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CHAPTER I 

INTRODUCTION 

Ergodic theorems are concerned with convergence of averages of 

iterations of an operator acting on a function space or more generally 

on a topological linear space. 

The first result of ergodic theory was proved by J. Von Neumann 

about 19 30 and published in 19 32. The von Neumann mean ergodic theorem 

states that if T is a measure preserving transformation on a measure 

space (X,A,u), then for every f e L^CXjAjij) there is a function 

f* e such that 

lim / |f*(x) - - I f(Tx)| dy = 0. 
n n k=0 

At about the same time G. D. Birkhoff proved under additional 

restrictions on the transformation T and the space X that for f e the 
1 n _ 1 k 

sequence — Z f(T x) is pointwise convergent to f* for almost all x. 
n k=0 

These supplementary restrictions were later shown to be superfluous. 

The general theorem is known as the Birkhoff pointwise ergodic theorem. 

Many generalizations of these theorems have followed. Specifi­

cally, S. Kakutani, K. Yosida and F. Riesz proved various assertions 

concerning mean convergence of operator averages in an abstract Banach 

space during the period 19 35-1945. 

Notable extensions of the Birkhoff theorem have been provided by 
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E. Hopf, N. Dunford and J. T. Schwartz, and R. V. Chacon and D. S. 

Ornstein. 

The theory of information originated in the work of C. E. Shannon 

in 194-8. In his fundamental paper, Shannon set up a mathematical scheme 

in which the concepts of an information source and of information trans­

mission could be defined quantitatively. He then formulated and proved a 

number of very general results which showed the importance and useful­

ness of these definitions. Since 194-8 a number of papers have been 

published which simplify and extend Shannon's original work. 

In particular, in 195 3 McMillan proved a very general result 

which states that for any stationary source, information may be trans­

mitted at any rate less than channel capacity with arbitrarily small 

probability of error. This result is known as the McMillan theorem or 

the Asymptotic Equi-partition Property (AEP). 

In Chapter II of this paper, after developing the necessary 

machinery from functional analysis, we prove an extension of the Von 

Neumann mean ergodic theorem. This result is then used to arrive at the 

Birkhoff pointwise ergodic theorem. 

In Chapter III we turn our attention to information theory. The 

object of study here is a "communication system." This chapter is 

devoted to developing the theory of information to provide the back­

ground for Chapter IV. 

In Chapter IV we use the Birkhoff theorem proved in Chapter II to 

extend the results of Chapter III. Specifically, we prove the McMillan 

theorem and hence establish a relationship between ergodic theory and 

information theory. 
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CHAPTER II 

ERGODIC THEORY 

In ergodic theory, one studies transformations that preserve the 

structure of measure spaces. In this chapter we shall discuss some con­

cepts of ergodic theory and prove the Birkhoff point-wise ergodic the­

orem. This theorem will then be used in Chapter IV to prove the 

McMillan theorem. First, we need a few definitions. 

In all that follows let (fi,F,P) be a probability space. 

DEFINITION: Let T be a transformation of fi into itself. Then T is 

measurable if A e F implies T ^A = {w: T i c e A} e F . 

DEFINITION: Let T be a measurable transformation. If T is one-to-one, 

if Tfi = fi, and if A e F implies TA = {TOJ: co z A} e F , then T is 

invertibZe. 
DEFINITION: Let T be a measurable transformation. Then T is measure 
preserving in case P(T "*"A) = P(A) for every A e F . 

Let us now turn to a specific probability space of the type with 

which we will be concerned. Let X be a random variable with finite 

range, p = { s ^ j S ^ , . ..,s }. Let p^ = ^ ^ i ^ ̂ e ^ e associated probability 

measure. Let (fi,F,P) be the product of a doubly infinite sequence of 

copies of the resulting measure space. Then the general element of fi 

is a doubly infinite sequence 
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0) = ( . . . ,O3_ 1,O3 0,W 1, . . . ) 

of elements of p. Let x be the nth coordinate function: that is, x 
n n 

is the mapping from U to p whose value x
n ( w ) at the point to is the nth 

coordinate OJ of OJ. We wish to characterize the probability measure, 

P, on F. For this, we appeal to the Product Probability Theorem. 

THEOREM 2.1. (PRODUCT PROBABILITY THEOREM). Let (fi^A , P j . t e T, be t t t 
probability spaces. Let be the class of all measurable cylinders of 

the form 

Cyl [ X A ] , A e A 
fi te T T N 

T 
That is, C is the class of all measurable cylinders in fi based on the 
Cartesian products X A for A e A . Define P_ on the class C_ by 

t e T 
N 

P (Cyl X A ) = ir P A 
fi teT„ teT T N N 

Then, the product probability, P^, on is a-additive and determines 

its extension to a probability, P^, on the product a-algebra A ^ . 

Proof: See Lo£ve pg. 91. 

Hence, P is specified in our example by its values on what may be 

called "thin" cylinders of the form 

{UJ. x£(ca) = i , n<£<n+k} 
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in the following manner 

n+k-1 
P{oo: x (to) = i , n<£<n+k} = 7T p. . 

36 36 £=n X I 

Let T: fo+Q be the mapping that carries ( . . . ,o)_̂,o)q ,o)^,. . .) into 

( . . . ,0Jq ,oj ,0)2 ,. . . ) , that is, T is defined by 

x (To)) = x -| (o)) . n n+1 

Note that x
N ( W ) = ^ ( T ^ 0 0 ) ) a n c^ consequently any statement about the 

random variables x can be converted into a statement about x^ and T. 
n 0 

If A is any cylinder of the form 

(o): {\(^>'">\ + k_ 1(^) e E> 

k -1 with E a subset of the Cartesian product p of k copies of p, then T A 

is also a cylinder and T - 1A e F, and P(T _ 1A) = P(A). The following 

theorem shows that T is both measurable and measure preserving. 

THEOREM 2.2. Let FQ be a field generating F. If T _ 1A e F and P(T _ 1A) 

P(A) for every A e F̂, then T is a measure preserving transformation. 

Proof: See Billingsley, pg. 4. 

We turn now to the proof of the Birkhoff point-wise ergodic the­

orem. The theorem will be proved in three steps. We first prove a 

slight generalization of the von Neumann mean ergodic theorem, then the 

maximal ergodic theorem, and finally the Birkhoff theorem itself. In 

the course of this development we shall need some results from the 
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theory of Hilbert spaces. For completeness and to introduce notation, 

we include these results. 

Let (X,A,y) be a a-finite measure space. Any measurable trans­

formation T on X into X, measure preserving or not, induces a trans­

formation on M (the space of complex measurable functions defined 

a.e. on X) as follows: Letting F e M, then for any x e X define 

(VTf)(x) = f(Tx) 

provided the right-hand side of this equation is defined. The next lemma 

is central to the ergodic convergence theorems for measure preserving 

transformations. 

LEMMA 2.1. Let T be measure preserving on X, and let be the induced 

transformation on M. Then is linear and positive (i.e. f>0 a.e. 

implies that V^f^O a.e.). Moreover, 

/ Vtfdy = / fdy (f E L^; 
and 

||VTf|| = ||f|| (f E L , l<p<°°) 

II >p iip II iip pj r 
that is, is a linear isometry on each L^. 

Proof: That V̂ , is linear and positive is clear from its definition. To 

prove (i) suppose first that f is an integrable simple function, say 

f = E C R I A ; then 
k 

(VTf)(x) = E C R I A (Tx) = E C RI _± (x) (1) 
k T A, k 
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and hence 

/ VTfdy = I CkvCT-\) (2) 

Now let f be non-negative and integrable on X. We may choose a sequence 

{f } of non-negative integrable simple functions such that f <f and n ° ° r n 
f (x)+f(x) a.e. It follows from (1) and (2) above that {V^f } is a n T n 
sequence of non-negative integrable functions. Moreover, / V^f^dy = 

/ f dy and J n 

(V Tf )(x) = f (Tx) i f(Tx) = (VTf)(x) a.e. I n n i 

Applying the monotone convergence theorem it follows that 

/ fdy = lim / f dy = lim / V^f dy = / V^fdy. (3) J J n J 1 n J i 

That (i) holds for an arbitrary f e may now be seen by writing 

f = f - f. + i(f -f„) where f.>0 a.e., f. e Ln (1=1,2,3,4) and apply-1 2 3 4 1 i 1 
ing (3) to each f. . 

To prove (ii) we consider two cases. 

(I) Assume f e L for some p e [l, 0 0). 
P 

Then for x e X 

(V tf)(x)| P = |f(Tx)| P = (V T|f| P)(x), 

wh ereupon by (i) (|f|P e L±) we have 
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VTf||P = / |VTf|Pdy = / V T|fpdy = / |f|Pdu = || f | 

and hence V mf = f . 
T "p "p 

(II) Assume f e L 00 Then for any a>0 

u[ V Tf >a] u(T~1[|f|>a]) = y[|f|>a]; 

and therefore 

inf{a: u [ | v f|>a] = 0} 

= inf{a: u[ f >a] = 0} = f LOO D 

We shall use the following notation. The inner product of two elements 

f and g of a Hilbert space will be denoted by (f,g). The adjoint of the 

operator U will be denoted U* and is characterized by the equation 

(Uf,g) = (f,U*g), for all f and g. 

LEMMA 2.2. If U is an isometry, then a necessary and sufficient condi­

tion that Uf = f is that U*f = f. 

Proof. See Halmos [2], pg. 15. 

We now come to the generalization of the von Neumann theorem. 

THEOREM 2.3 (MEAN ERGODIC THEOREM). If U is an isometry on a complex 

Hilbert space, H, and if P is the projection on the space of all invari-
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Proof. Let 

S = {f e H: Uf = f}. 

be the set of all invariant elements of H. Then, for f e 

- T U jf = - [f+Uf+U2f+...+Un 1 f ] 
n j S 0 

= - [f+f+f+. . ,+f] = -[nf] = f, n n 

Hence, if f e S , the theorem is true. 

