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SUMMARY

This thesis introduces “Duality Between Deep Learning And Algorithm Design”. Deep

learning is a data-driven method, whereas conventional algorithm design is a knowledge-

driven method. Based on their connections and complementary features, this thesis devel-

ops new methods to combine the merits of both and, in turn, improve both. Specifically:

• Algorithm inspired deep learning model. Despite the unprecedented performance

of deep learning in many computer vision and natural language processing problems,

the development of deep neural networks is hindered by their black-box nature, i.e.,

a lack of interpretability and the need for very large training sets. To eliminate these

issues, this thesis introduces the use of algorithms as modeling priors to integrate spe-

cialized knowledge of domain experts into deep learning models. From both the em-

pirical and theoretical perspective, this thesis explains how such algorithm inspired

deep learning models can achieve improved interpretability and sample efficiency.

• Deep learning based algorithm design. In conventional algorithm design, domain

experts will first develop a model to describe the mechanism behind it and then estab-

lish a mathematical algorithm to find the solution. Notwithstanding its interpretabil-

ity, this model-based method is inferior in terms of its limited effective range and

accuracy. This is mostly due to the simplifying assumptions of the models which of-

ten deviate from real-world problems. To address these issues, this thesis investigates

the potential of deep learning based methods for discovering data-driven algorithms

that adapt better to the interested problem distribution. This thesis explains how to

design data-driven components to replace some fixed procedures in traditional algo-

rithms, how to optimize these components, and how these data-driven components

can improve the accuracy and efficiency of traditional algorithms, from both the em-

pirical and theoretical perspectives.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This thesis is motivated by the challenges in two seemingly disparate research topics: deep

learning and algorithm design.

Deep learning has led to significant improvements in data-rich applications such as

speech recognition, machine translation, and image recognition. Given input-output pairs,

deep learning can efficiently optimize the weights in a neural network to improve its perfor-

mance on a training dataset. However, in order to achieve acceptable generalization perfor-

mance, a deep learning model (i.e., neural network) must be trained on a massive amount

of labeled data. The process of labeling a large number of examples and then learning

Figure 1.1: Different processes of (a) deep learning and (b) algorithm design.

1



Table 1.1: Complimentary features of deep learning and algorithm design.

features
Deep Learning Algorithm Design
(data-driven) (knowledge-based)

sample complexity ✗ data-hungry ✓ almost zero training data
interpretability ✗ not interpretable ✓ interpretable

flexibility ✓ universal approximator ✗ limited to human knowledge
adaptation ✓ adapted to training data ✗ incompatible assumptions
automation ✓ automatically learned ✗ labor-intensive

from them are costly and time-consuming, especially in domains where the labeling work

requires well-trained experts, such as healthcare, computational biology, and finance. In

addition, the methods are typically not interpretable. Many methods directly apply general

network architectures to different problems and learn certain underlying mappings, such

as classification and regression functions, completely through end-to-end training. It is

therefore hard to discover what is learned inside the networks by examining the high di-

mensional network parameters, and what the roles are of individual parameters. Adoptions

of deep learning to new areas are hindered by its hunger for data and lack of interpretability.

Algorithms are step-by-step instructions designed by experts for computers to solve a

problem. To solve a problem, domain experts first develop a model (formulation) to de-

scribe the mechanism and then establish a mathematical algorithm to find the solution. This

process has three obvious drawbacks. First, the model developed by human experts usually

involves simplified assumptions (e.g., convexity) so that it is easier to understand and to

perform mathematical derivations. However, those assumptions lead to simplified models

that deviate from real-world problems which are usually intrinsically hard, complex, and

large-scale. Second, a human-designed algorithm is understandable by human, but it is also

restricted to human knowledge. A better algorithm may exist, but finding it may be chal-

lenging and non-intuitive to human. As a result of the incompatible assumptions and limi-

tations to human knowledge, the performances of hand-designed algorithms on real-world

problems are still far from satisfactory. Finally, this algorithm design process requires the

2



experts to perform extensive research and experiment with many trial-and-errors, which is

labor-intensive.

The aforementioned challenges in deep learning and algorithm design are summarized

in Table 1.1. Seemingly unrelated, they are closely connected in the sense that the fea-

tures of these two methods are complementary - the advantages of deep learning precisely

correspond to the disadvantages of algorithm design, and vice versa. Motivated by their

connections and complimentary features as listed in Table 1.1, the researches in this thesis

focus on developing new methods to combine their advantages to improve both of them

and providing theoretical insights fro understanding the proposed methods.

1.2 A Duality View

In order to combine the benefits of deep learning and algorithm design, this thesis pro-

poses a duality view to connect neural networks with algorithms: On the one hand, a deep

learning model (neural network) can be viewed as a neural algorithm. On the other hand,

an algorithm can be viewed as a hand-crafted deep learning model. The duality view of

deep learning and algorithm design offers the foundation for bridging these two research

domains.

1.2.1 Correspondence in terms of their definitions

The first part of the duality view establishes how neural networks and algorithms, in terms

of their definitions, can be converted to each other.

1. A deep learning model (neural network) can be viewed as a neural algorithm which

takes an input, and carries out step-by-step neural processing to arrive at an answer. Each

layer in the neural network can be viewed as one algorithm step, and thus a T -layer neural

network can be viewed as a T -step algorithm. Unlike pre-defined update steps in the algo-

rithm, the operations in a neural network are learned from data. After trained on enough

problem instances, the learned neural network can be used as a neural algorithm to solve

3



Figure 1.2: Duality view: correspondence between neural networks and algorithms.

new problems.

2. An algorithm can be viewed as a hand-crafted deep learning model. Each iteration

of an algorithm can be viewed as one layer in the neural network. The problem to be

solved can be considered as the neural network’s input, and the solution as its output. For

instance, for a linear optimization algorithm, the input can be a set of matrices and vectors

that describe the optimization objective and constraints, and the output is the estimated

optimal solution returned from the algorithm. Unlike conventional neural networks that

contain a massive amount of parameters, algorithms usually only contain a few number

of hyperparameters such as the step size and the regularization parameters which can be

obtained by line-search or grid-search.

Table 1.2: Correspondence between a neural network and an optimization algorithm in
terms of their definitions and terminology.

DL terminology Feed-forward network Gradient descent algorithm Algorithm terminology

t-th layer xt = σ (Wxt−1 + b) xt = xt−1 − s · ∇f(xt−1) t-th iteration
number of layers T (static) Tf,s (dynamic) number of iterations

parameters W, b s hyperparameters

Therefore, a neural network can be thought of as a special algorithm, and an algorithm

can be thought of as a special neural network. Their correspondences are shown in Fig-

ure 1.2 and demonstrated in Table 1.2.

4



1.2.2 Correspondence in terms of their properties

Apart from establishing the correspondence between neural networks and algorithms in

their definitions, making connections between their properties is probably more important

for understanding their behavior and performance. Therefore, the second part of the duality

view discusses how neural networks and algorithms, in terms of their properties, can be

converted to each other. Table 1.3 summarizes the correspondences.

Deep learning community cares the most about the representation and generalization

ability of neural networks. Let’s start with the representation ability. Given a neural ar-

chitecture, its representation ability is characterized by the approximation error, which

measures the error between the target function and the best possible model defined by the

neural architecture. It is well-known that feed-forward networks are universal approxi-

mators [1], meaning that they can approximate any continuous functions. What’s more

important than the approximation error itself is the approximation efficiency, meaning

how fast the approximation error can decrease when increasing the width and depth of the

neural network [2, 3]. Now we are ready to ask, which property of algorithms is similar to

the approximation efficiency of neural networks? We say the answer is convergence rate.

The convergence rate of an optimization algorithm expresses how fast the optimization er-

ror decreases as the number of iterations grows. If we assume the target function is the

oracle solver which maps any function to its minimizer, then the approximation efficiency

of an iterative algorithm is exactly characterized by the convergence rate.

Another most important property of neural networks is their generalization ability. De-

pending on the analysis framework, characterizing the generalization ability resorts to an-

Table 1.3: Correspondence in terms of properties.

Meaning Neural network property Algorithm property

decrease rate of approximation error approximation efficiency convergence rate
Lipschitzity w.r.t. input robustness stability

Lipschitzity w.r.t. parameters sharpness sensitivity
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alyzing the robustness [4, 5] and sharpness [6, 7] in many works. Robustness measures

the vulnerability of neural networks to small perturbations around the input, which is the

Lipschitz constant of the network with respect to the input. Sharpness is also referred

to “parameter perturbation error”. It measures the robustness to small perturbations on

the parameters, which is the Lipschitz constant of the network with respect to its param-

eters. It has been used for deriving generalization bounds of neural networks, both in the

Rademacher complexity framework [8] and PAC-Bayes framework [9].

Which properties of algorithms are similar to the robustness and sharpness of neural

networks? We claim that the stability of an algorithm is similar to the robustness, and the

sensitivity of an algorithm is similar to sharpness. Stability of an algorithm is defined as its

robustness to small perturbations in the optimization objective, and sensitivity is defined as

its robustness to small perturbations in the step size. When we think of an optimization al-

gorithm as a function that maps the optimization objective to the approximation minimizer

and its step size as the (hyper)parameter, the correspondence between these properties is

obvious.

Table 1.3 summarizes how the algorithm properties are related to the approximation

efficiency, robustness, and sharpness of neural networks. Such correspondences are very

useful for understanding the behaviors of algorithms when they are used as layers in deep

learning models. For many optimization algorithms, their properties including the con-

vergence rate and stability are well-studied. As an example, Table 1.4 summarizes the al-

gorithmic properties of gradient descent (GD) and Nesterov’s accelerated gradient (NAG)

method including their convergence rate, stability, and sensitivity. As a result, if we use

Table 1.4: Comparison of algorithmic properties between GD and NAG. Variable t in-
dicates the number of iterations, and s indicates the step size. Details can be bound in
Section 4.4.

Algorithm Convergence rate Stability Sensitivity

GD O ((1− sµ)t) O (1− (1− sµ)t) O (t(1− c0µ)t−1)
NAG O

(
t(1−√sµ)t

)
O
(
1− (1−√sµ)t

)
O
(
t3(1−√c0µ)t

)
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GD steps to define algorithm layers in a deep learning model, we can immediately know

its robustness, sharpness, etc, based on the stability and sensitivity of GD. Therefore, the

techniques and results in algorithm analysis are powerful tools for us to study the repre-

sentation and generalization ability of hybrid deep learning models containing algorithm

layers.

1.2.3 Summary

The duality view connects deep learning models with algorithms from the perspective of

their definitions and properties. This viewpoint guides both the methods and analyses pre-

sented in this thesis. Based on the duality view, the remainder of this thesis will discuss how

we develop concrete methods to combine deep learning and algorithm design to improve

both, as well as how we provide theoretical insight for proposed methods.

1.3 Part I: Algorithm Inspired Deep Learning Models

The first main part in this thesis (Part I) presents how the techniques in expert-designed

algorithms inspire the development and improvement of deep learning models.

In fact, many well-known neural networks are inspired by hand-designed algorithms.

For example, the concepts of kernel and convolution in convolutional neural networks

(CNN) were widely used techniques in traditional image processing algorithms. Graph

neural networks (GNN) certainly have a similar structure to the Weisfeiler-Lehman (WL)

test [10], a classic algorithm designed to determine whether two graphs are isomorphic by

iterative aggregations. Many recent works on GNNs still largely borrowed techniques from

exiting graph algorithms to improve or to analyze the representation power of GNNs.

Deep learning extends far beyond the reach of computer vision tasks and graph prob-

lems. Rather than using fully-connected layers, the community is increasingly interested

in domain-specific modeling priors, especially for small-data tasks. These priors integrate

specialized knowledge that we have as humans into the model and ideally can be used as
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differentiable modules inside a deep learning model. To be more specific, Part I presents

‘algorithm inspired deep learning models’ from two aspects stated below.

1.3.1 Algorithm layers in deep learning models

Algorithms are powerful modeling tools. As pointed out in the duality view (Section 1.2),

each iteration of an algorithm can be viewed as one layer in the neural network. Therefore,

an iterative algorithm can be unrolled, truncated, and then used as a specialized module in

deep learning models. We call the layers defined by algorithm steps algorithm layers. We

call the layers defined by highly parameterized and non-interpretable operations (i.e., black-

box) neural layers. Examples of neural layers include feed-forward layers, convolutional

layers, transformer layers, etc. A deep learning model that contains both algorithm layers

and neural layers is called a hybrid model. If the algorithm layers are differentiable or

their gradients can be estimated, the overall hybrid model can be trained end-to-end in the

same way as other conventional neural networks.

What motivates the use of algorithm layers in deep learning are many real-world appli-

cations that require perception and reasoning to work together to solve a problem. Neural

layers play the role of perception to understand and represent the complex information in

the inputs, whereas algorithm layers play the role of reasoning by executing prescribed ac-

tions to derive outputs that encode specific prior knowledge or satisfy certain constraints.

Therefore, there has been a surge of interest in developing hybrid models that contain both

neural and algorithm layers in order to tackle more sophisticated learning tasks.

Empirically, this thesis presents the advantage of such hybrid models through an appli-

cation in computational biology (Chapter 3). Theoretically, this thesis provides rigorous

understanding of such hybrid models by analyzing their approximation and generalization

abilities (Chapter 4). The analysis has largely used proof techniques for analyzing algo-

rithmic properties from the optimization literature (as introduced in the duality view in

Section 1.2).
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1.3.2 Dynamic deep learning models inspired by algorithms

Algorithm techniques have inspired the design of many neural networks. To further ex-

plores this aspect, this thesis proposes deep learning models with dynamic depth in Chap-

ter 5. This model is inspired by the fact that traditional algorithms can run for a different

number of iterations given a different input problem, determined by certain stopping crite-

ria. Nonetheless, most deep learning models, including those algorithm-inspired models,

run for a predetermined number of layers for any input. It is natural to wonder whether the

depth of a deep architecture should be different for different input instances, similar to the

number of iterations in algorithms. This motivates the research in Chapter 5, in which a

deep learning model and a variational stopping policy are learned together to sequentially

determine the optimal number of layers for each input instance. Intuitively, such a dynamic

model can avoid “over-thinking” or compute less for operations converged already. Exper-

imentally, Chapter 5 shows that such a dynamic deep learning model can achieve improved

performance on a diverse set of tasks, including learning sparse recovery, few-shot meta

learning, and computer vision tasks.

1.4 Part II: Deep Learning Based Algorithm Design

Part II of this thesis discusses how deep learning methods can be used to improve the design

of algorithms. This is indeed a broad question which has become an active research topic

in recent years. Part II’s main focus is on designing learning-based algorithms for solving

statistical optimization problems.

The conventional design process of a statistical optimization algorithm consists of two

steps: (1) Objective: formulate an optimization objective to reflect the model assumptions;

(2) Solver: derive an iterative algorithm (i.e., a solver) to approximate the minimizer of the

optimization objective established in Step (1).

The objective and the solver will contribute to the statistical error and optimization
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error respectively. The statistical error is the difference between the minimizer of the

objective and the true parameters (i.e., the estimation target). It occurs as a result of po-

tential model misspecifications and unavoidable Bayes error. The optimization error is

the difference between the minimizer and the approximation given by the iterative algo-

rithm. The optimization error can be reduced at the expense of a higher computational

cost. Therefore, reducing the optimization error is, to some extent, equivalent to reducing

the computational cost of the solver.

The statistical error, on the other hand, is more difficult to reduce without the access

to more observations (i.e., data). In the literature of high-dimensional statistic, multi-task

learning is proposed to leverage the data in multiple related tasks to help improve the sta-

tistical performance of all the tasks. In most traditional algorithms, this is realized by

constructing a joint objective for multiple estimation tasks. The joint objective typically

encodes the similarities among different tasks by adding some group norms or other regu-

larization terms. However, in many practical problems, we only know that multiple tasks

are related, without knowing how they are similar to each other quantitatively. Manually

constructing the joint objective may not best reflect the actual similarity.

To go one step farther than multi-task learning, this thesis focuses on using deep learn-

ing methods to automatically learn to leverage the similarity between different estimations

problems and discover better performing algorithms for solving the target distribution of

problems. The following characteristics illustrate intuitively why deep learning can be ad-

vantageous in designing statistical optimization algorithms:

1. Flexibility. Both the objective and solver can be augmented with neural components.

These neural components can provide flexibility for the objective to express more

sophisticated, hidden, or non-intuitive models, and for the solver to extract useful

patterns from data. Such improved representation power opens up more possibilities

for finding a better-fitting objective and a faster solver for domain-specific problems.

2. Adaptation. The training of the neural components fills the gap between the known
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rules and real-world observations by optimizing the performance on problem in-

stances in the training dataset. As a results, the learned objective and solver can

adapt better to the target distribution of problems.

3. End-to-end. Unlike traditional algorithms, which design the objective and solver sep-

arately, deep learning can handle these two components jointly through end-to-end

training. As a result, the learned algorithm can balance statistical and optimization

errors under given computing constraints, and result in a higher ultimate accuracy.

In order to verify the benefit of deep learning in algorithm design, this thesis presents

both empirical and theoretical results in Chapter 6 and Chapter 7.

1.5 Organization

The remainder of this thesis is structured as follows.

Chapter 2 summarizes two lines of existing works. One is concerned with deep learning

models inspired by algorithms (Section 2.1). The other is about designing data-driven

algorithms based on deep learning (Section 2.2). Chapter 2 also delves into the challenges

of these two research directions that are less explored in existing works.

Part I presents the first portion of research contributions in this thesis. This part shows,

both empirically and theoretically, how to use algorithms as modeling priors to improve the

performance of deep learning models. More specifically:

• Through an application in computational biology, Chapter 3 demonstrates the advan-

tages of using algorithm layers in deep learning models.

• Chapter 4 provides theoretical understanding of such hybrid deep architectures with

algorithm layers, by analyzing their approximation and generalization abilities.

• Chapter 5 presents how to design a dynamic deep learning model inspired by the

stopping criteria of algorithms and achieve improved performance on various tasks.

Part II presents the second portion of research contributions in this thesis. This part of
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the research shows how data-driven algorithms are learned using deep learning techniques.

More specifically:

• To learn algorithms for estimating the precision matrix of Gaussian graphical models,

Chapter 6 introduces a deep learning model (alternatively, a parameterized algorithm)

which is designed based on unrolling an alternating minimization algorithm.

• To provide theoretical guarantees for learning based algorithms, Chapter 7 presents

PLISA (Provable Learning-based Iterative Sparse recovery Algorithm). It is a prov-

able learning based algorithm for sparse recovery, whose achievable accuracy and

generalization ability are characterized by our theoretical analysis.
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CHAPTER 2

LITERATURE REVIEW

This chapter summarizes two lines of existing works. Section 2.1 summarizes researches

that used traditional algorithms as modeling priors to design the architecture of deep learn-

ing models. Section 2.2 summarizes researches that employ deep learning techniques to

automatically learn data-driven algorithms. It is worth noting that these two lines of works

are inherently highly related, though stated in two separate sections in this chapter.

2.1 Algorithm Inspired Deep Learning Models

In machine learning, algorithms play the role of optimizing the model during the training

process. In recent years, their secondary role as modeling priors in deep learning models

has received a lot of attention. These algorithm inspired components integrate domain-

specific knowledge into the deep learning model and ideally can be used as differentiable

modules in the architecture.

2.1.1 Existing works

Depending on the specific tasks, different algorithms are used in different deep learning

models. The scope of this thesis does not allow for a full discussion of all such models.

The following are a few examples.

• Differentiable beam search [11] is used as a module in neural sequence models.

• Dynamic programming algorithms are turned into differentiable operators and used

as a layer in the neural network [12, 13].

• Differentiable maximum satisfiability (MAXSAT) solver [14] are integrated into the

deep learning model to learn the logical structure of challenging problems.
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• Differentiable power iterations for eigendecomposition are used in deep learning

models for applications including PCA denoising [15] and graph matching [16].

• Optimal transport algorithms are used in deep learning for learning to sort [17].

• Optimization algorithms are used as deep priors in many works for a wide range of

applications [18, 19, 20, 21, 22, 23] including generic classification, structured predic-

tion [24, 25, 26], denoising [27], graph matching [28], and for stabilizing the convergence

generative adversarial networks [29], etc.

• Many studies have been done in order to compute the gradients of various algo-

rithms [12, 14, 15, 21, 22].

These recent advances highlighted the benefits of using algorithm layers in deep learn-

ing models, most notably improved data efficiency and model interpretability. Section 3.2,

Section 4.2, and Section 5.2 in Part I mention a few other related works.

