
 R o s s i g n a c & S z y m c z a k W r a p & z i p 2 / 1 0 / 9 9 page 1

Wrap&zip: Linear decoding of planar triangle graphs

Jarek Rossignac and Andrzej Szymczak
GVU Center, Georgia Institute of Technology

Abstract

The Edgebreaker compression technique, introduced in [11], encodes any unlabeled triangulated planar graph of t triangles
using a string of 2t bits. The string contains a sequence of t letters from the set {C, L, E, R, S} and 50% of these letters
are C. Exploiting constraints on the sequence, we show that the string may in practice be further compressed to 1.6t bits
using model independent codes and even more using model specific entropy codes. These results improve over the 2.3t
bits needed by Keeler and Westbrook [6] and over the various 3D triangle mesh compression techniques published
recently, which all exhibit larger constants or non-linear worst case storage costs. As in [11], we compress the mesh
using a spiraling triangle-spanning tree and generate the same sequence of letters. Edgebreaker's decompression uses a
look-ahead procedure to identify the third vertex of split triangles (S letter) by counting letter occurrences in the
remaining part of the sequences. We introduce here a new decompression technique, which eliminates this look-ahead and
thus exhibits a linear asymptotic time complexity. Wrap&zip converts the string into the corresponding triangle-
spanning tree and assigns orientations to each one of its free edges. During that “wrapping” process, whenever two
consecutive edges point to the same vertex, it glues them together, possibly continuing the “zip” along the next pair of
edges that just became adjacent. By labeling the vertices according to the order in which they first appear in the triangle-
spanning tree, this compression approach may be used to encode the connectivity (incidence of labeled graphs) of three-
dimensional triangle meshes that are homeomorphic to a sphere. Being able to decompress connectivity prior to vertex
locations is essential for the most advanced geometry compression schemes, which use connectivity to predict the
location of a vertex from the location of its previously decoded neighbors.

Introduction
Planar graphs
We consider here planar triangle graphs of t triangles and v
vertices. These are topologically equivalent to the connectivity
graph of a triangulated surface that is homeomorphic to a
sphere. Note that t=2v-4 for such graphs. In this paper, we use
the term mesh to refer to such a graph.

Previously reported compression schemes
The connectivity of a mesh may be stored as a sequence of t
triangle descriptors, each triangle been represented by 3 integer
labels. Each labels identifies one amongst the v vertices and
requires  log2(v) bits. Organizing triangles into strips [3],
where each new triangle shares an edge with the previous one,
reduces in practice the above storage by half. The use of a
buffer to cache a small number of labels [1] may further reduce
the expected cost.

The structure of a labeled planar graph may be encoded using
slightly less than 12v bits [18]. Turan builds a vertex-
spanning tree which represents the boundary of a topological
polygon of 2v−2 edges. The structure of the vertex-spanning
tree is encoded with 4v−4 bits. There are at most 2v−5 edges
that do not belong to the vertex-spanning tree. These may be
encoded using 4 bits each. The overall connectivity cost is
thus, 12v−24 bits.
Inspired by Tutte [19], Itai and Rodeh [5] show that any
unlabeled rooted non-separable triangulated planar graphs of v
vertices may be represented by 4v bits. They also propose a
linear algorithm for constructing a representation of any
labeled planar graph using at most 1.5nlog2(v)+6v+O(log2(v))
bits, while the theoretical minimum is vlog2(v)+O(v). They

use a triangle as the initial outer loop and then shrink that
loop by removing one triangle at a time. They always delete
the triangle that is incident to the smallest vertex v1 in the
outer loop and is bounded by the outer loop edge that starts at
v1. They distinguish four cases: (1) The third vertex precedes v1

in the outer loop; (2) It follows the successor of v1; (3) It is
somewhere else in the outer loop; and (4) it is not on the outer
loop. Operations (3) and (4) each require log2(n) bits to identify
a vertex in the not yet processed part of the mesh. Several
improvements over Itai and Rodeh's method were reported
recently [14, 15, 12, 4, 11].

