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Abstract

The Edgebreaker compression technique, introducetiljngncodes any unlabeled triangulated planar graph of t triangles
using a string of 2t bits. The string contains a sequence of t letters from the set {C, L, Bn&5@% of thesdetters
are C. Exploiting constraints on the sequence, we show that the string may in pradtidbdrecompressed td.6t bits
using model independentdesand even more using model specific entrajpges.These results improvever the2.3t
bits needed byKeeler and Westbrook §] and over the various 3[0riangle mesh compressiotechniques published
recently, which all exhibitarger constants omnon-linearworst casestoragecosts. As in 11], we compress thenesh
using aspiraling triangle-spannindree and generatethe samesequence ofetters. Edgebreaker'sdiecompressionises a
look-aheadprocedure toidentify thethird vertex of splittriangles (S letter) bycounting letter occurrences in the
remaining part of the sequences. We introduce here a new decompression teetiicjuesliminates thisook-ahead and
thus exhibits dinear asymptotic time complexityWrap&zip converts the stringnto the corresponding triangle-
spanningtree and assigns orientations t@achone of itsfree edges. Duringthat “wrapping” process, whenever two

consecutive edges point to the same vertex, it glues them togeibksihly continuing thézip” along thenext pair of
edges that just became adjacent. By labeling the vertices accordingdléhén which they firstappear inthe triangle-
spanning tree, this compression approach mayd®s to encodthe connectivity(incidence of labeled graphs) tiree-
dimensional triangle meshes thee homeomorphic to aphere. Beingble to decompressonnectivityprior to vertex
locations is essential for theost advancedgeometry compression schemes, which use connectivifyretiict the
location of a vertex from the location of its previously decoded neighbors.

Introduction

Planar graphs

We consider here planariangle graphs of t triangleand v
vertices. These are topologically equivalent to the connectivity
graph of a triangulatedgurfacethat is homeomorphic to a
sphere. Note that t=2v-4 for such graphs. In this paper, we use
the termmeshto refer to such a graph.

Previously reported compression schemes

The connectivity of a mesh may btred as &equence of t
triangle descriptors, each triangle beepresented by 3 integer
labels.Eachlabels identifies onemongst the wertices and
requiresog,(v)O bits. Organizing trianglesinto strips B,
where each new triangle sharesegigewith the previous one,
reduces inpracticethe above storage blyalf. The use of a
buffer to cache a small number of labélsay further reduce
the expected cost.

The structure of #beledplanar graph may bencodedusing
slightly less than 12 bits [18]. Turan builds avertex-
spanningtree which representthe boundary of atopological
polygon of -2 edgesThe structure of therertex-spanning
tree isencodedvith 4v—4 bits. There are amost 2/-5 edges
that do not belong to theertex-spanning tree. These may be
encodedusing 4 bitseach. The overall connectivity cost is
thus, 12v-24 bits.

Inspired by Tutte [19], Itai and Rodeh p] show that any
unlabeled rooted non-separable triangulated plgregshs of v
vertices may beepresented by 4bits. They alsopropose a
linear algorithm for constructing a@epresentation of any
labeledplanar graphusing at most 1.5nlgfr)+6v+O(log(v))
bits, while thetheoreticalminimum is vlog(v)+O(v). They

use a triangle as the initial outer lo@nd then shrink that
loop by removing one triangle at a time. Thaiyays delete

the triangle that isncident tothe smallestvertex \ in the
outer loop and is bounded by the outer I@ojgethat starts at

v,. They distinguish four cases: (1) The third vertex precedes v
in the outer loopy?2) It follows thesuccessor of y (3) It is
somewhere else in the outer loop; and (4) it is not orotiber
loop. Operations (3) and (4) each requirg(logbits toidentify

a vertex in thenot yet processedcpart of the meshSeveral
improvements over Itaand Rodeh's methodwere reported
recently L4, 15, 12, 4, 11

Cutting through the edges of the vertex-spantiagproduces

a triangulated surface that issamply connectednesh without
internal vertices and thus may be completely represented by the
triangle-spanning tree. A triangle-spanning tree ofiesh is a
binary tree, whose nodes correspond to the triaragidsvhose
edges correspond wome of theedges ofthe mesh. Adepth-
first traversal of such a spanning tree corresponds to a walk on
the entire mesh that starts at the root triatagie recursively
visits the neighboring triangles thiaavenot been previously
visited. The triangle-spanning tree may be encoded usiits 2
per triangle, butdoesnot contain sufficient information to
recover the mesh.