2.1.2 Less explored topics

In contrast to the plethora of empirical studies on algorithm inspired deep learning mod-

els, the theoretical underpinning of such architectures remains largely unexplored. Many

important questions have yet to be answered theoretically. For instance,

• What is the benefit of using algorithm layers compared to conventional deep archi-

tectures such as recurrent neural networks (RNN)?

• How exactly will the algorithm layers affect the data efficiency (or generalization

ability) of the deep learning model?

• For different algorithms which can solve the same task, what are their differences

when used as algorithm layers in deep models?

• How will the algorithmic properties such as the convergence rate and stability of an

algorithm affect the learning behavior of deep architectures containing layers defined by

the algorithm?

Chapter 4 in this thesis will provide some theoretical insights for answering these questions.
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Furthermore, determining the number of algorithm steps (or layers) used in the archi-

tecture can sometimes be difficult. Unlike traditional algorithms, which decide the number

of algorithm steps based on specific stopping criteria, the number of layers in deep archi-

tecture is often prefixed. Using too many layers may be inefficient, whereas using too few

layers may be insufficient.

Chapter 5 in this thesis is primarily concerned with addressing the aforementioned chal-

lenges.

2.2 Deep Learning Based Algorithm Design

The fact that similar problems may need to be solved repeatedly in practice encourages the

use of machine learning methods to design data-driven algorithms automatically. Learning

to learn, or learning to optimize, has become an emerging approach that learns an algorithm

for solving a specific distribution of problems. In the learning to learn setting, an algorithm

is viewed as a function mapping, which takes the problem to be solved as the input and

outputs the solution. Based on this view, one can construct a deep learning model to rep-

resent a parameterized algorithm, and learn the parameters by optimizing its performance

on a set of training problem instances via gradient-based methods. Intuitively, the learned

algorithm may be better adapted to the problem distribution of interest as a result of the use

of training problems and gradient-based parameter search, and so has a higher accuracy

and efficiency when solving these problems.

2.2.1 Existing works

Learning to learn, or learning to optimize, has been applied to various domains.

For combinatorial optimization problems like mixed integer programming, [30] learns

branching rules on branching tree by self improvement imitation learning; [31] uses a graph

convolution network to mimic strong branching on constraint graphs; and [32] shows how

to use reinforcement learning to select the cutting plane.
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The concept of learning to learn is also applied to online learning. [33, 34, 35, 36, 37]

demonstrate how, both practically and theoretically, applying machine learning approaches

to predict future input might improve the performance of online learning algorithms.

A substantial body of works has focused on learning continuous optimization algo-

rithms. Deep learning models proposed for continuous optimization algorithms fall into

two main categories: (i) black-boxed architectures such as LSTM [38], which attempt to

learn totally new update rules; and (ii) algorithm-unrolling based architectures, which are

designed based on the structure of existing traditional algorithms. In further detail, an

algorithm-unrolling-based design means that each step of a traditional algorithm becomes

a neural network layer whose parameters may be learnt from data. Certain operations in the

algorithm step can be more flexible than the traditional one, but the deep learning model

retains the overall structure of the algorithm steps.

Algorithm unrolling is a favorable design choice in many works [39, 40, 41, 42, 43,

44] because (i) it allows us to better employ traditional optimization techniques to design

and understand the neural algorithm; and that (ii) it often results in a neural algorithm with

fewer parameters. Therefore, the models studied in this thesis mainly fall into this category.

A well-known example is LISTA [45] which interprets the classic algorithm ISTA [46]

as layers of neural networks and has since then been an active research topic [47, 48, 49,

50, 51]. Many other algorithms have also been used as the basis of deep architectures.

Examples include ADMM [39, 43], approximate message passing [40, 52], Frank-Wolfe

algorithm [53, 54], PDE/ODE solvers [55, 56], etc. We will refer the audience to [57, 58]

for a more comprehensive summary of related works in this area.

2.2.2 Less explored topics

The most investigated topic in this area is learning algorithms for solving compressed sens-

ing (or sparse coding) problems with a fixed design matrix. However, other more so-

phisticated algorithm learning problems, especially theoretical studies, have received less
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attention.

Furthermore, existing theoretical efforts primarily focus on analyzing the convergence

rate achievable by the neural algorithm [48, 49, 59, 50], but the generalization error bound

has received less attention so far. A considerable body of work merely claims intuitively

that algorithm unrolling architectures can generalize well due to their minimal number of

parameters. The second direction to be investigated is how to establish a rigorous and

specialized theoretical argument for the generalization ability of algorithm unrolling based

architectures.

The second part of this thesis (Part II) is primarily concerned with addressing the afore-

mentioned unexplored directions.

17



Part I

Algorithm Inspired Deep Learning

Model
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CHAPTER 3

EMPIRICAL STUDY: RNA SECONDARY STRUCTURE PREDICTION BY

LEARNING UNROLLED ALGORITHMS

This Chapter presents an empirical study on using algorithm layers in the deep architecture.

A deep learning model for RNA secondary structure prediction is proposed and called

E2Efold (end-to-end fold). The key idea underneath E2Efold is to use an unrolled algorithm

for solving a constrained optimization problem in the deep architecture to integrate some

RNA base-pairing constraints discovered by biology experts. Experiments have shown

that a design like this allows E2Efold to predict structures considerably better while being

efficient.

The research in this chapter was previously presented at the ICLR 2020 conference

[26].

3.1 Introduction

Ribonucleic acid (RNA) is a molecule playing essential roles in numerous cellular pro-

cesses and regulating expression of genes [60]. It consists of an ordered sequence of nu-

cleotides, with each nucleotide containing one of four bases: Adenine (A), Guanine (G),

Cytosine (C) and Uracile (U). This sequence of bases can be represented as

x := (x1, . . . , xL) where xi ∈ {A,G,C, U},

which is known as the primary structure of RNA. The bases can bond with one another to

form a set of base-pairs, which defines the secondary structure. A secondary structure can

be represented by a matrix A∗ where A∗
ij = 1 if the i, j-th bases are paired (Fig 3.1a).

Discovering the secondary structure of RNA is important for understanding functions
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of RNA. Because experimental assays are expensive, computational prediction of RNA

secondary structure has become an important task in RNA research.

Research on computational prediction of RNA secondary structure from knowledge

of primary structure has been carried out for decades. Most existing methods assume

the secondary structure is a result of energy minimization, i.e., A∗ = argminAEx(A).

The energy function is either estimated by physics-based thermodynamic experiments [61,

62] or learned from data [63]. These approaches are faced with a common problem that

the search space of all valid secondary structures is exponentially-large with respect to

the length L of the sequence. To make the minimization tractable, it is often assumed

the base-pairing has a nested structure (Fig 3.1b left), and the energy function factorizes

pairwisely. With this assumption, dynamic programming (DP) based algorithms can itera-

tively find the optimal structure for subsequences and thus consider an enormous number

of structures in time O(L3). However, they restrict the search space to nested structures,

which excludes some valid yet biologically important RNA secondary structures that con-

tain ‘pseudoknots’, i.e., elements with at least two non-nested base-pairs (Fig 3.1b right).

Pseudoknots make up roughly 1.4% of base-pairs [64], and are overrepresented in func-

tionally important regions [65, 66]. Furthermore, pseudoknots are present in around 40%

of the RNAs. They also assist folding into 3D structures [67] and thus should not be ig-

nored. To predict RNA structures with pseudoknots, energy-based methods need to run

more computationally intensive algorithms to decode the structures.
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In summary, in the presence of more complex structured output (i.e., pseudoknots), it is

challenging for energy-based approaches to simultaneously take into account the complex

constraints while being efficient. Therefore, we adopt a different viewpoint by assuming

that the secondary structure is the output of a deep learning model, i.e., A∗ = Fθ(x),

and propose to learn the parameters θ from data in an end-to-end fashion. It avoids the

second minimization step needed in energy function based approach, and does not require

the output structure to be nested. Furthermore, the feed-forward model can be fitted by

directly optimizing the loss that one is interested in.

Despite the above advantages of using a feed-forward model, the architecture design

is challenging. To be more concrete, in the RNA case, Fθ is difficult to design for the

following reasons:

(i) RNA secondary structure needs to obey certain hard constraints (see details in Sec-

tion 3.3), which means certain kinds of pairings cannot occur at all [68]. Ideally, the

output of Fθ needs to satisfy these constraints.

(ii) The number of RNA data points is limited, so we cannot expect that a naive fully

connected network can learn the predictive information and constraints directly from

data. Thus, inductive biases need to be encoded into the network architecture.

(iii) One may take a two-step approach, where a post-processing step can be carried out

to enforce the constraints when Fθ predicts an invalid structure. However, in this

design, the deep network trained in the first stage is unaware of the post-processing

stage, making less effective use of the potential prior knowledge encoded in the con-

straints.

Faced with these challenges, we propose a hybrid deep learning model called E2Efold

in this chapter. It contains both neural layers and algorithm layers, called Deep Score Mod-

ule and Algorithm Module respectively in this chapter. Deep Score Module is a transformer-

based deep model which encodes sequence information useful for structure prediction. Al-

gorithm Module is the second part of E2Efold, which gradually enforces the constraints
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and restrict the output space. It is designed based on an unrolled algorithm for solving a

constrained optimization. These two networks are coupled together and learned jointly in

an end-to-end fashion. Therefore, we call this model E2Efold.

All Binary Structures

Output Space of E2Efold

*All Valid Structures*

Nested Structures

with constraints

(DP applicable)

Figure 3.2: Output space of E2Efold.

By using an iterative algorithm for solving constrained optimization to design the Al-

gorithm Module, the output space of E2Efold is constrained (illustrated in Fig 3.2), which

makes it easier to learn a good model in the case of limited data and also reduces the

overfitting issue. Yet, the constraints encoded in E2Efold are flexible enough such that

pseudoknots are not excluded. In summary, E2Efold strikes a nice balance between model

biases for learning and expressiveness for valid RNA structures.

We conduct extensive experiments to compare E2Efold with state-of-the-art (SOTA)

methods on several RNA benchmark datasets, showing superior performance of E2Efold

including:

• being able to predict valid RNA secondary structures including pseudoknots;

• running as efficient as the fastest algorithm in terms of inference time;

• producing structures that are visually close to the true structure;

• better than previous SOTA in terms of F1 score, precision and recall.

Although in this chapter we focus on RNA secondary structure prediction, which presents

an important and concrete problem where E2Efold leads to significant improvements, our

method is generic and can be applied to other problems where constraints need to be en-

forced or prior knowledge is provided. We imagine that our design idea of learning unrolled

algorithm to enforce constraints can also be transferred to problems such as protein fold-

ing and natural language understanding problems (e.g., building correspondence structure
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between different parts in a document).

3.2 Related Work

Learning-based RNA folding methods such as ContraFold [63] and ContextFold [69] have

been proposed for energy parameters estimation due to the increasing availability of known

RNA structures, resulting in higher prediction accuracies, but these methods still rely on

the above DP-based algorithms for energy minimization. A recent deep learning model,

CDPfold [70], applied convolutional neural networks to predict base-pairings, but it adopts

the dot-bracket representation for RNA secondary structure, which can not represent pseu-

doknotted structures. Moreover, it requires a DP-based post-processing step whose com-

putational complexity is prohibitive for sequences longer than a few hundreds.

Learning with differentiable algorithm layers is a useful idea that has sparked a series of

works (See Chapter 2). Some models are also applied to structured prediction problems [25,

71, 72], but they did not consider the challenging RNA secondary structure problem or dis-

cuss how to properly incorporating constraints into the architecture. OptNet [27] integrates

constraints by differentiating KKT conditions, but it has cubic complexity in the number of

variables and constraints, which is prohibitive for the RNA case.

3.3 Hard Constraints in RNA Secondary Structure

In the RNA secondary structure prediction problem, the input is the ordered sequence of

bases x = (x1, . . . , xL) and the output is the RNA secondary structure represented by a

matrix A∗ ∈ {0, 1}L×L. Hard constraints on the forming of an RNA secondary structure

dictate that certain kinds of pairings cannot occur [68]. Formally, these constraints are

listed in Table 3.1.

(i) and (ii) prevent pairing of certain base-pairs based on their types and relative loca-

tions. Incorporating these two constraints can help the model exclude lots of illegal pairs.

(iii) is a global constraint among the entries of A∗.
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Table 3.1: Constraints of RNA secondary structures

(i) Only 3 combinations of nucleotides, B := {AU,UA} ∪
{GC,CG} ∪ {GU,UG}, can form base-pairs.

∀i, j, if xixj /∈ B, then
Aij = 0.

(ii) No sharp loops are allowed. ∀|i− j| < 4, Aij = 0.

(iii) There is no overlap of pairs, i.e., it is a matching. ∀i,
∑L

j=1Aij ≤ 1.

The space of all valid secondary structures contains all symmetric matricesA ∈ {0, 1}L×L

that satisfy the above three constraints. This space is much smaller than the space of all

binary matrices {0, 1}L×L. Therefore, if we could incorporate these constraints in our deep

model, the reduced output space could help us train a better predictive model with less

training data. We do this by using an unrolled algorithm as the inductive bias to design

deep architecture.

3.4 E2Efold: Deep Learning Model With Algorithm Layers

In the literature on feed-forward networks for structured prediction, most models are de-

signed using traditional deep learning architectures. However, for RNA secondary structure

prediction, directly using these architectures does not work well due to the limited amount

of RNA data points and the hard constraints on forming an RNA secondary structure. These

challenges motivate the design of our E2Efold deep model, which combines a Deep Score

Module with a Algorithm Module based on an unrolled algorithm for solving a constrained

optimization problem.

3.4.1 Neural layers: deep score module

The first part of E2Efold is a Deep Score Module Uθ(x) whose output is anL×L symmetric

matrix. Each entry of this matrix, i.e., Uθ(x)ij , indicates the score of nucleotides xi and xj

being paired. The x input to the network here is the L×4 dimensional one-hot embedding.

The specific architecture of Uθ is shown in Fig 3.3. It mainly consists of

• a position embedding matrix P which distinguishes {xi}Li=1 by their positions: Pi =
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MLP
(
ψ1(i), . . . , ψℓ(i), ψℓ+1(i/L), . . . , ψn(i/L)

)
, where {ψj} is a set of n feature maps

such as sin(·), sigmoid(·), etc, and MLP(·) denotes multi-layer perceptions.

• a stack of Transformer Encoders [73] which encode the sequence information and the

global dependency between nucleotides;

• a 2D Convolution layers [74] for outputting the pairwise scores.
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Figure 3.3: Architecture of the Deep Score Module (neural layers).

With the representation power of neural networks, the hope is that we can learn an

informative Uθ such that higher scoring entries in Uθ(x) correspond well to actual paired

bases in RNA structure. Once the score matrix Uθ(x) is computed, a naive approach to use

it is to choose an offset term s ∈ R (e.g., s = 0) and let Aij = 1 if Uθ(x)ij > s. How-

ever, such entry-wise independent predictions of Aij may result in a matrix A that violates

the constraints for a valid RNA secondary structure. Therefore, a post-processing step is

needed to make sure the predicted A is valid. This step could be carried out separately after

Uθ is learned. But such decoupling of base-pair scoring and post-processing for constraints

may lead to sub-optimal results, where the errors in these two stages can not be considered
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together and tuned together. Instead, we will introduce a Algorithm Module which can be

trained end-to-end together with Uθ to enforce the constraints.

3.4.2 Algorithm layers: unrolled constrained optimization solver

The second part of E2Efold is a Algorithm Module (i.e., algorithm layers) Algϕ which is an

unrolled and parameterized algorithm for solving a constrained optimization problem. We

first present how we formulate the constrained optimization and the algorithm for solving

it.

Formulation of constrained optimization. Given the scores predicted by Uθ(x), we

define the total score 1
2

∑
i,j(Uθ(x)ij − s)Aij as the objective to maximize, where s is an

offset term. Clearly, without structure constraints, the optimal solution is to take Aij = 1

when Uθ(x)ij > s. Intuitively, the objective measures the covariation between the entries

in the scoring matrix and the A matrix. With constraints, the exact maximization becomes

intractable. To make it tractable, we consider a convex relaxation of this discrete optimiza-

tion to a continuous one by allowing Aij ∈ [0, 1]. Consequently, the solution space that we

consider to optimize over is

A(x) :=
{
A ∈ [0, 1]L×L | A is symmetric and satisfies constraints (i)-(iii) in Section 3.3

}
.

To further simplify the search space, we define a nonlinear transformation T on RL×L

as T (Â) := 1
2

(
Â ◦ Â + (Â ◦ Â)⊤

)
◦M(x), where ◦ denotes element-wise multiplication.

Matrix M is defined as M(x)ij := 1 if xixj ∈ B and also |i − j| ≥ 4, and M(x)ij := 0

otherwise. From this definition we can see that M(x) encodes both constraint (i) and

(ii). With transformation T , the resulting matrix is non-negative, symmetric, and satisfies

constraint (i) and (ii). Hence, by defining A := T (Â), the solution space is simplified as

A(x) = {A = T (Â) | Â ∈ RL×L, A1 ≤ 1}.

Finally, we introduce a ℓ1 penalty term ∥Â∥1 :=
∑

i,j |Âij| to makeA sparse and formu-
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late the post-processing step as: (⟨·, ·⟩ denotes matrix inner product, i.e., sum of entry-wise

multiplication)

maxÂ∈RL×L
1
2

〈
Uθ(x)− s, A := T (Â)

〉
− ρ∥Â∥1 s.t. A1 ≤ 1 (3.1)

The advantages of this formulation are that the variables Âij are free variables in R and

there are only L inequality constraints A1 ≤ 1. This system of linear inequalities can be

replaced by a set of nonlinear equalities relu(A1− 1) = 0 so that the constrained prob-

lem can be easily transformed into an unconstrained problem by introducing a Lagrange

multiplier λ ∈ RL
+:

min
λ≥0

max
Â∈RL×L

1
2
⟨Uθ(x)− s, A⟩ − ⟨λ, relu(A1− 1)⟩︸ ︷︷ ︸

f

−ρ∥Â∥1. (3.2)

Algorithm for solving it. We use a primal-dual method for solving Eq. 3.2. In each

iteration, Â and λ are updated alternatively by:

(primal) gradient step: Ȧt+1 ← Ât + α · γtα · Ât ◦M(x) ◦
(
∂f/∂At + (∂f/∂At)

⊤
)
,

(3.3)

where


∂f/∂At =

1
2
(Uθ(x)− s)− (λ ◦ sign(At1− 1))1⊤,

sign(c) := 1 when c > 0 and 0 otherwise,

(3.4)

(primal) soft threshold: Ât+1 ← relu(|Ȧt+1| − ρ · α · γtα), At+1 ← T (Ât+1), (3.5)

(dual) gradient step: λt+1 ← λt+1 + β · γtβ · relu(At+11− 1), (3.6)

where α, β are step sizes and γα, γβ are decaying coefficients. When it converges at T , an

approximate solution Round
(
AT = T (ÂT )

)
is obtained.
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Algorithm Layers. The Algorithm Module, denoted by Algϕ, is designed based on the

above algorithm. The specific computation graph of Algϕ is given in Algorithm 1, whose

main component is a recurrent cell which we call AlgCellϕ. The computation graph is

almost the same as the iterative update from Eq. 3.3 to Eq. 3.6, except for several modifi-

cations:

• (learnable hyperparameters) The hyperparameters including step sizes α, β, decaying

rate γα, γβ , sparsity coefficient ρ and the offset term s are treated as learnable parameters

in ϕ, so that there is no need to tune the hyperparameters by hand but automatically learn

them from data instead.

• (fixed # iterations) Instead of running the iterative updates until convergence, AlgCellϕ

is applied recursively for T iterations where T is a manually fixed number. This is why

in Fig 3.2 the output space of E2Efold is slightly larger than the true solution space.

• (smoothed sign function) Resulted from the gradient of relu(·), the update step in Eq. 3.4

contains a sign(·) function. However, to push gradient through Algϕ, we require a differ-

entiable update step. Therefore, we use a smoothed sign function defined as softsign(c) :=

1/(1 + exp(−kc)), where k is a temperature.

• (clip Â) An additional step, Â ← min(Â, 1), is included to make the output At at each

iteration stay in the range [0, 1]L×L.