Cutting through the edges of the vertex-spanning tree produces
a triangulated surface that is a simply connected mesh without
internal vertices and thus may be completely represented by the
triangle-spanning tree. A triangle-spanning tree of a mesh is a
binary tree, whose nodes correspond to the triangles and whose
edges correspond to some of the edges of the mesh. A depth-
first traversal of such a spanning tree corresponds to a walk on
the entire mesh that starts at the root triangle and recursively
visits the neighboring triangles that have not been previously
visited. The triangle-spanning tree may be encoded using 2 bits
per triangle, but does not contain sufficient information to
recover the mesh.

The Topological Surgery method of Taubin and Rossignac
[14, 15] compress both a triangle-spanning tree and its dual
vertex-spanning tree be encoding the lengths of consecutive
single-child nodes. For complex and reasonably regular
meshes, the expected cost of encoding both trees may amount
to about two bits per triangle. However, the overhead of the
run length encoding may result in a significantly higher
average cost for irregular or small meshes.

 R o s s i g n a c & S z y m c z a k W r a p & z i p 2 / 1 0 / 9 9 page 2

Rossignac [12] has proposed a variation, which uses 2 bits per
vertex to encode the vertex-spanning tree (one bit indicates the
presence of a child while the other bit indicates the presence of
a right sibling) and 2 bits per triangle to encode the triangle-
spanning tree (one bit indicates the presence of a right child,
while the other bit indicates the presence of a left child). With
twice more triangles than vertices, the guaranteed worst case
connectivity cost of this representation is 3 bits per triangle.

Gumhold and Strasser's technique [4] and Rossignac's
Edgebreaker scheme [11], although developed independently,
are closely related. Both schemes perform the same traversal of
the mesh as in [14]. At each step, they remove a triangle and
encode the necessary information to reconstruct the triangle by
distinguishing several cases that include the four cases of Itai
and Rodeh. Edgebreaker uses the letters L, R, S, and C to
identify cases 1 through 4 of Itai and Rodeh. Gumhold and
Strasser add the case where a boundary edge is reached.
Edgebreaker does not need to distinguish this case, since it
encodes the bounding loop at the beginning of the vertex array.
However, Edgebreaker adds the case E, which corresponds to
the situation where the current triangle is not adjacent to any
other remaining triangle. Both these approaches avoid the
log2(v) bits cost associated with case (4) of Itai and Rodeh by
encoding the vertices in the order in which they are visited by
case (4). With each case (3) operation, Gumhold and Strasser
must encode the reference to a vertex in the current boundary,
which requires log2(v) bits and makes their storage costs a non-
linear function of v. Instead, Edgebreaker uses a decompression
preprocessing step to compute these vertex-references from the
sequence of symbols, and therefore exhibits a linear storage
cost, although a non-linear time complexity. For typical
meshes, Gumhold and Strasser report compression results
between 1.7 and 2.15 bits per triangle using Huffman encoding
of the bit stream.

Keeler and Westbrook [6] improve on Turan's results and
propose a technique for encoding planar graphs with a
guaranteed 4.6v bits. They also build a triangle-spanning tree.
Each triangle of the tree, except the root, shares an edge with
its parent and may have zero, one, or two children and thus
two, one, or zero free edges. They append free edges to the
leaves of the triangle-spanning tree and label them. Encoding
the graph and the labels requires an average of 1+log2(3)/3 bits
per edge. They suggest a coding scheme based on a series of
graph transformations.

