
bindings to a particular use, and the lack of semantic clarity of their use, made this
use impractical.

3.5.2 Model View Definitions

 The MVD development process needs to be transitioned from the current manner to
a more rigorous and consistent framework and/or methodology. Some steps for
improving the quality of information in the IDM phases of MVD development are
outlined in [8], and A Guide for Development and Preparation of a National BIM
Exchange Standard [1].

14

 The semantic meaning of IFC entities, relationships, attributes, and property sets,
needs to be defined in a rigorous and formal manner with strict guidelines.
Implementation of Concepts based on formal semantic guidelines can help in
achieving a uniform mapping to and from the internal objects of BIM tools and IFC
entities and relationships.

 Standard criteria for defining the Concepts proposed here should be documented to
avoid various research and development teams generating varying
implementations. Such a standard approach will help in reuse of implementation
modules such as Concepts, thereby resulting in the reuse of MVDs itself.

 There appears to be a huge need to reduce the current model view generation -
implementation cycle time of 2-3 years to more practical 4-6 months.

3. 5. 3 IFC Ambiguities

 There should be flexibility in defining the type-instance structure based on the context

and nature of an application. A multiple-inheritance structure can be the long-term

solution for achieving this flexibility. However the study of the upward compatibility of

the schema needs to be propelled by further research. This is an important research issue,

possibly addressed when IFC is made fully ISO compatible.

 IFC is a weak (or loosely) typed system and provides multiple ways to type objects. In

order to avoid ambiguities in model exchanges it is imperative that the Concepts (or

similar implementation modules) are modeled as a strongly typed system. Such a strongly

typed lattice on top of a weakly typed IFC schema can be the solution to truly realizing

successful model exchanges.

 Classification schemes can be used to group entities and structure the data in a model

exchange thereby reducing the file size of model exchanges. This also increases the

utility of the exchanged data in the importing application due to the fact that ex- change

already groups identical or similar objects. This is important for most BIM functionality

that involves editing or counting objects and such semantics should be specified in the

model views.

 Editable geometry is still not achieved in model exchanges; however, the use of

parametric profiles, can provide this feature in a much improved extent.

 The level of detail requirement of the model views and the model progression is another

important topic to be taken up by the industry

export and
import

mappings Figure 3.4: Semantic Exchange

Module Implementation

Figure 3.3: MVDxml Concept

implementation

15

3.6 SEM: a New Definition of Concepts

The ambiguity of definition and the lack of requirements for specification of Concepts was a

major motivation for initiating this project. A goal was to better logically define the necessary

structure for the definition of Concepts. However, the definition of the logical structure of

Concepts can only be determined after their intended use has been determined. Initially Concepts

were units relating partial mappings from user requirements to IFC, closely following the IFC

schema syntactic requirements. A current European effort is to map the fixed Concepts defined

in an MVD to the compiled IFC subschema, using mvdXML (27). The implementation and

binding is diagrammed in Figure 3.3. It was also asserted that Concepts could be units of testing

and validation, even though they would be implemented in various ways in their native

environment. Thus Concepts defined in this way would have no overall implementation

modularization. Thus the approach would likely lead to unanticipated interaction effects, not

allowing full unit testing and validation.

These concerns and recognitions led the research team to review and revise the definition of

Concept. Specifically, we proposed to include both the IFC modularizations with the native data

structure implementation. See Figure 3.4. The unit of implementation encompassed both the IFC

and native modules. Overlap was recognized, but the unit of testing could be bounded and

validated. We re-conceptualized these requirements into reusable modules of information called

Semantic Exchange Modules (SEM). The acronym SEM was proposed by Professor Rafael

Sacks at Technion University to differentiate it from the different terminologies such as concept,

construct, etc. A SEM is a structured, modular subset of the objects and relationships required in

one or multiple BIM exchange model definitions. It is proposed as a unit of semantic meaning,

for use to specifying IDM requirements. If software companies implement their internal

mappings between their own data model and the exchange modeling schema organized by SEMs,

high levels of re-use are possible at the translator writing level. SEMS could be re-composed

quickly and easily, without re-compiling and debugging. The same procedural methodology is

followed for all exchanges based on existing SEMs. For example, we would use the same

methodology for a model view for exchange between structural design and structural analysis, or

one for structural design to precast detailing.

3.7 Summary: Knowledge Sharing in AEC/FM
The scope and potential of BIM is ever-increasing as a result of new IT-enabled approaches to

facilitate design integrity, virtual prototyping, simulations, distributed access, retrieval, and

maintenance of project data between multiple disciplines and over the facility lifecycle.

Integrated Design and Delivery Solutions (IDDS) recognize the need for a holistic approach to

research and development to bridge the gap between collaborative processes, workforce skills,

integrated information, and knowledge management. Currently, the methods to support the

growing need for interoperability has an impedance mismatch with the steadily growing needs to

support collaboration; they must become easier to define and implement. We outline some

methods and approaches to address the impedance issues.

16

4 Formal Specification of IFC Schemas

The objective of formal specification of IFC schema in the form of ontology is to remove the

ambiguities associated with differing viewpoints. This section explores the requirements of a

Precast System ontology. It is largely based on the Ph.D. thesis of Manu Venugopal, “Formal

Specification Of Industry Foundation Class Concepts Using Engineering Ontologies”, which

was funded by the research project.

Knowledge is modularized in small, manageable pieces that can be reused. These building

blocks are called the Engineering Ontologies, and are formed from the super theories of

mereology, topology, and systems theory. The Precast System Ontology forms the basis for

defining SEM library.

4.1 Component Ontology: Formal theory of parts
The Component Ontology defined in this research is influenced by the theory of mereology

explained by PHYSYS [25]. Mereology is defined as the science or theory of parts, and is used

to describe the part-of relation and its properties. The components ontology is used to represent

the components in a building model and their part-whole decomposition in this research. A

component is a general concept that encompasses all individuals used to describe the structure of

an object. A component is considered to be atomic if it cannot be decomposed into any further

parts. Whereas, components can be part of an assembly. However, assemblies can be made up of

atomic components or smaller assemblies. Part-whole relationships are of two types, namely,

Part-of, and Proper Part-of relations. Part - of is the general relationship that covers all the

individuals in this ontology, whereas Proper Part-of restricts this relationship using the Weak

Supplementation Principle. This principle states that, when an individual has a proper part, it

must have another proper part disjoint from the first. That means the individual cannot be

distinguished from the sum of its parts. A perfect example is the slab beam aggregation. A slab is

the aggregation of individual beams, which means that beams are proper part of the slab.

Whereas, the project-site- building-building storey, space hierarchy is simply a Part- of

relationship. Moreover, in the case of proper part of relationship, the geometry of the parent is

the resulting sum of the individuals.

Transitivity also holds for Part-of relationship. Transitivity states that when an individual is a

proper part of a second individual that is a proper part-of a third individual, then the first is also a

proper part of the third (A part of B and B part of C, then A part of C). For example, Building

has slabs, slab has DoubleTee, hence building has DoubleTee. Transitivity can be used to define

assemblies as being assembled from parts. Asymmetry makes it impossible to say that an

individual is a proper part of itself. A is a part of B, then B is not a part of A. Overlap and

disjointness are defined as sharing a common part or the negation of this as expressed by the

following definitions. An individual overlaps another means that either one is a part of the other.

According to the weak supplementation principle, when an individual has a proper part then it

must have another proper part disjoint from the first, which means an individual cannot be

distinguished from the sum of its parts. A good example satisfying this axiom is the Building

17

Element being a proper part of another building element, such as a slab aggregation. Slab‟s

component pieces are assumed to be mutually spatially disjoint, without overlaps. They may

overlap the slab. Slabs are a composition of individual precast pieces, such as hollow core, DT or

solid slabs. The cut shapes of these components fit inside of the slab shape as shown in Figure

4.1. The shape of a slab is defined as a general-purpose shape, boundary representation because

its top may not be planar because of toppings. Care should be taken to ensure that the slab shape

and its components, when unioned together, has no spaces between. Thus specific

recommendations of shape are defined for each type of embedded beam. We can also have

assemblies aggregated into bigger assemblies. Overlapping classifies Proper Part of relationships

into two classes here. Those which allow overlapping and those which do not. Example, DT

being a proper part of slab, but does not allow overlap. Whereas, reinforcing is a proper part of

beam but allows overlapping. Overlap can be checked by taking binary product of two

individuals.

Figure 4.1: Aggregation of individual components into a slab.

Figure 4.2 shows the dot product. A beam is resting on a column, these two individuals are not

supposed to overlap. Hence, they cannot have a dot product, and therefore the shared part has to

be assigned only to one of the individuals. The binary sum is the individual that encompasses at

least one of x and y. The difference x-y is the individual, which is a proper part of x but does not

share a part with y.

Feature additions and subtractions are examples. Sum provides a Boolean addition to a precast

piece, such as a corbel. Difference can be used for voids. Discrete accessory proper part of a

building element is an example of a Proper-part of relationship that allows overlaps. Similar

example is voids in a building element.

Building elements are a part-of a spatial structure element. Example: Slabs contained in building

storey. If there are building elements and/or other elements directly related to the Building (like a

curtain wall spanning several stories), they are associated with the Building. Spatial Structure

Element part-of another spatial structure element. For example: Project site- building building

storey space hierarchy.

18

Figure 4.2: Overlap, binary product, sum and difference in precast components

4.2 Connection Ontology: Theory of Topology
Topology describes the behavioral aspects of a system. The theory of topology extends the

Component ontology. Along with the part of relationships, this provides the connections between

objects. Topology is defined as the science or theory describing the is-connected-to relation.

Is-connected-to relationship: It is a reflexive property; any part is always connected to itself.

Also it is symmetric. If A is connected to B, then B is also connected to A. Extending the proper

part of relationship, we can say that all individuals that are a proper part of a whole are

connected. Or formally, if individual x has a proper part y, then there should be another proper

part z to which it is connected. This also holds the Weak Supplementation principle explained in

Component Ontology. The is-connected to relationship can be restricted as external, if an

individual x is connected to y and they do not overlap. The realizing element is the means by

which the connection is provided. Since the existence of realizing elements is solely due to the

topological configuration of individuals and hence the realizing elements cannot exist on their

own. Different types of connections are represented (connection geometry) using points, lines,

surfaces, and volume. These are inherited from the geometry ontology. Realizing elements of

type reinforcing bar or discrete accessory may be embedded in one of the precast pieces that is

part of the connection, or they may be delivered to the site as field hardware. In the former case,

the element must also be associated directly with the building element in which it is embedded

using an aggregation relationship, in addition to its relationship to the connection as defined here.

Specific rules validate the compatibility between the connectors and building element, thereby

influencing the validity of the connection. Some examples for the valid connection types in

precast pieces are given below:

19

1. End-to-end connection: Figure 4.3 shows different configurations of end-to-end connection

and realization of one of them. Different connection types for end-to-end can be realized using

the following: Column base-plate, Socket base, Grout-sleeve base, Bolted, Welded plate, Tube to

tube, Grouted sleeve, Welded lap bar, Tube sleeve, Post-tensioned splice, Simple Welded,

Doweled, Composite moment, Corbel, Pocket, Sleeve and dowel, Moment- resistant,

Architectural bearing, Alignment, Seismic shear plates, Other precast end- to-end connection.

2. End-to-edge connection: These include: Column base-plate, Socket base, Grout-sleeve base,

Bolted, Welded plate, Tube to tube, Grouted sleeve, Welded lap bar, Tube sleeve, Post-tensioned

splice, Simple Welded, Doweled, Hanger, Composite moment, Corbel, Pocket, Sleeve and dowel,

Moment-resistant, Architectural bearing, Tie-back, Alignment, Soffit hanger, Masonry tie-back,

Seismic shear plates, Other precast point connection.