28



Algorithm 1: Algϕ(U,M)

Parameters ϕ := {w, s, α, β, γα, γβ, ρ}

U ← softsign(U − s) ◦ U

Â0 ← softsign(U − s) ◦ sigmoid(U)

A0 ← T (Â0)

λ0 ← w · relu(A01− 1)

For t = 0, . . . , T − 1 do

λt+1, At+1, Ât+1

←AlgCellϕ(U,M,λt, At, Ât, t)

return {At}Tt=1

Algorithm 2: AlgCellϕ

Function AlgCellϕ(U,M,λ, A, Â, t):

G← 1
2
U − (λ ◦ softsign(A1− 1))1⊤

Ȧ← Â+ α · γαt · Â ◦M ◦ (G+G⊤)

Â← relu(|Ȧ| − ρ · α · γαt)

Â← 1− relu(1− Â) [i.e.,min(Â, 1)]

A← T (Â)

λ← λ+ β · γβt · relu(A1− 1)

return λ, A, Â

With these modifications, the Algorithm Module Algϕ is a tuning-free and differentiable

unrolled algorithm with meaningful intermediate outputs. Combining it with the Deep

Score Module, the final deep model is

E2Efold : {At}Tt=1 =

Algorithm Module︷ ︸︸ ︷
Algϕ( Uθ(x)︸ ︷︷ ︸

Deep Score Module

,M(x)) . (3.7)

3.5 Training Algorithm

Given a datasetD containing examples of input-output pairs (x, A∗), the training procedure

of E2Efold is similar to standard gradient-based supervised learning. However, for RNA

secondary structure prediction problems, commonly used metrics for evaluating predictive

performances are F1 score, precision and recall, which are non-differentiable.

Differentiable F1 Loss. To directly optimize these metrics, we mimic true positive

(TP), false positive (FP), true negative (TN) and false negative (FN) by defining continuous

functions on [0, 1]L×L:

TP = ⟨A,A∗⟩, FP = ⟨A, 1− A∗⟩, FN = ⟨1− A,A∗⟩, TN = ⟨1− A, 1− A∗⟩.
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Since F1 = 2TP/(2TP + FP + FN), we define a loss function to mimic the negative of F1

score as:

L−F1(A,A
∗) := −2⟨A,A∗⟩/ (2⟨A,A∗⟩+ ⟨A, 1− A∗⟩+ ⟨1− A,A∗⟩) . (3.8)

Assuming that
∑

ij A
∗
ij ̸= 0, this loss is well-defined and differentiable on [0, 1]L×L.

It is notable that this F1 loss takes advantages over other differentiable losses including

ℓ2 and cross-entropy losses, because there are much more negative samples (i.e. Aij = 0)

than positive samples (i.e. Aij = 1).

Overall Loss Function. As noted earlier, E2Efold outputs a matrix At ∈ [0, 1]L×L

in each iteration. This allows us to add auxiliary losses to regularize the intermediate

results, guiding it to learn parameters which can generate a smooth solution trajectory.

More specifically, we use an objective that depends on the entire trajectory of optimization:

min
θ,ϕ

1

|D|
∑

(x,A∗)∈D

1

T

T∑
t=1

γT−tL−F1(At, A
∗), (3.9)

where {At}Tt=1 = PPϕ(Uθ(x),M(x)) and γ ≤ 1 is a discounting factor. Empirically, we

find it very useful to pre-train Uθ using logistic regression loss. Also, it is helpful to add

this additional loss to Eq. 3.9 as a regularization.

3.6 Experiments

The full experimental results can be found in [26]1. Here we only report the result of abla-

tion study which explicitly reveals the effectiveness of the Algorithm Module in E2Efold.

To exam whether integrating the two modules by pushing gradient through the Algo-

rithm Module is useful, we conduct an ablation study (Table 3.2). We test the performance

of training of Deep Score Network Uθ alone. After Uθ is learned, we apply the algorithm

1the codes for reproducing the experimental results are released at https://github.com/ml4bio/e2efold.
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Table 3.2: Ablation study (RNAStralign test set)

Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.866 0.788 0.821 0.880 0.798 0.833
Uθ+PP 0.755 0.712 0.721 0.782 0.737 0.752

steps for solving the augmented Lagrangian to post-process the outputs of Uθ (thus the no-

tation “Uθ+PP” in Table 3.2). Although “Uθ+PP” performs decently well, with constraints

incorporated into training, E2Efold still has significant advantages over it.
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CHAPTER 4

THEORETICAL STUDY: UNDERSTANDING DEEP ARCHITECTURE WITH

ALGORITHM LAYERS

This chapter discusses some theoretical findings related to hybrid deep architectures that

include both neural module and algorithm module.

Similar to the model introduced in Chapter 3, there has been a recent surge of inter-

est in combining deep learning models with algorithm layers in order to handle more so-

phisticated learning tasks. In many cases, a reasoning task can be solved by an iterative

algorithm. This algorithm is often unrolled, and used as a specialized layer in the deep

architecture, which can be trained end-to-end with other neural components (Fig. 4.1).

Designing hybrid models that contain both neural layers (i.e., neural module) and algo-

rithm layers (i.e., algorithm module) has led to many empirical successes (see Chapter 2 for

a brief review). However, the theoretical foundation of such architectures, especially the

interplay between algorithm layers and other neural layers, remains largely unexplored. In

this chapter, we take an initial step towards an understanding of such hybrid deep architec-

tures by showing that properties of the algorithm layers, such as convergence, stability and

sensitivity, are intimately related to the approximation and generalization abilities of the

end-to-end model. Furthermore, our analysis closely matches our experimental findings

under a variety of conditions, suggesting that our theory can provide useful guidelines for

designing deep architectures with algorithm layers.

The research in this chapter was previously presented at the NeuRIPs 2020 conference

in [75].
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4.1 Introduction

4.1.1 Motivation and challenges

Many real-world applications necessitate the collaboration of perception and reasoning in

order to solve a problem. Perception is the ability to understand and represent inputs,

whereas reasoning is the ability to follow prespecified steps and derive answers that meet

certain constraints. To tackle such sophisticated learning tasks, recently, there has been a

surge of interests in combining deep perception models with algorithm layers.
time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
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the notion of direct (p(y|x)) and inverse design
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As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
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There are several ways of building generative
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Before describing how each approach differs,
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molecular electronic Hamiltonian, from which
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Figure 4.1: Hybrid deep architecture.

Typically, a algorithm module (i.e., algorithm layers) is stacked on top of a neural

module (i.e., neural layers), and treated as an additional layer of the overall deep architec-

ture; then all the parameters in the architecture are optimized end-to-end with loss gradients

(Fig 4.1). Very often these algorithm modules can be implemented as unrolled iterative

algorithms, which can solve more sophisticated tasks with carefully designed and inter-

pretable operations. See Chapter 2 for a brief review of deep learning models that use

differentiable algorithm layers in the architecture for various learning tasks.
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While these previous works have demonstrated the effectiveness of combining deep

learning with algorithm layers, the theoretical underpinning of such hybrid deep architec-

tures remains largely unexplored. For instance, what is the benefit of using a algorithm

module based on unrolled algorithms compared to generic architectures such as recurrent

neural networks (RNN)? How exactly will the algorithm module affect the generalization

ability of the deep architecture? For different algorithms which can solve the same task,

what are their differences when used as algorithm modules in deep models? Despite the

rich literature on rigorous analysis of algorithmic properties, there is a paucity of work

leveraging these analyses to formally study the learning behavior of deep architectures

containing algorithm layers. This motivates us to ask the crucial and timely question of

How will the algorithmic properties of algorithm layers affect the learning

behavior of deep architectures containing such layers?

In this chapter, we provide a first step towards an answer to this question by analyzing the

approximation and generalization abilities of such hybrid deep architectures. To the best

our knowledge, such an analysis has not been done before and faces several difficulties:

1. The analysis of certain algorithmic properties such as convergence can be complex

by itself;

2. Models based on highly structured iterative algorithms have rarely been analyzed

before;

3. The bound needs to be sharp enough to match empirical observations. In this new

setting, the complexities of the algorithm’s analysis and generalization analysis are

intertwined together, making the analysis even more challenging.

4.1.2 Summary of results

We find that standard Rademacher complexity analysis, widely used for neural networks [8,

76, 77], is insufficient for explaining the behavior of these hybrid architectures. Thus we
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turn to a more refined local Rademacher complexity analysis [78, 79], which yields the

following results:

• Relation to algorithmic properties. algorithmic properties such as convergence,

stability and sensitivity all play important roles in the generalization ability of the hybrid

architecture. Generally speaking, an algorithm module that is faster converging, more sta-

ble and less sensitive will be able to better approximate the joint perception and reasoning

task, while at the same time generalize better.

• Which algorithm? There is a tradeoff that a faster converging algorithm has to

be less stable [80]. Therefore, depending on the precise setting, the best choice of algo-

rithm layer may be different. Our theorem reveals that when the neural module is over-

or under-parameterized, stability of the algorithm module can be more important than its

convergence; but when the neural module has an ‘about-right’ parameterization, a faster

converging algorithm layer may give a better generalization.

• What depth? With deeper algorithm layers, the representation ability gets better,

but the generalization becomes worse if the neural module is over/under-parameterized.

Only when it has ’about-right’ complexity, deeper algorithm layers can induce both better

representation and generalization.

• What if RNN? It has been shown that RNN (or graph neural networks, GNN) can

represent reasoning and iterative algorithms [38, 77]. On the example of RNN we demon-

strate in Sec 4.6.4 that these generic algorithm modules can also be analyzed under our

framework, revealing that RNN layers induce better representation but worse generaliza-

tion compared to traditional algorithm layers.

• Experiments. We conduct empirical studies to validate our theory and show that it

matches well with experimental observations under various conditions. These results sug-

gest that our theory can provide useful practical guidelines for designing deep architectures

with algorithm layers.

Contributions and limitations. To the best of our knowledge, this is the first result
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to quantitatively characterize the effects of algorithmic properties on the learning behavior

of hybrid deep architectures with algorithm layers, showing that algorithm biases can help

reduce sample complexity of such architectures. Our result also reveals a subtle and pre-

viously unknown interplay between algorithm convergence, stability and sensitivity when

affecting model generalization, and thus provides design principles for deep architectures

with algorithm layers. To simplify the analysis, our initial study is limited to a setting

where the algorithm module is an unconstrained optimization algorithm and the neural

module outputs a quadratic energy function. However, our analysis framework can be ex-

tended to more complicated cases and the insights can be expected to apply beyond our

current setting.

4.2 Related Theoretical Works

Our analysis borrows proof techniques for analyzing algorithmic properties from the opti-

mization literature [80, 81] and for bounding Rademacher complexity from the statistical

learning literature [8, 78, 79, 82, 83], but our focus and results are new. More precisely, the

‘leave-one-out’ stability of optimization algorithms have been used to derive generalization

bounds [84, 85, 86, 80, 87, 88]. However, all existing analyses are in the context where the

optimization algorithms are used to train and select the model, while our analysis is based

on a fundamentally different viewpoint where the algorithm itself is unrolled and integrated

as a layer in the deep model. Also, existing works on the generalization of deep learning

mainly focus on generic neural architectures such as feed-forward neural networks, RNN,

GNN, etc [8, 76, 77]. The complexity of models based on highly structured iterative algo-

rithms and the relation to algorithmic properties have not been investigated. Furthermore,

we are not aware of any previous use of local Rademacher complexity analysis for deep

learning models.
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4.3 Setting: Optimization Algorithm Layers in Deep Learning

In many applications, reasoning can be accomplished by solving an optimization problem

defined by a neural perceptual module. For instance, a visual SUDOKU puzzle can be

solved using a neural module to perceive the digits followed by a quadratic optimization

module to maximize a logic satisfiability objective [14]. The RNA folding problem can

be tackled by a neural energy model to capture pairwise relations between RNA bases

and a constrained optimization module to minimize the energy, with additional pairing

constraints, to obtain a folding [26]. In a broader context, MAML [89, 90] also has a

neural module for joint initialization and a reasoning module that performs optimization

steps for task-specific adaptation. Other examples include [25, 24, 91, 27, 21, 28, 22, 48,

23, 92, 20, 93, 19, 18, 94]. More specifically, perception and reasoning can be jointly

formulated in the form

y(x) = argminy∈Y Eθ(x,y), (4.1)

where x is an input, and Eθ(x,y) is a neural energy function with parameters θ, which

specifies the type of information needed for performing reasoning, and together with con-

straints Y on the output y, specifies the style of reasoning. Very often, the optimizer can be

approximated by iterative algorithms, so the mapping in Eq. 4.1 can be approximated by

the following end-to-end hybrid model

fϕ,θ(x) := Algk
ϕ (Eθ(x, ·)) : X 7→ Y . (4.2)

Algk
ϕ is the algorithm module with parameters ϕ. Given a neural energy, it performs k-step

iterative updates to produce the output (Fig 4.1). When k is finite, Algk
ϕ corresponds to

approximate optimizer. As an initial attempt to analyze deep architectures with algorithm

layers, we will restrict our analysis to a simple case where Eθ(x,y) is quadratic in y. A
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reason is that the analysis of advanced algorithms such as Nesterov accelerated gradients

will become very complex for general cases. Similar problems occur in [80] which also

restricts the proof to quadratic objectives. Specifically:

Problem setting: Consider a hybrid architecture where the neural module is an energy

function of the form Eθ((x, b),y) = 1
2
y⊤Qθ(x)y + b⊤y, with Qθ a neural network that

maps x to a matrix. Each energy can be uniquely represented by (Qθ(x), b), so we can

write the overall architecture as

fϕ,θ(x, b) := Algk
ϕ(Qθ(x), b). (4.3)

Assume we are given a set of n i.i.d. samples Sn = {((x1, b1),y
∗
1), · · · , ((xn, bn),y

∗
n)},

where the labels y∗ are given by the exact minimizer Opt of the corresponding Q∗, i.e.,

y∗ = Opt(Q∗(x), b). (4.4)

Then the learning problem is to find the best model fϕ,θ from the space F := {fϕ,θ :

(ϕ, θ) ∈ Φ×Θ} by minimizing the empirical loss function

min
fϕ,θ∈F

1

n

n∑
i=1

ℓϕ,θ(xi, bi), (4.5)

where ℓϕ,θ(x, b) := ∥Algk
ϕ (Qθ(x), b)− Opt(Q∗(x), b)∥2. Furthermore, we assume:

• We have Y = Rd, and both Qθ and Q∗ map X to Sd×d
µ,L , the space of symmetric

positive definite (SPD) matrices with µ, L > 0 as its smallest and largest singular

values, respectively. Thus the induced energy function Eθ will be µ-strongly convex

and L-smooth, and the output of Opt is unique.

• The input (x, b) is a pair of random variables where x ∈ X ⊆ Rm and b ∈ B ⊆ Rd.

Assume b satisfies E[bb⊤] = σ2
bI . Assume x and b are independent, and their joint

distribution follows a probability measure P . Assume samples in Sn are drawn i.i.d.
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from P .

• Assume B is bounded, and let M = sup(Q,b)∈Sd×d
µ,L ×B ∥Opt(Q, b)∥2.

Though this setting does not encompass the full complexity of hybrid deep architectures,

it already reveals interesting connections between algorithmic properties of the algorithm

module and the learning behaviors of hybrid architectures.

4.4 Properties of Algorithms

In Section 1.2.2, we have briefly introduced some algorithmic properties and their connec-

tions to the approximation efficiency, robustness, and sharpness of neural networks. In this

section, we will delve into more details to formally define the algorithmic properties of

Algk
ϕ, under the problem setting presented in Sec 4.3. After that, we compare the corre-

sponding properties of gradient descent, GDk
ϕ, and Nesterov’s accelerated gradients, NAGk

ϕ,

as concrete examples.

4.4.1 Definitions of Algorithmic Properties

(I) The convergence rate of an algorithm expresses how fast the optimization error de-

creases as k grows. Formally, we say Algk
ϕ has a convergence rate Cvg(k, ϕ) if for any

Q ∈ Sd×d
µ,L , b ∈ B,

∥Algk
ϕ(Q, b)− Opt(Q, b)∥2 ≤ Cvg(k, ϕ)∥Alg0

ϕ(Q, b)− Opt(Q, b)∥2. (4.6)

(II) Stability of an algorithm characterizes its robustness to small perturbations in the

optimization objective, which corresponds to the perturbation of Q and b in the quadratic

case. For the purpose of this chapter, we say an algorithm Algk
ϕ is Stab(k, ϕ)-stable if for

any Q,Q′ ∈ Sd×d
µ,L and b, b′ ∈ B,

∥Algk
ϕ(Q, b)− Algk

ϕ(Q
′, b′)∥2 ≤ Stab(k, ϕ)∥Q−Q′∥2 + Stab(k, ϕ)∥b− b′∥2, (4.7)
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where ∥Q−Q′∥2 is the spectral norm of the matrix Q−Q′.

(III) Sensitivity characterizes the robustness to small perturbations in the algorithm

parameters ϕ. We say the sensitivity of Algk
ϕ is Sens(k) if it holds for allQ ∈ Sd×d

µ,L , b ∈ B,

and ϕ, ϕ′ ∈ Φ that

∥Algk
ϕ(Q, b)− Algk

ϕ′(Q, b)∥2 ≤ Sens(k)∥ϕ− ϕ′∥2. (4.8)

This concept is referred in the deep learning community to “parameter perturbation error”

or “sharpness” [6, 7, 5]. It has been used for deriving generalization bounds of neural net-

works, both in the Rademacher complexity framework [8] and PAC-Bayes framework [9].

(IV) The stable region is the range Φ of the parameters ϕ where the algorithm output

will remain bounded as k grows to infinity, i.e., numerically stable. Only when the algo-

rithms operate in the stable region, the corresponding Cvg(k, ϕ), Stab(k, ϕ) and Sens(k)

will remain finite for all k. It is usually very difficult to identity the exact stable region, but

a sufficient range can be provided.

4.4.2 Algorithmic Properties of GD and NAG

Now we will compare the above four algorithmic properties for gradient descent and Nes-

terov’s accelerated gradient method, both of which can be used to solve the quadratic opti-

mization in our problem setting. First, the algorithm update steps are summarized bellow:

GDϕ : yk+1 ← yk − ϕ(Qyk + b) NAGϕ :


yk+1 ← zk − ϕ(Qzk + b)

zk+1 ← yk+1 +
1−

√
µϕ

1+
√
µϕ
(yk+1 − yk)

(4.9)

where the hyperparameter ϕ corresponds to the step size. The initializations y0, z0 are set

to zero vectors throughout this chapter. Denote the results of k-step update, yk, of GD and

NAG by GDk
ϕ(Q, b) and NAGk

ϕ(Q, b), respectively. Then their algorithmic properties are

summarized in Table 4.1.
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Table 4.1: Comparison of algorithmic properties between GD and NAG. For simplicity,
only the order in k is presented.

Alg Cvg(k, ϕ) Stab(k, ϕ) Sens(k) Stable region Φ

GDk
ϕ O

(
(1− ϕµ)k

)
O
(
1− (1− ϕµ)k

)
O
(
k(1− c0µ)k−1

)
[c0,

2
µ+L

]

NAGk
ϕ O

(
k(1−

√
ϕµ)k

)
O
(
1− (1−

√
ϕµ)k

)
O
(
k3(1−√c0µ)k

)
[c0,

4
µ+3L

]

Table 4.1 shows: (i) Convergence: NAG converges faster than GD, especially when µ

is very small, which is a well-known result. (ii) Stability: However, as k grows, NAG is

less stable than GD for a fixed k, in contrast to their convergence behaviors. This is pointed

out in [80], which proves that a faster converging algorithm has to be less stable. (iii)

Sensitivity: The sensitivity behaves similar to the convergence, where NAG is less sensitive

to step-size perturbation than GD. Also, the sensitivity of both algorithms gets smaller as

k grows larger. (iv): Stable region: Since µ < L, the stable region of GD is larger than

that of NAG. It means a larger step size is allowable for GD that will not lead to exploding

outputs even if k is large. Note that all the other algorithmic properties are based on the

assumption that ϕ is in the stable region Φ. Furthermore, as k goes to infinity, the space

{Algk
ϕ : ϕ ∈ Φ} will finally shrink to a single function, which is the exact minimizer.

Our purpose of comparing the algorithmic properties of GD and NAG is to show in a

later section their difference when used as a algorithm module in deep architectures.

