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CHAPTER I

INTRODUCTION

1.1. The Problem

Economy of production is one of the most important
factors in operating a large electric generating system.

The ability to efficiently produce electric energy depends in
a large measure on the methods of dispatching the various
generating units in the electric system to the electric
demand experienced by the systém.

The fundamental problem is to obtain the minimum
overall operating cost at any given load or output. To
attain this objective, consideration must be given to the
proper allocation of the electrical lcoad to the particular
generating units of the system. Because of the fact that
there are numerous generating units with different charac-
teristics, and there exist exogenous forces associated with
the availability of the generating units, the allocaticn of
electrical load must reflect a variety of constraiﬁts.

In the power system, the generating units differ with
regard to costs, fuels, maintenance costs, ete. In addition,
these units have different operating purposes. The gas
turbines that have low capital reéuirements but high genera-

tion costs are used to supply peak loads. Fossil fuel units



are generally used for loads of longer duration since they
have higher capital but lower operating costs. The nuclear
units which require the greatest capital investment have low
operating costs and are used for base {continuous) loads.
The hydro units require high or low capital costs {(depending
on the site) and have generating costs near zero. However,
there are usually constraints on the amount of energy that
may be produced from these sources.

Because the electric utilities require preventive
maintenance, the units are not always available throughout
the year. Although there is a planned maintenance schedule,
there are unexpected outages that occur. All these factors
mentioned affect the total production cost of the electric
generating system and they have to be incorporated in any
method that dispatches the various generating units.

In order to plan the expansion of an electric generating
system, it is necessary to understand how each generating unit
wiil operate within the total system. Methods have been
developed to compute production costs, but the actual
algorithms.utilized are extremely detailed and require a
large amount of data. As a result, the computer programs
used require large amounts of core memory and require hours
to execute.

. Because of these limitations, there is a need for a
gquick accurate method for determining how each unit must

operate. Then based on the projected system load, the



generating units can be scheduled and a reasonable estimate

of the total system operating costs can be determined,

l.2. Objectives of the Study

The purpose of this study is to:

1. Develop a fast, cost effective method for determining the
operating levels of each generating unit for any given
level of total system demand. This method will attempt
to consider the actual operating conditions experienced
by an electric utility.

2. Obtain actual electric utility cost data for individual
generating units and make it accessible on the computer
by defining the operating cost functions for each unit.

3. Test the effectiveness of the method developed by comparing
the results obtained with the more detailed method pre-

sently utilized by an electric utility.

1.3. Plan for this Study

Chapter I1 presents a brief literature survey about the
methods developed in the load dispatching problem and deter-
mination of the operating costs. Chapter III presents the
principal conéepts and terms that will be used in the develop-
ment of the dispatching algorithm. Chapter v presents'the
development of dispatching method. Chapter V presents the
comparison of the results obtained by the method developed
with the more detailed method actually used for the electric
utility studies. 1In Chapter VI the conclusions and recommenda-

tions resulting from this investigation are discussed.



CHAPTER II1
LITERATURE SEARCH

During the history of power generation much effort
has been applied to the problem of finding the most economi-
cal way to produce energy. As a result a number of different
methods to deal with this problem have been developed.

At first, estimates of the operating costs for parti-
cular combinations of generating units and forecasted load
were made on the bases that the generating capability was
always available and that the load was known with certainty.

The first publication related with this problem was
by F. H. Rogers (19) in 1924, In his article, for the
simplest case where the input curves are all straight lines,
Rogers gave a graphical proof for the following theorem:

The load should be divided between two or more units as
to obtain equal values of the first derivative of the
power discharge curve of each unit.

The treatment was extended by Rogers and Moody (20)
in 1925. 1In their paper they present a comprehensive dis-
cussion on the theory, nature, and practical application of
the incremental rates. They prove méthematically that the
most economical division of load is obtained when the incre-

mental rates are egual, and suggest some methods for calcula-

tion of the units input-output curves.



Six years later, in 1931, G. R. Hahn (8), shows that
lecad dispatching using incremental rates may be applied to
any parallel operation of units. He states that in some
cases certain connections must be applied to the input-
output curves before the increment rates are determined.

J. E. Mulligan in his article, "The Load Division
Among Generating Units for Minimum Cost," (15) expands the
underlying load division by demonstrating the criteria to
follow where more than two units are involved, where the
curves of input plotted against output are discontinuocus or
inflected, and where part of the units operate at constant
load as the total load changes.

In 1943, Steinberg and Smith (22} published the first
book dealing with economiec loading in power systems. This
book is basically a summary of the research results in this
area up to that year. In their book, Steinberg and Smith
show the application and limitations of the incremental rate
theory and they give some practical solutions to the load
division problems.

After 51950, with the development of operationsl
research technigques such as linear programming, dynamic pro-
gramming and simulation, the economic dispatching problem
begins to be formulated in terms of a large number of vari=~
ables. One of the first articles using these techniques was
the paper by L. L. Garver (5). Garver describes how the

economic scheduling problem may be formulated as an integer



programming model. The integer program formulation includes
the discontinuous power output characteristics of the
generators, the costs of starting and shutting down each
unit, and the dispatching of the load by incremental costs.
The objective of this approach is tc minimize the cost func-
tion which is the sum of the costs of starting, stopping,
producing power at minimum output and producing power above
the minimum output for each time period. This objective
function and the constraints are formulated in a linear form.
Reasonably good results have been obtained in the application
of this method, but if the number of units is too large, as
in the case with the present ever increasing loads and
interconnection of power systems, a large amount of memory
and computer time is required to process the algorithm. |

F. Anatti and D. Grohnnan, in their article, "A Method
for Economic Load Dispatching in a Thermal Power System,”
(1), developed an iterative method for the optimum alloca-
tion of power generation for thermal units. As an initial
solution, the generation schedule at equal incremental costs
is determined by a very simple computer program which is alsoc
employed in the successive stage of the iterative optimiza-
tion procedure. The feasible solution corresponding to the
equal incremental cost schedule is subsequently obtained by
the solution of power flow equations. Subsequently, the
adjustments of the power injections are optimized so as to

reach the minimum operating cost of the system, subject to



inequality constraints imposed by equipment ratings and trans-
mission losses. Iterative solutions of the optimality equa-
tions by the previous method are alternated with solutions of
the power flow equations, until a feasible solution is
reached.

In 1969, R. R. Booth (2) developed a detailed computer
program to simulate the operation of the system for a period
of one year. The basis of the simulation approach is to model
the compeonent elements of the power system to produce an over-
all representation that responds in similar manner to the
actual power system in a given set of circumstances. This
simulation program essentially analyses the operation of the
system hour by hour of the period and considers such factors
as forced and scheduled outages, randomness in the lcad
curves, and hydro constraints. This program was written in
Fortran IV and has been run as an IBM 360/40. The basic
computing speed is 2-3 second per 24 hours day. The simula-
tion of one year takes approximately 20-30 minutes. The
representation includes approximately 50 generating units.

In 1971, Rees and Larson (18) used dynamic programming
for purposes of economic load dispatching. In their article,
Rees and Larson describe a dynamic programming successive
approximation algorithm for the optimization of power genera-
tion schedules fqr utilities participating in coordination
agreement. The power sources available for schedule can

include conventional hydro units, thermal generating units



and pumped storage units. The objective of this algorithm

is to schedule these power sources hourly such that genera-
tion costs are minimized over the entire year. The algorithm
is implemented in three separated but coupled computer pro-
grams: |

1. monthly optimization over one year

2. daily optimization over one month

3. hourly optimization over 48 hours.

The monthly optimization, daily optimization and hourly
optimization programs form an optimization procedure hierarchy.
Each program in turn addresses power generation scheduling
#ith a shorter time horizon but on a more detailed and
refined system model. The optimal long term policy and long
term optimal costs of higher—-ordered program are transferred
as input to the program of adjaéent rank in order that the
short term optimization explicitly considers long term effects
of current decisions.

R. R. Booth in his article, "Power Systems Simulation
Model Based on Probability Analysis," (3), developed a simu-
lation model based on the probability distributions of load
and unit availability instead of based on the chfonological
simulation of the system operation. 1In conjunction with a
dynamic programming algorithm, this model helps in the solu-
tion of a variety of problems concerning the planning and
operation of powef systems. An advantage of this model

is that it considers any type of units and many operational



problems can be formulated. The accuracy is good, but it
requires a large amount of computer time.

Some of the models named have found application in the
electric utility industry, but they are extremely detailed and
require large amount of input data and considerable time to
process,

It is the purpose of this thesis to develop a method
that gives good estimates of future system operating costs
without lengthy and costly computer runs. In the method
developed in this study, the allocation of load is accomp-
lished, like in the other approaches, by the incremental cost
method. The principal differehce with respect to the methods
actually used is in the procedure utilized to analyze the
system demand and in the treatment of the scheduled and
forced outage times. A detailed description of the approach

will be presented in Chapter 1IV.



10

CHAPTER TII
BACKGROUND INFORMATION

The purpose of this chapter is to present the princi-
pal concepts and terms that will be used in the development
of an algorithm to obtain the total operating costs of a
power system. This chapter has been divided into three parts.
First, the analysis of the cost functions is briefly dis-
cussed; second, basic concepts utilized in the electric
utility industry are described, and last, a description
and analysis of the optimal method for load dispatching

(incremental cost method) is presented.

3.1. Cost Functions

This section contains a review of some elementary theory
concerning the behavior of costs. The description of the
different cost functions and how they can be obtained is
also presented.

3.1.1. Fixed Costs

Fixed costs are those which do not vary as output
changes. They are the costs which will be incurred if the
firm is to continue to operate whether its output is large
or small. Total and average fixed cost curves are shown in
Figure 3-1. Total fixed costs remain at OF whatever the level

of output. Fixed cost per unit of output will therefore fall
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steadily as output increases. This is illustrated in
Figure 3-1 where the average fixed cost curve (AFC), is
monotonically decreasing.

3.1.2. Variable Costs

Variable costs are those which change as output changes.
The total wvariable cost curve has a different slope depending
on the rate of change with respect to the output. Unit vari-
able cost (UVC) is total variable cost divided by the units
of output and is the slope of the total variable curve at any
level of output. A typical variable cost function presented
in power systems is shown in Figure 3-2a. The unit variable
cost function (UVC) for this case is shown in Figure 3-2b.

3.1.3. Total Cost

The total costs are defined as the sum of the total
fixed costs plus the total variable costs. The total cost
curve (TC) is illustrated in Figure 3-2a. If the total cost
is divided by the number of units produced in the period,
the average cost is obtained (AC). Figure 3-3 represents
the average cost function for the total cost curve shown
in Figure 3-2a.

3.1.4. Incremental Cost or Marginal Cost

The incremental cost can be defined simply as the
additional cost that will be incurred as the result of
increasing the output one more unit. Conversely, it can be
defined as the cost that will be saved if the output is reduced

by one unit. The incremental cost is also known as the mar-
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ginal cost. It can also be defined as the change in the
total variable cost for a unit change in output. It is the
rate of change of input with output, and consequently, incre-
ment cost is the slope of the input-output curve for a given

operating point, namely:

A cost input _ d (cost input)
A power output d (power output)

Incremental Cost =

When the total cost function is linear or a linear
approximation of some curve, the marginal cost is constant.
The slope of the marginal cost function for the total cost

function represented in Figure 3-2a is shown in Figure. 3-4.