Let 

= {f e H: f = g - Ug for some g e H } . 

Then, for f e S 2 

U J F = U j ( g - U G ) = I [ g - u g + u g - u 2 g + . . . + u n - 1 g - u n g ] 

^ ( g - u n g ) . 
Therefore, for f e 

I 1 1 " 1 t P f L I = ||I (g-U-g)!! 
n j = o 

n & n & n 6 

Hence, for f e S 
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1 1 1 - 1 -n 9 lim II - y U Jf || < lim - llgll = 0. 
II n L II n l i o n 

We show next that if f is an element of the closure of then 

n-1 . 
lim ||- Y U :f || = 0. 

II n L II 

n ^ j=0 
1 n-1 . 

First we must establish a relation between I I — J U^f|| and ||f|| for any "n L
n " 11 11 

n=0 

f e H. Let f e H. Consider , n-1 . n-1 . n n-1 
|i I lPf||*i I ||iPf|| = ± I ||f| 

j=0 n
 j=0 n j=0 

= f . 

Therefore, for every f e H, 

n n-1 . 
I I- I U:f|| < || f ||. 

1 n-1 . 
Now let A = — J ifl and let f be any element in the closure of 

n n j=0 

. Then there is a sequence (f^) c ^ such that given e>0 there exists 

M such that k>M implies |f^-f|| < ~~ . Also, since each f^ e , for each 

k there exists N such that n>N implies ||A f || < ~ . Let e>0 be given 

K K n K A 
and consider 

A f < A ( f - f . ) + A f . 
n n k n k 
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Fix k>M. Then ||f-fj| < % . For this k choose n>M . Then ||A f || < §- . 

k z. k n K z. 
Hence given e>0 there exists N such that if n>N then IIA f|| < e or that 

i i n i i 

lim || Anf|| = 0. Therefore lim || A^f || = 0 for every f e S"2 . 
n - X » n->co 

We now establish the fact that the orthogonal complement of is 

the same as the orthogonal complement of . We shall denote the ortho­

gonal complement of a set S by S 1. 

LEMMA 2.3. For any set S in a Hilbert space H 

S 1 = S 1. 

Proof. If f e S 1, then (f,g) = 0 for every g e S. Hence since S c S 

(f,g) = 0 for every g £ S. Therefore f £ S 1 and S 1 c S 1. 

Now let f £ S 1. Then (f,g) = 0 for every g £ S. Let g* £ S. 

Then there is a sequence {g, } c S such that lim g, = g*. Hence, 

K . k 
(f,g*) = (f,lim g ) = lim (f sg R) = lim 0 = 0 

]<;->co k"^ k-^00 

using the continuity of the inner product. Therefore S 1 c S 1. Combin­

ing this with the previous inclusion we have the result S 1 = S 1. 

Using this fact let us determine by considering . Let 

h £ S 2 > Then (h,g-Ug) = 0 for all g e H. Hence, 

(h,g) - (h,Ug) = 0 

or 

or 

(h,g) - (U*h,g) = 0 
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(h-U*h,g) = 0 for every g e H . 

Therefore h - U*h = 0. Then h = U*h and by Lemma 2.2 h = Uh. Thus if 

h e (hence h e S^), then Uh = h. 

Now let h be such that Uh = h. Then by reversing the previous 

argument h e and hence h e . Therefore 

s2 = sr 
Now by the projection theorem every f e H can be expressed as a 

sum f + f^ where f e S and f 2 e S 2. D 

We need one definition and a lemma before moving to the Maximal 

Ergodic Theorem. 

DEFINITION. Suppose that {a^}, i=l,2,...,n is a finite sequence of real 

numbers and that m is a positive integer, m<n. A term a^ of the 

sequence is an m-leadev if there exists a positive integer p, l<p<m, 

such that a, + . . . + a, , n > 0. k k+p-1 

LEMMA 2 A. The sum of the m-leaders is non-negative. 

Proof. If there are no m-leaders, the assertion is true since an empty 

sum is 0 by convention. Let â . be the first m-leader and let p be the 

smallest integer such that p<m and a^ + ... + a
+̂p_j_ - 0. We shall show 

that a^j k<h^k+p-l, is also an m-leader and that the sum a^ + ... + 
ak+p-l ~ ®' Suppose not; i.e. suppose a^ + ... + a^ +p ^ < 0. Then 

a, + ... + a, , > 0. But this contradicts the choice of p. Now con-
K K —_L 
sider the sequence ,... sa n. If this sequence has no m-leaders, then 
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we have shown the theorem to be true. If there is at least one m-leader 

let a^, be the first one and let p' be the smallest integer such that 

p'<m and a, , + . . . + a. , , n > 0. As before, we can show that each of k' k'+p'-l 
these terms is also an m-leader. We proceed in this manner until there 

are no more m-leaders in the remaining sequence or we have exhausted the 

sequence. Observe that at this point we have some number, say N, of 
(3) (N-1) 

non-negative sums of length p,p?,p",p ,. . . ,p . Each of these sums 

is non-negative and the only elements in these sums are m-leaders. Con­

versely, each m-leader is included in exactly one of the sums. Hence, 

the sum of the m-leaders is non-negative. 

We now state and prove the Maximal Ergodic Theorem. 
THEOREM 2.4 (MAXIMAL ERGODIC THEOREM). Let f be real valued and f e L± 

Let T be a measure-preserving transformation of a space X. Denote 

f(T^x) by f^.(x). If E is the set of points x such that f Q(x) + ... + 

f , (x) > 0 for some n, then / f(x)dy ^ 0. 
n _ 1 E 

Proof. Let E be the set of those points x for which at least one of m r 

the sums f Q(x) + ... + f (x) is non-negative with p<m. Note that the 

sequence {E } is increasing and the union of the E ' s is E. Hence it ^ m to m 
will be sufficient to show that / f(x)dy ^ 0 for each m. 

Em 
Let n be an arbitrary positive integer and consider for each 

point x the m-leaders of the sequence f (x),...,f n(x). Let s(x) be r n o ' n+m-1 
their sum. Let D̂ . be the set of those points x for which f^( x) is a n 

m-leader of the sequence f (x),...,f n(x) and let I, be its indicator 
^ o n+m-1 k 

function. Note that each f.(x) is a measurable function and hence each 
1 
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n+m-1 
D is a measurable set. Note also that s ( x ) = Y f ( x ) L ( x ) . Hence 

k k=o k k 

s ( x ) is both measurable and integrable. By the lemma 

n+m-1 

I f
k<*)I k(x) * 0 

k=0 k k 

and hence 

n+m-1 n+m-1 

/ I f <x)I (x)du = I j f,(x)du * 0. 
k=0 k k k=0 D. k 

k 
Observe that if Tx e D. , then f. . (Tx) + . . . + f. ^ , (Tx) > 0 

k-1 k-1 k-l+p-1 

for some p<m. This implies that ^(x) + ••• + ^+p_i^ x^ ~ ^ ^ o r s o i n e 

p<m. This in turn means that x e . Since each of these steps is 

reversible, the four conditions are equivalent. Hence, = T ^ D^-i 

for k = 1,2,...,n-1, or D = T~ k D for k = 1,2,...,n-1. Therefore 
K O 

/ f (x)dy = / f(Tkx)du = / f(x)dp 
Dk T" kD Do 

O 

Hence 

n-1 

I f f, (x)du = n / f(x)dy. 
k=0 D. D k o 

Now, D is the set of those points x such that f (x) is an m-leader of o c o 
the sequence f (x),. . . ,f -.(x). That is, x e D if and only if there ^ o n+m-1 o J 

is an integer p" such that the sum f (x) + ... + f , > 0, l<p<m. But 
to r o P 

n-1 c 

this is exactly the set E . Therefore \ j f, (x)dy = n / f(x)dy. 
m k=0 D. E 

> T k m Note that 
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/ f, (x)du < / |f,(x)|du = / |f(x)|du < / |f(x)|du 

o 

Hence, 

n+m-1 
I } f,(x)du < m / |f(x)|du. 

k=n D.. 
k 

Therefore, we have 

n+m-1 
0 < I } f (x)du < n / f(x)du + m / |f(x)|dy 

k=0 D. k E k m 

and dividing by n 

/ f(x)du + ~ J |f(x)|du ^ 0 
E 

m 
n 

m 

for every m and n. Now let n tend to infinity. This yields 

/ f(x)dy > 0 for every m. 
E 
m 

Thus, / f(x)du £ 0. 
E 

We come now to the major point of this chapter 

THEOREM 2.5 (BIRKHOFF POINTWISE ERGODIC THEOREM). Let (X,A,u) be a a-

finite measure space and T a measure-preserving transformation on X. If 
± n-1 

f e L , then — £ f(T-'(x)) converges almost everywhere. The limit 
n j=0 

function f* is integrable and invariant in the sense that f*(Tx) = f"(x) 

almost everywhere. If in addition y(X)<°°, then 
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/ f*(x)dy = / f(x)dy. 

Proof. Let a and b be real numbers with a<b. Define the set 

^ n-1 n-1 
Y(a,b) = {x: lim inf — Y f.(x)<a<b<lim sup — Y f. 

By the definitions of lim inf and lim sup Y(a,b) is measurable and 

invariant under T in the sense that Y(a,b) = T "*"Y(a5b). We shall show 

first that y(Y(a,b)) is finite and then that y(Y(a,b)) = 0 . 