Touma and Gotsman [17] also encode the vertices along the
vertex-spanning tree in the same spiraling order as [14,4,11].
They distinguish only two cases, which correspond to the
cases (3) and (4) of Itai and Rodeh and to the Edgebreaker's
cases S and C. Other cases are not encoded. Instead, Touma and
Gotsman encode the degree of each vertex, i.e., the number of
incident edges and use it to automatically identify the other
cases. During decompression, they keep track of the number of
already decoded triangles that are incident upon each vertex and
are thus capable of identifying the R, L, and E triangles
automatically. For highly tessellated regular models, where the
degree of the vertices follows almost regular patterns, they

report compression results of less than a bit per triangle using
Huffman encoding. However, for smaller or less regular
meshes, the required storage may easily exceed 2 bits per
triangle. As Itai and Rodeh and as Gumhold and Strasser, they
require that with each S operation be associated a vertex
reference, which requires log2(v) bits, prior to Huffman
compression.

Inspired by [7] and improving on [9, 13], Denny and Sohler
have proposed a technique for encoding the incidence of planar
triangulations of sufficiently large size as a permutation of the
vertices [2]. They show that there are less than 28.2v +O(logv)

valid triangulations of a planar set of v points, and that for
sufficiently large v, each triangulation may be associated with
a different permutations of these points (there are
approximately 2v log(v) such permutations). They transmit the
suitably ordered vertices in batches. The decompression sorts
them lexicographically, computes a permutation number by
comparing the order in which the vertices were received with
their lexicographic order, then sweeps over the current
triangulation from left to right and refines it by inserting the
new vertices. At each vertex of the current batch, it identifies
the enclosing triangle [8] and the vertex is inserted according to
the incidence relation derived from the bit string that encodes
the permutation number. Unfortunately, the unstructured order
in which the vertices are received and the absence of the
incidence graph during their decompression makes it difficult
to combine this approach with the predictive techniques for
vertex encoding discussed earlier. Furthermore, the vertex-
triangle association is based on geometric comparisons that
only work in two dimensions.

The Edgebreaker compression
For completeness, we summarize here the compression process
proposed in [11].

Spiraling triangle-spanning tree
The Edgebreaker compression algorithm visits the triangle of
the mesh in the order in which they appear in a spiraling
triangle-spanning tree. Such a tree may be built by a recursive
procedure as follows.

During the recursive traversal, we leave some triangle P to
enter an adjacent triangle X that has not been previously
visited. P is the parent of X in the triangle-spanning tree. The
other two triangles adjacent to X may be consistently identified
as X.left and X.right, using a convention and a consistent
orientation of the triangles throughout the mesh. If X.right has
not been previously visited, it is appended as the right child of
X and is visited by the recursive procedure in a depth-first
order. Then, if X.left has not been visited, it is appended as the
left child of X and is also visited by the recursion. We mark all
the vertices of visited triangles.

The procedure starts with any triangle X of the mesh and
identifies one of its edges as the starting gate, which suffices
to define X.right and X.left.

Let v be the only vertex of X that is not the vertex of its
parent in the tree. The visited/not-visited status of v, of X.left,

 R o s s i g n a c & S z y m c z a k W r a p & z i p 2 / 1 0 / 9 9 page 3

and of X.right unambiguously identifies one out of the five
possible situations depicted Fig. 1 and associated with the
letters: C, L, E, R, and S. Compression simply encodes the
corresponding letters—or more precisely their binary op-
codes—in the order in which the corresponding triangles are
visited. The resulting string of t symbols represents a compact
encoding of the connectivity of the mesh.

Figure 1: Previously visited triangles are not shaded.

• Case C: v has not been visited.
• Case S: Only v has been visited.
• Case E: X.left and X.right have been visited.
• Case L: Only X.right was not visited.
• Case R: Only X.left was not visited.

The selection of the appropriate case may be performed by the
following sequence of tests:

if not visited(v) then C
else if visited(X.left)

then if visited(X.right) then E else L
else if visited(X.right) then R else S

If the vertices are labeled in the order in which they are first
visited by this traversal and then encoded in the order of
increasing labels, this approach may be used to compress
labeled graphs and 3D triangle meshes homeomorphic to a
sphere [16].