3.2. Demand Function

The calculation of the operating costs can be based
either on two types of demand curves: the load curve or the
load duration curve. The purpose of this section is to
define and describe the characteristics of these curves.

3.2.1. The Load Curve

Most of the difficulties and complexities of modern
power plant operation arise from an inherent variability of
the load demanded by the users. Each customer requires small
or large blocks of energy according to the demands of their
activities. The ideal load from the standpoint of efficient
equipment utilization would be one of constant magnitude and
steady duration. Such an ideal load is shown in Figure 3-5a.

The unit cost to produce the energy represented by the area
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Figure 3-5a. Ideal Load Curve.
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Figure 3-5b. Real Load Curve
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of this locad curve (one kilowatt-hour) could be from 1/2 to
3/4 of that to produce the same unit under the more frequently
realized condition illustrated in Figure 3-5b. These curves
which represent the hour-by-hour electric demand are commonly
referred to as load curves. Daily load curves show the kilo-
watts demanded over a 24 hour day while annual load curves
indicate the hour-by-hour kilowatts demanded at each time
interval during a year. These curves also show the maximum
or peak load that occurred during a particular period.

3.2.2. The Load Duration Curve

Another type of curve which represents the characteris-
tics of electric demand is the load duration curve. It is
constructed from the load curve by rearranging each load for
each time interval 8, to occur in descending order of magni-
tude (Figure 3-6). The ordinates of this curve may extend
from zero to maximum demand in kilowatts or from zero to 100%
maximum demand. The abscissa ranges from zero hours to the
number of houré of the period (day, month, year). For example,
the annual load duration curve shown in Figure 3-6 was con-
structed in the feollowing manner. The number of hours during
which 1000 kw, 2000 kw, 3000 kw, etc. is demanded was recorded
from the daily load curves, then totaled for.the year and
plotted in decreasing order of magnitude. Hence, the inter-
pretation of point A (Figure 3-6) is that at least 12 mw
(12000 kw) were demanded for 5256 hours of the year, or that,

through 60% (5256/8760) of the year, only 40% (12/30) of
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maximum demand was required.

3.2.3. Computation of the Operating Costs

The calculation of the production costs can be based
on the load curve or on the load duration curve. For the
load curve, the operating costs for the area under this curve

at each time interval 9§, are dependent on levels at which

t
each unit in the system is operating to produce the energy
represented by the interval (Figure 3-5b). Because of the
high variability of power demand and the instability of the
load curve, it is questionable whether this high degree of
detail produces reliable estimates of the future. Due to the
fact that the load duration curve represents é summary of a
load curve by removing the time sequence of demand, its shape
is more predictable. Thus production costs based on a load
duration curve are simpler to develop and more stable from
year to year.

However, a loss of information is introduced when this
curve is used for calculation of operating costs, because
this curve gives only the magnitude of the load and nof the
time at which the load occurs. For the load duration curvé
the operating costs are the area under this curve weighted
at each time interval et by the operating costs per unit

energy output and the output of each generating unit

operating in that interval.
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3.3. Operating Characteristics

3.3.1. Input-Output Curve

For distributing load for maximum economy, it is
necessary to have a knowledge of the relationship between
energy‘input and output of the units concerned with each of
the inputs and each of the outputs expressed in common units.
This relationship can be expressed by the input-output curve.
This curve defines the performance characteristics of the
generating unit and it is the basic curve from which the
incremental rates and incremental costs are derived for load
dispatching purposes. An example of an input-output curve
is shown in Figure 3-7. The fuel input in MMBtu/hr is plotted
as a function of output in megawatts (mw). In developing these
performance curves, at first consideration was given only to
thermal performance. In recent years, however, it has been
shown that for purposes of dispatching generating units for a
particular system it is sufficient to use cost functions for
the respective generating units bésed on the input-output
curves extended by fuel prices. Usually fuel cost represents
the major item of production costs. Section 4.1.2. will
explain how the producticon cost curves can be obtained for
each unit based on the input-output curve.

3.3.2. Capacity Factor

An important term used by power companies is the capa-
city factor. It is defined as the total energy produced by

a unit during the year divided by the total energy that the
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unit would have produced if it had operated the entire year
at its maximum capacity. To illustrate, suppose there is a
unit with a maximum capacity of 300 mw and it was operating
at 100 mw during 4760 hours and at 250 mw during 4000 hours;

then the capacity factor is:

Energy Produced

Capacity Factor = gorordizT Energy

(3-1)

{100) (4760)+(4000) (250)
(300) (8760)

= 56%

Thus, this factor provides information about the percentage

of the unit's potential that is utilized during the year.

3.4, Optimal Method for Load Dispatching

The incremental cost method has been proven to be the
optimal method for load dispatching. The subject of this
section is to present the theory and application of this
method to the estimation of future production costs.

3.4.1. Concept of Incremental Rate

The incremental rate of a unit at any given output is
numerically equal to the slope of the input-output curve at
the point corresponding to that output. Mathematically, the
incremental rate is the first derivative of the input-output
curve with respect. to the output. :It measures the rate of
change of the input with respect to the output, and does not
indicate - the absolute value of the input. It is expressed

in Btu/mw-hr.
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Based on the input-output curve, the incremental rate

may be derived by one of the following methods (12} (22}:

1. When the input-output curve can be expressed by an alge-
braic equation (i.e., y = sz + Bx + C), the incremental
rate can be determined by differentiation, since it is the
first derivative of the equation of the input-output curve.

2. The incremental rate may be graphically determined by
drawing a tangent to the input-output curve at the point
corresponding to the output.

3. From the input-output curve, a series of output values
are chosen and the corresponding input values read. The
difference between successive values of the output are
usually made constant and are made small enough so the
characteristic shape of the incremental rate curve can be
determined with reasonable accuracy. The incremental
rate is merely the ratio of the input difference to the
output difference, or the incremental input divided by
the incremental output. |

Of the three methods, the first method is the easiest
to apply. The second method is not recommended because it
requires plptting the input-output curve and it will generally
be found that the tangent cannot be established with any
reasonable degree of accuracy. Hence, the resulting values
will be inconsistent and unsuitable for determining.the
characteristic shape of the incremental rate curve. The
third method can give results closely checked by those

obtained with the first one, but requires numerous computa-
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tions. Therefore, the first method is the one most utilized
because once the input-output curve is expressed by an equa-
tion, the incremental rate for any level of ocutput is computed
rapidly with high level of accuracy.

3.4.2, Incremental Production Costs

In section 3.3.1. it was pointed out that the input-
output curve for a generating unit can be expressed by a
relation between the fuel input (MMBtu/hr) and the output
(mw). If this relation is expressed by a mathematical func-

tion, then

d (input) _
d (output) (3-2)

Incremental Fuel Rate =

The units of measure with the incremental fuel rate
area MMBtu/mw-hr. The incremental fuel rate is converted to
incremental fuel cost by multiplying the incremental fuel
rate in MMBtu/mw-hr by the fuel cost in $/MMBtu. Then the
incremental fuel cost is expressed in $/mw-hr.

So far, only the fuel cost has been obtained, but we are
interested in the total operating cost. This cost is com~
posed of the fuel cost plus the cost of other items such as
labor, supplies and maintenance. Therefore, the incremental
operating cost or incremental production cost of a given unit
is made up of incremental fuel cost plus the incremental cost
of these additional items. It is necessary to performta
rigorous analysis in order to be able to express the costs of

these production items as a function of instantaneous output.
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Arbitrary methods of determining incremental cost of labor,
supplies and maintenance are used. The most common of the
methods is to assume these costs are a fixed percentage of
the incremental fuel costs. However, in many systems for
purposes of scheduling generation, the incremental production
cost is assumed to be equal to the incremental fuel cost.

3.4.3. Conditions for Maximum Efficiency (Optimum Scheduling)

Assume that there are any number of generating units
in the system with the following characteristics:
1. The input-~output curves are continuous.
2. The first derivatives of the input-~output curves (the
incremental rate curves) are continuous.
3. Convex total cost functions.
4, The value of the incremental costs always increases as
the output increases.
5. Transmission losses are neglected.
It has been shown (12} that the minimum input in dollars
per hour for a given total load is obtained when all generating

units are operated at the same incremental production cost.

Demonstration:
Let Fn = input to unit "n" in dollars per hour
Ft = total input to the system in dollars per hour

It is desired that the total input to the system be minimized,

it means,

F, = F_ = Minimum | {(3~-1)
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under the restriction that

P =P (3=-2)

where

Pr

P
n

Received locad (mw)

Output of unit "n" (mw)

If it is applicated the method of Lagrange Multipliers,

the equation of constraint is given by

w(Pl, Pos P3....Pn) = ; Pn - PR =0 {3-3)

The minimum fuel input for a given received load is obtained

when
g—g; =0 ' (3-4)

where
G=F_ - ¢ . (3-5)

and A is the Langragian type of multiplier.

From (3-4) and (3-5)

3F
36 _ P ey _
s T (3-6)
n n n
Then
3F
t 3 I _ _
55. - * 35 [ Pn ~Prl =0 (3-7)
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BFt
F - A[l—O] = 0 (3—8)
n
Therefore
3F
t — —
5T - A (3-9)
n
But
aF aF dF
t _ z _ n _ -
35 = 3y Fp) /3P, = 55— = 3p (3-10)
n n n
Then from (3-9) and (3-10)
an
n
dr
where T = incremental operating cost of unit "n" in dollars
per mw-hr
A = incremental cost of received power in dollars per

mw-~hr

The value of 2 must be chosen such that EPn =P Thus,

Ro

the minimum input for a given combined output is obtained when

the incremental production costs are the same.

The same result as in Equation (3-~11l) could be obtained
intuitively.' Assume that all the units are not operating at
the same incremental.cost. Therefore, some units are operating
at higher incremental costs than others. It would then be

possible to decrease the dollars per'hour input to the system
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by increasing the generation in the units that are operating
at lower incremental costs, and decrease the generation in
units operating at higher incremental costs. In the limiting
case, it will be seen that all sources should be operated at
the same incremental costs.

An example of the application of this method is shown
in Figure 3-8. Suppose there are two generating units in

the system with the following ranges of capacity:
10 < ¢, < 25

5<C, =15

and the marginal cost functions represented in Figure 3-8.
Suppose the demand of the system is 20 mw; then Uniﬁ i will
operate at the level of 10 mw and Unit 2 also at 10 mw; now,
which unit will provide the next 5 mw for the case when the
system demand is 25 mw? According to the incremental cost
method this load will be assigned to Unit 2 because it has
less marginal cost. The next 5 megawatts will be asSigned to
Unit 1 and so on. In other words, after the units are already
in operation, the next load increment will be picked up by
the unit which will prdduce the next increment of energy at a
minimum incfemental cost.

It is important to notice that so far the optimal
allocation for a given demand has been considered where all
the units are always available at the time of that demand.