We first assume that b>0. Let C be any subset of Y(a,b) such 

that C is measurable and y(C)<°°. Let 1^ be the indicator function of 

C. Then the Maximal Ergodic Theorem applies to f-bl^ since y(C)<°° 

implies bl^ e L^ and hence f - bl^ £ L . Let E be the set as described 

in the Maximal Ergodic Theorem but for f - bl^ rather than f. Then we 

have 

/ (f-bl )(x)dy > 0. 
E L 

1 n _ 1 

Now if x £ Y(a,b), then b < lim sup — £ f.(x). But this means that at 
n-1 n j=0 1 

least one of the averages — J f.(x) must be greater then b. Hence 
1 n " ! 1 1 J = 0 1 

— T f . ( x ) - b > 0 for at least one n. Thus, we have the following n . i j=0 J 

inequalities 

1 n-1 
0 < - Y f.(x) - b 

n j=0 ^ 

i n-1 
< - Y f.(x) - bl p(x) 

n j=0 3 c 
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n-1 < I f (x) - bi (x). 
j=0 ^ 

n-1 
Therefore, for x e Y(a,b) at least one of the sums £ (f.(x)-blp(x)) ^ 

j=0 i 
0 . But this means that x e E. Hence Y<=E . Now by the Maximal Ergodic 

Theorem 

/ (f(x)-bl (x))dy * 0 
E L 

Therefore, 

/ |f(x)|dy > / |f(x)|dy > / blp(x)dy = by(C). 
E E 

We have shown thus far that if C <= Y(a,b) is measurable and has finite 

measure then 

y (C) < i- / |f(x)|dy. 

Now, since X is of o-finite measure, there is a decomposition of X, call 

it {C.}, such that I 

C. n C. = <f> i£j 

y(C.) < °° i=l,2, 

X = u C. . 
i=l 1 

The sequence of sets {C^nY} then forms a decomposition of Y. Since for 
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each i Cj. n Y c Y(a,b), the uE^nY] < i / |f(x)|dy. Note now that 
r r 

the sequence of sets {[ u C.]nY} = { u [C.nY]} is monotone increasing 
i=l 1 i=l 1 

and that for every r 

[ u C ] n Y c Y. 
i=l 1 

r 
Since u[ u C^] < °° for every r, then 

i=l 

for every r 

Therefore 

But 

y{[ u C^nY} < ± / |f(x)|dy 
i=l 

lim y{[ u CiJnY} < ± J |f(x)|dy 

r 
lim y{[ u C.]nY} = 

y lim {[ u C.]nY} 
r-*» i=l 

y[lim u C.nY] = 

p-Xo 1 = J_ 
y[XnY] = y[Y] 

Hence 

y[Y] < ^ / |f(x)|dy < oo. 
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Now consider the space Y and the function f-b. Since 

/ |f-b|du < / |f|dy < / | ±71 dp < 
Y Y 

f-b is an integrable function. 

Let he the set defined in the Maximal Ergodic Theorem. Then 

E_ , = {x: f n(x) - b + f. (x) - b + ... + f . (x) - b > 0 for some n}. r-b 0 1 n-1 

n-1 
E r , = {x: T f . ( x ) - n b > 0 for some n} 

1 n _ 1 

E_ , = {x: — y f. (x) - b > 0 for some n}. 
f - b n • A 1 

Note that if x E Y then x E E_ , . Hence Y c E_ , . Also, since we are 
f-b f-b 

treating Y as the whole space (it is invariant), c Y. Therefore 

E_ , = Y and hence r-b 

/ (f(x)-bjdy = / (f(x)-b)dy > 0 
Y Ef-b 

Applying the maximal ergodic theorem to a-f in a similar fashion we have 

/ (a-f(x))du > 0. 
Y 

Combining these two inequalities we have 
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/ (a-b)dy > 0 
Y 

(a-b)u(Y) > 0. 

But a<b and hence y(Y) = 0. Hence for every pair of rational numbers 

and such that a<b, the measure of the set Y such that 

Hence, the limit function f* does exist almost everywhere. 

In our argument we have relied heavily on the assumption that b>0. 

If this were not the case, then a would have to be negative and the same 

argument could be carried through with -f and -a in place of f and b, 

respectively. Hence no generality has been lost. Note now that 

n-1 n-1 
lim inf £ f.(x)<a<b<lim sup £ f.(x) 

j=0 ] j=0 ] 

is zero. Therefore 

n-1 n-1 
lim inf £ f.(x) = lim sup £ f.(x) 

j=0 : j=0 : 

n-1 n-1 

f.(x) dy 

T :(X) 
f(x)|du 



= iY / |f(x)|dy 
j=0 X 

= / |f(x) | dy < 0 0. 

Therefore 

1 n _ 1 

/ ]— £ f.(x)|dy < 0 0 for every n 
n j=0 ] 

Now by Fatou's Lemma we have 

1 n _ 1 

/ |f*(x)|dy = / lim inf|- £ f.(x)|du 
n j=0 ] 

n-1 
< lim inf / I- T f.(x)|dy 

n j=0 1 

Therefore, 

/ | f "(x) | dy < °° 

and hence f*(x) is finite almost everywhere. 
We now wish to show that f* is invariant. 

n-1 
fs';(Tx) = lim - I f (T3(Tx)) 

t-x» n j=0 

n 
= lim - T f(T:,x) n , L. n-*» ] =1 

n-1 . 
= lim [± I f(T^x) + - f(Tnx) - - f( n ,L_ n n 

n - > o o -j =o 
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= lim - f(T nx) - lim - f(x) + f*(x) n n 

Now since / |f(x)|dy < 0 0, then 

f(x) < 0 0 almost everywhere 

and hence 

Also 

lim — f(x) = 0 almost everywhere 

f(T nx) 

li m = o almost everywhere 
n̂ °° 1 n-1 

since — V f(T^x) converges almost everywhere. 
n j=0 

Hence 

f"(Tx) = f"(x) almost everywhere 

and hence f* is invariant. 

We must now show that if y(X) < 0 0, then 

/ fdy = / f*dy. 

Suppose that f* is such that f*(x) > a for all x. Then at least one of 
n-1 

the sums £ (f.(x)-a+e) must be non-negative for each e. Then by the 
j=0 : 

maximal ergodic theorem 
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/ f(x)dy > (a-e)y(X) for each e>0 

Hence 

/ f(x)dy > ay(X). 

In a similar manner if f*(x) ^ b for every x, then 

/ f(x)dy < by(X). 

Fix n and let 

X(k,n) = {x: — < f*(x) < — } . 
2n 2 n 

Each X(k,n) is invariant and so the above inequalities apply, so that 

— y(x(k,n)) < / f(x)dy < — y(x(k,n)) 
2 n X(k,n) 2 n 

and 

— y(x(k,n)] < / f*(x)dy < — y(x(k,n)) 
2 n X(k,n) 2 n 

Thus, combining these two inequalities, we have 

— y(x(k,n)] < / f(x)dy - / f*(x)dy < — 
2 n X(k,n) X(k,n) 2 n 

Or, 

/ f(x)dy - / f*(x)dy| < — y(x(k,n)) 
X(k,n) X(k,n) 2 n 
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Now, summing over k, we have 

| / f(x )du - / f*(x )du | < — y (X ) 
2 n 

and since n is arbitrary 

/ f(x )du = / f*(x ) d u . D 

This completes the proof of the Birkhoff Theorem. 

The results obtained in this chapter have been generalized to 

large classes of operators on large classes of abstract vector spaces. 

For other versions of the Von Neumann theorem see Dunford and Schwartz 

[2], Yosida, or Kakutani and Yosida. Generalizations of the Birkhoff 

Theorem may be found in Dunford and Schwartz [2] and Chacon and 

Ornstein. 
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CHAPTER III 

INFORMATION AND UNCERTAINTY 

Information theory is concerned with the analysis of a "communi­

cation system," which may be described as follows: A person or machine, 

called a sources produces a message to be communicated. An encoder then 

associates with each message an "object" called a code word which is 

suitable for transmission. The code word is presented to a channel^ 

the medium over which the coded message is transmitted. A decoder then 

receives the output from the channel and attempts to reconstruct the 

original message for delivery to the destination. In general, the de­

coder cannot function with complete reliability because of noises which 

is a general term for anything which tends to produce transmission 

errors. 

It will be the purpose of this chapter to give meaning to the 

various terms "uncertainty," "information," "channel," "noisy," "code 

word," "rate," and "capacity." The development here will follow ASH. 

However, it will be our intent to illumine the concepts of uncertainty 

and information rather than to detail the mathematics involved. For 

this reason we will include many results without proof. For a different 

development of these concepts see Pinsker. We proceed by taking an 

intuitive view of 

Let X be a random variable which takes on the values x ^ x ^ , . . . , ^ 

with probabilities p ,p0 ,. ..,p , respectively. We will require that 
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p.>0 for each i=l,2,...,M, and, of course, that J p. = 1 . Then we say 
1 i=l 1 

that we have a finite scheme 

X = 
X ! X

2 • • • X M 

P l P 2 M 

Every finite scheme describes a state of uncertainty. It appears obvi­

ous that the "uncertainty" is different in different schemes. Consider 

the three schemes below 

x ^ x ^ k 
> 

x^ 1 2 1 2 
9 

1 2 

0̂.5 0.5̂  0.9 0.1 

j 
0.7 
V. 

0.3 

J 
In the second case it is almost certain that X will have the 

value x . In the first case the chances are equal that the value of X 

will be x ^ or x ^ . The third case represents an amount of uncertainty 

between the other two. 