The Topological Surgery method of Taubémd Rossignac
[14, 19 compress both a triangle-spannitrge and its dual
vertex-spanning tree be encoditite lengths ofconsecutive
single-child nodes.For complex and reasonably regular
meshes, the expected costenicodingboth trees may amount
to about two bitgper triangle. However, theverhead of the
run length encoding may result in a significantlyhigher
average cost for irregular or small meshes.
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Rossignac12] has proposed a variation, which uses 2 bits per
vertex to encode the vertex-spanning tree (@mhéndicates the
presence of a child while the other litlicatesthe presence of

a right sibling)and 2bits per triangle toencodethe triangle-
spanningtree (onebit indicatesthe presence of aight child,
while the other bit indicates th@esence of &eft child). With
twice more triangles than vertices, thearanteedvorst case
connectivity cost of this representation is 3 bits per triangle.

Gumhold and Strasser's technique 4] and Rossignac's
Edgebreakescheme 11], although developedindependently,
are closely related. Both schemes perform the same traversal of
the mesh as inlH]. At eachstep, theyremove a triangle and
encode the necessary information to reconstruct the triangle by
distinguishingseveral casethat includethe fourcases of lItai
and Rodeh. Edgebreakeuses the letters L, R, §nd C to
identify cases 1through 4 of Itaiand Rodeh. Gumhold and
Strasseradd the case where a boundamydge is reached.
Edgebreaker doesot need todistinguish thiscase, since it
encodes the bounding loop at the beginning of the vartay.
However,Edgebreakeaddsthe case E,which corresponds to
the situationwherethe currenttriangle is notadjacent to any
other remaining triangle. Both thesspproaches avoid the
log,(v) bits costassociatedvith case(4) of Itai andRodeh by
encoding the vertices in treder in which theyarevisited by
case(4). With each cas€3) operation, Gumholénd Strasser
must encode theeference to aertex in thecurrent boundary,
which requires logv) bits and makes their storage costs a non-
linear function ofv. Instead, Edgebreaker usedetompression
preprocessing step to compute thesdex-referenceffom the
sequence oSymbols, and thereforeexhibits a linearstorage
cost, although anon-linear time complexity. For typical
meshes, Gumholdand Strasser report compression results
between 1.7 and 2.15 bits per triangle using Huffacoding

of the bit stream.

Keeler and Westbrook §] improve on Turan's results and
propose atechnique for encoding planagraphs with a
guaranteed 4v6bits. They also build a triangle-spannitmge.
Each triangle of the treexceptthe root,shares aredgewith

its parentandmay have zeropone, or twochildren and thus
two, one, orzero freeedges.They append free edges to the
leaves of the triangle-spannitige andlabel them.Encoding
the graph and the labels requiresaamrage ofl+log,(3)/3 bits
per edgeThey suggest aoding schemdased on aeries of
graph transformations.

Toumaand Gotsman 7] also encodethe vertices along the
vertex-spanning tree ithe same spiralingrder as 14,4,11.

They distinguish only two cases, whidorrespond to the
cases (3pnd (4) of Itai and Rodehand to the Edgebreaker's

cases S and C. Other cases are not encoded. Instead, Touma an

Gotsman encode the degree of eaeftex,i.e., thenumber of
incident edges anduse it to automatically identify thether
cases. During decompression, they keep track of the number of
already decoded triangles that are incidgmn eachvertex and

are thus capable ofidentifying the R, L,and E triangles
automatically. For highly tessellated regular modedsere the
degree ofthe vertices followsalmost regular patterns, they
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report compression results of less than apbit triangleusing
Huffman encoding. However, for smaller dess regular
meshes, theequired storage may easilgxceed 2bits per
triangle. As Itai and Rodeand asGumholdand Strasser, they
require that with each Soperation beassociated a vertex
reference,which requires log(v) bits, prior to Huffman
compression.

