AN APPLICATION OF THE ERGODIC THEOREM
 TO INFORMATION THEORY

A THESIS
Presented to
The Faculty of the Division of
Graduate Studies and Research
By
Lon Day Hadden

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Applied Mathematics

AN APPLICATION OF THE ERGODIC THEOREM
TO INFORMATION THEORY

Approved:
/

Date approved by Chairman: 4 imı 7

ACKNOWLEDGMENTS

I gratefully acknowledge my debt to Dr. James W. Walker for his assistance and encouragement in the preparation of this paper. I also express my thanks to Dr. Samuel H. Coleman and Dr. Pranas Zunde for their valuable suggestions. My thanks also go to Mrs. Betty Sims for rapid and accurate typing of the manuscript. Finally, I wish to publicly thank my wife, Beverly, for without her encouragement and determination this work would have never been completed.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
Chapter
I. INTRODUCTION I
II. ERGODIC THEORY 3
III. INFORMATION AND UNCERTAINTY 25
IV. THE MCMILLAN THEOREM. 52
BIBLIOGRAPHY 76

CHAPTER I

INTRODUCTION

Ergodic theorems are concerned with convergence of averages of iterations of an operator acting on a function space or more generally on a topological linear space.

The first result of ergodic theory was proved by J. Von Neumann about 1930 and published in 1932. The von Neumann mean ergodic theorem states that if T is a measure preserving transformation on a measure space (X, A, μ), then for every $f \in L_{2}(X, A, \mu)$ there is a function $f^{*} \varepsilon L_{2}$ such that

$$
\lim _{n} \int\left|f *(x)-\frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right)\right|^{2} d \mu=0
$$

At about the same time G. D. Birkhoff proved under additional restrictions on the transformation T and the space X that for $f \varepsilon L_{1}$ the sequence $\frac{1}{n} \sum_{k=0}^{n-l} f\left(T^{k} x\right)$ is pointwise convergent to $f *$ for almost all x. These supplementary restrictions were later shown to be superfluous. The general theorem is known as the Birkhoff pointwise ergodic theorem.

Many generalizations of these theorems have followed. Specifically, S. Kakutani, K. Yosida and F. Riesz proved various assertions concerning mean convergence of operator averages in an abstract Banach space during the period 1935-1945.

Notable extensions of the Birkhoff theorem have been provided by
E. Hopf, N. Dunford and J. T. Schwartz, and R. V. Chacon and D. S. Ornstein.

The theory of information originated in the work of C. E. Shannon in 1948. In his fundamental paper, Shannon set up a mathematical scheme in which the concepts of an information source and of information transmission could be defined quantitatively. He then formulated and proved a number of very general results which showed the importance and usefulness of these definitions. Since 1948 a number of papers have been published which simplify and extend Shannon's original work.

In particular, in 1953 McMillan proved a very general result which states that for any stationary scurce, information may be transmitted at any rate less than channel capacity with arbitrarily small probability of error. This result is known as the McMillan theorem or the Asymptotic Equi-partition Property (AEP).

In Chapter II of this paper, after developing the necessary machinery from functional analysis, we prove an extension of the Von Neumann mean ergodic theorem. This result is then used to arrive at the Birkhoff pointwise ergodic theorem.

In Chapter III we turn our attention to information theory. The object of study here is a "communication system." This chapter is devoted to developing the theory of information to provide the background for Chapter IV.

In Chapter IV we use the Birkhoff theorem proved in Chapter II to extend the results of Chapter III. Specifically, we prove the McMillan theorem and hence establish a relationship between ergodic theory and information theory.

CHAPTER II

ERGODIC THEORY

In ergodic theory, one studies transformations that preserve the structure of measure spaces. In this chapter we shall discuss some concepts of ergodic theory and prove the Birkhoff point-wise ergodic theorem. This theorem will then be used in Chapter IV to prove the McMillan theorem. First, we need a few definitions.

In all that follows let (Ω, F, P) be a probability space.

DEFINITION: Let T be a transformation of Ω into itself. Then T is measurable if $A \varepsilon F$ implies $T^{-1} A=\{\omega: T \omega \in A\} \in F$.

DEFINITION: Let T be a measurable transformation. If T is one-to-one, if $T \Omega=\Omega$, and if $A \varepsilon F$ implies $T A=\{T \omega: \omega \in A\} \varepsilon F$, then T is invertible.

DEFINITION: Let T be a measurable transformation. Then T is measure preserving in case $P\left(T^{-1} A\right)=P(A)$ for every $A \varepsilon F$.

Let us now turn to a specific probability space of the type with which we will be concemed. Let X be a random variable with finite range, $\rho=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$. Let $p_{i}=P\left[s_{i}\right]$ be the associated probability measure. Let (Ω, F, P) be the product of a doubly infinite sequence of copies of the resulting measure space. Then the general element of Ω is a doubly infinite sequence

$$
\omega=\left(\ldots, \omega_{-1}, \omega_{0}, \omega_{1}, \ldots\right)
$$

of elements of ρ. Let x_{n} be the nth coordinate function; that is, x_{n} is the mapping from Ω to ρ whose value $x_{n}(\omega)$ at the point ω is the $n t h$ coordinate ω_{n} of ω. We wish to characterize the probability measure, P, on F. For this, we appeal to the Product Probability Theorem.

THEOREM 2.1. (PRODUCT PROBABILITY THEOREM). Let (Ω_{t}, A_{t}, P_{t}), $t \varepsilon T$, be probability spaces. Let \mathcal{C}_{T} be the class of all measurable cylinders of the form

$$
\left.\operatorname{Cyl}_{\Omega^{T}}^{[X} \underset{t \in T_{N}}{X} A_{t}\right], \quad A_{t} \varepsilon A_{t} .
$$

That is, C_{T} is the class of all measurable cylinders in Ω^{T} based on the Cartesian products $\underset{t \in T_{N}}{X} A_{t}$ for $A_{t} \in A_{t}$. Define P_{T} on the class \mathcal{C}_{T} by

$$
P_{T}\left(C y l_{\Omega}^{T} \underset{t \in T_{N}}{X} A_{t}\right)=\prod_{t \varepsilon T_{N}} P_{t} A_{t} .
$$

Then, the product probability, P_{T}, on \mathcal{C}_{T} is σ-additive and determines its extension to a probability, P_{T}, on the product σ-algebra A_{T}.

Proof: See Loève pg. 91.

Hence, P is specified in our example by its values on what may be called "thin" cylinders of the form

$$
\left\{\omega: x_{\ell}(\omega)=i_{\ell}, \quad n \leq \ell<n+k\right\}
$$

in the following manner

$$
P\left\{\omega: x_{\ell}(\omega)=i_{\ell}, \quad n \leq \ell<n+k\right\}=\prod_{\ell=n}^{n+k-l} p_{i_{\ell}} .
$$

Let $T: \Omega \rightarrow \Omega$ be the mapping that carries ($\ldots, \omega_{-1}, \omega_{0}, \omega_{1}, \ldots$) into $\left(\ldots, \omega_{0}, \omega_{1}, \omega_{2}, \ldots\right)$, that is, T is defined by

$$
x_{n}(T \omega)=x_{n+1}(\omega)
$$

Note that $x_{n}(\omega)=x_{0}\left(T^{n}(\omega)\right)$ and consequently any statement about the random variables x_{n} can be converted into a statement about x_{0} and T. If A is any cylinder of the form

$$
\left\{\omega:\left(x_{n}(\omega), \ldots, x_{n+k-1}(\omega)\right) \varepsilon E\right\}
$$

with E a subset of the Cartesian product ρ^{k} of k copies of ρ, then $T^{-l} A$ is also a cylinder and $T^{-1} A \varepsilon F$, and $P\left(T^{-1} A\right)=P(A)$. The following theorem shows that T is both measurable and measure preserving.

THEOREM 2.2. Let F_{0} be a field generating F. If $T^{-1} A \& F$ and $P\left(T^{-1} A\right)=$ $P(A)$ for every $A \varepsilon F_{0}$, then T is a measure preserving transformation.

Proof: See Billingsley, pg. 4.

We turn now to the proof of the Birkhoff point-wise ergodic theorem. The theorem will be proved in three steps. We first prove a slight generalization of the von Neumann mean ergodic theorem, then the maximal ergodic theorem, and finally the Birkhoff theorem itself. In the course of this development we shall need some results from the
theory of Hilbert spaces. For completeness and to introduce notation, we include these results.

Let (X, A, μ) be a σ-finite measure space. Any measurable transformation T on X into X, measure preserving or not, induces a transformation V_{T} on M (the space of complex measurable functions defined a.e. on X) as follows: Letting $F \in M$, then for any $x \in X$ define

$$
\left(V_{T} f\right)(x)=f(T x)
$$

provided the right-hand side of this equation is defined. The next lemma is central to the ergodic convergence theorems for measure preserving transformations.

LEMMA 2.1. Let T be measure preserving on X, and let V_{T} be the induced transformation on M. Then V_{T} is linear and positive (i.e. $f \geq 0$ a.e. implies that $\mathrm{V}_{\mathrm{T}} \mathrm{f} \geq 0$ a.e.). Moreover,

$$
\int V_{t} f d \mu=\int f d \mu \quad\left(f \varepsilon L_{1}\right) ;
$$

and

$$
\left\|V_{T} f\right\|_{p}=\|f\|_{p} \quad\left(f \varepsilon L_{p}, l \leq p \leq \infty\right)
$$

that is, V_{T} is a linear isometry on each L_{p}.

Proof: That V_{T} is linear and positive is clear from its definition. To prove (i) suppose first that f is an integrable simple function, say $f=\Sigma C_{k} I_{A_{k}}$; then

$$
\begin{equation*}
\left(V_{T} f\right)(x)=\sum C_{k} I_{A_{k}}(T x)=\sum C_{k} I_{T}-I_{A_{k}}(x) \tag{1}
\end{equation*}
$$

and hence

$$
\begin{align*}
\int V_{T} f d \mu & =\sum C_{k} \mu\left(T^{-1} A_{k}\right) \tag{2}\\
& =\sum C_{k} \mu\left(A_{k}\right)=\int f d \mu .
\end{align*}
$$

Now let f be non-negative and integrable on X. We may choose a sequence $\left\{f_{n}\right\}$ of non-negative integrable simple functions such that $f_{n} \leq f$ and $f_{n}(x) \rightarrow f(x)$ a.e. It follows from (1) and (2) above that $\left\{V_{T} f_{n}\right\}$ is a sequence of non-negative integrable functions. Moreover, $\int \mathrm{V}_{\mathrm{T}} \mathrm{f}_{\mathrm{n}} \mathrm{d} \mu=$ $\int \mathrm{F}_{\mathrm{n}} \mathrm{d} \mu$ and

$$
\left(V_{T} f_{n}\right)(x)=f_{n}(T x) \uparrow f(T x)=\left(V_{T} f\right)(x) \text { a.e. }
$$

Applying the monotone convergence theorem it follows that

$$
\begin{equation*}
\int \mathrm{fd} \mu=\lim \int \mathrm{f}_{\mathrm{n}} \mathrm{~d} \mu=\lim \int \mathrm{V}_{\mathrm{T}} \mathrm{f}_{\mathrm{n}} \mathrm{~d} \mu=\int \mathrm{V}_{\mathrm{T}} \mathrm{fd} \mu \tag{3}
\end{equation*}
$$

That (i) holds for an arbitrary $f \in L_{\mathcal{I}}$ may now be seen by writing $f=f_{1}-f_{2}+i\left(f_{3}-f_{4}\right)$ where $f_{j} \geq 0$ a.e., $f_{j} \varepsilon L_{1}(j=1,2,3,4)$ and applying (3) to each f_{j}.

To prove (ii) we consider two cases.
(I) Assume $f \varepsilon L_{p}$ for some $p \varepsilon[1, \infty)$.

Then for $\mathrm{x} \in \mathrm{X}$

$$
\left|\left(V_{t} f\right)(x)\right|^{P}=|f(T x)|^{P}=\left(V_{T}|f|^{P}\right)(x)
$$

whereupon by (i) $\left(|f|^{P} \varepsilon L_{l}\right)$ we have

$$
\left\|\mathrm{v}_{\mathrm{T}} \mathrm{f}\right\|_{\mathrm{P}}^{\mathrm{P}}=\int\left|\mathrm{V}_{\mathrm{T}} \mathrm{f}\right|^{\mathrm{P}} \mathrm{~d} \mu=\int \mathrm{V}_{\mathrm{T}}|\mathrm{f}|^{\mathrm{P}} \mathrm{~d} \mu=\int|\mathrm{f}|^{\mathrm{P}} \mathrm{~d} \mu=\|\mathrm{f}\|_{\mathrm{P}}^{\mathrm{P}},
$$

and hence $\left\|V_{T}\right\|_{P}=\|f\|_{P}$.
(II) Assume $f \in L_{\infty}$. Then for any $a>0$

$$
\mu\left[\left|V_{T} f\right| \geq a\right]=\mu\left(T^{-1}[|f| \geq a]\right)=\mu[|f| \geq a] ;
$$

and therefore

$$
\begin{aligned}
\left\|V_{T} f\right\|_{\infty} & =\inf \left\{a: \mu\left[\left|V_{T} f\right| \geq a\right]=0\right\} \\
& =\inf \{a: \mu[|f| \geq a]=0\}=\|f\|_{\infty} . \quad
\end{aligned}
$$

We shall use the following notation. The inner product of two elements f and g of a Hilbert space will be denoted by (f, g). The adjoint of the operator U will be denoted U^{*} and is characterized by the equation $(U f, g)=(f, U * g)$, for all f and g.

IEMMA 2.2. If U is an isometry, then a necessary and sufficient condition that $U f=\mathrm{f}$ is that $\mathrm{U} * \mathrm{f}=\mathrm{f}$.

Proof. See Halmos [2], pg. 15.

We now come to the generalization of the von Neumann theorem.