We now attempt to arrive at a number that will measure the un­

certainty associated with X. We shall do this by imposing certain 

reasonable requirements on the uncertainty associated with X and then 

showing that this leads us to an essentially unique function. For each 

M we define a function H.„ of the M variables p. ,prt,. .. ,p.„. The function 

H (p^,p2,. . . ,p̂ j) will be interpreted as the average uncertainty associ­

ated with the events {X = x . } . We will write H„(p_ ,...,p.,) as H(p_ ,... , 

l M 1 M
 rl 

p M) or as H(X). 
We now proceed to impose requirements on H. First suppose that 
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all values of X are equally likely. We denote by f(M) the average un­

certainty associated with M equally probable outcomes, that is, f(M) = 

H(Y ,.. . ,1/M). For example, f(2) would be the uncertainty associated 

with the toss of a fair coin, and f(6) would be the uncertainty associ­

ated with the roll of an unbiased die. It seems reasonable that there 

should be a greater amount of uncertainty associated with rolling the 

die than with tossing the coin. Hence we arrive at our first require­

ment on the uncertainty function. 

CONDITION I; f(M) = H ( 1 / M , 1 / M ) is a monotonically increasing 

function of M. 

Now consider an experiment involving two independent random 

variables X and Y. Let X = {x Y = {y^,...^^} and suppose 

that both X and Y have equally likely outcomes. Let Z = X x Y be the 

Cartesian product space. Then Z has equal probabilities at each of the 

MN points. Hence, the uncertainty associated with the joint experiment 

is f(MN). If the value of X is revealed, the uncertainty about Y should 

not be changed since X and Y are independent. Therefore, we expect 

that the uncertainty associated with Z minus the uncertainty associated 

with X should equal the uncertainty associated with Y. Now the uncer­

tainty associated with X is just f(M), Hence, we have the second re­

quirement on the uncertainty function H. 

CONDITION II: H | ~ ~ — 'MN 9 9 MN M + H or f(MN) = f(M) + f(N). 

We now drop the requirement of equally likely outcomes and turn 
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to the general case. Let the random variable X take on the values 

X^JXG with probabilities ^ 9p^9, . . 9-p 9 respectively. We divide 

the outcomes into two groups, A and B, where A = {x^,...,x^} and 

B = {x^+_^,. . . ,x^} . Now consider the compound experiment which consists 

of first choosing one of the groups, A or B, and then picking one of 

the elements, x^, from that group. The probability of choosing group A 

is exactly p^+p^+...+p^, and the probability of choosing group B is 

P r + 1
+ • • • + P M • Letting p = P[A] and 1-p = p[B] we have 

r 
p = p[A] = I p 

i=l 

M 
1 - p = p[B] = I p 

i=r+l 

Then, if group A is selected, the probability that x^, i=l,2,...,r, 

will be chosen is P[x^/A]. Now, for i=l,2,...,r, 

P[x inA] P[x i] p i 

p[x./A] = P [ A ^ - p X X ] P 

Similarly, if group B is chosen, then the probability that x^, i=r+l, 

...,M, will be picked is 

P i P[x./B] = . 1 1 - p 

The compound experiment described is equivalent to the original experi­

ment of picking one of the elements x^, i=l,2,...,M. To establish this 

let Y be the outcome of the compound experiment. Then, if x^ e A, 
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If x. e B, then 1 

p [ y = X i ] = P[A]P[xi/A] 

P p P i 

p[Y= X i] = P[B]P[xi/B] 

= p — = p. 
P 1 

Hence P[Y=x^J = p^ = P[X=x^] for i=l,2,...,M. Before the compound 

experiment is performed, the uncertainty associated with the outcome is 

H(p ,... »Pjy[) • Revealing which group is selected removes on the average 

an amount of uncertainty H(p,l-p). If group A is chosen, the uncer­

tainty remaining is H 
IP ' P 

F 
uncertainty remaining is H r+1 

' PJ 
5r+2 

If group B is chosen, the 

Now, since group A U - p ' 1-p 1-pJ 
is chosen with probability, p, and B is chosen with probability, 1-p, 

the average uncertainty remaining after specifying the group is 

pH 
I P 

_£ 
P J 

+ (l-p)H r+1 r+2 
[1-p ' 1-p 1-P 

Since the original experiment and the compound experiment are equivalent, 

we expect that the average uncertainty of the compound experiment minus 

the average uncertainty removed by specifying the group equals the 

average uncertainty remaining after the group is specified. Hence, we 

have the third requirement that we will impose on the uncertainty func­

tion . 
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CONDITION III: H(p l 9p 2,. .,p ) = H(p,l-p) + P H IP PJ 
+ (l-p)H r+1 

[1-p " ' " l - p j 

where 

r M 
P = I P.* 1 - p = I p. 

i=l i=r+l 

Finally, we expect that a small change in probabilities should 

cause only a small change in uncertainty and hence we require as our 

fourth condition: 

CONDITION IV: H(p,l-p) is a continuous function of p. 

We now recapitulate the four requirements which we impose on the 

uncertainty function: 

I. f(M) = H(l/M,...,1/M) is a monotonically increasing function 

of M. 

II. H _1_ _1_ 
MN '' * * 5 MN = H + H ro or f(MN) = f(M) + f(N). 

III. H(p l 9...,p M) = H(p,l-p) + pH 

+ (l-p)H IP P r+1 

[1-p 1-pJ where 
r M 

P = I P..» 1 " P = I P, • 
i=l i=r+l 

IV. H(p,l-p) is a continuous function of p. 

We now state and outline the proof of the following theorem which 

yields the uncertainty function. 
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THEOREM 1. The only function which satisfies the four conditions given 

above is 

M 

H(p l 9P 2,...,P M) = -C I p i log P j L, 
i=l 

where C is an arbitrary positive number and the logarithm base is any 

number greater than 1. 

Proof. (Sketch). It is easily verified that the function 

M 
H(p l 9p 2,...,p M) = -C I P i log p i 

i=l 

satisfies the four conditions imposed on the uncertainty function. In 

order to show that any function which satisfies the four conditions is 

of the specified form, we proceed as follows. First, using induction 

we show that f(M ) = kf(M). Again using induction, we show that f(M) = 

C log M. We next establish that for any rational number p such that 

0<p<l, then H(p,l-p) = -c[p log p + (1-p) log (1-p)]. Using this 

result and the condition of continuity, we have 

H(p,l-p) = -c[p log p + (1-p) log (1-p)] 

for all real p e (0,1). Using this result and Condition III, we proceed 

by induction to prove the theorem. 

Having arrived at a measure of the uncertainty associated with a 

random variable, we will now note some of the important properties of 
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the uncertainty function. Although we shall state the properties as 

lemmas, theorems, and corollaries, we shall give only a few comments 

on the proofs. The details of these proofs may be found in any standard 

text on information theory such as Pinsker, Ash, or Khinchine. 

We note first that since p^ log p^ > 0 for all i then H(X) > 0. 

LEMMA 1. Let p^ ,p2 ,. .. ,p^ and q^ ,q2 ,. . . ,q^ be arbitrary numbers such 

that 

Pi > o, i=l,2,...,M 

q £ > 0, i=l,2,. ..,M 

M M 

Then 

M 

- J Pj. log P i < -
with equality if and only if 

i=l,2,...,M. 

Proof. The proof of this lemma is based on the convexity of the 

function f(x) = log x. 

THEOREM 2 . H( P ,p 2,. . . , P ) < log M with equality if and only if P i = 

1/M, i=l,2,...,M. 

Proof. Apply Lemma 1 with g. = 1/M. 



33 

Thus far, we have been concerned only with the uncertainty asso­

ciated with a single random variable. We turn now to the case of two 

random variables and their joint and conditional uncertainty. The 

results here generalize to any finite number of random variables but we 

shall not discuss these generalizations. We first include some results 

from probability theory. Although familiarity with these results is 

assumed, we include them for completeness. 

Suppose we have a space Z with a probability V defined. Let 

each point of Z be expressed as an ordered pair (x,y) and write 

Pz[{(x,y)}] = p(x,y). 

Note that the spaces X and Y are projections of Z. If we define 

P X[A] = p z[AxY] for A c X 

and 

P y[B] = P z[XxB] for B c Y, 

then it is easily verified that P and P v are probability measures on X 

and Y, respectively. In particular, 

P x(x) = P z[{x}xY] = I p z(x,y). 
yeY 

The measures P v and P v are called marginal probability measures. Let x i 
C c Z be such that P ^ E C L ] > 0 and define 
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co Pz C C n Co ] 

C Q 

Again it is easily verified that P_ is a probability measure on the 
L C 

sets of Z. In the same manner as before P„ induces marginal probabili-Zi 
ties on the sets of X and Y. In particular, let C A = A x Y and consider 

A XY 
the marginal measure on the sets of Y induced by P^ . We shall write 

A xY 
P * [ X x B ] as P y / X [ B / A ] Then 

P [(AxY)n(XxB)] 
P Y / X [ B / A ] = P Z [XxB] = P ~ [ A X Y ] 

P z C A x B ] 

The measure Py/^ w e s n a H call the conditional probability of Y given 

X. In particular, we write 

P z[{(x,y)}] 
P Y / x ( y / x ) = P Y / x[{y}/{x}] = f x > ] 

X 

= Px ( x ) 

and 

p z(* 9y) 
Px/Y ( x /y } = p (y) * 

y 

We say that the random vectors X and Y are independent in case 
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p z(x,y) = px(x)p (y) 9 for all (x,y) e Z 

or 

p z [ A x B ] = ( P x [ A ] ) ( P y [ B ] ) , 

for all A c X , B c Y and such that A x B c Z . 

DEFINITION. Let P = P v be a probability measure on the sets of Z 
— _ _ _ _ _ _ _ _ ^ ^ ̂  Y 
X x Y. We define the joint uncertainty of X and Y by 

H(X,Y) = - I p-(x 9y) log p z (x,y). 
(x,y) 

Z 

THEOREM 3. H(X SY) < H(X) + H(Y) with equality if and only if X and Y 

are independent. 

Proof. Use the defining equations to compute H(X) + H(Y) and then apply 

Lemma 1. 

DEFINITION . We define the conditional uncertainty of Y given x by 

H(Y/x) = - I YP y / x(y/x) log p y / x(y/x). 