Inspired by ] andimproving on P, 13], Denny and Sohler
have proposed a technique for encodimgincidence ofplanar
triangulations of sufficiently large size as a permutation of the
vertices P]. They show thathere are less than 2% *Oo)
valid triangulations of a planaset of v points, and that for
sufficiently largev, eachtriangulation may beassociatedvith

a different permutations of these points(there are
approximately 2'°9") such permutations). They transmit the
suitably orderedvertices in batches. Th@ecompressiorsorts
them lexicographically, computes a permutation number by
comparing theorder inwhich the verticesvere receivedvith
their lexicographic order, then sweeps over theurrent
triangulation from left to righendrefines it byinserting the
new vertices. Ateachvertex of thecurrentbatch, itidentifies
the enclosing triangle3] and the vertex is inserted according to
the incidencerelation derivedfrom the bit string thaencodes
the permutation number. Unfortunately, tiestructurecorder

in which the verticesare received andhe absence of the
incidencegraph duringtheir decompressiomakes it difficult

to combine thisapproachwith the predictive techniques for
vertex encodingdiscussedearlier. Furthermore, theertex-
triangle association id®ased ongeometric comparisons that
only work in two dimensions.

The Edgebreaker compression

For completeness, we summarize here the compression process
proposed in11].

Spiraling triangle-spanning tree

The Edgebreakecompression algorithm visits the triangle of
the mesh in theorder in which they appear in aspiraling
triangle-spanning tree. Such a tree may be built bgcarsive
procedure as follows.

During therecursive traversal, we leawome triangle P to

enter anadjacenttriangle X that has notbeen previously

visited. P is the parent of X in the triangle-spanning tree. The

other two triangles adjacent to X may be consistedtptified

as X.left and X.right, using a conventiorand a consistent

orientation of the triangles throughout the mesh. If X.right has

not been previously visited, it is appended as the ghhd of

X and is visited by therecursive procedure in adepth-first
rder. Then, if X.left has not been visited, it is appended as the
eft child of X and is also visited by the recursion. We mark all

the vertices of visited triangles.

The procedurestarts with any triangle X of the mesh and

identifies one ofits edges ashe starting gate, whicbuffices
to define X.right and X.left.

Let v be the onlyvertex of X that is not thevertex of its
parent in the tree. The visited/not-visited status,aif X.left,
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and ofX.right unambiguously identifies oneout of thefive
possible situationglepicted Fig. 1 and associatedwith the
letters: C, L, E, Rand S.Compression simplyencodes the
corresponding letters—amore precisely their binary op-
codes—inthe order in which the correspondingriangles are
visited. The resulting string of t symbalspresents a compact
encoding of the connectivity of the mesh.

VAVANIVAVAN
A7 7 A/
' . Y%

case C case S case E
case L case R
Figure 1: Previously visited triangles are not shaded.

» Case Cu has not been visited.

e Case S: Onlyw has been visited.

e Case E: X.left and X.right have been visited.
e Case L: Only X.right was not visited.

e Case R: Only X.left was not visited.

The selection of the appropriatasemay beperformed by the
following sequence of tests:

if not visited(v) then C

else if visited(X.left)
then if visited(X.right) then E else L
else if visited(X.right) then R else S

If the vertices are labeled in the order in which they are first
visited by this traversal and then encoded in the order of

increasing labels, this approach may be used to compress
labeled graphs and 3D triangle meshes homeomorphic to a

sphere 16].