Efficient encoding of the op-codes
Guaranteed 2t bit code
Except for the first two vertices, there is a one-to-one
association between the vertices of the mesh and the triangles
processed by C operations. Therefore, the number of Cs is
v–2, which equals t/2, given that v=(t+4)/2. The total number
of non-C operations, t–v+2, also equals t/2. Hence, if we use
a1-bit code for C and 3-bit codes for the other four operations,
the total cost for storing the string with the above scheme
would be exactly 2t.

Because the first two operations are Cs, they can be omitted
from the string, yielding a total storage cost of 2t–2 bits for
any triangular planar graph.

Expected 1.7t bit code not exceeding 2t bits
The CL and CE sequences of operations correspond to
impossible situations. We exploit this constraint to increase
the expected compression ratio of Edgebreaker by using a
slightly more complex coding scheme. We use two different
code sets: the general code set proposed above is used for all
operations except for S and R's that follow a C. These may
each be encoded using only 2 bits. For example, we may have
the following code. C is 0, L is 110, R that does not follow a
C is 101, R that follow a C is 11, E is 100. S that does not
follow a C is 111, and S that follows a C is 10.

In the worst case, with long sequences of consecutive Cs, this
encoding method has no effect on the bit-count. At best
however, when all Cs are separated, it reduces the bit-count to
an average of 1.5 bit per triangle (because there are as many Cs
as other operations). Our experiments on a variety of meshes
show a ratio of 36% of R operations, almost half of which
follow a C. The code proposed here results on the average
storage of 1.7t bits.

Expected 1.6t bit code
By exploiting the relative frequencies of these operations in
large meshes, we have devised a code (below) that works better
in practice, but no longer guarantees never to exceed 2t bits.
We encode CC, CS, and CR pairs as single symbols. The
resulting file size is 1.6t bits for the large models that we have
explored.

As indicated in the table below: E is 1100, L is 1110, R and S
that follow even number of consecutive C's are respectively 10
and 1111, pairs of op-codes CR, CC and CS preceded by an
even number of C's are respectively 01, 00 and 1101. The
table also shows the frequencies of symbols or groupings in
the string and their total storage cost, multiplied by 100/t.

Sequence code frequency Cost for 100t
CR 01 15.5% 31 bits
CC 00 16.1% 32.2 bits
CS 1101 2.3% 9.2 bits
R (after even Cs) 10 20.8% 41.6 bits
E 1100 5.6% 22.4 bits
S (after even Cs) 1111 3.3% 13.2 bits
L 1110 2.5% 10 bits
TOTAL 159.6 bits

Custom 1.26b bit entropy codes
To further reduce the storage cost for large meshes, we
introduce a space in the sequence of letters at each locations
where a C follows a non-C operation. Doing so, we
decompose it into words that have two parts: the first one
contains one or more Cs and the second one contains one or
more non-C operations.

v
X

case E

P
X

v

case C

P

Xright

X

v

case L

P

Xright X

v

case R

P

Xleft

X

v

case S

P

Xleft
Xright

 R o s s i g n a c & S z y m c z a k W r a p & z i p 2 / 1 0 / 9 9 page 4

We have constructed dictionaries for meshes with 200000
triangles and found only about 1400 words. A Huffman
encoding of these sequences of words yields 1.26t bits of
storage cost for those meshes. The table of codes takes up
about 32000 bits (in this case, about 0.16 bits per triangle),
but a part of it corresponding to most frequent words can be
preloaded and kept constant for all large meshes. Words
missing from the dictionary can be encoded as an escape
sequence followed by their encoding using a fixed code scheme.

Progressive codes
An alternative is to use progressive coding schemes [22, 21,
10]. A number of general-purpose data compression schemes
may be used for this purpose and will not be further discussed
here. They may yield very high compression rations for large
regular meshes, but often perform poorly for large, irregular
meshes and for small meshes.

Wrap&Zip decompression
The decompression algorithm receives a binary encoding of the
string of C, L, E, R, or S letters. It reproduces a labeled planar
triangle graph that is homeomorphic to the original one with
its vertices labeled as discussed in the compression section.
The process is very simple.