THEOREM 2.3 (MEAN ERGODIC THEOREM). If U is an isometry on a complex Hilbert space, H, and if P is the projection on the space of all invariant elements of H under U, then $\frac{1}{n} \sum_{j=0}^{n-1} U^{j} f_{f}$ converges to Pf for every $\ddagger \in H$.

Proof. Let

$$
S_{1}=\{f \varepsilon H: U f=f\} .
$$

be the set of all invariant elements of H. Then, for $f \varepsilon S_{l}$,

$$
\begin{aligned}
\frac{1}{n} \sum_{j=0}^{n-1} U^{j} f & =\frac{1}{n}\left[f+U f+U^{2} f+\ldots+U^{n-1} f\right] \\
& =\frac{1}{n}[f+f+f+\ldots+f]=\frac{1}{n}[n f]=f .
\end{aligned}
$$

Hence, if $f \varepsilon S_{1}$, the theorem is true.
Let

$$
S_{2}=\{f \varepsilon H: f=g-U g \text { for some } g \varepsilon H\} .
$$

Then, for $f \in S_{2}$

$$
\begin{aligned}
\frac{1}{n} \sum_{j=0}^{n-1} U^{j} f=\frac{1}{n} \sum_{j=0}^{n-1} U^{j}(g-U g) & =\frac{1}{n}\left[g-U g+U g-U^{2} g+\ldots+U^{n-1} g-U^{n} g\right] \\
& =\frac{1}{n}\left(g-U^{n} g\right)
\end{aligned}
$$

Therefore, for $f \in S_{2}$,

$$
\begin{aligned}
\| \frac{1}{n} \\
j=0
\end{aligned} U^{n-1} j^{j}\|=\| \frac{1}{n}\left(g-U^{n} g\right) \| .
$$

Hence, for $f \in S_{2}$,

$$
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-1} U^{j} f\right\| \leq \lim _{n \rightarrow \infty} \frac{2}{n}\|g\|=0
$$

We show next that if f is an element of the closure of S_{2} then

$$
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{j=0}^{n-l} U^{j} f\right\|=0
$$

First we must establish a relation between $\left\|\frac{1}{n} \sum_{n=0}^{n-1} U^{j} f\right\|$ and $\|f\|$ for any feH. Let $f \varepsilon H$. Consider

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{j=0}^{n-1} U^{j} f\right\| & \leq \frac{1}{n} \sum_{j=0}^{n-1}\left\|U^{j} f\right\|=\frac{1}{n} \sum_{j=0}^{n-1}\|f\| \\
& =\|f\| .
\end{aligned}
$$

Therefore, for every $f \varepsilon H$,

$$
\left\|\frac{1}{n} \sum_{j=0}^{n-1} U^{j} f\right\| \leq\|f\| .
$$

Now let $A_{n}=\frac{1}{n} \sum_{j=0}^{n-1} U^{j}$ and let f be any element in the closure of S_{2}. Then there is a sequence $\left\{f_{k}\right\} \subset S_{2}$ such that given $\epsilon>0$ there exists M such that $k>M$ implies $\left\|f_{k}-f\right\|<\frac{\epsilon}{2}$. Also, since each $f_{k} \varepsilon S_{2}$, for each k there exists N_{k} such that $n>N_{k}$ implies $\left\|A_{n} f_{k}\right\|<\frac{\epsilon}{2}$. Let $\epsilon>0$ be given and consider

$$
\begin{aligned}
\left\|A_{n} f\right\| & \leq\left\|A_{n}\left(f-f_{k}\right)\right\|+\left\|A_{n} f_{k}\right\| \\
& \leq\left\|f-f_{k}\right\|+\left\|A_{n} f_{k}\right\| .
\end{aligned}
$$

Fix $k>M$. Then $\left\|f-f_{k}\right\|<\frac{\epsilon}{2}$. For this k choose $n>M_{k}$. Then $\left\|A_{n} f_{k}\right\|<\frac{\epsilon}{2}$. Hence given $\epsilon>0$ there exists N such that if $n>N$ then $\left\|A_{n} f\right\|<\varepsilon$ or that $\lim _{n \rightarrow \infty}\left\|A_{n} f\right\|=0$. Therefore $\lim _{n \rightarrow \infty}\left\|A_{n} f\right\|=0$ for every f $\varepsilon \bar{S}_{2}$.

We now establish the fact that the orthogonal complement of S_{2} is the same as the orthogonal complement of \bar{S}_{2}. We shall denote the orthogonal complement of a set S by S^{\perp}.

LEMMA 2.3. For any set S in a Hilbert space H

$$
S^{\perp}=\mathrm{S}^{\perp}
$$

Proof. If f $\varepsilon \bar{S}^{\perp}$, then $(f, g)=0$ for every $g \varepsilon \bar{S}$. Hence since $S \in \bar{S}$ $(f, g)=0$ for every $g \varepsilon S$. Therefore $f \varepsilon S^{\perp}$ and $S^{\perp} \subset \bar{S}^{\perp}$.

Now let $f \varepsilon S^{\perp}$. Then $(f, g)=0$ for every $g \varepsilon S$. Let $g * \varepsilon \bar{S}$. Then there is a sequence $\left\{g_{k}\right\} \subset S$ such that $\lim _{k \rightarrow \infty} g_{k}=g^{*}$. Hence,

$$
\left(f, g^{*}\right)=\left(\underset{k \rightarrow \infty}{\left(f i \lim _{k}\right.} g_{k}\right)=\lim _{k \rightarrow \infty}\left(f, g_{k}\right)=\lim _{k \rightarrow \infty} 0=0
$$

using the continuity of the inner product. Therefore $\tilde{S}^{\perp} \subset S^{\perp}$. Combining this with the previous inclusion we have the result $\bar{S}^{\perp}=S^{\perp}$.

Using this fact let us determine \bar{S}_{2}^{\perp} by considering S_{2}^{\perp}. Let $h \in S_{2}^{\perp}$. Then $(h, g-U g)=0$ for all $g \in H$. Hence,

$$
(h, g)-(h, U g)=0
$$

or

$$
(h, g)-\left(U^{*} h, g\right)=0
$$

or

$$
(h-U * h, g)=0 \quad \text { for every } g \varepsilon H .
$$

Therefore $h-U * h=0$. Then $h=U * h$ and by Lemma $2.2 h=U h$. Thus if $h \varepsilon S_{2}^{\perp}$ (hence $h \in \bar{S}_{2}^{\perp}$), then Uh $=h$.

Now let h be such that $U h=h$. Then by reversing the previous argument $h \varepsilon S_{2}^{\perp}$ and hence $h \varepsilon \bar{S}_{2}^{\perp}$. Therefore

$$
\bar{S}_{2}^{\perp}=S_{1} .
$$

Now by the projection theorem every f εH can be expressed as a $\operatorname{sum} f_{1}+f_{2}$ where $f_{1} \varepsilon S_{1}$ and $f_{2} \varepsilon \bar{S}_{2} . \quad[$

We need one definition and a lemna before moving to the Maximal Ergodic Theorem.

DEFINITION. Suppose that $\left\{a_{i}\right\}, i=1,2, \ldots, n$ is a finite sequence of real numbers and that m is a positive integer, $m \leq n$. A term a_{k} of the sequence is an m-leader if there exists a positive integer $p, l \leq p \leq m$, such that $a_{k}+\ldots+a_{k+p-1} \geq 0$.

LEMMA 2.4. The sum of the m-leaders is non-negative.

Proof. If there are no m-leaders, the assertion is true since an empty sum is 0 by convention. Let a_{k} be the first m-leader and let p be the smallest integer such that $p \leq m$ and $a_{k}+\ldots+a_{k+p-1} \geq 0$. We shall show that $a_{h}, k \leq h \leq k+p-1$, is also an m-leader and that the sum $a_{h}+\ldots+$ $a_{k+p-1} \geq 0$. Suppose not; i.e. suppose $a_{h}+\ldots+a_{k+p-1}<0$. Then $a_{k}+\ldots+a_{k-1}>0$. But this contradicts the choice of p. Now consider the sequence a_{k+p}, \ldots, a_{n}. If this sequence has no m-leaders, then
we have shown the theorem to be true. If there is at least one m-leader, let a_{k}, be the first one and let p^{\prime} be the smallest integer such that $p^{\prime} \leq m$ and $a_{k^{\prime}}+\ldots+a_{k^{\prime}+p^{\prime}-1} \geq 0$. As before, we can show that each of these terms is also an m-leader. We proceed in this manner until there are no more m-leaders in the remaining sequence or we have exhausted the sequence. Observe that at this point we have some number, say N, of non-negative sums of length $p, p^{\prime}, p^{\prime \prime}, p^{(3)}, \ldots, p^{(N-1)}$. Each of these sums is non-negative and the only elements in these sums are m-leaders. Conversely, each m-leader is included in exactly one of the sums. Hence, the sum of the m-leaders is non-negative.

We now state and prove the Maximal Ergodic Theorem.

THEOREM 2.4 (MAXIMAL ERGODIC THEOREM). Let f be real valued and $f \varepsilon L_{1}$.
Let T be a measure-preserving transformation of a space X. Denote $f\left(T^{j} x\right)$ by $f_{j}(x)$. If E is the set of points x such that $f_{o}(x)+\ldots+$ $f_{n-1}(x) \geq 0$ for some n, then $\int_{E} f(x) d \mu \geq 0$.

Proof. Let E_{m} be the set of those points x for which at least one of the sums $f_{0}(x)+\ldots+f_{p}(x)$ is non-negative with $p \leq m$. Note that the sequence $\left\{E_{m}\right\}$ is increasing and the union of the E_{m} 's is E. Hence it will be sufficient to show that $\int_{E_{m}} f(x) d \mu \geq 0$ for each m.

Let n be an arbitrary positive integer and consider for each point x the m-leaders of the sequence $f_{o}(x), \ldots, f_{n+m-1}(x)$. Let $s(x)$ be their sum. Let D_{k} be the set of those points x for which $f_{k}(x)$ is an m-leader of the sequence $f_{o}(x), \ldots, f_{n+m-1}(x)$ and let I_{k} be its indicator function. Note that each $f_{j}(x)$ is a measurable function and hence each
D_{k} is a measurable set. Note also that $s(x)=\sum_{k=0}^{n+m-1} f_{k}(x) I_{k}(x)$. Hence $s(x)$ is both measurable and integrable. By the lemma

$$
\sum_{k=0}^{n+m-1} f_{k}(x) I_{k}(x) \geq 0
$$

and hence

$$
\int \sum_{k=0}^{n+m-1} f_{k}(x) I_{k}(x) d \mu=\sum_{k=0}^{n+m-1} \int_{D_{k}} f_{k}(x) d \mu \geq 0
$$

Observe that if $T x \varepsilon D_{k-1}$ then $f_{k-1}(T x)+\ldots+f_{k-1+p-1}(T x) \geq 0$ for some $p \leq m$. This implies that $f_{k}(x)+\ldots+f_{k+p-1}(x) \geq 0$ for some $p \leq m$. This in turn means that $x \in D_{k}$. Since each of these steps is reversible, the four conditions are equivalent. Hence, $D_{k}=T^{-1} D_{k-1}$ for $k=1,2, \ldots, n-1$, or $D_{k}=T^{-k} D_{o}$ for $k=1,2, \ldots, n-1$. Therefore

$$
\int_{D_{k}} f_{k}(x) d \mu=\int_{T^{-k} D_{0}} f\left(T^{k} x\right) d \mu=\int_{D_{0}} f(x) d \mu
$$

Hence

$$
\sum_{k=0}^{n-1} \int_{D_{k}} f_{k}(x) d \mu=n \int_{D_{0}} f(x) d \mu
$$

Now, D_{0} is the set of those points x such that $f_{0}(x)$ is an m-leader of the sequence $f_{0}(x), \ldots, f_{n+m-1}(x)$. That is, $x \varepsilon D_{0}$ if and only if there is an integer $p^{\prime \prime}$ such that the sum $f_{o}(x)+\ldots+f_{p}, \geq 0, l \leq p \leq m$. But this is exactly the set E_{m}. Therefore $\sum_{k=0}^{n-l} \int_{D_{k}} f_{k}(x) d \mu=n \int_{E_{m}} f(x) d \mu$. Note that

$$
\int_{D_{k}} f_{k}(x) d \mu \leq \int_{D_{k}}\left|f_{k}(x)\right| d \mu=\int_{T^{-k_{D}}}|f(x)| d \mu \leq \int|f(x)| d \mu
$$

Hence,

$$
\sum_{k=n}^{n+m-1} \int_{D_{k}} f_{k}(x) d \mu \leq m \int|f(x)| d \mu
$$

Therefore, we have

$$
0 \leq \sum_{k=0}^{n+m-1} \int_{D_{k}} f_{k}(x) d \mu \leq n \int_{E_{m}} f(x) d \mu+m \int|f(x)| d \mu
$$

and dividing by n

$$
\int_{E_{m}} f(x) d \mu+\frac{m}{n} \int|f(x)| d \mu \geq 0
$$

for every m and n. Now let n tend to infinity. This yields

$$
\int_{E_{m}} f(x) d \mu \geq 0 \quad \text { for every } m
$$

Thus, $\int_{E} f(x) d \mu \geq 0$. []
We come now to the major point of this chapter.

THEOREM 2.5 (BIRKHOFF POINTWISE ERGODIC THEOREM). Let (X,A,u) be a $\sigma-$ finite measure space and T a measure-preserving transformation on X. If $f \varepsilon L_{1}$, then $\frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j}(x)\right)$ converges almost everywhere. The limit function f^{*} is integrable and invariant in the sense that $\mathrm{f}^{*}(\mathrm{Tx})=\mathrm{f} *(\mathrm{x})$ almost everywhere. If in addition $\mu(X)<\infty$, then

$$
\int f *(x) d \mu=\int f(x) d \mu
$$

Proof. Let a and b be real numbers with $a<b$. Define the set

$$
Y(a, b)=\left\{x: \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)<a<b<\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f_{j}\right.
$$

By the definitions of $\lim \inf$ and $\lim \sup Y(a, b)$ is measurable and invariant under T in the sense that $Y(a, b)=T^{-l} Y(a, b)$. We shall show first that $\mu(Y(a, b))$ is finite and then that $\mu(Y(a, b))=0$.