3. Seam connection: These include: Double-tee seam, Wall to Wall doweled, Other precast seam

connection.

Figure 4.3: Different configurations for end-to-end connection types. a) and b) shows

connection surface on relating and related elements and c) shows realization of a precast piece

connection.

20

Figure 4.4: Different configurations for end-to-edge connection types. a) beam connected to a

column, b) shows a double tee attached to a spandrel and c) shows realization of a precast piece

end-to edge connection.

Figure 4.5: Realization of a seam connection on a precast concrete double tee.

4.3 System Ontology
On top of the component ontology and the connection ontology, system ontology is defined. This

helps to define the different individuals in a system, the connections within the system and also

to outside systems etc. We can also have sub-systems. The relationship in-system aggregates

individuals into a system. For example, pieces can be aggregated into a precast system. This will

also include the embedded individuals etc. A system is made up of individuals, but not every

individual is a system.

4.4 Precast System Ontology
Application Ontology specifies how the application‟s functionality is to be implemented and it

serves roles similar to ER diagrams, object models, and object patterns. Application ontology is

21

built on top of engineering ontologies. The Precast System Ontology defines how a precast

model should be specified in general, in the form of a set of theories. A precast piece can be

modeled using the above-defined engineering ontologies, which are a part of the application

ontology. Depending on the needs we can define a precast piece ontology using component,

connections, system, etc. and adding classes for requirements, placement, and geometry. Figure

4.6 shows the structure of the Precast System Ontology.

Object attributes general information about the individual. We use the term Object to represent

any physical object in a model exchange. Including structural definitions extends the object

definition. The structural ontology is qualified by three relationships has representation, has

material association, and has placement. An object has material associated with it, however the

material requirement is extended and defined in the Requirements Ontology. Every individual

has a placement relationship and can be realized by three different mechanisms, namely, absolute

placement, placement relative to a grid, and placement relative to another individual. Geometry

is an area, which has been studied in depth over the years. For purposes of this research we

assume that geometry requirements can be as follows

1. B-Rep Geometry

2. Swept Solid

3. CSG

Figure 4.6: Structure of the Precast System Ontology built from separate Engineering

Ontologies.

Type-Instance Ontology: Types are defined as a rigid property that has identity. This definition is

used to differentiate abstract types from quasi types. The idea of quasi-types is based on the work

by Guarino et. al. [24]. Abstract types are used as a means to categorize, for example beams and

columns as a building element, where building element is an abstract type. However, quasi types

are those defined for organizational purposes by grouping entities based on useful combinations.

For example, a piece mark is an example of a quasi type. If a type is defined as a Class, then a

22

class is a subclass of another class if all instances of the subclass are also instances of the

superclass. For example, all beams are a type of building element, if beam class is defined as a

subclass of building element. Any individual from the component ontology can be elevated to

the level of type. Instances are related using the Type-of relationship. The type can be an atomic

component or an assembly. Types can be created from different levels, for example an atomic

individual can be assigned as a type and instances made out of it. Or an aggregation of

individuals together can be assigned as a type. Or even a complete assembly with connections

etc., can be made into a type. Usually the geometry is attached at the type level and is inherited

by the instances. Only special modifications such as additions or subtractions of features is done

at instance level.

Requirements Ontology: The Requirements ontology is influenced by the ontology for

requirements or quality of objects [25]. The requirements ontology contains main concepts

needed for the representation of the function and behavior of individuals. It is important to attach

the requirements to the systems and pieces. Property sets are an important notion in IFC data

schema, which can be used for specifying requirements. Property sets can also be in multiple

levels. For example the requirements for a precast piece can be decomposed into requirements

related to performance, design criteria, delivery methods, etc. Classifications of requirements are

given on the basis of cost, functionality, safety, technology, and ergonomics. In the case of

precast systems, requirements should be differentiated on the basis of as-fabricated and as-

installed as well. The Precast System Ontology definitions are mapped to the IFC schema.

Excerpts of important concepts are provided as follows.

Figure 4.7: Building element (or component) being a Proper Part-of another building element.

23

Figure 4.8: Assemblies being aggregated into higher level assemblies.

The component ontology provided Part-of and Proper Part-of relationships and definitions. It

was shown that to qualify for a Proper Part-of relationship, the weak supplementation principle

needs to be satisfied. Based on this principle we can say that for a Proper Part-of relation the

geometry of the parent will be the combined geometry of its parts. The PCI team developed IFC

bindings for Building Element aggregation and it was seen to match the ontology definitions.

Building elements aggregated into an assembly of building elements and assemblies aggregated

into higher assemblies qualify for this relationship. Figures 4.7 and 4.8 illustrate this relationship

in mapping to IFC schema. Slabs are a composition of individual precast pieces, such as hollow

core, DT or solid slabs. The cut shapes of these components fit on the inside of the slab shape.

The shape of a slab is defined as a general-purpose shape (boundary representation), because the

top of the slab may not be planar owing to toppings. Carry should be made to ensure that the slab

shape and its components, when unioned together, have no spaces between. In Figure 4.7 the

RelatingObject refers to a slab entity with geometry, material, possibly embeds that are within

the slab itself, but not in its other components. The RelatedObjects references each of the

component beams in this slab. Slabs component pieces are assumed to be mutually spatially

disjoint, without overlaps. They may overlap the slab. An example for a Part-of relationship is

the building element contained in a spatial structure element. The differentiating factor between

the Proper Part-of and Part-of relationships is that the geometry of a spatial structure container

cannot be deducted from the aggregation of the building elements in the space. This is a very

important consideration that needs to be taken into account for calculating spaces.

IFC provides three different options for placement and each of which will have its own mapping

to IFC schema as shown in Figure 4.9. Similarly material data can also be attached to a building

element. The type-instance ontology defined cannot be directly mapped to the IFC schema in the

present form. According to the ontological definitions, any object can be elevated to the level of

24

a type, whether it is an atomic piece or an assembly or an assembly of assemblies. Such a

flexible typing mechanism is not available in IFC schema at the time of writing. However, if an

Figure 4.9: IFC schema mapping for different types of placement for precast piece, a) Absolute

placement, b) Placement relative to another element, c) Placement relative to grid etc.

IfcTypeAssembly is introduced in the future release this can be solved. The connection ontology

extended the component ontology and provided the is-connected-to relationship. The realizing

element is the means by which the connection is provided. The realizing element must be a one

of IfcDiscreteAccessory, IfcReinforcingBar, etc. To illustrate the implementation of component

and connection ontologies, let us look at a scenario where a precast beam is connected to a

precast column. There is also a feature addition to the column in the form of a corbel. Figure

4.10 shows the representation of the same in a BIM modeling tool and the realization of the same

in terms of ontological definitions. This system can be assigned as a Precast System based on the

system ontology. Based on the definitions, the Precast System under consideration is comprised

of the column, beam, the corbel, as well as the bearing plate. Even though the bearing plate is a

steel piece, it is still attached to the Precast System based on the system theory. The different

property sets required for the Precast System can be attached to either the pieces, assembly or the

system using various property sets. These are optional and are defined based on requirements.

25

The requirements ontology approach allows to attach different functional requirements to the

same model, without creating different models. For example, the as-installed and as-fabricated

functional requirements can be linked and necessitate two different shape requirements.

Figure 4.10: A Precast System scenario showing a beam to column connection and supported by

a corbel (feature addition).

5. Semantic Exchange Modules

The idea of Semantic Exchange Modules (SEM) is to provide this layer of specificity in modular

components that can be combined to compose exchanges at run-time, that allow re-use of export

and import functions for multiple domains, and that can be tested and certified as units. These are

its motivations. We explore a software engineering methodology to specify the SEM structure

required for IFC implementations.

5.1 What is an SEM?
An SEM is a structured, modular subset of the objects and relationships required in each one of

multiple BIM exchange model definitions. It has two raisons d‟être: (1) to enable BIM software

companies to code import and export functions in modular fashion, such that a function written

to export or import model objects according to any given SEM can be tested and certified once,

and then re-used to fulfill multiple exchange model exports/imports without modification; (2) to

provide a common high-level specification structure that allows non-programmers to compose an

MVD at run-time by defining it in terms of SEMs, allowing multiple heterogeneous platform

users to specify a SEM and to facilitate automatic compilation of the MVD for both direction of

an exchange.

An SEM can be defined as a binding to a set of IFC entities, attributes, relations, and functions

and a corresponding set of native model structures that carry the information associated with the

IFC SEM definition. See Figure 5.1. The SEM also carries the functions (methods) needed to

reliably map data between the native and IFC structures and other methods to integrate the two

structures with associated SEMs. Examples SEMS are provided in the Appendix.

26

In implementation, an SEM is a packaging of one or more concepts. The concepts provide the

details of the bindings to IFC entities, attributes and relationships. SEMs are composites of

concepts and offer close correspondence with the native objects in a specific software application.

The scope of SEMs will be determined in consultation with software tool developers, since they

must map not only to an Exchange Model, but also to the internal object schema of the tool.

Figure 5.1: Proposed structure of Semantic Exchange Modules.

5.2 Why are SEM’s needed?
Semantics in the areas of engineering and design are particular, in the sense that they define a

mixture of partial specifications of reality, the expected function and behavior of that reality, and

the reality of physical systems. Semantics regarding the different levels of realization and

different levels of function and behavior are needed to distinguish between definitions and

objects within a domain for different purposes. IFC provides a schema to define instances of

specifications of both building designs and their various analytical (behavioral) models; it

alsorepresents extant real buildings and data defining the building‟s behavior. Buildings are

described by terms that vary in their generality and like other taxonomies of engineering and

design, with varied levels of realization. Buildings are made up of many different systems that

each have their own entities, as well as shared ones. This implies that there is more than one way

of representing the information to be exchanged. While human minds are able to mentally switch

between different levels of abstraction and realization at different times, software applications

need clear definition of the intended semantics. IFC defines multiple entity structures that have

similar but semantically different interpretations. While some of these are well-defined (different

types of geometry), others are left to user determination (type-individual structures, relative

placement structures). Some of the implicit semantics are described in the IFC documentation

whereas other semantics are left to the users or future work.

To overcome this situation, the level of commitment and specificity in IFC needs to be raised.

The National BIM Standard does this partially, by defining model views for exchange purposes.

The introduction of model view „Concepts‟ begins to modularize IFC bindings: MVD Concepts

are definitions of domain-specific objects – such as a grid-line, a reinforcing bar or a concrete

beam – that defines how the object is to be detailed through use of the exchange schema (usually

IFC).

export and
import mappings

27

SEMs are defined to take Concepts to a higher level, to provide a level of IFC structures with

precise semantic definitions, for both human interpretation and readability, and for

implementation at the machine level. MVD concepts are essential at the implementation level,

but are too fine-grained for BIM users to aggregate at run-time into actual exchanges. Many of

them are indeed defined at a technical level (features of solid geometry, for example) that is

inappropriate for direct use by engineers and architects. A higher-level construct is needed, and

this is provided by the SEMs. On the other hand, adaptive aggregation of SEMs can provide the

flexibility needed for exchanges in different project situations. Such flexibility is unavailable in

exchanges provided by Model View Definitions.

From the point of view of software developers, an economy of scale is gained by defining SEMs

as parametric compositions of concepts, for two reasons: a) they can be tested and certified as

units, b) ideally, the functions written to export and import SEMs should themselves be modular

and re-usable, thereby reducing the efforts required for implementing future model views. The

current model view development work implies significant waste, because there is repetition in

the work for different domains. Different groups generate overlapping concepts and IFC

bindings based on their own requirements. For example, the same MVD concepts for reinforcing

bar, rebar arrays, etc., can theoretically be used for the two domains of precast concrete and cast-

in-place concrete.