However, in actual power systems there exist high variability
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Figure 3-~9. Tests for Non-Linear Marginal Costs.
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in the demand and the units are not available all the time.
Thus, the load dispatching is more complicated as additional
factors must be considered.

In Chapter IV is the description of the algorithm
developed to allocate generating units to various levels of
demand. It will be shown how to use the incremental cost
method when accounting for these other considerations.

3.4.4. Two Considerations with Respect to the Application of
the Incremental Cost Method

The incremental rate or incremental cost method, can be
applied for different type of incremental cost cﬁrves, but
it is necessary to make two tests when this method is used.
The following example illustrates these tests.

Suppose there are two generating units whose marginal
cost functions are shown in Figure 3-9. TIf the marginal
cost method is utilized to load these units, the capacity
will be assigned to Unit 1 until point 6 is reached. If more
load is required the assignment of load will continue oh Unit
2 ﬁntil it gets to point "g." Now the question is where to
make the next increment. According to the marginal costs
functions of both units, the most economical way is to assign
capacity to Unit 2 (g»h}). But consider these two points:
1. Would it not be better to make three increments on Unit

2 (g+h+i+i) and two decrements on Unit 1 (6+5+4)7?

2. Will the total variable cost up to point "h" be minimized?

In Appendix A, it will be demonstrated that for the
cost functions of the utility company studied, it is not neces-

sary to make the two tests just examined.
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CHAPTER IV
DEVELOPMENT OF THE METHOD

This chapter describes the method developed to calculate
the operating costs of a large electric power system. The
first part presents the type of data that was obtained from
a large electric utility company in order to test the genera-
tion unit dispatching algorithm that is developed. Subse-
guent sections present the rationale that is the basis of the
algorithm, a description of the algorithm, and a numerical
example,

4.1, Characteristics of the Generating
Units, Data and Why Required

4.1.1. TInput-Output Curve

As seen in Section 3.3.1, in order to distribute the
load for maximum economy, it is first necessary to have a
knowledge of the relationship between input and output for
an electric generating unit. This relationship is expressed
by an input-output curve. A frequently used method for
expfessing this relationship is the quadratic function shown

in Equation 4-1,
2
Y = Ax° + Bx + C | (4-1)

where Y = power (the input in MMBtu/hr)
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X = operating capacity (the output in mw)
A = coefficient (MMBtu/mwz—hr)

B = coefficient {MMBtu/mw-hr)

C = coefficient {MMBtu/hr)

For each producing unit in the system, the coefficients
of the input-output curve have been obtained, so the power of
each unit at different levels of capacity can be computed
directly.

4.1.2. Operating Cost Functions

There are several components of the operating cost of
an electric generating unit. These components include the
operating and maintenance cost, fuel handling cost and the
fuel cost which is the principal component. These costs

are usually expressed in dollars per million-btus.

CFD{$/MMBtu) = VOM(S$/MMBtu) + FHC(S$/MMBtu) + FUC($/MMBtu)

(4-2)
where CFD = total operating cost
VOM = operating and maintenance cost '
FHC = fuel handling cost
FUC = fuel cost

In addition to these variable coets are the fixed costs
(independent of the MMBtu/hr), expressed in $/week.. These
fixed costs are indicated by FIX.

By having the operating cost in $/MMBtu and the input-

output curve for each unit, the total cost, average cost and



33

marginal cost can be computed directly.

If the operating cost is in $/MMBtu and the power of
the unit (¥) is in MMBtu/hr, then the total operating cost
per hour of operation can be computed by multiplying the
input-output curve by the total operating cost (CFD) of the

unit. Therefore, the total operating cost curve will be:

TC = A-CFD x2 + B+CFD x + C+CFD

($/hr) = (MMBtu/mw’-hr) ($/MMBtu) (mw?) (4-3)

+ (MMBtu/mw-hr) ($/MMBtu) (mw) + (MMBtu/hr)

If the operating cost curve is divided by the amount
of units produced (in this case mw), the average cost per

megawatt per hour of operation is found by
AC = TC/x = A-CFD-x + B-CFD + C/x

($/mw-hr) = (MMBtu/mw’~hr) ($/MMBtu) (mw) (4-4)

+ ($/MMBtu) (MMBtu/mw-hr) + (MMBtu/mw-hr) ($/MMBtu)

This figure represents the average cost of produced energy.
Next, the marginal cost or incremental cost function

must be calculated. The marginal cost is defined as the |

first derivative of the input with respect to the output.

This cost is also expressed in $/mw-hr.

dTC

I = 2+A-CFD+%x + B+CFD

MC =

($/mw-hr) = (MMBtu/mwz—hr) ($/MMBtu) (mw) (4-5)

+ (MMBtu/mw-hr) ($/MMBtu)
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Notice that the marginal cost function is a straight
line, and this characteristic will simplify the use of an
incremental cost method when finding the most economical
operating levels for the generating units in the system.

For purposes of this study, the generating units of
the system will be divided into two types: Type I, which
include all the nuclear and fossil steam units, and Type II
units which are the combustion turbines (CT). Each type
unit has its capacity range expressed by minimum and maximum
capacities, and it is operated all the year (l). Since Type
IT units generally have high operating costs, they usually
operate when the energy demanded cannot be met by Type I
units. These units are either turned off or operate at their
maximum capacity.

Using these relationships, the cost function for any
of the units of the system can be constructed. These curves
are illustrated in Figures 4-la and 4-1b.

4.1.3, Scheduled Maintenance

An important variable to coﬁsider for the load dis-
patching problem is the maintenance time. Each unit needs
a certain amount of time during the year for maintenance.
The time and the period when the maintenance is scheduled is
usually the periods of low demand, in the spring and fall
months. For the algorithm developed in this study, the main~-

tenance time in indicated by TMAIN.

(1) Except for maintenance and forced outages.
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TMAIN = number of hours out of the system due to maintenance.

4.1.4. Forced Outages

Another important variable that affects the dispatching
of generating units is the forced outage time. This is the
time that the unit is out of the system due to unanticipated
failures. The problem in computing this time is that it is
a random variable, so it has to be calculated by probabilis-

tic methods. The forced outage rate (TFOR) is defined as:
TFOR = number of hours out of the system due to forced outages.

It is important to mention that in developing the
algorithm, in this study it has been assumed that the com-
bustion turbines (Type II units) are never withdrawn from the
system because of maintenance or forced outages. Since these
units only operate when the energy demand cannot be met by
Type I units, they are out of the system most Qf the year.

In this study, it has been supposed that the ﬁaintenance
is performed during this time.

4.1.5. The Load Duration Curve

The total operating cost of the operating units in a
power system can be obtained from two types of demand curves:
the load curve and the load duration curve. As stated in
Section 3.2.3, the advantage of the load curve is that the
magnitude of the load and the time it occurs is described,
but because of the high variability of demand and the

instability of this curve from year to year, it is not desir-
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able as the basis for the efficient calculation of produc-
tion cost. On the other hand, the advantage in using the

lcad duration curve in computing the operating costs is that
it can be represented by a simple function and it is generally
stable from.year to year. However, a loss of information is
introduced because this curve gives only the magnitude of

the lcad and the portion of the time that it occurred.

It is desired that the method developed in this study
be used to compute the operating costs for future years.
Since the load duration curve has more stability and can be
represented by simpler functions, this curve was chosen for
use in computing the system operating costs.

The load duration curve data has been obtained by col-
lecting about 90 points (hour, megawatt) that describe the
shape of an annual load duration curve. Section 4.2.8 shows
ﬁow these points will be used to obtain more points that
describe more precisely this load duratioen curve. Table 1
contains the data obtained so far and their identification

codes.

4.2. Generating Unit Dispatching

This section describes the actual steps required with
the use of this generating unit scheduling scheme. The steps
include an analysis on the load duration curve and the proce-
dure utilized to compute the generating units' enérgy costs.
The flow diagram of the algorithm and a numerical example

are also presented in this section.



Table 1.

Identification Code of the Information Obtained.

Code Description Units Units Description
A Heat rate coefficient MBtu/mw2 hr ﬂi;;&gzizgioﬁiu
B " Heat rate coefficient MBtu/mw-hr z;;;igﬁi-gguftu
Heat rate coefficient MBtu/hr Milliogiugz Btu
KAP Operating capacity mw Megawatts
Y Heat rate MMBtu/hr Million of Btu/hour
FUC Fuel cost $/MMBtu Dollars/million of Btu
FHC Fuel handling cost. $/MMBtu Dollars/million of Btu
VOM Op. and Maint. cost $/MMbtu Dollars/million of Btu
CFD Total operating cost $/MMBtu Dollars/million of Btu
TC Total cost 5/hr bollars/hour
AC Average cost of energy - $/mw-hr Dollars/hour
MC Marginal cost S/mw-hr Dollars/hour
TMAIN Maintenance time hrs hours
TFOR Forced outage time hrs hours
(RH, PL) Load duration curve {hr, mw) (Hours, megawatt)
points :
FIX Fixed cost $/week bollars/week

8E
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4.2.1. Analysis of the Leoad Duration Curve

To begin development of the algorithm, an analysis
of the load duration curve is presented. Figure 4-2 shows
the classical load duration curve over a one year period of
operation. The total area under this curve represents the
total annual energy (mw-hr) demanded over the year. It is
desired that this energy be produced at minimum cost.

This curve can be divided in a number of rectangles as

shown in Figure 4-3a. If

L j = 1...n = The different levels of loads {(mw)
demanded during the year.
T j = 1l...n = The respective time in a year (hours)
that each load was demanded.
Then, the product of Lj-Tj (the area under the rectanglé)
represents a portion of the total energy demanded. This

portion will be identified by ej; Hence,

e. = L..7, {4-6)

Then, the total energy demanded (TOTENE) during the year

will be the sum of the e.'s.

TOTENE =

1B o

n
e, = I T..L. (4-7)

Notice that Tj is an interval of time and therefore the sum
of all these intervals must be equal to the total number of

hours in a vear (8760).
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f =13

T. = 8760 (4-8)
3 3

As seen in Figure 4-3a and 4-3b, because of the form
in which the load duration curve was divided, each load Lj
is demanded T. hours. Thefefore, with this information, it
is possible to compute the probability of the demand of each
load Lj. This probability may be found by dividing the number
of hours that each load is demanded by the total number of

hours in a year.

T. n '
PLj = ?37%_0 and I PL. = 1 (4-9)

where PLj = the probability that load "3j" (Lj) is demanded
during the year.

4.2.2. Determination of the Time Operated by the Unit

In a power system, the units are not available all year
because of maintenance time and forced outages. If the load
curve is used, it is possible to relate the unavailability of
the unit to the demand at the exact time the unit is unavail-
able. This cannot be done when the load duration curve is
used since information about the chronological time is lost.
However, the total number of hours that the generating units
will not be operating during the year due to maintenance and
forced outages can be obtained. With this information, it
is possible to calculate the probability that any unit will
be unavailable. This probability is computed by dividing

the total numbér of hours the unit will be unavailable by the
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number of hours of the yvear. Let's call

HRSOUTi = the number of hours that unit "i" will not be

operating in the year.
then,

HRSOUT. = TMAIN, + TFOR, (4-10)
i i i

where TMAIN, maintenance time for unit "i" during the year

i" during the year.