We first assume that $b>0$. Let C be any subset of $Y(a, b)$ such that C is measurable and $\mu(C)<\infty$. Let I_{C} be the indicator function of C. Then the Maximal Ergodic Theorem applies to $f-b I_{C}$ since $\mu(C)<\infty$ implies $b I_{C} \in L_{I}$ and hence $f-b I_{C} \in L_{I}$. Let E be the set as described in the Maximal Ergodic Theorem but for $f-b I_{C}$ rather than f. Then we have

$$
\int_{E}\left(f-b I_{C}\right)(x) d \mu \geq 0 .
$$

Now if $x \in Y(a, b)$, then $b<\lim _{n-1} \sup \frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)$. But this means that at least one of the averages $\frac{1}{n} \sum_{j=0}^{n-l} f_{j}(x)$ must be greater then b. Hence $\frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)-b>0$ for at least one n. Thus, we have the following inequalities

$$
\begin{aligned}
0 & <\frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)-b \\
& \leq \frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)-b I_{c}(x)
\end{aligned}
$$

$$
\leq \sum_{j=0}^{n-1} f_{j}(x)-b I_{C}(x) .
$$

Therefore, for $x \in Y(a, b)$ at least one of the sums $\sum_{j=0}^{n-1}\left(f_{j}(x)-b I_{C}(x)\right) \geq$ 0 . But this means that $x \in E$. Hence $Y \subset E$. Now by the Maximal Ergodic Theorem

$$
\int_{E}\left(f(x)-b I_{C}(x)\right) d \mu \geq 0 .
$$

Therefore,

$$
\int|f(x)| d \mu \geq \int_{E}|f(x)| d \mu \geq \int_{E} b I_{C}(x) d \mu=b \mu(C) .
$$

We have shown thus far that if $C \subset Y(a, b)$ is measurable and has finite measure then

$$
\mu(C) \leq \frac{l}{b} \int|f(x)| d \mu .
$$

Now, since X is of o-finite measure, there is a decomposition of X, call it $\left\{C_{i}\right\}$, such that

$$
\begin{gathered}
c_{i} \cap c_{j}=\phi \quad i \neq j \\
\mu\left(c_{i}\right)<\infty \quad i=1,2, \ldots \\
x=\bigcup_{i=1}^{\infty} c_{i}
\end{gathered}
$$

The sequence of sets $\left\{C_{i} n Y\right.$ \} then forms a decomposition of Y. Since for
each i $\quad C_{i} \cap Y \subset Y(a, b)$, the $\mu\left[C_{i} \cap Y\right] \leq \frac{1}{b} \int|f(x)| d \mu$. Note now that the sequence of $\operatorname{set}\left\{\left[\underset{i=1}{u} C_{i}\right] \cap Y\right\}=\left\{\underset{i=1}{u}\left[C_{i} \cap Y\right]\right\}$ is monotone increasing and that for every r

$$
\left[{\underset{i=1}{r}}_{u_{i}} c_{i}\right] \cap Y \subset Y .
$$

Since $\mu\left[\begin{array}{r}r \\ i=1\end{array} C_{i}\right]<\infty$ for every r, then

$$
\mu\left\{\left[{\left.\left.\underset{i=1}{r} C_{i}\right] \cap Y\right\} \leq \frac{1}{b} \int|f(x)| d \mu, ~}_{d}\right.\right.
$$

for every r.
Therefore

$$
\lim _{r \rightarrow \infty} \mu\left\{\left[\sum_{i=1}^{u} C_{i}\right] \cap Y\right\} \leq \frac{1}{b} \int|f(x)| d \mu
$$

But

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \mu\left\{\left[{\left.\left.\underset{i=1}{u} C_{i}\right] \cap Y\right\}=}^{i=}\right.\right. \\
& \mu \lim _{r \rightarrow \infty}\left\{\left[{\underset{i=1}{u} C_{i}}_{i}\right]_{n Y}\right\}= \\
& \left.\lim _{r \rightarrow \infty} \lim _{i=1}^{u} C_{i} \cap Y\right]= \\
& \mu[X \cap Y]=\mu[Y]
\end{aligned}
$$

Hence

$$
\mu[Y] \leq \frac{1}{b} \int|f(x)| d \mu<\infty .
$$

Now consider the space Y and the function $f-b$. Since

$$
\int_{Y}|f-b| d \mu<\int_{Y}|f| d \mu \leq \int|f| d \mu<\infty
$$

$\mathrm{f}-\mathrm{b}$ is an integrable function.

Let E_{f-b} be the set defined in the Maximal Ergodic Theorem. Then

$$
\begin{aligned}
& E_{f-b}=\left\{x: f_{0}(x)-b+f_{1}(x)-b+\ldots+f_{n-1}(x)-b \geq 0 \text { for some } n\right\} . \\
& E_{f-b}=\left\{x: \sum_{j=0}^{n-1} f_{j}(x)-n b \geq 0 \text { for some } n\right\} \\
& E_{f-b}=\left\{x: \quad \frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)-b \geq 0 \text { for some } n\right\} .
\end{aligned}
$$

Note that if $X \in Y$ then $X \in E_{f-b}$. Hence $Y \subset E_{E-b}$. Also, since we are treating Y as the whole space (it is invariant), $E_{f-b} \subset Y$. Therefore $E_{f-b}=Y$ and hence

$$
\int_{Y}(f(x)-b) d \mu=\int_{E_{f-b}}(f(x)-b) d \mu \geq 0
$$

Applying the maximal ergodic theorem to a-f in a similar fashion we have

$$
\int_{Y}(a-f(x)) d \mu \geq 0 .
$$

$$
\begin{aligned}
& \int_{Y}(a-b) d \mu \geq 0 \\
& (a-b) \mu(Y) \geq 0
\end{aligned}
$$

But $a<b$ and hence $\mu(Y)=0$. Hence for every pair of rational numbers and such that $a<b$, the measure of the set Y such that

$$
\lim \inf \sum_{j=0}^{n-1} f_{j}(x)<a<b<\lim \sup \sum_{j=0}^{n-1} f_{j}(x)
$$

is zero. Therefore

$$
\lim \inf \sum_{j=0}^{n-1} f_{j}(x)=\lim \sup \sum_{j=0}^{n-1} f_{j}(x)
$$

Hence, the limit function $\mathrm{f} *$ does exist almost everywhere.
In our argument we have relied heavily on the assumption that $b>0$. If this were not the case, then a would have to be negative and the same argument could be carried through with $-f$ and $-a$ in place of f and b, respectively. Hence no generality has been lost. Note now that

$$
\begin{aligned}
\int\left|\frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)\right| d \mu & \leq \frac{1}{n} \int \sum_{j=0}^{n-1}\left|f_{j}(x)\right| d \mu \\
& =\frac{1}{n} \sum_{j=0}^{n-1} \int\left|f_{j}(x)\right| d \mu \\
& =\frac{1}{n} \sum_{j=0}^{n-1} \int T^{-j}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{j=0}^{n-1} \int_{X}|f(x)| d \mu \\
& =\int|f(x)| d \mu<\infty .
\end{aligned}
$$

Therefore

$$
\int\left|\frac{1}{n} \sum_{j=0}^{n-l} f_{j}(x)\right| d \mu \leq \infty \quad \text { for every } n
$$

Now by Fatou's Lemma we have

$$
\begin{aligned}
\int|f *(x)| d \mu & =\int \lim \inf \left|\frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)\right| d \mu \\
& \leq \lim \inf \int\left|\frac{1}{n} \sum_{j=0}^{n-1} f_{j}(x)\right| d \mu<\infty
\end{aligned}
$$

Therefore,

$$
\int|f *(x)| d \mu<\infty
$$

and hence $f *(x)$ is finite almost everywhere.
We now wish to show that $\mathrm{f} \%$ is invariant.

$$
\begin{aligned}
f *(T x) & =\lim _{t \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-l} f\left(T^{j}(T x)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(T^{j} x\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{j=0}^{n-l} f\left(T^{j} x\right)+\frac{1}{n} f\left(T^{n} x\right)-\frac{1}{n} f(x)\right]
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{n} f\left(T^{n} x\right)-\lim _{n \rightarrow \infty} \frac{1}{n} f(x)+f *(x)
$$

Now since $\int|f(x)| d \mu<\infty$, then

$$
f(x)<\infty \text { almost everywhere }
$$

and hence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} f(x)=0 \quad \text { almost everywhere. }
$$

Also

$$
\lim _{n \rightarrow \infty} \frac{F\left(T^{n} x\right)}{n}=0 \quad \text { almost everywhere }
$$

since $\frac{1}{n} \sum_{j=0}^{n-l} f\left(T^{j} x\right)$ converges almost everywhere.
Hence

$$
f *(T x)=f *(x) \text { almost everywhere }
$$

and hence f * is invariant.
We must now show that if $\mu(x)<\infty$, then

$$
\int \mathrm{fd} \mu=\int \mathrm{f} * \mathrm{~d} \mu
$$

Suppose that $f *$ is such that $f *(x) \geq$ a for all x. Then at least one of the sums $\sum_{j=0}^{n-1}\left(f_{j}(x)-a+\varepsilon\right)$ must be non-negative for each ε. Then by the maximal ergodic theorem

$$
\int f(x) d \mu \geqq(a-\varepsilon) \mu(X) \text { for each } \varepsilon>0 \text {. }
$$

Hence

$$
\begin{gathered}
\int f(x) d \mu \geq a \mu(X) \\
\text { In a similar manner iff } f *(x) \leq b \text { for every } x \text {, then } \\
\int f(x) d \mu \leq b \mu(X) .
\end{gathered}
$$

Fix n and let

$$
x(k, n)=\left\{x: \frac{k}{2^{n}} \leq f *(x) \leq \frac{k+1}{2^{n}}\right\} .
$$

Each $X(k, n)$ is invariant anc so the above inequalities apply, so that

$$
\frac{k}{2^{n}} \mu(x(k, n)) \leq \int_{X(k, n)} f(x) d \mu \leq \frac{k+l}{2^{n}} \mu(X(k, n))
$$

and

$$
\frac{k}{2^{n}} \mu(X(k, n)) \leq \int_{X(k, n)} f^{*}(x) d \mu \leq \frac{k+1}{2^{n}} \mu(X(k, n)) .
$$

Thus, combining these two inequalities, we have

$$
-\frac{1}{2^{n}} \mu(X(k, n)) \leq \int_{X(k, n)} f(x) d \mu-\int_{X(k, n)} f *(x) d \mu \leq \frac{1}{2^{n}}
$$

Or,

$$
\left|\int_{X(k, n)} f(x) d \mu-\int_{X(k, n)} f *(x) d \mu\right| \leq \frac{1}{2^{n}} \mu(X(k, n))
$$

Now, summing over k, we have

$$
\left|\int f(x) d \mu-\int f *(x) d \mu\right| \leq \frac{1}{2^{n}} \mu(X)
$$

and since n is arbitrary

$$
\int f(x) d \mu=\int f *(x) d \mu
$$

This completes the proof of the Birkhoff Theorem.

The results obtained in this chapter have been generalized to large classes of operators on large classes of abstract vector spaces. For other versions of the Von Neumann theorem see Dunford and Schwartz [2], Yosida, or Kakutani and Yosida. Generalizations of the Birkhoff Theorem may be found in Dunford and Schwartz [2] and Chacon and Ornstein.

CHAPTER III

INFORMATION AND UNCERTAINTY

Information theory is concerned with the analysis of a "communication system," which may be described as follows: A person or machine, called a source, produces a message to be communicated. An encoder then associates with each message an "object" called a code word which is suitable for transmission. The code word is presented to a channel, the medium over which the coded message is transmitted. A decoder then receives the output from the channel and attempts to reconstruct the original message for delivery to the destination. In general, the decoder cannot function with complete reliability because of noise, which is a general term for anything which tends to produce transmission errors.

It will be the purpose of this chapter to give meaning to the various terms "uncertainty," "information," "channel," "noisy," "code word," "rate," and "capacity." The development here will follow ASH. However, it will be our intent to illumine the concepts of uncertainty and information rather than to detail the mathematics involved. For this reason we will include many results without proof. For a different development of these concepts see Pinsker. We proceed by taking an intuitive view of

Let X be a random variable which takes on the values $x_{1}, x_{2}, \ldots, x_{m}$, with probabilities $p_{1}, p_{2}, \ldots, p_{m}$, respectively. We will require that
$p_{i}>0$ for each $i=1,2, \ldots, M$, and, of course, that $\sum_{i=1}^{M} p_{i}=1$. Then we say that we have a finite scheme

$$
x=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{M} \\
p_{1} & p_{2} & \cdots & p_{M}
\end{array}\right)
$$

Every finite scheme describes a state of uncertainty. It appears obvious that the "uncertainty" is different in different schemes. Consider the three schemes below

$$
\left(\begin{array}{cc}
x_{1} & x_{2} \\
0.5 & 0.5
\end{array}\right), \quad\left(\begin{array}{cc}
x_{1} & x_{2} \\
0.9 & 0.1
\end{array}\right), \quad\left(\begin{array}{cc}
x_{1} & x_{2} \\
0.7 & 0.3
\end{array}\right)
$$

In the second case it is almost certain that X will have the value x_{1}. In the first case the chances are equal that the value of X will be x_{1} or x_{2}. The third case represents an amount of uncertainty between the other two.

We now attempt to arrive at a number that will measure the uncertainty associated with X . We shall do this by imposing certain reasonable requirements on the uncertainty associated with X and then showing that this leads us to an essentially unique function. For each M we define a function H_{M} of the M variables $p_{1}, p_{2}, \ldots, p_{M}$. The function $H_{M}\left(P_{1}, P_{2}, \ldots, P_{M}\right)$ will be interpreted as the average uncertainty associated with the events $\left\{\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right\}$. We will write $\mathrm{H}_{\mathrm{M}}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{M}}\right)$ as $\mathrm{H}\left(\mathrm{p}_{1}, \ldots\right.$, P_{M}) or as $\mathrm{H}(\mathrm{X})$.