Table 5.1: Part-21 file example showing Rebar Swept Disk Solid Extrusion

One aim of SEM development is to modularize such routines and reduce the effort needed for

implementing IFC translations. Such an approach enables reuse of the swept disk solid extrusion

for different cases such as a reinforcing bar, or a pre-tension cable, or maybe even a concrete

column (although tapers are not supported). Moreover, if each such module is independently

tested and validated, then a future model view generated need to be tested only for any new

additions as any reused SEM is already validated. Hence, validation and certification costs can

also be reduced.

#100350= IFCCARTESIANPOINT((15517.5,-330.,-330.));
#100360= IFCCARTESIANPOINT((15517.5,325.,-330.));
#100370= IFCCARTESIANPOINT((15517.5,325.,-30.));
#100380= IFCCARTESIANPOINT((15517.5,-330.,-30.));
#100390=
IFCPOLYLINE((#100350,#100360,#100370,#100380,#100350));
#100400= IFCSWEPTDISKSOLID(#100390,6.,$,$,$);
#25024= IFCSHAPEREPRESENTATION
(#40,’Body’,’SweptDiskSolidPolygonal’,(#100400));
#25030= IFCPRODUCTDEFINITIONSHAPE(’’,’’,(#25024));
#25034= IFCAXIS2PLACEMENT3D(#92,#465,#33);
#25037= IFCLOCALPLACEMENT(#79,#25034);
#25040= IFCREINFORCINGBAR(’19w9$j0007QJ4oCpavEJ8u’,
#20,’Stirrup L1-
2’,’’,’’,#25037,#25030,’TS_27053786’,$,9.525,71.256,$,$,$);

28

5.3. Requirements for SEMs
The requirements for SEMS should provide clear implementation criteria, so that they can be

used to clearly guide their specification and development. They should help in defining the level

of aggregation and semantic definition of SEMs. A specific set of criteria and scale for

measurement of these requirements will be developed following discussions with implementers.

There are different scales of measurement such as nominal, ordinal, interval, etc. and different

types of criteria such as necessary, sufficient and desired.

A. Composability – Composability is the ability for combining entities together in to a

module, without revising the entities. Each SEM should be composable with no broken

links with other SEMs. Specifically, a SEM should allow bindings with other SEMs,

without editing their interface, or adding or subtracting of references external to the SEM.

Composability allow re-usability.

B. Coverage – the Available SEMs should address all the semantic definitions now used

within IFC translators and support new IFC extensions where needed. This requirement

will be filled incrementally.

C. Parsimoniousness – SEMS should aggregate bindings whenever possible. If one

binding always includes another, then they should be included in the same SEM. Some

concepts, such as IfcLocalPlacement, are used widely and are a standard placement

structure for physical objects. Instead of making a separate SEM for such repeated

structures, they should be embedded into the SEMs that use them. Another example is the

use of IfcShapeRepresentation. IFC mandates some form of representation to all building

elements. Hence, the shape representation entity can be always attached to the building

element SEM and methods written to reference ShapeRepresentation to a particular type

of geometry.

D. Semantic Clarity – each SEM should define a distinguishable semantic construct,

easily distinguished on a use basis from all others. Each SEM must have a clearly defined

human readable definition that can be used for composition and application to IDM or

use case requirements.

E. Correctness - Correctness is the ability of entities to satisfy the use case specification.

Correctness is the prime qualifier. It ensures whether the SEM satisfies or represents what

the use case in an IDM specification is. Methods of correctness are conditional and are

based on testing.

F. Reusability – Reusability is the ability of SEMs to serve for implementation of many

different model views. An important requirement, which was identified during the current

model view work, is the need to avoid redundancy and rework in terms of development

and testing of model views, which is expensive and time consuming. For new MVD

development, these should be in a plug-and-play form. Retesting needs to be avoided.

Such modular SEMs can be plugged in wherever there is a requirement. The implication

is that a SEM should be general enough to support all its potential uses, beyond those

uses initially targeted. Otherwise it cannot be considered fully re-usable.

29

G. Traceability – It should be possible to trace the origin of a model view back to

exchange requirement (Synonymous to reverse engineering). Model views represent

different levels of detail; hence the new methodology should contribute to a better

understanding of model views by providing a concise and object oriented view of the

exchange. This can also be seen as verifiability and goes back to maintainability of model

views.

5.4. Desired Features of SEM:
The desired features are a secondary set of goals that should part of the final objective and helps

to improve the overall model exchange process.

A. Ease of use - Ease of use is the ease with which people of various backgrounds and

qualifications can learn to use SEM and apply them to solve problems. AEC industry

experts should be able to define model views based on SEMs. Knowledge of IFC is not

needed. It involves exchange specifications, model view definitions, and implementations.

In terms of ease of use SEM is positioned as an intermediate layer to natural language

(very easy) and high level programming languages (very complex). Advantage is domain

experts as well as programmers can understand model views represented in terms of SEM.

B. Rigor or Formalism - Formalism is the level of standardization and consistency

achieved using standard protocols. The SEM is the fundamental building block for the

exchange requirement, but what should be the granularity, atomicity, etc. of these

modules? A first step would be to make the background meaning about the IFC entities

and relationships that are currently implicit, to be made more formal and explicit. Formal

approaches can also reduce the load on testing by introducing assertions and constraints

and helping in debugging.

C. Extensibility – Ease of adapting modules to changes of specification. We need

extensibility. We need extensibility because IFC is an extensible schema and new

requirements for various domains are identified and proposed in due course. By

following a simple and decentralized approach it is easier to adapt to changes. The more

autonomous the modules, the easier it is to introduce changes.

D. Cycle time: The current model view development lifecycle of 2-3 years should be

reduced to a more practical 6-8 months. This will help to introduce IFC implementations

in a timely manner.

5.5 SEM Specification
The notion of a SEM is that it is a subset of a product model schema that can be used to create

various, higher-level, model view definitions (MVD). A SEM graph (Figure 5.2), usually has

two dimensions. The first dimension is the classification hierarchy of different entities involved

and relationships. The second dimension involves the implementation of each of these nodes in

the graph by mapping it to a schema (IFC and native). The branches of this dimension represent

the data access paths. Therefore, a SEM has: (i) a definite mapping to a schema, (ii) when fully

30

defined, also mappings to a native model, (iii) methods to map between the two bindings, (iv)

access the data and (v) belongs in a specific classification hierarchy. Such a structure makes

SEMs executable.

Figure 5.2: A sample SEM structure

The main criteria to be satisfied for creating such executable modules is composability as

explained in previous section (and Figure 5.3). Can we produce model views by carefully

combining SEMs with each other? SEMs are not autonomous/independent from each other.

Thus there is some need for functions to define relations between SEMs, especially those

organized hierarchically. For example, if we have such exchange modules for B-Rep geometry,

placement, material, features, etc., then it should be possible to compose them together to satisfy

a precast model view. Geometry and placement, however, has to be embedded in the spatial

configuration hierarchy. This is analogous to building a system from standard predesigned

elements, where one type of system supports others. Composability can be seen as a bottom-up

approach and this is in clear contradiction of how IFC is designed (Top-down structure).

Another main criterion of SEM is that they need to be stand-alone and testable from the

completeness point of view. SEMs should be composable into a complete subschema that has no

broken links or references. This is synonymous to decomposing a complex EXPRESS schema

(or a model view) into a small number of less complex, valid sub modules, connected by a

simple structure. This should be independent enough to allow development to be done separately

using these sub-modules.

Two criteria:

i. The dependencies between modules should be kept to a minimum.

ii. The dependencies should be explicitly defined.

An example is the spatial configuration SEM (see Appendix). The project-site-building-building

storey-space can be combined into a few modules and the dependency is the spatial containment

Functionality / Attribute Binding

IFC Binding Native Model
Binding

Implementation / Schema Binding

Natural Language Domain Specific

N
at

u
ra

l
L

an
g
u
ag

e
S

ch
em

a
B

in
d
in

g

31

relationship, which is used to assign an object into this configuration. In other words how other

modules make use of this module should be clearly stated. Similar examples are the relation

between structural members used for structural analysis and the physical incarnation of the

members; these cross-reference relations must also be built and maintained.

Figure 5.3: SEM structure showing precast piece with a semantically determined geometry

A trade-off is that composing entities into modular units and decomposability of Express schema

are contradictory with the deep inheritance hierarchy. Both are part of the requirements for a

modular method and there should be a balance with the top-down and bottom-up approaches.

Open-closed principle: Modules should be open for extension and closed for change.

A module is said to be open if it is still available for extension. For example, it should be

possible to extend its use to other domains by adding external entities. A module is said to be

closed, if internally the entities and relationships between them are well-defined and need not be

changed for different contextual use. All SEMs are to be classified as open or closed, where

„closed‟ is an assertion of completeness.

If a SEM violates this principle then it is an indication that the module needs to either broken

down into more than one smaller modules, or maybe in some cases the module needs to be

expanded to include more entities. This could be good guideline in drawing the boundaries of

SEMs. A „closed‟ SEM may be re-open-ended for undertaking new extensions not previously

anticipated.

Some suggested additional guidelines:

Swept Shape

CSG Shape

Precast Piece Geometry

B-rep Shape

Library Catalog

IfcFacetedBrep

IfcClosedShell

IfcFaceSurface

IfcShapeRepresentation

IfcSlab

Mapping to Function

ha
sM

ap
pi

ng

ha
sR

ep
re

se
nt

at
io

n

M
ap

p
in

g
 t

o
 S

ch
em

a

32

1. If IFC entity structures are always composed in a given way, they should be combined

into a SEM.

2. Conversely, SEMs should have boundaries corresponding to variations in binding

structures.

3. If a structure is optional and not always used, but always has the same structure, it

should be included in a single SEM, to aid implementation and parsimony. (Example is

the spatial configuration hierarchy.)

4. Procedural realities sometimes require that certain operations are carried out

incrementally, in response, for example, to the structure of a given model instance. Thus

the complete structure of a potential SEM cannot be all defined at one time. In such cases,

the incremental inputs need to be defined separately, as lower level SEMs, so they can be

executed as needed for parsing a mode. An example of the populating of the Spatial

Configuration Hierarchy. While the overall structure is known and generally

deterministically, each building and Storey are defined incrementally, as they are

encountered in the model.

(Note: these variations apply to object structures (Building Element and Building Element Type).

Attribute-value dependences across SEMs are often necessary and need to be documented, but

do not require partitioning.)

Weak coupling: The interfaces between modules should be as minimum as possible. This allows

modular continuity and protection. A system can be said to be continuous if a small change in the

specification triggers the change of least number of modules.

Protection is useful if one of the modules needs to be redefined, then the change is restricted to

only that module or to the least number of neighboring modules.

Design patterns: Following established OO design patterns help in reusability.

5.6. A Semi-Automated Model View Development approach using SEMs
The exchange requirements have a direct mapping to the SEM structure (intuitive) and provide a

means to develop new MVDs in a plug-and-play manner. SEMs are predefined in a library by

packaging entities together as a module on a semantic basis. Extensive work and time is saved by

this approach. The process begins with the user entering the exchange model requirements in

terms of SEMs. Figure 5.4 shows the flowchart for such a methodology. We assume that the

SEMs providing sufficient coverage are already defined and available in a software library. The

use selects the SEMs that are necessary based on the exchange requirements, for example, in the

scenario shown in Figure 5.5, a precast double tee is to be exchanged with extruded geometry.

The collection of SEMs selected has a mapping to the IFC schema, based on which an

EXPRESS schema file is automatically generated. This EXPRESS files, which is a valid subset

of the overall IFC schema is the model view for this scenario. EXPRESS syntax checkers are

available as open source modules. The process of verifying the model view involves the

following:

1. The EXPRESS schema file is parsed using the EXPRESS Engine

2. The errors are reported based on missing IFC entities, relations and attributes

3. Modify the EXPRESS schema generation mechanism for correct mapping

33

Figure 5.4: A semi-automated model exchange methodology based on a SEM library

(proposed).