4.5 Approximation Ability

How will the algorithmic properties affect the approximation ability of deep architecture

with algorithm layers? Given a model space F := {Algk
ϕ (Qθ(·), ·) : ϕ ∈ Φ, θ ∈ Θ}, we

are interested in its approximation ability to functions of the form Opt (Q∗(x), b). More

specifically, we define the loss

ℓϕ,θ(x, b) := ∥Algk
ϕ (Qθ(x), b)− Opt(Q∗(x), b)∥2, (4.10)
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and measure the approximation ability by infϕ∈Φ,θ∈Θ supQ∗∈Q∗ Pℓϕ,θ, where Q∗ := {X 7→

Sd×d
µ,L } and Pℓϕ,θ = Ex,b[ℓϕ,θ(x, b)]. Intuitively, using a faster converging algorithm, the

model Algk
ϕ could represent the reasoning-task structure, Opt, better and improve the

overall approximation ability. Indeed we can prove the following lemma confirming this

intuition.

Lemma 4.5.1. (Faster Convergence ⇒ Better Approximation Ability). Assume the

problem setting in Sec 4.3. The approximation ability can be bounded by two terms:

inf
ϕ∈Φ,θ∈Θ

sup
Q∗∈Q∗

Pℓϕ,θ ≤ σbµ
−2 inf

θ∈Θ
sup

Q∗∈Q∗
P∥Qθ −Q∗∥F︸ ︷︷ ︸

approximation ability of the neural module

+M inf
ϕ∈Φ

Cvg(k, ϕ)︸ ︷︷ ︸
best convergence

. (4.11)

With Lemma 4.5.1, we conclude that: A faster converging algorithm can define a model

with better approximation ability. For example, for a fixed k and Qθ, NAG converges faster

than GD, so NAGk
ϕ can approximate Optmore accurately than GDk

ϕ, which is experimentally

validated in Sec 4.7.

Similarly, we can also reverse the reasoning, and ask the question that, given two hydrid

architectures with the same approximation error, which architecture has a smaller error in

representing the energy function Q∗? We show that this error is also intimately related to

the convergence of the algorithm.

Lemma 4.5.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the prob-

lem setting in Sec 4.3. Then ∀ϕ ∈ Φ, θ ∈ Θ, Q∗ ∈ Q∗ it holds true that

P∥Qθ −Q∗∥2F ≤ σ−2
b L4(

√
Pℓ2ϕ,θ +M · Cvg(k, ϕ))2. (4.12)

Lemma 4.5.2 highlights the benefit of using an algorithmic layer that aligns with the

reasoning-task structure. Here the task structure is represented by Opt, the minimizer,

and convergence measures how well Algk
ϕ is aligned with Opt. Lemma 4.5.2 essentially

indicates that if the structure of a algorithm module can better align with the task structure,
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then it can better constrain the search space of the underlying neural module Qθ, making

it easier to learn, and further lead to better sample complexity, which we will explain more

in the next section.

As a concrete example for Lemma 4.5.2, if GDk
ϕ (Qθ, ·) and NAGk

ϕ (Qθ, ·) achieve the

same accuracy for approximating Opt (Q∗, ·), then the neural module Qθ in NAGk
ϕ (Qθ, ·)

will have a better accuracy for approximating Q∗ than Qθ in GDk
ϕ (Qθ, ·). In other words,

a faster converging algorithm imposes more constraints on the energy function Qθ, making

it approach Q∗ faster.

4.6 Generalization Ability

How will algorithmic properties affect the generalization ability of deep architectures with

algorithm layers? We theoretically showed that the generalization bound is determined

by both the algorithmic properties and the complexity of the neural module. Moreover, it

induces interesting implications - when the neural module is over- or under- parameterized,

the generalization bound is dominated by algorithm stability; but when the neural module

has an about-right parameterization, the bound is dominated by the product of algorithm

stability and convergence.

More specifically, we will analyze generalization gap between the expected loss and

empirical loss,

Pℓϕ,θ = Ex,bℓϕ,θ(x, b) and Pnℓϕ,θ =
1
n

∑n
i=1ℓϕ,θ(xi, bi), respectively, (4.13)

where Pn is the empirical probability measure induced by the samples Sn. Let ℓF := {ℓϕ,θ :

ϕ ∈ Φ, θ ∈ Θ} be the function space of losses of the models. The generalization gap,

Pℓϕ,θ − Pnℓϕ,θ, can be bounded by the Rademacher complexity, ERnℓF , which is defined

as the expectation of the empirical Rademacher complexity, RnℓF := Eσ supϕ∈Φ,θ∈Θ
1
n∑n

i=1 σiℓϕ,θ(xi, bi), where {σi}ni=1 are n independent Rademacher random variables uni-
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formly distributed over {±1}. Generalization bounds derived from Rademacher complex-

ity have been studied in many works [95, 96, 97, 98].

However, deriving the Rademacher complexity of ℓF is highly nontrivial in our case,

and we are not aware of prior bounds for deep learning models with algorithm layers.

Aiming at bridging the relation between algorithmic properties and generalization ability

that can explain experimental observations, we find that standard Rademacher complexity

analysis is insufficient. The shortcoming of the standard Rademacher complexity is that

it provides global estimates of the complexity of the model space, which ignores the fact

that the training process will likely pick models with small errors. Taking this factor into

account, we resort to more refined analysis using local Rademacher complexity [8, 78, 79].

4.6.1 Main Result

The local Rademacher complexity of ℓF at level r is defined as

ERnℓ
loc
F (r) where ℓlocF (r) := {ℓϕ,θ : ϕ ∈ Φ, θ ∈ Θ, P ℓ2ϕ,θ ≤ r}. (4.14)

This notion is less general than the one defined in [78, 79] but is sufficient for our pur-

pose. Here we also define a loss function space ℓQ := {∥Qθ − Q∗∥F : θ ∈ Θ} for

the neural module Qθ, and introduce its local Rademacher complexity ERnℓ
loc
Q (rq), where

ℓlocQ (rq) =
{
∥Qθ−Q∗∥F ∈ ℓQ : P∥Qθ−Q∗∥2F ≤ rq

}
. With these definitions, we can show

that the local Rademacher complexity of the hybrid architecture is explicitly related to all

considered algorithmic properties, namely convergence, stability and sensitivity, and there

is an intricate trade-off.

Theorem 4.6.1. Assume the problem setting in Sec 4.3. Then we have for any t > 0 that
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ERnℓ
loc
F (r) ≤

√
2dn− 1

2 Stab(k)
(√

(Cvg(k)M +
√
r)2C1(n) + C2(n, t) + C3(n, t) + 4

)
(4.15)

+ Sens(k)BΦ, (4.16)

where Stab(k) = supϕ Stab(k, ϕ) and Cvg(k) = supϕ Cvg(k, ϕ) are worst-case stabil-

ity and convergence, BΦ = 1
2
supϕ,ϕ′∈Φ ∥ϕ − ϕ′∥2, C1(n) = O(logN(n)), C3(n, t) =

O( logN(n)√
n

+

√
logN(n)

et
), C2(n, t) = O( t logN(n)

n
+ (C3(n, t) + 1) logN(n)√

n
), and N(n) =

N ( 1√
n
, ℓQ, L∞) is the covering number of ℓQ with radius 1√

n
and L∞ norm.

4.6.2 Implications

Trade-offs between convergence, stability and sensitivity. Generally speaking, the con-

vergence rate Cvg(k) and sensitivity Sens(k) have similar behavior, but Stab(k) behaves

opposite to them; see illustrations in Fig 4.2. Therefore, the way these three quantities

interact in Theorem 4.6.1 suggests that in different regimes one may see different general-

ization behavior. More specially, depending on the parameterization of Qθ, the coefficients

C1, C2, and C3 in Eq. 4.15 may have different scale, making the local Rademacher com-

plexity bound dominated by different algorithmic properties. Since the coefficients Ci are

monotonely increasing in the covering number of ℓQ, we expect that:

(i) When Qθ is over-parameterized, the covering number of ℓQ becomes large, as

do the three coefficients. Large Ci will reduce the effect of Cvg(k) and make Eq. 4.15

dominated by Stab(k);

(ii) When Qθ is under-parameterized, the three coefficients get small, but they still

reduce the effect of Cvg(k) given the constant 4 in Eq. 4.15, again making it dominated by

Stab(k);

(iii) When the parametrization of Qθ is about-right, we can expect Cvg(k) to play
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a critical role in Eq. 4.15, which will then behave similar to the product Stab(k)Cvg(k),

as illustrated schematically in Fig 4.2. We experimentally validate these implications in

Sec 4.7.

k

Cvg(k) or Sens(k)
GD
NAG

k

Stab(k)
GD
NAG

k

Cvg(k) * Stab(k)
GD
NAG

Figure 4.2: Overall trend of algorithmic properties.

Trade-off of the depth. Combining the above implications with the approximation

ability analysis in Sec 4.5, we can see that in the above-mentioned cases (i) and (ii), deeper

algorithm layers will lead to better approximation accuracy but worse generalization. Only

in the ideal case (iii), a deeper algorithm module can induce both better representation

and generalization abilities. This result provides practical guidelines for some recently

proposed infinite-depth models [99, 100].

4.6.3 Comparison to Standard Rademacher complexity Analysis

If we consider the standard Rademacher complexity and directly bound it by the covering

number of ℓF via Dudley’s entropy integral in the way some existing generalization bounds

of deep learning are derived [8, 76, 77], we will get the following upper bound for the

covering number, where Cvg(k) does not play a role:

N (ϵ, ℓF , L2(Pn)) ≤ N (ϵ/ (2Stab(k)) ,Q, L2(Pn)) · N (ϵ/ (2Sens(k)) ,Φ, ∥ · ∥2). (4.17)

Since Φ only contains the hyperparameters in the algorithm andQ := {Qθ, θ ∈ Θ} is often

highly expressive, typically stability will dominate this bound. Or, consider the case when

algorithm layers are fixed so Φ only contains one element. Then this covering number is

determined by stability, which infers that NAGk
1(Qθ, ·) has a larger Rademacher complexity

than GDk
1(Qθ, ·) since it is less stable. However, in the local Rademacher complexity bound
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in Theorem 4.6.1, even if Sens(k) in Eq. 4.16 is ignored, there is still a trade-off between

convergence and stability which implies NAGk
1(Qθ, ·) can have a smaller local Rademacher

complexity than GDk
1(Qθ, ·), leading to a different conclusion. Our experiments show the

local Rademacher complexity bound is better for explaining the actual observations.

4.6.4 Pros and Cons of RNN as a Reasoning Layer

It has been shown that RNN (or GNN) can represent reasoning and iterative algorithms

over structures [38, 77]. Can our analysis framework also be used to understand RNN (or

GNN)? How will its behavior compare with more interpretable algorithm layers such as

GDk
ϕ and NAGk

ϕ? In the case of RNN, the algorithm update steps in each iteration are given

by an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yt +W 1
2 gt

)))
. (4.18)

where the activation function σ = ReLU takes yk and the gradient gt = Qyt + b as inputs.

Then a recurrent neural network RNNk
ϕ having k unrolled RNN cells can be viewed as a

neural algorithm.

Table 4.2: Properties of RNNk
ϕ.

Stable region Φ cϕ < 1
Stab(k, ϕ) O(1− ckϕ)
Sens(k) O(1− (infϕ cϕ)

k)
minϕ Cvg(k, ϕ) O(ρk) with ρ < 1

The algorithmic properties of RNNk
ϕ are summarized in Table 4.2. Assume ϕ = {V,W 1

1 ,W
1
2 ,W

2:L}

is in a stable region with cϕ := supQ ∥V ∥2∥W 1
1 +W 1

2Q∥2
∏L

l=2 ∥W l∥2 < 1, so that the

operations in RNNcell are strictly contractive, i.e., ∥yk+1−yk∥2 < ∥yk−yk−1∥2. In this

case, the stability and sensitivity of RNNk
ϕ are guaranteed to be bounded.

However, the fundamental disadvantage of RNN is its lack of worst-case guarantee for

convergence. In general the outputs of RNNk
ϕ may not converge to the minimizer Opt,

47



meaning that its worst-case convergence rate can be much larger than 1. This will lead to

worse generalization bound according to our theory compared to GDk
ϕ and NAGk

ϕ.

The advantage of RNN is its expressiveness, especially given the universal approxima-

tion ability of MLP in the RNNcell. One can show that RNNk
ϕ can express GDk

ϕ or NAGk
ϕ

with suitable choices of ϕ. Therefore, its best-case convergence can be as small as O(ρk)

for some ρ < 1. When the needed types of reasoning is unknown or beyond what exist-

ing algorithms are capable of, RNN has the potential to learn new reasoning types given

sufficient data.

4.7 Experimental Validation

Our experiments aim to validate our theoretical prediction with computational simulations,

rather than obtaining state-of-the-art results. Implementations in Python are released1.

The experiments follow the problem setting in Sec 4.3. We sample 10000 pairs of (x, b)

uniformly as overall dataset. During training, n samples are randomly drawn from these

10000 data points as the training set. Each Q∗(x) is produced by a rotation matrix and

a vector of eigenvalues parameterized by a randomly fixed 2-layer dense neural network

with hidden dimension 3. Then the labels are generated according to y = Opt(Q∗(x), b).

We train the model Algk
ϕ(Qθ, ·) on Sn using the loss in Eq. 4.10. Here, Qθ has the same

overall architecture asQ∗ but the hidden dimension could vary. Note that in all figures, each

k corresponds to an independently trained model with k iterations in the algorithm layer,

instead of the sequential outputs of a single model. Each model is trained by ADAM and

SGD with learning rate grid-searched from [1e-2,5e-3,1e-3,5e-4,1e-4], and only the best

result is reported. Furthermore, error bars are produced by 20 independent instantiations of

the experiments.

Approximation ability. To validate Lemma 4.5.1, we compare GDk
ϕ (Qθ, ·) and NAGk

ϕ (Qθ, ·)

in terms of approximation accuracy. For various hidden sizes of Qθ, the results are similar,

1https://github.com/xinshi-chen/Deep-Architecture-With-Reasoning-Layer
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Figure 4.3: Training error.

so we report one representative case in Fig 4.3. The approximation accuracy aligns with the

convergence of the algorithms, showing that faster converging algorithm can induce better

approximation ability.

Faster convergence⇒better Qθ. We report the error of the neural module Qθ in

Fig 4.4. Note that Algk
ϕ(Qθ, ·) is trained end-to-end, without supervision onQθ. In Fig 4.4,

the error of Qθ decreases as k grows, in a rate similar to algorithm convergence. This val-

idates the implication of Lemma 4.5.2 that, when Algk
ϕ is closer to Opt, it can help the

underlying neural module Qθ to get closer to Q∗.
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Figure 4.5: Generalization gap

Generalization gap. In Fig 4.5, we report the generalization gaps, with hidden sizes

of Qθ being 0, 16, and 32, which corresponds to the three cases (ii), (iii), and (i) discussed

under Theorem 4.6.1, respectively. Comparing Fig 4.5 to Fig 4.2, we can see that the

experimental results match very well with the theoretical implications.
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CHAPTER 5

DYNAMIC DEEP LEARNING MODEL INSPIRED BY ALGORITHMS:

LEARNING TO STOP WHILE LEARNING TO PREDICT

There is a recent surge of interest in designing deep architectures based on the update steps

in traditional algorithms, or learning neural networks to improve and replace traditional

algorithms. While traditional algorithms have certain stopping criteria for outputting re-

sults at different iterations, many algorithm-inspired deep models are restricted to a “fixed-

depth” for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be

different for different input instances, either to avoid “over-thinking”, or because we want

to compute less for operations converged already. In this chapter, we tackle this varying

depth problem using a steerable architecture, where a feed-forward deep model and a varia-

tional stopping policy are learned together to sequentially determine the optimal number of

layers for each input instance. Training such architecture is very challenging. We provide

a variational Bayes perspective and design a novel and effective training procedure which

decomposes the task into an oracle model learning stage and an imitation stage. Experi-

mentally, we show that the learned deep model along with the stopping policy improves the

performances on a diverse set of tasks, including learning sparse recovery, few-shot meta

learning, and computer vision tasks.

The research in this chapter was previously presented at the ICML 2020 conference in

[101].

5.1 Introduction

Recently, researchers are increasingly interested in the connections between deep learning

models and traditional algorithms: deep learning models are viewed as parameterized al-

gorithms that operate on each input instance iteratively, and traditional algorithms are used
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Figure 5.1: Motivation for learning to stop.

as templates for designing deep learning architectures. While an important concept in tra-

ditional algorithms is the stopping criteria for outputting the result, which can be either a

convergence condition or an early stopping rule, such stopping criteria has been more or

less ignored in algorithm-inspired deep learning models. A “fixed-depth” deep model is

used to operate on all problem instances (Fig. 5.1 (a)). Intuitively, for deep learning mod-

els, the optimal depth (or the optimal number of steps to operate on an input) can also be

different for different input instances, either because we want to compute less for opera-

tions converged already, or we want to generalize better by avoiding “over-thinking”. Such

motivation aligns well with both the cognitive science literature [102] and many examples

below:

• In learning to optimize [38, 103], neural networks are used as the optimizer to mini-

mize some loss function. Depending on the initialization and the objective function, an

optimizer should converge in different number of steps;

• In learning to solve statistical inverse problems such as compressed sensing [48, 49],

inverse covariance estimation [43], and image denoising [55], deep models are learned to

directly predict the recovery results. In traditional algorithms, problem-dependent early

stopping rules are widely used to achieve regularization for a variance-bias trade-off.

Deep learning models for solving such problems maybe also achieve a better recovery
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accuracy by allowing instance-specific computation steps;

• In meta learning, MAML [89] used an unrolled and parametrized algorithm to adapt a

common parameter to a new task. However, depending on the similarity of the new task

to the old tasks, or, in a more realistic task-imbalanced setting where different tasks have

different numbers of data points (Fig. 5.1 (b)), a task-specific number of adaptation steps

is more favorable to avoid under or over adaption.

To address the varying depth problem, we propose to learn a steerable architecture,

where a shared feed-forward model for normal prediction and an additional stopping policy

are learned together to sequentially determine the optimal number of layers for each input

instance. In our framework, the model consists of (see Fig. 5.2)

• A feed-forward or recurrent mapping Fθ, which transforms the input x to generate a

path of features (or states) x1, · · · ,xT ; and

• A stopping policy πϕ : (x,xt) 7→ πt ∈ [0, 1], which sequentially observes the states and

then determines the probability of stopping the computation of Fθ at layer t.

These two components allow us to sequentially predict the next targeted state while at

the same time determining when to stop. In this chapter, we propose a single objective

function for learning both θ and ϕ, and we interpret it from the perspective of variational

Bayes, where the stopping time t is viewed as a latent variable conditioned on the input

x. With this interpretation, learning θ corresponds to maximizing the marginal likelihood,

and learning ϕ corresponds to the inference step for the latent variable, where a variational

distribution qϕ(t) is optimized to approximate the posterior. A natural algorithm for solving

this problem could be the Expectation-Maximization (EM) algorithm, which can be very

hard to train and inefficient.

How to learn θ and ϕ effectively and efficiently? We propose a principled and effective

training procedure, where we decompose the task into an oracle model learning stage and

an imitation learning stage (Fig. 5.3). More specifically,

• During the oracle model learning stage, we utilize a closed-form oracle stopping distri-
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Figure 5.2: Two-component model: learning to predict (blue) while learning to stopping
(green).

bution q∗|θ which can leverage label information not available at testing time.

• In the imitation learning stage, we use a sequential policy πϕ to mimic the behavior of

the oracle policy obtained in the first stage. The sequential policy does not have access

to the label so that it can be used during testing phase.

max
$
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Figure 5.3: Two-stage training framework.

This procedure provides us a very good initial predictive model and a stopping policy.

We can either directly use these learned models, or plug them back to the variational EM

framework and reiterate to further optimize both together.

Our proposed learning to stop method is a generic framework that can be applied to a

diverse range of applications. To summarize, our contribution in this chapter includes:

1. a variational Bayes perspective to understand the proposed model for learning both the
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predictive model and the stopping policy together;

2. a principled and efficient algorithm for jointly learning the predictive model and the

stopping policy; and the relation of this algorithm to reinforcement learning;

3. promising experiments on various tasks including learning to solve sparse recovery

problems, task-imbalanced few-shot meta learning, and computer vision tasks, where

we demonstrate the effectiveness of our method in terms of both the prediction accuracy

and inference efficiency.

5.2 Related Works

Unrolled algorithm. A line of recent works unfold and truncate iterative algorithms to de-

sign neural architectures. These algorithm-based deep models can be used to automatically

learn a better algorithm from data. This idea has been demonstrated in different problems

including sparse signal recovery [45, 104, 40, 105, 59, 48, 49], sparse inverse covariance

estimation [43], sequential Bayesian inference [56], parameter learning in graphical models

[106], non-negative matrix factorization [107], etc. Unrolled algorithm based deep mod-

ule has also be used for structured prediction [24, 25, 26]. Before the training phase, all

these works need to assign a fixed number of iterations that is used for every input instance

regardless of their varying difficulty level. Our proposed method is orthogonal and com-

plementary to all these works, by taking the variety of the input instances into account via

adaptive stopping time.