We now proceed to impose requirements on H. First suppose that
all values of X are equally likely. We denote by $f(M)$ the average uncertainty associated with M equally probable outcomes, that is, $f(M)=$ $H\left(Y_{M}, \ldots, l / M\right)$. For example, $f(2)$ would be the uncertainty associated with the toss of a fair coin, and $f(6)$ would be the uncertainty associated with the roll of an unbiased die. It seems reasonable that there should be a greater amount of uncertainty associated with rolling the die than with tossing the coin. Hence we arrive at our first requirement on the uncertainty function.

```
CONDITION I: }f(M)=H(l/M,\ldots,l/M) is a monotonically increasing function of \(M\).
```

Now consider an experiment involving two independent random variables X and Y. Let $X=\left\{x_{1}, \ldots, X_{M}\right\}, Y=\left\{y_{1}, \ldots, y_{N}\right\}$ and suppose that both X and Y have equally likely outcomes. Let $Z=X \times Y$ be the Cartesian product space. Then Z has equal probabilities at each of the MN points. Hence, the uncertainty associated with the joint experiment is $f(M N)$. If the value of X is revealed, the uncertainty about Y should not be changed since X and Y are independent. Therefore, we expect that the uncertainty associated with Z minus the uncertainty associated with X should equal the uncertainty associated with Y. Now the uncertainty associated with X is just $f(M)$. Hence, we have the second requirement on the uncertainty function H.

CONDITION II: $H\left(\frac{1}{M N}, \ldots, \frac{1}{M N}\right)=H\left(\frac{1}{M}\right)+H\left(\frac{1}{N}\right)$ or $f(M N)=f(M)+f(N)$.
to the general case. Let the random variable X take on the values $x_{1}, x_{2}, \ldots, x_{M}$ with probabilities $p_{1}, p_{2}, \ldots, p_{M}$, respectively. We divide the outcomes into two groups, A and B, where $A=\left\{x_{1}, \ldots, x_{r}\right\}$ and $B=\left\{x_{r+1}, \ldots, x_{M}\right\}$. Now consider the compound experiment which consists of first choosing one of the groups, A or B, and then picking one of the elements, x_{i}, from that group. The probability of choosing group A is exactly $p_{1}+p_{2}+\ldots+p_{r}$, and the probability of choosing group B is $p_{r+1}+\ldots+p_{M}$. Letting $p=P[A]$ and $l-p=p[B]$ we have

$$
\begin{aligned}
p & =p[A]=\sum_{i=1}^{r} p_{i} \\
l-p & =p[B]=\sum_{i=r+1}^{M} p_{i}
\end{aligned}
$$

Then, if group A is selected, the probability that $x_{i}, i=1,2, \ldots, r$, will be chosen is $P\left[x_{i} / A\right]$. Now, for $i=1,2, \ldots, r$,

$$
\mathrm{p}\left[x_{i} / A\right]=\frac{P\left[x_{i} \cap A\right]}{P[A]}=\frac{P\left[x_{i}\right]}{P[A]}=\frac{P_{i}}{P}
$$

Similarly, if group B is chosen, then the probability that x_{i}, $i=r+1$, ..., M, will be picked is

$$
P\left[x_{i} / B\right]=\frac{P_{i}}{1-p} .
$$

The compound experiment described is equivalent to the original experiment of picking one of the elements $x_{i}, i=1,2, \ldots, M$. To establish this let Y be the outcome of the compound experiment. Then, if $x_{i} \varepsilon A$,

$$
\begin{aligned}
P\left[Y=x_{i}\right] & =P[A] P\left[x_{i} / A\right] \\
& =p \frac{p_{i}}{P}=p_{i}
\end{aligned}
$$

If $x_{i} \varepsilon B$, then

$$
\begin{aligned}
P\left[Y=x_{i}\right] & =P[B] P\left[x_{i} / B\right] \\
& =p \frac{p_{i}}{p}=p_{i}
\end{aligned}
$$

Hence $P\left[Y=x_{i}\right]=p_{i}=P\left[X=x_{i}\right]$ for $i=1,2, \ldots, M$. Before the compound experiment is performed, the uncertainty associated with the outcome is $H\left(p_{1}, \ldots, P_{M}\right)$. Revealing which group is selected removes on the average an amount of uncertainty $H(p, l-p)$. If group A is chosen, the uncertainty remaining is $H\left(\frac{P_{1}}{p}, \frac{P_{2}}{p}, \ldots, \frac{p_{r}}{p}\right)$. If group B is chosen, the uncertainty remaining is $H\left(\frac{p_{r+1}}{1-p}, \frac{P_{r+2}}{1-p}, \ldots, \frac{P_{M}}{1-p}\right)$. Now, since group A is chosen with probability, p , and B is chosen with probability, l-p, the average uncertainty remaining after specifying the group is

$$
\mathrm{pH}\left(\frac{p_{1}}{\mathrm{p}}, \frac{\mathrm{p}_{2}}{\mathrm{p}}, \ldots, \frac{\mathrm{p}_{r}}{\mathrm{p}}\right)+(1-\mathrm{p}) H\left(\frac{p_{r+1}}{1-p}, \frac{p_{r+2}}{1-p}, \ldots, \frac{p_{M}}{1-p}\right)
$$

Since the original experiment and the compound experiment are equivalent, we expect that the average uncertainty of the compound experiment minus the average uncertainty removed by specifying the group equals the average uncertainty remaining after the group is specified. Hence, we have the third requirement that we will impose on the uncertainty function.

CONDITION III: $H\left(p_{1}, P_{2}, \ldots, P_{M}\right)=H(p, 1-p)+p H\left(\frac{p_{1}}{p}, \ldots, \frac{p_{r}}{p}\right)$

$$
+(1-p) H\left(\frac{p_{r+1}}{1-p}, \ldots, \frac{p_{M}}{1-p}\right)
$$

where

$$
p=\sum_{i=1}^{r} p_{i}, \quad 1-p=\sum_{i=r+l}^{M} p_{i} .
$$

Finally, we expect that a small change in probabilities should cause only a small change in uncertainty and hence we require as our fourth condition:

CONDITION IV: $H(p, 1-p)$ is a continuous function of p.

We now recapitulate the four requirements which we impose on the uncertainty function:
I. $f(M)=H(I / M, \ldots, I / M)$ is a monotonically increasing function of M.
II. $H\left(\frac{1}{M N}, \ldots, \frac{1}{M N}\right)=H\left(\frac{1}{M}\right)+H\left(\frac{1}{N}\right)$ or $f(M N)=f(M)+f(N)$.
III. $H\left(p_{1}, \ldots, p_{M}\right)=H(p, 1-p)+p H\left(\frac{p_{1}}{p}, \ldots, \frac{p_{r}}{p}\right)$
$+(1-p) H\left(\frac{p_{r+1}}{1-p}, \ldots, \frac{p_{M}}{1-p}\right)$
where

$$
p=\sum_{i=1}^{r} p_{i}, \quad l-p=\sum_{i=r+1}^{M} p_{i} .
$$

IV. $H(p, l-p)$ is a continuous function of p.

We now state and outline the proof of the following theorem which yields the uncertainty function.

THEOREM 1. The only function which satisfies the four conditions given above is

$$
H\left(p_{1}, p_{2}, \ldots, p_{M}\right)=-C \sum_{i=1}^{M} p_{i} \log p_{i}
$$

where C is an arbitrary positive number and the logarithm base is any number greater than 1 .

Proof. (Sketch). It is easily verified that the function

$$
H\left(p_{1}, p_{2}, \ldots, p_{M}\right)=-C \sum_{i=1}^{M} p_{i} \log p_{i}
$$

satisfies the four conditions imposed on the uncertainty function. In order to show that any function which satisfies the four conditions is of the specified form, we proceed as follows. First, using induction we show that $f\left(M^{k}\right)=k f(M)$. Again using induction, we show that $f(M)=$ $C \log M$. We next establish that for any rational number p such that $0<p<l$, then $H(p, 1-p)=-c[p \log p+(1-p) \log (1-p)]$. Using this result and the condition of continuity, we have

$$
H(p, 1-p)=-c[p \log p+(1-p) \log (1-p)]
$$

for all real $p \in(0,1)$. Using this result and Condition III, we proceed by induction to prove the theorem.

Having arrived at a measure of the uncertainty associated with a random variable, we will now note some of the important properties of
the uncertainty function. Although we shall state the properties as lemmas, theorems, and corollaries, we shall give only a few comments on the proofs. The details of these proofs may be found in any standard text on information theory such as Pinsker, Ash, or Khinchine. We note first that since $p_{i} \log p_{i} \geq 0$ for all i then $H(X) \geq 0$.

LEMMA 1. Let $p_{1}, p_{2}, \ldots, p_{M}$ and $q_{1}, q_{2}, \ldots, q_{M}$ be arbitrary numbers such that

$$
\begin{aligned}
& p_{i}>0, \quad i=1,2, \ldots, M \\
& q_{i}>0, \quad i=1,2, \ldots, M \\
& \sum_{i=1}^{M} p_{i}=\sum_{i=1}^{M} q_{i}=1 .
\end{aligned}
$$

Then

$$
-\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log q_{i}
$$

with equality if and only if

$$
p_{i}=q_{i}, \quad i=1,2, \ldots, M
$$

Proof. The proof of this lemma is based on the convexity of the function $f(x)=\log x$.

THEOREM 2. $H\left(p_{1}, p_{2}, \ldots, p_{M}\right) \leq \log M$ with equality if and only if $p_{i}=$ $1 / M, i=1,2, \ldots, M$.

Proof. Apply Lemma 1 with $g_{i}=1 / M$.

Thus far, we have been concerned only with the uncertainty associated with a single random variable. We turn now to the case of two random variables and their joint and conditional uncertainty. The results here generalize to any finite number of random variables but we shall not discuss these generalizations. We first include some results from probability theory. Although familiarity with these results is assumed, we include them for completeness.

Suppose we have a space Z with a probability P_{Z} defined. Let each point of Z be expressed as an ordered pair (x, y) and write

$$
P_{Z}[\{(x, y))]=p(x, y)
$$

Note that the spaces X and Y are projections of Z. If we define

$$
P_{X}[A]=p_{Z}[A \times Y] \text { for } A \subset X
$$

and

$$
P_{Y}[B]=P_{Z}[X \times B] \text { for } B \subset Y
$$

then it is easily verified that P_{X} and P_{Y} are probability measures on X and Y, respectively. In particular,

$$
P_{X}(x)=P_{Z}[\{x\} \times Y]=\sum_{y \varepsilon Y} P_{Z}(x, y) .
$$

The measures P_{X} and P_{Y} are called marginal probability measures. Let $C_{0} \subset Z$ be such that $P_{Z}\left[C_{0}\right]>0$ and define

$$
\mathrm{P}_{\mathrm{Z}}^{\mathrm{C}_{0}}[\mathrm{C}]=\frac{\mathrm{P}_{Z}\left[\mathrm{CnC}_{0}\right]}{\mathrm{P}_{Z}\left[\mathrm{C}_{0}\right]}, \text { for } \mathrm{C} \subset \mathrm{Z}
$$

Again it is easily verified that $\mathrm{P}_{\mathrm{Z}}{ }_{0}$ is a probability measure on the sets of Z. In the same manner as before $P_{Z}{ }^{C}$ induces marginal probabilities on the sets of X and Y. In particular, let $C_{0}=A \times Y$ and consider the marginal measure on the sets of Y induced by $P_{Z}^{A \times Y}$. We shall write

$$
\mathrm{P}_{\mathrm{Z}}^{\mathrm{A} \times \mathrm{Y}}[\mathrm{X} \times \mathrm{B}] \text { as } \mathrm{P}_{\mathrm{Y} / \mathrm{X}^{[B / A]}}
$$

Then

$$
\begin{aligned}
P_{Y / X}[B / A]=P_{Z}^{A \times Y}[X \times B] & =\frac{P_{Z}[(A \times Y) \cap(X \times B)]}{P_{Z}[A \times Y]} \\
& =\frac{P_{Z}[A \times B]}{P_{X}[A]} .
\end{aligned}
$$

The measure $P_{y / X}$ we shall call the conditional probability of Y given X. In particular, we write

$$
\begin{aligned}
P_{Y / X}(y / x) & =P_{Y / X}[\{y\} /\{x\}]=\frac{P_{Z}[\{(x, y)\}]}{P_{X}[\{x\}]} \\
& =\frac{P_{Z}(x, y)}{P_{X}(x)}
\end{aligned}
$$

and

$$
P_{X / Y}(x / y)=\frac{P_{Z}(x, y)}{P_{y}(y)}
$$

We say that the random vectors X and Y are independent in case

$$
p_{Z}(x, y)=p_{X}(x) p_{Y}(y), \text { for all }(x, y) \in Z
$$

or

$$
\mathrm{P}_{\mathrm{Z}}[\mathrm{~A} \times \mathrm{B}]=\left(\mathrm{P}_{\mathrm{X}}[\mathrm{~A}]\right)\left(\mathrm{P}_{\mathrm{Y}}[\mathrm{~B}]\right),
$$

for all $A \subset X, B \subset Y$ and such that $A \times B \subset Z$.

DEFINITION. Let $P_{Z}=P_{X, Y}$ be a probability measure on the sets of $Z=$ $X \times Y$. We define the joint uncertainty of X and Y by

$$
H(X, Y)=-\sum_{(x, y)} p_{E_{Z}}(x, y) \log p_{Z}(x, y)
$$

THEOREM 3. $H(X, Y) \leq H(X)+H(Y)$ with equality if and only if X and Y are independent.

Proof. Use the defining equations to compute $H(X)+H(Y)$ and then apply Lemma 1.

