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Université Joseph Fourier

Date Approved: December 1, 2018



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Chloé Arson, for her guidance,
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SUMMARY

Particulate fragmentation, the process by which large particles break into fragments,

results in important changes Particle Size Distribution (PSD), particle shape, void ratio,

permeability, compressibility, shear strength and stress-strain behavior. Particulate break-

age can occur in different geomaterials from crushable granular materials to rock-fills and

concrete aggregates. Various constitutive laws were proposed to relate the mechanical be-

havior of granular materials to breakage indexes. Despite the progress made on modeling

granular mechanics at the macro-scale, discriminating the mechanisms that control parti-

cle breakage within a particulate assembly is still an open issue. For example, particle

strength is known to decrease with particle size (so called size effect). But statistically,

larger particles are more likely to have a larger coordination number, thus to be subjected

to a more uniform contact stress (so called shielding effect) and to have a lower probability

of breakage. As a result, the conditions in which a large particle size prevents breakage are

not well understood. In this thesis, we analyze particle fragmentation and the associated

energy distribution from a micro-mechanical standpoint.

We first explain the state of the art in terms of micro-macro modeling of breakage in gran-

ular assemblies, and we present in detail the pros and cons of the techniques employed in

the Discrete Element Method (DEM) to simulate particle crushing.

Second, we conduct a numerical study at the particle scale to understand in which con-

ditions shielding effects overcome size effects. We also investigate the influence of mi-

croscopic flaws on particle crushing. Our simulations highlight the predominant influence

of porosity over flaw size and show that particle strength depends linearly on the particle

coordination number and quadratically on particle porosity.
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Third, we analyze micro-CT scans obtained sequentially during an oedometer test of zeo-

lite to model crushing at the scale of a granular assembly. We implement a new breakage

model in DEM, which combines particle replacement, for primary splitting breakage, and

cluster bond breakage, for modeling for fragment breakage. An important improvement

upon previously published models is that during the tensile splitting, the breakage plane

is defined by the contact carrying the maximum normal force and direction of minimum

principal stress, instead of assuming that the breakage plane contains the two maximum

contact force vectors. The PSD obtained with the new DEM model exhibited an impres-

sive matching with experimental results. The new breakage model could also capture the

experimental stress-strain relationship at the macroscopic scale.

Fourth, we analyze the evolution of the energy of a granular assembly subject to partic-

ulate breakage during quasi-static confined comminution. Energy potentials are related to

internal variables that have a clear relationship to microstructure evolution, e.g. deviation

to initial and ultimate PSDs, particle specific surface, porosity. DEM simulations show

that: At least 60% of the work input is dissipated by particle redistribution; The fraction

of elastic deformation energy increases and the fraction of redistribution energy decreases

as the compression stress increases; The breakage energy accounts for less than 5% of the

total input energy, and this value is independent of the compressive stress; The energy dis-

sipated by redistribution is between 14 to 30 times larger than the breakage energy.

Lastly, we propose a DEM displacement-softening contact model to simulate fracture prop-

agation in concrete. Aggregates are designed from point clouds obtained by scanning actual

aggregates. The Interfacial Transition Zone (ITZ) is accounted for by deleting bonds at the

interface between aggregates and mortar. We calibrate the model with results of uniax-

ial compression tests and Brazilian tests of both mortar and concrete. DEM simulations

confirm that concrete does not fail in pure tensile mode during Brazilian tests. Sensitivity

xvi



analyses also show that concrete strength depends linearly on both the adhesive area frac-

tion of the ITZ and the aggregate tensile strength. The ITZ has a greater effect on concrete

strength than aggregate strength.

Future studies will focus on the modeling of various simultaneous breakage mechanisms

(e.g. splitting, multi-fragmentation, chipping, erosion) and on their relation to the macro-

scopic response of the granular assembly, as well as the modeling of cyclic effects, the

prediction of bond corrosion in the presence of water, and the design of bond reparation.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivations and Objectives

Particulate fragmentation is involved in many disciplines, such as powder engineering, the

mining industry, food processing and civil engineering. Particle breakage (or particle crush-

ing) refers to the process by which grains break into fragments or fines. For example, the

production of fault gouge is the result of continuous particle crushing of particles between

fault surfaces. In the mining industry, ore crushing is usually the first step of mineral pro-

cessing [1]. In civil engineering, the cost of mitigating ballast particle crushing is estimated

to be more than half of the total construction cost of railways [2]. Even heterogenous solids

like concrete are subject to particle crushing, because weak aggregates break during Brazil-

ian tests and uniaxial compression tests [3]. In the pharmaceutical industry, a common ap-

proach to increase drug solubility, which controls the rate and extent of drug absorption, is

to reduce the size of tablets or powder grains by crushing [4, 5]. In order to understand and

simulate the mechanical behavior of granular and aggregate-bearing materials at the macro-

scopic scale (laboratory scale to engineering structure scale), a fundamental understanding

of the driving micro-mechanisms of particle breakage is required.

Particulate fragmentation results in important changes in granular material properties,

e.g., particle size distribution, void ratio, particle shape and strength. Some studies claim

that the normal compression line in the plot of void ratio vs. the logarithm of effective stress

is characteristic of particle crushing, and that the sudden decrease in the rate of hardening

(yielding region) indicates the onset of particle crushing which is shown as region 2 in

Figure 1.1 [6, 7]. In other studies, it is found that the size of the yield surface is related

to a crushing index [8]. Permeability of granular materials is closely related to the Particle
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Size Distribution (PSD): fine particles generated during crushing tend to clog pores, which

reduces permeability [9, 10].

Figure 1.1: One-dimensional compression plots showning the yielding region 2 [6]

Extensive experimental studies were done at the particle scale. Diametric compression

tests were conducted on single particles, to measure tensile strength, assess particle size

and shape effects and analyze breakage modes. The stress distribution in an elastic sphere

subjected to diametrical compression was obtained analytically by Hiramatsu in 1966 [11];

the model also provides a definition of particle tensile strength. Robertson conducted single

particle crushing tests with three different materials, and the results show that failure of

grain asperities occurs before major failure, and that tensile strength depends on particle

size [12]. Salamia et al created a device to study the effect of coordination number on

grain crushing in 2D, and concluded that existing models are incapable to reproducing the
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fragmentation process [13].

Numerically, the Discrete Element Method (DEM), also called Distinct Element Method,

is one of the most common tools to simulate particulate fragmentation. The DEM allows

calculating the displacements of particles within a granular assemblies, as well as the in-

duced contact forces. Averaging methods can be employed to characterize the macroscopic

mechanical behavior of the granular assembly. Any PSD can be assigned to the DEM par-

ticulate elements. Particle contacts are governed by contact laws, such as the linear or the

Hertz contact law. In addition, in order to model non-spherical particles or solid materials,

particles can be bonded together at contacts. The DEM can thus be used to simulate frac-

ture propagation as a sequence of bond breakages. The properties of contact bonds play an

important role in controlling the behavior of materials. In our analysis of particle fragmen-

tation, crushable grains are modeled as clusters of bonded particles, in which successive

bond breakages lead to fragmentation, attrition or abrasion. The DEM solution depends

on the number, size and packing of the elementary particles used in the model, and on the

bond parameters [14, 15, 16]. Another method to model particle fragmentation is to replace

a broken particle with smaller particles representing fragments. This replacement method

requires postulating a breakage criterion, a breakage plane orientation, as well as the re-

sulting sizes and shapes of the fragments. To this date, no quantitative model exists for

some micro-mechanisms that occur at single particle scale, such as size effects and shield-

ing effects. At the scale of the granular assembly, current numerical models do not allow

simulating sequential breakage with non-spherical fragments, which is however a common

situation encountered in confined comminution tests [17, 18, 19].

Thermodynamic and phenomenological models were proposed to predict the behavior

of granular materials that undergo particulate fragmentation. The total input energy of the

sample is transformed into elastic energy, breakage energy, friction dissipation and redis-

tribution energy [20]. The energy distribution equation is the foundation of the constitutive

relationship between stress and strain. A good understanding of how the energy dissipates
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during the fragmentation process is necessary to formulate sound constitutive models for

granular materials. How to calculate the relative fraction of the energy components dissi-

pated during comminution has been studied for decades both at the grain and at the sample

scales, with analytical, numerical and experimental methods [21, 22, 23]. Previous results

show that energy is mostly dissipated by particle redistribution and inter-granular friction.

However, there is still no consensus on the relative fraction of the different components of

energy dissipated, which raises challenges in deriving thermodynamic based constitutive

equations.

Coarse aggregate fragmentation is common in concrete. Properties of coarse aggregates

have a strong influence on the mechanical behavior of concrete. In particular, weak coarse

aggregates greatly decrease both the tensile strength and the uniaxial compressive strength

of concrete [24]. In addition, the existence of coarse aggregates increase concrete porosity,

and thus decreases concrete strength. The interfacial transition zone (ITZ) between coarse

aggregates and mortar also affects strengths of concrete [25]. It is believed that the ITZ has

weaker bonding strength due to higher water content near the coarse aggregates. However,

no quantitative analysis was conducted so far to understand the effects of coarse aggregate

strength and of the ITZ on concrete strength.

1.2 Plan of the Thesis

In this thesis, we analyze particulate fragmentation of geomaterials and the associated en-

ergy distribution from a micro-mechanical standpoint. We start with a literature review on

particle crushing in granular materials across scales in Chapter 2. In Chapter 3, we focus

on the micro-parameters that affect the most elementary crushing event: single particle

crushing. Then in Chapter 4, we upscale our analysis to an assembly of grains subjected to

confined comminution. We propose a new model to provide a more accurate representation

of fracture planes, and to account for sequential breakage events based on XCT images of

an oedometer test. Chapter 5 deals with the evolution of energy redistribution during the
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compression of granular materials. Several modeling strategies are discussed. In Chapter 6,

we focus on the fragmentation of coarse aggregates in concrete. A displacement-softening

contact model is proposed to simulate the behavior of mortar and coarse aggregates. The

effects of the aggregate tensile strength and of the adhesive area of the interfacial transition

zone are analyzed. Chapter 7 presents the conclusions of this doctoral work.
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CHAPTER 2

CHARACTERIZATION AND MODELING OF PARTICLE CRUSHING:

STATE-OF-THE-ART

Particle crushing, which is also called particle breakage, refers to the process by which

grains break into smaller fragments due to high contact forces. The first mechanical analy-

ses of particle crushing date back from the 1960s and focus on single particle strength [26,

27]. Later, the mechanical response of granular assemblies subject to crushing gaines a lot

of attention [28]. Particle breakage results in a change of the Particle Size Distribution and

in the reduction on average particle size – a phenomenon called grain comminution. For

instance, grain comminution occurs in zeolite during oedometer tests [29]. Figure 2.1 illus-

trates different modes of particle breakage, including fracture, attrition and abrasion [30].

In this chapter, we review the state-of-the-art of characterization and modeling of particle

crushing.

Figure 2.1: Three modes of particle crushing: fracture, attrition and abrasion [30]

2.1 Phenomenological Description of Particle Crushing

Particle crushing can be characterized by the evolution of Particle Size Distribution (PSD).

Several breakage indexes were defined in order to measure the influence of crushing on
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the engineering properties of granular materials [31]. For instance, Marsal calculated the

percentage differences in particles passing each sieve size, before and after a crushing test,

and defined the breakage index B as the sum of these differences [32]. Except for the

largest grain size initially present in the sample, the percentage difference can be positive

or negative. B varies between 0% and 100%. In another study that considers fine particles,

the particle breakage index is defined as the ratio of D15(before)/D15(after), in which D15

is defined such that 15% of the mass of the sample is made of grains that have a diameter

lower thanD15 [33]. ‘After’ and ‘before’ subscripts refer to measures done before and after

the crushing test, respectively. Hardin [34] defined the breakage potential Bp as the area

between the initial PSD curve and the line defining a particle size of 0.074mm, as shown

in Figure 2.2. Similarly, the total breakage parameter, Bt, is defined as the area comprised

between the PSD curves before and after the crushing test. The relative breakage Br is

expressed as the ratio between the total breakage and the breakage potential. The value

of 0.074 mm corresponds to the upper limit size of silt particles. Because extremely high

stress is required to crush silt particles, a soil sample was considered completely crushed

when no particle larger than 0.074 mm subsisted after curshing. Recent studies confirm that

silt particles have very high strength and store less elastic energy than larger particles [35],

and also indicate that the final PSD follows a Weibull distribution with the same largest

particle size as in the initial PSD [36].

Figure 2.2: Definition of Hardin’s breakage potential [34]

In order to correlate the particle breakage with standard soil parameters, Lade et al [31]
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Figure 2.3: Definition of Hardin’s total breakage parameter [34]

proposed the following breakage factor B10:

B10 = 1− D10f

D10i

(2.1)

in which D10i and D10t are the grain diameters that are such that 10% of the mass of the

sample is made of grains that have a diameter lower thanD10i (before the crushing test) and

D10t (after the crushing test), respectively. The authors studied the relationship between soil

parameters and the particle breakage factors proposed by Marsal [32], Lee and Farhoomand

[33] and Hardin [34]. Lade’s breakage parameter can be used to calculate the total energy

input to a granular assembly, as well as the intrinsic permeability of a sand. However, it

was found that no unifying breakage factor could capture all the soil behavior features. For

example breakage factor proposed by Marsal remains less than 0.4 under an axial stress of

up to 40 MPa in triaxial extension tests, but takes reasonable values in triaxial compression

tests [31].

The main inconvenient of Hardin’s breakage index is that it cannot account for the

production of fines under compressive stresses higher than 100 MPa or under shear strains

exceeding 0.5. That is why other models were put forward, in which the fragmentation is

a scale invariant process, through which any initial PSD is transformed into a self-similar

distribution. In a study of fault gouge samples [37], a self-similar grain size distribution

was evidenced by comparing the relative fractions of particle classes at different scales.
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The ultimate PSD was modeled as a fractal relationship between the number and the sizes

of grains. The number of grains N with a diameter larger than d is expressed as [38]:

N = Cd−α (2.2)

whereC is a constant and α is the fractal dimension. Eq.2.2 is expressed in terms of particle

size (d), while the PSD determined in the laboratory is expressed in terms of the mass of

particles finer than a certain size d (noted Md). Assuming that all particles have the same

shape, Md is calculated as follows:

Md =
∫ d

dm
sρd3dN =

Cαsρ

3− α
(d3−α − d3−αm ) (2.3)

where s is the shape factor, which relates the particle volume to the cube of its diameter, d3

(s = π/6 for spheres), ρ is the mass density and dm is the minimum particle size [39, 36].