Wrapping a triangle spanning tree
The wrap&zip decompression starts with the two initial
triangles that correspond to the two initial C operations that
have been omitted from the string. One of their external edges
is identified as the gate. We read the string and for each
operation, attach a new triangle to the gate. Depending on the
op-code, we select zero, one or two of the free edges of the new
triangle as the gates (Fig. 2). A stack is used to keep track of
left branches of S operations, where the tree bifurcates. On an
E operation, the current branch of the triangle tree terminates
and we pop a new gate from the stack.

Orienting the free edges

During the above triangle-tree building process, edges that
have not been gates are called the bounding edges. They have
only one incident triangle. An E triangle has two bounding
edges. S has none. C and L have a left bounding edge and R
has a right bounding edge. These are oriented as shown with
blue arrows on Fig. 2.

Figure 2: A new triangle is attached to the gate (black arrow)
and the new gate is indicated by a green arrow. The red arrow
indicates a gate pushed onto the stack for the S operation. The
blue arrows indicate the orientations of the bounding edges.

Zipping the wrap
Each time two adjacent bounding edges point towards their
common vertex (i.e. their blue-arrow orientations point
towards that vertex), we zip them together by identifying their
other ends. If the resulting, combined vertex exhibits the same
property (i.e., its two incident bounding edges point towards
it), we repeat this zip operation, and so recursively (Fig. 3).

Note that no zipping is possible for C, R, and S operations
and that recursive zipping occurs only for E operations,
starting from the left vertex (the starting vertex of the gate).

Figure 3: The black arrows show the sequence in which the
triangles were constructed from the subsequence
LCRRRCRRRRE. The blue arrows (left) indicate the
bounding edges and their orientation prior to the zipping for
the last triangle in the sequence. The zipping operation starts
at the red vertex and zips two pairs of edges. The result is
shown right.

Justification of the approach
Triangle spanning tree is the same as with other approaches
[4,14,17,11]. It may always be converted into the correct
connectivity by zipping pairs of edges. In fact, the vertex-
spanning tree of [14] encodes precisely this zipping
information. C operations are the only ones to add vertices to
the vertex-spanning tree. If we orient the edges of the vertex
spanning tree downwards (away from the root), then C
operations create triangles that lie on the right of such edges.
R, E, and L operations create triangles that lie on the left of
such edges. Wrap&zip zips up the vertex spanning tree starting
from its leaves, which are vertices with two incident bounding
edges that point to them. Zipping an edge corresponds to
removing it from the vertex spanning tree, and our recursive
procedure ensures that we zip up all the children before we zip
up past a branching node of the vertex spanning tree.

Time complexity
We start the recursive zipping procedure at most t times and,
more precisely, once for each L and each E operation.
Consequently, we also stop the zipping procedure the same
number of times. (The zipping procedure goes up the tree and
does not bifurcate.) We conclude that the number of times we
test a vertex and decide not to zip is bounded by t. The number
of successful zip operations equals the number of edges in the
vertex-spanning tree, which is precisely v–1. Therefore, the
decompression algorithm has linear time complexity.

C L R

S E

L
C

R
R

RC

R
R

R

R
E

L
C

R
R

RC

R
R

R

R
E

 R o s s i g n a c & S z y m c z a k W r a p & z i p 2 / 1 0 / 9 9 page 5

Conclusion
The wrap&zip technique reported here improves the
decompression algorithms for models compressed with the
Edgebreaker approach. We have provided a simpler algorithm
with linear complexity and very little overhead over the
straightforward construction of the triangle-spanning tree.

By analyzing the statistics of the op-codes generated by the
compression process for a variety of models, we have
developed a model-independent coding scheme, which
compresses each triangle to an average of 1.6 bits. This cost
may be further reduced for large models down to 1.26 bits per
triangle by using precomputed or adaptive entropy codes.

A 3D variation of this approach has been used by the authors
to compress the connectivity graph of tetrahedral meshes [20].