TFOR,; forced outage time for unit

Therefore, the probability that unit "i" will be out is:

HRSOUTi
PO; = ~g760 (4-11)
and the probability that unit "i" will be operating is:
HRSOUTi

With these values determined, the expected number of hours
that each unit will be operating du;ing each Tj can be com-
puted., If PLj is the probability of occurrence of Lj and
PI. the probability that unit "i" will be operéting when the

demand is Lj’ then

JOINTij = (PIi)(PLj) (4-13)

where JOINTij = probability that unit "i" is operating when
the demand is Lj‘

Now, by definition of expected vaiue (10) , the expected number
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of hours that unit "i" will be operating during the year
is equal to the probability that unit "i" operates by the

number of hours of the year.

EHRS, = PI,-8760 (4-14)
1 1

Because of the fact that the load duration curve is being
analyzed by interwvals (Tj), it is necessary to obtain the
expected number of hours that unit "i" operates during Tj
(i.e., during the time that Lj is demanded). This is obtained
simply by multiplying the EHRSi by the probability of

occurrence of Lj.

TIMEINij {EHRSi)(PLj) (4-15)

It

(JOINTij)(8760) _ (4-16)

where TIMEINij = expected number of hours that unit "i"
will be coperating when the demand is Lj'

Notice that if we have "n" demands (loads} during the year

| I ol I

TIMEINij = 8760 - HRSOUTi _ (4~-17)

i=1

4.2.3. Determination of the Energy Produced

The next step is to obtain the energy produced by the
unit cover the year (ENPRO). It was shown in Section 4.2.1
that the energy demanded when the load is Lj(ej) is equal to

Tj-Lj. Therefore, the energy produced by unit "i" when demand
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is Lj will be the product of the unit time operated and the

unit operating capacity during Lj.

ENPRO, . = TIMEIN, ,+KAP, . (4-18)
ij ij ij |

where KAPij is the level of capacity that unit "i" is
operating when demand Lj occurs.

The energy produced by unit "i" during the entire year
is obtained by simply adding the energy produced by the unit

at each Lj.

ENPRQ, . (4-19)
13

LI R

ENPROi =
j=1
Therefore, if there are "m" units in the system, for each load

the energy produced when this load occurs is the sum of the

energies produced by each unit when demand is Lj.

e 3

ENPRO,., = k£
ij -

TIMEIN, . -KAP, . . (4-20)
1 i 1] 11

i 1

This sum must be equal to the energy demanded ej. Hence, to

meet the reguirement of energy demanded during the year (the

area under the load duration curve) it is necessary that

n m
I I ENPRO,, =
j=1 i=1 oy

e

e. = TOTENE {4~-21)
1] '

where TOTENE is egqual to the total energy demanded in the year.

4.2.4. Capacity Factor

The capacity factor is defined as the total energy pro-
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duced by a unit during the year divided by the total energy
that the unit would have produced if had it been operated at
maximum capacity the entire year. From (4-19), it is possible

to calculate the capacity factor for unit "i."

ENPROi
CAPFAC, = (4-22)
i KAPmax. 8760
1
N
S ENPROij
_ J=1 (4-23)
CAPFAC, = 77p “8760
maxi

where KAPm represents the maximum capacity that unit "i"

ax.
1

can operate. This factor provides information about the
percentage of the unit's potential that is used during the
year.

4.2.5. Determination of the Optimal Operating Capacity

To illustrate the procedure utilized to obtain the level
of capacity at which each generating unit muét operate to
minimize the operating cost, the following example is pre-
sented.

Suppose there are three units in a power system, Figure
4-4 jllustrates one of the divisions of the load duration
curve of this system. Assume that the units do not have
restrictions in capacity, they have cost function like Figure
4-1, and they operate all the interval Tj' The objective is
to schedule these units in the most economical way so the

energy ej is met.



47

For the assumptions previously described, the incremen-
tal cost method as explained in Section 3.4.3 is applied, and
the units are dispatched in the most economical way to meet
the energy demand (ej). In other words, increments ¢f capa-

city will be added to the units, so that each increment picked

up will be produced at the minimum incremental cost. This

aséignment will continue until the total megawatts produced
are equal to the load Lj' Suppose that the levels of capa-

., KAP and KAP

then,
J

city for each unit are KAP,

23! 33

KAP. . + KAP.., + KAP.. = L.. 4=-24
15 g5 * KAP34 = Ly (4-24)

Also, the energy produced has to be equal to the energy demand.

Therefore,

(KAPlj)(TIMEINlj) + (KAPZj)(TIMEINZj)
(4-25)

+ (KAP3j)(TIMEIN ) = L.T. = e,

3] 373 J
but due to the assumption that the units operate all the time,

TIMEIN,, = TIMEIN... = TIMEIN.. = T. 4-26
13 2] 3] 3 ( )

Consequently, if the generating units are operating all the
time, the load dispatching can be based only on the capacities.
In other words, we only have to be concerned that Equation
(4-24) holds.

Now assume that the units are out of the system a cer-

tain number of hours during the year. From (4-16) TIMEINij
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can be calculated and the total energy produced during Tj

may be computed by Equation (4-25). But TIMEINlj, TIMEINZj,
TIMEIN3j are less than Tj so the energy produced will be less
than the energy demanded ej. The TIMEINij cannot be altered
because it depends on the unit maintenance time and forced
outage time, so the only way to meet the energy demanded is
to increase the operating capacities (KAPij) of the units
until the energy produced is equal to the demanded. In other
words, use the incremental cost method to load the units,

but stop when the sum of the products of KAPij-TIMEINij is

equal to ej. This procedure is shown in Figure 4-5,

Notice that for this case the total megawatts produced

(z KAPij) are greater than the megawatts of load Lj demanded

i
for that interval Tj, This means

T KAP.. > L. (4=27)
i 1) ]

but the energy produced (I KAPij-TIMEINij) is equal to the

J
energy demanded (Lj-Tj). This approach leads to operating

units at higher capacities than would be found under actual
conditions.

4.2.6. Computation of the Total Energy Costs (Operating Costs)

Once the KAPij, the CFD; {(operating cost) and the input-
output relationship Yi have ‘been computed for each generating
unit "i," it is only necessary to use Equation (4~3) to calcu-
late the operating cost per hour of operation for unit "i"

when the demand is Lj.
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TC.. = A, CFD.-KAP..2 + B. CFD.KAP.. + C. (4-28)
1] 1 i i) 1 1 1] i

The energy cost for unit "i" for demand Lj is calcu-
lated by multiplying Tcij by the number of hours operated by
unit "i" when demand Lj occurs. This variable will be iden-

tified by EC,..
ij

ECij = (TCij)(TIMEINij) (4-29)

_ 2
EC 5= (AiCFDiKAPij + BiCFDiKAPij + Ci)(TIMEINij) (4-30)
From Equation (4-29), it is possible to obtain the

total energy cost when the demand is ej (TECj).

TECj = EC, . (4-31)
The calculation of the total energy cost of unit "i"
in one year of operation (ENCOSTi) is obtained by adding the

EC,. fer L. j=l...n.
1] 1

EC. . 4-32
L Cij (4-32)

et

ENCOSTi =
]
Consequently, if the lecad duration curve is divided
in "n" intervals of time Tj j=1l...n and there afe "m" units
in the system (i=l...m), the total energy cost of the system
for one year of operation (TOTCOS) will be equal to the sum

of the unit's total energy costs. Therefore,
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m
TOTCOS = k ENCOSTi (4-33)
i=1

Now, if the fixed cost of unit "i" (FIXi) is added to
the unit total energy cost (ENCOSTi), the overall operating

cost for unit "i" is obtained

GRANCi = ENCOSTi + FIXi (4-34)

Hence the total overall cost for the system will be
m
GRANCOST = I GRANC, (4-35)

4.2.7. Operation of Combustion Turbines

The procedure developed to dispatch the generating units
and the equations derived to obtain the energy produced and
the operating costs can be applied either for Type I or
Type II units. As stated in Section 4.1.2, units Type II
operate at a fixed level of capacity (maximum). Also, it -
will be assumed that they are not ocut of the system because
of maintenance or forced outages. Due to this last assump-
tion, the time operated for each of these units at each
interval (Tj) will be the number of hours of the interval Tj.

In other words, for Type II units:

TIMEIN.. = T, ' (4-36)
1] ]

Now, because of the fact that Type II units produce
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power at a fixed operating level (maximum), they have constant
marginal cost. For instance, assume that in a power system

the unit No. 11 {(Type II) has the following characteristics:

Input-output curve: Y = .17287x2 + 3.539x + 153.73

0 mw (turned-off)

Levels of operation: Min

Max 24 mw {turned-on)

Operating Cost: 2.359 $/MMBtu.
The marginal cost for this unit is:

+ B

Y = 2:8,4°CFDy1%p 11°SFPyy

= (2)(.17287) (24) (2.359) +(3.539) (2.359)

27.9 $/mw-hr

Notice that the marginal cost was obtained only for maximum
capacity (24 mw). To avoid overestimation of produced energy
when the incremental cost method is applied, the marginal cost

for these units will be calculated at full capacity, but the

load assigned will be only that required to meet the demand.

4,2.8, Approximation on the Load Duration Curve

It has been shown how to calculate the energy cost for
each one of the energy "rectangles," but in order to obtain_
the energy ej under these "rectangles," it is necessary to
know the value of the demand Lj'

It was pointed out in Section 4.1.5 that_90 data points
are used to describe an annual load duration curve., It will

be shown how the intermediate points based on this data were
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obtained. Figure 4-6 illustrates a load duration curve.

Assume that the points (PH, PLR) shown on this curve are two
of those 90 data points to be supplied. It is a reasonable
approximation in most parts of the curve to assume that the
distance between two next points is a straight line. Let's
take the two next points indicated by the circle in Figure 4-6.
With these two points, it is possible to construct a triangle
as shown in Figure 4-7 and calculate any point between them.

To illustrate this procedure, suppose it is desired to com-
pute which is the value of Lq for the HOURq (Figure 4-7).

By simple trigonometry,

PLj+l - PLRj _ PLRj+l'— Lq (4-37)
PHj+l - PHj PHj+l - HOURq
therefore,
PLR. - PLR.) (PH. - HOUR )
L, = PLR, . - FIRy o~ (_ = g (4-38)
9 ] j+1 3

where the HOURq is obtained by substracting the interval Tj
from the last HOURq calculaﬁed (in this case the last PHj is
the last data point computed, but it can be a new point cal-
culated}. Therefore, by Equation (4-38) different values of
the load demand Lj can be obtained and it will depend_on the
interval size Tj chosen to analyze the load duration curve.