If dm is equal to zero, the ultimate PSD is expressed as:

Fu(d) =
Md

MT

=
( d

dM

)(3−α)
(2.4)

Based on the expression of the ultimate PSD stated in Eq.2.4, Einav [36] redefined the

relative and potential breakage parameters (Br and Bp) as follows:

Bt =
∫ dM

dm
(F (d)− F0(d))d(logd) = ln−110

∫ dM

dm
(F (d)− F0(d))d−1dd (2.5)

Bp =
∫ dM

dm
(Fu(d)− F0(d))d(logd) = ln−110

∫ dM

dm
(Fu(d)− F0(d))d−1dd (2.6)

The physical meaning of these two parameters remains the same, Bt is the area of the

domain that is between the current and initial PSD curves; Bp is the area of the domain

that is between the final and initial PSD curves. The prediction of the ultimate PSD with

Einav’s model matches experimental data better than with Hardin’s model.
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Figure 2.4: Modified definition of the breakage index Br, proposed by Einav [36]

2.2 Micromechanical Description of Particle Crushing

In order to understand the micromechanical origin of grain breakage, single particle crush-

ing tests were conducted, in which grains were placed between two loading platens or

loading points. Particle crushing tests conducted on grains of different shapes indicated

that grains break because of tensile failure [11]. As an example, two force-displacement

curves obtained during single particle crushing tests of sand particles are shown in Figure

2.5. The particle usually breaks into two or three parts. Recent studies indicate that this

type of failure is governed by tensile strength [40]. The tensile strength of a brittle grain

subjected to diametrical loading can be obtained by:

σt =
αFt
d2

(2.7)

where σt is the tensile strength, Ft is the maximum compressive force, α is a parameter

that usually lies in the range of 0.4 to 1.5 and d is the distance between loading points when

breakage occurs. Note that d is not the distance that separates the loading points when the

loading points are still in contact with the grain, before breakage.

10



Figure 2.5: Typical load-displacement curves in sand single-particle crushing tests [6].

Photo-elasticity was used to visualize the stress distribution in a grain subjected to di-

ametrically opposite concentrated loads. Stresses in the loading direction are very similar

to those shown in Figure 2.6. Analytical models of stress distribution in elastic spherical

grains indicate that σθ is tensile, and that its value is uniform over a segment of length

equal to the particle radius, centered at the particle center. Numerical models were verified

against this theoretical solution [15].

(a)
(b)

Figure 2.6: Stress patterns observed in a photo-elastic (a) sphere and (b) rectangular prism
[11]

It was noted experimentally that the compressive strength of a particle decreases with

its size (so called size effect) [41, 42, 43, 44, 45, 46]. Lee conducted single particle crush-

ing tests on three different materials, i.e. Leighton Buzzard sand, oolitic limestone and
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carboniferous limestone, and found that the tensile strengths could be described by the re-

lationship σt ∝ db (b < 0), as is shown in Figure 2.7. Size effects can be explained by the

weakest link theory: the strength of a particle is dominated by large cracks/flaws, which are

more likely to exist in large grains. Ma proposed that size effects are related to the size of

a fracture processing zone (noted l) and to the sample size (noted D), and that size effects

vanish when l/D becomes lower than a certain threshold [47]. Some researchers argue that

crushing is driven by the propagation of surface flaws rather than by tensile failure. For

instance, Brzesowsky et al successfully modeled crushing tests performed on sand grains

of different sizes with a Hertzian fracture mechanics model applied to the propagation of

surface flaws [48].

Figure 2.7: Tensile strength as a function of particle size [49]

A particle is in general not subjected to diametrical loading within a granular assembly.

The coordination number of a particle is defined as the number of grains that are in con-

tact with that particle (and potentially, applying a reaction force on that particle). Several

studies were conducted to understand the influence of the coordination number on particle

breakage [13, 50, 51, 52]. The analytical distribution of stress in a particle with a coordi-

nation number larger than 2 depends on the relative position of the contact forces, and is
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therefore complex, especially in 3D. Solutions obtained for simplified loading conditions,

such as four contact points positioned symmetrically, indicate a clear decrease of tensile

stress at the center of the particle [27]. In addition, a recent study shows that the coordi-

nation number, the relative position of the contacts and type of contact forces (i.e., normal

vs. tangential) all play an important role on grain fragmentation [13]. Each grain in contact

with a particle potentialy applies a contact force on that particle; the combination of all

contact forces redistributes tensile stress in the particle. As a result, a higher coordination

number yields a higher crushing strength – a phenomenon known as shielding effect.

X-ray tomography was used to characterize the shape of broken grains and to evaluate

of the effects of fragments on the macroscopic behavior of granular materials [53]. The

evolution of the PSD was monitored during high-confinement triaxial compression tests

[49] to relate breakage events to Loading Steps (LS), as shown in Figure 2.8. 3D+t im-

age analysis was recently put forward to quantify grain breakage over time. The methods

involves grain labelling and tracking in two different steps, which reduces errors.

2.3 Micro-macro Modeling of Particle Crushing

The effect of particle crushing on the macroscopic stress-strain relationship of a granular

medium is still not fully understood. During the crushing process, the total work input

energy turns into elastic potential energy, dissipated breakage energy and dissipated redis-

tribution energy. The latter is the sum of the kinetic energy of moving fragments, plus

friction energy dissipated at the contacts between fragments [20, 23, 35].

Particle breakage is usually modelled by relating energy dissipation to the increase

of particules’ surface and/or to the frictional displacement field [54, 30, 55]. Based on

energy balance and critical soil mechanics, McDowell and collaborators [39] proposed the

following constitutive relationship for uniaxial compression:

σ̄dε̄p =
2

9
M(1 + 2K0)σ̄dε̄p +

ΓdS
Vs(1 + e)

(2.8)
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Figure 2.8: Breakage evolution obtained by image processing in high-confinement triaxial
compression tests of sand [49]
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where σ̄ is the axial stress and ε̄ is the corresponding axial strain. K0 is the stress ratio, M

is the slope of the critical state line in the p− q space, Γ is the free surface energy, Vs is the

volume of solid grains in the sample and e is the void ratio. This equation relates stress,

strain and surface increase, and is consistent with previous experimental results, in which it

was noted that the increase of surface area is proportional to the plastic work [56]. Eq. 2.8

was used in a crushing simulation with a fractal distribution of triangle particles. The model

can capture the main characteristics of the mechanical response of a crushable granular

assembly subjected to one-dimensional compression. Note however that the model was not

calibrated. Alternatively, grain crushing can be described macroscopically as accumulated

plastic strain, based on the assumption that grain crushing reduces frictional properties.

This crushing-induced plasticity model could capture the stress-dilatancy relationship of

Pozzolana Nera (a pyroclastic deposit from Central Italy) [55].

Different from plasticity, breakage mechanics is a continuum mechanics theory estab-

lished for crushable granular materials, based on statistical and thermodynamic principles

[36]. The free energy density function is split into a function of the particle size d and a

function of the void ratio e, as follows:

ψ̂ = fψ(d)ψr(e), (2.9)

Assuming that the internal energy and that the rate of dissipation are additive, the Helmholtz

free energy Ψ of the granular assembly, is expressed as

Ψ = Ψ0(1−B) + ΨuB (2.10)

where Ψ0 and Ψu are the Helmholtz free energy at the beginning and ultimate stages, re-

spectively. The increment of Helmholtz free energy is given as:

δΨ =
∂ψr(e)

∂e
[(1−B)m0 +Bmu]δe+ ψr(e)(mu −m0)δB (2.11)
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where m0 and mu are parameters related to the initial and ultimate particle size distribu-

tions, respectively. Resorting to a special case of degenerate Legendre transformation, the

breakage yield function and the consistency condition are given as:

yB = EB(1−B)2 −Gb (2.12)

δEB(1−B)2 − 2EB(1−B)δB = 0 (2.13)

where EB is the breakage potential and GB is a material parameter used to scale the strain

energy. The breakage criterion is based on the idea that the energy dissipated by breakage is

equal to the loss in residual breakage energy (see Figure 2.9). During the crushing process,

energy is dissipated not only by breakage, but also by friction, and both phenomnea are

coupled [57]. A detailed analysis about this coupling is presented in Section 5.2. Breakage

mechanics was used to study creep, permeability, cementation and wetting in soils [58, 10,

59, 60, 61].

Figure 2.9: Physical meaning of the breakage criterion in breakage mechanics

Homogenization methods can also be used to predict the macroscopic behavior of com-
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posite materials or aggregates [62]. Two steps are usually needed: the first is to calcu-

late the stress and strain of an inclusion embedded into an infinite reference homogeneous

medium; the second is to calculate the macoscopic stress and strain fields by means of a

micro-macro relationship, which represents the interaction between the inclusion and the

surrounding continuum medium. The dilute homogenization scheme is independent of the

distribution of inclusions [63]. By contrast, the self-consistent method and Mori-Tanaka

method allow accounting for interactions between inclusions. The self-consistent method

is particularly suitable for disordered materials, in which no clear distinction can be made

between the “inclusion” and the “matrix”, because the material resembles a patchwork of

different types of inclusions. For example, Hill’s incremental inclusion-matrix relationship

[64] is:

δσ − δσ̄ = −L∗ : (δε− δε̄) (2.14)

where σ is the local stress, σ̄ is the macroscopic stress, ε is the microscopic strain and ε̄

is the macroscopic strain. For spherical inclusions embedded in an isotropic linear elastic

matrix, the Hill’s tensor L∗ is given by:

L∗ijkl =
µ

4− 5υ
[(3− 5υ)δijδkl +

7− 5υ

2
(δikδjl + δilδjk)]. (2.15)

Hill’s theory was used to represent the breakage of crystals in polycrystalline structures

[65]. Crystals of same orientation define a type of inclusion, which was assigned specific

mechanical properties, such as strength. Broken grains were replaced by voids. Account

for breakage in the calculation of local stress is explained in Table 2.1.

Table 2.1: Microscopic stress change due to grain breakage

Microscopic stress Microscopic deformation
Non-broken grains δσ = C0 : δε δε = [I +M∗ : C0]

−1 : (δε̄+M∗ : δσ̄)
Breaking grains δσ = −σ δε = M∗ : σ + δε̄+M∗ : δσ̄
Broken grains δσ = 0 δε = δε̄+M∗ : δσ̄
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2.4 DEM models of particle breakage

The Discrete Element Method (DEM) allows simulating the mechanical response of gran-

ular assemblies and calculating quantities that cannot be observed by imaging, such as

contact forces and grain stresses. Particle breakage can be simulated with the DEM by rep-

resenting a crushable particle by a cluster of bonded elements (cluster method) or by replac-

ing each broken particle with several fragments (replacement method). Upon proper cal-

ibration, DEM cluster models show good agreement with experimental results for single-

particle crushing tests. The cluster method was also used to simulate oedometer tests with

an assembly of crushable particles, but simulations required several tens of thousands of

elements inside each cluster, and the computational cost was too high to ensure model

practicality. Alternatively, in the replacement method, a stress criterion is employed to

determine when a particle should break; the particle is then replaced by smaller elements

representing fragments. The latter can be stand-alone particles, clusters or clumps. DEM

breakage models were used to understand the influence of the loading speed, the packing of

elementary particles, the number oand size of internal flaws and the number of elementary

particles in a cluster [16, 6, 52, 14]. In the following, we discuss the pros and the cons of

the cluster and substitution methods.

2.4.1 Cluster Method

In the cluster method, the crushable particle consists of smaller elementary particles that

are bonded together. Elementary particles are usually (not always) uncrushable and equally

sized. Different types of bonds can be used for different types of crushing mechanisms. As

an example, the parallel bond model was used in Chapter 3. The cluster method is widely

used in DEM.

Cheng and collaborators [14] simulated an isotropic compression test performed on

sand, with 389 crushable sand particles represented by clusters, as shown in Figure 2.10a.
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(a)
(b)

Figure 2.10: Simulation of sand isotropic compression tests: (a) cubical arrangement of
389 agglomerates; (b) typical shape of a crushable ‘grain’[14]

When generating the clusters, 20% of the elementary particles were randomly deleted to

provide statistical variability. The shapes of the clusters and the corresponding arrangement

of elementary particles are shown in Figure 2.10b.

Many subsequent studies [21, 66, 67] resorted to a similar cluster model. A bond model

was introduced in the simulation of an isotropic compression test to represent the transmis-

sion of not only normal and shear stresses, but also bending moment. The elementary par-

ticle diameter was fixed to 0.2 mm and 1040 clusters with diameters ranging from 0.7 mm

to 2 mm were generated [68]. Realizing that equally sized elementary particles may lead

to unrealistic fractures that align with the lattice direction, Abe introduced clusters with

a random size distribution and packing of elementary particles [69]. DEM simulations of

shear tests resulted in microstructures comparable to those of natural gouges.

In all the techniques employed to account for the statistical variability of clusters, the

accuracy of the cluster model largely depends on the number of elementary particles present

in the clusters. In Cheng’s work [14], each cluster had around 50 particles. Lim and

McDowell [52] found that a minimum of around 500 particles is necessary to give accurate
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(a)
(b)

Figure 2.11: Cluser method: (a) Equally sized elementary particles [68]; (b) Elementary
particles with different sizes [69]

results. In Chapter 3, we found that the ratio of particle size/cluster size should be less than

0.014 – which implies that each cluster should have at least 37,000 elementary particles.

With such a high number of particles in each cluster, it is highly computationally expensive

to conduct simulations on complete grain assemblies. As an example, the DEM simulation

of the single particle took 5 to 6 hours with a workstation (i7-3770 3.4GHz CPU and 64

GB RAM). To simulate mechanical tests on granular assemblies, at least few hundred of

clusters have to be modeled.

2.4.2 Replacement Method

In the replacement method, the breakage criterion, i.e. the limit condition of the crushable

particle, needs to be defined in terms of mean stress, tensile strength, shear strength, or

maximum contact force, depending on the breakage mechanism. This limit condition can

be defined by a single value or by a variable that follows a statistical distribution [70, 71].

Due to the difficulty in obtaining the stress distribution in a particle subjected to several
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contact forces, the following simplified stress averaging method is often adopted [72]:

σij =
1

V

∑
Nc

(x
(c)
i − x

(p)
i )F

(c,p)
j (2.16)

where V is the volume of the particle, Nc is the total number of contacts, x(c) and x(p) are

the locations of the contact point and particle centroid, respectively, and F (c,p)
j is the force

acting on the particle at the jth contact. Åström and Herrmann compared two dfferent limit

conditions for breakage, the mean stress and the largest compressive contact force. They

found that using mean stress as a criterion led to unstable breakage. Contrarily, a criterion

based on the largest compressive force predicts stable breakage mechanisms and more ac-

curate PSDs [73]. However, the authors did not provide the expression of the average con-

tact force that they used in the mean stress method, neither did they calibrate the numerical

results against experiments. In another study, a grain was set to crush when the arithmetic

mean of the normal contact force exceeds a critical value, F ∗crit, and a grain crushes when

F̄n > F ∗crit [74]. By investigating two breakage criteria and several configurations of post-

crushing replacement, it was concluded that the expected ultimate fractal distribution of

particle sizes could be approached irrespective of the breakage criterion used.

Ciantia and collaborators used the maximum normal contact force in the limiting cri-

terion F ≤ σlimAF = Flim, where F is the maximum normal contact force, σlim is the

limit strength (which is a function of Poission’s ratio, tensile and uniaxial compressive

strengths), and AF is the contact area [71]. 3D simulations of an oedometer test showed

that this criterion was computationally efficient and accurate. A criterion expressed in max-

imum contact force was also used in [75], and later this criterion proved to better represent

the PSD evolution and the average stress distribution [72].

In most single particle compression tests, breakage was found to be caused by tensile

stress, splitting the grain axially, like in a Brazilian test [11]. According to Tsongui and

collaborators [76], when a grain is in contact with several neighbours, the tensile stress
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at the centre is close to (σ1 − 3σ3)/2. An oedometric compression test was simulated in

2D with a DEM model in which (σ1 − 3σ3)/2 was set as the failure criterion, and a good

agreement was found with experimental results.