Efficient encoding of the op-codes

Guaranteed 2t bit code

Except for the first two verticesthere is a one-to-one
association between the vertices of the neeshthe triangles

processed by perations.Therefore,the number of Cs is
v—2, which equals t/2, given that v=(t+4)/2. The tatamber

of non-C operations, t-v+2, algmualst/2. Hence, if we use

al-bit code for C and 3-bit codes for the other four operations,

the total cost for storing the string with tladove scheme
would be exactly 2t.
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Becausehe first two operationareCs, theycan be omitted
from the string, yielding a totadtorage cost of 2t—bits for
any triangular planar graph.

Expected 1.7t bit code not exceeding 2t bits

The CL and CE sequences obperations correspond to
impossible situations. We exploit this constraintitiorease
the expectedcompression ratio oEdgebreaker byusing a
slightly more complexcoding scheme. We use twdifferent

codesets: thegeneralcodeset proposed above isisedfor all

operations except for &ndR's that follow a C.These may
each be encoded using only 2 bits. For example, we hanag
the following code. C is O, L is 110, R tha@besnot follow a
C is 101, R that follow a C is 11, E is 100. S tHaes not
follow a C is 111, and S that follows a C is 10.

In the worst case, with longequences afonsecutiveCs, this
encoding methochas no effect on the bit-count. At best
however, when all Cs ageparated, iteduceghe bit-count to

an average of 1.5 bit per triangle (because there are as many Cs
as other operations). Our experiments on a variety of meshes
show a ratio of 36% of R operations, almost halfwdfich

follow a C. Thecode proposed hereesults on theaverage
storage of 1.7t bits.

Expected 1.6t bit code

By exploiting therelative frequencies ofthese operations in
large meshes, we have devised a code (bettaat) worksbetter
in practice,but no longemguarantees never texceed 2thits.
We encodeCC, CS, and CR pairs as single symbols. The
resulting file size is 1.6t bits for the large models thathaee
explored.

As indicated in the table below: E is 1100, L is 111Grd S

that follow even number of consecutive C's are respectively 10
and1111, pairs obp-codesCR, CCand CS preceded by an
even number ofC's are respectively01, 00 and 1101. The
table also shows thigequencies ofsymbols or groupings in
the string and their total storage cost, multiplied by 100/t.

Sequence code frequency | Cost for 100t
CR 01 15.5% 31 bits

CcC 00 16.1% 32.2 bits
CS 1101 2.3% 9.2 bits

R (aftereven Cs) 10 20.8% | 41.6 bits

E 1100 5.6% 22.4 bits

S (aftereven Cs) 1111 3.3% 13.2 bits

L 1110 2.5% 10 bits
TOTAL 159.6 bits

Custom 1.26b bit entropy codes

To further reduce the storage cost fotarge meshes, we
introduce a space ithe sequence ofetters ateachlocations
where a C follows a non-C operation. Doing so, we
decompose itinto words that havetwo parts: the first one
contains one or more Cadthe secondone contains one or
more non-C operations.
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We have constructed dictionaries fameshes with 200000
triangles and found only about 1400words. A Huffman
encoding ofthese sequences of wordgields 1.26t bits of
storage cost for those meshes. The tableooestakes up
about 32000 bits (in thisase, abou®.16 bits per triangle),
but a part of itcorresponding tanost frequent words can be
preloaded andkept constant for alllarge meshes. Words
missing from thedictionary can beencoded as an escape

sequence followed by their encoding using a fixed code scheme.

Progressive codes

An alternative is to use progressieeding schemes2p, 21,
10]. A number ofgeneral-purposelata compressiorschemes
may be used for this purposaedwill not be further discussed
here. They may yield vergigh compression rations fdarge
regularmeshes, but ofteperform poorly for large,irregular
meshes and for small meshes.

Wrap&Zip decompression

The decompression algorithm receives a binary encoding of the

string of C, L, E, R, or S letters. It reproducelslzeled planar
triangle graph that is homeomorphic to the original wité
its verticeslabeled as discussed the compression section.
The process is very simple.