Meta learning. Optimization-based meta learning techniques are widely applied for

solving challenging few-shot learning problems [108, 89, 109]. Several recent advances

proposed task-adaptive meta-learning models which incorporate task-specific parameters

[110, 111, 112] or task-dependent metric scaling [113]. In parallel with these task-adaptive

methods, we propose a task-specific number of adaptation steps and demonstrate the effec-

tiveness of this simple modification under the task-imbalanced scenarios.

Other adaptive-depth deep models. In image recognition, ‘early exits’ is proposed
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mainly aimed at improving the computation efficiency during the inference phase [114,

115, 116], but these methods are based on specific architectures. [117] proposed to avoiding

“over-thinking” by early stopping. However, the same as all the other ‘early exits’ models,

some heuristic policies are adopted to choose the output layer by confidence scores of

internal classifiers. Also, their algorithms for training the feed-forward model Fθ do not

take into account the effect of the stopping policy.

Optimal stopping. In optimal control literature, optimal stopping is a problem of

choosing a time to take a given action based on sequentially observed random variables

in order to maximize an expected payoff [118]. When a policy for controlling the evolution

of random variables (corresponds to the output of Fθ) is also involved, it is called a “mixed

control” problem, which is highly related to our work. Existing works in this area find the

optimal controls by solving the Hamilton-Jacobi-Bellman (HJB) equation, which is theo-

retically grounded [119, 120, 121]. However, they focus on stochastic differential equation

based model and the proposed algorithms suffer from the curse of dimensionality problem.

[122] use DL to learn the optimal stopping policy, but the learning of θ is not considered.

Besides, [122] use reinforcement learning (RL) to solve the problem. In Section 5.4, we

will discuss how our variational inference formulation is related to RL.

5.3 Problem Formulation

In this section, we will introduce how we model the stopping policy together with the

predictive deep model, define the joint optimization objective, and interpret this framework

from a variational Bayes perspective.
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5.3.1 Dynamic model

The predictive model, Fθ, is a typical T -layer deep model that generates a path of embed-

dings (x1, · · · ,xT ) through:

Predictive model: xt = fθt(xt−1), for t = 1, · · · , T (5.1)

where the initial x0 is determined by the input x. We denote it by Fθ = {fθ1 , · · · , fθT }

where θ ∈ Θ are the parameters. Standard supervised learning methods learn θ by optimiz-

ing an objective estimated on the final state xT . In our model, the operations in Eq. 5.1 can

be stopped earlier, and for different input instance x, the stopping time t can be different.

Our stopping policy, πϕ, determines whether to stop at t-th step after observing the

input x and its first t states x1:t transformed by Fθ. If we assume the Markov property,

then πϕ only needs to observe the most recent state xt. In this chapter, we only input x and

xt to πϕ at each step t, but it is trivial to generalize it to πϕ(x,x1:t). More precisely, πϕ is

defined as a randomized policy as follows:

Stopping policy: πt = πϕ(x,xt), for t= 1, · · · , T − 1 (5.2)

where πt ∈ [0, 1] is the probability of stopping. We abuse the notation π to both represent

the parametrized policy and also the probability mass.

This stopping policy sequentially makes a decision whenever a new state xt is observed.

Conditioned on the states observed until step t, whether to stop before t is independent on

states after t. Therefore, once it decides to stop at t, the remaining computations can be

saved, which is a favorable property when the inference time is a concern, or for some

optimal stopping problems such as option trading where getting back to earlier states is not

allowed.
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5.3.2 From sequential policy to stop time distribution

The stopping policy πϕ makes sequential actions based on the observations, where πt :=

πϕ(x,xt) is the probability of stopping when xt is observed. These sequential actions

π1, · · · , πT−1 jointly determines the random time t at which the stop occurs. Induced by

πϕ, the probability mass function of the stop time t, denoted as qϕ, can be computed by

Variational stop time distribution:


qϕ(t) = πt

∏t−1
τ=1(1− πτ ) if t < T,

qϕ(T ) =
∏T−1

τ=1 (1− πτ ) else.
(5.3)

In this equation, the product
∏t−1

τ=1(1− πτ ) indicates the probability of ‘not stopped before

t’, which is the survival probability. Multiply this survival probability with πt, we have

the stop time distribution qϕ(t). For the last time step T , the stop probability qϕ(T ) simply

equals to the survival probability at T , which means if the process is ‘not stopped before

T ’, then it must stop at T .

Note that we only use πϕ in our model to sequentially determine whether to stop. How-

ever, we use the induced probability mass qϕ to help design the training objective and also

the algorithm.

5.3.3 Optimization objective

Note that the stop time t is a discrete random variable with distribution determined by

qϕ(t). Given the observed label y of an input x, the loss of the predictive model stopped at

position t can computed as ℓ(y,xt; θ) where ℓ(·) is a loss function. Taking into account all

possible stopping positions, we will be interested in the loss in expectation over t,

L(θ, qϕ;x,y) := Et∼qϕℓ(y,xt; θ)− βH(qϕ), (5.4)
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where H(qϕ) := −
∑

t qϕ(t) log qϕ(t) is an entropy regularization and β is the regulariza-

tion coefficient. Given a data set D = {(x,y)}, the parameters of the predictive model and

the stopping policy can be estimated by

minθ,ϕ
1
|D|
∑

(x,y)∈D L(θ, qϕ;x,y). (5.5)

To better interpret the model and objective, in the following, we will make a connection

from the perspective of variational Bayes, and how the objective function defined in Eq. 5.4

is equivalent to the β-VAE objective.

5.3.4 Variational Bayes perspective

In the Bayes’ framework, a probabilistic model typically consists of prior, likelihood func-

tion and posterior of the latent variable. We find the correspondence between our model

and a probabilistic model as follows (also see Table 5.1)

• we view the adaptive stopping time t as a latent variable which is unobserved;

• The conditional prior p(t|x) of t is a uniform distribution over all the layers in this

chapter. However, if one wants to reduce the computation cost and penalize the stopping

decisions at deeper layers, a prior with smaller probability on deeper layers can be defined

to regularize the results;

• The likelihood function pθ(y|t,x) of the observed label y is controlled by θ, since Fθ

determines the states xt;

• The posterior distribution over the stopping time t can be computed by Bayes’ rule

pθ(t|y,x) ∝ pθ(y|t,x)p(t|x), but it requires the observation of the label y, which is

infeasible during testing phase.

In this probabilistic model, we need to learn θ to better fit the observed data and learn a

variational distribution qϕ over t that only takes x and the transformed internal states as

inputs to approximate the true posterior.
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Table 5.1: Corresponds between our model and Bayes’ model.

stop time t latent variable
label y observation

loss ℓ(y,xt; θ) likelihood pθ(y|t,x)
stop time distribution qϕ posterior pθ(t|y,x)

regularization prior p(t|x)

More specifically, the parameters in the likelihood function and the variational posterior

can be optimized using the variational autoencoder (VAE) framework [123]. Here we

consider a generalized version called β-VAE [124], and obtain the optimization objective

for data point (x,y)

Jβ-VAE(θ, qϕ;x,y) := Eqϕ log pθ(y|t,x)− βKL(qϕ(t)||p(t|x)), (5.6)

where KL(·||·) is the KL divergence. When β = 1, it becomes the original VAE objec-

tive, i.e., the evidence lower bound (ELBO). Now we are ready to present the equivalence

relation between the β-VAE objective and the loss defined in Eq. 5.4. See [101] for the

proof.

Lemma 5.3.1. Assume (i) the loss function ℓ in Eq. 5.4 is defined as the negative log-

likelihood (NLL), i.e., ℓ(y,xt; θ) := − log pθ(y|t,x); and (ii) the prior p(t|x) is a uniform

distribution over t. Then minimizing the loss L in Eq. 5.4 is equivalent to maximizing the

β-VAE objective Jβ-VAE in Eq. 5.6.

For classification problems, the cross-entropy loss is aligned with NLL. For regression

problems with mean squared error (MSE) loss, we can define the likelihood as pθ(y|t,x) ∼

N (xt, I). Then the NLL of this Gaussian distribution is− log pθ(y|t,x) = 1
2
∥y−xt∥22+C,

which is equivalent to MSE loss. More generally, we can always define pθ(y|t,x) ∝

exp(−ℓ(y,xt; θ)).

This VAE view allows us to design a two-step procedure to effectively learn θ and ϕ in

the predictive model and stopping policy, which is presented in the next section.
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5.4 Effective Training Algorithm

VAE-based methods perform optimization steps over θ (M step for learning) and ϕ (E step

for inference) alternatively until convergence, which has two limitations in our case:

i. The alternating training can be slow to converge and requires tuning the training

scheduling;

ii. The inference step for learning qϕ may have the mode collapse problem, which in

this case means qϕ only captures the time step t with highest averaged frequency.

To overcome these limitations, we design a training procedure followed by an optional

fine-tuning stage using the variational lower bound in Eq. 5.6. More specifically,

Stage I. Find the optimal θ by maximizing the conditional mariginal likelihood when

the stop time distribution follows an oracle distribution q∗θ .

Stage II. Fix the optimal θ learned in Stage I, and only learn the distribution qϕ to

mimic the oracle by minimizing the KL divergence between qϕ and q∗θ .

Stage III. (Optional) Fine-tune θ and ϕ jointly towards the joint objective in Eq. 5.6.

The overall algorithm steps are summarized in Algorithm 3. In the following sections, we

will focus on the derivation of the first two training steps. Then we will discuss several

methods to further improve the memory and computation efficiency for training.

Oracle Stop Time Distribution. We first give the definition of the oracle stop time

distribution q∗θ . For each fixed θ, we can find a closed-form solution for the optimal q∗θ that

optimizes the joint objective.

q∗θ(·|y,x) := argmaxq∈∆T−1 Jβ-VAE(θ, q;x,y)

Alternatively, q∗θ(·|y,x) = argminq∈∆T−1 L(θ, q;x,y). Under the mild assumptions in
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Lemma 5.3.1, these two optimizations lead to the same optimal oracle distribution.

Oracle stop time distribution:q∗θ(t|y,x) =
pθ(y|t,x)

1
β∑T

t=1 pθ(y|t,x)
1
β

(5.7)

=
exp(− 1

β
ℓ(y,xt; θ))∑T

t=1 exp(−
1
β
ℓ(y,xt; θ))

(5.8)

This closed-form solution makes it clear that the oracle picks a step t according to the

smallest loss or largest likelihood with an exploration coefficient β.

Remark: When β = 1, q∗θ is the same as the posterior distribution pθ(t|y,x) ∝

pθ(y|t,x)p(t|x).

Note that there are no new parameters in the oracle distribution. Instead, it depends on

the parameters θ in the predictive model. Overall, the oracle q∗θ is a function of θ, t, y and

x that has a closed-form. Next, we will introduce how we use this oracle in the first two

training stages.

5.4.1 Stage I: Predictive model learning

In Stage I, we optimize the parameters θ in the predictive model by taking into account

the oracle stop distribution q∗θ . This step corresponds to the M step for learning θ, by

maximizing the marginal likelihood. The difference with the normal M step is that here qϕ

is replaced by the oracle q∗θ that gives the optimal stopping distribution so that the marginal

likelihood is independent on ϕ. More precisely, stage I finds the optimum of:

max
θ

1

|D|
∑

(x,y)∈D

Jβ−VAE(θ, q
∗
θ ;x,y), (5.9)

where the β-VAE objective here is Jβ−VAE(θ, q
∗
θ ;x,y) =

∑T
t=1 q

∗
θ(t|y,x) log pθ(y|t,x)−

βKL(q∗θ(t)||p(t|x)).

Remark. For experiments that require higher memory costs (e.g., MAML), we prefer to

drop the entropy term, βKL(q∗θ(t)||p(t|x)), in the objective, so that stochastic sampling can
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Algorithm 3: Overall Algorithm
Randomly initialized θ and ϕ.
For itr = 1 to #iterations do ▷ Stage I.

Sample a batch of data points B ∼ D.
Take an optimization step to update θ towards the marginal likelihood function
defined in Eq. 5.9.

For itr = 1 to #iterations do ▷ Stage II.
Sample a batch of data points B ∼ D.
Take an optimization step to update ϕ towards the reverse KL divergence
defined in Eq. 5.10.

For itr = 1 to #iterations do ▷ Optional Step
Sample a batch of data points B ∼ D.
Update both θ and ϕ towards β-VAE objective in Eq. 5.6.

return θ, ϕ

be applicable to reduce the memory cost. Since we can adjust β in the oracle q∗ to control

the concentration level of the distribution, dropping the entropy term in the objective in

stage I does not affect much the performance.

Since q∗θ has a differentiable closed-form expression in terms of θ,x,y and t, the gra-

dient can also propagate through q∗θ , which is also different from the normal M step.

To summarize, in Stage I., we learn the predictive model parameter θ, by assuming that

the stop time always follows the best stopping distribution that depends on θ. In this case,

the learning of θ has already taken into account the effect of the data-specific stop time.

However, we note that the oracle q∗θ is not in the form of sequential actions as in Eq. 5.2

and it requires the access to the true label y, so it can not be used for testing. However, it

plays an important role in obtaining a sequential policy which will be explained next.

5.4.2 Stage II: Imitation with sequential policy

In Stage II, we learn the sequential policy πϕ that can best mimic the oracle distribution q∗θ ,

where θ is fixed to be the optimal θ learned in Stage I. The way of doing so is to minimize

the divergence between the oracle q∗θ and the variational stop time distribution qϕ induced

by πϕ (Eq. 5.3). There are various variational divergence minimization approaches that we
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can use [125]. For example, a widely used objective for variational inference is the reverse

KL divergence:

KL(qϕ||q∗θ) =
∑T

t=1−qϕ(t) log q∗θ(t|y,x)−H(qϕ).

Remark. We write qϕ(t) instead of qϕ(t|x1:T ,x) for notation simplicity, but qϕ is dependent

on x and x1:T (Eq. 5.3).

If we rewrite qϕ using π1, · · · , πT−1 as defined in Eq. 5.3, we can find that minimizing

the reverse KL is equivalent to finding the optimal policy πϕ in a reinforcement learning

(RL) environment, where the state is xt, action at ∼ πt := πϕ(x,xt) is a stop/continue

decision, the state transition is determined by θ and at, and the reward is defined as

r(xt, at;y) :=


−βℓ(y,xt; θ) if at = 0 (i.e. stop)

0 if at = 1 (i.e. continue)

where ℓ(y,xt; θ) = − log pθ(y|t,x). Details and derivation are given in Appendix A.2 in

[101] which shows minimizing KL(qϕ||q∗θ) is equivalent to solving the following maximum-

entropy RL:

max
ϕ

Eπϕ

∑T
t=1 [r(xt, at;y) +H(πt)] .

In some related literature, optimal stopping problem is often formulated as an RL prob-

lem [122]. Above we bridge the connection between our variational inference formulation

and the RL-based optimal stopping literature.

Although reverse KL divergence is a widely used objective, it suffers from the mode

collapse issue, which in our case may lead to a distribution qϕ that captures only a common

stopping time t for all x that on average performs the best, instead of a more spread-out
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stopping time. Therefore, we consider the forward KL divergence:

KL(q∗θ ||qϕ) = −
T∑
t=1

q∗θ(t|y,x) log qϕ(t)−H(q∗θ), (5.10)

which is equivalent to the cross-entropy loss, since the term H(q∗θ) can be ignored as θ is

fixed in this step. Experimentally, we find forward KL leads to a better performance.

The Optional Fine Tuning Stage. It is easy to see that our two-stage training procedure

also has an EM flavor. However, with the oracle q∗θ incorporated, the training of θ has

already taken into account the effect of the optimal stopping distribution. Therefore, we

can save a lot of alternation steps. After the two-stage training, we can fine-tune θ and ϕ

jointly towards the β-VAE objective. Experimentally, we find this additional stage does not

improve much the performance trained after the first two stages.

5.5 Experiments

We conduct experiments on (i) learning-based algorithm for sparse recovery, (ii) few-shot

meta learning, and (iii) image denoising. The comparison is in an ablation study fashion to

better examine whether the stopping policy can improve the performances given the same

architecture for the predictive model, and whether our training algorithm is more effective

compared to the alternating EM algorithm. In the end, we also discuss our exploration

of the image recognition task. Pytorch implementation of the experiments is released at

https://github.com/xinshi-chen/l2stop.

5.5.1 Learning to optimize: sparse recovery

We consider a sparse recovery task which aims at recovering x∗ ∈ Rn from its noisy

linear measurements b = Ax∗ + ϵ, where A ∈ Rm×n, ϵ ∈ Rm is Gaussian white noise,

and m ≪ n. A popular approach is to model the problem as the LASSO formulation

minx
1
2
∥b − Ax∥22 + ρ∥x∥1 and solves it using iterative methods such as the ISTA [126]
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and FISTA [127] algorithms. We choose the most popular model named Learned ISTA

(LISTA) as the baseline and also as our predictive model. LISTA is a T -layer network with

update steps:

xt = ηλt(W
1
t b+W 2

t xt−1), t = 1, · · · , T, (5.11)

where θ = {(λt,W 1
t ,W

2
t )}Tt=1 are leanable parameters.

Experiment setting. We follow [48] to generate the samples. The signal-to-noise ratio

(SNR) for each sample is uniformly sampled from 20, 30, and 40. The training loss for

LISTA is
∑T

t=1 γ
T−t∥xt − x∗∥22 where γ ≤ 1. It is commonly used for algorithm-based

deep learning, so that there is a supervision signal for every layer. For ISTA and FISTA,

we use the training set to tune the hyperparameters by grid search.

Table 5.2: Recovery performances of different algorithms/models.

SNR mixed 20 30 40

FISTA (T = 100) -18.96 -16.75 -20.46 -20.97
ISTA (T = 100) -14.66 -13.99 -14.99 -15.07
ISTA (T = 20) -9.17 -9.12 -9.24 -9.16

FISTA (T = 20) -11.12 -10.98 -11.19 -11.19
LISTA (T = 20) -17.58 -16.52 -18.16 -18.29

LISTA-stop (T ≤ 20) -22.41 -20.29 -23.90 -24.21

Recovery performance. (Table 5.2) We report the NMSE (in dB) results for each

model/algorithm evaluated on 1000 fixed test samples per SNR level. It is revealed in

Table 5.2 that learning-based methods have better recovery performances, especially for

the more difficult tasks (i.e. when SNR is 20). Compared to LISTA, our proposed adaptive-

stopping method (LISTA-stop) significantly improve recovery performance. Also, LISTA-

stop with ≤ 20 iterations performs better than ISTA and FISTA with 100 iterations, which

indicates a better convergence.

Stopping distribution. The stop time distribution qϕ(t) induced by πϕ can be computed

via Eq. 5.3. We report in Fig. 5.4 the stopping distribution averaged over the test samples,
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from which we can see that with a high probability LISTA-stop terminates the process

before arriving at 20-th iteration.

(a) stop time distribution (b) convergence

Figure 5.4: Left: Stop time distribution averaged over the test set. Right: Convergence of
different algorithms. For LISTA-stop, the NMSE weighted by the stopping distribution qϕ
is plotted. In the first 13 iterations qϕ(t) = 0, so no red dots are plotted.

Convergence comparison. Fig. 5.4 shows the change of NMSE as the number of

iterations increases. Since LISTA-stop outputs the results at different iteration steps, it

is not meaningful to draw a unified convergence curve. Therefore, we plot the NMSE

weighted by the stopping distribution qϕ, i.e., 10 log10(
∑N

i=1 qϕ(t|i)∥xt−x∗,i∥22∑N
i=1 qϕ(t|i)

/(
∑N

i=1 ∥x∗,i∥22
N

),

using the red dots. We observe that for LISTA-stop the expected NMSE increases as the

number of iterations increase, this might indicate that the later stopped problems are more

difficult to solve. Besides, at 15th iteration, the NMSE in Fig. 5.4 (b) is the smallest, while

the averaged stop probability mass qϕ(15) in Fig. 5.4 (a) is the highest.

Table 5.3: Different algorithms for training LISTA-stop.