It is important to notice here that if the load duration

curve is divided in rectangles like shown in Figure 4-3a, the
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total energy demanded is underestimated. It would be more
exact if instead of a "rectangle" a figure like that shown
in Figure 4-8b is used. The area under this trapezoid will

be:

_ej = Tj-Lj + Tj-((Lj+l - Lj)/2) (4-39)

e, =T, . . 4-40
ey = Ty ((Ly + Ly,)/2) (4-10)

4,3. Steps and Flow Diagram ©f the Method Developed

Up to this point the equations necessary to cobtain the
operating costs have been presented. The purpose of this
section is to explain the procedure for applying these equa-
tions. The first part enumerates the steps to follow and the
second part presents the flow diagram of the algorithm.

4.3.1. Steps

1. Obtain the data (Eq. 4-1).

2. Compute the input-output curves (Eg. 4-1) for i=1l...m.

3. Calculate CFD, (Eq. 4-2) for i=l...m.

4, Obtain TCi and MCi function (Eg. 4-3 and.Eq. 4-5,
"respectively) for i=1l...m.

5. Calculate HRSOUT. (Eq. 4-10) for i=l...m except for
Type II units.

6. Compute PO, and PI, (Eg. 4-11) and (Eg. 4-12) for i=l...m,
except for Type II units.

7. Choose T.. Remeber the size of Tj determines the number

of intervals "n" that divides the load duration curve.



57

8. Choose the size of the increment to use in the incre-
mental cost load dispatching method (Section 5.3.1
presents some recommendations to choose the increment
size).

9. Compute HOURj and Lj using Equation 4-38 for j=l1...n.

10. Obtain PLj (Eq. 4-9) for j=l...n.

11. Compute JOINTij (Eg. 4-13) and TIMEINij (Eg. 4-16) for
i=l...m and j=1,..n,

12. Do j=1, in other words, start with last "rectangle."
Compute ej (Eg. 4-40).

13. Apply the incremental cost method for load dispatching
as explained in Section 4.2.5. Remember the special
treatment mentioned in Section 4.2.7 for Type II units.

14. Compgte ENPROij for i=1l...m (Eg. 4-18).

15, If = ENPR.Oij is greater or equal than ej, go to step
' i=1

16, if it is not go to 13.
16. Compute Ecij (Egq. 4-30) for i=1l...m and TECj (Eg. 4-31).
Go to step 17.

17. Do j=3j+1 and compute e (Eg. 4-40Q).

j+1

18. If j > m go to 19, if it is not, go to 13.

19. Calculate ENPROi (Eg. 4-19), E_NCOSTi (Eq. 4-32) and CAPFi
(Eq. 4-23) for i=1...m. '

20. Compute GRANCi (Egq. 4-34) and GRANCOST (Eqg. 4~35).

21. End.



4.3.2, Flow Diagram.
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4.4. An Example of Economical Dispatching

To assist in the description of the dispatching algorithm
a numerical example is presented. The operating costs and
capacity factor for each of the system's generating units will
be computed by the method developed and compared with those
obtained if they have been calculated based on the load curve.

4.4.1. Statement of the Problem

Suppose a power system with 4 Type I units with charac-
teristics shown in Table 2 and projected system's load curve
shown in Figure 4-9. Assume these units will not be out of
the system because of forced outages. It is desired to obtain
the generating units operating cost and their capacity factors
for the vear projected.

4,4.2. The Load Duration Curve

Figure 4-9 shows the projected system's load curve for
the year "x." In this curve, the demand load is plotted |
against the time_sequence. For instance, a load of 150 mw
will be demanded from hour 0 to hour 500, a lcad of 160 mw
will be required from hour 501 to hour 1000, and so on. The
next step is to calculate the load duration curve. It is com-
puted from the load curve by plotting each.load demanded
versus the percent of time or number of hours that the load
demand is greater than or equal to that amount. For example,
for the load curve shown in Figure 4-9, the greatest load
demand is 210 mw. This load is demanded 125 hours, therefore,

the time percent of the year that the demand is greater or



Table 2. Data for the Example.

Input-OCutput Capacities
Coefficients ({mw)
Unit Maint. Forced Out. Oper. Cost

Number A B C Min Max Time (hrs) Time (hrs) (CFD) $/MMBtu

1 .02364 .039 57.79 25 70 1000 0 1.12

2 .09476 5.650 104.25 15 40 1000 0 1.12

3 .02590 8.860 62.77 30 35 1000 0 1.12

4 .02277 7.608 128.55 30 100 1500 0 1.12
Table 3. Data to Plot the Load Duration Curve.

No. R Ly Lg Le Ly Lg Ly Lo
1 Megawatts 210 - 200 195 190 185 1380 175 170 160 150
2 Hours Dem 125 375 500 625 875 1000 12590 12590 1250 1510
3 % Time 1.4 4.2 5.7 7.1 9.9 11.4 14.2 14.2 14.2 14.2
4

% Time > Lj 1.4 5.6 11.3 18.4 28.3 39.7 53.9 68.1 82.3 100.0

19
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equal than 210 mw was 1.42% (125/8760). Table 3 shows the
time‘percent that each load is demanded. In row 4 of this
table is illustrated the percent time that the demand is
greater or equal than the load shown in row 1. The load
duration curve is obtained by plotting row 4 vs 1. Figure
4-10 shows the load duration curve for this example.

4.4.3. Computation of Probabilities of Operation and Load
Demand Probability

The next step is to compute the probability that each
unit will be operating during the projected year. Table 4
shows the number of hours each unit will not be available
(TMAIN and TFOR). From Equation (4~12) can be calculated the

probability of operation for each unit, (PIi).

PT.
1

It

1l - HRSOUTi/8760

1 - PO,
i

where HRSOUTi = TMAINi + TFORi.

Table 4 illustrates the PIi for each unit on the system.

Table 4, Probabilities of Operation.

Unit TMAINi TFORi HRSOUTi PIi
1 1000 0 1000 . 885
2 1000 0 1000 . 885
3 1000 0 1000 . 885

4 1500 0 1500 . 828
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Once the PIi's are computed, the next step is to
obtain the probability of each load demand. From the load
duration curve, it is possible to obtain the number of hours
that each load is demanded. Therefore, the probability that
load "j" is demanded during the year (PLj) can be computed.

This can be done by Equation (4-9).

The next step is to obtain the probability that unit
"i" will be operating when the demand is Lj. It is calculated

by Equation (4-13).

JOINTij = (PIi)(PLj)

For instance, the probability that unit 1 will be operating

when the demand is L, (210 mw) is

1

JOINT = (PIl)(PLl) = (.8858) (.014) = 0.012.

11

By JOINTij and Equation {(4-16}, the expécted number of
hours that unit "i"” will be operating when the demand is Lj

can be calcuiated.

TIMEINij = (JOINTij) (8760)

For example, the expected number of hours that unit 1 will be



Table 5. Probabilities of the Loads.

No. L, Ly Iy Ly Ly Ls Ls Lg Ly Lig
1 Megawatts 210 200 195 1390 185 180 175 170 160 150
2 Hours (Tj) 125 375 500 675 875 1000 1250 1250 1250 150
3 PLj .014 .042 . 057 .071 .099 .114 142 .142 .142 172

99
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operating when the demand is Ll is

TIMEIN = (JOINTll)(8760) = (.012) (8760) = 105 hours

11

The JOINTij and TIMEINij for i=1l...4 and Lj j=1...10 are

shown in Table 6 and Table 7, respectively.

4,4.5. Economic Dispatching

In order to dispatch the units in the most economical
way, it is necessary to know their marginal cost functions.

This function can be obtained from Equation (4-5).

.05295 x

Unit 1: MC, = + 10.123
i 1

Unit 2: MC2 = 0,2122 XZ + 6.328

Unit 3: MC3 = ,0580 x3 + 9,923

Unit 4: MC4 = .0510 Xy + 7.916

The next step is to obtain the level of capacity that
each unit must operate to meet the demand ej. The step can
be done using Equation (4-24) and by the procedure shown.in

Figure 4-5. For example, the energy demanded corresponding

to the load of 150 mw (L) is Bquation (4-¢) ()
elo = Tj'Lj
®10 T T10" P10
e. = (1500) (150) = 225000 mw~hr

10

It is necessary to dispatch the units in such a way that the

energy produced is equal to the energy demanded e There-

10°
(1} It can be used Eguation (4-40) for more accuracy.




Table 6. Values of JOINTij.
j
Ly L, Ly Ly Lg Le L, Lg Lig
1 .012 .037 .051 .063 .088 .10l .126 .126  .126  .152
2 .012 .037 .051 .063 .088 .10l  .126 .126 .126  .152
3 .012 .037 .051 .063 .088 .10l  .126  .126  .126  .152
4 .012  .035 .047 .059 .082 .095 .118 .118  .118  .143
Table 7. Values of TIMEINij.
Ly L, Ly Ly Ly Lg L, Lg Ly Ly
1 105.12 324.12 324.12 446.76 551.8 884.76 886.1 1103.76 1103.76 1331.5
2 105.12 324.12 324.12 324.12 551.8 B884.76 886.1 1103.76 1103.76 1331.5
3 105.12 324.12 324.12 324.12 551.8 384.76 886.1 1103.76 1103.76 1331.5
4 105.12 306.20 306.60 324.12 551.8 884.76 886.1 1103.76 1103.76 1331.5

89
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fore the operating level for each unit must be:

Unit 1 = 35 mw
Unit 2 = 27 mw
Unit 3 = 35 mw
Unit 4 = 80 mw
177 mw
because for these levels
4
E KAP.lO-TIME 10 > elO

in cother words,

(34) (1332.5) + {25) (1331.5) + (35) (1331.5) + (80) (1252.68) =
225375.4

and

225375.4 mw-hr > €0

Notice that the energy produced by each unit ENPROilO

(Equation 4-18) is

Unit 1: (34)(1331.5)

il

45271.00 mw-hr

It

Unit 2: (25) (1331.5) 33287.00 mw-hr

Unit 3: (35)(1331.5) 46602.50 mw-hr

Il

Unit 4: (80)(1257.68) = 100214.40 mw-hr

The same procedure is applied for the remaining ej.

4.4.6. Calculation of Energy Costs and Capacity Factors

The unit energy cost for the energy demand ej is com-
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puted by Equation (4-30)

EC.. = (A.CFD.-KAP..  + B.CFD,-KAP,. + C,) (TIMEIN. .)
i i ij i i ij i 1

1]

2
]

therefore, for e, .:

ECll

EC,, =
ECy, =
ECyy =
EC 5 =
ECy, =
EC1y =
ECy, =

Following the

lated.

10

((.0264)(34)2 + 10.123(34) + 64.72) (1331.5)

$585243.65

((.1061)(25)2 + 6.328(24) + 116.76) (1331.5)

$454430.25

((.02901)(35)2 + 9.923(35) + 70.30) (1331.5)

$603368.16

((.0255)(80)2 + 7.916(80) + 143.97)(1252.68)

$1,178,125.7

same procedure the Ecij for all i, j is calcu-

Now, using Equations (4-32) and (4-33), the total

energy cost for each unit (ENCOSTi), and the system total

energy cost for one year of operation (TOTCOS) can be com-

puted. Similarly, by Equation (4-23), the capacity factor

is calculated.