Figure 5.5: The process of developing a model view from Exchange Requirements based on

SEMs.

34

6. Testing and Validation

The model view definitions for Precast National BIM Standard are completed and published on

the project website (dcom.arch.gatech.edu/pcibim) and IFC Solutions Factory (http://www.blis-

project.org/IAI-MVD/). We are now in the process of testing and validating the specifications by

implementing a set of exchanges by BIM software vendors. A demonstration is planned at the

PCI Annual Convention in October, 2011. These will show the exchange of precast pieces with

complex geometry, embedded components, connections and their attributes, between different

precast applications. A high level over view of the processes involved in the export and import

testing are shown in Figures 6.1 and 6.2. Validation testing of model exchanges can be broken

into four levels:

a) Checking the syntax and structure of project exchange files for conformance to the IFC

standard (IFC 2x3, or 2x4 etc.) this validation only applies to the export functionality of any

given BIM software tool. It is not useful to test import routines this way, as import does not

generate data that can be externally tested.

b) Checking the objects in a project exchange file, as well as their properties and relationships

for conformance to the bindings stipulated for them in the relevant MVD document. This test

validates that the tested application can generate an exchange file with the required objects, and

that these satisfy the rules of the bindings in terms of relations and attributes. The bindings for a

set of SEMs are aggregated into different ways for different MVD exchanges. Thus conformance

testing is performed separately for each exchange. This too is an export functionality test.

c) Checking the import functionality of a BIM software tool for its ability to properly import the

full set of SEMs defined in an MVD. This can be done using a predetermined set of IFC test files

that aggregate sample instances of all the SEMs defined in the MVD. Since each possible

exchange exploits a certain subset of SEMs, any given BIM software tool export function can be

tested for a given exchange by testing its import of a subset of the IFC test files. This test applies

to unit testing.

d) Checking the completeness of the contents of a project exchange file (objects, parameters, and

their values) between two applications, to ensure that the exchange contains all of the

information required for the given exchange by the definitions of the Information Delivery

Manual (IDM). This check can only be performed within the context of a precast construction

project, as it check content within project context. It is an export and import test.

To understand the scope and detail of the exchange capabilities needed, we provide seven

building models that are typical of the information that must be exchanged. The seven models

contain precast pieces and embeds, connections, etc. with increasing levels of detail. The

progression of detail and contents in the models represent the range of detail and flexibility

required from the modular exchange software. The seven models are provided in IFC files that

conform to the Precast NBIMS, and listed below.

35

Figure 6.1: Process flow describing export testing

Figure 6.2: Process flow describing import testing

6.1 Main Objectives

The vendor exchange implementations will transfer building data from design applications such

as Revit, ArchiCAD, Bentley and VectorWorks to detailing packages such as AllPlan,

Structureworks and Tekla, as shown in Figure 6.3. The main objectives are as follows.

36

Figure 6.3: Sample demonstrations for Precast NBIMS.

a. Compose an IFC translator automatically from a set of SEM modules.

The purpose of these exchanges is to also test the ability to compose a translator between native

model structures and IFC in a modular manner so that exchange contents can be varied and

controlled, ideally through a selection window. This will go beyond simply turning details on

and off, to include different geometry and relations. The same set of contents could be defined by

the sender or receiver, or a subset defined by the receiver of what the sender specifies.

b. Re-use of SEM implementations in multiple exchange types.

The Concept definitions from the PCI NBIMS project will be re-aligned in the form of SEMS.

Their purpose is to facilitate the implementation of multiple exchanges, which are based on the

same set of Concepts, thus requiring implementation and testing primarily at the module level

and not at the full exchange level. Implementing the PCI modules individually requires us the

specifiers of the SEMs, to define them so that all permutations are anticipated. This will require

initial testing, but learning to do this and documenting the issues will allow future SEMs to be

defined and implemented with only limited full model combinatorial testing. We propose to

generate and exchange three sample exchanges, which includes a list of 58 Concepts. These are

in the process of being repackaged into a smaller number of SEMs.

6.2 List of SEM implementations and corresponding MVD Concepts
Currently defined SEMS are posted on the Precast BIM website:

http://dcom.arch.gatech.edu/pcibim/

Spatial Hierarchy – see Appendix

Grids

Element & Element Types – see Appendix

Connections

37

Projections and Blockouts

Reinforcing

Table 6.1: Variable Concepts defined in the PCI NBIMS diagrams

Building

Precast End to edge

Connection

Precast Slab

Building Storey

Precast End to end

Connection

Project

Engineered Mesh

Precast Joint

Rebar

Grids

Precast Joint Type

Rebar Cage

Non-Precast Element

Precast Piece

Reinforcement Element

Aggregation

Non-Precast Element

Type

Precast Piece Type

Site

Precast Blockout

Precast Projection

Standard Mesh

Precast Embed

Precast Seam Connection

Tendon

Precast Embed Type

6.3 Sample IFC test files

Sample files are created to facilitate the exchange testing by

providing practical use cases. They build upon each other and

allow for the incremental testing of the concepts. The research

team has made available the test files in IFC 2x3 format which

could be accessed by the implementers on our web server.

These Concept definitions identify the scope of the exchanges

we wish to see implemented.

Test File 1 is the starter file, which sets up the basic features

necessary for all exchanges. This comprises of the spatial

Figure 6.4 Test File 2 - Precast

Column with B-Rep Geometry

38

hierarchy of Project-Site-Building- Building Storey and Spaces. Different types of grid

definitions are included as well.

Test File 2 introduces a precast column with B-Rep geometry and relative placement. It has

precast specific tags such piecemarks included. Figure 6.4 shows a view of the precast column

and its geometry.

Test File 4 and 5 illustrates a hollow core and aggregation of independent hollow cores in to a

slab respectively. Geometry is represented in the form of arbitrary profile as shown in Figure 6.5.

Test File 6 and 7 introduces more complexities in the form of block outs and embeds in a precast

column as illustrated by Figure 6.6. Also, geometry is in the form of

extrusion. Reinforcing elements are also part of these test models.

Figure 6.5 Test Files 4 & 5 – Slab with Precast Hollow Core Pieces

Test File 9 is comprised of a beam and column and connections

between them as shown in Figure 6.7. This file also has features such as

corbels on beam to support Double Tees (DT). DTs are included in the

file for completion, but ignored for the purposes of this demo.

The test files are made available for download from the PCI BIM

project website. (http://dcom.arch.gatech.edu/pcibim/)

Figure 6.6 Test Files 6 & 7

Precast Column with

Extruded Geometry,

Blockouts, etc. Ignore

embeds

http://dcom.arch.gatech.edu/pcibim/documents.asp

39

Figure 6.7 Test File 9 - Column, Beam, Connections and Features.

6.4 A proposed process outline for implementation toward the demos
The research team will provide implementation support for each vendor and work on a one-on-

one basis with the vendor‟s project manager. The schedule for each talk will be determined

during the initial meetings and will take into consideration the target presentation date in October

2011.

a. Technical team distributes the specified SEMs and the mapping to the concepts they cover

and the integrated specification for implementation.

Meeting/video conference with each vendor for the PCI team to explain the aims and principles,

and define the targets;

b. Vendor team prepares a specification for the exchanges they plan to implement.

c. Meeting/video conference for the vendor team to explain how they propose to implement

the demos – focused discussion on the notion and the practicalities of implementation in such a

way that allows re-use of the concept modules.

d. The PCI team will provide written feedback for the vendor.

e. Implementation

f. Meeting/video conference for the vendor to do a preliminary demo of what they have

implemented; feedback from the PCI team. This item can be iterated as often as needed.

g. Short written report from the vendor describing what they have done, how they have

implemented concepts and re-used them for different exchange types.

h. Test of exchanges the week of October 3, to identify what works and what dong not for

agreed to exchanges.

h. Demo at the PCI annual convention, October 22
nd

 to 26
th

 2011.

40

6.5 Certification Testing
The final step would be to get the translators validated and certified. A current effort by the

buildingSMART organization is the development of rigorous methods for testing and

certification of translators, especially those that are Model Views. Different but somewhat

similar test sites are being developed.

The first was developed by the Institute for Advanced Building Informatics (IABI), Germany,

led by Rasso Steinmann, http://87.106.252.103/apex/f?p=101:1:2778425439471030. This service

is currently focused on testing for the Coordination View, as defined by buildingSMART

international. IABI also anticipates future testing of MVDs. It provides parameterized testing of

the attributes values for all entities in a model, and also the relations between entities. More

complex forms of tests can be defined in C#.

The second testing service, also called a BIM Validation Service, was developed by Digital

Alchemy, led by Richard See, at

 http://digitalalchemypro.com/html/services/IfcBimValidationService.html. This service is

focused on MVD Concept based testing. This means that a suite of unit tests are run for each

Concept in the MVD, on every object instance in the file being tested. Once a user is registered,

they simply select the MVD against which their building model should be validated (tested) and

upload the BIM file. Detailed test results are returned to the user via email.

Both tools are accessed through application server sites via the Web. Both are expected to

improve test results reporting over time. Both sites have stated their intent to provide BIM

validation for MVDs as defined in NBIMS. Both will hace a service charge for testing.

41

7. Conclusion

This section summarizes the results of this research and relates them to the research questions

addressed. The major findings, some limitations and the future scope are explained.

1. What are the semantics of model views for information exchanges using the IFC

schema? Section 3 provides an analysis of the IFC product model schema for specific

issues such as type-instancing, classification schemes, geometry, relations and rules, etc.

There should be flexibility in defining the type-instance structure based on the context

and nature of an application. IFC is a weak (loosely) typed system and provides multiple

ways to type objects. In order to avoid ambiguities in model exchanges it is imperative

that the SEMs are modeled as a strongly typed system. Such a strongly typed SEM lattice

on top of a weakly typed IFC schema can be the solution to truly realizing successful

model exchanges. Classification schemes can be used to group entities and structure the

data in a model exchange, thereby reducing the file size of model exchanges. This also

increases the utility of the exchanged data in the importing application due to the fact that

the exchange already groups identical or similar objects. This is important for most BIM

functionality that involves editing or counting objects and such semantics should be

specified in the model views. A multiple-inheritance structure can be the long-term

solution for achieving the required flexibility in typing issues. However the study of the

upward compatibility of the schema needs to be propelled by further research. This is an

important research issue, to be addressed when IFC is made fully ISO compatible.

2. How can we develop model views consistently across research teams and domains?

In order to support IFC implementations, the consistency of model views designed is an

important criteria, lack of which is causing overhead for software developers and is

inhibiting new IFC implementations. Product model schemas such as IFC are rich, but

redundant. Based on the insights gathered from developing the Precast National BIM

Standard and further analysis as part of this research, a new methodology based on

object-oriented and modular components called Semantic Exchange Modules (SEMs) is

introduced. Based on the analysis in section 3, it is shown that MVD development

process needs to be transitioned from the current ad-hoc manner to a more rigorous

framework and/or methodology. The semantic meaning of SEMs needs to be defined in a

rigorous and formal manner with strict guidelines. This can help achieve a uniform

mapping to and from internal objects of BIM tools and IFC.

3. What should be the building blocks of model views for semantic information

exchanges? This research proposes defining model views based on modular, testable,

and reusable packages called Semantic Exchange Modules (SEM). A library of SEMs is

proposed and model views are defined based on SEMs. This is explained in Section 4 and

5 of this report. SEMs, once tested and implemented, can provide a mechanism to

generate model views directly from exchange requirements. This is a novel idea and is

about to be explored. Standard criteria for defining the SEMs proposed here should be

documented to avoid various research and development teams from generating

contradicting/inconsistent implementations. A dictionary of SEMS, for definition of IDM

mappings to SEMs will be required as SEMs prove successful. Such a standard approach

42

will help in reuse of SEMs thereby resulting in the reuse of MVDs itself. This approach

has the potential to reduce the current time for model view generation - implementation

cycle from 2-3 years to a more practical 4 months or less.