In another approach, McDowell and collaborators defined the breakage criterion in

terms of octahedral shear stress, q = 1/3[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2]1/2 [77].

They proposed that it would be unlikely for a particle to break when it is subjected to a

high isotropic stress, and therefore that the deviatoric stress played a more important role

in breakage. They used the model to simulate the isotropic compression of silica sand and

achieved a normal compression line of the same slope as in experimental results from a 1D

compression test.

Once the breakage threshold is reached, the crushable particle is replaced by smaller

elements that represent the fragments. Different fragmentation methods were proposed,

based on mass conservation, PSD evolution and various breakage mechanisms. McDowell

and de Bono introduced two equally sized spheres to replace the broken particle, without

mass loss, as shown in Figure 2.12(a) [17]. The axis joining the two centres is in the direc-

tion of the minor principal stress, which is similar to the breakage configuration in a single

particle compression test. However, the main problem in this method is the development

of a high elastic stress due to the overlap of the particles. Assuming that particle break-

age is the result of tensile failure, Lobo-Guerrero and collaborators used a group of eight

particles to replace the broken particle [18]. The axis joining the two largest fragments is

perpendicular to the direction of maximum contact force, see Figure 2.12(b). Ben-Nun and

Einav studied particle breakage in three configurations, one of which is shown in Figure

2.12(c). In the three configurations, they obtained a PSD that obeyed a power-law, scal-

ing with three different fractal dimensions [78]. In terms of 3D simulations, Ciantia and

collaborators conducted a parametric study on the effect of the splitting configuration and

found that the mechanical response does not change significantly when there are more than

14 particles in the fragments. The geometric assumptions of the 14-particle replacement
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method, shown in Figure 2.12(d), are also based on the observation of the breakage of a

single particle subjected to diametric loads.

In summary, the maximum contact force method (or the induced stress) yields the best

results and it has been recently accepted by researchers as the most appropriate breakage

criterion. Although this method seems biased due to the absence of account for the coordi-

nation number or the spatial distribution of contact forces, it ensures that small particles are

more likely to break while large particles are protected by smaller ones, which is usually

true in experiments [72]. In terms of fragment geometric configuration, previous mod-

els share some interesting similarities: fragments are separate (no bond connection), have

a disc shape (spherical shape in 3D) and there are fragments passing through the break-

age plane. From previous studies [79, 76], fragments of broken particles remain close to

their mother particles. While in the breakage models mentioned earlier, where there are

no bonds among fragments, spherical particles have much less interlocking than real an-

gular fragments observed in experiments [28]. Unbonded fragments thus undergo large

displacements away from their mother particle’s position. In addition, it is also clear that

for both axial splitting and multi-fragmentation in our tests, none or very few fragments

pass through the breakage plane, while contacts always do [80]. The last observations,

which contradict previous fragment configurations, made us think of a more realistic ar-

rangement of fragments to model particle breakage, which will be discussed in detail in

Section 4.4.
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PFC3D 4.00
Settings: ModelPerspective
16:28:56 Sat Aug 04 2018

Center:
X:  0. 000e+000
Y:  0. 000e+000
Z: 0. 000e+000

Rotation
X:  0 . 000
Y:  0 . 000
Z:  0 . 000

Dist: 7.182e+000 Mag.: 1
Ang.: 22.500

Ball

(a)

(c)

(b)
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Figure 2.12: Examples of fragment arrangements [17, 18, 78, 19]
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CHAPTER 3

DISCRETE ELEMENT MODELING OF SHIELDING AND SIZE EFFECTS

DURING SINGLE PARTICLE CRUSHING

3.1 Introduction

It is well known that the probability of crushing decreases with the particle’s coordination

number. The mechanism can be explained by the redistribution of concentrated compres-

sion forces at particle contacts into a distributed pressure close to hydrostatic conditions,

which reduces the tensile stress in the grains. A few analytical models were proposed to

understand this phenomenon, known as “shielding effect”. Jaeger [27] derived the expres-

sion of stress in the section of a cylinder subjected to four compressive line loads positioned

45o apart from each other in the section. The analytical solution shows that the maximum

tensile stress and the corresponding breakage force are less than in the case of a cylinder

loaded with only two line loads positioned 90o apart. Tsoungui modeled contact forces ap-

plied to a particle by calculating four equivalent contact forces in two principal directions,

and expressed the principal stresses and maximum tensile stresses in the particle [76]. The

tensile stress was compared to the particle strength to predict fracture propagation and

crushing at the particle scale. Unfortunately the solution was only provided for 2D prob-

lems and the calculation method assumes that the particle cannot break if the two principal

stresses are equal, which is not practical for sand or rock particles. Recently, Salami et al

[13] constructed a new particle crushing device and analyzed the effect of the coordination

number on grain strength. Grains had a cylindrical shape and were subjected to multi-axial

compression tests. Results showed that grain crushing depends both on the number and

position of contact forces. Both tensile and shear cracks were observed. However, it has

to be noted that the tests were restricted to grains with a coordination number less than, or
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equal to 6, which is not repreentative of particles that are part of a well graded granular

assembly. In studies based on the Distinct Element Method (DEM), the influence of the

number of contacts between crushable particles, modeled as clusters of bonded elementary

particles (“balls”), was not examined. Instead, authors focused on the number of contacts

(or bonds) of the elementary balls making the cluster [52][81]. Therefore, the influence of

the coordination number on particle crushing is still not fully understood.

Statistically, the largest particles in a granular assembly have the highest coordination

number. Therefore, due to the shielding effects, the probability of breakage of a particle

should decrease as the relative size of that particle (i.e. the actual particle size divided by

the average particle size in the assembly) increases. However the strength of a particle also

depends on the size of that particle, regardless of the coordination number. This size effect

was noted in strength test experiments performed in concrete structures, rock samples and

granular materials [82][43][44]. If one accepts that larger particles tend to have larger

internal flaws than smaller particles, then it is possible to explain, based on the Griffith’s

theory, why particle strength decreases as particle size increases [83][84]. Several empirical

equations were obtained from single-particle uniaxial compression tests, in order to relate

particle strength to particle size. For instance, Hiramatsu [11] studied the stress distribution

in a single particle subjected to a concentrated load by means of photo-elastic experiments

and mathematical analysis. In order to predict the strength of real rock particles, a fitting

parameter (κ) was introduced in the analytical expression of stress in a spherical particle:

σf =
κFf
d2

, (3.1)

where σf is the tensile stress at failure, Ff is the corresponding compressive force applied

and d is a characteristic particle dimension. The value of κwas fitted to experimental results

obtained during compression tests. Several values were reported: κ = 0.9 in [11]; κ = 0.58

and κ = 0.82 in [85]. Based on single-particle compression tests, Lee [86] proposed the

26



following relationship between particle strength and particle size:

σf = Kdb. (3.2)

The size effect parameter b, which is the slope of the force-size curve in logarithmic co-

ordinates, is typically a negative number, in the order of -1 to -0.1. Equations 3.1 and 3.2

suggest that the peak force Ff is proportional to an exponent of the particle size (dα). This

hypothesis was verified by another empirical study [82], which showed that for α smaller

than 2.0, tensile strength decreases when particle size increases.

The Weibull theory can be used to predict the probability of failure of a particle that

contains flaws of various sizes, or the probability of survival (i.e. the probability of non

crushing) of a particle of a given size inside a granular assembly [87][6]. At the particle

scale, the Weibull theory was used to predict the breakage force for clusters of various sizes,

made of bonded particles and internal flaws [52]. However the porosity of the clusters was

not provided, which made it impossible to explain size effects, because the influence of

the flaw size cannot be distinguished from that of the number of flaws or that of the flaw

volumetric fraction. Weibull models can be fitted to predict force-displacement curves and

particle size distributions observed during compression tests performed in the laboratory or

simulated with the DEM. However, there is still a lack of understanding of what originates

size effects, and how size effects counter-act shielding effects in the process of crushing.

In this chapter, we analyze separately shielding and size effects with a DEM model

of single-particle crushing designed with PFC3D 4.0. We calibrate our cluster model

against published force-displacement curves obtained during sand particle crushing tests.

The strength predicted by the model is verified by applying the Buckingham Π theorem

(Section 3.2.3). We apply reaction forces to the cluster to replicate the confining effect of

neighboring particles, and we simulate compression by increasing the value of the top and

bottom reaction forces. We then express a relationship between the breakage force and
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the coordination number (Section 3.3). Lastly, we simulate single particle crushing with

various cluster sizes, cluster porosities, flaw sizes and number of flaws (Section 3.4).

3.2 DEM Model of Crushable Particle

3.2.1 Constitutive Model Used in the Particle Flow Code (PFC3D)

In the following, we represent a crushable particle as a spherical cluster of bonded, hexag-

onally packed, equally sized, non-breakable spheres (“balls”). Cluster crushing is modeled

as bond breakage. The simulations are conducted with PFC3D, a DEM program intro-

duced by Cundall and Strack [88] and then further developed by Itasca [89]. In PFC3D,

rigid “balls” and rigid “walls” are allowed to overlap over a contact area of negligible size

compared to that of the balls. Balls can be bonded together to form clusters of different

sizes and shapes. The cluster designed in PFC3D is governed by three constitutive laws:

a ball contact-stiffness model, a ball slip model and a bond model. Interactions between

bonded balls are governed by these three laws simultaneously. Once the strength (tensile or

shear) of a bond is reached during loading, the bond breaks and is deleted from the cluster

model.

We use a linear contact-stiffness model, in which the relationship between the force and

the relative displacement at the i− th ball contact is expressed as:

F n
i = knUnni, ∆F s

i = −ks∆U s
i (3.3)

where F n
i and ∆F s

i are respectively the normal contact force and shear force-increment;

kn and ks are respectively the normal stiffness and the shear stiffness at the contact; Un

is the normal overlap between the two balls in contact; ni is the unit vector along the line

that links the two ball centers; and U s
i is the shear component of the increment of contact

displacement. Note that the linear contact-stiffness model assumes that the normal and

shear stiffnesses of the contact do not depend on the displacement vector.
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In the slip model used in the simulations, the maximum shear force at a contact is

expressed as:

F s
max = µ|F n

i | (3.4)

If |F s
i | > F s

max, then slip occurs and the magnitude of F s
i is set to F s

max. We use the par-

allel bond model, in which bonds between balls are represented as short beams of circular

cross-section (“disks”). Parallel bonds transmit both forces (F̄i) and moments (M̄i), which

are split into a component normal to the contact plane (F̄ n
i , M̄n

i ) and a shear component

contained in the contact plane (F̄ s
i , M̄ s

i ), as follows:

F̄i = F̄ n
i + F̄ s

i , M̄i = M̄n
i + M̄ s

i (3.5)

The bond model depends on five parameters: the normal and shear stiffnesses (k̄n and k̄s);

the normal and shear strengths (σ̄c and τ̄c); and the radius of the bond cross section (R̄).

The increments of elastic force and moment are calculated as follows:

∆F̄ n
i = (−k̄nA∆Un)ni, ∆F̄ s

i = −k̄sA∆U s
i (3.6)

∆M̄n
i = (−k̄sJ∆θn)ni, ∆M̄ s

i = −k̄nI∆θsi (3.7)

In which θn and θsi are the incremental angles and A is the area of the disk that forms

the cross section area of the bond (A = πR̄2). J and I are the polar moments of inertia,

calculated by J = 1
2
πR̄4 and I = 1

4
πR̄4 respectively. Initially when a bond is created with

PFC3D, internal bond forces and moments are set to zero. During a loading increment,

the relative displacement and rotation between the two bonded balls generate an increment

of force and moment. If the maximum tensile or shear stress exceeds the corresponding

strength, then the parallel bond breaks and is deleted from the DEM model.
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3.2.2 Model Calibration: Single Particle Crushing Simulation

In the following, we calibrate the five bond parameters of the DEM cluster model to match

force-displacement curves obtained experimentally during single-particle crushing tests

performed on sand [90]. In order to reproduce the conditions of the experiment, the di-

ameter of the cluster was set to 0.729mm (which is the diameter of the sand grains). In

order to minimize the rotation of the cluster and the yielding of asperities before the first

fragmentation [91][14], we deleted a few layers of rigid balls at the top and bottom of

the cluster. The diameter of the cluster was reduced by 5% in the axial direction, and

maintained as such in the lateral direction. The model contained 11,000 rigid balls, which

allowed considering the cluster as a Representative Elementary Volume (REV) of bonded

particles [52]. We arranged the rigid balls into a Hexagonal Close Packing (HCP) in order

to maximize the density of the cluster and the number of contacts of the balls in the cluster,

and therefore get a representative model of crushable particle without flaws, as advocated

in previous studies conducted with PFC3D [90][12][16]. The loading platens were mod-

eled by disk-shaped rigid walls (e.g., [92]). The diameter of the disk walls was equal to

that of the cluster. In order to model the platens as rigid bodies, the stiffness of the walls

was set to 1 × 1030N/m, i.e. several orders of magnitude higher than the stiffness of the

balls and of the bonds.

The cluster was subjected to gravity forces before being compressed axially. During

the loading phase, the top and bottom walls were subjected to a constant velocity, which

was chosen small enough to simulate a quasi-static loading (note that the breakage force de-

pends on the loading velocity otherwise). The DEM algorithm is stable only if the time step

chosen for the loading increments is smaller than a critical value, which depends the mass

and stiffness of each ball and is of the order of 10−7 to 10−9 s for soils and rocks [89]. Load-

ing velocities ranging from 0.2 to 1.28m/s were used in [16][93][94]; these high loading

increments were chosen to ensure algorithm stability while reducing the simulation time.

By contrast, we used differential density scaling, which consists in calculating a fictitious
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Table 3.1: Parameters used in DEM simulations

Diameter of sphere (R) mm 1.4× 10−2

Density of sphere (ρ) kg/m3 3581
Normal and shear stiffness of each sphere (kn and ks) N/m 1× 105

Normal and shear bond strength (σc and τc) MPa 130
Normal and shear stiffness of parallel bond (k̄n and k̄s) N/m3 1.6× 1013

Frictional coefficient of sphere (µ) - 0.5

inertial mass for each particle at the the beginning of each timestep, such that the model’s

stable timestep is unity. Differential density scaling allows applying a low wall velocity (to

ensure quasi-static loading conditions) with a reduced number of load steps. The loading

rate applied in the simulations presented in the following was 5 × 10−7mm/s. During the

entire simulation, we monitored the intensity of the contact forces at the walls, the dis-

placements of the walls and the number of broken bonds. The five DEM bond parameters

were fit to match the force intensity and wall displacement obtained experimentally at the

first peak of the force-displacement curve (i.e., at the first fragmentation). The calibrated

parameters are listed in Table 4.2.

The HCP of rigid balls has symmetries. In order to assess the potential anisotropy in-

duced by the HCP orientation on cluster mechanical properties, we compared the results

obtained with the set of DEM bond parameters reported in Table 4.2 for the following HCP

orientations (in reference to the horizontal): 0◦(horizontal), 30◦, 45◦, 60◦ and 90◦(vertical).