DEFINITION. We define the conditional uncertainty of Y given x by

$$
H(Y / x)=-\sum_{y \in Y} P_{Y / X}(y / x) \log P_{Y / X}(y / x) .
$$

Furthermore, the average conditional uncertainty of Y given X is defined as the weighted averages of $H(Y / x)$ taken over all $x \varepsilon X$. That is,

$$
H(Y / X)=\sum_{X \in X} p_{X}(x) H(Y / X) .
$$

THEOREM 4. $H(X, Y)=H(X)+H(Y ? X)=H(Y)+H(X / Y)$.

Proof. This may be verified by direct calculation using the defining equations.

This last theorem justifies the intuitive idea that if the two random variables are observed but only the value of X is revealed, then the remaining uncertainty about Y should be the conditional uncertainty $H(Y / X)$.

THEOREM 5. $H(X) \geq H(X / Y)$ with equality if and only if X and Y are independent.

Proof. This follows directly from Theorems 3 and 4.

We are now ready to define a measure of information.

DEFINITION. The information about X conveyed by Y is given by

$$
I(X / Y)=H(X)-H(X / Y) .
$$

Note that $I(X / Y)$ is always non-negative, and is zero if and only if X and Y are independent.

We have shown that

$$
H(X / Y)=H(X, Y)-H(Y) ;
$$

hence

$$
I(X / Y)=H(X)+H(Y)-H(X, Y) .
$$

But $H(X, Y)=H(Y, X)$ and hence

$$
I(X / Y)=I(Y / X) .
$$

Therefore,

$$
H(X)-H(X / Y)=I(X / Y)=I(Y / X)=H(Y)-H(Y / X)
$$

and the information may be computed by either formula depending on the problem posed.

The fundamental significance of the information measure comes from its application to the reliable transmission of messages through noisy communications channels. We shall discuss this topic later. At this point however we turn our attention to describing the noiseless coding problem, that is, the problem of efficient coding of messages to be sent over a channel which allows perfect transmission. Any channel with this property will be called noiseless. We shall formally define an information channel later; but for now an intuitive idea will suffice.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{M}\right\}$ be a space with a probability measure defined on the points of X. We may think of the points, x_{i}, as words of a language. A message is constructed by sampling X. Thus $x_{3} x_{1} x_{5} x_{1} x_{1}$ would be a message. The channel is a device which accepts input from a code alphabet $\left\{a_{1}, a_{2}, \ldots, a_{D}\right\}$. Since the channel is assumed to be noiseless, the letters of the code alphabet are transmitted without error. A "word" x_{i} e X will be represented by a finite sequence of letters of the alphabet. This representation will be called the code word for x_{i}. The collection of all the code words will be called a code. The noiseless coding problem is then to minimize the average code word length, $\overrightarrow{\mathrm{n}}$, by
using different coding techniques. We define \bar{n} by the following equation:

$$
\bar{n}=\sum_{i=1}^{M} p_{i} n_{i}
$$

where
$p_{i}=p\left(x_{i}\right)$,
$n_{i}=$ the length of the codeword associated with x_{i}.
We note immediately that there are some restrictions to be placed on the code words. For example, suppose that the alphabet is the set $\{0,1\}, X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and code words were assigned as follows:

Word	Code Word
x_{1}	0
x_{2}	1
x_{3}	01

If the sequence 01 were received, we would be unable to determine whether x_{3} was sent or the sequence $x_{1} x_{2}$. We wish to avoid such problems and are led to the following definition.

DEFINITION. A code is uniquely decipherable if every finite sequence of code characters corresponds to at most one message.

We now state another definition and note a theorem showing the relation of the two.

DEFINITION. A code is instantaneous if no code word has a prefix which is also a code word. By a prefix here we mean some initial string of letters from the code alphabet.

For clarification we give an example of a non-instantaneous code. $\begin{array}{cc}\text { Word } & \\ \mathrm{x}_{1} & 0 \\ \mathrm{x}_{2} & 01\end{array}$

Note that although this code is uniquely decipherable, it is not instarıtanecus since the code word for x_{1} is a prefix of the code word for x_{2}. This leads us to the following theorem.

THEOREM 6. If a code is instantaneous, then it is uniquely deciperable. The converse is false.

Proof. Given a finite sequence of code letters of an instantaneous code, proceed from left to right until a code word is formed. Since the code is instantaneous, this code word cannot be just the prefix of a larger code word and hence must represent the first word of the message. This process may be repeated until the sequence of code letters is exhausted. Hence every instantaneous code is uniquely decipherable. The previous example shows that the converse is not true.

Later in this chapter we shall state a result which guarantees that, for the purpose of solving the noiseless coding problem, we may restrict our attention to instantaneous codes. For this reason we now investigate the properties of such a code. First, we pose the following problem. Suppose we have a language $x_{1}, x_{2}, \ldots, x_{M}$, an alphabet a_{1}, a_{2}, \ldots, a_{D}, and a set of positive integers $n_{1}, n_{2}, \ldots, n_{M}$. Under what conditions is it possible to construct an instantaneous code such that n_{i} is the length of the code word associated with x_{i} for $i=1,2, \ldots, M$. The following theorem provides the answer.

THEOREM 7. An instantaneous code with code word lengths $n_{1}, n_{2}, \ldots, n_{M}$ exists if and only if

where
$D=$ the size of the code alphabet.

Proof. The proof rests on the construction of a probability tree of order D and size n_{M}, i.e., the Cartesian product of the alphabet space with itself n_{M} times, and noting that a code word of length n_{k} excludes $D^{n} M^{-n} k$ paths through the tree or $D^{n} M^{-n}$ points or vectors in the Cartesian product space.

Theorem 7 may be strengthened to include not only instantaneous codes but also the class of uniquely decipherable codes. We will not prove this result but we will use it later.

We proceed now to solve the noiseless coding problem; that is, to find a uniquely decipherable code which minimizes the average codeword length \bar{n}. There are three steps in the solution. First, we establish a lower bound on \bar{n}; then we find out how close we can come to this lower bound. The third step is to construct the 'best" code. We shall not pursue the third step of the problem in this work. To establish the lower bound on \bar{n}, we appeal to the following theorem.

THEOREM 8 (NOISELESS CODING THEOREM). If $\bar{n}=\sum_{i=1}^{M} p_{i} n_{i}$ is the average code-word length of a uniquely decipherable code for the random variable
X, then $\bar{n} \geq \frac{H(X)}{\log D}$ with equality if and only if $p_{i}=D^{-n} i, i=1,2, \ldots, M$. Proof. The condition $\overline{\mathrm{n}} \geq \frac{H(X)}{\log D}$ may be rewritten as

$$
\sum_{i=1}^{M} p_{i} n_{i} \log D \geq-\sum_{i=1}^{M} p_{i} \log p_{i}
$$

or

$$
-\sum_{i=1}^{M} p_{i} \log D^{-n} \geq-\sum_{i=1}^{M} p_{i} \log p_{i}
$$

Hence all we must do is establish this last inequality. Recall that if $\sum_{i=1}^{M} p_{i}=1$ and $\sum_{i=1}^{M} q_{i}=1$, then

$$
-\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log q_{i}
$$

by Lemma 1. Define $q_{i}=\frac{D^{-n} i}{\sum^{M} D^{-n_{j}}}$.

$$
j=1
$$

Hence

$$
\begin{aligned}
& -\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log \left(\frac{D^{-n}}{\sum_{j=1}^{M} D^{-n_{j}}}\right) \\
& -\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log D^{-n_{i}}+\left(\sum_{i=1}^{M} p_{i}\right) \log \left(\sum_{j=1}^{M} D^{-n_{i}}\right)
\end{aligned}
$$

$$
-\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log D^{-n_{i}}+\log \sum_{j=1}^{M} D^{-n_{j}}
$$

But, since the code is uniquely decipherable,

$$
\sum_{j=1}^{M} D^{-n} j \leq 1
$$

Hence

$$
\log \sum_{j=1}^{M} D^{-n} j \leq 0
$$

Therefore,

$$
-\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log D^{-n}
$$

This last inequality guarantees that

$$
\bar{n}=\frac{H(X)}{\log D} \quad \text { if } \quad p_{i}=D^{-n}
$$

Conversely, suppose

$$
-\sum_{i=1}^{M} p_{i} \log p_{i}=-\sum_{i=1}^{M} p_{i} \log D^{-n}
$$

We wish to show that this implies $p_{i}=D^{-n} i, i=1,2, \ldots, M$.
Rewriting the above equality we have

$$
\begin{aligned}
-\sum_{i=1}^{M} p_{i} \log p_{i} & =-\sum_{i=1}^{M} p_{i} \log D^{-n_{i}}+0 \\
& \geq-\sum_{i=1}^{M} p_{i} \log D^{-n}+\log \left(\sum_{j=1}^{M} D^{-n} j\right) \\
& =-\sum_{i=1}^{M} p_{i} \log \left(\frac{D^{-n}}{\sum_{j=1}^{M} D^{-n} j}\right)
\end{aligned}
$$

But we have already shown that

$$
-\sum_{i=1}^{M} p_{i} \log p_{i} \leq-\sum_{i=1}^{M} p_{i} \log \left(\frac{D^{-n_{i}}}{\sum_{j=1}^{M} D^{-n_{j}}}\right)
$$

Therefore,

$$
\begin{aligned}
& \quad-\sum_{i=1}^{M} p_{i} \log p_{i}=-\sum_{i=1}^{M} p_{i} \log D^{-n} i=-\sum_{i=1}^{M} p_{i} \log \left(\frac{D^{-n_{i}}}{\sum_{j=1}^{M} D^{-n} j}\right) . \\
& \text { Hence } \sum_{j=1}^{M} D^{-n} j=1 .
\end{aligned}
$$

Then

$$
-\sum_{i=1}^{M} p_{i} \log p_{i}=-\sum_{i=1}^{M} p_{i} \log \left(\frac{D^{-n_{i}}}{\sum_{j=1}^{M} D^{-n_{j}}}\right)
$$

Hence, applying Lemma 1 again,

$$
P_{i}=\frac{D^{-n_{i}}}{\sum_{j=1}^{M} D^{-n_{j}}}=D^{-n_{i}}, \quad i=1,2, \ldots, M
$$

In general, we will not be able to construct a code for a given set of probabilities which will achieve this minimum, since if we choose n_{i} so that $p_{i}=D^{-n}$, then $n_{i}=\frac{-\log p_{i}}{\log D}$ and this may not be an integer. The next theorem shows that although we may not achieve this minimum, we can come close.

THEOREM 9. Given a random variable X with uncertainty $H(X)$, there exists a base D instantaneous code for X whose average code-word length satisfies

$$
\frac{H(X)}{\log D} \leq \bar{n} \leq \frac{H(X)}{\log D}+1 .
$$

Proof. Choose n_{i} such that

$$
-\frac{\log p_{i}}{\log D} \leq n_{i}<\frac{\log p_{i}}{\log D}+1
$$

We wish to show that an instantaneous code can be constructed with codeword lengths n_{i} defined above. Since

$$
-\frac{\log p_{i}}{\log D} \leq n_{i} \quad \text { for all } i
$$

then

$$
-\log p_{i} \leq n_{i} \log D
$$

or

$$
\log P_{i} \geq \log D^{-n} i
$$

Hence

$$
P_{i} \geq D^{-n} i
$$

Therefore,

$$
\sum_{i=1}^{M} D^{-n} \leq \sum_{i=1}^{M} p_{i}=1
$$

Hence by Theorem 6, an instantaneous code with code-word lengths n_{i} does exist. We must show now that for this code

$$
\frac{H(X)}{\log D} \leq \bar{n} \leq \frac{H(X)}{\log D}+1 .
$$

We had

$$
-\frac{\log p_{i}}{\log D} \leq n_{i} \leq \frac{\log p_{i}}{\log D}+1
$$

If we multiply each term in this inequality by p_{i} and sum over all i we have

$$
\frac{H(X)}{\log D} \leq \bar{n} \leq \frac{H(X)}{\log D}+1 .
$$

We have thus completed the first two steps in solving the noiseless coding problem. The only remaining step is to construct the required code. Most texts on information theory discuss this topic. In
particular, a celebrated construction is given in Huffman. Although we shall not pursue this issue, we include one theorem (without proof) which will allow us to restrict our search for such a code to the realm of instantaneous codes. First we need a definition.

DEFINITION. A code C, relative to a probability space, is optimal in a class of codes in case

$$
\bar{n}_{C} \leq \bar{n}_{C},
$$

where c^{\prime} is any other code in the class.

THEOREM 10. If C is an optimal code within the class of instantaneous codes, then C is optimal within the class of uniquely decipherable codes.

Thus far, we have considered a channel as that portion of a communications system which carries the coded message from the sender to the receiver. We now attempt to present a mathematical model of a channel and define several types of channels.

DEFINITION. A triple $(X, Y, P(y / x))$ is called a chonnel. X is the space of "sendable" symbols and Y is the space of "receivable" symbols.

We define the information content of a channel in the same manner as before. That is,

$$
I(X / Y)=H(X)-H(X / Y) .
$$

DEFINITION. If $H(X / Y)=0$, then we say that the channel is ZossZess. Let $A_{x_{i}}$ be a partition of Y such that $P\left[A_{x_{i}} / x_{j}\right]=1$ for $i=j$ and
$P\left[A_{x_{i}} / x_{j}\right]=0$ for ifj. Then, if in addition to being lossless, the channel has the property that for each $i A_{x_{i}}$ is a singleton set, then we say that the channel is noiseless. Define

$$
c(p)=H(X)-H(X / Y)
$$

where $p=\left\{p_{1}, p_{2}, \ldots, P_{M}\right\}$ is a probability measure on X so that $c(p)$ is defined on the simplex

$$
s=\left\{p: \sum_{i=1}^{M} p_{i}=1, \quad p_{i} \geq 0\right\}
$$

We define the channel capacity C by

$$
c=\max _{p} c(p)
$$

We remark here that this is a true maximum since

$$
C(p)=I(X / Y)
$$

is a continuous function on a compact set.
In general, we wish to transmit several successive elements, X_{i}, through a channel rather than just one. Although it is not a mathematical necessity, it may help the intuitive feeling to view the $X_{i}{ }^{\prime}$ s as being sent sequentially in time. This leads us to the definition of the extended channel.