This research presented the guidelines to define a SEM structure. The mapping to the IFC

data schema satisfies only one branch of the SEM structure, the other branch being the

mapping to the native model schema as shown in Figure 5.1 in Section 5. The mapping to

the native model schema is also required to realize the full potential of the SEM notion.

However, the implementation of mapping to native model schemas can be performed

only with the support of software vendors. This is currently being performed. The

implementation of mapping to native model schemas can potentially raise questions on

the boundaries on which SEMs are modularized necessitating fine tuning.

A logical framework on the basis of well-defined and unit tested SEMs, thereby following a

modular approach is the future direction for creating MVDs in a standardized, and re-usable

manner, cutting across all domains and providing better interoperability.

43

References

[1] Eastman, C., Panushev, I., Sacks, R., Venugopal, M., Aram, V., and See, R., “A Guide for

Development and Preparation of a National BIM Exchange Standard,” technical report to

buildinSMART, 2011.

[2] Venugopal, M., Eastman, C. M., Sacks, R., and Teizer, J., “Semantics of Model Views for

Information Exchanges using the Industry Foundation Class Schema,” Advanced Engineering

Informatics, (in review), 2011.

[3] Aram, V., Eastman, C., Sacks, R., Panushev, I., and Venugopal, M., “Introducing a New

Methodology to Develop The Information Delivery Manual For AEC Projects,” in Proceedings

of the CIB W78 2010: 27th International Conference – Cairo, Egypt, 16-18 November, 2010.

[4] Venugopal, M., Eastman, C. M., Sacks, R., and Teizer, J., “Improving the Robustness of

Model Exchanges using Product Modeling Concepts for IFC Schema” in Proceedings of the

2011 ASCE International Workshop on Computing in Civil Engineering: June 19-22, 2011,

Miami, FL, USA

[5] Venugopal, M., Eastman, C., Sacks, R., Panushev, I., and Aram, V., “Engineering Semantics

of IFC Product Model Views,” in Proceedings of the CIB W78 2010: 27th International

Conference –Cairo, Egypt, 16-18 November, 2010.

[6] Guarino, N., Borgo, S., and Masolo, C., “Logical modelling of product knowl- edge: towards

a well-founded semantics for step,” in Proceedingsof European Confer- ence on Product Data

Technology (PDT Days 97), Sophia Antipolis, France, Citeseer, 1997.

[7] Sacks, R., Eastman, C., Panushev, I., Venugopal, M., and Aram, V., “Precast Concrete BIM

Standard Documents: IFC Extensions for Pre- cast Concrete,” PCI-Charles Pankow Foundation.

http://dcom. arch. gatech. edu/pcibim/documents/Precast (last accessed on 6/20/2010), 2010.

[8] Eastman, C. M., Jeong, Y. S., Sacks, R., and Kaner, I., “Exchange model and exchange

object concepts for implementation of national bim standards,” Journal of Computing in Civil

Engineering, vol. 24, no. 1, pp. 25–34, 2010.

[9] Olofsson, T., Lee, G., and Eastman, C., “Editorial - case studies of bim in use,” ITcon, vol.

13, Special Issue Case Studies of BIM in use, pp. 244–245, 2008.

[10] Hietanen, J. and Final, S., “IFC model view definition format,” International Alliance for

Interoperability, 2006.

[11] Eastman, C., Sacks, R., Panushev, I., Venugopal, M., and Aram, V., “Precast concrete bim

standard documents:model view definitions for precast concrete,” 2010.

44

[12] Bazjanac, V. and Kiviniemi, A., “Reduction, simplification, translation and inter- pretation

in the exchange of model data,” in CIB W, vol. 78, pp. 163–168, 2007.

[13] Adachi, Y., “Overview of IFC model server framework,” in EWork and eBusiness in

architecture, engineering and construction: proceedings of the fourth European Con- ference on

Product and Process Modelling in the Building and Related Industries, Portoroˇz, Slovenia, 9-11

September 2002, p. 367, Taylor & Francis, 2002.

[14] Pazlar, T., Klinc, R., and Turk, Zˇ., “Mapping between architectural and struc- tural aspects

in the IFC based building information models,” EWork and EBusiness in Architecture,

Engineering and Construction: ECPPM 2008, p. 151, 2008.

[15] Kiviniemi, A., Requirements management interface to building product models. Stan- ford

University Stanford, CA, USA, 2005.

[16] Garrett, J., Fenves, S., and Stasiak, D., “A www-based regulation broker,” CIB REPORT,

pp. 219–230, 1996.

[17] Pen a-Mora, F., Anumba, C., Solari, J., and Duke, A., “An integrated telep- resence

environment for collaboration in construction,” Engineering with Computers, vol. 16, pp. 287–

305, 2000. 10.1007/PL00013717.

[18] Lee, J., Eastman, C., Lee, J., Kannala, M., and Jeong, Y., “Computing walk- ing distances

within buildings using the universal circulation network,” Environment and Planning B:

Planning and Design, vol. 37, no. 4, pp. 628–645, 2010.

[19] Borrmann, A. and Rank, E., “Specification and implementation of directional operators in a

3D spatial query language for building information models,” Advanced Engineering Informatics,

vol. 23, no. 1, pp. 32–44, 2009.

[20] Weise, M., Katranuschkov, P., and Scherer, R., “Generalised model subset definition

schema,” CIB REPORT, vol. 284, p. 440, 2003.

[21] Eastman, C., Building product models: computer environments supporting design and

construction. CRC, 1999.

[22] ISO, W., “ISO/PAS 16739: 2005,” Industry Foundation Classes, 2005.

[23] Sacks, R., Eastman, C., Panushev, I., Venugopal, M., and Aram, V., “Precast Concrete BIM

Standard Documents: IFC Extensions for Pre- cast Concrete,” PCI-Charles Pankow Foundation.

http://dcom. arch. gatech. edu/pcibim/documents/Precast (last accessed on 6/20/2010), 2010.

[24] Guarino, N. and Welty, C., “A formal ontology of properties,” Knowledge Engineering and

Knowledge Management Methods, Models, and Tools, pp. 191–230, 2000.

45

[25] Borst, W., Construction of engineering ontologies for knowledge sharing and reuse. PhD

thesis, Centre of Telematica and Information Technology, Universiteit Twente: Enschede, The

Netherlands, 1997.

[26] N. Nisbet, S. Richter, Repeated Instances and Placement Sets, Technical Report, IAI Tech,

2007.

[27] Proposal for phase 2 of mvdXML by Weise M. (ed), Geiger A., Katransuchkov P. and Liebich T.
Bsi Workiong proposal

SEM SPATIAL CONTAINMENT HIERARCHY FAMILY OVERIVEW
SEM-001, Project,

SEM-002, Site

SEM-003, Building

SEM-004, Building Story

SEM-005, Space

Overview
The Spatial Containment Hierarchy is a part of almost all Model Views. It categorizes all spatial and building elements

spatially, according to the aggregation hierarchy of Site, Building, Story and Space. The hierarchy of spatial elements:

IfcProject, IfcStie, IfcBuilding, IfcBuildingStorey, IfcSpace are used to categorize the spatial area that specific objects

are associated with, by enclosure. These area are not fixed or predefined, but are conceptual. For example, a Project

may span over several connected or disconnected sites; similarly, a Site may incorporate multiple Buildings. Each level

is defined as a one-to-many relationship. The Spatial Containment entities are created prior to the elements that

populate them, before other spatial elements are translated, in order to classify objects within this spatial hierarchy.

This family of SEMs are separate, as the SEMs are called sequentially to define Buildings, Stories or Spaces as they are

encountered in a model being translated.

Optional Spatial Hierarchy Structure

(It is not known in any SW package has implemented this IFC feature.)

The Spatial Containment Hierarchy SEM recognizes that large projects (and files) may need to be decomposed for

hardware and performance reasons, among others. If an author generates a model this way, it is assumed to be by

necessity. In cases where information is provided in IFC back to the author, this structure should be respected.

We illustrate this structure with Site decomposition first. In

addition to the single Project having multiple Sites, a single Site

may be defined as a composition of sub-sites. This is realized by

assigning an optional COMPLEX attribute to Site for aggregating

a collection of PARTIAL sites. This attribute is defined by the

CompositionType attribute of the supertype IfcSpatialStructureElement .

Site has an origin which may be global or local to the Project origin. The logical consistency of COMPLEX, PARTIAL and

ELEMENT applies. A legal composition of site composition types is shown below. If whole sites are aggregated, they

are done so using the IfcSite with composition type COMPLEX. If a single site is decomposed into partial site, these

IfcSite instances carry the composition type PARTIAL.

The same arrangement of spatial configurations applies at the Building level, where a Building may be a COMPLEX of

other buildings, or segmenting a building into PARTIAL buildings. Buildings also have a placement, local if related to the

site, or global which provides the buildings reference coordinate system. If needed, IfcBuildingStorey can also be

defined of multiple building story entities if partitioning in required. It is recommended that this structure (at all levels)

be used only if required for the project

Where the partitioned Site, Building or Story are used, the RelPlacement s must reflect the intended structure. That is,

the SpatialStructureElement.COMPLEX should carry the coordinate system that the partial Spatial Structure Elements

RelPlacement refer to.

COMPLEX ELEMENT

PARTIAL PARTIAL

Project and Localplacement are defined at each level, with reference to the next higher level. The nested placements

should be consistent across users. Where used, IfcLocalPlacement references must be consistent with each Site,

Building, and Storey and references hierarchy.

They are presented here in order.

Semantic Exchange Module
Identifier: SEM-001

SEM Name: Spatial Containment Hierarchy – Project

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: April 28, 2011

Revisions: June 8, 2011 (CME)

SEM Description:

IfcProject is an entity required in all exchanges, to identify the project and other base information associated with the

project. It is singular, by requirement. The IfcProject is used to reference the root of the spatial structure of a building. It

has the following assignments:

 Long name :: project name used for reference purposes

 RepresentationContext :: reference to IfcGeometricRepresentationContext

 UnitsInContext :: the set of units used within the project

IfcProject has an associated IfcGeometricRepresentationContext that objects within the project reference.

GeometricRepresentationContext defines the following items:

 CoordinateSpaceDimension :: defines the maximum tolerance distance between two points that are assumed to

be the same;

 WorldCoordinateSystem :: most often (0.,0.,0.), using one of fcAxis2Placement3D for three-D, or

IfcAxis2Placement2D for two-D.

 true North direction :: provided as angle relative to the coordinate origin and orientation.

Methods:

IfcProject and IfcGeometricRepresentationContext are created and populated as base reference for project.

Concepts aggregated into this one:

PCI-042 Site Contained in Project

PCI-064 Absolute Placement

MVC-876 Project Attributes

MVC-887 Project Units

MVC-890 Project Name

IfcProject

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 LongName

 Phase

+ RepresentationContexts >

+ UnitsInContext >

(INV) IsDecomposedBy

IfcGeometricRepresentationC

ontext

 ContextIdentifier

 ContextType

+ CoordinateSpaceDimension

 Precision

+ WorldCoordinateSystem >

 TrueNorth >

IfcAxis2Placement2D

+ Location >

 RefDirection >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >

SELECT

Spatial Containment Hierarchy - Project

Semantic Exchange Module
Identifier: SEM-002

SEM Name: Spatial Containment Hierarchy – Site

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: April 28, 2011

Revisions: June 8, 2011 (CME)

SEM Description:

The IfcSite is used to build the spatial structure of one or more buildings. The spatial structure elements are linked

together by using the objectified relationship IfcRelAggregates (see diagram) . The IfcSite references spatial

elements by its inverse relationships. All objects not within the Building level should be assigned to the Site level of

the hierarchy. These are typically terrain and site planning model data. These are assigned using

IfcRelContainedInSpatialStructure (see BuildingElement).