The test set upq for angles 0◦ and 45◦ are shown in Figure 3.1. Figure 3.2 shows the

force-displacement curves obtained during the simulations. All HCP orientations exhibit

similar trends. After the first fragmentation, internal forces in the cluster are relaxed, which

explains the sudden drop of force after the peak. At larger orientation angles (i.e., when

the HCP orientation deviates from the horizontal), the breakage plane is more likely to be

parallel to the HCP layers. For an angle of 0◦ (i.e, horizontal HCP), the breakage plane is

vertical (i.e. perpendicular to the lattice), which is similar to what is observed in Brazilian

tests performed on rock samples. It is noteworthy that for the vertical HCP, a force drop
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occurred before the first fragmentation (point A in Figure 3.2). According to the video

generated during the simulation, this drop, although small, actually corresponded to a ro-

tation of the cluster and the yielding of some asperities. The particle broke after rotation,

when the axis of the loading was alined with a plane of weakness of the cluster. To avoid

rotation, we present results obtained with the horizontal HCP model, which is used in all

the following simulations for consistency.

Figure 3.1: Cluster formed by bonded non-breakable spheres arranged into a Hexagonal
Close Packing (HCP). a. HCP orientation of 0◦ to the horizontal plane (“Horizontal HCP”).
b. HCP orientation of 45◦ to the horizontal plane.
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Figure 3.2: Force-displacement curves during a uniaxial compression test simulated up
to the first fragmentation: calibration of the DEM cluster model against experimental test
results, with various HCP orientations (in reference to the horizontal plane).
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Note that since the balls and bonds obey a linear elastic behavior before breakage, the

force-displacement curve is linear before the first peak. In the experiment, the curve is

non-linear due to the presence of heterogeneities in the particle and due to the expansion

of contact areas during compression, which increases particle stiffness. Typical simulation

results are shown in Figure 3.3, in which we can see that due to the symmetry imposed to

the model, the particle breaks along the loading axis. When the first peak force is reached,

the cluster breaks into four main pieces and a number of smaller fragments, which is in

agreement with experimental observations [90].

Figure 3.3: Lateral view (left) and top view (right) of the cluster after the first fragmenta-
tion.

3.2.3 Model Validation Using the Buckingham Π Theorem

According to the Buckingham Π theorem, physical laws should not depend on the units of

measurement [95]. Huang [96] indicated that for a DEM model that contains bonded balls,

the set of micro-parameters that control macro-properties should be {kn, ks, Tn, Ts, µ, R,

n, ρ, L, V }, where Tn and Ts are respectively the normal and shear strengths of the contact

bonds, R is the average ball size, n is the porosity, ρ is the mass density of the elementary

balls, L is the sample size and V is the loading speed. The failure of the specimen is

governed by the following dimensionless parameters: {knR/Tn, Tn/Ts, µ, ks/kn, n, R/L,

V/
√
kn/ρ}. In the present case, the ratio V/

√
kn/ρ can be ignored because the loading
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is quasi-static. In order to simplify the analyses with the parallel bond model, we replace

the contact bond strengths Tn and Ts (defined in force) by the strengths σc and τc (defined

in stress). After introducing the normal and shear parallel bond stiffnesses k̄n and k̄s, two

dimensionless parameters are added to the list of controlling variables: the ratio of parallel

bond normal stiffness and parallel bond shear stiffness k̄n/k̄s, and the ratio of parallel bond

stiffness and ball stiffness k̄nR2/kn. Other studies indicate that the ball size also needs

to be considered because it has effects on the behavior of particulate assemblies in PFC

simulations [97][98][99]. Accordingly, we propose to express the relationship between

micro-parameters and sample tensile strength (σt) as:

σt = σcΦ(
kn
σcR

,
σc
τc
, µ,

kn
ks
,
L

R
,
k̄nR2

kn
,
k̄n

k̄s
) (3.8)

We simulated a uniaxial compression for several cluster sizes. The ball size R, the con-

tact normal stiffness kn and the parallel bond stiffnesses k̄n and k̄s were adjusted in order

to maintain all the dimensionless DEM parameters constant. We observe that the breakage

force increases according to a power law (Figure 3.4) but that the strength of the cluster

remains fairly constant (Figure 3.5). The result are in agreement with the Buckingham Π

theorem, which states that under constant DEM non-dimensional parameters, the cluster

strength should be the same for all cluster sizes tested (Equation 3.8).

3.3 Modeling of the Shielding Effect

We now use the calibrated cluster model presented in Section 3.2 to simulate shielding ef-

fects at the particle scale. Particles neighboring the cluster are represented by walls that

produce a reaction force at the boundaries of the cluster. This modeling strategy allows

uncoupling the variation of the coordination number from the rearrangement of the fabric

that is expected to occur during crushing. Statistically, the coordination number in a granu-

lar material increases when the contrast in size between particles is large. The surface area
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Figure 3.4: Validation of the cluster model with the Π theorem: variations of the breakage
force with the cluster size.

(which determines the maximum coordination number) is proportional to d2 (in which d

is the diameter of the particle). In well-graded sands and rocks which contain both fine-

and coarse-grained soils, the value of dmax/dmin often exceeds 10 [100], which implies a

difference of surface are of two orders of magnitude and therefore, high coordination num-

bers. A broad range of coordination numbers (i.e., up to 120) is explored in order to check

whether shielding effects can be explained by a redistribution of contact forces from a set of

punctual loads (applied over a limited number of neighboring grains) to a quasi-hydrostatic

stress (applied through a high number of contacts). The cluster is axially loaded by the top

and bottom walls (called the loading walls in the following), and confined by passive walls

(called shielding walls in the following). We vary the number of shielding walls in order to

establish a relationship between the coordination number of a particle and the axial force

needed to trigger the first fragmentation.

3.3.1 Construction of the DEM Shielding Model

The shielding model was obtained in four steps, as shown in Figure 3.6:

1. Generate the cluster and the loading walls. This step was similar to that used for the

simulations presented in Section 3.2.2 for calibration.
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Figure 3.5: Validation of the cluster model with the Π theorem: variations of the cluster
strength with the cluster size.

2. Generate the shielding walls. Shielding walls were modeled as small disk walls that

are tangent to the cluster. The radius of the shielding walls was 0.05mm (about 3

times the radius of the non-breakable balls inside the cluster), which ensures that

the shielding walls produce a confinement without punching the cluster. During the

crushing process, shielding walls redistributed contact forces, which reduced con-

centrated compressive forces at the contacts and tensile stress in the cluster. For low

coordination numbers (below 60), random wall distributions resulted in highly het-

erogeneous contact distributions on the cluster. Stress redistribution resulted in stress

concentrations instead of the expected hydrostatic stress. Therefore, for a coordina-

tion number up to 60, shielding walls were positioned according to a symmetric

distribution. Above 60, both symmetric and random wall distributions were investi-

gated. The procedure adopted to generate symmetric wall distributions is explained

in Figure 3.7 and Table 3.2. Random wall distributions were generated by random

point picking, with normal vectors pointing towards the origin [101], as shown in

Figure 3.8. An algorithm was written to delete overlapping shielding walls. Gravity

forces were applied after all walls were created.
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3. Generate reaction forces at the shielding walls. The shielding walls were displaced

towards the center of the cluster under controlled velocity in order to ensure contact

with the cluster. The velocity was set to 5 × 10−7mm/s (same velocity as that used

for calibration), until the first bond breakage occurred in the cluster. Since the to-

tal number of bonds exceeded 60,000, the effect of a single bond breakage on the

fragmentation of the whole cluster was ignored. After the first bond breakage, the

velocity of the shielding walls was set to zero.

4. Crush the cluster. The two loading walls were displaced at a velocity of 5×10−7mm/s,

while keeping the shielding walls at a fixed position. Reaction forces generated in

the loading walls were monitored.

(a) (b)

(c) (d)

Figure 3.6: Steps to generate a shielding model in DEM. (a) Generate the cluster and
loading walls. (b) Generate the shielding walls. (c) Generate the reaction forces at the
shielding walls. (d) Crush the cluster.

3.3.2 Simulation Results

Figure 3.9 shows selected force-displacement curves obtained during the simulations. It

is clear that the magnitudes of the peak force and of the wall displacements at the first
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(a) (b)

θi

Figure 3.7: Procedure to generate a model with a symmetric distribution of 30 shielding
walls (10×3): (a) generate the HCP cluster; (b) divide the cluster into ten longitudinal
slices (top view); (c) find circles at a longitude θi (in reference to the horizontal) at the
surface of the particle (side view); (d) generate walls at the intersection of the circles with
the longitudinal lines (side view).

Table 3.2: Geometric parameters of the symmetric distribution of shielding walls. The
number of walls N = N1 × N2 is the product of the number of wall centroids in a plane
(N1) by the number of horizontal planes containing wall centroids (N2). θi is the orientation
of the wall centroids in reference to the horizontal.

Wall numbers θi Wall numbers θi
4× 1 = 4 0 8× 5 = 40 0, 15, 30
8× 1 = 8 0 15× 3 = 45 0, 15
10× 1 = 10 0 10× 5 = 50 0, 15, 30
12× 1 = 12 0 8× 7 = 56 0, 15, 30, 45
15× 1 = 15 0 12× 5 = 60 0, 15, 30
6× 3 = 18 0,15 10× 7 = 70 0, 15, 30, 45
8× 3 = 24 0,15 15× 5 = 75 0, 15, 30
10× 3 = 30 0,15 12× 7 = 84 0, 15, 30, 45
12× 3 = 36 0,15 15× 7 = 105 0, 15, 30, 45
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Figure 3.8: Random distribution of 60 shielding walls, generated by random point picking.
An algorithm was written to avoid overlap between the shielding walls.

fragmentation both increase with the number of shielding walls. For samples with high

coordination numbers, we observed that particle fragments were all confined within the

volume delimited by the shielding walls during the crushing. Therefore contact was main-

tained between the cluster and the loading walls, which explains why the magnitude of the

force drop was smaller for a higher number of contact walls. Figure 3.10 shows the evolu-

tion of the number of broken bonds with the loading displacement. The sudden force drop

observed for low coordination numbers in Figure 3.9 translates into a very sharp increase

of the number of broken bonds - as opposed to the more gradual bond breakage evolution

noted for higher coordination numbers. Overall, the steady increase of peak force with

the coordination number illustrates the occurrence of shielding effects for both symmetric

and random distributions of walls. Figure 3.11 shows that the peak force reached at the first

cluster fragmentation is approximately proportional to the number of shielding walls. A lin-

ear regression provided a slope of 1.31 for both symmetric and random wall distributions.

This linear relationship can be used to optimize the size distribution and packing (thus

coordination number) of crushable particles inside a granular assembly to avoid crushing

under quasi-static axial loading.
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Figure 3.10: Evolution of the number of broken bonds with the cumulated displacement of
the loading walls in the shielding models.
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Figure 3.11: Relationship between the peak force reached at the first fragmentation and the
number of shielding walls used in the simulations (coordination number of the cluster).

3.4 Modeling of the Size Effect

Numerous single-particle crushing experiments show that tensile strength increases when

particle size decreases, which, according to previous studies, can be explained by the fact

that smaller particles have less and smaller defects than larger particles [6]. The particle

size exponent b in Equation 3.2 was found to be equal to -0.375, -0.343 and -0.420 for

Leighton Buzzard sand, oolitic limestone and carboniferous limestone respectively [86].

In other materials, b was found to range between -0.7 and -0.3 [102, 103]. The micro-

mechanical origin of size effects is still not fully understood. In the following, we explore

several possible causes of size effects, including the particle size (with and without internal

flaws), the flaw size, the number of flaws and the overall porosity of the crushable particle.

3.4.1 Effect of the Cluster Size, with and without Internal Flaws

We construct cluster models of various sizes, with the same elementary ball size and DEM

parameters as those presented in Section 3.2.2. For each cluster size, we compare the re-

sults of uniaxial compression tests obtained with clusters that have 0% porosity (no internal
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flaw; solid volume fraction of about 74%, i.e. maximum packing density) with those ob-

tained with clusters that have 10% porosity (i.e. with internal flaws). Porosity was created

by removing randomly 10% of the elementary balls forming the cluster. Clusters had a

diameter ranging from 0.1mm (34 elementary balls) to 1.9mm (230,000 balls).

Figure 3.12 shows that the peak force at first fragmentation varies with the diameter of

the cluster (representing the crushable particle) according to a power law. The exponent

is 1.96 for 0% porosity and 1.86 for 10% porosity. According to Equation 3.2, this im-

plies that the tensile strength is proportional to d−0.04 (respectively d−0.14) for 0% porosity

(respectively 10% porosity), i.e. that the tensile strength is almost constant (respectively

slightly decreases as the size of the particle increases) for 0% porosity (respectively for

10% porosity). This statement is confirmed by the results presented in Figure 3.13. For

instance, for 0% porosity, the tensile strength varies between 250MPa and 290MPa for

cluster sizes varying from 0.2 to 1.9mm respectively (i.e. the slope of strength/size curve

amounts to less than 15% of the magnitude of the the tensile strength). Strength decreases

with particle size for 10% porosity, which may be due to the higher number of voids at

the contact between the particle and the platen, which increases the probability to initiate

cracks in the contact zone. Since flaws were randomly distributed to create a 10% porosity,

the average number of contacts between balls was uniformly decreased, which generated

higher stress concentrations, and therefore, reduced the strength of the cluster. We note

that in relation 3.2, the absolute value of the exponent b that we obtain in our simulations is

much smaller than that measured in the laboratory, which confirms that particle size does

not control particle strength.

We also note that the tensile strength converges to a constant value for clusters 1mm

in size and above, i.e. for clusters that contain at least 37,000 elementary balls (which

corresponds to a ratio ball size/cluster size smaller than 0.014). We claim that below a ratio
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Figure 3.12: Relationship between the breakage force and the crushable particle size (fixed
flaw size).

ball size/cluster size of 0.014, the cluster has an insufficient number of elementary balls

to be considered as a REV. The results presented in Figure 3.13 indicate that for a fixed

number of flaws (either zero flaw or a number of flaws equal to 10% of the elementary

balls forming the cluster) and for a fixed flaw size (either null size or a size equal to the

elementary ball size), size effects cannot be attributed to the size of the crushable particle.

3.4.2 Effect of the Flaw Size

According to Griffith theory, the strength of the crushable particle depends on the size of

the largest flaw in that particle. In order to verify this statement, we simulated uniaxial

compression tests with clusters that contained flaws. The simulations were performed with

the cluster model calibrated in Section 3.2.2 with N1 = 653, N2 = 1306 and N3 = 1960

flaws. In each simulation, flaws were equally sized. In each of the three cases under study

(N1, N2 and N3), we tested three uniform flaw size distributions, by deleting one, two

or three elementary balls per flaw. We repeated the nine simulations several times and

checked that similar results were obtained. We compared the results obtained with the

same number of flaws but different flaw sizes, and we compared the results obtained with

the same flaw size but different numbers of flaws. Results are shown in Figure 3.14. We
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Figure 3.13: Relationship between the strength and the crushable particle size (fixed flaw
size).

verify that strength decreases when porosity increases, and we note that particle tensile

strength decreases linearly with the flaw size. For the range of porosities and numbers of

flaws investigated in this parametric study, it was not possible to simulate crushing for a

large range of flaw sizes. We present results obtained for a larger span of flaw sizes in the

next subsection.