Furthermore, the average conditional uncertainty of Y given X is defined 

as the weighted averages of H(Y/x) taken over all x e X. That is, 

H(Y/X) = I p (x)H(Y/x). 
xeX 
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THEOREM 4. H(X,Y) = H(X) + H(Y?X) = H(Y) + H(X/Y). 

Proof. This may be verified by direct calculation using the defining 

equations. 

This last theorem justifies the intuitive idea that if the two 

random variables are observed but only the value of X is revealed, then 

the remaining uncertainty about Y should be the conditional uncertainty 

H(Y/X). 

THEOREM 5. H(X) > H(X/Y) with equality if and only if X and Y are 

independent. 

Proof. This follows directly from Theorems 3 and 4. 

We are now ready to define a measure of information. 

DEFINITION. The information about X conveyed by Y is given by 

I(X/Y) = H(X) - H(X/Y). 

Note that I(X/Y) is always non-negative, and is zero if and only if X 

and Y are independent. 

We have shown that 

H(X/Y) = H(X,Y) - H(Y); 

hence 

I(X/Y) = H(X) + H(Y) - H(X,Y). 
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But H(X,Y) = H(Y,X) and hence 

I(X/Y) = I(Y/X). 

Therefore, 

H(X) - H(X/Y) = I(X/Y) = I(Y/X) = H(Y) - H(Y/X) 

and the information may be computed by either formula depending on the 

problem posed. 

The fundamental significance of the information measure comes 

from its application to the reliable transmission of messages through 

noisy communications channels. We shall discuss this topic later. At 

this point however we turn our attention to describing the noiseless 

coding problem, that is, the problem of efficient coding of messages to 

be sent over a channel which allows perfect transmission. Any channel 

with this property will be called noiseless. We shall formally define 

an information channel later; but for now an intuitive idea will suffice. 

Let X = { x ^ , x 2 , . . . j X ^ } be a space with a probability measure 

defined on the points of X. We may think of the points, x^, as words of 

a language. A message is constructed by sampling X. Thus X g X^x^x^x^ 

would be a message. The channel is a device which accepts input from a 

code alphabet {a^9a^9 . . . 9a^}. Since the channel is assumed to be noise­

less, the letters of the code alphabet are transmitted without error. A 

"word" x^ e X will be represented by a finite sequence of letters of the 

alphabet. This representation will be called the oode word for x^. The 

collection of all the code words will be called a oode. The noiseless 

coding problem is then to minimize the average code word length, n, by 
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using different coding techniques. We define n by the following equa­

tion : 

M 
n = T p.n., 

1=1 

where 

n. = the length of the codeword associated with x.. l to l 
We note immediately that there are some restrictions to be placed 

on the code words. For example, suppose that the alphabet is the set 

{0,1}, X = { X ^ J X ^ J X ^ } and code words were assigned as follows: 

Word Code Word 

xi 0 

x 2 1 

x 3 01 

If the sequence 01 were received, we would be unable to determine whether 

XG was sent or the sequence x^x^. We wish to avoid such problems and are 

led to the following definition. 

DEFINITION. A code is uniquely decipherable if every finite sequence of 

code characters corresponds to at most one message. 

We now state another definition and note a theorem showing the 

relation of the two. 

DEFINITION. A code is instantaneous if no code word has a prefix which 

is also a code word. By a prefix here we mean some initial string of 

letters from the code alphabet. 
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For clarification we give an example of a non-instantaneous code. 

Word Code Word 

xl 0 

x 2 01 

Note that although this code is uniquely decipherable, it is not instan­

taneous since the code word for x^ is a prefix of the code word for x^. 

This leads us to the following theorem. 

THEOREM 6. If a code is instantaneous, then it is uniquely deciperable. 

The converse is false. 

Proof. Given a finite sequence of code letters of an instantaneous 

code, proceed from left to right until a code word is formed. Since the 

code is instantaneous, this code word cannot be just the prefix of a 

larger code word and hence must represent the first word of the message. 

This process may be repeated until the sequence of code letters is 

exhausted. Hence every instantaneous code is uniquely decipherable. 

The previous example shows that the converse is not true. 

Later in this chapter we shall state a result which guarantees 

that, for the purpose of solving the noiseless coding problem, we may 

restrict our attention to instantaneous codes. For this reason we now 

investigate the properties of such a code. First, we pose the following 

problem. Suppose we have a language x^,x2,...,x^, an alphabet a^,a29...s 

a_, and a set of positive integers n n,n 0,...,n„. Under what conditions D ^ 1 2 M 
is it possible to construct an instantaneous code such that n. is the 

length of the code word associated with x^ for i=l,2,...,M. The follow­

ing theorem provides the answer. 



40 

THEOREM 7. An instantaneous code with code word lengths n_ ,n_ .... ,n.. & 1' 2' 5 M 
exists if and only if 

M -n. 
I D 1 < 1, 

i=l 

where 

D = the size of the code alphabet. 

Proof. The proof rests on the construction of a probability tree of 

order D and size n , i.e., the Cartesian product of the alphabet space 

with itself n^ times, and noting that a code word of length n^ excludes 
n™-n. n -n., 
D paths through the tree or D points or vectors in the Carte­
sian product space. 

Theorem 7 may be strengthened to include not only instantaneous 

codes but also the class of uniquely decipherable codes. We will not 

prove this result but we will use it later. 

We proceed now to solve the noiseless coding problem; that is, 

to find a uniquely decipherable code which minimizes the average code­

word length n. There are three steps in the solution. First, we estab­

lish a lower bound on n; then we find out how close we can come to this 

lower bound. The third step is to construct the "best" code. We shall 

not pursue the third step of the problem in this work. To establish the 

lower bound on n, we appeal to the following theorem. 

M 
THEOREM 8 (NOISELESS CODING THEOREM). If n = £ p.n. is the average 

i=l X X 

code-word length of a uniquely decipherable code for the random variable 
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H ( X ) ~ ni X , then n > l o g D w i t n equality if and only if = D , i=l929...,M 

H ( X ) Proof. The condition n > - — may be rewritten as log D J 

M M 

I p.n. log D > - I p. log p. i=l i=l 

or 
M -n. M 

I p. log D 1 > - I p. log p. i=l i=l 

Hence all we must do is establish this last inequality. 
M M 
I vi = 1 and I qL = 1, then 

Recall that if 

i=l i=l 

M M 
" I p i log p i < - ^ p i log q i i=l i=l 

Hence 

-n 
by Lemma 1. Define q. = i M -n. 

Z D ] 

j=l 

"I VL log Pi - ~.I ?i l o 

i=l i=l 

-n 

M -n 
I D : 

j = l 

-n 
" I Pn. log p. < - ][ p. log D + 
i=l i=l 

M M -n.' 
I Pi log I D 1 

U=i x\ U=i J 



M M -n. 

- I Pn- log P.- £ - I p log D 1 + log 
• .. 1 —- —- • -i —-

i=l 1=1 

But, since the code is uniquely decipherable, 

Hence 

M -n. 
I D 3 < 1. 

M -n. 

log I D 3 < 0. 
j=l 

Therefore 

M M -n. 
"I PJL log Pi - ~ I Pi log D 1 

i=l i=l 

This last inequality guarantees that 

r - H(X) i J = _ _ -"i n = log D l f Pi = D 

Conversely, suppose 

M M -n. 

x -I Pi log Pi = - I Pi log D 
i=l i=l 

-n. 

We wish to show that this implies p^ = D , i=l,2, 

Rewriting the above equality we have 



M M -n. 
- I P.. log P.- = - I Pn- l°g D 1 + 0 

i=l i=l 

M -n. 
> - I p. log D 1 + log 

i=l 

M 
I D U = l 

= - I P, log 
i=l 

-n. 
1 

M -n. 

But we have already shown that 

M M 
-I ?I log Pi - - J Pi lo£ 
i=l i=l 

-n 

M -n. 
I D ^ 11=1 J 

Therefore, 

M M -n. M 
- J p i log pj_ = - J pj_ log D 1 = - J Pj. log 
i=l i=l i=l 

M -n. 
Hence £ D 3 = 1. 

j=l 
Then 

M M 
- J Pi log Pi = - J Pi lo| 
i=l i=l 

-n 

M -n. 
I D ] 

Hence, applying Lemma 1 again, 
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-n. 
l -n. 

I D 3 

j = l 

In general, we will not be able to construct a code for a given 

set of probabilities which will achieve this minimum, since if we choose 
- I K -log p.. 

n. so that p. = D , then n. = — — and this may not be an integer. 
1 r i l log D J to 

The next theorem shows that although we may not achieve this minimum, 

we can come close. 

THEOREM 9. Given a random variable X with uncertainty H(X), there 

exists a base D instantaneous code for X whose average code-word length 

satisfies 

M I L L . < N < Mi2LL_+ ! log D log D 

Proof. Choose n. such that I 

log p. log p. 
i. < n . < — + 1 

log D l log D 

We wish to show that an instantaneous code can be constructed with code­

word lengths n. defined above. Since 

log p £ 

- — < n . for all i 
log D l 

then 

-log p.. < n.̂  log D 
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or 

Hence 

Therefore 

-n. 
log p i > log D 

-n. 
p. > D 1 . 

M -n. M 
I D 1 S I p = 1 

1=1 1=1 

Hence by Theorem 6 5 an instantaneous code with code-word lengths n^ does 

exist. We must show now that for this code 

- _ _ _ - < „ < ! log D log D 

We had 

log p. log p. 
± < n. < -=- + 1 

log D l log D 

If we multiply each term in this inequality by p^ and sum over all i 

we have 

log D ~ log D 

We have thus completed the first two steps in solving the noise­

less coding problem. The only remaining step is to construct the 

required code. Most texts on information theory discuss this topic. In 
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particular, a celebrated construction is given in Huffman. Although we 

shall not pursue this issue, we include one theorem (without proof) 

which will allow us to restrict our search for such a code to the realm 

of instantaneous codes. First we need a definition. 