If multiple Sites are used in a Project, they are required to be disjoint.

Methods:

One or more Site entities reference the Project they are part of, as a logical relationship. These should be assigned

as encountered. If a Project includes multiple Sites, where one Site is a “master” for the others, these are logically

organized as the “master” Site being COMPLEX and the others PARTIAL. This is their logical relationship.

A Site also plays an important role in terms of spatial coordinate coordination. The

IfcLocalPlacement.PlacementRelTo relation can take 3 types of value:

1. Reference the Project coordinate system when multiple sites are to be spatially related through a Project

base coordinate.

2. If the Project coordinate system is not to be the Site reference, then PlacementRelTo is left blank to

indicate this site’s origin is the global coordinate system

3. If there are multiple PARTIAL Sites in the Project and one of Site provides the “master” coordinate system,

then PlacementRelTo references the “master” Site instance

The coordinate assignments should be assigned as the conditions of each Site are defined.

All other Site Attributes are optional and should follow the IFC documentation guidelines.

Concepts aggregated into this one:

PCI-042 Site Contained in Project

PCI-063 Relative Placement

PCI-064 Absolute Placement

MVC-892 Site Name

IfcProject

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 LongName

 Phase

+ RepresentationContexts >

+ UnitsInContext >

IfcSite

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 RefLatitude

 RefLongitude

 RefElevation

 LandTitleNumber

 SiteAddress >

IfcRelAggregates

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatingObject >

+ RelatedObjects >

(INV) IsDecomposedBy

(INV) Decomposes

(INV) IsDecomposedBy

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

IfcGeometricRepresentationC

ontext

 ContextIdentifier

 ContextType

+ CoordinateSpaceDimension

 Precision

+ WorldCoordinateSystem >

 TrueNorth >

Alternative for COMPLEX

or PARTIAL sites

Alternative for COMPLEX

or PARTIAL sites

IfcAxis2Placement2D

+ Location >

 RefDirection >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
SELECT

IfcAxis2Placement

IfcAxis2Placement2D

+ Location >

 RefDirection >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >

SELECT

IfcAxis2Placement

Semantic Exchange Module
Identifier: SEM-003

SEM Name: Spatial Containment Hierarchy – Building

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: April 28, 2011

Revisions: June 8, 2011 (CME)

SEM Description:

Building provides a basic element within the spatial structure hierarchy for the components of a building within a

Project. If Sites are specified, a Building is associated to a Site. Multiple Buildings may be part of the same Site, in a one-

to-many relationship.

In some cases, a Building may be so large and complex that it is partitioned into PARTIAL Buildings. In these cases a

Building.COMPLEX provides for a collection of PARTIAL Buildings (see spatial Containment Overview). A building can also

be decomposed in (vertical) parts, where each part defines a PARTIAL Building.

All objects not within the Building Story level should be assigned to the Building level of the hierarchy; these foten

include stairways, columns and curtainwalls. These are assigned using IfcRelContainedInSpatialStructure (see

BuildingElement).

Methods:

One or more Building entities reference the Site they are part of, as a logical relationship. Each is added as encountered.

If a Building includes multiple other Buildings, where one Building is a “master” for the others, these are logically

organized as the “master”Building being COMPLEX and the others PARTIAL. This is their logical relationship.

A Building also plays an important role in terms of spatial coordinate coordination. The

IfcLocalPlacement.PlacementRelTo relation can take 3 types of value:

1. Reference the Site coordinate system when one or more buildings are to be spatially related through a Site base

coordinate.

2. If the Site coordinate system is not to be the Building reference, then PlacementRelTo is left blank to indicate this

Building’s origin is the global coordinate system. This applies when there is only one Building instance or if there is one

Building.COMPLEX.

3. If there are multiple Partial Buildings related to a Building.COMPLEX, The Building.COMPLEX provides the “master”

coordinate system, then PlacementRelTo must references either the “master” Site instance or the “master” building

instance

All other Building attributes are optional and should follow the IFC documentation guidelines.

Concepts aggregated into this one:

PCI-043 Building Contained in Site

PCI-044 Building Storey Contained in Building

PCI-063 Relative Placement

MVC-894 Building Name

IfcSite

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 RefLatitude

 RefLongitude

 RefElevation

 LandTitleNumber

 SiteAddress >

IfcBuilding

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 ElevationOfRefHeight

 ElevationOfTerrain

 BuildingAddress >

IfcRelAggregates

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatingObject >

+ RelatedObjects >

(INV) Decomposes

(INV) Decomposes

(INV) IsDecomposedBy

(INV) IsDecomposedBy

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

IfcAxis2Placement2D

+ Location >

 RefDirection >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
SELECT

IfcAxis2Placement

Alternative for COMPLEX

or PARTIAL sites

Alternative for COMPLEX

or PARTIAL sites

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

Semantic Exchange Module
Identifier: SEM-004

SEM Name: Spatial Containment Hierarchy – Building Story

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: April 28, 2011

Revisions: June 8, 2011 (CME)

SEM Description:

Building Story provides a basic spatial classification within the spatial structure hierarchy for the components of a

Building. A Building Story is designated by an elevation, defining the approximate height relative to others. Building

Story is considered the primary receiver of Spaces.

Some structurally oriented models , on the other hand, do not use Story and allocate all slabs, beams and columns to the

Building in terms of spatial containment (and also coordinate system placement). Multiple Building Storys are typical

part of the same Building, in a one-to-many relationship. In some cases, a Story may be so large and complex that it is

partitioned into PARTIAL Storys. In these cases a BuildingStory.COMPLEX provides for a collection of PARTIAL Storys

(see spatial Containment Overview).

All objects not within the Building Story level should be assigned to the Building level of the hierarchy; these foten

include stairways, columns and curtainwalls. These are assigned using IfcRelContainedInSpatialStructure (see

BuildingElement).

Methods:

One or more Building Story entities reference the Building they are part of, as a logical relationship. Each is added as

encountered. If a Building includes multiple other Buildings, where one Building is a “master” for the others, these are

logically organized as the “master”Building being COMPLEX and the others PARTIAL. This is their logical relationship. The

logical and spatial structure of Building Storys is not well defined, but should be. Thus the bsis for assigning Building

Storys to Buildigs should be cognizant of these rules,

Building Storys are also allowed to be partitioned into Building Story.COMPEX and Buildig Story.PARTIAL, However, we

advise against this practice and recommend that all project partitioning, if undertaken at all, should be taken at the

Building level.

A Building Story also plays an important role in terms of spatial coordinate coordination. The

IfcLocalPlacement.PlacementRelTo relation can take 3 types of value:

1. Reference the Site coordinate system when one or more buildings are to be spatially related through a Site base

coordinate.

2. If the Site coordinate system is not to be the Building Story reference,and the PlacementRelTo is left blank to indicate

this Building’s origin is the global coordinate system. This applies when there is only one Building instance or if there is

one Builing.COMPLEX. The Building Story is places relatively to the appropriate Building entity.

3. If there are multiple Partial Buildings related to a Building.COMPLEX, The Building.COMPLEX provides the “master”

coordinate system,

All other Building attributes are optional and should follow the IFC documentation guidelines.

Concepts aggregated into this one:

PCI-044 Building Storey Contained in Building

PCI-046 Space Contained in Building Storey

PCI-063 Relative Placement

MVC-896 Building Storey Name

IfcBuilding

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 ElevationOfRefHeight

 ElevationOfTerrain

 BuildingAddress >

IfcBuildingStorey

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 Elevation

IfcRelAggregates

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatingObject >

+ RelatedObjects >

(INV) Decomposes

(INV) Decomposes

(INV) IsDecomposedBy

(INV) IsDecomposedBy

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

IfcAxis2Placement2D

+ Location >

 RefDirection >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >

SELECT

IfcAxis2Placement

Alternative for COMPLEX

or PARTIAL sites

Alternative for COMPLEX

or PARTIAL sites

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

Semantic Exchange Module

Identifier: SEM-005

SEM Name: Spatial Containment Hierarchy – Space

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: April 28, 2011

Revisions: June 8, 2011 (CME)

SEM Description:

IfcProject is an entity required in all exchanges, to identify the project and other base information associated with the

project. It is singular, by requirement. The IfcProject is used to reference the root of the spatial structure of a building.

IfcProject has an associated IfcGeometricRepresentationContext that objects within the project reference.

GeometricRepresentationContext defines the units used, the project origin and true North direction relative to the

coordinate origin and orientation.

Concepts aggregated into this one:

PCI-042 Site Contained in Project

PCI-043 Building Contained in Site

PCI-044 Building Storey Contained in Building

PCI-045 Space Contained in Building

PCI-046 Space Contained in Building Storey

IfcSpace

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

+ InteriorOrExteriorSpace

 ElevationWithFlooring

IfcBuilding

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 ElevationOfRefHeight

 ElevationOfTerrain

 BuildingAddress >

IfcBuildingStorey

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 LongName

+ CompositionType

 Elevation

IfcRelAggregates

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatingObject >

+ RelatedObjects >

IfcRelAggregates

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatingObject >

+ RelatedObjects >

(INV) Decomposes

(INV) Decomposes

(INV) IsDecomposedBy

(INV) IsDecomposedBy

(INV) Decomposes

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

IfcAxis2Placement2D

+ Location >

 RefDirection >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
SELECT

IfcAxis2Placement

Alternative when Space is

multi-story

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) PlacesObject

(INV) ReferenceByPlacement

Alternative when Space is

multi-story

EM Family Primary Building Element Type

018: Building Element Proxy Type

019 – Beam Type

020 – Column Type

021 – Curtainwall Type

022 - Footing Type

023 – Member Type

024 – Pile Type (Release 4)

025 – Ramp Type (Release 4)

026 – Roof Type(Release 4)

027 – Slab Type

028 – Stair Type (Release 4)

029 – Wall Type

Overview
Primary Building Element Type, in Release 2x3, is currently a subset of the defined primary building elements. The

Type designation indicates that it is the master or family definition where multiple instances of a design or product can

be defined as part of the composition of a project. Primary is defined as referring to those elements explicitly placed

in the spatial configuration hierarchy. The definition of a Building Element can be split in various ways between its

type and its individual specification. That mix is defined by the type, specified by the properties carried at the type

level. The Type is abstract and cannot be instantiated; the location and instantiation of a piece is always defined by the

individual. Properties and relations of the type definition are articulated by adding attributes for representation and

relations to the primary building elements through INVERSE relations, the same as element individuals.

The element types defined are abstract classes providing the common definition over the set of individuals that refer

to the class. The properties, representations and relations specified by the type are the default values for instances of

the type. Over-riding and elaboration by the individual are allowed in defining the instance. However, this capability is

not easily supported by most BIM platforms and should not be used.

Even if an application cannot support Type and Individual representations, the Building Element Type for the Element

should be defined and related to the individual instances using IfcRelDefinesByType. This Type structure should be

carried internally into the receiving application so it the type structure can later be later re-created, if needed.

Semantic Exchange Module

Identifier: SEM-0018 –SEM-029

SEM Name: Piece Types

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: May 13, 2011

Revisions: June 27, 2011

SEM Description: ThePrimary Building ElementType is the high-level abstract definition of a primary building

element, providing a generic definition for instances that share the type definition. If present, it may establish the

common type name, usage (or predefined) type, common set of properties, common material, and common shape

representations. The type has no placement in the Spatial Configuration and is not counted regarding quantities.