3.4.3 Effect of the Number of Flaws

In the following, we investigate the strength of particles that contain a variable number of

equally sized flaws. The size and DEM parameters of the cluster are those presented in

Section 3.2.2. Flaw sizes ranged between n = 1 to n = 100 times the elementary ball

size. We started by generating a random distribution of flaw centroids. Then we deleted

elementary balls containing the centroids (“centroid balls”). For n ≤ 10, we created flaws

by deleting (n− 1) balls in contact with each centroid ball. For n > 10, we deleted all the

elementary balls contained in a spherical control volume around the centroid balls. The size

of the control volume was increased until it contained the desired number of elementary

balls to be deleted. For the same level of porosity, the distribution of flaws was more

uniform for smaller (and more numerous) flaws than for larger flaws. This explains why

44



2 3 1

Flaw size (number of balls)

0

40

80

120

160

200

T
e
n

s
ile

 s
tr

e
n
g

th
 (

M
P

a
)

653 flaws

1306 flaws

1960 flaws

Figure 3.14: Effect of flaw size on particle tensile strength. Flaws were created by deleting
elementary balls that formed the cluster. Three flaw sizes were studied, by deleting sets of
three balls in contact, two balls in contact, or balls initially not in contact.

simulations were more difficult to reproduce when n > 10 than when n ≤ 10. The results

are presented in Figure 3.15. For each flaw size investigated, a linear relationship was

found between the particle tensile strength and the logarithm of the number of flaws. We

note that the slope is similar in all the simulations performed with n ≤ 10. For larger flaws,

the strength decreases at a faster rate with the number of flaws present in the cluster.

3.4.4 Effect of Porosity

The previous parametric studies indicate that the size effects noted in particle strength are

more likely attributed to the size and number of flaws, rather than to the size of the particle

itself. In a crushable particle that contains equally sized flaws, are size effects due to the

average flaw size or to the number of flaws? In order to answer this question, we compared

the results obtained for clusters of same porosity but different flaw size. Figure 3.16 shows

the variations of particle strength with porosity (which was calculated as the percentage of

elementary balls deleted to create particle flaws). We note that for a given particle porosity,

particle strength decreases when porosity increases and does not vary with the flaw size.

Laboratory tests reported in the literature indicate that the strength of a material (of given
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Figure 3.15: Effect of the number of flaws on particle tensile strength. Flaws were created
by deleting elementary balls that formed the cluster. Groups of up to 100 balls in contact
were deleted to produce flaws of different sizes.

porosity) decreases when the flaw size increases. In DEM simulations, stress redistribution

after bond breakage leads to another stable position of equilibrium. Therefore breakage

does not propagate from one bond to the neighboring bonds. The total force needed to

fragment a particle is the sum of the contact forces needed to break all the elementary bonds

inside that particle. More sophisticated models are needed to capture unstable fracture

propagation and consequent cluster strength variations in DEM [93]. This being said, our

results confirm the strong dependence of particle strength to porosity, already noted in

uniaxial compression strength (UCS) tests performed on porous rock samples [104] [105].

3.5 Conclusion

We modeled a crushable sand particle as a quasi-spherical cluster of bonded, hexagonally

packed, equally sized, non-breakable balls. With this distinct element model, a series of

single-particle uniaxial compression tests were simulated by controlling the velocity of two
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Figure 3.16: Effect of porosity on particle tensile strength.

rigid walls, placed at the top and bottom of the cluster. We calibrated the DEM parameters

so as to match the displacement and axial force obtained experimentally at the first particle

fragmentation. Then the calibrated cluster model was used to simulate shielding and size

effects at the particle scale. In order to study the influence of the coordination number on

particle crushing, we modeled the mechanical confinement effect of neighboring particles

by placing rigid walls around the cluster. We used symmetric distributions of walls for

coordination numbers lower than 60, and both symmetric and random wall distributions

for higher coordination numbers. We found that the axial force necessary to trigger the first

fragmentation increases linearly with the coordination number. In order to understand why

larger particles have lower tensile strength, we studied size effects on the crushing process

of clusters with and without internal flaws. At constant flaw size and cluster porosity, we

found that the cluster tensile strength did not depend on the cluster size as long as the

ratio ball size / cluster size was smaller than 0.014 (i.e. for clusters that contained at least

37,000 elementary balls). We also verified that the tensile strength of a particle of given size

decreases when, for a given flaw size (respectively for a given number of flaws), the number
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of flaws increases (respectively the flaw size increases). For clusters with a porosity ranging

between 0% and 30%, tensile strength only depends on porosity and not on flaw size.

The results thus show that particle strength depends: (1) linearly on particle coordination

number; (2) quadratically on particle porosity. The numerical methods presented in this

chapter will be improved to model the process of fragmentation within an assembly of

particles and predict the combined actions of shielding and size effects. Theoretical and

DEM modeling of particle crushing will advance the fundamental understanding of energy

transfer in particulate media, which can be used to design infrastructure (e.g., ballast),

shielding materials (e.g., packaging), food and medical products (e.g., tablets).
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CHAPTER 4

IMAGE BASED MICRO-MECHANICAL MODELING OF FRAGMENTATION

IN GRANULAR MATERIALS

4.1 Introduction

In DEM, particle breakage can be modeled with the cluster (agglomerate) method or the

replacement method. In the former, crushable particles are represented by a cluster of

smaller elements that are bonded together. The cluster breaks when stresses in the bonds

exceed the corresponding bond strengths. The cluster method was used in Chapter 3, as

well as in many other works [14, 69, 22]. In the replacement method, breakage occurs

when the stress induced by contacts is larger than the particle strength or when it satisfies a

limit condition. The broken particle is then replaced by several smaller fragments.

Both methods have their pros and cons. In the cluster method, micro-cracks that occur

in a particle before a major breakage event and can be tracked by the number of broken

bonds. The shape of fragments truly depends on the stress distribution in the crushable

particle, but the solution depends on the number of elements and bonds considered in the

cluster. Precise models are computationally expensive due to the large number of elements

represented in each cluster (typically, several tens of thousands of elements per cluster).

The replacement method is relatively more effective because the number of elements is

equal to the number of soil grains. The replacement method can be used to predict driv-

ing forces, breakage modes as well as to study the effect of the coordination number on

crushing. The main challenge is to define the breakage model parameters, such as the par-

ticle strength, the position and orientation of breakage planes, the number and size of the

fragments.

The use of X-ray Computed Tomography (XCT) in experimental studies has allowed
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the 3D observation and measurement of the micro-mechanisms leading to particle break-

age. Through single-particle compression tests, Zhao and collaborators observed the strong

influence of particle morphology on particle stress distribution [106]. They found that parti-

cles with small radii of curvature were prone to extensive fragmentation, due to local stress

concentrations at the contact points between the particle and the loading plates. The im-

portance of using 3D images to describe particle morphology has been discussed in [107],

showing that 2D and 3D measurements produce important differences in various particle

shape parameters. XCT coupled with sophisticated algorithms, such as particle tracking

[108], was used to predict and measure the life expectancy of porous granular materials

during oedometric compression [109]. 3D images were also used for qualitative compari-

son of particle crushing with DEM and FEM models [110, 111].

In this chapter, we build a new DEM breakage model, using direct micro-scale observa-

tions and measurements from 3D images, to realistically represent the breakage process and

capture the resulting macroscopic material properties. To achieve this goal, we first present

an experiment conducted by our collaborators at 3SR Laboratory (Grenoble, France), in

which uniform dry zeolite specimens were subjected to oedometer compression and im-

aged with an XCT scanner at different stress levels. We used several image processing

algorithms to identify and track intact particles and fragments and get information about

the evolution of grading and the types of breakage events. Our observations are reported in

Section 4.2. We studied selected breakage events that occur in the oedometer test, by using

3D image analysis and different breakage models in replacement method. We proposed

a new robust breakage model (explained in Section 4.4), which can simulate sequential

breakage, generate non-spherical fragments and predict appropriate arrangements of frag-

ments. Lastly, we calibrated the parameters and simulated the oedometer test. The results,

presented in Section 4.5.2, show good agreement with the experimental results.
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4.2 Zeolite oedometer tests and XCT

4.2.1 Experimental methods

In this chapter, we use experimental results from Zeynep Karatza’s PhD thesis [80]. Strain-

controlled oedometric compression tests were conducted on manufactured zeolite granules

and scanned with an XCT at 3SR laboratory in Grenoble, France. The material was cho-

sen due to its highly spherical and rounded shape, which facilitates the modeling of the

experimental procedure using the DEM. Each particle had a density of 2.18 g/cm3 and an

estimated crushing strength of 15 N. The intact sample had a mean particle diameter (D50)

of 1.36 mm and a very uniform grading (Cu = 1.07). The specimens were created to have

the same repeatable dense initial configuration (porosity 40 %). The microstructure proper-

ties of the specimens (i.e., particle size, shape and grading), allowed all intact particles to be

imaged with the same precision and ensured the highest possible probability of fracturing

[112, 113]. Each specimen had a diameter of 15 mm and a target height of 15 mm, which

slightly varied among the specimens due to the material filling process. The oedometric

cell was made of PEEK (specially designed for this study), chosen for its low x-ray absorp-

tion and low friction properties (more details can be found in [80]). The loading direction

was ascending and the quasi-static loading was performed with an axial loading rate of 50

μm/min.

Imaging was done with an x-ray scanner using 100 kV of acceleration [described in

114]. The voxel size (i.e., 3D pixel) was 12.3 μm/px and 10.0 μm/px for tests 1 and 2

respectively, which allowed getting images of high resolution. Loading was performed in-

situ in the scanner under displacement control, setting the strain rate to zero during scanning

(i.e., loading stage).
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4.2.2 Analysis of particle breakage using XCT

A 3D reconstruction provided full microstructure information in the form of 32-bit floating

points. In order to save space and have some inherent normalisation between the scans,

the data was degraded to a 16-bit integer format, which offers a 216 dynamic range of

grey scale information and is more than the noise of reconstruction. Figure 4.1 shows

vertical slices from the reconstructed 16-bit 3D images. In the first loading stages, only

primary breakage appears to occur, however after an axial strain of 7.12 %, a number of

fragments undergo significant breakage. Additionally, from a careful visual inspection

of the images, the majority of breakage events occur close to the moving boundaries, as

previously observed in [115].

Strain 4.40 Strain 7.12 Strain 11.25 Strain 15.48 

Figure 4.1: Vertical 2D slices from the oedometer test (strains in %) [80]

For the measurement of the volume, size and shape of the particles, the particles must

first be detected, therefore the continuous grey scale information must be segmented. A

threshold that distinguishes the solid and void phases (i.e., binary image) was set by means

of an algorithm that preserves moments [116]. A watershed analysis [117] was used to sep-

arate contacting particles, so that each particle could be surrounded by voxels that represent

void. As a result, individual particle measurements could be performed.

Zeolite particles have significant intra-porosity, which is filtered after the initial binari-

sation, to avoid over-segmentation. The internal pores are significantly smaller and more

spherical than the inter-particulate pores, which provides a basis to define the criterion in

the filtering process. This procedure is described in Figure 4.2.
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Grey Scale Binary Filtered Binary Segmented

Figure 4.2: Identifying and filtering intra-particle porosity [80]

After each particle (intact granule or fragment) has been identified, we measure the

perpendicular maximum and minimum lengths of the particle at 60 different orientations.

Then the medium diameter of a prescribed ellipsoid of same volume as the particle is

calculated and assigned to each particle and used to get the Particle Size Distribution (PSD)

for each loading stage [29].

4.3 Image Based Analysis of Particle Breakage Criteria

The goal of this section is to test the breakage criteria in Section 2.4 based on the breakage

events in a set of 3D images taken during an oedometer test.

4.3.1 Test procedure and data acquisition

In the test, zeolite specimens were loaded with confinement, and XCT was performed

before loading and at several key loading stages, after some breakage events had occurred

[49]. The grains were close to spherical with a D50 of 1.36 mm, as shown in Fig 4.3. The

mechanical response was found to be the same for three different loading strain rates (25

µm/min, 50 µm/min and 100 µm/min). The mean particle diameter contained around 120

pixels, which provided enough details to identify contacts and breakage fragments. Then

the anisotropic diffusion method, which is a partial differential equation based filtering

technique, was used to reduce the noise and hence maximize the signal to noise ratio.

After filtering the image, watershed segmentation was used to identify grains and fragments
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(a) (b)

Figure 4.3: Slice of an XCT scan of a zeolite specimen (a) before compression; (b) after
compression

[118]. Any selected grains A and B have boundary point sets Aboundary and Bboundary.

When the euclidian distance between two points of two different sets is smaller than 1,

these two points are considered in contact.

Breakage events and broken particles were identified, selected and numbered in the im-

age. We focused on splitting breakage, for which breakage criteria listed in Section 2.4

can be applied. Therefore we visually chose particles that had a major breakage plane that

went through the particle centroid, as shown in Figure 4.4. For each selected broken parti-

cle, we used the anisotropic diffusion method and the watershed segmentation technique to

determine the positions and areas of the contacts before breakage, the position of a particle

relative to its neighbors and the volume of neighboring particles. We also identified the

points on the breakage plane. Then we used the least square method to fit the points on the

breakage surface on a plane. Figure 4.5 shows the front and top views of the surface, the

contact points, and the direction and location of the breakage plane of one of the broken

grains.

Contacts are assumed to be circular surfaces. According to the Hertzian contact theory
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1 mm
Figure 4.4: Splitting breakage events selected from the oedometer test.

(a) (b)

Figure 4.5: Data obtained on a broken grain 703 from image analysis (a) Front view and (b)
Top view: blue points represent contact positions; black points are on the breakage plane;
the red line is the direction normal to the breakage plane; the yellow surface is the grain
surface.

55



[92], the effective contact radius R of two spheres in contact is given by

1

R
=

1

R1

+
1

R2

(4.1)

where R1 and R2 are the radii of the two particles in contact. The relation between the

contact radius a, the depth of indentation d and the effective radius R can be expressed by

a =
√
Rd. Then the contact force F has the expression

F =
4

3
E∗R1/2d3/2. (4.2)

where E∗ is a function of the Young’s modulus and Possion’s ratio of the material.

4.3.2 DEM Breakage Criterion Tests

Based on the contact force, contact position, breakage plane, size and position of a particle

obtained by image analysis (Section 4.3.1), we calculated the stress tensor using Equation

2.16 and predicted the breakage plane according to five breakage criteria. The following

assumptions are made:

• All particles are made of the same material and thus have the same mechanical properties,

such as E and µ.

• The Hertzian contact theory applies.

• The contact area calculated from image analysis at the timestep before breakage is equal

to that at the time of particle breakage.

• Breakage is a sequence of events that include a major splitting followed by several

smaller breakage events; the major splitting event is controlled by the breakage cri-

terion.

We compared breakage plane predictions obtained with the 5 following methods:
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• M1: Maximum tensile stress method.

• M2: Maximum contact force method.

• M3: Force chain method.

• M4: Three largest contact forces method.

• M5: Weighted distance method.

We already presented methods M1 and M2 in Section 2.4. In the force chain method

(M3), we assume that the breakage is caused by a pair of co-linear or nearly co-linear

forces that compress the particle diametrically. Therefore, the breakage process is similar

to that in a single particle crushing test. The three largest contact forces method (M4) is

appropriate for cases when the breakage plane does not pass through the centroid of the

particle, mainly when the breakage plane contains the three largest contact forces. In the

weighted distance method (M5), the breakage plane is fitted between contact points, whose

weights are calculated by F (c)/
∑
Nc

F
(c)
i . The largest contact force is in, or close to, the

fitted breakage plane and smaller confining forces are approximately normal to the fitted

breakage plane.