SNR mixed 20 30 40

AEVB algorithm -21.92 -19.92 -23.27 -23.58
Stage I. + II. -22.41 -20.29 -23.90 -24.21

Stage I.+II.+III. -22.78 -20.59 -24.29 -24.73

Ablation study on training algorithms. To show the effectiveness of our two-stage

training, in Table 5.3, we compare the results with the auto-encoding variational Bayes

(AEVB) algorithm [128] that jointly optimizes Fθ and qϕ. We observe that the distribution

qϕ in AEVB gradually becomes concentrated on one layer and does not get rid of this
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Table 5.4: Few-shot classification in vanilla meta learning setting [89] where all tasks have
the same number of data points.

Omniglot 5-way Omniglot 20-way MiniImagenet 5-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML 98.7 ± 0.4% 99.1 ± 0.1% 95.8 ± 0.3% 98.9 ± 0.2% 48.70 ± 1.84% 63.11 ± 0.92%

MAML-stop 99.62 ± 0.22% 99.68 ± 0.12% 96.05 ± 0.35% 98.94 ± 0.10 % 49.56 ± 0.82% 63.41 ± 0.80%

local minimum, making its final result not as good as the results of our two-stage training.

Moreover, it is revealed that Stage III does not improve much of the performance of the

two-stage training, which also in turn shows the effectiveness of the oracle-based two-stage

training.

5.5.2 Task-imbalanced meta learning

In this section, we perform meta learning experiments in the few-short learning domain [108].

Experiment setting. We follow the setting in MAML [89] for the few-shot learning

tasks. Each task is an N-way classification that contains meta-{train, valid, test} sets.

On top of it, the macro dataset with multiple tasks is split into train, valid and test sets.

We consider the more realistic task-imbalanced setting proposed by [112]. Unlike the

standard setting where the meta-train of each task contains k-shots for each class, here

we vary the number of observation to perform k1- k2-shot learning where k1 < k2 are

the minimum/maximum number of observations per class, respectively. Build on top of

MAML, we denote our variant as MAML-stop which learns how many adaptation gradient

descent steps are needed for each task. Intuitively, the tasks with less training data would

prefer fewer steps of gradient-update to prevent overfitting. As we mainly focus on the

effect of learning to stop, the neural architecture and other hyperparameters are largely the

same as MAML.

Dataset. We use the benchmark datasets Omniglot [129] and MiniImagenet [108]. Om-

niglot consists of 20 instances of 1623 characters from 50 different alphabets, while Mini-

Imagenet involves 64 training classes, 12 validation classes, and 24 test classes. We use

exactly the same data split as [89]. To construct the imbalanced tasks, we perform 20-way
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1-5 shot classification on Omniglot and 5-way 1-10 shot classification on MiniImagenet.

The number of observations per class in each meta-test set is 1 and 5 for Omniglot and

MiniImagenet, respectively. For evaluation, we construct 600 tasks from the held-out test

set for each setting.

Table 5.5: Task-imbalanced few-shot image classification.

Omniglot MiniImagenet
20-way, 1-5 shot 5-way, 1-10 shot

MAML 97.96 ± 0.3% 57.20 ± 1.1%
MAML-stop 98.45± 0.2% 60.67± 1.0%

Results. Table 5.5 summarizes the accuracy and the 95% confidence interval on the held-

out tasks for each dataset. The maximum number of adaptation gradient descent steps is

10 for both MAML and MAML-stop. We can see the optimal stopping variant of MAML

outperforms the vanilla MAML consistently. For a more difficult task on MiniImagenet

where the imbalance issue is more severe, the accuracy improvement is 3.5%. For com-

pleteness, we include the performance on vanilla meta learning setting where all tasks have

the same number of observations in Table 5.4. MAML-stop still achieves comparable or

better performance.

5.5.3 Image denoising

In this section, we perform the image denoising experiments.

Dataset. The models are trained on BSD500 (400 images) [130], validated on BSD12,

and tested on BSD68 [131]. We follow the standard setting in [55, 132, 133] to add Gaus-

sian noise to the images with a random noise level σ ≤ 55 during training and validation

phases.

Experiment setting. We compare with two DL models, DnCNN [133] and UNLNet5

[132], and two traditional methods, BM3D [134] and WNNM [135]. Since DnCNN is one

of the most widely-used models for image denoising, we use it as our predictive model.
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All deep models including ours are considered in the blind Gaussian denoising setting,

which means the noise-level is not given to the model, while BM3D and WNNM require

the noise-level to be known.

Table 5.6: PSNA performance comparison. The sign * indicates that noise levels 65 and
75 do not appear in the training set.

σ DnCNN-stop DnCNN UNLNet5 BM3D WNNM

35 27.61 27.60 27.50 26.81 27.36
45 26.59 26.56 26.48 25.97 26.31
55 25.79 25.71 25.64 25.21 25.50

*65 23.56 22.19 - 24.60 24.92
*75 18.62 17.90 - 24.08 24.39

Results. The performance is evaluated by the mean peak signal-to-noise ratio (PSNR).

Table 5.6 shows that DnCNN-stop performs better than the original DnCNN. Especially,

for images with noise levels 65 and 75 which are unseen during training phase, DnCNN-

stop generalizes significantly better than DnCNN alone. Since there is no released code

for UNLNet5, its performances are copied from the paper [132], where results are not

reported for σ = 65 and 75. For traditional methods BM3D and WNNM, the test is in the

noise-specific setting. That is, the noise level is given to both BM3D and WNNM, so the

comparison is not completely fair to learning based methods in blind denoising setting.

5.5.4 Image recognition

We explore the potential of our idea for improving the recognition performances on Tiny-

ImageNet, using VGG16 [136] as the predictive model. With 14 internal classifiers, after

Stage I training, if the oracle q∗θ is used to determine the stop time t, the accuracy of VGG16

can be improved to 83.26%. Similar observation is provided in SDN [117], but their loss∑
twtℓt depends on very careful hand-tuning on the weight wt for each layer, while we

directly take an expectation using the oracle, which is more principled and leads to higher

accuracy (Table 5.7). However, it reveals to be very hard to mimic the behavior of the
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Ground Truth WNNM

DnCNN DnCNN-stop

Figure 5.5: Denoising results of an image with noise level 65.

orcale q∗θ by πϕ in Stage II, either due to the need of a better parametrization for πϕ or

more sophisticated reasons. Our learned πϕ leads to similar accuracy as the heuristic pol-

icy in SDN, which becomes the bottleneck in our exploration. However, based on the large

performance gap between the oracle and the original VGG16, our result still provides a

potential direction for breaking the performance bottleneck of DL on image recognition.

Table 5.7: Image recognition with oracle stop distribution.

VGG16 SDN training Our Stage I. training
58.60% 77.78% (best layer) 83.26% (best layer)
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Part II

Deep Learning Based Algorithm Design
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CHAPTER 6

LEARNING TO ESTIMATE SPARSE PRECISION MATRIX

Recovering sparse conditional independence graphs from data is a fundamental problem

in machine learning with wide applications. A popular formulation of the problem is an

ℓ1 regularized maximum likelihood estimation. Many optimization algorithms (such as the

Graphical Lasso Algorithm [137]) have been designed to solve this formulation to recover

the graph structure.

This chapter presents a deep learning method, called GLAD (Graph recovery Learning

Algorithm by Data-driven training), to learn an data-driven algorithm for recovering the

the sparse precision matrix from empirical covariance.

It is challenging to design the architecture for this task, since the symmetric positive

definiteness (SPD) and sparsity of the matrix are not easy to enforce in a deep learning

model. In this chapter, we will explain how we use an Alternating Minimization (AM)

algorithm as the inductive bias to design the architecture of GLAD.

The research in this chapter was previously presented at the ICLR 2020 conference in

[43].

6.1 Introduction

Very often a family of optimization problems needs to be solved again and again, similar in

structures but different in data. A data-driven algorithm may be able to leverage this distri-

bution of problem instances, and learn an algorithm which performs better than traditional

convex formulation. In the case of sparse graph recovery problems, the precision matrix

may also need to be estimated again and again, where the underlying graphs are different

but have similar degree distribution, the magnitude of the precision matrix entries, etc. For

instance, gene regulatory networks may be rewiring depending on the time and conditions,
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and we want to estimate them from gene expression data.

Given a task (e.g. an optimization problem), an algorithm will solve it and provide a

solution. Thus we can view an algorithm as a function mapping, where the input is the

task-specific information (i.e. the sample covariance matrix in our case) and the output is

the solution (i.e. the estimated precision matrix in our case).

However, it is very challenging to design a data-driven algorithm for precision matrix

estimation. First, the input and output of the problem may be large. A neural network

parameterization of direct mapping from the input covariance matrix to the output precision

matrix may require as many parameters as the square of the number of dimensions. Second,

there are many structure constraints in the output. The resulting precision matrix needs to

be positive definite and sparse, which is not easy to enforce by a simple deep learning

architecture. Third, direct mapping may result in a model with lots of parameters, and

hence may require lots of data to learn. Thus a data-driven algorithm needs to be designed

carefully to achieve a better bias-variance trade-off and satisfy the output constraints.

In this chapter, we propose a deep learning model ‘GLAD’ with following attributes:

• Uses an unrolled Alternating Minimization (AM) algorithm as an inductive bias.

• The regularization and the square penalty terms are parameterized as entry-wise func-

tions of intermediate solutions, allowing GLAD to learn to perform entry-wise regulariza-

tion update.

• Furthermore, this data-driven algorithm is trained with a collection of problem in-

stances in a supervised fashion, by directly comparing the algorithm outputs to the ground

truth graphs.

In our experiments, we show that the AM architecture provides very good inductive

bias, allowing the model to learn very effective sparse graph recovery algorithm with a

small amount of training data. In all cases, the learned algorithm can recover sparse graph

structures with much fewer data points from a new problem, and it also works well in

recovering gene regulatory networks based on realistic gene expression data generators.
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6.2 Sparse Graph Recovery Problem and Convex Formulation

Given m observations of a d-dimensional multivariate Gaussian random variable X =

[X1, . . . , Xd]
⊤, the sparse graph recovery problem aims to estimate its covariance matrix

Σ∗ and precision matrix Θ∗ = (Σ∗)−1. The ij-th component of Θ∗ is zero if and only if

Xi and Xj are conditionally independent given the other variables {Xk}k ̸=i,j . Therefore,

it is popular to impose an ℓ1 regularization for the estimation of Θ∗ to increase its sparsity

and lead to easily interpretable models. Following [138], the problem is formulated as the

ℓ1-regularized maximum likelihood estimation

Θ̂ = argminΘ∈Sd
++
− log(detΘ) + tr(Σ̂Θ) + ρ ∥Θ∥1,off , (6.1)

where Σ̂ is the empirical covariance matrix based on m samples, Sd
++ is the space of d× d

symmetric positive definite matrices (SPD), and ∥Θ∥1,off =
∑

i ̸=j |Θij| is the off-diagonal

ℓ1 regularizer with regularization parameter ρ. The sparse precision matrix estimation

problem in Eq. 6.1 is a convex optimization problem which can be solved by many al-

gorithms. A few canonical and advanced examples include the G-ISTA algorithm [139],

ADMM [140], BCD [137], etc.

6.3 Learning Data-Driven Algorithm for Precision Matrix Estimation

In the remainder of this chapter, we will present a data-driven method to learn an algorithm

for precision matrix estimation, and we call the resulting algorithm GLAD. We ask the

question of

Given a family of precision matrices, is it possible to improve recovery results

for sparse graphs by learning a data-driven algorithm?

Formally, suppose we are given n precision matrices {Θ∗(i)}ni=1 from a family G of

graphs and m samples {x(i,j)}mj=1 associated with each Θ∗(i). These samples can be used
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to form n sample covariance matrices {Σ̂(i)}ni=1. We are interested in learning an algorithm

for precision matrix estimation by solving a supervised learning problem,

min
f

1

n

n∑
i=1

L(GLADf (Σ̂
(i)),Θ∗(i)),

where f is a set of parameters in GLAD(·) and the output of GLADf (Σ̂
(i)) is expected to

be a good estimation of Θ∗(i) in terms of an interested evaluation metric L.

6.3.1 Architecture

As mentioned earlier in Section 6.1, it is a challenging task to design a good parameter-

ization of GLADf for this graph recovery problem. There is a list of desiderata for this

model:

• Small model size;

• Interpretable architecture;

• Meaningful intermediate outputs; and

• Semi positive definiteness of the output.

To take into account the above desiderata, our GLAD model is designed based on a

reformulation of the original optimization problem in Eq. 6.1 with a squared penalty term,

and an alternating minimization (AM) algorithm for solving it. More specifically, we con-

sider a modified optimization with a quadratic penalty parameter λ:

Θ̂λ, Ẑλ := argminΘ,Z∈Sd
++
− log(detΘ) + tr(Σ̂Θ) + ρ ∥Z∥1 +

1
2
λ ∥Z −Θ∥2F (6.2)

and the alternating minimization (AM) method for solving it:

ΘAM
k+1 ← 1

2

(
− Y +

√
Y ⊤Y + 4

λ
I
)
, where Y = 1

λ
Σ̂− ZAM

k ; (6.3)

ZAM
k+1 ← ηρ/λ(Θ

AM
k+1), (6.4)
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Algorithm 4: GLAD

Function GLADcell(Σ̂,Θ, Z, λ):
λ← Λnn(∥Z −Θ∥2F , λ)
Y ← λ−1Σ̂− Z
Θ← 1

2

(
− Y +

√
Y ⊤Y + 4

λ
I)

For all i, j do
ρij = ρnn(Θij, Σ̂ij, Zij)
Zij ← ηρij(Θij)

return Θ, Z, λ

Function GLAD(Σ̂):
Θ0 ← (Σ̂ + tI)−1, λ0 ← 1
For k = 0 to K − 1 do

Θk+1, Zk+1, λk+1

←GLADcell(Σ̂,Θk, Zk, λk)
return ΘK , ZK

where ηρ/λ(θ) := sign(θ)max(|θ| − ρ/λ, 0). We replace the penalty constants (ρ, λ) by

problem dependent neural networks, ρnn and Λnn. These neural networks are minimalist in

terms of the number of parameters as the input dimensions are mere {3, 2} for {ρnn,Λnn}

and outputs a single value. Algorithm 4 summarizes the update equations for our unrolled

AM based model, GLAD. Except for the parameters in ρnn and Λnn, the constant t for ini-

tialization is also a learnable scalar parameter. This unrolled algorithm with neural network

augmentation can be viewed as a highly structured recurrent architecture.

There are many traditional algorithms for solving graph recovery problems. We choose

AM as our basis because: First, empirically, we tried models built upon other algorithms in-

cluding G-ISTA, ADMM, etc, but AM-based model gives consistently better performances.

Second, and more importantly, the AM-based architecture has a nice property of maintain-

ing Θk+1 as a SPD matrix throughout the iterations as long as λk <∞. Third, as we prove

later in Section 6.4, the AM algorithm has linear convergence rate, allowing us to use a

fixed small number of iterations and still achieve small error margins.
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6.3.2 Training algorithm

To learn the parameters in GLAD architecture, we will directly optimize the recovery ob-

jective function rather than using log-determinant objective. A nice property of our deep

learning architecture is that each iteration of our model will output a valid precision ma-

trix estimation. This allows us to add auxiliary losses to regularize the intermediate results

of our GLAD architecture, guiding it to learn parameters which can generate a smooth

solution trajectory.

Specifically, we will use Frobenius norm in our experiments, and design an objective

which has some resemblance to the discounted cumulative reward in reinforcement learn-

ing:

min
f

lossf :=
1

n

n∑
i=1

K∑
k=1

γK−k
∥∥∥Θ(i)

k −Θ∗
∥∥∥2
F
, (6.5)

where (Θ
(i)
k , Z

(i)
k , λ

(i)
k ) = GLADcellf (Σ̂

(i),Θ
(i)
k−1, Z

(i)
k−1, λ

(i)
k−1) is the output of the recur-

rent unit GLADcell at k-th iteration, K is number of unrolled iterations, and γ ≤ 1 is a

discounting factor. We will use stochastic gradient descent algorithm to train the parame-

ters f in the GLADcell.

6.4 Theoretical Analysis

Since GLAD architecture is obtained by augmenting an unrolled optimization algorithm

by learnable components, the question is what kind of guarantees can be provided for such

learned algorithm, and whether learning can bring benefits to the recovery of the precision

matrix. In this section, we will first analyze the statistical guarantee of running the AM

algorithm in Eq. 6.3 and Eq. 6.4 for k steps with a fixed quadratic penalty parameter λ,

and then interpret its implication for the learned algorithm. First, we need some standard

assumptions about the true model from the literature [141]:
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Assumption 6.4.1. Let the set S = {(i, j) : Θ∗
ij ̸= 0, i ̸= j}. Then card(S) ≤ s.

Assumption 6.4.2. Λmin(Σ
∗) ≥ ϵ1 > 0 (or equivalently Λmax(Θ

∗) ≤ 1/ϵ1), Λmax(Σ
∗) ≤

ϵ2 and an upper bound on ∥Σ̂∥2 ≤ cΣ̂.

The assumption 6.4.2 guarantees that Θ∗ exists. Assumption 6.4.1 just upper bounds

the sparsity of Θ∗ and does not stipulate anything in particular about s. These assump-

tions characterize the fundamental limitation of the sparse graph recovery problem, beyond

which recovery is not possible. Under these assumptions, we prove the linear convergence

of AM algorithm.

Theorem 6.4.1. Under the assumptions 6.4.1 & 6.4.2, if ρ ≍
√

log d
m

, where ρ is the l1

penalty, d is the dimension of problem and m is the number of samples, the Alternate

Minimization algorithm has linear convergence rate for optimization objective defined in

(6.2). The kth iteration of the AM algorithm satisfies,

∥∥ΘAM
k −Θ∗∥∥

F
≤ Cλ

∥∥∥ΘAM
k−1 − Θ̂λ

∥∥∥
F
+OP

(√
(log d)/m

min( 1
(d+s)

, λ
d2
)

)
, (6.6)

where 0 < Cλ < 1 is a constant depending on λ.

From the theorem, one can see that by optimizing the quadratic penalty parameter λ,

one can adjust the Cλ in the bound. We observe that at each stage k, an optimal penalty pa-

rameter λk can be chosen depending on the most updated value Cλ. An adaptive sequence

of penalty parameters (λ1, . . . , λK) should achieve a better error bound compared to a fixed

λ. Since Cλ is a very complicated function of λ, the optimal λk is hard to choose manually.

Besides, the linear convergence guarantee in this theorem is based on the sparse regu-

larity parameter ρ ≍
√

log d
m

. However, choosing a good ρ value in practice is tedious task

as shown in our experiments.

In summary, the implications of this theorem are:

• An adaptive sequence (λ1, . . . , λK) should lead to an algorithm with better conver-

gence than a fixed λ, but the sequence may not be easy to choose manually.
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• Both ρ and the optimal λk depend on the corresponding error ∥ΘAM − Θ̂λ∥F , which

make these parameters hard to prescribe manually.

• Since, the AM algorithm has a fast linear convergence rate, we can run it for a fixed

number of iterations K and still converge with a reasonable error margin.

6.5 Experiments

In this section, we report several experiments to compare GLAD with traditional algorithms

and other data-driven algorithms. The results validate the list of desiderata mentioned

previously. Especially, it shows the potential of pushing the boundary of traditional graph

recovery algorithms by utilizing data. Python implementation is available1.

Evaluation metric. We use normalized mean square error (NMSE) and probability of

success (PS) to evaluate the algorithm performance. NMSE is 10 log10(E ∥Θp −Θ∗∥2F /E ∥Θ∗∥2F )

and PS is the probability of correct signed edge-set recovery, i.e.,

P
[
sign(Θp

ij) = sign(Θ∗
ij),∀(i, j) ∈ E(Θ∗)

]
,

where E(Θ∗) is the true edge set.

Notation. In all reported results, D stands for dimension d of the random variable, M

stands for sample size and N stands for the number of graphs (precision matrices) that is

used for training.

6.5.1 Benefit of data-driven gradient-based algorithm

Inconsistent optimization objective. Traditional algorithms are typically designed to op-

timize the ℓ1-penalized log likelihood. Since it is a convex optimization, convergence to

optimal solution is usually guaranteed. However, this optimization objective is different

from the true error. Taking ADMM as an example, it is revealed in Figure 6.1 that, although

1https://github.com/Harshs27/GLAD
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Figure 6.1: Convergence of ADMM in terms of NMSE and optimization objective.

the optimization objective always converges, errors of recovering true precision matrices

measured by NMSE have very different behaviors given different regularity parameter ρ,

which indicates the necessity of directly optimizing NMSE and hyperparameter tuning.

6.5.2 Recovery probability
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Figure 6.2: Sample complexity for model selection consistency.