DEFINITION. A code C, relative to a probability space, is optimal in 

a class of codes in case 

where c' is any other code in the class. 

THEOREM 10. If C is an optimal code within the class of instantaneous 

codes, then C is optimal within the class of uniquely decipherable 

codes. 

Thus far, we have considered a channel as that portion of a com­

munications system which carries the coded message from the sender to 

the receiver. We now attempt to present a mathematical model of a 

channel and define several types of channels. 

DEFINITION. A triple (x,Y,p(y/x)) is called a channel. X is the space 

of "sendable" symbols and Y is the space of "receivable" symbols. 

We define the information content of a channel in the same manner 

as before. That is, 

I(X/Y) = H(X) - H(X/Y). 

DEFINITION. If H(X/Y) = 0, then we say that the channel is lossless. 

Let A be a partition of Y such that P[A /x.J = 1 for i=j and 1 1 J 
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P[A /x.] = 0 for i^j. Then, if in addition to being lossless, the 
Xi : 

channel has the property that for each i A is a singleton set, then 
i 

we say that the channel is noiseless. 

Define 

c(p) = H(X) - H(X/Y) 

where p = {p^,p2,...,p^} is a probability measure on X so that c(p) is 

defined on the simplex 

M 
s = {p: I p. = 1, p.>0}. 

i=l 

We define the channel capacity C by 

C = max c(p). 
P 

We remark here that this is a true maximum since 

C(p) = KX/Y) 

is a continuous function on a compact set. 

In general, we wish to transmit several successive elements, x^, 

through a channel rather than just one. Although it is not a mathe­

matical necessity, it may help the intuitive feeling to view the x/s as 

being sent sequentially in time. This leads us to the definition of 

the extended channel. 
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DEFINITION. Given (X,Y,p(y/x)) , we define the triple ( u , V , p ( V / u ) ] 

where 

u = {(x 1 9x 2,...,x 7): x i e X} 

v = {(y l 5y 2,...,y n): y. E Y} 

p(v/u) = p ((y1,y2,...,yn)/(x1,x2,...,xn)] 

as an extension of length n of the channel (x,Y,p(y/x)). We say that 

the extended channel is memorytess in case 

p((y1»y2»...»yn)/(x1,x2,...,xn)) = P(y 1/x 1)p(y 2/x 2) ... p(y n/x n). 

That is, the extended channel is memoryless in case the signal trans­

mitted at time i is dependent only on the signal received at time i, 

i.e. independent of signals sent or received before time i. 

THEOREM 11. Let (x,Y,p(y/x)) be a discrete channel without memory, 

having capacity C, Then the capacity of its extension of length n is 

nC. 

Proof. Show first that if 

p(u) = p(x 1,x 2,...,x n) = p(x x),p(x 2)...p(x n), 

then 
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I(U/V) = H(u) - H(U/V) = n[H(X)-H(X/Y)]. 

Next show that H(u) - H(u/v) for any probability distribution is 

bounded above by H(U) - H(U/V) in the special case where p(x j X ^ , . . . , 

x^) = p(x^)p(x2)...pCx^). For details of the proof, see Feinstein. 

We turn now to the problem of defining the "decoder." The 

purpose of the decoder is to translate the output of the channel into 

one of the possible input symbols. The decoder makes use of a decision 

scheme to perform this function. A decision scheme is nothing more 

than a partition of the space Y into M subsets A^ 9A 2,... 9A and a rule 

which assumes that x. was transmitted if A. was observed. To put the 
i i v 

definition in negative terms, we say that if x^ is sent and the output 

y falls into A_., j^i, then we have an error. Hence the probability of 

an error is 

P ( e ) = I p(y)[(l-p(x /y)] 
Y y 

where p(x^/y) is used to denote the probability that x^ was sent given 

that y was received. We now define one type of decision scheme. 

DEFINITION. Let (x,Y,p(y,x)) be a given channel. Then the partition of 

Y 3 into the sets {A l 9A 2,...,A } is called a uniform error bounding deci­

sion scheme with bound e in case 
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It should be noted that it is not always possible to construct 

such a decision scheme for a given channel. In particular, Feinstein 

shows that in the case of a non-lossless channel such a construction is 

impossible. 

We come now to a most important result in information theory. 

This theorem, known as the coding theorem for discrete memoryless chan­

nels and as the fundamental theorem of information theory, was first 

stated by C. E. Shannon in 194-8. 

THEOREM 12. Let X,Y,p(/x) be a discrete memoryless channel with 

capacity C. Let H and e be given, with 0<H<C and e>0: then there 

exists a positive integer n(e,H) such that in every extension of the 

channel (x,Y,p(/x)) of length n>n(e,H), there exists a set u^, 
nH 

i=:l,2,. . . ,N, N>2 , to each of which is associated a v-set A^, i=l,2, 

...,N, such that the sets {A.} are disjoint and p(A./u.) > 1 - e. 

Since this theorem is not directly pertinent to the main investi­

gations of this work, we shall omit the proof. The proof is presented 

in great detail in both Ash and Feinstein. We shall, however, discuss 

the importance of the result. Note, first, that an immediate result is 

the existence of a uniform error bounding decision scheme with bound 

e for all e>0. 

Another important result is that by coding the messages to be 

sent with codes of sufficient length, we may transmit the coded messages 

at any rate less than channel capacity with arbitrarily small probabil­

ity of error. 

As previously noted, the development of the first part of this 
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chapter follows Ash. The portion on the discrete memoryless channel 

follows Feinstein. It should be noted that the four conditions imposed 

on the uncertainty function may be replaced by three. These somewhat 

weaker conditions are given in Feinstein. Lee presents a development 

based on an even weaker set of conditions. Developments and results in 

the area of coding theory are discussed in Feinstein, Abamson, and Fano. 

The problem of determining the capacity of a given channel is dealt 

with in Muroga, Fano, and Ash. 
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CHAPTER IV 

THE MCMILLAN THEOREM 

In the previous chapters we have discussed some aspects of 

ergodic theory and information theory. It will be the aim of this 

chapter to use the Birkhoff ergodic theorem to prove one of the major 

results in information theory, the McMillan theorem, and so tie the 

two concepts together. The concept of a source is central to the study 

of information and hence to the McMillan theorem. We begin by formu­

lating this concept. 

A source is that portion of an information system which creates 

the output or signal to be transmitted. Underlying the definition of 

a source is the set A of symbols used by it. We shall call A the 

alphabet of the source and refer to individual elements of A as letters. 

The alphabet A will be assumed to be finite. We shall denote by A^" the 

set of all doubly infinite sequences of the form x = (...,x ^ , X Q , X ^ , 

x 2 , . . . ) . We define a set Z c A 1 to be a cylinder sety or briefly a 

cylinder3 if it may be expressed in the form 

Z = {x: x = c u , n<£<n+k}. 
i 

Let F be the minimal Borel field over all the cylinders of the alphabet 

A. Then, as we have shown in Chapter II, the probability of any set 

S e F is uniquely determined by knowing the probabilities on all 



53 

cylinder sets. Hence we can completely describe a source by specifying 

its alphabet A and the probability measure P on each of the cylinders of 

A. Hence we shall denote a source by [A,P], Note that (A*,F,P) is a 

probability space. 

DEFINITION. The transformation T which carries the sequence x = (..., 

x ^ , X Q , X ,...) into the sequence Tx = (...,x!^,x^,x^,...) where = 

x£ +^ will be called the shift operator. (Notice that this operator is 

measurable). 

DEFINITION. If P(TS) = P(S) for every set S e F, then the source is 

called stationary. Recalling the definition of a measure-preserving 

transformation we see that a source is stationary if and only if the 

shift operator is measure-preserving. 

In the study of information, the prime characteristic of a source 

is the rate at which it emits information, i.e., the average amount of 

information given by each symbol produced. In the following we shall 

formulate an exact definition of this quantity. Let C = ^ xt , xt+l 5* * * 5 

x^, ,} be a sequence of length n of letters of A. If A consists of a t+n-1 ^ 

letters, then there are exactly a n such sequences. Each C so defined is 

a cylinder in A"*" and hence has a definite probability P(C). Therefore 

we have a finite probability space consisting of a n elements C. In 

Chapter III we arrived at the following measure of- the information con­

tained in this space 

H = - Y P(C) l o g P(C). n C 



Since we are assuming stationarity, the probabilities P(C) are uniquely 

determined by the nature of the source and by the number n. The same is 

obviously true for the entropy H . Therefore, the average amount of 

information per symbol emitted by the source is ^ n/ n« We would like to 

define the source entropy as the limit of H^/n if this limit exists. 

Hence we are led to the following theorem. 

THEOREM 4.1. If [A,P] is a stationary source, then 

H 
lim — exists and is finite. n 
n-*» 

Proof. Let ^ n + m he the space of sequences of length n+m. As was noted 

in Chapter III, A ^ + m can be regarded as the product of the two spaces 

A and A . By the results of that chapter we have n m J 

H(A ) = H(A ) + H. (A ) n+m n A m n 
and 

H. ( A ) < H(A ). A m m n 

Combining these two results and using our new notation we have 

H < H < H + H n n+m n m 

for all integers m and n. Letting m=l in the first of these inequali­

ties we have 



55 

H < H n n+1 

By induction the second inequality may be extended to yield 

H < H + H + . .. + H n 1 +n 2+...+n k n 2 n R 

Then, taking n =n =...=n =n, 
J. Z. K 

H. < k H for all integer K and n kn n 

In particular set n=l, then for any integer k^l 

k 1 

Therefore 

< for every k>l. 