The instances in IFC Release 2x3 are:

IfcBeamType, IfcBuildingElementProxyType, IfcColumnType, IfcCurtainWallType, IfcMemberType, IfcSlabType,

IfcWallType,

The Release 2x3 definitions listed here are a subset of IfcBuildingElements (the Types are expanded to match Elements

in Release 4x. A subset of these Element types will be implemented. These are highlighted:

SEM-018 - BuildingElementProxyType

SEM-019 - BeamType: Structural member designed to carry loads between or beyond points of support, usually narrow

in relation to its length and horizontal or nearly so. Includes a beam type enumerations: BEAM, JOIST, LINTEL, T_BEAM,

USERDEFINED, NOTDEFINED

SEM-020 - ColumnType: Structural member of slender form, usually vertical, that transmits to its base the forces,

primarily in compression, that are applied to it. Includes a column type enumeration: COLUMN, USERDEFINED,

NOTDEFINED

SEM-021 – CurtainWallType:

SEM-022 – Footing Type

SEM-023 – MemberType:

SEM-024 – Pile Type

SEM-025 – Ramp Type

SEM-026 – Roof Type

SEM-027 - SlabType: Component of the construction that normally encloses a space vertically. The slab may provide the

lower support (floor) or upper construction (roof slab) in any space in a building.Only the core or constructional part of

this construction is considered to be a slab. Optionally includes enumerated slab type: FLOOR,

ROOF, LANDING, BASESLAB, USERDEFINED, NOTDEFINED. (Specified in detail separately.)

SEM-028 – Stair Type

SEM-013 – WallType

SEM-14 –Spatial Reference :Links an element instance to its element type, if it has one

The PieceType SEMs include IfcRepresentationMap that links to IfcShapeRepresentation, describing the master shape,

and Placement, identifying the origin of the element’s coordination system for instance placement.

The associations that are supported by INVERSE relations aret different for types than for individuals.

1. Grouping - being part of a logical group of objects (erection sequences, supply source,)

IfcGroup has subtypes including IfcSystem, IfcZone, IfcStructuralLoadGroup. Groups may be defined recursively.

objectified relationship: IfcRelAssignsToGroup

inverse attribute: HasAssignment

2. Work processes - reference to work tasks, in which this building element is used; should be used to 4D simulation

of linking objects with process.

objectified relationship: IfcRelAssignsToProcess

inverse attribute: HasAssignments

3. Aggregation - aggregated together with other elements to form an aggregate. Examples include a oof with

components, precast piece with beams aggregated itno slab, a steel truss

http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcbeamtype.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcbuildingelementproxytype.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifccolumntype.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifccurtainwalltype.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcmembertype.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcslabtype.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwalltype.htm

objectified relationship: IfcRelAggregates

inverse attribute (for container): IsDecomposedBy

inverse attribute (for contained parts): Decomposes

4. Material - assignment of material used by this building element. It is one of the SELECT type IfcMateriaslSelect:

IfcMaterial, IfcMaterialList, IfcMaterialLayer., IfcMaterialLayerSet, IfcMaterialLayerSetUsage,

objectified relationship: IfcRelAssociatesMaterial

inverse attribute: HasAssociations

5. Classification - assigned reference to an external classification

objectified relationship: IfcRelAssociatesClassification

inverse attribute: HasAssociations

6. Documentation - assigned reference to an external documentation (steel sections, pipe spec)

objectified relationship: IfcRelAssociatesDocumentation

inverse attribute: HasAssociations

9. Properties - reference to all attached properties, including quantities

objectified relationship: IfcRelDefinesByProperties

inverse attribute: IsDefinedBy

These are added as required to define the element family. Notice that Types do not support separate Inverse links to

Voids or Projections. This is because they have their own placement at the instance level and if part of the shape model,

are defined there. Replicated Voids and Projections (say decorative holes or capitals on a column type). These have to be

defined as operations tied to the shape model represented in the RepresentationMap.

Most importantly, a Building Element Type carries reference to IfcRepresentationMap.

It consists of IfcRepresentation and a map to the local origin of the representation.

Methods:

Create Building Element Type, defining local coordinate system origin.

Assign IfcRelDefinesByType for each related instance.

Concepts aggregated into this one:

PCI-054 Element Type Assignment

PCI-066 Generic Brep Shape Geometry (part of)

PCI-080 Precast Piece Type Attributes

PCI-081 Piece Type Geometry Assignment

VBL-170 GUID

VBL-171 Root Name

VBL-172 Root Description

IfcColumnType

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ApplicableOccurrence

 HasPropertySets >

 RepresentationMaps >

 Tag

 ElementType

+ PredefinedType

IfcRepresentationMap

+ MappingOrigin >

+ MappedRepresentation >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection > IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

IfcRelDefinesByType

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatedObjects >

+ RelatingType >

IfcShapeRepresentation

+ ContextOfItems >

 RepresentationIdentifier

 RepresentationType

+ Items >

(INV) RepresentationMap

(INV) ObjectTypeOf Add link to

IfrcSolidModel

Column Type
In general, all

IfcBuildingElementType

SEMs will have a similar

structure to that shown at

left. It consists of the Type,

its Representation map, and

its local origin, using in

mapping. They also have a

Type enumeration, defining

the subtype of building

element.

Optional Spatila

Reference

Mapping between instance and type is

optional if there is a type for the instance

Link to BuildingElementInstance, to

IsDefinedByType inverse relation

Link to BuildingElementType, to

ObjectDefinedByType inverse relation

IfcRepresentationMap

+ MappingOrigin >

+ MappedRepresentation >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

IfcShapeRepresentation

+ ContextOfItems >

 RepresentationIdentifier

 RepresentationType

+ Items >

(INV) RepresentationMap

(INV) ObjectTypeOf
Add link to

IfrcSolidModel

Beam TypeIfcBeamType

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ApplicableOccurrence

 HasPropertySets >

 RepresentationMaps >

 Tag

 ElementType

+ PredefinedType

(COLUMN,

USERDEFINED,

NOTDEFINED)

(BEAM,

JOIST,

LINTEL,

T_BEAM,

USERDEFINED,

NOTDEFINED)

IfcRepresentationMap

+ MappingOrigin >

+ MappedRepresentation >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

IfcShapeRepresentation

+ ContextOfItems >

 RepresentationIdentifier

 RepresentationType

+ Items >

(INV) RepresentationMap

(INV) ObjectTypeOf
Add link to

IfrcSolidModel

Slab TypeIfcBeamType

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ApplicableOccurrence

 HasPropertySets >

 RepresentationMaps >

 Tag

 ElementType

+ PredefinedType

(FLOOR,

ROOF,

LANDING,

BASESLAB,

USERDEFINED,

NOTDEFINED);

Release 2x4 added

HOLLOWCORE and T-

BEAM to enumerated

types

Building Element Type

IfcColumnType

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ApplicableOccurrence

 HasPropertySets >

 RepresentationMaps >

 Tag

 ElementType

+ PredefinedType

IfcRepresentationMap

+ MappingOrigin >

+ MappedRepresentation >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection > IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

IfcRelDefinesByType

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatedObjects >

+ RelatingType >

IfcShapeRepresentation

+ ContextOfItems >

 RepresentationIdentifier

 RepresentationType

+ Items >

(INV) RepresentationMap

(INV) ObjectTypeOf Add link to

IfrcSolidModel

Column Type
In general, all

IfcBuildingElementType

SEMs will have a similar

structure to that shown at

left. It consists of the Type,

its Representation map, and

its local origin, using in

mapping. They also have a

Type enumeration, defining

the subtype of building

element.

Optional Spatila

Reference

Mapping between instance and type is

optional if there is a type for the instance

Link to BuildingElementInstance, to

IsDefinedByType inverse relation

Link to BuildingElementType, to

ObjectDefinedByType inverse relation

IfcRepresentationMap

+ MappingOrigin >

+ MappedRepresentation >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

IfcShapeRepresentation

+ ContextOfItems >

 RepresentationIdentifier

 RepresentationType

+ Items >

(INV) RepresentationMap

(INV) ObjectTypeOf
Add link to

IfrcSolidModel

Beam TypeIfcBeamType

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ApplicableOccurrence

 HasPropertySets >

 RepresentationMaps >

 Tag

 ElementType

+ PredefinedType

(COLUMN,

USERDEFINED,

NOTDEFINED)

(BEAM,

JOIST,

LINTEL,

T_BEAM,

USERDEFINED,

NOTDEFINED)

IfcRepresentationMap

+ MappingOrigin >

+ MappedRepresentation >

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection >
IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

IfcShapeRepresentation

+ ContextOfItems >

 RepresentationIdentifier

 RepresentationType

+ Items >

(INV) RepresentationMap

(INV) ObjectTypeOf
Add link to

IfrcSolidModel

Slab TypeIfcBeamType

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ApplicableOccurrence

 HasPropertySets >

 RepresentationMaps >

 Tag

 ElementType

+ PredefinedType

(FLOOR,

ROOF,

LANDING,

BASESLAB,

USERDEFINED,

NOTDEFINED);

Release 2x4 added

HOLLOWCORE and T-

BEAM to enumerated

types

Building Element Type

SEM Family Primary Building Element

006: Building Element Proxy

007 – Beam

008 – Column

009 – Curtainwall

010 – Footing

011 – Member

012 – Pile

013 – Ramp

014 – Roof

015 – Slab

016 – Stair

017 – Wall

Overview
Primary Building Element is the basic definition of most primary building elements. Here we define primary as being

those explicitly placed in the spatial configuration hierarchy. In that sense they are also the primary physical objects

typically represented in an exchange. In this initial level of definition, the objects are class instances with only

minimal attributes and a location in the spatial hierarchy. Properties and relations articulate the instances by adding

attributes for representation and relations to the primary building elements through INVERSE relations.

Whether Building Elements are defined solely as individuals or partially as a Building Element Type largely depends upon

the carrying application. A Building Element Type has been used broadly in CAD and has been a way to represent models

with repetitive objects concisely. It is also natural for externally produced products. Parametric modeling tools represent

objects in models variously. The issuesare addressed more broadly in the Building Element Type SEMs.

Semantic Exchange Module Primary Building Elements
Identifier: SEM-006 to SEM-017

SEM Name: Primary Building Elements

Author: Chuck Eastman

Organization: Pankow Foundation, PCI

History:

Created: May 14, 2011

Revisions: June 24, 2011

SEM Description: IfcBuildingElement is a supertypeclass for a set of individual primary building elements. The full set

of subtypes is listed below. Some of these are top level elements, that are placed in the Spatial Configuration Hierarchy,

while others are components of other Building Elements. We denote Primary Building Elements to be those that are

normally directly placed within the spatial configuration hierarchy above the IfcSpace level. This set of Primary Building

Elements are represented as a SEM family and have similar syntactic structure.

Primary Building Elements may provide the core definition of the piece or reference a Building Element Type that carries

a shared object definition (see Building Element Type). The Release 2x3 IfcBuildingElement sub-types that are primary

are: IfcBuildingElementComponent, IfcBuildingElementProxy, IfcBeam, IfcColumn, IfcCovering,IfcCurtainWall, IfcDoor,

IfcFooting, IfcMember, IfcPile, IfcPlate, IfcRailing, IfcRamp, IfcRampFlight, IfcRoof, IfcSlab, IfcStair, IfcStairFlight, IfcWall,

IfcWindow, with the non-primary elements crossed out, and that will be treated separately. If the appropariate subtype

of IfcBuildingElementType is attached using the IfcRelDefinedByType.RelatingType objectified relationship and is

accessible by the inverse IsDefinedBy attribute, then portion or all of the definition is provided by the Type.