As analyzed by [142], the recovery guarantee (such as in terms of Frobenius norm) of

the ℓ1 regularized log-determinant optimization significantly depends on the sample size

and other conditions. Our GLAD directly optimizes the recovery objective based on data,

and it has the potential of pushing the sample complexity limit. We experimented with this

and found the results positive.

We follow [142] to conduct experiments on GRID graphs, which satisfy the condi-

tions required in [142]. Furthermore, we conduct a more challenging task of recovering

restricted but randomly constructed graphs. The probability of success (PS) is non-zero

only if the algorithm recovers all the edges with correct signs, plotted in Figure 6.2. GLAD

consistently outperforms traditional methods in terms of sample complexity as it recovers

the true edges with considerably fewer number of samples.
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6.5.3 Gene regulation data

The SynTReN [143] is a synthetic gene expression data generator specifically designed

for analyzing the sparse graph recovery algorithms. It models different types of biological

interactions and produces biologically plausible synthetic gene expression data. Figure 6.3

shows that GLAD performs favourably for structure recovery in terms of NMSE on the

gene expression data. As the governing equations of the underlying distribution of the

SynTReN are unknown, these experiments also emphasize the ability of GLAD to handle

non-Gaussian data.

Figure 6.4 visualizes the edge-recovery performance of GLAD models trained on a

sub-network of true Ecoli bacteria data. We denote, TPR: True Positive Rate, FPR: False

Positive Rate, FDR: False Discovery Rate. The number of simulated training/validation

graphs were set to 20/20. One batch ofM samples were taken per graph. Although, GLAD

was trained on graphs with D = 25, it was able to robustly recover a higher dimensional

graph D = 43 structure.
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Figure 6.3: Performance on the SynTReN generated gene expression data with graph as
Erdos-renyi having sparsity p = 0.05.
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(a) True graph (b) M=10, fdr=0.613, (c) M=100, fdr=0.236,
tpr=0.913, fpr=0.114 tpr=0.986, fpr=0.024
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Figure 6.4: Recovered graph structures for a sub-network of the E. coli consisting of 43
genes and 30 interactions with increasing samples. Increasing the samples reduces the fdr
by discovering more true edges.
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CHAPTER 7

PROVABLE LEARNING-BASED ALGORITHM FOR SPARSE RECOVERY

Recovering sparse parameters from observational data is a fundamental problem in ma-

chine learning with wide applications. Many classic algorithms can solve this problem

with theoretical guarantees, but their performances rely on choosing the correct hyperpa-

rameters. Besides, hand-designed algorithms do not fully exploit the particular problem

distribution of interest. In this chapter, we propose a deep learning method for algorithm

learning called PLISA (Provable Learning-based Iterative Sparse recovery Algorithm).

PLISA is designed by unrolling a classic path-following algorithm for sparse recovery,

with some components being more flexible and learnable. We theoretically show the im-

proved recovery accuracy achievable by PLISA. Furthermore, we analyze the empirical

Rademacher complexity of PLISA to characterize its generalization ability to solve new

problems outside the training set. This chapter contains novel theoretical contributions to

the area of learning-based algorithms in the sense that (i) PLISA is generically applica-

ble to a broad class of sparse estimation problems, (ii) generalization analysis has received

less attention so far, and (iii) our analysis makes novel connections between the general-

ization ability and algorithmic properties such as stability and convergence of the unrolled

algorithm, which leads to a tighter bound that can explain the empirical observations. The

techniques could potentially be applied to analyze other learning-based algorithms in the

literature.

The research in this chapter was previously presented at the ICLR 2022 conference in

[144].
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7.1 Introduction

The problem of recovering a sparse vector β∗ from finite observationsZ1:n ∼ (Pβ∗)n is fun-

damental in machine learning, covering a broad family of problems including compressed

sensing, sparse regression analysis, graphical model estimation, etc. It has also found ap-

plications in various domains. For example, in magnetic resonance imaging, sparse signals

need to be reconstructed from measurements taken by a scanner. In computational biology,

estimating a sparse graph structure from gene expression data is important for understand-

ing gene regulatory networks.

observations 𝒁𝟏:𝒏

gene expression data gene regulatory network

true parameter 𝜷∗

MRI image clean image

Figure 7.1: Sparse recovery problems.

Various classic algorithms are available for solving sparse recovery problems. Many of

them come with theoretical guarantees for the recovery accuracy. However, the theoretical

performance often relies on choosing the correct hyperparameters, such as regularization

parameters and the learning rate, which may depend on unknown constants. Furthermore,

in practice, similar problems may need to be solved repeatedly, but it is hard for classic

algorithms to fully utilize this information.

To alleviate these limitations, we consider the approach of learning-to-learn and pro-

pose a neural algorithm, called PLISA (Provable Learning-based Iterative Sparse recovery

Algorithm). PLISA is a deep learning model that takes the observations Z1:n as the input

and outputs an estimation for β∗. To make use of classic techniques developed by domain
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experts, we design the architecture of PLISA by unrolling and modifying a classic path-

following algorithm proposed by [145]. To benefit from learning, some components in this

classic algorithm are made more flexible with careful design and treated as learnable pa-

rameters in PLISA. These parameters can be learned by optimizing the performances on a

set of training problems. The learned PLISA can then be used for solving other problems

in the target distribution.

With the algorithm design problem converted to a deep learning problem, we ask the

two fundamental questions in learning theory:

1. Capacity: What’s the recovery accuracy achievable by PLISA? Can the flexible com-

ponents in PLISA lead to an algorithm which effectively improves the recovery perfor-

mance?

2. Generalization: How well can the learned PLISA solve new problems outside the

training set? Is the generalization behavior related to the algorithmic properties of

PLISA?

Aiming at supplying rigorous answers to these questions, we conduct theoretical analysis

for PLISA to provide guarantees for its representation and generalization ability. The

results and the techniques in our analysis can distinguish our work from existing studies on

algorithm learning. We summarize our novel contributions into the following three aspects.

1. Theoretical understanding. In contrast to the plethora of empirical studies on

algorithm learning, there have been relatively few studies devoted to the theoretical un-

derstanding. Existing theoretical efforts primarily focus on analyzing the convergence rate

achievable by the neural algorithm [48, 49, 59, 50], but the generalization error bound has

received less attention so far. A substantial body of works only argue intuitively that algo-

rithm unrolling architectures can generalize well because they contain a small number of

parameters. In comparison, we provide theoretical guarantees for both the capacity and the

generalization ability of PLISA, which are more solid arguments.

2. General setting. The problem setting in this chapter is new and more challenging.
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Existing works mainly focus on a specific problem. For example, the compressed sensing

problem with a fixed design matrix is the mostly investigated one. PLISA, however, is

generic and is applicable to various sparse recovery problems as long as they satisfy certain

conditions in Assumption 7.4.1.

3. Novel connection. The algorithmic structure in PLISA can make it behaves differ-

ently from conventional neural networks. Therefore, we largely utilize the analysis tech-

niques in classic algorithms to derive its generalization bound. By combining the analy-

sis tools of deep learning theory and optimization algorithms, our result reveals a novel

connection between the generalization ability of PLISA and the algorithmic properties

including the convergence rate and stability of the unrolled algorithm. Benefit from this

connection, our generalization bound is tight in the sense that it matches the interesting

behavior of PLISA observed in experiments - the generalization gap could decrease in the

number of layers, which is rarely observed in conventional neural networks.

7.2 Related Work

Learning-to-learn has become an active research direction in recent years [146, 147, 20,

148, 21, 149, 22]. Many works share the idea of unrolling or differentiating through algo-

rithms to design the architecture [39, 40, 41, 42, 43, 26, 44, 150, 151, 152]. A well-known

example of learning-based algorithm is LISTA [45] which interprets ISTA [46] as layers of

neural networks and has been an active research topic [59, 47, 48, 49, 50, 51].

However, the generalization of algorithm learning has received less attention. The only

exceptions are several works. However, [75] and [153] only consider learning to optimize

quadratic losses. [154, 155] do not connect the generalization analysis with algorithmic

properties to provide tighter bounds as in our work. Unlike our work that analyzes the

Lipschitz continuity (Lemma 7.5.1), the work of [156, 157] studied the generalization of

learning-based algorithms with a focus on scenarios when the Lipschitz continuity is un-

available. We will refer the audience to [57, 58] for a more comprehensive summary of
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related works.

7.3 PLISA: Learning To Solve Sparse Estimation Problems

A sparse estimation problem is to recover β∗ from finite observations Z1:n sampled from

Pβ∗ . As a concrete example, in a sparse linear regression problem, n observations {Zi =

(xi, yi)}ni=1 are sampled from a linear model y = x⊤β∗ + ϵ, and an algorithm needs to es-

timate β∗ from n observations. Classic algorithms recover β∗ by minimizing a regularized

empirical loss:

β̂λ ∈ argminLn(Z1:n,β) + P (λ,β), (7.1)

where Ln is an empirical loss that measures the “fit” between the parameter β and observa-

tions Z1:n, and P (λ,β) is a sparsity regularization with coefficient λ. When Ln is the least

square loss and P (λ,β) is λ∥β∥1, the optimization is known as LASSO and can be solved

by the well-known algorithm ISTA [46]. Based on the idea of algorithm unrolling, [45]

proposed LISTA, a neural algorithm that interprets ISTA as layers of neural networks. It

has been demonstrated that LISTA outperforms ISTA thanks to its learnable components.

Since then, designing neural algorithms by unrolling ISTA has become an active research

topic. However, existing works mostly focus on the compressed sensing problem with a

fixed design matrix only.

To enable for more general applicability, we design the architecture of PLISA by un-

rolling a classic path-following algorithm called APF [145] instead of ISTA. APF is appli-

cable to nonconvex losses and nonconvex penalty functions, covering a considerably larger

range of objectives than LASSO. Designing the architecture based on APF allows PLISA

to be applicable to a broader class of problems such as nonlinear sparse regression, graph-

ical model estimation, etc. Furthermore, employing nonconvexity can potentially lead to

better statistical properties [158, 159, 160], for which we will explain more in Section 7.4.
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In the following, we will introduce APF and the architecture of our proposed PLISA.

After that, we will describe how to optimize the parameters in PLISA under the learning-

to-learn setting.

7.3.1 A brief introduction to APF

We briefly introduce the classic algorithm APF [145], and its details are presented in Al-

gorithm 3 in Appendix I in [144]. The key idea of path-following algorithms is creating

a sequence of T many sub-objectives to gradually approach the target objective that is

supposed to be more difficult to solve. More specifically, APF approximates the local min-

imizers of a sequence of sub-objectives:

βt ≈ β̂λt ∈ argmin
β

Ln(Z1:n,β) + P (λt,β), for t = 1, · · · , T, (7.2)

where λ1 > λ2 > · · · > λT is a decreasing sequence of regularization parameters. The last

parameter λT is the target regularization parameter. As a result, APF contains T blocks,

and each block contains an iterative algorithm that minimizes one sub-objective in Eq. 7.2.

The output of the (t − 1)-th block, denoted by βt−1, is used as the initialization of the

t-th block, i.e., β̃0
t = βt−1. Then the t-th block minimizes the t-th sub-objective by the

modified proximal gradient algorithm:

for k = 1, · · · , K, β̃k
t ← Tα·λt

(
β̃k−1
t − α

(
∇βLn(Z1:n, β̃

k−1
t ) +∇βQ(λt, β̃

k−1
t )

))
.

(7.3)

output of t-th block: βt = β̃K
t . (7.4)

The notation Tδ(β) := sign(β)max {|β| − δ, 0} is the soft-thresholding function, and the

function Q is the concave component of P defined as Q(λ,β) := P (λ,β) − λ∥β∥1. The

number of steps K in each block is determined by certain stopping criteria. It can be seem

that the update steps in each block is similar to the ISTA algorithm, but it is modified in
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order to incorporate nonconvexity.

7.3.2 Architecture of PLISA
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Figure 7.2: Architecture.

The architecture of PLISA is designed by unrolling the APF algorithm, and augment-

ing some learnable parameters θ. Therefore, the architecture of PLISAθ contains T blocks

and each block contains K layers defined by the K-step algorithm in Eq. 7.3 (See Fig-

ure 7.2). Note that in PLISAθ, both K and T are pre-defined. The architecture of PLISAθ

is different from APF as summarized below:

1. Element-wise and learnable regularization parameters. Most classic algorithms in-

cluding APF employ a uniform regularization parameter λt across all entries of β, but

PLISAθ uses a d-dimensional vector λt = [λt,1, · · · , λt,d]⊤ to enforce different levels of

sparsity to different entries in β. Furthermore, the regularization parameters in PLISAθ

are learnable, which will be optimized during the training.

2. Learnable penalty function: Classic algorithms use a pre-defined sparse penalty func-

tion P , but PLISAθ parameterizes it as a combination of q different penalty functions

and learns the weights of each penalty. In other words, PLISAθ can learn to select a
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specific combination of the penalty functions from training data.

3. Learnable step size: The step sizes in APF are selected by line-search but they are

learnable in PLISAθ. Experimentally, we find the learned step sizes lead to a much

faster algorithm.

In later sections of this chapter, we will show how such differences can make PLISAθ

perform better than APF both empirically and theoretically.

Algorithm 5 and 6 present the mathematical details of the architecture, follow which we

explain some notations and definitions. Red-colored symbols indicate learnable parameters

in PLISAθ.
Algorithm 5: PLISAθ architecture

#blocks: T , #layers per block: K

Parameters: θ = {η,λ∗,w, α}

Input: samples Z1:n

β0 ← 0, λ0 ← ∇βLn(Z1:n,0)

For t = 1, . . . , T do

λt ← max {σ(η) ◦ λt−1,λ
∗}

βt ← BlockK
w,α(Z1:n,βt−1,λt)

return βT

Algorithm 6: Layers in each block BlockK
w,α

Input: Z1:n,βt−1,λt

β̃0
t ← βt−1

For k = 1, . . . , K do

gk
t ← ∇βLn(Z1:n, β̃

k−1
t ) +∇βQw(λt, β̃

k−1
t )

β̃k
t ← Tα·λt

(
β̃k−1
t − α · gk

t

)
return βt = β̃K

t

Regularzation parameters. In PLISAθ, the element-wise regularization parameters
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are initialized by a vector λ0 := ∇βLn(Z1:n,0), and then updated sequentially by

λt ← max {σ(η) ◦ λt−1,λ
∗} , (7.5)

where σ(·), ◦, and max{·, ·} are element-wise sigmoid function, multiplication, and maxi-

mization. {η,λ∗} are both d-dimensional learnable parameters. Eq. 7.5 creates a sequence

λ1, · · · ,λT through the decrease ratio σ(η), until they reach the target regularization pa-

rameters λ∗.

Penalty function. PLISAθ parameterizes the penalty function as follows,

Pw(λ,β) =
∑q

i=1 w̃i · P (i)(λ,β), where w̃i =
exp(wi)∑q

i′=1
exp(wi′ )

. (7.6)

In other words, Pw is a learnable convex combination of q penalty functions (P (1), · · · , P (q)).

The weights of these functions are determined by learnable parameters w = [w1, · · · , wq].

In this chapter, we focus on learning the combination of three well-known penalty func-

tions:

P (1)(λ,β) = ∥λ ◦ β∥1,

P (2)(λ,β) =
d∑

j=1

MCP(λj, βj),

P (3)(λ,β) =
d∑

j=1

SCAD(λj, βj),

where P (1) is convex, and MCP [161] and SCAD [158] are nonconvex penalties whose

analytical forms are given in Appendix B in [144]. One can include any other penalty

functions as long as they satisfy a set of conditions specified in Appendix B in [144].

Qw(λ,β) := Pw(λ,β)−∥λ◦β∥1 represents the concave component of Pw. The analytical

form of∇βQw(λt,β) are in Appendix B in [144].
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7.3.3 Learning-to-learn setting

Now we describe how to train the parameters θ in PLISAθ under the learning-to-learn

setting.

Training set. Similar to other works in this domain, we assume the access to m prob-

lems from the target problem-space P , and use them as the training set:

Dm = {(Z(1)
1:n1

,β∗(1)), · · · , (Z(m)
1:nm

,β∗(m))} with (Z
(i)
1:ni

,β∗(i)) ∈ P .

Here each estimation problem is represented by a pair of observations and the correspond-

ing true parameter to be recovered. A different problem i can contain a different number

ni of observations.

Training loss. Since the intermediate outputs βt(Z1:n; θ) of PLISAθ are also estimates

of β∗, a common design of the training loss is the weighted sum of the intermediate esti-

mation errors [58]. More specifically, we employ the following training loss:

Lγ
train(Dm; θ) :=

1

m

m∑
i=1

T∑
t=1

γT−t
∥∥∥βt(Z

(i)
1:ni

; θ)− β∗(i)
∥∥∥2
2
, (7.7)

where γ < 1 is a discounting factor If γ = 0 then the loss is only estimated at the last layer.

Generalization error. The ultimate goal of algorithm learning is to minimize the esti-

mation error on expectation over all problems in the target problem distribution:

Lgen(P(P); θ) := E(Z1:n,β∗)∼P(P) ∥βT (Z1:n; θ)− β∗∥22 , (7.8)

where P(P) is a distribution in the target problem-space P . Let θ∗ ∈ argminLγ=0
train(Dm; θ)

be a minimizer of the training loss. It is well-known that the generalization error can be
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bounded by:

Lgen(P(P); θ∗) ≤ Lgen(P(P); θ∗)− Lγ=0
train(Dm; θ

∗)︸ ︷︷ ︸
generalization gap: Theorem 7.5.1

+ Lγ=0
train(Dm; θ

∗)︸ ︷︷ ︸
training error: Theorem 7.4.1

. (7.9)

We will theoretically characterize these two terms in Theorem 7.4.1 and Theorem 7.5.1.

7.4 Capacity of PLISA

Can PLISAθ achieve a small training error without using too many layers? How can

designs of element-wise regularization and learnable penalty functions help PLISAθ to

achieve a smaller training error compared to classic algorithms? We answer this question

theorectically in this section.

7.4.1 Problem space assumption

Before stating the theorem, we follow the notations in [145, 160] to describe some classic

assumptions on the estimation problems.

Assumption 7.4.1 (Problem Space). Let s∗, s̃ be positive integers and ρ−, ρ+ be positive

constants such that s̃ > (121(ρ+/ρ−) + 144(ρ+/ρ−)
2)s∗. Assume for every estimation

problem (Z1:n,β
∗) in the space P , the following conditions are satisfied.

(a) ∥β∗∥0 ≤ s∗ and ∥β∗∥∞ ≤ B1;

(b) For any nonzero v ∈ Rd with sparsity ∥v∥0 ≤ s∗ + 2s̃, it holds
v⊤∇2

βLn(Z1:n,β)v

∥v∥22
∈

[ρ−, ρ+];

(c) 8 |[∇βLn(Z1:n,β
∗)]j| ≤ |[∇βLn(Z1:n,0)]j| ≤ B2, ∀j = 1, · · · , d.

Condition (a) assumes β∗ is s∗-sparse and B1-bounded. Condition (b) is commonly

referred to as ‘sparse eigenvalue condition’ [162, 145], which is weaker than the well-

known restricted isometry property (RIP) in compressed sensing [163]. Note that the class

of functions satisfying conditions of this type is much larger than the class of convex losses.
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In the special case when Ln(Z1:n,β) is strongly convex in β, condition (b) holds with s̃→

∞. The last condition bounds the gradient of the empirical loss Ln at the true parameter

β∗ and 0.

7.4.2 First main result: capacity

Let βt(Z1:n; θ) be the output of the t-th block in PLISAθ. Let x ∨ a denote entry-wise

maximal value max{x, a}. Let (x)S denote the sub-vector of x with entries indexed by

the set S.

Theorem 7.4.1 (Capacity). Assume the problem space P satisfies Assumption 7.4.1 and

Dm ⊆ P . Let T be the number of blocks in PLISAθ and let K be the number of layers in

each block. For any ε > 0, there exists a set of parameters θ = {η,λ∗,w, α} such that the

estimation error of every problem (Z1:n,β
∗) ∈ Dm is bounded as follows, ∀T > t0,

∥βT (Z1:n; θ)− β∗∥2 ≤ ε−1cθs
∗ exp(−CθK(T − t0)) optimization error

(7.10)

+ c′θκm∥ (∇βLn(Z1:n,β
∗) ∨ ε)S∗ ∥2, statistical error (7.11)

where S∗ := supp(β∗) is the support indices of β∗, cθ, c′θ, and Cθ are some positive values

depending on the chosen θ, and κm is a condition number which reveals the similarity of

the problems in Dm. Note that K and t0 are required to be larger than certain values, but

we will elaborate in Appendix E in [144] that the required lower bounds are small. See

Appendix E in [144] for the proof of this theorem.