Acknowledgement
Rossignac research on this project was partly supported by
NSF grant 9721358. Szymczak was supported by KBN grant
0449/P3/94/06.

Bibliography
[1] M. Deering, Geometry Compression, Computer Graphics,
Proceedings Siggraph'95, 13-20, August 1995.

[2] M. Denny and C. Sohler, Encoding a triangulation as a
permutation of its point set, Proc. of the Ninth Canadian
Conference on Computational Geometry, pp. 39-43, Ontario,
August 11-14, 1997.

[3] F. Evans, S. Skiena, and A. Varshney, Optimizing
Triangle Strips for Fast Rendering, Proceedings, IEEE
Vizualization'96, pp. 319--326, 1996.

[4] S. Gumhold and W. Strasser, Real Time Compression of
Triangle Mesh Connectivity. Proc. ACM Siggraph 98, pp.
133-140, July 1998.

[5] A.Itai and M. Rodeh, Representation of Graphs, Acta
Informatica, No. 17, pp. 215-219. 1982.

[6] K. Keeler and J. Westbrook, Short Encodings of Planar
Graphs and Maps, Discrete Applied Mathematics, No. 58, pp.
239-252, 1995.

[7] D. Kirkpatrick, Optimal search in planar subdivisions,
SIAM Journal on Computing, vol 12, pp. :28-35, 1983.

[8] D.T. Lee and F.P. Preparata, Location of a point in a
planar subdivision and its applications. SIAM J. on
Computers, 6:594-606, 1977.

[9] M. Naor, Succinct representation of general unlabeled
graphs, Discrete Applied Mathematics, vol. 29, pp. 303-307,
North Holland, 1990.

[10] M. R. Nelson, LZW Data Compression, Dr. Dobb's
Journal, October 1989.

[11] J. Rossignac, Edgebreaker: Compressing the incidence
graph of triangle meshes, GVU Technical Report GIT-GVU-

98-35, Georgia Institute of Technology,
http://www.cc.gatech.edu/gvu/reports/1998.

[12] J. Rossignac, 3D Geometry Compression: Just-in-time
upgrades for triangle meshes, in 3D Geometry Compression,
Course Notes 21, Siggraph 98, Orlando, Florida, July 18-24,
1998.

[13] J. Snoeyink and M. van Kerveld, Good orders for
incremental (re)construction, Proc. ACM Symposium on
Computational Geometry, pp. 400-402, Nice, France, June
1997.

[14] G. Taubin and J. Rossignac, Geometric Compression
through Topological Surgery, ACM Transactions on Graphics,
Volume 17, Number 2, pp. 84-115, April 1998.

[15] G. Taubin, W. Horn, F. Lazarus, and J. Rossignac,
Geometry Coding and VRML, Proceedings of the IEEE, pp.
1228-1243, vol. 96, no. 6, June 1998.

[16] G. Taubin and J. Rossignac, 3D Geometry
Compression, Course Notes 21, Siggraph 98, Orlando,
Florida, July 18-24, 1998.

[17] C. Touma and C. Gotsman, Triangle Mesh
Compression, Proceedings Graphics Interface 98, pp. 26-34,
1998.

[18] G. Turan, Succinct representations of graphs, Discrete
Applied Math, 8: 289-294, 1984.

[19] W.T. Tutte, The Enumerative Theory of Planar Graphs.
In A Survey of Computational Theory, J.N. Srinivasan et al.
(Eds.). North-Holland, 1973.

[20] A. Szymczak and J. Rossignac, Grow&Fold:
Compression of Tetrahedral Meshes, GVU Technical Report
GIT-GVU-99-02, Georgia Institute of Technology, February
99. http://www.cc.gatech.edu/gvu/reports/1999.

[21] T. Welch, A Technique for High-Performance Data
Compression, Computer, June 1984.

[22] J. Ziv and A. Lempel, A Universal Algorithm for
Sequential Data Compression, IEEE Transactions on
Information Theory, May 1977.