We used methods M1-M5 to simulate the oedometer tests and we compared the direc-

tion normal to the predicted breakage plane to the direction normal to the breakage plane

observed in the experiments. If the angle between the predicted and observed normal di-

rections is close to 0◦ or 180◦, this means that the model predictions are in good agreement

with the experimental data. Results of ten grains, presented in Table 4.1, show that none of

the five methods is satisfactory.

The inconsistency between experimental and simulation results comes from two as-

pects. On the on hand, predicting the breakage plane based on contact forces and contact

positions is very complex, because contact forces and directions need to be identified at

the time of the breakage event (rather than from post-breakage images). The broken grains
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Table 4.1: Angle between the normal to the breakage plane observed in the experiments
and the normal of the breakage plane predicted by the models

Method 703 803 885 937 939 964 1065 1066 1134 1116
M1 97.24 65.65 53.92 73.51 100.40 52.9 154.55 92.65 75.12 102.5
M2 97.25 112.62 55.92 106.34 79.48 126.39 26.11 98.15 104.46 77.77
M3 68.41 176.47 56.66 164.79 94.82 167.7 99.92 53.93 71.82 80.25
M4 176.46 140.65 89.3 176.25 168.31 74.95 78.07 53.76 101.88 56.60
M5 14.41 139.94 116.93 39.17 11.04 58.08 162.66 57.8 78.12 110.57

shown in Figure 4.3 and Figure 4.6 exhibit curved breakage surfaces (rather than planes),

and undergo several generations of breakage after a major splitting – a phenomenon that

was not considered in previous models. On the other hand, the location and orientation of

breakage plane in some current models are oversimplified. Breakage planes in M1 to M3

are located thanks to the average stress tensor, regardless of the locations and orientations

of the maximum contact forces.

In the experiment analysed in this study, only two grains underwent a major splitting

without secondary breakage. Contrary to what is proposed in all current existing replace-

ment models listed in Fig. 2.12, no fragment lies on the breakage plane. Current re-

placement models are partially inspired by the Brazilian test for rock materials, in which

a wedge-shaped fragment may appear at the loading point. However, such phenomenon

never occurs in the broken grains studied in the present experiment.

4.4 A Hybrid Replacement Model of Particle Breakage

To overcome the shortcomings of the breakage models discussed in Section 2.4.2 and 4.3.2,

we propose a new replacement method that: (1) contains angular fragments made of bonded

spherical particles; (2) considers multiple generations of breakage (including both grain

breakage and bond breakage); and (3) does not generate fragments on the failure plane. As

discussed in Section 2.4.2, we used the maximum contact force as the breakage criterion
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Figure 4.6: Breaking grains and their breakage plane in the oedometer test

in our replacement model. During the simulation, the maximum contact force (Fmax) of

each particle is monitored. When the stress defined as σFmax = Fmax/d
2 exceeds the grain

strength, the particle is then defined as being broken.

The next step is to replace the broken particle with smaller fragments. We focus on

breakage mechanisms where a major splitting event occurs first, during which the particle

is separated into two fragments along a plane that contains the contact points with the

largest contact forces. During the splitting event, the elastic energy stored in the breaking

particle is released and partially turns into fragment kinetic energy. The fragments move

in the least confined direction, the largest contact forces (contained in the splitting plane)

decrease, and smaller contact forces (confining forces) increase. This latter phenomenon

leads to secondary breakage in the fragments, as shown in Figure 4.7. The rearrangement of

fragments ultimately transforms kinetic energy into heat and another state of equilibrium is

reached. This micro-mechanism of particle breakage is validated from the observation that

most broken particles undergo a primary axial splitting and that secondary failure occurs in

the fragments.

To model the primary splitting event, we propose to replace the crushable particle by

two fragments modelled by clusters of 17 bonded rigid spherical elements (1 central sphere

surrounded by 16 smaller spheres of two different sizes) as shown in Figure 4.8. The 16
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1 mm

Figure 4.7: Sketch of the sequential breakage mechanism in a zeolite particle (thicker ar-
rows indicate larger contact forces)

smaller spheres are tangent to the sphere that formed the mother particle. Spheres in the

same fragment are connected together with parallel bonds, which are joints that transmit

forces and moments [119]. We use the bond breakage as a criterion to model secondary

breakage. It is important to arrange the spheres in appropriate positions so that the replace-

ment process can match the breakage mechanism to its maximum extent. The arrangement

is determined by the breakage plane. In a 2D simulation, σ3 is zero according to Equation

2.16, thus the breakage occurs along a line that passes through the centre of the mother

particle and is coaxial with the maximum principal stress or maximum contact force [17,

76]. In 3D we need two vectors to define the plane direction. If these vectors are defined as

the two largest principal directions n̄1 and n̄2 (e.g., [72, 17]), the maximum contact force

is not guaranteed to be on the splitting plane. To overcome this limitation, Ciantia rotated

the replacement configuration twice so that the vertical axis in the configuration becomes

parallel to the direction of contact force [71, 120, 19]. However, he did not provide any

physical or mechanical explanation for this rotation. When a particle breaks, fracture prop-

agates in the direction perpendicular to the minimum principal stress direction. In addition,

according to our experiments, the breakage planes of broken particles does pass through

the contact points. Therefore, in our simulations, we assume that the breakage plane passes

through the contact with maximum contact force and that it is perpendicular to the plane
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that contains the directions of σ3 and of the maximum normal contact force.

Additionally, we need to set the smallest particle size allowed to break, to avoid high

computational cost. Theoretically, the isolated spherical grains can always break when the

breakage criterion is met. However, the large gap between the relative mass of the particles

will greatly decrease computational time because the critical time step in DEM is calculated

as tcrit =
√
m/k, where m is the mass of the smallest grain and k is its stiffness. We set

the smallest breakable particle size to be 0.2 mm, which is the smallest size that can be

identified in the XCT. Consequently particles below this size threshold do not break in our

simulations. This size threshold allows us to have four generations of breakage, as shown

in Figure 4.8. The calibration of the new breakage model is discussed in the following

section.
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Figure 4.8: Schematic of multiple generations of breakage modelled with the new DEM
hybrid replacement method

4.5 DEM simulation of oedometer test

4.5.1 Model construction and calibration

We modelled the oedometer compression test of zeolite granules using the hybrid replace-

ment model proposed in Section 4.4. The parameters in the model are the particles’ shear

modulus (G) and Poisson ratio (ν), the strength of particles of average size d0 (σt0), the

Weibull modulus (m), the normal and shear bond strengths (σ̄n and σ̄t), the parallel bond

normal and shear stiffnesses (k̄n and k̄s) and the parallel bond radius multiplier λ.
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The contact between unbonded spherical particles is governed by the Hertzian contact

model, in which the behaviour is solely defined by the shear modulus (G) and Poisson ratio

(ν). They are chosen to match the properties of zeolite. We assume that splitting is caused

by tensile failure and the relationship between tensile strength and maximum contact force

is characterized by σFmax = Fmax/d
2, where d is the diameter of the particle [11, 85].

In a single particle compression test, the grain strength is the particle’s tensile strength.

However, in a granular assembly, each grain is shielded by its neighbours, leading to a

redistribution of the stress induced by contact forces that results in quasi-hydrostatic stress

and reduced tensile stress. In both experiments and simulations, it is reported that the

force necessary to break a particle within a granular assembly is several times higher than

that necessary to break an unconfined particle [41, 13]. In our simulations, we set the

particle tensile strength to σt0, to 12 MPa, which is close to four times the tensile strength

found from single particle crushing tests. A size effect is however noticed in strength tests

performed on a number of different materials [41, 82, 43, 121], indicating that materials

with larger sized particles usually have lower strengths. We account for the size effect by

using a Weibull distribution of tensile strength, where the survival probability of a particle

of size d is given by P (d) = exp[−(d/d0)
3(σFmax/σt0)

m] [87, 122], and we set the Weibull

modulus to 3.0, which is a reasonable estimation, according to the test results summarized

in [122]. The parallel bonds’ normal and shear strengths are set equal to 3.3 MPa, which

is the tensile strength found from single particle crushing tests. The parallel bonds’ normal

and shear stiffnesses are calculated using the equations k̄n = E/(R(A) + R(B)) and k̄s =

G/(R(A) + R(B)), as proposed by [99]; where R(A) and R(B) are the radii of the bonded

ball and E the Young’s modulus calculated from G and ν. The frictional coefficient, which

is known to not greatly influence DEM results [123], is set to 0.5; this is a common choice

in DEM simulation [124, 99]. The parallel bonds’ radius multiplier λ is used to set the

bond radius and area; the larger it is the stronger the bond is (i.e., a larger force is required

to break the bond). A summary of the parameters used in the simulation is shown in Table
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4.2.

Table 4.2: Parameters used in the DEM simulation

Shear modulus (G) GPa 2.2
Possion’s ratio (ν) - 0.25

Density of sphere (ρ) kg/m3 2180
Material tensile strength (σt0) MPa 12.0
Weibull modulus (m) - 3.0
Normal and shear bond strength (σ̄n and σ̄t) N/m3 3.3
Frictional coefficient of sphere (µ) - 0.5
Parallel bond radius multiplier (λ) - 1.25

In order to reproduce the conditions of the experiment, the diameter and height of the

sample are respectively set to 15 mm and 12.25 mm (same as in the experimental set-up).

Particles are initially randomly generated in a cylinder that is 15 mm in diameter and 30

mm in height, and then subjected to free falling movement to the bottom of the cylinder.

In order to generate particles following the same initial grading as in the experiment, we

fit the probability density of particle sizes found experimentally to a normal distribution

and we use it to generate particles in the DEM sample. The probability density functions

are shown in Figure 4.9. The porosity of the sample is between 44 % and 45 %, like in

the physical test. The loading speed is set to 0.1 m/s, which allows simulating quasi-static

conditions [16, 41, 99]. During loading, the breakage criterion is checked every ten steps

and the compressive strain of the assembly, the contact forces, the number of broken grains

and the location of the particles are recorded.

4.5.2 Simulation results

The stress – strain curves for both the experiment and the simulation responses are shown

in Figure 4.10, in which we can see that simulation results follow the same trend as the

experimental ones. The stress – strain curve clearly shows a yielding region at around

2 MPa after the initial compaction. Before yielding, the curve is smooth with just a few
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Figure 4.9: Probability density functions of DEM and experimental initial particle config-
urations (before oedometric compression)

fluctuations, indicating grain breakage and stress release due to particle rearrangement. Af-

ter yielding, the curve shows important fluctuations caused by extensive particle and bond

breakage. The rapid increase in the number of broken particles and bonds after yielding

is more evident in Figure 4.11. Before yielding there are 20 broken balls and 300 broken

bonds, yet the two values rapidly increase to respectively 280 and 10,000 as the compres-

sive stress reaches 4 MPa. Figure 5.7 shows the sample before and after compression (note

that in order to have a better view of the fragments, intact particles are set invisible in Fig-

ure 5.7(b)). We can also see that breakage is more likely to occur near the loading platens,

which is in agreement with experimental observations.

We now focus on the evolution of the PSD during compression. Figure 4.13 compares

the numerical and experimental PSDs at axial strains of 0.00 %, 4.40 %, 7,12 %, 11.28

% and 15.48 %: DEM results are in agreement with physical measures. As the strain

increases, particles continue to break, resulting in the increase of the number of fines. It

is noticeable that the PSD curves in the DEM simulation are slightly below those in the

experiment for the size range from 1.1 mm to 1.2 mm. We attribute this difference to the
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Figure 4.11: Number of broken particles and broken bonds at the end of the simulation
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(a) (b)

Figure 4.12: DEM model before compression (a) and broken particles after compression
(b) [note that intact particles are set invisible in (b)]

surface chipping that occurs during the experiment, which cannot be captured in this model.

In fact, at the end of simulation (i.e. for an axial strain of 15.48 %), we find that 35 % of the

intact particles break compared to nearly 70 % in the experiment. That said, one has to keep

in mind that most breakage models aim to only reproduce the macroscopic stress/strain

curve and the PSD [49, 34, 36], which are both in agreement with experimental measures

in our proposed model. We conclude that the hybrid replacement model of breakage is

representative. Chipping will be studied in future work.
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An important feature of our proposed new model is the generation of non-spherical frag-

ments. We use the Flatness Ratio (FR) and the Aspect Ratio (AR) to characterize particles’

shapes; these two parameters are given by FR = Dmin/Dmed and AR = Dmax/Dmin,

whereDmin,Dmed, andDmax are respectively the smallest, medium and largest dimensions

of the minimum circumscribed cube. The distributions of FR and AR calculated at the end

of the simulations are shown in Figures 4.14 and 4.15, respectively. Note that initially, both

the FR and AR are equal to 1.0, because granules are initially quasi-spherical. At the end

of the experiments (respectively, simulations), 81 % of the particles (respectively, 78 % of

the particles) have an FR between 0.9 and 1.0 and 71 % of the particles (respectively, of 80

% the particles) have an AR in the range of 1.0 to 2.0. The match between experimental

and numerical results is thus satisfactory for quasi-spherical fragments, which constitute

about three-quarters of the particles in the final stage of the oedometer test. Figure 4.14

shows that the number of particles with an FR between 0.8 and 0.9 (respectively, between

0.4 and 0.8) is lower (respectively, higher) in the simulation than in the experiment. We

think that the high number of particles with an FR between 0.8 and 0.9 in the experiment is

due to chipping, a process by which mother particles that have not yet experience primary

breakage by splitting are eroded. Eroded mother particles are considered non-spherical in

the image analysis but they are considered spherical in our model. Further more, the high

number of particles with an FR between 0.4 and 0.8 in the simulations is attributed to the

type of primary breakage in our model, which produces fragments of FR around 0.5, sepa-

rated by a breakage plane. Figure 4.15 shows that number of particles with an AR between

2.0 and 3.0 (respectively, over 3.0) is lower than (respectively, negligible in front of) the

experimental values. This difference is also attributed to chipping, which produces a large

number of angular fragments (chips) through a process that is not captured (yet) by the

proposed model. To support his interpretation, note that in the experiments, the smallest 10

% particles (which stem in part from chipping) have, in average, an AR that is 14 % higher

than the 90 % larger particles.
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4.6 Conclusions

Understanding the micro-mechanisms leading to particle crushing is important because

fragmentation affects the bulk mechanical behaviour of granular materials. The DEM is

often used to study particle breakage. An appropriate breakage model is crucial in DEM

because it defines the breakage criterion and the configuration of the fragments. In this

chapter, we proposed a new, hybrid DEM replacement method. We analysed the exper-

imental results and the 3D images at both sample and grain scales with emphasis given

on particle breakage. From the quantitative 3D experimental analysis, we validated and

calibrated the DEM results. In summary, here are the main conclusions:

1. The DEM model includes both tensile splitting and bond breakage, combining the

two most commonly used DEM models in the literature: particle replacement (used

for primary splitting breakage) and clustering (used for breakage of fragments). The

model allows simulating several cycles of splitting breakage and cluster fragment

breakage. Sequential breakage stops when a fragment reaches a critical size, equal

to the resolution of the XCT images.

2. Thanks to the clusters introduced in the model, angular fragments can be produced

during the simulation, depicting a realistic evolution of particle grading during crush-

ing.

3. An important improvement upon previously published models is that during the ten-

sile splitting, the breakage plane is defined by the contact carrying the maximum

normal force and direction of minimum principal stress, instead of assuming that the

breakage plane contains the two maximum contact force vectors.