This estimation error can be interpreted as a combination of the optimization error (in

Eq. 7.10) and the statistical error (in Eq. 7.11). The optimization error decreases linearly in

both K and T . The statistical erroroccurs because of the randomness in Z1:n. The gradient

at the true parameter ∇βLn(Z1:n,β
∗) characterizes how well the finite samples Z1:n can

represent the distribution Pβ∗ .
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A direct consequence of Theorem 7.4.1 is that the training error can be small without

using too many layers and blocks in PLISAθ. We will also elaborate on how the entry-wise

regularization and learnable penalty function can effectively reduce the training error in the

following.

(i) Impact of entry-wise regularization. Restricting the regularization to be uniform

across entries will lead to an error bound that replaces the statistical error ∥ (∇βLn(Z1:n,β
∗) ∨ ε)S∗ ∥2

in Eq. 7.11 by
√
s∗ (∥∇βLn(Z1:n,β

∗)∥∞ ∨ ε). To understand how the former has improved

the latter, we can consider the sparse linear regression problem. If the design matrix is nor-

malized such that max1≤j≤d ∥([x1]j, · · · , [xn]j)∥2 ≤
√
n, then ∥ (∇βLn(Z1:n,β

∗) ∨ ε)S∗ ∥2 ≤

C
√
s∗/n with high probability. In comparison,

√
s∗∥∇βLn(Z1:n,β

∗)∥∞ ≤ C
√
s∗ log d/n

with high probability is a slower statistical rate due to the term log d.

(ii) Impact of learnable penalty function. To explain the the benefit of using learnable

penalty function, we give a more refined bound for the statistical error in Eq. 7.11 in the

following lemma.

Lemma 7.4.1 (Refined bound). Assume the same conditions and parameters θ in Theo-

rem 7.4.1. Assume T → ∞ so that the optimization error can be ignored. For simplicity,

assume w̃3 = 0 and only consider the weights w̃1 and w̃2 for ℓ1 penalty and MCP. Then for

every problem (Z1:n,β
∗) ∈ Dm:

∥β∞(Z1:n; θ)− β∗∥2 ≤ 1+8(1+w̃2)κm

ρ−−w̃2/b
∥(∇βLn(Z1:n,β

∗) ∨ ε)S∗
1
∥2

(
S∗
1: Small

∣∣β∗
j

∣∣’s)
(7.12)

+ 1+8(1−w̃2)κm

ρ−−w̃2/b
∥(∇βLn(Z1:n,β

∗) ∨ ε)S∗
2
∥2

(
S∗
2: Large

∣∣β∗
j

∣∣’s) ,
(7.13)

where b > 1 is a hyperparameter in MCP, and the index sets S∗
1 and S∗

2 are defined as

S∗
1 := {j ∈ S∗ :

∣∣β∗
j

∣∣ ≤ bλ∗j} and S∗
2 := {j ∈ S∗ :

∣∣β∗
j

∣∣ > bλ∗j}. See Appendix E in [144]

for the proof.
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This refined bound reveals the benefit of learning the penalty function because:

1. According to Lemma 7.4.1, the optimal penalty function is problem-dependent. For ex-

ample, if (8(bρ−+1)κm+1)∥(∇βLn(Z1:n,β
∗)∨ε)S∗

1
∥2 > (8(bρ−−1)κm−1)∥(∇βLn(Z1:n,β

∗)∨

ε)S∗
2
∥2, choosing w̃2 = 0 can induce a smaller error bound. Otherwise, w̃2 = 1 is better.

Therefore, learning is a more suitable way of choosing the penalty function.

2. The convergence speed Cθ in Eq. 7.10 is also affected by the weights, monotonely de-

creasing in w̃2. Through gradient-based training, we can automatically find the optimal

combination of penalty functions to strike a nice balance between the statistical error

and convergence speed.

7.5 Generalization Analysis

How well can the learned PLISAθ solve new problems outside the training set? In this

section, we conduct the generalization analysis in a novel way to focus on answering the

questions:

How is the generalization bound of PLISAθ related to its algorithmic

properties?

And how is it different from conventional neural networks?

7.5.1 Second main result: generalization bound

To analyze the generalization properties of neural networks, many works have adopted the

analysis framework of [98] to bound the Rademacher complexity via Dudley’s integral

[8, 76, 77, 155]. A key step in this analysis framework is deriving the robustness of the

training loss to the small perturbation in model parameters θ. Since we can view PLISAθ

as an iterative algorithm, we borrow the analysis tools of classic optimization algorithms to

derive its robustness in θ. The following lemma states this key intermediate result, which

connects the Lipschitz constant to algorithmic properties of PLISAθ.
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Lemma 7.5.1 (Robustness to θ). Assume P satisfies Assumption 7.4.1 and Dm ∼ P(P)m.

Assume PLISAθ contains T > t0 blocks and K layers. Consider a parameter space Θ

in which the parameters satisfy (i) α ∈ [αmin,
1
ρ+
], (ii) ηj ∈ [σ−1(0.9), ηmax], (iii) w̃2

1
b
+

w̃3
1

a−1
≤ ξmax < ρ−, and (iv) λ∗j ∈ [8 sup(Z1:n,β∗ )∈Dm

|[∇βLn(Z1:n,β
∗)]j| ∨ ε, λmax] with

some positive constants αmin, ηmax, ξmax, and λmax. Then for any θ = {η,λ∗,w, α} and

θ′ = {η′,λ∗′,w′, α′} in Θ, and for any recovery problem (Z1:n,β
∗) ∈ Dm, the following

inequality holds,

∥βT (Z1:n; θ)− βT (Z1:n; θ
′)∥2 ≤ c1K(T − t0)

√
s∗ |α− α′| exp(−CΘK(T − t0))︸ ︷︷ ︸

convergence rate

(7.14)

+
(
c2∥η − η′∥2 + c3∥λ∗ − λ∗′∥2 + c4

√
d∥w −w′∥2

)
(1− exp(−CΘKT ))︸ ︷︷ ︸

stability rate

,

(7.15)

where c1, c2, c3, c4 and CΘ are some positive constants. Note that similar to Theorem 7.4.1,

K and t0 are required to be larger than certain small values. See Appendix F.1 in [144] for

the proof.

Convergence rate & step size perturbation. In Eq. 7.14, the Lipschitz constant in

the step size α scales at the same rate as the convergence rate of PLISAθ, decreasing

exponentially in T and K (See Fig. 7.3 for a visualization). To understand this, consider

when both step sizes α and α′ are within the convergence region (i.e., (0, ρ−1
+ ]). After

infinitely many steps, their induced outputs will both converge to the same optimal point.

This intuitively explains why the output perturbation caused by α-perturbation has the same

decrease rate as the optimization error.

Stability rate & regularization perturbation. In the literature of optimization, sta-

bility of an algorithm expresses its robustness to small perturbation in the optimization ob-

jective. This is clearly related to the robustness of PLISAθ to the perturbation in η,λ∗,w,

because these parameters jointly determine the regularization Pw(λt,β), which is a part
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Figure 7.3: Visualization of convergence, stability, and generalization bound in Theo-
rem 7.5.1. The two sets of visualizations are obtained by choosing different speeds CΘ

in the convergence rate and stability.

of the optimization objective. Therefore, we exploit the analysis techniques for algorith-

mic stability to derive the robustness in (η,λ∗,w)-perturbation and obtain the Lipschitz

constant in Eq. 7.15, which is bounded but increasing in T and K (See Fig. 7.3 for a visu-

alization).

Based on the key result in Lemma 7.5.1, we can apply Dudley’s integral to measure the

empirical Rademachar complexity which immediately yields the following generalization

bound.

Theorem 7.5.1 (Generalization gap). Assume the assumptions in Lemma 7.5.1. For any

ϵ > 0, with probability at least 1− ϵ, the generalization gap is bounded by

Lgen(P(P); θ)− Lγ=0
train(Dm; θ) ≤ c1

√
m−1 log(4ϵ−1)+ (7.16)√

c2m−1 log
(√

mKT exp(−CΘK(T − t0))︸ ︷︷ ︸
convergence rate

∨ 1
)
+ c3dm−1 log

(√
m(1− exp(−CΘKT ))︸ ︷︷ ︸

stability

)
,

where c1, c2, c3, CΘ are constants independent of d,m,K and T .

Fig. 7.3 visualizes how the generalization bound in Theorem 7.5.1 grows when KT

increases. The two sets of plots look slightly different by picking different constants CΘ.

We have also tried varying the values of c2, c3, d,m in Theorem 7.5.1. Overall, they lead to

the two types of behaviors in Fig. 7.3.
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An important observation in Theorem 7.5.1 and Figure 7.3 is that the generalization gap

could decrease in the number of layers, and we will see in Section 7.7 that this matches the

empirical observations. It also distinguishes algorithm-unrolling based architectures from

conventional neural networks, whose generalization gaps rarely decrease in the number of

layers.

Remark. The above generalization results are conducted on a constrained parameter

space (as described in Lemma 7.5.1) so that we can utilize the algorithmic properties of

PLISAθ. We focus on this space because the analysis contains more interesting and new

ingredients. For parameters outside this space, the analysis procedure is similar to other

conventional recurrent networks. Since the bound in Theorem 7.5.1 has matched the em-

pirical observations, it is reasonable to believe that after training, the learned parameters

are likely to be in this ‘nice’ constrained space.

7.6 Extension To Unsupervised Learning-to-learn Setting

Real-world datasets may not contain the ground-truth parameters β∗, but only contain the

samples from each task, DU
m = {Z(1)

1:n, · · · , Z
(m)
1:n }. In this setting, we can construct an

unsupervised training loss to minimize the empirical loss function Ln (e.g., the likelihood

function) on the samples.

Unsupervised training loss: LU
train(DU

m; θ) :=
1

m

m∑
i=1

Ln2

(
Z

(i)
1:n2

,βT (Z
(i)
1:n1

; θ)
)

(7.17)

In this loss, both Z(i)
1:n1

and Z(i)
1:n2

are subsets of Z(i)
1:n. The samples Z(i)

1:n1
are used as the input

to PLISAθ and the samples Z(i)
1:n2

are used for evaluating the output βT from PLISAθ.

Let θ∗U ∈ argminLU
train(DU

m; θ) be a minimizer to this unsupervised loss. Theoreti-
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cally, to bound the generalization error of θ∗U , we can show that

Lgen(P(P);θ∗U) ≤ C
m

∑m
i=1

(
Ln2

(
Z

(i)
1:n2

,βT (Z
(i)
1:n1

; θ∗U)
)
− Ln2

(
Z

(i)
1:n2

,β∗(i)))︸ ︷︷ ︸
unsupervised training error

(7.18)

+ Lgen(P(P); θ∗U)− L
γ=0
train(Dm; θ

∗
U)︸ ︷︷ ︸

generalization gap: Theorem 7.5.1

+ C
m

∑m
i=1∥∇βLn2(Z

(i)
1:n2

,β∗(i))∥22︸ ︷︷ ︸
statistical error

.

(7.19)

Compared to Eq. 7.9, this upper bound contains an additional statistical error, which ap-

pears because of the gap between the unsupervised loss and the true error that we aim to

optimize. Clearly, in this upper bound, the generalization gap can be bounded by Theo-

rem 7.5.1. Furthermore, the unsupervised training error in Eq. 7.18 can be bounded by

combining Theorem 7.4.1 with the following in equality.

Ln2 (Z1:n2 ,βT (Z1:n1 ; θ
∗
U))− Ln2 (Z1:n2 ,β

∗) (7.20)

≤ Ln2 (Z1:n2 ,βT (Z1:n1 ; θ
∗))− Ln2 (Z1:n2 ,β

∗)

≤ ∥∇βLn2(Z1:n2 ,β
∗)∥2 ∥βT (Z1:n1 ; θ

∗)− β∗∥2︸ ︷︷ ︸
bounded by Theorem 7.4.1

+ρ+
2
∥βT (Z1:n1 ; θ

∗)− β∗∥22︸ ︷︷ ︸
bounded by Theorem 7.4.1

. (7.21)

7.7 Experiments

7.7.1 Synthetic experiments

In synthetic datasets, we consider sparse linear regression problems and sparse precision

matrix estimation problems for Gaussian graphical models. Specifically, we recover target

vectors β∗ ∈ Rd, where d = {256, 1024} in SLR, and estimate precision matrices Θ∗ ∈

Rd×d, where d = {50, 100} in SPE.

Sparse Linear Regression (SLR)

In this experiment, we compare PLISAwith several baselines and also verify the theorems.
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Figure 7.4: Convergence of recovery error. Since APF takes a long time to converge, its
curve are outside the range of these plots. We use a dash-line to represent the final ℓ2 error
it achieves.

Performance comparison. We consider baselines including APF [145], ALISTA [49],

RNN [38], and RNN-ℓ1. APF is the path-following algorithm that is used as the basis of our

architecture. ALISTA is a representative of algorithm unrolling based architectures, which

is an advanced variant of LISTA. We have tried the vanilla LISTA, but it performs worse

than ALISTA on our tasks so it is not reported. RNN refers to the LSTM-based model in

[38]. Besides, we add a soft-thresholding operator to this model to enforce sparsity, and

include this variant as a baseline, called RNN-ℓ1. Except for APF, all methods are trained

on the same set of training problems and selected by the validation problems. For APF, we

perform grid-search to choose its hyperparameters, which is also selected by the validation

set.
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Figure 7.5: Generalization gap of PLISA with varying KT , for two different experimental
settings.

Fig. 7.4 shows the convergence of ∥βt − β∗∥2 for problems in the test set. The x-axis

indicates the wall-clock time. In terms of the final recovery accuracy, PLISA outperforms

all baseline methods. In the more difficult setting (i.e, d = 1024), its advantage is obvious.

Although PLISA is slightly slower than other deep learning based models due to the com-
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putations of MCP and SCAD, PLISA achieves a better accuracy and it has been converging

much faster than the classic algorithm APF. APF is very slow mainly due to the use of

line-search for selecting step sizes.

Generalization gap. We are interested in the generalization behavior of PLISA. As

this experiment is conducted for theoretical interest, we do not use the validation set to se-

lect the model. We vary the number of layers (K) and blocks (T ) in PLISA to create a set of

models with different depths. For each depth, we train the model with 2000 training prob-

lems, and then test it on a separate set of 100 problems to approximate the generalization

gap. In Fig. 7.5, we observe the interesting behavior of the generalization gap, where the

left one increases in KT at the beginning and then decrease to a constant, and the right one

increases fast and then decrease very slowly. This surprisingly matches the two different

visualizations in Fig. 7.3 of the predicted generalization gap given by Theorem 7.5.1.

Sparse Precision Matrix Estimation (SPE)

We compare PLISA with APF, GLASSO [137], GISTA [164], and GGM [165] on

sparse precision estimation tasks in Gaussian graphical models. GLASSO estimates the

precision matrix by block-coordinate decent methods. GISTA is a proximal gradient method

for precision matrix estimation. GGM utilizes convolutional neural network to estimate the

precision matrix.

Table 7.1: Recovery error in SPE. The reported time is the average wall-clock time for
solving each instance in seconds.

Sizes p = 50 p = 100

Methods ∥Θ−Θ∗∥2F Time ∥Θ−Θ∗∥2F Time

PLISA 119.47± 12.23 0.117 142.70± 13.38 0.132
GLASSO 169.63± 17.99 1.66 237.95± 27.49 3.12

GISTA 186.96± 25.48 53.47 373.66± 41.72 36.02
APF 269.51± 32.28 46.02 485.94± 60.33 86.82
GGM 194.26± 10.73 0.007 445.00± 58.89 0.008

Table 7.1 reports the Frobenius error ∥Θ − Θ∗∥2F between the estimation Θ and the
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true precision matrix Θ∗, averaged over 100 test problems. PLISA achieves consistent

improvements. Classic algorithm are slower because they perform line-search. GLASSO

is faster than other classic algorithm because we use the sklearn package [166] in which

the implementations are optimized.

Discussion on Training-Testing Time

Test time. Fig. 7.4 and Table 7.1 shows the wall-clock time for solving test prob-

lems. Overall, classic algorithms are slower because they need to perform line-search. It

is noteworthy that learning-based methods can solve a batch of problems parallelly but

most classic algorithms cannot. To allow more advantages for classic algorithms, the test

problems are solved without batching in all methods.

Train time. As metioned earlier, we perform grid-search to select the hyperparameters

in classic algorithms using validation sets. The training time comparison is summarized in

Table 7.2 and Table 7.3. We can see that training time is not a bottleneck of this problem.

Moreover, In SPE, classic algorithms even require a longer training time than learning-

based methods.

Table 7.2: Training time for SLR (minutes)

Sizes d = 256 d = 1024

PLISA 393 462
ALISTA 176 271

RNN 96 99
RNNℓ1 101 106
APF 214 426

Table 7.3: Training time for SPE (minutes)

Sizes d = 50 d = 100

PLISA 35 39
GGM 14 43

GISTA 176 116
APF 316 331

GLASSO 42 57

7.7.2 Unsupervised learning on real-world datasets

We conduct experiments of unsupervised algorithm learning on 3 datasets: Gene expres-

sion dataset [167], Parkinsons patient dataset [168], and School exam score dataset [169].

The goal of the algorithm is to estimation the sparse linear regression parameters β∗ for
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Table 7.4: Recovery accuracy on real-world datasets.

PLISA APF RNN RNN-ℓ1 ALISTA

Gene 1.177 1.289 1.639 1.349 1.289
Parkinsons 11.63 11.86 11.91 13.05 34.843

School 296.6 367.9 561.5 310.3 884.2

each problem. Recovery accuracy is estimated by the least-square error on a set of held-out

samples for each problem. Table 7.4 shows the effectiveness of PLISA. Note that these

real-world datasets may not satisfy the assumptions in this chapter. This set of experiments

are conducted only to demonstrate the robustness of the proposed method.
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CHAPTER 8

CONCLUSION

In this thesis, we presented a novel duality view between deep learning models and algo-

rithms. This duality view allows us to convert a neural network to an algorithm and convert

an algorithm to the layers of a neural network. Furthermore, we have established con-

nections between the learning properties of neural networks and the algorithmic properties

of optimization algorithms. This duality view of their properties allow us to integrate the

analysis tools of both domains to better understand the proposed method theoretically.

Based on the duality view, this thesis has presented multiple approaches to either use

deep learning methods to help design algorithms or use algorithms to help design deep

architectures.

Chapter 3 has presented a hybrid deep learning model, E2Efold, for RNA secondary

structure prediction. This hybrid model contains algorithm layers which can incorporate

hard constraints into the architecture. Experiments have demonstrated the benefits of this

hybrid architecture. In the future, we believe the idea of unrolling constrained optimization

solver can be useful for other structured prediction problems.

Chapter 4 has presented the theoretical analysis for the representation and generaliza-

tion ability of hybrid deep learning models with algorithm layers. The theorem in this

chapter reveals an intriguing relation between algorithmic properties of the algorithm lay-

ers and the approximation and generalization of the overall hybrid model. The current

analysis is limited due to the simplified problem setting. Future efforts could be devoted to

generalizing the results to more complex instances with fewer assumptions.

Chaper 5 has introduced a dynamic deep learning model with input-specific depth,

which was inspired by the stopping criteria in classic algorithms. Experiments have demon-

strated the effectiveness of this model in a wide range of applications. In the future, it will
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be interesting to see whether other aspects of algorithms can be incorporated into deep

learning models to further boost performance.

Chapter 6 has proposed to learn a neural algorithm, called GLAD, for solving the preci-

sion matrix estimation problem. The architecture of GLAD is designed based on unrolling

an optimization algorithm. This chapter has empirically demonstrated that the learned

GLAD outperforms classic algorithms in terms of sample complexity. Future efforts could

be directed on the development of theory in order to fully understand this neural algorithm.

Chapter 7 has proposed PLISA for learning to solve sparse parameter recovery prob-

lems. It has also presented the theoretical guarantees for the capacity and generalization

ability of PLISA. The analysis techniques could be used to derive guarantees for other

algorithm-unrolling based architectures. In future work, the model PLISA could poten-

tially be improved by using a more flexible penalty function, and the analysis for unsuper-

vised settings could be improved by more careful derivations.

In summary, this thesis takes an initial step toward the empirical and theoretical explo-

ration of the combination of deep learning and algorithm design. Many interesting research

questions remain to be explored as mentioned above.
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