Hence 

H _r 
n lim inf — < 0 0 . 

n-x» 

H H 
Let a = lim inf — . We now show that lim — exists and is a. n n n-*» n-x» 

Let e>0 be given. Since a = lim inf H /n, there is an index q 
n-*» 

such that 

H 
< a + e. 

q 
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Note that for any n>q, there is an integer k>l such that 

(k-l)q < n < kq. 

Since we have shown that is a monotonically nondecreasing function, 

we have, for n, k, and q as above, 

H < H. , n kq 

Then, since (k-l)q < n, 

H H. 
n ~ (k-l)q 

H 
But H. < kHq and -—• < a + e. Hence, kq H q 

H H k kH 

Let n' be chosen such that n>n' implies 

H 
^ > a - e . 
n 

Then we have 

H n a - e < — < a + e n 
or 
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- a < e 

But this is simply the defining inequality for 

lim — = a. ^ n n-*» 

Consider now the random variable 

±- log P(C) 

where C is the cylinder x^.x^,. ,. . . ,x_,_, n. Obviously, f (x) has the J t t+1 t+n-1 J n 
same value for all x belonging to the cylinder C. Hence, the mathe-

matic expectation of f n( x) c a n l>e computed by elementary means. There­

fore, letting M(f(x)) denote the expectation of the random variable 

f(x), we have 

- i- log P(C) = - - I P(C) log P(C) 
Recall that 

- I PCC) log P(C) 
C 

is the entropy of n-term sequences from the given source which we 

denoted by H . Since we are assuming the source to be stationary, we 

set t=0, so that C denotes the sequence x^,x ,,..9x ^. Then the ran­

dom variable - i log P(C) is a function of x and n, which we denote by 



58 

f^(x); thus 

Mf (x) = — 
H 
i 
n 

H 
We have shown that lim — = H, the entropy of the source. Hence for any 

n-x» 
stationary source 

lim Mf (x) = H. 
_ n 

We now introduce the concept of a martingale which will facili­

tate the proof of the McMillan theorem. Since we need only one theorem, 

due to Doob, we will pursue the theory only as far as is required for 

the statement and later use of this theorem. 

DEFINITION. Let m=l,2,..., be a sequence of random variables de­

fined on the space of elementary events x e . We shall denote the 

conditional expectation of £ given that £, = a., = a_,...,£ , = r m & 1 1 2 2 ' m-1 
a , , by M (£ ). The sequence {£ } is called a mavtinqdle if m-1' J ana_...a n m ^ m v 

1 2 m-1 
for any m>l 

M (£ ) = a . . a.a0...a , m m-1 1 z m-l 

We shall deal only with bounded martingales, i.e., martingales, 

{£ }, such that I £ I < C for every x e A 1 and every index m. m 1 m1 J J 

THEOREM 4.2 (DOOBTS THEOREM). Every bounded martingale converges almost 

everywhere on A^. 
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Proof. See Loeve. 

In order to prove the McMillan theorem we need to prove a few 

preliminary lemmas. We begin by establishing the notation to be used. 

We have already noted that every quantity which can be uniquely deter­

mined by the sequence x^,...,x ^ ^ of letters of the alphabet A can 

be regarded as a random variable on the space A". If C is the sequence 

x.,x.,...,x ., then the function 0' 1' n-1 

f (x) = - - log P(C) n n 

is such a random variable. Let C be the sequence x ,...,x . and 
n - n - 1 

c + x„ the sequence x ,...,x n,x„. Each of these sequences is also n 0 ^ -n -1 0 ^ 
a cylinder of the space A^", as is the sequence 

c + a = x ,...,x _ ,a 
n -n -1 

where a is any letter of the alphabet A. Now define the two random 

variables P N ( X ) p n(x,a) by 

P(C +x_) ( \ n 0 
P n

( x ) = P ( C ) 
n 

P(C +a) n 
p n ( x ' a ) = W I 

n 

We shall agree that P Q ( X ) = ^ ^ X Q ^ * These two random variables represent 

the conditional probability that x Q will appear after the sequence 
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and the conditional probability that a will appear after the sequence 

C , respectively. 
n 

L E M M A 4.1. The sequence p (x,a), n = 0 , l , 2 , . . . is a martingale. 
n 

Proof. We shall write p (x,a) as £ . Let a .,...,a , , N be any r n ' n -1' ' -(n-1) J 

sequence of n-1 letters of A and denote by the cylinder x ^ = a ̂ , 

i=l ,2 ,...,n-l. Then B _ c A 1. Let Tn be the cylinder x = 3, 3 £ A . 

n-1 3 -n Now I T = A . Hence 
3eA 3 

/ ?dP = T / CdP J n n 
B 3 £ A B n r f l n-1 n-1 3 

If x e B . n r Q . 

n-1 3 

- P ( E n - i N R E + A ) 

"» " P ( B n - i n r B ) 

Therefore 

P(B , n r Q + a ) 

/ = It Hi n ) 

Bn-1 S e A Bn-l n rB 6 

P ( B n r +a) 

I P(B n n r Q + a ) 
3eA n ~ 1 3 

P(B n+a) n-1 

Therefore 
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/ £ dP = P(B _+ct). 
T> n n-1 
V l 

Denote by [£ . the value of the random variable £ . at C 
J n-1 B n-1 n-1 n-1 

B .. Then n-1 

P(B _+a) 
, 1 n _ 1 'n-lJB _ P(B7) n-1 n-1 

Hen ce 

{ = "n-l ]B / ^ n - l ^ B . n-1 n-1 

Now, let k . be the set of all x for which _ take on n-1 1 n-1 

the given values £. = TT. (i<i<n-l). The numbers TT., l<i<n-l, are 

uniquely determined by specifying the cylinder B^ ^. Hence the set 

is the union of several cylinders B . and [£.]-. = EC • _i = ^ • » 
J n-1 l B . I k i' 

n-1 n-1 
l<i<n-l, for all B _ in k , . Therefore 

n-1 n-1 

I ***** l J ? N D P = l P C B ^ ) 
K . B _ <=K B B CK n-1 n-1 n-1 n-1 n-1 n-1 n-1 

B CK n-1 n-1 

= TT.P(K ,) 
l n-1 

L
1 I n-1 

Hence, 

TT. = = 7 7 ^ ^ — - / £ dP = M (£ ) 

n-1 
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Therefore the sequence {pn(x,a)} is a martingale. D 

LEMMA 4.2. The sequence {p n(x)}, n=0,l,... converges almost everywhere 

Proof. Let x e Â " be fixed. Then there exists a e A such that 

p (x) = p (x,a) for n=0,l, *n r n ' 

For a chosen in this manner 

p ( x ) - p ( x ) = p ( x,a)-p ( x , a ) < Y p ( x,a)-p ( x , a ) rn rm 1 1 rn rm 1 L ' rn rm ' aeA 

Now {pn(x,a)} is a martingale and is obviously bounded by 1. Hence by 

Lemma 4.1 {p (x,a)} converges almost everywhere. Hence given e>0, there n 
m exists N such that n,m>N implies £ |p (x,a)-p (x,a)| < e. For n and 

aeA 
chosen this way then 

p (x)-p (x) < e, r n rm 

But this means that (pn(x)} is a Cauchy sequence of real numbers and 

hence, converges. We, seemingly, have proved that the sequence (pn(x)} 

converges everywhere; however, recall that P n^ x) is defined only for 

those x such that P(C )>0. The set of x such that P(C ) = 0 is obvi-
n n 

ously of measure 0 and hence we have the conclusion almost everywhere. D 

LEMMA 4.3. Let g R(x) = -log P n(x), n=l,2,... and let E n k , n>0, k>0 be 

defined by 
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E , = {x: k_g (x)<k+l> n ,k n 

Then, 

/ g (x)dP < N(k+l)2" k, 
E v n n ,k 

where N is the number of letters in A. 

Proof. Let B be defined as in Lemma 4.1, and let Z be the cylinder n ' a J 

x_ = a. for a e A. For x e B n Z , 0 s n a' 

P(B ta) P(B nZ ) 
q^Cx) = -log --^-g- log p ( B ) 

n n 

Hence the value of g n(x) is determined uniquely by specifying B n and a, 

Clearly, 

B n E = Y B n Z n n,k n a aeA" 

where A* is the set 

A* = {aeA: k<g^(x)<k+l, xeB^Z} 

Therefore 

/ gn(x)dP = I j £ (x)dP. (1) 
B nE . aeA5'* B nZa 1 

n n ,k n 

In each of the integrals on the right 
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log P(B n Z ) 

k s g n ( x ) = - - f i r r - * k + 1 

n 

Recalling that the logarithm base is 2, we have 

P(B n Z ) i n q 
l o g P(B ) " " k 

n 

P(B n Z ) , 

P(B ) " 2 

n 
or 

P(B n Z ) < 2 kP(B ) n q n 

and substituting in (l) 

/ gn(x)dP < I J (k+l)dP = I (k+l)P(B n Z ) 
B nE , q EA* B n Z aeA* n a 

n n ,k n 

< N(k+l)2"kP(B ). 
n 

Now summing over all cylinders B^ yields 

/ g n ( x ) d P < N(k+l)2"k. D 

n ,k 

LEMMA 4.4. Given L>0, let A _ be the set ' n ,L 

A j = {xeA1: g (x)>L}. n ,L n 

Then, given e>0, there exists L A such that, for b ^ L Q and all n=l,2, 



65 

/ gn(x)dP < e 
A T n ,L 

Proof. Note first that for every n and L, 

A = 7 E n,L ^ L n,k 

and that E , n E . = <J> for i^k. n,k n,: 
Therefore 

/ g (x)dP = I J g (x)dP < I N(k+l)2' k. 
A _ n k=L E , n k=L n,L n,k 

00 

v -k 
Now lim ) (k+l)2 < 0 0. Hence there is an L_ such that L>L_ implies 

1 1 T 0 0 

I (k+D2" k < | . 
k=L 

Therefore, for L>L Q 

/ g (x)dP < e. A t n 
n ,L 

LEMMA M-.5. Given e>0, there is a 6>0 such that if E e F and P(E) < 6, 

then 

/ g (x)dP < 6, n=l,2,... 
E n 

Proof. By Lemma 4.4 given e>0 there is an L such that 
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/ g (x)dP < f , n=l,2,... 
A T 
n ,L 

Set 5 = ^- and let P(E) < 6. Then 

Z L i 

/ g (x)dP = / g(x)dP + / g(x)dP 
E n EnA , (EnA r ) ° n 

n,L n,L 

Now for x e (EnA T ) c , g (x)<L. 
n ,L n 

Therefore, 

/ g (x)dP < / g (x)dP + LP(E) 
E n A T

 n 

n ,L 

< l + L IL- e" " 
Notice that S n( x) < 0 0 almost everywhere on Â " as a result of this lemma. 