After applying these equations, the results

are as follows:
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Unit ENPRO. (mw-hr) ENCOST, ($) CAPFAC,
1 340,802.19 4,352,648.63 56%
2 217,492.60 2,927,610.28 62%
3 337,187.95 4,320,150.45 70%
4 641,067.95 7,574,900.97 70%
1,536,550.69 19,175,310.33

When the time and period of occurrence of the forced
outages are known, lcad dispatching based on the load curve
is optimal. The results obtained using the load curve in

Figure 4-9 are:

Unit ENPROi (mw~hr) ENCOSTi (8) CAPFACIi
1 345,145.00 4,436,303.75 50%
2 215,480.00 3,001,414.40 61%
3 _ 337,415.00 4,339,469.70 70%
4 606,210.00 7,143,853.70 69%

Next, the differences in percent of the results obtained
by the method developed with respect to those obtained by

using the load curve are presented.

Unit ENPRO. ENCOST CAPFAC,
1l -1% -2%. 0%
2 +1% -2% 1.6%
3 -0.06% -0.04% 0%
4 +6% +6% .1.4%

Difference in total cost: 1.34%
Difference in energy produced: 2.14%
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For example, the difference between the results obtained by

the two methods in computing the ENPRO ENCOST and CAPFAC

1’ 1’ 1
are -1%, -2%, and 0%, respectively.

For this particular problem, the differences between
the two approaches are not significant. In the next chapter,
the method developed in this study will be tested by using
data for a large electric utility company with approximately
120 generating units of different types. The results deve-
loped are then compared with the results provided by a produc-
tion costing routine actually used by a large electric utility.
The purpose is to test the dispatching algorithm developed
with a more accurate method presently in use. The two
characteristics that are of greatest interest are the speed

and the accuracy with which the two methods determine total

system production costs.
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CHAPTER V

COMPARISON OF THE METHOD DEVELOPED WITH

THE METHOD CURRENTLY UTILIZED

The purpose of this chapter is to test the algorithm
developed in this study with existing methods. For this
purpose, the accuracy and computer time required by the
developed method are compared with results obtained from a
large scale system presently utilized by a large electrié

utility.

5.1. General Information

A large power system containing approximately 120
thermal units has been used to test the algorithm developed.
For purposes of the test, the units have been identified by
numbers. From Unit 1 to Unit 88 are included all Type I
units. Type II units (combustion turbines) are identified
with numbers between 89 and 123.

A computer program of the algorithm developed has been
written in Fortran IV. This program attempts to compute all
the variables mentioned in Chapter IV. The runs of this pro-
gram have been performed on a CDC Cyber 74 at the Georgia
Institute of Technology.

The objective of the test is to make comparisons of

the operating costs, capacity factors and computer execution
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time of the method developed with the method actually used

by the electric utility.

5.2. Steps Followed to Test the Method

The test has been divided in three parts:
In the first part are the comparisons of the operating
results and computer execution times obtained by the
method developed. Comparisons are made for different
megawatts increments (marginal cost method) and dif-
ferent intervals hours (Tj). This is done for one year

of operation.

In Part II are shown the values of the unit's operating
costs and unit's capaeity factors obtained by both
methods. The differences between these results are pre-
sented and analyzed.

In the last part, the.total operating cost, memory caore
requirements, and computer execution time of the two
methods are compared. This comparison is made for four

projected years.

5.3. The Test

5.3.1. Part I: Results Obtained by the Method Developed

In this part of the test is presented the results

obtained by the method developed in this study using dif-

ferent megawatts increments and different interval times.

Table 8 shows the total operating cost utilizing intervals

(Tj) on the load duration curve of 10, 30, 60, and 120 hours
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Table 8. Total Operating Costs and Execution Time for Dif-
ferent Time Intervals and an 5mw Increment (19x1}.

Interval Operating Cost’ Exec. Time

(Hours) {(Thousands of Dollars) {Seconds)
10 1,107,931.00 34.69
30 1,096,908.00 26.67
60 : 1,094,908.00 24.60
120 1,093,144.00 23.99

Table 9. Total Operating Cost and Execution Time for Dif-
ferent Increments (mw) and a 60 Hours Interval.

Increment Operating Cost Exec. Time
(mw) {Thousands of Dollars) (Seconds}
1 1,094,347.00 108
5 1,094,908.00 24.6
10 1,094,327.00 14.009

100 1,114,547.00 5.34
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for an increment (in the application of the marginal cost
method) of 5 mw. The right column of this table shows the
computer execution time for these intervals, Notice that for
increments larger than 10 hours the differences in execution
time are not significant. In other words, the time to pro-
cess the algorithm does not depend on the interval, Tj'

Table 9 shows the total operating cost and computer execution
time obtained for different increments and a 60 hours interval.
Notice how the variation in the total operating cost for the
different increments are insignificant, even though the dif-
ferences in execution time are quite large.

From these results can be concluded that the computer
execution time for the method developed depends predominately
on the increment size utilized to dispatch the units by the
incremental cost method. The increment size must be chosen
depending on the unit's capacity ranges and on the slopes of
the marginal cost functions. The larger are the unit's capa-
city ranges, the larger can be the capacity increments. The
smaller the slope of the marginal cost function of the unit,
the smaller the change in marginal cost for a given increment.
Thus, the smaller are these slopes, the larger can be the
capacity increments without adversely affecting the results.

With respect to the interval time size Tj {Table 8 and
Figure 5-3 and 5-4}), it can be concluded that the differences
in total operating cost and execution time do not vary

significantly as the interval varies. The smaller the interval,
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the more precisely the energy demand is computed, so the
operating costs are more accurate.

5.3.2. Part II: Results Obtained by the Two Methods - Analysis
by Unit

In this part are compared the operating results
obtained for each unit by the two methods. These results were
obtained from the two approaches for one year of operation.

Appendix B shows these results. First, observe the
operating cost percent differences. For Type I generating
units of high capacity the percent differences in operating
costs between the two methods are in the range of +5%. Since
these units usually have low marginal costs, they are operated

(1) at their maximum capacity. Consequently,

all the year
their operating capacity at each interval of time does not
depend on the scheduled units at that interval of time. This
is not the case for low capacity Type I units and for the
combustion turbines (Type II units). Because of the fact
these generating units have high marginal costs, they do not
operate at full capacity.during the vear, so their level of
operation at each interval (Tj) depends on the écheduled units
at that interval. This variation in operating capacity

causes that the differences in operating costs for small units
to be significant (20%-60%) between the two methods (see
Appendix B).

Figure 5-5 shows the fregquency distribution of the

(1) Except during outages.
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percent differences between the operating costs computed by
both methods. Notice how this curve is skewed to the left and
that most of the percent differences fall in a range of +10%.
If we separate the percent differences due to Type I units
(Figure 5-6) from the percent differences due to Type II

units (Figure 5-7), it is observed that most of the negative
percent differences are associated with the combustion tur-
bines and most of the positive percent differences with Type

I units. The explanation of this is related to the assump-
tion made in the method developed that the units maintenance

(2)

can be performed at any time of the year. In other words,
it is known that Type II units usually operate during the
periods of high demand and sometimes operate during the
periods of low demand when Type I units are in maintenance.
If this assumption is stated and the algorithm developed is
used to compute the units operating costs, the units Type II
will be introduced into the system last because they have
high operating costs. Consequently, this method does not
consider that these units produce energy during the periods of
low demand so theilr energy produced is underestimated. On
the other hand, the energy not allocated by this method to
Type II units is allocated to Type I units. This is the rea-
son that for most of the Type I units an overestimation in
the energy produced occurs.

Another factor that causes the differences in the

(2) The assumption is implied when PIi = 1 - HRSOUT. /8760
is obtained. *
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Percent Differences for Type I Units Obtained

for 19x1 by the Two Methods (Inc.= 5 mw, T. =
60 hrs.).
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Figure 5-7. Frequency Distribution of the Units' Operating
Costs Percent Differences for Type II Units
Obtained for 19xX1 Between the Two Methods
(Inc.= 5 mw, Tj = 60 hrs.).
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Type II Units Obtained for 19x1 Between the Two
Methods (Inc.= 5 mw, Tj = 60 hrs.).
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operating costs ié that it has been assumed that the time out
of the units is equal to the sum of the forced outages time
and the maintenance time. 1In the real system, the forced
outage time is a random variable and the maintenance time can
be scheduled.

Figure 5-8 shows the frequency distribution for the
unit's capacity factors percent differences. Similarly, these
percent differences have been separated for Type I and Type
IT units (Figure 5-9 and Figure 5-10). The capacity factors'
differences are due to the same factors affecting the uhits'
operating costs.

5.3.3. Part II1: Comparison of the Total Operating Cost,

Memory Core Requirements, and Execution Time for Four Pro-
jected Years

A computer run for four years of operation has been
made for each method. An increment of 5 mw and an interval
of 60 hours have been used for the method developed.

Table 10 and Figure 5-11 illustrate the total operating
cost computed by both methods for each year. For any of the
years, the difference between the total operating cost obtained
By the two methods ranges from -1.27% to 1.07%. The reason
for this small difference is that the high capacity generating
units (low operating costs) are those which produce the bulk
of system's energy'output. As stated in the last section, the
operating costs for these generating units are calculated
with high levels of accuracy by the method developed in this

study. For some generating units (i.e., combustion turbines)
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Factors Percent Differences for Type I Units
Obtained for 19x1 Between the Two Methods
(Inc.= 5 mw, Tj = 60 hrs.).
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Table 10.

Compariscon of the Projected Total Operating Cost, Core Memory and
Computer Execution Time Obtained by the Two Methods for 4 Years of

Operation (Inc. = 5 mw, Tj 60 hrs.).
Total Operating Cost Total Operating Cost Difference
Year Actual Method ($1000) Method Developed ($1000) (%)
19x1 $1,108,345.00 $1,094,392.00 -1.27%
19x2 $1,334,559.00 $1,348,952.00 +1.07%
19x3 $1,555,126.00 $1,562,285.00 +0.46%
19x4 $1,773,039.00 $1,764,737.00 -0.46%
Execution
Time 45 minutes 2 minutes
Core
Memory 500 K bytes 150 K bytes
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the percent differences in operating costs are large, but in
terms of dollars most of these differences are small if they
are compared with the total operating cost of the system
(see Appendix B).

Table 10 shows the execution time for each of the two
approaches. The basic computer speed of the me£hod de§éloped
when running on the CDC Cyber 74 is 2 minutes for 4 years of
operation. For the actual method, a run for 4 years of opera-
tion on a AMBOL V6 takes approximately 45 minutes. These
execution times cannot be directly compared since the programs
have been run in different computer systems. However,
according to the results, it can be concluded that the
method developed does not require lengthy and costly computer
runs.

Table 10 also illustrates the memory requirements by
Both methods. The core memory utilized by the actual method
and the method developed are 500k bytes and 150 bytes{ respec-
tively.

It has been shown that the method developed in this
study does not require a large amount of input data and con-
siderable computer time to process. That the difference in
the system's total operating cost computed by both methods
is minor, and that for units of higher capacity the operating

costs obtained by both approaches are very similar.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

The accuracy and computer speed of the model developed
in this study has been tested by comparison with the results
obtained by a more detailed method actually utilized by a
large electric utility.