Primary Building Elements may be defined as individuals and typically carry a set of location, shape, and other properties

that provide the semantics of the element. The Primary Building Elements and any special conditions of the type are

listed below:

SEM-006 -Building Element Proxy: Should be used to exchange special types of building elements for which the current IFC

Release does not yet provide a semantic definition. It can also be used to represent building elements for which the participating

applications cannot provide additional semantic classification. May be aggregated into compositions and used multiple times

hierarchically, using COMPLEX, ELEMENT, PARTIAL to designate different levels. See SEM-002 and 003 for an example.

SEM-007 – Beam: A horizontal, or nearly horizontal, structural member. It represents such a member from an architectural point

of view. It is typically but not required to be load bearing.

SEM-008 – Column: A vertical structural member which often is aligned with a structural grid intersection. It represents a vertical,

or nearly vertical, structural member from an architectural point of view. It is not required to be load bearing.

SEM-009 – Curtainwall: An exterior wall of a building which is an assembly of components, hung from the edge of the floor/roof

structure rather than bearing on a floor. Curtain wall is represented as a building element assembly and implemented as a subtype

of IfcBuildingElement that uses IfcRelAggregates relationship.

SEM-010 – Footing: A part of the foundation of a structure that spreads and transmits the load directly to the soil. Optionally

includes footing type: enumerated value of: FOOTING_BEAM, PAD_FOOTING, PILE_CAP, STRIP_FOOTING, USERDEFINED,

NOTDEFINED

SEM-011 – Member: A structural member designed to carry loads between or beyond points of support and not a Beam, Cluimn,

Slab or Wall. It is not required to be load bearing. The location of the member (being horizontal, vertical or sloped) is not relevant to

its definition

SEM-012 – Pile: A slender timber, concrete, or steel structural element, driven, jetted, or otherwise embedded on end in the

ground for the purpose of supporting a load. Includes pile type, enumerated value one of: COHESION, FRICTION, SUPPORT,

USERDEFINED, NOTDEFINED. Optionally includes pile construction enumeration: CAST_IN_PLACE, COMPOSITE, PRECAST_CONCRETE,

PREFAB_STEEL, USERDEFINED, NOTDEFINED.

SEM-013 – Ramp: A vertical passageway which provides a human circulation link between one floor level and another floor level

at a different elevation. Often an aggregation of Rampflights and Slabs. Includes enumerated ramp type: STRAIGHT_RUN_RAMP,

TWO_STRAIGHT_RUN_RAMP, QUARTER_TURN_RAMP, TWO_QUARTER_TURN_RAMP, HALF_TURN_RAMP, SPIRAL_RAMP,

USERDEFINED, NOTDEFINED.

http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcbuildingelementproxy.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcbuildingelementproxy.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcbeam.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifccolumn.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifccovering.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifccurtainwall.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcdoor.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcstructuralelementsdomain/lexical/ifcfooting.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcmember.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcstructuralelementsdomain/lexical/ifcpile.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcplate.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcrailing.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcramp.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcrampflight.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcroof.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcslab.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcstair.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcstairflight.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwall.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwindow.htm

SEM-014 – Roof: Construction enclosing the building from above. It acts as a container entity, that aggregates all components of

the roof, it represents. Includes enumerated roof type: FLAT_ROOF, SHED_ROOF, GABLE_ROOF, HIP_ROOF, HIPPED_GABLE_ROOF,

GAMBREL_ROOF, MANSARD_ROOF, BARREL_ROOF, RAINBOW_ROOF, BUTTERFLY_ROOF, PAVILION_ROOF, DOME_ROOF,

FREEFORM, NOTDEFINED. (Specified in detail separately.)

SEM-015 – Slab: A component of the construction that normally encloses a space vertically. The slab may provide the lower

support (floor) or upper construction (roof slab) in any space in a building. Optionally includes enumerated slab type: FLOOR,

ROOF, LANDING, BASESLAB, USERDEFINED, NOTDEFINED. (Specified in detail separately.)

SEM-016 – Stair: Construction comprising a succession of horizontal stages (stair runs or landings) that make it possible to pass on

foot to other levels. (Specified in detail separately.)

SEM-017 – Wall: A vertical construction that bounds or subdivides spaces. Wall are usually vertical, or nearly vertical, planar

elements, often designed to bear structural loads. (Specified in detail separately.)

Primary Building Element has many relations to deal with its relative placement spatially, its properties, embeds,

connections, components and other relations. These are handled using the INVERSE relations. Those potentially relevant

are:

1. Grouping - being part of a logical group of objects (erection sequences, supply source,)

IfcGroup has subtypes including IfcSystem, IfcZone, IfcStructuralLoadGroup. Groups may be defined recursively.

o objectified relationship: IfcRelAssignsToGroup

o inverse attribute: HasAssignment

2. Work processes - reference to work tasks, in which this building element is used; should be used to 4D simulation

of linking objects with process.

o objectified relationship: IfcRelAssignsToProcess

o inverse attribute: HasAssignments

3. Aggregation - aggregated together with other elements to form an aggregate. Examples include a oof with

components, precast piece with beams aggregated itno slab, a steel truss

o objectified relationship: IfcRelAggregates

o inverse attribute (for container): IsDecomposedBy

o inverse attribute (for contained parts): Decomposes

4. Material - assignment of material used by this building element. It is one of the SELECT type IfcMateriaslSelect:

IfcMaterial, IfcMaterialList, IfcMaterialLayer., IfcMaterialLayerSet, IfcMaterialLayerSetUsage,

o objectified relationship: IfcRelAssociatesMaterial

o inverse attribute: HasAssociations

5. Classification - assigned reference to an external classification

o objectified relationship: IfcRelAssociatesClassification

o inverse attribute: HasAssociations

6. Documentation - assigned reference to an external documentation (steel sections, pipe spec)

o objectified relationship: IfcRelAssociatesDocumentation

o inverse attribute: HasAssociations

7. Type - reference to the common product type information for the element occurrence; this inverse relation

indicates tat the instance is defined by a BuildingElementType

o objectified relationship: IfcRelDefinesByType

o inverse attribute: IsDefinedBy

8. Connection - connectivity to other elements, including the definition of the joint. Relies on

IfcRelConnectsElements and has as subtypes: IfcRelConnectsWithRealizingElements,

IfcRelConnectsPathElements (for IfcWall elements).

o objectified relationship: IfcRelConnectsElements

o inverse attribute: ConnectedTo

o inverse attribute: ConnectedFrom

9. Properties - reference to all attached properties, including quantities

o objectified relationship: IfcRelDefinesByProperties

o inverse attribute: IsDefinedBy

10. Realization - information, whether the building element is used to realize a connection (e.g. as a weld in a

connection between two members). Used with IfcConnection.

o objectified relationship: IfcRelConnectsWithRealizingElements

o inverse attribute: IsConnectionRealization

11. Assignment to spatial structure - hierarchical assignment to the right level within the spatial structure. Is required

for all primary spatial objects; objects that are components of a Primary Building Element have the same spatial

structure as its aggregated element.

o objectified relationship: IfcRelContainedInSpatialStructure

o inverse attribute: ContainedInStructure

12. Reference to spatial structure(s) - non hierarchical reference to one or more elements within the spatial structure

(e.g. a curtain wall, being contained in the building, references several stories)

o objectified relationship: IfcRelContainedInSpatialStructure

o inverse attribute: ContainedInStructure

13. Boundary - provision of space boundaries by this building element. Applies to Building Element relations with

Space objects, for different uses.

o objectified relationship: IfcRelSpaceBoundary

o inverse attribute: ProvidesBoundaries

14. Coverings - assignment of covering elements to this building element Covering may be assigned to Building

Elements or to Spaces (assigning the same covering to both Building Element and Space will result in quantity

errors. (note: for interior finishes, covering elements are assigned to the space,for fabricated elements (steel,

concrete) covering elements are assigned to Building Element.

o objectified relationship: IfcRelCoversBldgElements

o inverse attribute: HasCoverings

Spaces are covered with IfcRelCoversSpaces.

o objectified relationship: IfcRelCoversSpaces

o inverse attribute: HasCoverings

15. Voids – defines any openings, recesses or other voids subtracted from the Building Element geometry

o objectified relationship: IfcRelVoidsElement

o inverse attribute: HasOpenings

16. Projection - information, whether the building element has projections (such as a fascia, cast-in-place sill)

o objectified relationship: IfcRelProjectsElement

o inverse attribute: HasProjections

17. Structural member reference - information whether the building element is represented in a structural analysis

http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcrelconnectswithrealizingelements.htm

model by a structural member; required to be a one-to-one relationship

o objectified relationship: IfcRelConnectsStructuralElement

o inverse attribute: HasStructuralMember

These relations provide the semantic extensions needed for Building Elements and are described in their variou uses.

In the case where there is no associated type, the full definition of a building element is defined with the element. If it

references a type, then the definition is split (in various ways) between them.

Each Element has a local placement, usually within the spatial containment hierarchy using

IfcReferencedInSpatialStructure.

Methods

Create Building Element instance.

Assign placement within Spatial Containment Hierarchy

Define local coordinate placement relative to object located in Spatial Containment Hierarchy . Pieces should not be

placed globally.

Concepts aggregated into this one:

PCI-053 Element Attributes

 PCI-062 Precast Piece Containment

PCI-063 Relative Placement

PCI-067 Precast Piece Mark

VBL-170 GUID (also MVC-848)

VBL-171 Name (also MVC-849)

VBL-172 Description (also MVC-850)

IfcColumn

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 Tag

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) ContainedInStructure (INV) PlacesObject

(INV) ReferencedByPlacements

Add link to

spatial

structure

(INV) IsDefinedBy

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection > IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates
Column Instance

In general, all IfcBuildingElements

(instance) SEMs will have a similar

structure to that shown at left. It

consists of the BuildingElement, its

local placement and link to spatial

structure.

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) ContainedInStructure (INV) PlacesObject

(INV) ReferencedByPlacements

Add link to spatial

structure

(INV) IsDefinedBy

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection > IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates
Beam Instance

IfcLocalPlacement

 PlacementRelTo >

+ RelativePlacement >

(INV) ContainedInStructure (INV) PlacesObject

(INV) ReferencedByPlacements

Add link to spatial

structure

(INV) IsDefinedBy

IfcAxis2Placement3D

+ Location >

 Axis >

 RefDirection > IfcDirection

+ DirectionRatios

IfcCartesianPoint

+ Coordinates

Slab Instance

IfcSlab

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 Tag

 PredefinedType

IfcBeam

+ GlobalId

+ OwnerHistory >

 Name

 Description

 ObjectType

 ObjectPlacement >

 Representation >

 Tag

(FLOOR,

ROOF,

LANDING,

BASESLAB,

USERDEFINED,

NOTDEFINED);

Building Element Instances

IfcSlab has an additional field, to

signify slab type, because in many

buildings, there is not enough

consistency to use a slab type for the

master geometry. A type enumeration

is also carried for instances of

Covering, Railing, Ramp, Roof, Pile,

Footing,

IfcRelContainedInSpatialStruc

ture

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatedElements >

+ RelatingStructure >

IfcRelReferencedInSpatialStr

ucture

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatedElements >

+ RelatingStructure >

IfcRelContainedInSpatialStruc

ture

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatedElements >

+ RelatingStructure >

IfcRelContainedInSpatialStruc

ture

+ GlobalId

+ OwnerHistory >

 Name

 Description

+ RelatedElements >

+ RelatingStructure >

IfcRelReferenceInSpatialStructure is

used to assign elements in addition to

those levels of the project spatial

structure, in which they are

referenced, but not primarily

contained. May be used anywhere

the condition occurs

Secondary Spatial Reference

	2011_July_NIST Final Report-final.pdf
	Integrated final report.pdf
	Integrated final report.pdf
	Spatial Containment Hierarchy -SEM 1-5.pdf
	SEM-018-029 BuildingElementType.pdf
	SEM-006-017 Building Element Individuals-2.pdf