4. The 3D images confirm that multiple generations of breakage occur during the oedo-

metric compression of zeolite and, by using rigorous algorithms, we could accurately
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quantify the evolution of the PSD. The PSD obtained with the new DEM hybrid re-

placement model exhibits an impressive matching.

5. The bulk response of the oedometric compression was also compared to the DEM re-

sults. Using the new breakage model results in good agreement with the experimental

stress – strain relationship.

This research is expected to provide insights to improve DEM breakage models and to

allow developing toolboxes for further analysis of particle breakage mechanisms.
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CHAPTER 5

ENERGY DISTRIBUTION DURING THE QUASI-STATIC CONFINED

COMMINUTION OF GRANULAR MATERIALS

5.1 Introduction

During particle crushing, the total input energy of the granular assembly (δW ) is stored

in the form of elastic energy in the grains, and dissipated by breakage, friction and grain

redistribution, i.e., the production of kinetic energy of moving fragments [20]. A good

understanding of how the energy dissipates during confined comminution is necessary to

formulate sound constitutive models for granular materials. For instance, McDowell and

Bolton were able to explain compressibility changes by relating particle crushing to the

variations of void ratio, and by introducing the breakage energy in the Cam clay model

[39]. Based on thermodynamic principles, Collin introduced non-associative flow rules to

model friction-induced plasticity in granular materials [125]. Recently, the breakage me-

chanics theory was formulated to predict the thermodynamic response of crushable granular

materials within continuum mechanics [57, 36]. In the theory of breakage mechanics, the

evolution of the particle size distribution is used to predict the amount of energy dissipated

by breakage, which is fully coupled to the redistribution energy. Within this framework,

further developments were proposed to analyze creep, permeability, cementation and the

brittle-ductile transition of granular materials [58, 10, 59, 60].

To better understand energy distribution during the process, let us consider an assembly

of granular material subjected to an oedometer compression test. Under low stress, the solid

skeleton sustains the load, which leads to an increase in stored elastic energy. As the stress

increases, some friction will occur at some contacts. Since in this stage the coordination

number of each particle is low (compared to that in the subsequently crushed material),
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particles are more likely to split in mode I. As the particles continue to break, both of

the coordination number and the breakage energy increase. For an increased coordination

number, shileding effects induce breakage hardening. As the Particle Size Distribution

(PSD) approaches the ultimate PSD, the probability to break a grain decreases, and the

energy dissipated by breakage becomes negligible in front of the elastic energy stored at

the contacts and the energy dissipated by friction.

How to calculate the relative fraction of the energy components dissipated during com-

minution has been studied for decades both at the grain and at the sample scales, with

analytical, numerical and experimental methods. Bolton et al. [21] used the Discrete El-

ement Method (DEM) to analyze the energy distribution during a crushing test performed

on a single particle, modeled as an assembly of bonded spheres. The breakage energy was

calculated as the total elastic energy stored at the contacts before bonds failed. The energy

dissipated by breakage was estimated to be about 10% of the total input energy. The re-

mainder energy was converted into kinetic energy of fragments and then lost by friction

and damping. By contrast, in another DEM simulation of particle crushing, the breakage

energy was found to be 30% of the total input energy [22]. This difference may come from

the properties of the contact bond model, which is difficult to calibrate, and yet largely

influences the magnitude of the breakage energy. Recently, X-ray micro-tomography was

used to measure the area of new material surfaces created during a single particle crushing

test [126]. Zhao et al. showed that as breakage proceeds, the extent of material surfaces

increases, therefore the number of potential areas of contact increases, and the proportion

of energy dissipated by friction exceeds the energy dissipated by breakage. At the macro-

scale, Rusell et al. used simplified models to calculate the ratio between the redistribution

energy and the breakage energy, which turned out to be stress independent, but dimension

dependent: the ratio was 5 to 20 in 1D, 2 in 2D, and 1 in 3D [20, 10]. The 3D DEM sim-

ulation of a triaxial shear test on crushable soil showed that particle breakage contributed

to a small amount to the total energy dissipated, but promoted energy dissipation by inter-
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particle friction dissipation [68]. Energy distribution was stress dependent, which is in

agreement with the results published in [23]. In general, recent results show that energy is

mostly dissipated by particle redistribution and inter-granular friction. But there is still no

consensus on the relative fraction of the different components of energy dissipated.

In this chapter, we first introduce a method to capture the brittle-to-ductile transition

within the framework of breakage mechanics. The sensitivity of the breakage index Br and

the breakage-plasticity coupling angle ω is analyzed. Secondly, we present a novel method

to calculate the distribution of energy in a granular sample subjected to quasi-static con-

fined comminution. We used results of uniaxial compression tests performed on cylindrical

samples of ground shale and sands under both low compressive stress (0.4MPa to 2.1MPa,

[23]) and high compressive stress (up to 92MPa, [127]). The energy decomposition meth-

ods are reviewed and the results obtained from the new method is discussed.

5.2 Brittle-ductile transition in assemblies of breakable particles

5.2.1 Theoretical Formulation

Breakage mechanics allows capturing the macroscopic response of a granular assembly

subject to particle breakage the evolution of the PSD [36]. The main assumptions of this

theory are the following [128]:

• The elastic strain energy stored in the grains is linearly proportional to their surface area.

• The ultimate particle size distribution(PSD) is fractal

• The PSD evolves linearly between the initial PSD and the fractal PSD; the coefficient

that quantifies the distance from the current to the initial PSD is the breakage index,

defined as the ratio between the total breakage and the breakage potential as shown

in Equation 2.5 and 2.6.

• The dissipation due to breakage can be expressed as the loss of residual breakage energy
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potential.

The energy balance equation of a granular assembly subject to compression can be ex-

pressed as:

δW = δΨ + δΦ (5.1)

where δW is the external work input on the boundaries (δW = σ : δe); Ψ and δΨ is the

Helmholtz free energy and its increment; δΦ is the energy dissipation.

With the assumption that the energy stored in the grains is proportional to their surface

area, the Helmholtz free energy is a function of the stored elastic energy ψr(eev), the relative

breakage index Br and the parameter ϑ, which ranges from 0 to 1 and defines the distance

from the initial to ultimate grain size distribution. The total dissipation is expressed as the

sum of plastic energy and breakage energy. After applying the Legendre transformation, a

general yield surface is obtained as follows:

y ≡ σ : σ

[∂δΦ?
P/∂δep] : [∂δΦ?

P/∂δep]
+ (

EB
∂δΦ?

B/∂B
)2 − 1 (5.2)

where δΦ?
P and δΦ?

B are respectively the plasticity and breakage dissipations; ep is the plas-

tic strain tensor; and EB is the breakage energy. Equation 5.2 indicates that the plasticity

and breakage are coupled into a single surface. The coupling parameter is an angle omega,

defined as follows:

Φ?
P = sin−1(ω)ΦP ; Φ?

B = cos−1(ω)ΦB (5.3)

The combination of equations 5.2 and 5.3 provides the following expression for the yield

surface:

y = (sin(ω)
ψr(e

e
v)ϑ

ξ(eev)(1− ϑB)
p)2 + (cos(ω))2 −GB(1−B)−4 (5.4)

Defining:

p = ξ(eev)(1− ϑB); ξ(eev) = pr
√
K(1−m)(eev − ee0) + 1 (5.5)
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Equation 5.4 can be reduced to

y ≡ yB = EB −GB(1−B)−2 (5.6)

y ≡ yP = p− ξ(eev)

ψr(eev)(1−B)2ϑ
(5.7)

5.2.2 Modeling of the Brittle-ductile Transition in Granular Materials

The coupling angle ω is expected to be linearly related to the particle friction angle, as

follows:

ω = αφ (5.8)

where α is a constant ranging from 1.6 to 3.4, and φ is the internal frictional angle of

the dry granular material. This value is also supposed to be related to the initial porosity

(both grains and their representative elementary volume) of the granular assembly: higher

porosity would result in larger stress drop following a crushing event [128].

We propose that this angle changes with the breakage parameter B. For a material

with a small ω, breakage is the main form of energy dissipation, and a low internal friction

force exists at grain contacts. For example, breakage is expected to dominate friction in

an assembly of glass beads. However, as the glass beads begin to break, it is inevitable to

generate rough surfaces and thus friction and plastic work, which means that the angle ω is

not a fixed parameter but rather a function that depends on the microstructure as it evolves

during the loading. Moreover, if we accept that the PSD tends to a fractal ultimate PSD

upon breakage, then we have to accept that the coupling angle should increase with the

breakage index to reflect the breakage hardening due to increased shielding effects.

We propose the following relationship, in which ω can take any value between 0 and

π/2:

ω =
π

2
B. (5.9)
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This assumption is based on the idea that: (1) at the beginning of compression, the average

coordination number is low, the probability of grain breakage is high, and the plastic dis-

sipation due to friction is low; (2) as particles break, the average coordination number of

particles increases, shielding effects reduce the probability of breakage, and more plastic

work is done at the contacts to prevent particle movements. We test our assumption by

simulating breakage with fixed coupling angle and variable coupling angle.

Figure 5.1 shows the relationship between the volumetric stain and the mean stress

P . The trend of the curve is similar to that in one-dimensional compression test. With

the coupling angle changing from 0◦ to 90◦ (in different models, and remain constant in

each of them), the model varies from elastic-breakage model to an elastic-perfect plastic

model. It should be noted that with a fixed ω (except for ω = 0◦), a singular point exists

between the transition from elastic to plastic/breakage, while for the proposed model with

a varying ω, a continuous and differentiable curve is obtained. Figure 5.2 is the plot of the
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Figure 5.1: The effect of coupling angle ω on stress-strain relationship

relationship between the breakage parameter and the volumetric strain. Results show that,

with a variable coupling angle, the breakage parameter is close to that obtained with a fixed,

low coupling angle at the beginning of the simulation, and that the breakage parameter
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tends towards an asymptote lower than unity at high deformation, due to hardening. Figure

5.3 shows the ratio of plastic work and breakage dissipation. Energy dissipation is zero

before breakage initiates. Once the stress state reaches the yield surface, the ratio jumps to

a non-zero value which depends on ω and then remains constant. This value, according the

Equation 5.4, is given by

δΦ?
P/δΦ

?
B = cot(ω). (5.10)

This ratio may range from 0 to +∞ for ω between 0◦ to 90◦. According to our analysis

on the brittle-ductile transition, this ratio actually is not a constant during comminution

and will greatly increase under high stress. Breakage dissipation becomes less important

as the breakage index increases. The relationship between the coupling angle ω and the

breakage parameter B is not obvious, and Equation 5.8 is an empirical estimation. That

said, results obtained with a varying ω can to some extent explain the experimental results.

The maximum ratio at the strain of 0.5 is around 0.8 in Figure 5.3, which is within the

range of values obtained at fixed coupling angle. From Figure 5.4 it can be seen that
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Figure 5.2: The effect of the coupling angle ω on strain-breakage relationship

the proposed model predicts that breakage dissipation dominates plasticity dissipation for
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strains < 0.15, above which, a brittle-ductile transition occurs.

5.3 Energy Distribution During the Quasi-static Confined Comminution of Granu-

lar Material

5.3.1 Energy Decomposition

Finding the decomposition of energy of a granular material subject to confined comminu-

tion is key to formulate a thermodynamically consistent breakage mechanics model. A lot

of work was done towards this goal in the past decades.

Based on the theory of critical state soil mechanics, Roscoe et al. [129] established

the following energy balance equation for a soil sample subjected to an increment of mean

stress δp and an increment of deviatoric stress δq:

qδε+ pδν =
κδp

1 + e
+Mpδε. (5.11)

The left hand side of the equation represents the work done by the imposed mean and
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Figure 5.4: The relationship between the increment of energy dissipation and volumetric
strain

deviatoric stresses, while the right hand side is the sum of the increments of internal energy

and dissipated energy. Miura and Yamamoto [130] conducted a series of high pressure

triaxial tests on quartz sand and studied the relationship between the increase of specific

surface area ∆S and the plastic work δWp. The ratio ∆S/δWp was used as an index of

particle crushing, and was related to the dilatancy rate. The model was validated later

[56] against static triaxial compression tests and repeated triaxial tests on granitic soil.

The plastic work included both friction dissipation and breakage energy. McDowell [39]

developed further the theory of Roscoe et al. by introducing the breakage energy, expressed

as:

ΦS =
ΓdS

Vs(1 + e)
(5.12)

In which Γ is the material surface free energy, which remains constant during a confined

compression test. Recently, another form of energy dissipation, called redistribution en-

ergy, was introduced in the energy balance equation, in order to account for the rearrange-

ment of grains around crushed particles. The complete energy balance equation was given
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by [131]:

δW = δΨe + δΦp + δΦS + δΦredist (5.13)

Where δΨe, δΦp, δΦS and δΦredist represent the elastic energy, friction dissipation energy,

breakage energy and redistribution energy, respectively. Based on a calibration against two

oedometer tests performed on silica sands, it was found that the ratio between the redistri-

bution energy and the breakage energy, R = δΦredist/∆ΦS , was between 13 and 16. In

another study, the breakage energy amounted to 25% to 30 % of the total input energy [22].

A series of uniaxial compression tests conducted on samples of crushable sand of uniform

distribution showed that the dissipation of energy by the creation of fracture surfaces de-

pends on the confining stress, and that the fracture (or breakage) energy is predominant at

low stresses and becomes less predominant at high stresses [23]. The distinction between

pure breakage energy, friction energy and redistribution energy is still an open issue to date.

The dissipation of energy by redistribution is triggered by breakage but increases due to the

production of kinetic energy and friction energy. During quasi-static comminution, the pro-

duction of kinetic energy is negligible in front of the other energy components. That is why

in this chapter, which focuses on quasi-static comminution, we consider that the redistri-

bution energy includes the friction energy. We use both empirical and numerical methods

to calculate the energy dissipated by breakage and the energy dissipated by redistribution.

We rewrite Equation 5.13 as:

δW = δΨe + δΦS + δΦredist (5.14)

5.3.2 Breakage Energy

The breakage energy is the energy needed to create new material surfaces when particles

break [84]: it is the product of the surface free energy by the grain surface area created

by breakage. The surface free energy is a material constant in the order of 0.1Nm/m2 to

1Nm/m2 for rocks and sands [132][133]. We obtain the grain surface area by calculating
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the PSD and by estimating the surface area of particles within each size range. Note that in

the following, we work with PSDs expressed in percentage of particle mass. During com-

pression, particles break continuously due to the increasing contact forces. As a result, the

number of fines as well as the total surface area of fragments increase with the compressive

stress. At extremely high stress, an ultimate PSD is reached. It was shown empirically that

the ultimate PSD can be represented by a fractal distribution [37, 69, 134, 38]:

Fu(r) = (r/rM)3−α (5.15)

Where α is the fractal dimension and rM is the maximum particle size. In the following, we

use α = 0.5, which is consistent with experimental results obtained for various materials

[38]. In the theory of breakage mechanics, the current PSD Fc(r) is assumed to be an affine

function of the initial PSD F0(r) and the ultimate PSD Fu(r) [36, 10, 59]:

Fc(r) = (1−Br)F0(r) +BrFu(r) (5.16)

In which Br is the breakage variable. A review of recents results obtained during quasi-

static comminution indicates that Equation 5.16 is not a realistic representation of the PSD

evolution, especially for larger particles [23, 127, 135, 31]. To overcome this limitation,

we express the current PSD (updated at every step of the crushing process), as follows:

Fc(r) = (1− a)Fb(r) + aFu(r) (5.17)

Where Fu(r) is the ultimate fractal PSD and Fb(r) is a uniform distribution, ranging be-

tween a size rb and the maximum grain size rM ; a and rb are fitting parameters. Similar

to the breakage parameter Br in Equation 5.16, the parameter a represents the evolution of

breakage towards the ultimate fractal PSD (from a = 0 to a = 1). The model is based on

the assumption that the initial PSD is uniform or quasi uniform, which is a common situa-
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Table 5.1: Parameters a and db calibrated against uniaxial compression tests.