DEFINITION. Given $(X, Y, p(y / x))$, we define the $\operatorname{triple}(U, V, p(V / u))$ where

$$
\begin{aligned}
u & =\left\{\left(x_{1}, x_{2}, \ldots, x_{7}\right): x_{i} \varepsilon X\right\} \\
v & =\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right): y_{j} \varepsilon Y\right\} \\
p(v / u) & =p\left(\left(y_{1}, y_{2}, \ldots, y_{n}\right) /\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

as an extension of length n of the channel $(X, Y, p(y / x))$. We say that the extended channel is memoryless in case

$$
p\left(\left(y_{1}, y_{2}, \ldots, y_{n}\right) /\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=p\left(y_{1} / x_{1}\right) p\left(y_{2} / x_{2}\right) \ldots p\left(y_{n} / x_{n}\right)
$$

That is, the extended channel is memoryless in case the signal transmitted at time i is dependent only on the signal received at time i, i.e. independent of signals sent or received before time i.

THEOREM 11. Let $(X, Y, p(y / x))$ be a discrete channel without memory, having capacity C. Then the capacity of its extension of length n is nc.

Proof. Show first that if

$$
p(u)=p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right), p\left(x_{2}\right) \ldots p\left(x_{n}\right),
$$

then

$$
I(U / V)=H(u)-H(U / V)=n[H(X)-H(X / Y)] .
$$

Next show that $H(u)-H(u / v)$ for any probability distribution is bounded above by $H(U)-H(U / V)$ in the special case where $p\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)$. For details of the proof, see Feinstein.

We turn now to the problem of defining the "decoder." The purpose of the decoder is to translate the output of the channel into one of the possible input symbols. The decoder makes use of a decision scheme to perform this function. A decision scheme is nothing more than a partition of the space Y into M subsets $A_{1}, A_{2}, \ldots, A_{M}$ and a rule which assumes that x_{i} was transmitted if A_{i} was observed. To put the definition in negative terms, we say that if x_{i} is sent and the output y falls into $A_{j}, j \neq i$, then we have an error. Hence the probability of an error is

$$
p(e)=\sum_{Y} p(y)\left[\left(1-p\left(x_{y} / y\right)\right]\right.
$$

where $p\left(x_{y} / y\right)$ is used to denote the probability that x_{y} was sent given that y was received. We now define one type of decision scheme.

DEFINITION. Let $(X, Y, p(y, x))$ be a given channel. Then the partition of Y_{3} into the sets $\left\{A_{1}, A_{2}, \ldots, A_{M}\right\}$ is called a uniform error bounding decision scheme with bound e in case

$$
p\left(A_{i} / x_{i}\right) \geq 1-4, \quad i=1,2, \ldots, M .
$$

It should be noted that it is not always possible to construct such a decision scheme for a given channel. In particular, Feinstein shows that in the case of a non-lossless channel such a construction is impossible.

We come now to a most important result in information theory. This theorem, known as the coding theorem for discrete memoryless channels and as the fundamental theorem of information theory, was first stated by C. E. Shannon in 1948.

THEOREM 12. Let $\mathrm{X}, \mathrm{Y}, \mathrm{p}(/ \mathrm{x})$ be a discrete memoryless channel with capacity C. Let H and e be given, with $0<H<C$ and $e>0$: then there exists a positive integer $n(e, H)$ such that in every extension of the channel $(X, Y, p(/ x))$ of length $n \geq n(e, H)$, there exists a set u_{i}, $i=1,2, \ldots, N, N \geq 2^{n H}$, to each of which is associated a v-set $A_{i}, i=1,2$, \ldots, N, such that the sets $\left\{A_{i}\right\}$ are disjoint and $p\left(A_{i} / u_{i}\right) \geq 1-e$.

Since this theorem is not directly pertinent to the main investigations of this work, we shall omit the proof. The proof is presented in great detail in both Ash and Feinstein. We shall, however, discuss the importance of the result. Note, first, that an immediate result is the existence of a uniform error bounding decision scheme with bound e for all e>0.

Another important result is that by coding the messages to be sent with codes of sufficient length, we may transmit the coded messages at any rate less than channel capacity with arbitrarily small probability of error.

As previously noted, the development of the first part of this
chapter follows Ash. The portion on the discrete memoryless channel follows Feinstein. It should be noted that the four conditions imposed on the uncertainty function may be replaced by three. These somewhat weaker conditions are given in Feinstein. Lee presents a development based on an even weaker set of conditions. Developments and results in the area of coding theory are discussed in Feinstein, Abamson, and Fano. The problem of determining the capacity of a given channel is dealt with in Muroga, Fano, and Ash.

CHAPTER IV

THE McMILLAN THEOREM

In the previous chapters we have discussed some aspects of ergodic theory and information theory. It will be the aim of this chapter to use the Birkhoff ergodic theorem to prove one of the major results in information theory, the McMillan theorem, and so tie the two concepts together. The concept of a source is central to the study of information and hence to the McMillan theorem. We begin by formulating this concept.

A source is that portion of an information system which creates the output or signal to be transmitted. Underlying the definition of a source is the set A of symbols used by it. We shall call A the alphabet of the source and refer to individual elements of A as letters. The alphabet A will be assumed to be finite. We shall denote by A^{I} the set of all doubly infinite sequences of the form $x=\left(\ldots, x_{-1}, x_{0}, x_{1}\right.$, x_{2}, \ldots). We define a set $Z \subset A^{I}$ to be a cylinder set, or briefly a cylinder, if it may be expressed in the form

$$
z=\left\{x: x_{t_{i}}=\alpha_{i}, \quad n \leq \ell<n+k\right\}
$$

Let F be the minimal Borel field over all the cylinders of the alphabet A. Then, as we have shown in Chapter II, the probability of any set $S \varepsilon F$ is uniquely determined by knowing the probabilities on all
cylinder sets. Hence we can completely describe a source by specifying its alphabet A and the probability measure P on each of the cylinders of A. Hence we shall denote a source by $[A, P]$. Note that (A^{I}, F, P) is a probability space.

DEFINITION. The transformation T which carries the sequence $\mathrm{x}=(\ldots$, $\left.x_{-1}, x_{0}, x_{1}, \ldots\right)$ into the sequence $T x=\left(\ldots, x_{-1}^{\prime}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots\right)$ where $x_{k}=$ x_{k+1}^{\prime} will be called the shift operator. (Notice that this operator is measurable).

DEFINITION. If $P(T S)=P(S)$ for every set $S \in F$, then the source is called stationary. Recalling the definition of a measure-preserving transformation we see that a source is stationary if and only if the shift operator is measure-preserving.

In the study of information, the prime characteristic of a source is the rate at which it emits information, i.e., the average amount of information given by each symbol produced. In the following we shall formulate an exact definition of this quantity. Let $C=\left\{x_{t}, x_{t+1}, \ldots\right.$, $\left.x_{t+n-1}\right\}$ be a sequence of length n of letters of A. If A consists of a letters, then there are exactly a^{n} such sequences. Each C so defined is a cylinder in A^{I} and hence has a definite probability $P(C)$. Therefore we have a finite probability space consisting of a^{n} elements C. In Chapter III we arrived at the following measure of the information contained in this space

$$
H_{n}=-\sum_{C} P(C) \log P(C) .
$$

Since we are assuming stationarity, the probabilities $P(C)$ are uniquely determined by the nature of the source and by the number n. The same is obviously true for the entropy H_{n}. Therefore, the average amount of information per symbol emitted by the source is H_{n} / n. We would like to define the source entropy as the limit of $\mathrm{H}_{\mathrm{n}} / \mathrm{n}$ if this limit exists. Hence we are led to the following theorem.

THEOREM 4.1. If [A,P] is a stationary source, then

$$
\lim _{n \rightarrow \infty} \frac{H_{n}}{n} \quad \text { exists and is finite. }
$$

Proof. Let A_{n+m} be the space of sequences of length $n+m$. As was noted in Chapter III, A_{n+m} can be regarded as the product of the two spaces A_{n} and A_{m}. By the results of that chapter we have

$$
H\left(A_{n+m}\right)=H\left(A_{n}\right)+H_{A_{n}}\left(A_{m}\right)
$$

and

$$
H_{A_{n}}\left(A_{m}\right) \leq H\left(A_{m}\right)
$$

Combining these two results and using our new notation we have

$$
H_{n} \leq H_{n+m} \leq H_{n}+H_{m}
$$

for all integers m and n. Letting $m=1$ in the first of these inequalities we have

$$
H_{n} \leq H_{n+1}
$$

By induction the second inequality may be extended to yield

$$
\mathrm{H}_{\mathrm{n}_{1}+\mathrm{n}_{2}}+\ldots+\mathrm{n}_{\mathrm{k}} \leq \mathrm{H}_{\mathrm{n}_{1}}+\mathrm{H}_{\mathrm{n}_{2}}+\ldots+\mathrm{H}_{\mathrm{n}_{\mathrm{k}}}
$$

Then, taking $n_{1}=n_{2}=\ldots=n_{k}=n$,

$$
\mathrm{H}_{\mathrm{kn}} \leq \mathrm{k} \mathrm{H}_{\mathrm{n}} \quad \text { for all integer } \mathrm{K} \text { and } \mathrm{n} \text {. }
$$

In particular set $n=1$, then for any integer $k \geq 1$

$$
H_{k} \leq k H_{l}
$$

Therefore

$$
\frac{\mathrm{H}_{\mathrm{k}}}{\mathrm{k}} \leq \mathrm{H}_{1} \quad \text { for every } \mathrm{k} \geq 1
$$

Hence

$$
\liminf _{n \rightarrow \infty} \frac{H_{n}}{n}<\infty
$$

Let $a=\lim _{n \rightarrow \infty} \inf \frac{H_{n}}{n}$. We now show that $\lim _{n \rightarrow \infty} \frac{H_{n}}{n}$ exists and is a. Let $\varepsilon>0$ be given. Since $a=\underset{n \rightarrow \infty}{\lim \inf } H_{n} / n$, there is an index q
such that

$$
\frac{\mathrm{H}_{\mathrm{q}}}{\mathrm{q}}<a+\varepsilon .
$$

Note that for any $n>q$, there is an integer $k>1$ such that

$$
(\mathrm{k}-1)_{\mathrm{q}}<\mathrm{n} \leq \mathrm{kq} .
$$

Since we have shown that H_{n} is a monotonically nondecreasing function, we have, for n, k, and q as above,

$$
\mathrm{H}_{\mathrm{n}} \leq \mathrm{H}_{\mathrm{kq}} .
$$

Then, since $(k-1) \mathrm{q}<\mathrm{n}$,

$$
\frac{\mathrm{H}_{\mathrm{n}}}{\mathrm{n}} \leq \frac{\mathrm{H}_{\mathrm{kq}}}{(\mathrm{k}-1) \mathrm{q}} .
$$

But $\mathrm{H}_{\mathrm{kq}} \leq \mathrm{kHq}$ and $\frac{\mathrm{H}_{\mathrm{q}}}{\mathrm{q}}<a+\varepsilon$. Hence,

$$
\frac{H_{n}}{n} \quad \frac{H_{k q}}{(k-1) q} \leq \frac{k H_{q}}{(k-1) q}<\frac{k}{k-1}(a+\varepsilon)<a+\varepsilon .
$$

Let n ' be chosen such that $n>n '$ implies

$$
\frac{H_{n}}{n}>a-\varepsilon .
$$

Then we have

$$
a-\varepsilon<\frac{H_{n}}{n}<a+\varepsilon
$$

or

$$
\left|\frac{n}{n}-a\right|<\varepsilon .
$$

But this is simply the defining inequality for

$$
\lim _{n \rightarrow \infty} \frac{H_{n}}{n}=a
$$

Consider now the random variable

$$
\frac{1}{n} \log P(C)
$$

where C is the cylinder $x_{t}, x_{t+1}, \ldots, x_{t+n-1}$. Obviously, $f_{n}(x)$ has the same value for all x belonging to the cylinder C. Hence, the mathematic expectation of $f_{n}(x)$ can be computed by elementary means. Therefore, letting $M(f(x))$ denote the expectation of the random variable $f(x)$, we have

$$
M\left(-\frac{1}{n} \log P(C)\right)=-\frac{1}{n} \sum_{C} P(C) \log P(C)
$$

Recall that

$$
-\sum_{C} P(C) \log P(C)
$$

is the entropy of n-term sequences from the given source which we denoted by H_{n}. Since we are assuming the source to be stationary, we set $t=0$, so that C denotes the sequence $x_{0}, x_{1}, \ldots, x_{n-1}$. Then the random variable $-\frac{1}{n} \log P(C)$ is a function of x and n, which we denote by
$f_{n}(x)$; thus

$$
M f_{n}(x)=\frac{H_{n}}{n}
$$

We have shown that $\lim _{n \rightarrow \infty} \frac{H_{n}}{n}=H$, the entropy of the source. Hence for any stationary source

$$
\lim _{n \rightarrow \infty} M f_{n}(x)=H
$$

We now introduce the concept of a martingale which will facilitate the proof of the McMillan theorem. Since we need only one theorem, due to Doob, we will pursue the theory only as far as is required for the statement and later use of this theorem.

DEFINITION. Let $\left\{\xi_{m}\right\}, m=1,2, \ldots$, be a sequence of random variables defined on the space of elementary events $x \in A^{I}$. We shall denote the conditional expectation of ξ_{m} given that $\xi_{1}=a_{1}, \xi_{2}=a_{2}, \ldots, \xi_{m-1}=$
 for any $m>1$

$$
M_{a_{1} a_{2} \ldots a_{m-1}}\left(\xi_{m}\right)=a_{m-1}
$$

We shall deal only with bounded martingales, i.e., martingales, $\left\{\xi_{\mathrm{m}}\right\}$, such that $\left|\xi_{\mathrm{m}}\right|<C$ for every $x \in A^{I}$ and every index m.