Wrapping a triangle spanning tree

The wrap&zip decompressionstarts with the two initial
triangles thatcorrespond tahe two initial C operations that
have been omitted from the strinQne of their externaédges
is identified asthe gate. Weread the string and for each
operation, attach a new triangle to the g&tepending on the

op-code, we select zero, one or two of the free edges of the new

triangle as the gates (Fig. 2). A stackuised tokeep track of
left branches of S operationsherethe tree bifurcates. On an
E operation, theurrent branch othe triangletree terminates
and we pop a new gate from the stack.

Orienting the free edges

During the abovetriangle-treebuilding process.edgesthat
have not been gates aralledthe boundingedges. They have
only oneincident triangle. An E triangle has twbounding
edges. Shas none. Gand L have a left boundingdge and R
has a right boundingdge. Thesare oriented ashown with
blue arrows on Fig. 2.

AN

Figure 2: A niangle is attached tothe gate (blackarrow)
and thenew gate isindicated by a green arrovithe red arrow
indicates a gate pushed onto the stack for thep&ration. The
blue arrows indicate the orientations of the bounding edges.
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Zipping the wrap

Eachtime two adjacentbounding edgespoint towards their
common vertex (i.e. their blue-arrow orientations point
towards that vertex), we zip them together by identifyhmegjr
other ends. If the resulting, combined veréxhibits thesame
property(i.e., its twoincident boundingedgespoint towards
it), we repeat this zip operation, and so recursively (Fig. 3).

Note that no zipping is possible for C, Bnd S operations
and that recursive zipping occurs only for E operations,
starting from the left vertex (the starting vertex of the gate).

1 pr
v

Figure 3: The blackarrows show thesequence inwvhich the
triangles were constructed from the subsequence
LCRRRCRRRRE. The blue arrows (left) indicate the
boundingedgesand their orientation prior to the zipping for
the lasttriangle in the sequenceThe zippingoperation starts
at the red vertex and zips two pairs of edgesThe result is
shown right.

Justification of the approach

Triangle spannindree isthe same as with othepproaches
[4,14,17,1). It may always beconvertedinto the correct
connectivity by zipping pairs oédges. Infact, the vertex-
spanning tree of [l4] encodes precisely this zipping
information. C operationarethe only ones taddvertices to
the vertex-spanning tree. If we orient thdges ofthe vertex
spanning tree downwards (awayfrom the root), then C
operationscreatetriangles that lie on the right of suehges.
R, E, and Loperationscreatetriangles that lie on the left of

such edges. Wrap&zip zips up the vertex spanning tree starting

from its leaves, which are vertices with twwident bounding
edgesthat point to them. Zipping aedge corresponds to
removing it from the vertex spanning tresmd our recursive
procedure ensures that we zip up all the childrefiore we zip
up past a branching node of the vertex spanning tree.

Time complexity

We start therecursivezipping procedure amost t timesand,
more precisely, once foeach L and each E operation.
Consequently, we also stop the zippipgcedurethe same
number of times(The zipping proceduregoes up thdree and
does not bifurcate.) Weoncludethat the number of times we
test a vertex and decide not to zip is bounded by t. nlineber
of successful zip operatiorgjualsthe number okdges in the
vertex-spanning tree, which is precisetyl. Therefore, the
decompression algorithm has linear time complexity.
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Conclusion

The wrap&zip technique reported hereimproves the
decompressioralgorithms for modelscompressedwith the
Edgebreakeapproach. We havprovided asimpler algorithm
with linear complexity and very little overheadover the
straightforward construction of the triangle-spanning tree.

By analyzing the statistics of thap-codes generated by the
compression process for a variety of models, have
developed a model-independentoding scheme, which
compressesgachtriangle to anaverage ofl.6 bits. Thiscost
may be further reducefdr large modelglown to 1.26 bits per
triangle by using precomputed or adaptive entropy codes.

A 3D variation of this approach has been used by the authors
to compress the connectivity graph of tetrahedral me&iigs [
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