The following cenclusions have been drawn from this
test:

1. The computer speed of the method developed depends
primarily on the increment size {(mw) utilized in the
application of the marginal éost method. The size of this
increment depends on the slopes of the marginal cost
functions and on the unit's capacity ranges.

2. The accuracy of this method is determined principally by
the following factors:

a. Increment size. The smaller the increment size used
in the application of the marginal cost method, the
more accurate the method, although a larger amount of
computer time is required.

b. Interval time size. It has been observed that for
interval time sizes between 10 hours and 120 hours,
for a given increment size, the variation in the

‘operating cost is not significant. Also changes in
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these intervals have little effect on the computer

time required to execute the dispatching technique.
c. Type and diversity of generating units operating in the

system.
From the results obtained in the test, it has been shown
that the total coperating cost obtained by this method is
practically the same as that obtained by the ﬁore detailed
appreoach. As stated, the reason is that most of the
energy is produced by unité of high capacities (low
operating costs) which are operated at maximum capacity for
most of the year. Since for typical electric utilities a
big portion of the energy demanded is produced by these
types of units, the total operating cost of the system
will be calculated by this method with high degree of accuracy.
For units of small capacity, this method does not compute
the operating cost with high precision. The reason for
these results is the assumption made about maintenance
and forced outage times.
The method developed in this study dces not require a
large amount of computer time to process.
Much less data is required by the algorithm developed. To
apply this method only the following information is neces-
sary: input-output curves, total operating cost (CFDi},
fixed costs (FIXi), total time that the unit will be
unavailable during the year (TMAINi + TFORi) and the load

duration curve.
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6. Hydro generating units can be handled by modifying the
load duration curve. The energy produced by the hydro
units can be removed from the load duration curve and

analyzed separately.

6.2. Recommendations for Further Research

It would be interesting to investigate if there exists
another approach for expressing the probability that the
generating unit will be unavailable to the system. This method

would require that more weight be given to this probability

when there are periods of low demand. This consideration
would help to reduce the error in the operating cost estima-

tion for the small generating units.



APPENDIX A

DEMONSTRATIONS FOR TEST 1 AWD TEST 2
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4.1. Demonstration for Test 1

Suppose there are "n" units in the system with linear
marginal cost functions with slopes > 0. Figure A-1 shows
these curves. Assume the incremental cost method has been used
to load the units and we are on Flo(d). According to this
method, the next increment will be on unit 10. Therefore,
the next point reached will be Flo(d+l) = Flo(e).

Now because of the incremental cost method, if we are
on Flo(d) the marginal cost for the level of operation for

all the units has to be less than or equal to F,,{(d) (except

10

for the units with higher marginal costs and these units are

at their minimum capacity). Therefore,

Fio(d) > Fgle)
Fip@) > Fo(d)
Flo(d) > F_(d) (a)
Flo(d) > F,(g)
Fl;(d) > F (L)

If the increment is made on unit 10 then.

FlO(d+l) < FB(e+l) if F8(e+l) exists
Flo(d+l) < F7(d+l) if F7(d+l) exists

Flo(d+l) < F6(g+l) if F6(e+l) exists (b)

Flo(d+l) < F4(j+l) if F4(j+l)‘exists

| A

Flo(d+l) Fl(l+l) if Fl(l+l)lex1sts
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Since the units have positive slopes

Fi(x+1) > Fi(x-l) for i=1l...n ()

To undertake the next increment there are two options:

1. Flo(d) to Fl (d+1)

0
2. Using the incremental cost method, add "m" increments

after Flo(d) and m~1 decrements in any of the other units.

The marginal cost for opticn 1 is:

Mcl = Flo(d+l)

and for option 2:

MC, = Flo(d+l) + Flo(d+2) + Fg(e+l) + Fg(e+2) ... [FB(e) +
Fs(i) + FG(g) + ...

MC, = Fy,(d+l) + [Fy,(d+2) + Fgletl) + Fgyle+2) + ...- Fyle)-
Fo(i) = Fglg) =...1 -

Because (a), (b), and (c) the amount [Flo(d+2) + F9(e+l) +

P Fs(e) - FS(c)...] is greater than or equal to zero,

consequently,

MC, =

5 Flo(d+l) + (cost > 0)

Therefore, option 1 is more economic, so test 1 is not

necessary for this type of marginal cost functions.
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4,2, Demonstration for Test 2:

Assume there are "n" units in the system with linear
marginal cost functions with slopes > 0. These curves are
shown in Figure A-2. The total wvariable cost before adding

capacity to the units is:

™V = TVA + TVB + 1Vc + TVD + aee + TVn

1|

where TVi is the total wvariable cost for unit "i" for i =
A, B, C,...n.
Now, according to the incremental cost method, the

first incremental "A" will be on unit A, and the variable cost

added is going to be A(d)-4A, so

= + . + + + +...
T™VC TVA (A{d)-4q) TVB TVC TVD TVn

At this point, the total variable cost is being mihimized
since it was the minimum incremental cost added and any other
increment made later will have a greater marginal cost since
the units have increasing or constant marginal cost functions.

Now suppose we want to make the next increment. It will
be done to A(e). One more time, the TVC is automatically
being minimized up to this second increment because the two
smallest incremental costs have been added.

Consegquently, if the unit marginal cost functions are
straight lines with slopes > 0 and the incremental cost method
is used to dispatch the units, the total variable cost is

minimized. Therefore it is not necessary to perform test 2.
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Max. Total Operating Cost Total Operating Cost
Unit Capacity Method Developed Actual Method Difference Difference

No. (mw) ($1000) ($1000) ($1000) (%)
1 133 6,715.42 6,898,00 -182.58 -2.65
2 133 6,687.78 6,851.00 -163.22 -2.38
3 243 13,791.74 14,020.00 -228.26 -1.63
4 356 20,520.53 20,634.00 -113.47 -0.55
5 700 39,067.78 38,832.00 235.78 0.61
6 28 4,531.77 5,501.00 -969.23 -17.62
7 47 5,039.65 8,405.00 -3,365.55 -40.04
8 68 4,287,95 4,038.00 199.45 4.89
9 68 4,296.99 4,090.00 206.99 5.06
10 56 5,489.22 3,398.00 2,091.22 61.54
11 107 5,906.77 5,630.00 276.77 4,92
12 108 6,037.99 5,703.00 334.99 5.87
13 168 13,217.07 13,145.00 72.07 0.55
14 178 13,890.40 14,052.00. -161.60 -1.15
15 699 42,541.37 42,619.00 ~77.63 -0.18
le 259 17,583.34 17,899.00 -315.66 -1.76
17 260 18,302.98 18,639.00 -336.02 -1.80
18 255 12,943.54 16,239.00 -3,295.46 -20.29
19 255 16,402,26 16,696.00 -293.74 -1.76
20 258 16,478.28 16,713.00 -234.72 -1.40
21 266 17,264.64 17,328.00 -63.36 -0.37
22 878 47,583.66 47,541.00 42.66 0.09
23 42 2,626.87 2,286.00 340.87 14.91
24 42 2,763.16 2,446.00 317.16 12.97
25 45 2,481.15 2,439,00 402.15 16.49
26 45 2,859.67 2,454,00 405.67 16.53
27 60 7,796.78 6,770,00 1,026.78 15.17
28 62 7,882.18 6,783.00 1,099.18 16.20
29 63 7,500.30 6,333.00 1,167.30 18.43
30 64 6,845.47 5,667.00 1,178.47 20.80
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Max.

Unit Capacity Capacity Factor Capacity Factor. Difference Difference
No. {mw) Method Developed Actual Method (Units) (%)
1 133 43.13 44,00 .87 ~1.97
2 133 42.95 44.00 -1.05 -2.39
3 243 50.82 52.00 -1.18 -2.26
4 356 52,29 52.00 0.29 0.55
5 700 51.65 51.00 0.65 1.27
6 28 53.02 87.00 -33.98 ~-39.06
7 47 36.70 87.00 -50.30 -57.81
8 68 50.41 48.00 2,41 5.03
9 68 50.54 48,00 2,54 5.29
10 56 53.82 51.00 2.82 5.52
11 107 48.23 45.00 3.23 7.17
12 108 48.87 45.00 3.87 8.61
13 168 83.37 83.00 0.37 0.44
14 178 ' 82.56 83.00 - =0.44 -0.53
15 699 65.67 66.00 -0.33 -0.50
16 259 63.10 64.00 -0.90 -1.41
17 260 : 65.57 67.00 -1.43 -2 14
18 255 43.10 61.00 -17.90 -29.34
19 255 61.80 63.00 -1.20 -1.91
20 258 61.34 - 62,00 -0.66 -1.06
21 266 62.38 62.00 0.38 0.61
22 878 - 50.75 51.00 -0.25 -0.49
23 42 31.80 26.00 5.80 22.30
24 42 35.07 30.00 5.07 1l6.89
25 45 33.97 28.00 5.97 21.32
26 45 34.24 28.00 6.24 22.28
27 60 34.28 32.00 2,28 7.14
28 62 33.45 31.00 2.45 7.91
29 63 39.56 36.00 3.56 9.90
30 64 ' 34.56 31.00 3.56 11.48
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Max. Total Operating Cost Total Operating Cost
Unit Capacity Method Developed Actual Method Difference Difference
No. - (mw) ($1000) ($1000} {$1000) (%)
31 651 38,408.01 38,924.00 -515.90 -1.33
32 655 41,778.58 42,185.00 -406.42 -0.96
33 881 55,685.18 56,216.00 -530.82 -0.94
34 881 53,464.98 53,453.00 11.98 0.02
35 221 15,738.82 15,841.00 -102.18 -0.65
36 300 19,975.85 20,457.00 -481.15 -2.35
37 481 28,619.24 28,715.00 -95.76 ~0.33
38 466 28,582.10 28,237.00 345.10 1.22
39 104 5,260.62 4,995.00 265.62 5.32
40 105 5,227.56 4,936.00 391.56 5.91
41 90 4,955.92 4,829.00 126.92 2.63
42 465 23,736.16 23,451.00 285.16 1.22
43 245 19,659.33 19,871.00 -211.67 -1.07
44 245 19,659.33 19,779.00 -119.67 -0.61
45 50 4,890.29 4,602.00 288,29 6.26
46 81 7,093.83 6,615.00 478.83 7.24
47 23 1,557.54 1,367.00 190.54 13.94
48 24 1,567.28 -1,380.00 187.28 13.57
49 161 8,861.04 8,252.00 609.04 7.38
50 103 4,477.00 3,647.00 830.00 22.76
51 103 5,040.03 4,303.00 737.03 17.13
52 103 5,063.08 4,311.00 752.08 17.45
53 135 6,327.61 5,512.00 815.61 14.80
54 136 6,458.14 5,543.00 915.14 16.51
55 355 15,999.30 14,052.00 1,947.30 13.86
56 355 17,016.74 14,773.00 2,243.71 15.19
57 870 47,249.10 43,355.00 -1,105.90 -2.29
58 730 11,751.40 11,844.00 -92.60 -0.78
59 21 1,628.75 2,957.00 -1,328.25 -44.92
60 22 1,631.34 3,096.00 -1,464.66 -47.31
61 32 3,156.62 4,276.00 -1,119.38 ~26.18
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Max.