THEOREM 4.2 (DOOB'S THEOREM). Every bounded martingale converges almost everywhere on A^{I}.

Proof. See Loève.

In order to prove the McMillan theorem we need to prove a few preliminary lemmas. We begin by establishing the notation to be used. We have already noted that every quantity which can be uniquely determined by the sequence x_{t}, \ldots, x_{t+n-1} of letters of the alphabet A can be regarded as a random variable on the space A^{I}. If C is the sequence $x_{0}, x_{1}, \ldots, x_{n-1}$, then the function

$$
f_{n}(x)=-\frac{1}{n} \log P(C)
$$

is such a random variable. Let C_{n} be the sequence x_{-n}, \ldots, x_{-1} and $c_{n}+x_{0}$ the sequence $x_{-n}, \ldots, x_{-1}, x_{0}$. Each of these sequences is also a cylinder of the space A^{I}, as is the sequence

$$
c_{n}+\alpha=x_{-n}, \ldots, x_{-1}, \alpha
$$

where α is any letter of the alphabet A. Now define the two random variables $p_{n}(x)$ and $p_{n}(x, \alpha)$ by

$$
\begin{aligned}
p_{n}(x) & =\frac{P\left(c_{n}+x_{0}\right)}{P\left(c_{n}\right)} \\
P_{n}(x, \alpha) & =\frac{P\left(c_{n}+\alpha\right)}{P\left(c_{n}\right)} .
\end{aligned}
$$

We shall agree that $p_{0}(x)=P\left(x_{0}\right)$. These two random variables represent the conditional probability that x_{0} will appear after the sequence C_{n}
and the conditional probability that α will appear after the sequence C_{n}, respectively.

LEMMA 4.1. The sequence $p_{n}(x, \alpha), n=0,1,2, \ldots$ is a martingale.

Proof. We shall write $p_{n}(x, \alpha)$ as ξ_{n}. Let $a_{-1}, \ldots, a_{-(n-1)}$ be any sequence of $n-1$ letters of A and denote by B_{n-1} the cylinder $x_{-i}=a_{-i}$, $i=1,2, \ldots, n-1$. Then $B_{n-1} \subset A^{I}$. Let Γ_{β} be the cylinder $x_{-n}=\beta, \beta \in A$. Now $\sum_{\beta \varepsilon A} \Gamma_{\beta}^{I}=A^{I}$. Hence

$$
\int_{B_{n-1}} \xi_{n} d P=\sum_{\beta \in A} \int_{B_{n-1}^{n \Gamma_{B}}} \xi_{n} d P .
$$

If $x \in B_{n-1} \cap \Gamma_{\beta}$,

$$
\xi_{n}=\frac{P\left(B_{n-1} n \Gamma_{\beta}+\alpha\right)}{P\left(B_{n-1}^{n \Gamma_{B}}\right)}
$$

Therefore

$$
\begin{aligned}
\int_{B_{n-1}} \xi_{n} d P & =\sum_{\beta \varepsilon A} \int_{B_{n-1}^{n \Gamma_{B}}} \frac{P\left(B_{n-1}^{\left.n \Gamma_{B}+\alpha\right)}\right.}{P\left(B_{n-1}^{n \Gamma_{B}}\right)} d P \\
& =\sum_{\beta \varepsilon A} \frac{P\left(B_{n-1} n \Gamma_{B}+\alpha\right)}{P\left(B_{n-1} n \Gamma_{B}\right)} P\left(B_{n-1}^{n \Gamma_{B}}\right) \\
& =\sum_{\beta \varepsilon A} P\left(B_{n-1}^{\left.n \Gamma_{B}+\alpha\right)}\right. \\
& =P\left(B_{n-1}+\alpha\right)
\end{aligned}
$$

$$
\int_{B_{n-1}} \xi_{n} d P=P\left(B_{n-1}+\alpha\right)
$$

Denote by $\left[\xi_{n-1}\right]_{B_{n-1}}$ the value of the random variable ξ_{n-1} at $C_{n-1}=$ B_{n-1}. Then

$$
\left[\xi_{n-1}\right]_{B_{n-1}}=\frac{P\left(B_{n-1}+\alpha\right)}{P\left(B_{n-1}\right)}
$$

Hence

$$
\int_{B_{n-1}} \xi_{n} d P=\left[\xi_{n-1}\right]_{B_{n-1}} P\left(B_{n-1}\right)
$$

Now, let k_{n-1} be the set of all x for which $\xi_{1}, \ldots, \xi_{n-1}$ take on the given values $\xi_{i}=\pi_{i}(i \leq i \leq n-1)$. The numbers $\pi_{i}, l \leq i \leq n-l$, are uniquely determined by specifying the cylinder B_{n-1}. Hence the set k_{n-1} is the union of several cylinders B_{n-1} and $\left[\xi_{i}\right]_{B_{n-1}}=\left[\xi_{i}\right]_{k_{n-1}}=\pi_{i}$, $1 \leq i \leq n-1$, for all B_{n-1} in k_{n-1}. Therefore

$$
\begin{aligned}
\int_{k_{n-1}} \xi_{n} d P=\sum_{B_{n-1}} \sum_{n-1} \int_{B_{n-1}} \xi_{n} d P & =\sum_{B_{n-1} \subset k_{n-1}}\left[\xi_{n-1}\right]_{B_{n-1}} P\left(B_{n-1}\right) \\
& =\sum_{n-1} \sum_{n-1} \pi_{i} P\left(B_{n-1}\right) \\
& =\pi_{i} P\left(k_{n-1}\right)
\end{aligned}
$$

Hence,

$$
\pi_{i}=\frac{1}{P\left(k_{n-1}\right)} \int_{k_{n-1}} \xi_{n} d P=M_{\pi_{1} \pi_{2} \ldots \pi_{n-1}}\left(\xi_{n}\right)
$$

Therefore the sequence $\left\{p_{n}(x, \alpha)\right\}$ is a martingale. $]$

LEMMA 4.2. The sequence $\left\{p_{n}(x)\right\}, n=0,1, \ldots$ converges almost everywhere. Proof. Let $x \in A^{I}$ be fixed. Then there exists $\alpha \varepsilon A$ such that

$$
p_{n}(x)=p_{n}(x, \alpha) \quad \text { for } n=0,1, \ldots
$$

For α chosen in this manner

$$
\left|p_{n}(x)-p_{m}(x)\right|=\left|p_{n}(x, \alpha)-p_{m}(x, \alpha)\right| \leq \sum_{\alpha \in A} \mid p_{n}(x, \alpha)-p_{m}(x, \alpha)
$$

Now $\left\{\mathrm{p}_{\mathrm{n}}(\mathrm{x}, \alpha)\right.$ \} is a martingale and is obviously bounded by 1 . Hence by Lemma 4.1 $\left\{p_{n}(x, \alpha)\right\}$ converges almost everywhere. Hence given $\varepsilon>0$, there exists N such that $n, m>N$ implies $\sum_{\alpha \in A}\left|p_{n}(x, \alpha)-p_{m}(x, \alpha)\right|<\varepsilon$. For n and m chosen this way then

$$
\left|p_{n}(x)-p_{m}(x)\right|<\varepsilon
$$

But this means that $\left\{p_{n}(x)\right\}$ is a Cauchy sequence of real numbers and hence, converges. We, seemingly, have proved that the sequence $\left\{p_{n}(x)\right\}$ converges everywhere; however, recall that $p_{n}(x)$ is defined only for those x such that $P\left(C_{n}\right)>0$. The set of x such that $P\left(C_{n}\right)=0$ is obviously of measure 0 and hence we have the conclusion almost everywhere. []

LEMMA 4.3. Let $g_{n}(x)=-\log P_{n}(x), n=1,2, \ldots$ and let $E_{n, k}, n \geq 0, k \geq 0$ be defined by

$$
E_{n, k}=\left\{x: k \leq g_{n}(x)<k+1\right\}
$$

Then,

$$
\int_{E_{n, k}} g_{n}(x) d P \leq N(k+1) 2^{-k}
$$

where N is the number of letters in A .

Proof. Let B_{n} be defined as in Lemma 4.1, and let Z_{α} be the cylinder $x_{0}=\alpha$, for $\alpha \varepsilon A$. For $x \in B_{n} \cap Z_{\alpha}$,

$$
q_{n}(x)=-\log \frac{P\left(B_{n}+\alpha\right)}{P\left(B_{n}\right)}=-\log \frac{P\left(B_{n} n Z_{\alpha}\right)}{P\left(B_{n}\right)} .
$$

Hence the value of $g_{n}(x)$ is determined uniquely by specifying B_{n} and α. Clearly,

$$
B_{n} \cap E_{n, k}=\sum_{\alpha \in A *} B_{n} \cap Z_{\alpha}
$$

where A^{*} is the set

$$
A^{*}=\left\{\alpha \in A: k \leq g_{n}(x)<k+1, x \varepsilon B_{n} n Z\right\}
$$

Therefore

$$
\begin{equation*}
\int_{B_{n} n E_{n, k}} g_{n}(x) d P=\sum_{\alpha \in A *} \int_{B_{n} n Z \alpha} g_{n}(x) d P \tag{1}
\end{equation*}
$$

In each of the integrals on the right

$$
k \leq g_{n}(x)=-\frac{\log P\left(B_{n} n Z_{\alpha}\right)}{P\left(B_{n}\right)}<k+1
$$

Recalling that the logarithm base is 2, we have

$$
\begin{aligned}
& \log \frac{P\left(B_{n} n Z_{\alpha}\right)}{P\left(B_{n}\right)} \leq-k \\
& \frac{P\left(B_{n} n Z_{\alpha}\right)}{P\left(B_{n}\right)} \leq 2^{-k}
\end{aligned}
$$

or

$$
P\left(B_{n} n Z_{\alpha}\right) \leq 2^{-k_{P}\left(B_{n}\right)}
$$

and substituting in (1)

$$
\begin{aligned}
\int_{B_{n} n E_{n, k}} g_{n}(x) d P & \leq \sum_{\alpha \in A^{*}} \int_{B_{n} n Z}(k+1) d P=\sum_{\alpha \in A^{*}}(k+1) P\left(B_{n} n Z_{\alpha}\right) \\
& \leq N(k+1) 2^{-k} P\left(B_{n}\right) .
\end{aligned}
$$

Now summing over all cylinders B_{n} yields

$$
\int_{E_{n, k}} g_{n}(x) d P \leq N(k+1) 2^{-k}
$$

LEMMA 4.4. Given $L>0$, let $A_{n, L}$ be the set

$$
A_{n, L}=\left\{x \varepsilon A^{I}: g_{n}(x) \geq L\right\}
$$

Then, given $\varepsilon>0$, there exists L_{0} such that, for $L \geq L_{0}$ and all $n=1,2, \ldots$

$$
\oint_{A_{n, L}} g_{n}(x) d P<\varepsilon .
$$

Proof. Note first that for every n and L,

$$
A_{n, L}=\sum_{k=L}^{\infty} E_{n, k}
$$

and that $E_{n, k} \cap E_{n, j}=\phi$ for $j \neq k$.
Therefore

$$
\int_{A_{n, L}} g_{n}(x) d P=\sum_{k=L}^{\infty} \int_{E_{n, k}} g_{n}(x) d P \leq \sum_{k=L}^{\infty} N(k+1) 2^{-k}
$$

Now $\lim _{k \rightarrow \infty} \sum_{k=L}^{\infty}(k+1) 2^{-k}<\infty$. Hence there is an L_{0} such that $L \geq L_{0}$ implies

$$
\sum_{k=L}^{\infty}(k+1) 2^{-k}<\frac{\varepsilon}{N} .
$$

Therefore, for $L>L_{0}$

$$
\int_{A_{n, L}} g_{n}(x) d P<\varepsilon \quad[
$$

LEMMA 4.5. Given $\varepsilon>0$, there is a $\delta>0$ such that if $E \varepsilon F$ and $P(E)<\delta$, then

$$
\int_{E} g_{n}(x) d P<\delta, n=1,2, \ldots
$$

Proof. By Lemma 4.4 given $\varepsilon>0$ there is an L such that

$$
\int_{A_{n, L}} g_{n}(x) d P<\frac{\varepsilon}{2}, \quad n=1,2, \ldots
$$

Set $\delta=\frac{\varepsilon}{2 L}$ and $\operatorname{let} P(E)<\delta$. Then

$$
\int_{E} g_{n}(x) d P=\int_{E \cap A_{n, L}} g_{n}(x) d P+\int_{\left(E \cap A_{n, L}\right)} g_{n}(x) d P
$$

Now for $x \in\left(E \cap A_{n, L}\right)^{C}, g_{n}(x)<L$.
Therefore,

$$
\begin{aligned}
\int_{E} g_{n}(x) d P & \leq \int_{A_{n, L}} g_{n}(x) d P+L P(E) \\
& <\frac{\varepsilon}{2}+L \frac{\varepsilon}{2 L}=\varepsilon .
\end{aligned}
$$

Notice that $g_{n}(x)<\infty$ almost everywhere on A^{I} as a result of this lemma.