LEMMA 4.6. Let g(x) = lim g (x). Then this limit exists almost every-
_. n-*° 

where on A and 

/ g(x)dP < «. 
.1 

Proof. That g(x) exists almost everywhere, allowing the value +00, is an 

immediate consequence of Lemma 4.2. For L>0 set 

g^(x) = min{L,gn(x)}. 

Then, since gn(x)-*g(x) almost everywhere, g^(x)-*-gL(x). Recall that the 



functions g n(x) are uniformly bounded for all n. Using this fact, 

Lemma 4.3, and the Lebesque Dominated Convergence Theorem, we have 

Therefore 

/ g (x)dP = / lim g^(x)dP 
. I .1 n-*» A A 

= lim / g (x)dP 
* "Pi n — I 

< lim sup / g (x)dP 
IT.- I 

= lim sup I J gn(x)dP 
n-*» k=0 E , n,k 

< N I (k+l)2~k. 
k=0 

/ gL(x)dP < N I (k+l)2~ k 

A 1 k = 0 

for every L>0. Hence 

/ g(x)dP < N I (k+l)2 k < 
.1 k=0 

g(x) is finite almost everywhere, since 

/ g ( x)dP < « , . D 

A 1 
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LEMMA 4.7. 

lim / |g (x)-g(x)|dP = 0 
n-~> a I 

Proof. Let e>0 be given. Let E be defined by 

E = {xeA1: |g (x)-g(x)I>e}. n 1 n & 1 

Then 

/ |g n(x)-g(x)|dP = / |g n(x)-g(x)|dP + / |g n(x)-g(x)|dP 
I E E c 

A n n 

< / g (x)dP + g(x)dP + e P(E C). 
_ E n 

n n 

By Lemma 4.4 there is a 5>0 such that if P(E )<6, then 

/ g (x)dP < e. 
E n 

n 

Since gn(x)->g(x) almost everywhere there is an n' such that n>n' implies 

P(E ) < 5. Note also that by Lemma 4.6 g(x) is summable over A"*" and n 
hence there exists a 6 f>0 such that if P(E )<6' 

n 

/ g(x)dP < e. 
E 
n 

Let 5* = min{5,5'} and let n* be such that P(E )<5',{ for n>n5'{. Then for 
n 

any such n 
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/ g (x)dP < e 
E 
n 

and 

/ g(x)dP < e. 
E 
n 

Also note that since P(») is a probability measure P(E )<1 for every set 

E° e F. Hence n 

/ |g (x)-g(x)|dP < 3e, for n>n5 

.1 n 

Therefore 

lim / |gn(x)-g(x)|dP = 0 . 0 
A 1 

We are almost ready to move to the McMillan Theorem. However, in 

that theorem we will be concerned with the function 

f n(x) - - i log P(C), 

where C is the cylinder x.,x.,...,x ,. In order to use the results of J 0' 1 ' n-1 
the lemmas we have proved we must relate the functions f (x) to the 

n 
functions g n(x) we have been studying. 

LEMMA 4.8. For all x e A 1 and n>l 

k=0 
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where T is the shift operator. 

Proof. We shall use the following notation. The probability of the 

sequence x ,...,x , will be denoted by P[x ,.,.,x , 1. Using this ^ r 5 r+s J r 5 r+s 
notation we have 

f n(x) = - i l o g P h 0 x ^ ] 

and 

, , P [ x - n - - » X 0 ] . p (x) = 
PEx ^ , . . . ^ ^ ] 

For k-tO it is obvious that 

P[x^ ,...,x,] 
p (T kx) = — 2 
rn 

and for n=k 

' [ x k - n , , , " X k - l ] 

P C x ^ . . . , ^ ] 

P k(T x) = 
PCxo Vi3 

This equality holds for all k>l. Recall that P n(x) = p C x Q ] by defini-

tiontion. Hence 

P 0(T°x) = p (x) = P[x Q] 

Therefore 

n-1 P . X p.x J P [ x Q > x l ' X 2 ] P [ x Q , x l 5 . . . , X n ] 

n p (T x) = P[x ] • - - • p r x x I ••• ' P f x x ~ T 
k=0 K 1 0 J L 0* 1 J r L X 0 ' x l ' " ' » x

n - 2 J 
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- PCx 0,x 1,...,x n_ 1]. 

Taking logarithms yields 

n-1 k 

I log p k(T x) = log P[x 0,x l 5...»x n - 1] 
k=0 

Recalling now that g^x) = -log P n(x) and that f
n(x) = 

- ^ log p t x
0 , . . . , x n _ 1 3 , we have 

n-1 I L ( I X ) = nf (x). D 
k=0 n 

We have defined a set S to be invariant under a transformation 

T if TS = S. In our present work we shall let T be the shift operator. 
I - 1 2 The set A is always invariant as is the set {...,T x,x,Tx,T x,...}. 

DEFINITION. The source [A,P] is called ergodic if the probability P(S) 

of every invariant set S e F is either 0 or 1. 

THEOREM 4.3 (McMILLAN'S THEOREM). For any stationary source [A,Pl 

the sequence f (x) converges in L-1-mean to some invariant function h(x). n 

In the case of an ergodic source, h(x) coincides almost everywhere in Â " 

with the entropy H of the source. 

Proof. The function g(x) which we have defined is summable over A^, 

i.e., g(x) E L.1, by Lemma 7.6. Hence the Birkhoff ergodic theorem may 

be applied to g(x) and we have the result that 
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i n~1 V k=0 

converges in lA-mean to some invariant function h(x). (We have noted 

previously that the shift operator T is measure-preserving if [A,P] 

is stationary.) By Lemma 4.8 

n-1 

/ |f (x)-h(x)|dP = / |~ I g (Tkx)-h(x)|dP A I
 n k=0 ~ k 

* / £ Y Cgv(Tkx)-g(Tkx)]|dP 

+ / l~ Y g(Tkx)-h(x)|dP 
.1 k=0 

*k Y / |gv(Tkx)-g(Tkx|dP + / |i Y g(Tkx)-h(x)|dP n k=o y~k i n k=0 

Now by stationarity 

/ |gk(Tkx)-g(Tkx)|dP =; / |gk(x)-g(x)|dP 

Since g, (x)-*g(x) as k-*30, g, (x)-g(x) -K) and hence 

lim 
n-*» 

k Y / k(x)-g(x)|dP n k=0 'l'^k 

A 
= 0 

Therefore, given e>0 there is an index n 1 such that n>n' implies 
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n-1 
~ I ! |gk(x)-g(x)|dP < f . 
n k=0 .1 k 1 

By the definition of h(x), given e>0 there is an index n" such that 

n>n" implies 

/ l - ^ 1 g(Tkx)-h(x)|dP < \ . 
A 1 n k = 0 

Let e>0 be given and choose n ? and n" as above. Let n* = max{n',n"} 

Then for n>n* we have 

n-1 

/ |f(x)-h(x)|dP < i I j |g (x)-g(x)|dP 
AI n n k=0 .1 k 

A A 
+ / I r ^ 1 g(Tkx)-h(x)|dP 

< e . 

Hence f n(x) converges in L^-mean to h(x) and the first part of the 

theorem is proved. 

In the case of an ergodic source, the corollary to the Birkhoff 

theorem states that the function h(x) is almost everywhere a constant h 

Thus, to prove the second part of the theorem, we must show that h=H. 

The fact that f (x) converges in L^-mean to h implies that 

lim / f (x)dP = / hdP = hPCA 1) = h 
y n T 

n ~ A 1 A 1 
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Now 

/ f (x)dP 

is just the mathematical expectation of the random variable f n ( x ) 

which we have shown has limit H. Hence 

h = H. D 

This theorem, also called the asymptotic equipartition property 
(AEP) allows us to draw the following conclusion about the encoding of 

information produced by an ergodic source with uncertainty H. Suppose 

that the information produced by such a source is to be transmitted 

through a discrete memoryless channel with capacity C. Suppose H<C, 

and choose R such that H<R<C. Then, for sufficiently large n we can 

divide the sequences of length n into two classes S^ and S^ such that 
, . _n(H-S) , _ ^ 0n(H+6) . x . _ 
has at least 2 and at most 2 sequences for any 6>0. In par-

nR 
ticular then, we may choose n so that has fewer than 2 sequences. 

Since the total probability of the sequences in S^ can be made ^e/2, we 
nR 

can find a code with 2 input sequences of length n whose maximum 

probability of error is < e/2 by assigning a code word of this code to 

each sequence in and assigning an arbitrary input sequence of length 

n to each sequence of S^. Hence a source with uncertainty H can be 

handled by a channel with capacity C provided H<C. 

For additional results in this area see Ash. Ash, Feinstein and 

Billingsley offer other developments of the topics treated in this 
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chapter. Billings.ley also discusses additional connections between 

the theories of ergodicity and information. 
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