Unit Capacity Capacity Factor Capacity Factor Difference Difference
No. {mw) Method Developed Actual Method (Units) (3)
31 651 56.13 57.00 -0.87 -1.53
32 655 60.08 60.00 -0.08 -0.13
33 881 58.63 59.00 -0.37 -0.63
34 881 56.07 56.00 0.07 0.12
35 221 61.49 62.00 ~-0.51 -0.83
36 300 58.65 60.00 -1.35 -2.24
37 4181 51.02 51.00 0.02 0.03
38 466 53.16 52.00 1.16 2.23
39 104 35.45 33.00 2.45 7.42
40 105 34.79 32.00 2.79 8.73
41 90 39.10 38.00 1.10 2.90
42 465 39,07 38.00 1.07 2.82
43 245 74.82 75.00 -0.18 -0.24
44 245 74.82 75.00 -0.18 -0.24
45 50 37.15 33.00 4.15 12.57
46 81 38.11 33.00 5.11 15.47
47 23 35.78 30.00 5.78 19.25
48 24 34.30 29.00 5.30 18.26
49 16l 37.04 34.00 3.04 8.94
50 103 27.03 21.00 6.03 28.71
51 103 31.96 26.00 5.96 22,91
52 103 32.12 26.00 6.12 23.54
53 135 33.38 28.00 5.38 19.22
54 136 33.87 28.00 5.87 20.97

. 55 355 . 32.85 28.00 4.85 17.31
56 355 35.18 30.00 5.18 17.28
57 870 54.08 55.00 -0.92 -1.68
58 730 74 .48 74.00 0.48 0.65
59 21 33.93 87.00 -53.07 -61.00
60 22 32.39 87.00 -54.61 -62.717
61 32 49.55 87.00 -37.45 -43.05
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Max. Total Operating Cost Total Operating Cost

'Unit Capacity Method Developed Actual Method Difference Difference

No. (mw) ($1000) ($1000) ($1000) (%)

62 83 5,619.19 5,562.00 57.19 1.03
63 84 5,619.18 5,569.00 50.18 0.90
64 324 16,129.88 16,238.00 -108.12 -0.67
65 437 23,322.77 22,704.00 618.77 2.73
66 48 2,900.33 2,520.00 380.33 15.09
67 43 2,909.10 2,526.00 383.10 15.17
68 159 10,027.03 9,691.00 136.03 1.38
69 186 10,769.93 11,253.00 -483,07 -4.29
70 24 1,435.66 1,088.00 347.66 31.95
71 24 1,434.54 1,086.00 348.54 32.09
72 25 1,452.00 1,101.00 351.00 31.88
73 44 2,788.87 2,205.00 583.87 26.48
74 45 2,792.05 2,210.00 582.05 26.34
75 80 4,671.47 3,675.00 996.47 27.11
76 80 4,661.29 3,658.00 1,003.29 27.43
717 116 6,378.55 5,041.00 1,337.55 26.53
78 75 16,809.12 17,321.00 -511.88 -2.96
79 504 30,906.13 30,950.00 -43.87 -0.14
80 807 5,998.51 6,236.00 -237.49 -3.81
81 - - - - -

82 - -— - - -

83 - —- - - -

84 ~ - -— - -

85 - - - - -

86 - - -— - -

87 - - -—- - -

88 - - -— - --

89 15 726.81 651.00 75.81 11.65
90 15 584.72 651.00 -66.28 -10.18
91 24 1,100.81 852.00 248.81 29.20
92 25 1,080.67 907.00 173.67 19.15
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Max.

. ' . ' Capacity Factor Difference Difference
o Y Morrea bevaseory  Actual Method  (Units) (%)
62 83 62.26 62.00 0.26 0.41
63 84 61.48 61.00 0.48 0.79
64 324 44,94 45,00 -0.06 -0.14
65 437 42,37 41.00 1.37 3.35
66 48 36.32 30.00 6.32 21.07
67 48 36.45 30.00 6.45 21.49
68 159 58.25 57.00 1.25 2.19
69 186 49.88 52.00 -2.12 -4.08
70 24 14.76 7.00 7.76 110.92
71 24 14.75 7.00 7.75 110.73
72 25 14.29 7.00 7.29 104.12
73 44 25.71 19.00 6.71 35.31
74 45 25.12 19.00 6.12 32.19
75 80 23.23 17.00 6.23 36.63
76 80 23.18 17.00 6.18 36.35
17 118 21.27 15.00 7.27 41.78
78 75 65.91 68.00 =-2.09 -3.08
79 504 60.20 60.00 0.20 0.33
80 807 18.14 72.00 ~53.86 -74.80
81 - - - —_ -
82 - _ - - -
83 - —_— - —_ -_
84 - - - - -
85 - - — —_ -
86 - —_ —— - -
87 - - —— —_ -
88 - —_ - S -
89 15 99,32 88.00 11.32 12.86
90 15 99,32 88.00 11.32 12.86
9] 24 14.98 10.00 4,98 49,83
92 25 13.97 10.00 3.97 39.73
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Max. Total Operating Cost Total Operating Cost

Unit Capacity Method Developed Actual Method Difference Difference

No. (mw) ($1000 ($1000) ($1000) (%)
93 19 1,000.66 591 .00 409.66 69.32
94 19 1,000.66 590.00 410.66 69.60
95 19 575.01 784.00 -208.99 ~26.66
96 15 468,38 443,00 25.38 5.73
97 15 468.38 431,00 37.38 8,67
98 34 1,470.51 1,588.00 -117.49 -7.40
99 34 1,470.51 1,544.00 -73.49 -4.76
100 38 1,256.91 1,618.00 -361.09 ~22.32
101 34 1,557.50 1,661.00 -103.50 -6.23
102 35 1,416.19 1,554.00 -137.81 -8.87
103 43 2,096.26 2,053.00 16.26 0.79
104 44 1,953.72 2,194.00 -240.28 -10.95
105 44 1,978.05 2,146 .00 ~167.95 -7.83
106 53 1,906.89 2,805.00 -898.11 -32.02
107 53 2,002.26 2,701.00 -698.74 -25.87
108 54 1,677.86 3,279.00 -1,601.14 -48.83
109 54 1,731.08 3,151.00 -1,419.92 -45.00
110 54 1,739.07 3,042.00 -1,248.93 -41.06
111 54 1,841.96 2,947.00 -1,105.04 -37.50
112 37 1,231.88 1,468.00 -236.12 -16.08
113 17 1,231.88 1,432.00 -200.12 -13.97
114 38 1,142.02 1,568.00 ~425.98 -27.17
115 54 1,619.23 1,962.00 -342.77 . -17.47
116 55 1,396.13 1,899.00 -502.87 -26.48
117 55 1,396.13 1,837.00 ~440.87 -24.00
118 55 1,483.73 1,774.00 -290.27 -16.36
119 55 1,524.80 1,682.00 ~157.20 -9.35
120 55 1,524.80 1,631.00 -106.20 -6.51
121 37 1,474.64 1,691.00 -216.36 -12.79
122 36 1,216.78 1,542.00 -1325,22 ~21.09
123 37 1,175.54 1,384.00 -208.46 -15.06
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Max.

Unit Capacity Capacity Factor Capacity Factor Difference Difference
. No. (mw) Method Developed Actual Method (Units) (%)
93 19 12.98 7.00 5.98 85.39
94 19 12.98 7.00 5.98 85.39
95 19 ' . 8.65 12.00 -3.35 -27.90
96 15 7.53 7.00 0.53 7.63
97 15 7.53 7.00 0.53 7.63
98 34 11.99 - 13.00 -1.01 ~7.80
99 34 11.99 - 13.00 -1.01 -7.80
100 - 38 9.19 12.00 -2.81 -23.40
101 34 12.29 13.00 -0.71 -5.47
102 35 10.27 12,00 -1.73 -14.38
103 43 14.34 14.00 0.34 2.40
104 44 13.08 15.00 -1.92 -12.83
1os 44 13.31 15.00 -1.69 -11.27
106 53 10.66 16.00 -5.34 -33.36
107 53 11.24 16.00 -4.76 -29.73
lo8 54 9.07 19.00 -9.93 -52.27
109 54 9.26 18.00 -8.74 -48.56
110 54 9.77 17.00 -7.23 -42.55
111 54 9.89 17.00 -7.11 . -41.80
112 37 B.89 11.00 -2.11 -19.22
113 37 8.89 11.00 -2.11 -19.22
114 38 7.93 11.00 -3.07 -27.90
115 54 7.48 10.00 -2.52 25.16
116 55 6.16 9.00 -2.84 -31.51
117 55 6.16 9.00 -2.84 -31.51
118 55 6.60 8.00 -1.40 -17.50
119 55 6.85 8.00 -1.15 -14.38
120 55 6.85 8.00 -1.15 -14.38
121 37 11.85 14.00 -2.15 -15.38
122 36 9.13 12.00 -2.87 -23.90
123 37 8.24 ' . 1.00 7.24 723.77

LOT
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Code. Description

A Coefficient of the heat rate curve.

AC Average cost of eﬁergy

B Coefficient of the heat rate curve

C Coefficient of the heat rate curve

CAPFACi Capacity factor of the unit "i"

CFDi Total operating ocst of the unit "i"

Ej Energy demanded when the load demand is Lj

Ecij Energy cost for unit "i" when demand is Lj

ENRSi Expected number of hours that unit "i" will be
operated during the year

ENCOSTi Total energy cost for unit "i" during one year of
operationg

ENPROi Total enerqgy produced by unit "i" during the en-
tire year

ENPROij Energy produced by unit "i" when demand is Lj

FIX. Fixed costs for unit "i"

FHCi Fuel handling cost for unit "i"

FUCi Fuel cost for unit "i"

GRANC . Overall operating cost for unit "i"

GRANCOST Total overall cost for the system

HRSOUTi The number of hours that unit "i" will not be
operating in the year

JOINTij Probability that unit "i" is operating when the
demand is Lj

KAPij Level of capacity that unit "i" is operating when

demand Lj occurs



Code

MC

PT.
1

PL.
J

PO.
1
(RH, PL)
TFOR.
1
TMAIN,
1

TC

TC

TEC.
]

TIMEIN, .
1]

TOTCOS
TOTENE
VOM.

i

Y,
i
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Description

Load "3j" demand
Marginal cost
Probability that unit "i" will be operating

Probability that Lj is demanded during the year

Probability that unit "i" will be out of the sys-

tem
Load duration curve points
Number of hours taht load L. is demanded

Number of hours that unit "i" will be out of
the system due to forced outages

Number of hours that unit."i“ will be out of
the system due to maintenance

Total cost

Total operating cost per hour of operation for
unit "i" when the demand is L,

]
Total energy cost when the energy demand is e,

]
Expected number of hours that unit "i" will be
operating when the demand is Lj

Total energy cost of the system for one year
Total energy demanded during the vyear

Operating and maintenance cost for unit "i"

Input-output curve for unit "i"
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12.

13.
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