LEMMA 4.6. Let $g(x)=\lim _{n \rightarrow \infty} g_{n}(x)$. Then this limit exists almost everywhere on A^{I} and

$$
\int_{A^{I}} g(x) d P<\infty .
$$

Proof. That $g(x)$ exists almost everywhere, allowing the value $+\infty$, is an immediate consequence of Lemma 4.2. For L>0 set

$$
g_{n}^{L}(x)=\min \left\{L, g_{n}(x)\right\}
$$

Then, since $g_{n}(x) \rightarrow g(x)$ almost everywhere, $g_{n}^{L}(x) \rightarrow g^{L}(x)$. Recall that the
functions $g_{n}^{L}(x)$ are uniformly bounded for all n. Using this fact, Lemma 4.3, and the Lebesque Dominated Convergence Theorem, we have

$$
\begin{aligned}
\int_{A^{I}} g^{L}(x) d P & =\int_{A}^{I} \lim _{n \rightarrow \infty} g_{n}^{L}(x) d P \\
& =\lim _{n \rightarrow \infty} \int_{A^{I}} g_{n}^{L}(x) d P \\
& \leq \lim _{n \rightarrow \infty} \sup \int_{A^{I}} g_{n}(x) d P \\
& =\lim _{n \rightarrow \infty} \sup _{n=0} \sum_{k=0}^{\infty} \int_{n, k} g_{n}(x) d P \\
& <N \sum_{k=0}^{\infty}(k+1) 2^{-k} .
\end{aligned}
$$

Therefore

$$
\int_{A^{I}} g^{L}(x) d P<N \sum_{k=0}^{\infty}(k+1) 2^{-k}
$$

for every $L>0$. Hence

$$
\int_{A^{I}} g(x) d P \leq N \sum_{k=0}^{\infty}(k+1) 2^{-k}<\infty
$$

$g(x)$ is finite almost everywhere, since

$$
\int_{A^{I}} g(x) d P<\infty \quad
$$

IEMMA 4.7.

$$
\lim _{n \rightarrow \infty} \int_{A} I g_{n}(x)-g(x) \mid d P=0
$$

Proof. Let $\varepsilon>0$ be given. Let E_{n} be defined by

$$
E_{n}=\left\{x \varepsilon A^{I}:\left|g_{n}(x)-g(x)\right|>\varepsilon\right\} .
$$

Then

$$
\begin{aligned}
\int_{A}\left|g_{n}(x)-g(x)\right| d P & =\int_{E_{n}}\left|g_{n}(x)-g(x)\right| d P+\int_{E_{n}^{c}}\left|g_{n}(x)-g(x)\right| d P \\
& \leq \int_{E_{n}} g_{n}(x) d P+E_{n} g(x) d P+\varepsilon P\left(E_{n}^{c}\right)
\end{aligned}
$$

By Lemma 4.4 there is a $\delta>0$ such that if $P\left(E_{n}\right)<\delta$, then

$$
\int_{E_{n}} g_{n}(x) d P<\varepsilon .
$$

Since $g_{n}(x) \rightarrow g(x)$ almost everywhere there is an $n '$ such that $n>n^{\prime}$ implies $P\left(E_{n}\right)<\delta$. Note also that by Lemma $4.6 \mathrm{~g}(\mathrm{x})$ is summable over A^{I} and hence there exists a $\delta^{\prime}>0$ such that if $P\left(E_{n}\right)<\delta^{\prime}$

$$
\int_{E_{n}} g(x) d P<\varepsilon .
$$

Let $\delta^{*}=\min \left\{\delta, \delta^{\prime}\right\}$ and let $n *$ be such that $P\left(E_{n}\right)<\delta^{*}$ for $n>n *$. Then for any such n

$$
\int_{E_{n}} g_{n}(x) d P<\varepsilon
$$

and

$$
\int_{E_{n}} g(x) d P<\varepsilon .
$$

Also note that since $P($.$) is a probability measure P\left(E_{n}^{C}\right) \leq 1$ for every set $E_{n}^{C} \in F$. Hence

$$
\int_{A^{I}}\left|g_{n}(x)-g(x)\right| d P<3 \varepsilon, \quad \text { for } n>n *
$$

Therefore

$$
\lim _{n \rightarrow \infty} \int_{A^{I}}\left|g_{n}(x)-g(x)\right| d P=0
$$

We are almost ready to move to the McMillan Theorem. However, in that theorem we will be concemed with the function

$$
f_{n}(x)=-\frac{1}{n} \log P(C),
$$

where C is the cylinder $x_{0}, x_{1}, \ldots, x_{n-1}$. In order to use the results of the lemmas we have proved we must relate the functions $f_{n}(x)$ to the functions $g_{n}(x)$ we have been studying.

LEMMA 4.8. For all $\times \varepsilon A^{I}$ and $n \geq 1$

$$
f_{n}(x)=\frac{1}{n} \sum_{k=0}^{n-1} g_{k}\left(T^{k} x\right)
$$

where T is the shift operator.

Proof. We shall use the following notation. The probability of the sequence x_{r}, \ldots, x_{r+s} will be denoted by $P\left[x_{r}, \ldots, x_{r+s}\right]$. Using this notation we have

$$
f_{n}(x)=-\frac{1}{n} \log P\left[x_{0}, \ldots, x_{n-1}\right]
$$

and

$$
p_{n}(x)=\frac{P\left[x_{-n}, \ldots, x_{0}\right]}{P\left[x_{-n}, \ldots, x_{-1}\right]} .
$$

For $k \geq 0$ it is obvious that

$$
p_{n}\left(T^{k} x\right)=\frac{P\left[x_{k-n}, \ldots, x_{k}\right]}{P\left[x_{k-n}, \ldots, x_{k-1}\right]},
$$

and for $n=k$

$$
P_{k}\left(T^{k} x\right)=\frac{P\left[x_{0}, \ldots, x_{k}\right]}{P\left[x_{0}, \ldots, x_{k-1}\right]} .
$$

This equality holds for all $k \geq 1$. Recall that $P_{0}(x)=P\left[x_{0}\right]$ by definitiontion. Hence

$$
P_{0}\left(T^{\circ} x\right)=P_{0}(x)=P\left[x_{0}\right]
$$

Therefore

$$
\prod_{k=0}^{n-1} P_{k}\left(T^{k} x\right)=P\left[x_{0}\right] \cdot \frac{P\left[x_{0}, x_{1}\right]}{P\left[x_{0}\right]} \cdot \frac{P\left[x_{0}, x_{1}, x_{2}\right]}{P\left[x_{0}, x_{1}\right]} \ldots \cdot \frac{P\left[x_{0}, x_{1}, \ldots, x_{n}\right]}{P\left[x_{0}, x_{1}, \ldots, x_{n-2}\right]}
$$

$$
=P\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]
$$

Taking logarithms yields

$$
\sum_{k=0}^{n-1} \log p_{k}\left(T^{k} x\right)=\log P\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]
$$

Recalling now that $g_{n}(x)=-\log p_{n}(x)$ and that $f_{n}(x)=$ $-\frac{l}{n} \log P\left[x_{0}, \ldots, x_{n-1}\right]$, we have

$$
\sum_{k=0}^{n-1} g_{n}\left(T^{k} x\right)=n f_{n}(x)
$$

We have defined a set S to be invariant under a transformation T if $T S=S$. In our present work we shall let T be the shift operator. The set A^{I} is always invariant as is the set $\left\{\ldots, T^{-1} x, x, T x, T^{2} x, \ldots\right\}$. DEFINITION. The source $[A, P]$ is called ergodic if the probability $P(S)$ of every invariant set $S \in F$ is either 0 or 1 .

THEOREM 4.3 (MCMILLAN'S THEOREM). For any stationary source [A,P] the sequence $f_{n}(x)$ converges in L^{l}-mean to some invariant function $h(x)$. In the case of an ergodic source, $h(x)$ coincides almost everywhere in A^{I} with the entropy H of the source.

Proof. The function $g(x)$ which we have defined is summable over A^{I}, i.e., $g(x) \varepsilon L^{\perp}$, by Lemma 7.6. Hence the Birkhoff ergodic theorem may be applied to $g(x)$ and we have the result that

$$
\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)
$$

converges in $L^{l}-m e a n$ to some invariant function $h(x)$. (We have noted previously that the shift operator T is measure-preserving if [A,P] is stationary.) By Lemma 4.8

$$
\begin{aligned}
\int_{A^{I}}\left|f_{n}(x)-h(x)\right| d P & =\int_{A^{I}}\left|\frac{1}{n} \sum_{k=0}^{n-1} g_{k}\left(T^{k} x\right)-h(x)\right| d P \\
& \leq \int_{A^{I}}\left|\frac{1}{n} \sum_{k=0}^{n-1}\left[g_{k}\left(T^{k} x\right)-g\left(T^{k} x\right)\right]\right| d P \\
& +\int_{A^{I}}\left|\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)-h(x)\right| d P \\
& \leq \frac{1}{n} \sum_{k=0}^{n-1} \int_{A^{I}} \left\lvert\, g_{k}\left(T^{k} x\right)-g\left(\left.T^{k} x\left|d P+\int_{A^{I}}\right| \frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)-h(x) \right\rvert\, d P\right.\right.
\end{aligned}
$$

Now by stationarity

$$
\int_{A^{I}}\left|g_{k}\left(T^{k} x\right)-g\left(T^{k} x\right)\right| d P=\int_{A^{I}}\left|g_{k}(x)-g(x)\right| d P .
$$

Since $g_{k}(x)+g(x)$ as $k \rightarrow \infty$, $\left|g_{k}(x)-g(x)\right| \rightarrow 0$ and hence

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{k=0}^{n-1} \int_{A}\left|g_{k}(x)-g(x)\right| d P\right]=0
$$

Therefore, given $\varepsilon>0$ there is an index n^{\prime} such that $n>n '$ implies

$$
\frac{1}{n} \sum_{k=0}^{n-1} \int_{A}^{I}\left|g_{k}(x)-g(x)\right| d P<\frac{\varepsilon}{2}
$$

By the definition of $h(x)$, given $\varepsilon>0$ there is an index $n "$ such that $n>n "$ implies

$$
\int_{A^{I}}\left|\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)-h(x)\right| d P<\frac{\varepsilon}{2}
$$

 Then for $n>n$ * we have

$$
\begin{aligned}
& \int_{A^{I}}\left|f_{n}(x)-h(x)\right| d P \leq \frac{I}{n} \sum_{k=0}^{n-l} \int_{A^{I}}\left|g_{k}(x)-g(x)\right| d P \\
& \quad+\int_{A^{I}}\left|\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)-h(x)\right| d P \\
& <\varepsilon
\end{aligned}
$$

Hence $f_{n}(x)$ converges in L^{1}-mean to $h(x)$ and the first part of the theorem is proved.

In the case of an ergodic source, the corollary to the Birkhoff theorem states that the function $h(x)$ is almost everywhere a constant h. Thus, to prove the second part of the theorem, we must show that $h=H$. The fact that $f_{n}(x)$ converges in L^{l}-mean to h implies that

$$
\lim _{n \rightarrow \infty} \int_{A^{I}} f_{n}(x) d P=\int_{A^{I}} h d P=h P\left(A^{I}\right)=h
$$

Now

$$
\int_{A^{I}} f_{n}(x) d p
$$

is just the mathematical expectation of the random variable $f_{n}(x)$ which we have shown has limit H. Hence

$$
h=H . \quad \square
$$

This theorem, also called the asymptotic equipartition property (AEP) allows us to draw the following conclusion about the encoding of information produced by an ergodic source with uncertainty H. Suppose that the information produced by such a source is to be transmitted through a discrete memoryless channel with capacity C. Suppose $H<C$, and choose R such that $H<R<C$. Then, for sufficiently large n we can divide the sequences of length n into two classes S_{1} and S_{2} such that S_{1} has at least $2^{n(H-\delta)}$ and at most $2^{n(H+\delta)}$ sequences for any $\delta>0$. In particular then, we may choose n so that S_{1} has fewer than $2^{n R}$ sequences. Since the total probability of the sequences in S_{2} can be made $\leq \varepsilon / 2$, we can find a code with $2^{n R}$ input sequences of length n whose maximum probability of error is $\leq \varepsilon / 2$ by assigning a code word of this code to each sequence in S_{1} and assigning an arbitrary input sequence of length n to each sequence of S_{2}. Hence a source with uncertainty H can be handled by a channel with capacity C provided $\mathrm{H}<\mathrm{C}$.

For additional results in this area see Ash. Ash, Feinstein and Billingsley offer other developments of the topics treated in this
chapter. Billingsley also discusses additional connections between the theories of ergodicity and information.

BIBLIOGRAPHY

ABRAMSON, N., Information Theory and Coding, New York: McGraw-Hill, 1963.

ASH, R. B., Information Theory, New York: Interscience Publishers, 1965.

BILLINGSLEY, P., Ergodic Theory and Information, New York: Wiley, 1965.

CHACON, R. V. and Ornstein, D. S., "A General Ergodic Theorem," Illinois Journal of Mathematics, Vol. 4, 1960.

DUNFORD, N. and Schwartz, J. T. [l], "Convergence Almost Everywhere of Operator Averages," Joumal of Rational Mechanics and Analysis, Vol. 5, 1956.
\qquad [2], Linear Operators, Vol. I, New York: Interscience, 1958.

FANO, R. M., Transmission of Information; A Statistical Theory of Communications, New York: M.I.T. Press, 1961.

FEINSTEIN, A., Foundations of Information Theory, New York: McGrawHill, 1958.

HALMOS, P. R. [1], Measure Theory, Princeton, N. J.: Van Nostrand, 1950.
\qquad [2], Lectures on Ergodic Theory, New York: Chelsea, 1956.
[3], "Recent Progress in Ergodic Theory," Bulletin of the American Mathematical Society, Vol. 67, 1961.

HUFFMAN, D., "A Method for the Construction of Minimum Redundancy Codes," Communication Theory, London: Butterworth's Scientific Publications, 1953.

KAKUTANI, S. and Yosida, K., "Operator-Theoretical Treatment of Markhoff Process and Mean Ergodic Theorem," Annals of Mathematics, Vol. 42, 1941.

KHINCHINE, A., Mathematical Foundations of Information Theory, New York: Dover, 1958.

LOÈVE, M., Probability Theory, 3rd ed., Princeton, N. J.: Van Nostrand, 1963.

McMILLAN, B., "The Basic Theorems of Information Theory," Annals of Mathematical Statistics, vol. 24, 1953.

MUROGA, S., Threshold Logic and Its Applications, New York: WileyInterscience, I971.

PINSKER, M., Information and Information Stability of Random Variables and Processes, San Francisco: Holden-Day, 1964.

RUDIN, W., Real and Complex Analysis, New York: McGraw-Hill, 1966.
SHANNON, C.E. and Weaver, W., The Mathematical Theory of Commication, Urbana, Ill.: University of Illinois Press, 1949.

YOSIDA, K., Functional Analysis, Academic Press, 1965.