Test a(−) rb(mm)

L1 0.0096 1.744
L2 0.0143 1.707
L3 0.0472 1.518
L4 0.0459 1.495
H1 0.2738 1.106
H2 0.6191 0.878
H3 0.8417 0.998

tion in laboratory experiments [136, 137]. Both parameters a and rb are calibrated against

the PSDs obtained at the end of confined comminution tests reported in [23] (tests L1 to

L4) and in [127] (tests H1 to H3). The resulting PSDs of tests L1 and L3, obtained from

Equation 5.17, are plotted in Figure 5.5. We also show that for larger particles, the final

PSD obtained from the breakage mechanics model (Equation 5.16) is almost the same as

the initial PSD, which results in a 50% error in the calculation of grain surface. The final

PSD predicted by Equation 5.17 better captures the breakage of large particles. The results

of the calibration of parameters a and rb are summarized in Table 5.1.
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The specific surface calculated from air permeability measures by Blaine’s method is

close to that obtained if particles are considered spherical [56, 138]. Therefore in the model,

we consider that particles and fragments are spherical. Let us considerN size ranges within

the interval of sizes [rm, rM ] represented in the PSD. At a given load increment, the surface

area S∗ of all particles having a radius r∗ comprised between r∗1 = rm + n−1
N

(rM − rm) and

r∗2 = rm + n
N

(rM − rm) is calculated as:

S∗ ≈
N∑
n=1

(Fc(r
∗
2)− Fc(r∗1))MTS(r∗)

ρV (r∗)
(5.18)

≈
N∑
n=1

(Fc(r
∗
2)− Fc(r∗1))MTS(

r∗1+r
∗
2

2
)

ρV (
r∗1+r

∗
2

2
)

In which S(r∗) is the surface of a particle of size r∗, V (r∗) is the volume of a particle of

size r∗, ρ is the mass density of the solid grains andMT is the total mass of the sample. The

current PSD Fc(r) is obtained from Equation 5.17. At each increment, the total number of

particles in the sample, NT , is calculated by:

NT ≈
N∑
n=1

3MT (Fc(r
∗
2)− Fc(r∗1))

4πρ(
r∗1+r

∗
2

2
)3

. (5.19)

Equations 5.17 and 5.18 allow estimating the change of material surface in the sample, thus

the grain surface area created by breakage, which, multiplied by the surface free energy

constant, provides the energy dissipated by breakage at each loading increment.

5.3.3 Redistribution Energy

Using Equation 5.14, the redistribution energy is calculated by subtracting the elastic en-

ergy and the breakage energy from the total work input. In the following, we explain how

to calculate the total work input and the elastic deformation energy stored in the sample.
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Total Energy

The total input energy is calculated from the force-displacement curve obtained in exper-

iments. For an isothermal uniaxial compression test, the loading platen is the only source

of energy input, which has the form:

δW = Fδu (5.20)

where F is the loading force and δu is the increment of displacement. Experimental re-

sults of force-displacement relationship for the tests reported in [23] and [127] are shown

in Figure 5.6: the total work input is the area below each curve. Note that in tests L1

to L4, samples had different initial void ratios, which explains the different macroscopic

stiffnesses observed in Figure 5.6.
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Figure 5.6: Load-displacement curve of uniaxial compression tests performed on crushable
sand samples [23][127]
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Elastic Energy

The elastic energy was calculated by using the DEM software PFC3D4.0 [89]. First, we

generated samples that had the PSD obtained at the end of the confined comminution tests

reported in [23] and [127] (Figure 5.5). The samples had the same sizes, weight and densi-

ties as in the experiments, and the PSDs were modeled with Equation 5.17. We subjected

these samples to the same boundary conditions as in the experiments. The elastic energy is

stored at the contacts between grains. Therefore, with the assumption of constant particle

stiffness, the elastic deformation energy of the sample is

Ψe = 2
c∑
i=1

F 2
i

2ki
(5.21)

Where c is the total number of contacts in the sample, Fi is the contact force (normal or

shear force) and ki is the stiffness of the particle (normal or shear stiffness, depending on

the orientation of the contact force). In the DEM simulations, we assumed a linear re-

lationship between the contact force and the contact displacement and we used the same

value for the normal and shear stiffnesses. We used different stiffness values for tests L1-

L4 on the one hand (ground shale) and for tests H1-H3 on the other hand (silica sand).

Note that each contact contains two particles, so the elastic energy of the contact is twice

that of the particle at that contact. Another way to obtain the elastic energy of the sample

is to find the area below the unloading curve in Figure 5.6. However, the value obtained

may be 50 to 60 percent less than the actual value of the elastic deformation energy, due

to the existence of frozen elastic energy [139, 140]. Figure 5.7 shows the sample used for

test H2, after compression. The parameters used in the simulation are reported in Table 5.2.

After creating the DEM samples, we found that the total number of particles in test L4

was about two million and that there were even more particles in tests H1, H2 and H3.

DEM simulations were therefore highly computationally intensive. However, we noted
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Figure 5.7: DEM sample used to simulate the uniaxial compression test H2

Table 5.2: Parameters used in the DEM simulations

Variable Value

Density of sphere (ρ):kg/m3 2750
Normal and shear stiffness in test L1 to L4: N/mm 4× 102

Normal and shear stiffness in test H1 to H3: N/mm 1.5× 103

Frictional coefficient of sphere(µ) 0.5
Number of particles L1-H3 8,000-130,800

that according to the final PSD obtained in test L4, particles with a diameter less than

0.1mm accounted for more than 98% of the total number of particles but for less than

1% of the sample weight. Moreover, particles with smaller radius usually have a lower

coordination number than larger ones, and force chains usually contain larger particles

[141][142]. The elastic energy of a particle increases with its size: in 2D, the elastic energy

stored in a particle increases linearly with its radius [36]; here, in 3D, a quadratic correlation

was found between the elastic energy and the particle size (see the example of sample H2

in Figure 5.8). As a result, small particles have less elastic energy and in average less

contacts than larger ones. Based on these remarks, we performed the DEM simulations

with truncated PSDs to increase the computational efficiency: particles with a radius below

a radius threshold rt were removed from the DEM samples. Details are provided in Table

5.3. The elastic energy of the removed particles was calculated by using an interpolation

relating the elastic energy stored and the particle surface, like in the example of sample H2
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Table 5.3: Description of the small particles removed from the DEM samples for the cal-
culation of the elastic energy

maximum removed size
Test rt(mm) % of total mass removed
L1 - 0
L2 - 0
L3 0.11 1
L4 0.11 1
H1 0.14 8
H2 0.17 17
H3 0.20 22

in Figure 5.8 .
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Figure 5.8: Relationship between the energy stored in each particle and the normalized
particle surface area (test H2).

After generating the sample, we imposed a controlled velocity on the top platen to

apply the uniaxial compression force. The force was continuously monitored during the

loading process. When the force reached the value imposed in the experiment, we stopped

loading and we calculated the total elastic energy stored in the sample from Equation 5.21.

Note that it was not necessary to consider the crushing of particles here because the goal
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for this simulation was only to obtain the elastic energy for a specific PSD under a given

compressive stress. For each of the 7 tests (L1-L4, H1-H3), three simulations with different

random seeds were conducted to guarantee a stable result.

5.3.4 Results and Discussion

DEM simulations allowed calculating the elastic energy stored in each sample under study,

at the end of the confined comminution test. Results are shown in Table 5.4. As expected,

the elastic energy increases with the loading force.

The initial void ratio, compressive stress and increase of specific surface are reported in

Table 5.4: Elastic energy at the end of confined comminution tests

Simulation 1 Simulation 2 Simulation 3 Average
Test (Nmm/g) (Nmm/g) (Nmm/g) (Nmm/g)
L1 1.56 1.48 1.58 1.54
L2 2.31 2.28 2.31 2.30
L3 10.38 10.51 10.88 10.60
L4 13.31 13.39 13.35 13.35
H1 249.79 239.23 228.37 238.47
H2 891.40 882.44 881.15 884.99
H3 2352.90 2335.00 2336.55 2341.48

Table 5.5 for all tests. As expected, the specific surface increases with the loading force, see

Figure 5.9. The value of the surface free energy for rocks ranges from 0.3 to 1.0 Nm/m2

depending on microstructure and environmental conditions [132]. In this research, we use

0.5 Nm/m2 to calculate the breakage energy. A summary of the results on energy distri-

bution is provided in Table 5.6.

In order to see the role of each energy component during the comminution process,

we normalized the data in Table 5.6 with the corresponding input energy. The results are

shown in Figure 5.10.

Although the experiments used for model calibration refer to different materials, some
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Table 5.5: Material surface increase during the compression tests

Maximum stress Surface increase
Test Initial void ratio (MPa) (mm2/g)
L1 1.066 0.39 2224.84
L2 1.015 0.579 2537.18
L3 1.015 2.08 4195.36
L4 0.990 2.09 4280.13
H1 0.6±0.3 23.00 6.23×104

H2 0.6±0.3 46.00 3.10×105

H3 0.6±0.3 92.00 5.60×105
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Figure 5.9: Relationship between loading force and surface increase

Table 5.6: Energy distribution at the end of the confined comminution tests (Unit:Nmm/g)

Input Breakage Elastic Redistribution
Test energy energy energy energy
L1 23.82 1.54 1.10 21.18
L2 29.97 2.30 1.25 26.42
L3 74.67 10.60 2.10 61.98
L4 77.37 13.35 2.15 61.87
H1 926.17 31.15 238.47 656.52
H2 3136.33 154.95 884.99 2096.39
H3 6529.99 279.80 2341.48 3908.70
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interesting conclusions can be drawn from Figure 5.10, mainly:

• In all tests, at least 60% of the work input is dissipated by particle redistribution.

• When the compression stress increases from 0.4MPa (test L1) to 92MPa (test H3),

the redistribution energy decreases from 90% to 60% of the work input, and the

elastic deformation energy increases from 10% to 40% of the work input.

• The breakage energy is less than 5% of the work input in all tests, i.e. the energy

dissipated by breakage seems to represent a constant portion of the work input, re-

gardless of the compression stress.

• The ratio between redistribution dissipation and breakage energy is between 14 to

30 in the tests, which is higher than the ratio between friction energy and breakage

energy found by other authors (13 to 16). This result was expected, because in the

proposed model, the redistribution energy is the sum of the friction energy and of the

kinetic energy of the fragments.

90



5.4 Conclusion

In this chapter, we analyze the relationship between microstructure evolution and the evo-

lution of energy components in assemblies of breakable grains. We first propose to redefine

the coupling angle used in breakage mechanics to couple the breakage and plasticity yield

surfaces as a function of the breakage parameters, which allows capturing the transition

from brittle to ductile behavior at the macroscale.

Then, we propose a method to calculate the distribution of energy in seven particulate

assemblies subjected to confined comminution, under compressive stresses ranging from

0.4 MPa to 92 MPa. The work input, calculated by integrating the load-displacement curve,

is written as the sum of the elastic deformation energy, the breakage energy and the redis-

tribution energy (plastic dissipation). The elastic energy stored in the seven samples at the

end of the compression tests is obtained by simulating a compression test on the final PSDs

with the DEM, and by extracting the contact forces. A PSD evolution law is proposed to

account for particle breakage, for which parameters are fitted to match the final PSDs ob-

tained experimentally. At each loading step, the current PSD is related to the total particle

surface in the sample, which allows calculating the breakage energy. The redistribution

energy, which comprises the kinetic energy of particles being rearranged and the friction

energy dissipated at contacts, is obtained by subtracting the elastic energy and breakage

energy from the work input. Results show that: (1) At least 60% of the work input is dis-

sipated by particle redistribution; (2) The fraction of elastic deformation energy increases

and the fraction of redistribution energy decreases as the compression stress increases; (3)

The breakage energy accounts for less than 5% of the total input energy, and this value is

independent of the compressive stress; (4) The energy dissipated by redistribution is be-

tween 14 to 30 times larger than the breakage energy. The evolution of the relative energy

fractions confirms that the coupling angle is not a constant material parameter, but rather, a

function of the breakage index.
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This research is expected to increase the fundamental understanding of microstructure

changes during confined comminution and to provide a concrete foundation to establish

energy based constitutive relationships for granular materials. Results could be used to

design microstructures that do not crush and store potential elastic deformation energy,

or microstructures that do crush to dissipate the energy of a shock, for example. Energy

models are expected to be useful to optimize the fabrication process of granular materials

and powders.
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CHAPTER 6

DEM ANALYSIS OF THE EFFECT OF AGGREGATES AND ITZ ON

CONCRETE STRENGTH

6.1 Introduction

The amount of concrete used worldwide is twice that of steel, wood, plastics, and aluminum

combined. It is estimated that more than 11 billion metric tonnes of concrete are used every

year [143]. Concrete is composed of coarse aggregates and mortar, which itself is made

of fine particles (e.g. sand grains) and cement. The heterogeneous micro-structure of con-

crete brings many analytical, numerical and experimental challenges in material property

characterization. In this chapter, we focus on the modeling of fracture pattern formation in

concrete. Cracks in concrete occur at different scales, due to structural loading, thermal gra-

dients, shrinkage or wet/dry cycles. Large tensile cracks (width>0.1 mm) can be controlled

by proper design, e.g. by embedding steel reinforcementin concrete structural members.

But microcracks, which usually exist at the aggregate-cement interface, are much harder to

control.

The objective of this study is, therefore, to understand the micro-mechanisms that drive

fracture propagation in concrete and assess the influence of aggregates on concrete strength.

We describe a DEM model of concrete, in which coarse aggregates are represented by par-

ticle clusters of realistic shape, and mortar is represented by bonded spherical particles.

First, we generate a sample made of spherical rigid elements bonded together. For this

purpose, we introduce a bond displacement-softening law. Aggregate centroids are then

randomly placed in the DEM sample. We use CT scan images of real aggregates to plot 3D

aggregate contours. The spherical elements that are contained in 3D contours around the

randomly placed centroids are replaced by clusters. The number and size of the clusters
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are determined from the experimental Particle Size Distribution of the aggregates. We first

simulate Brazilian tests and uniaxial compression tests done on mortar by using the DEM

model without clusters, and we calibrate the mortar DEM parameters. We then use Brazil-

ian tests and uniaxial compression tests performed on concrete to calibrate the remaining

parameters of the concrete DEM model with clusters. We then study the effect of aggregate

shape on concrete tensile strength and uniaxial compressive strength. A sensitivity analysis

is conducted to understand the impact of aggregate strength and of aggregate/mortar bond

strength on concrete properties.

6.2 Experimental results of Brazilian tests and uniaxial compression tests done on

mortar and concrete

The Brazilian test (BT) is an ASTM standard test method used to determine the splitting

tensile strength of cylindrical concrete specimens [144]. A disc-shaped specimen is com-

pressed between two diametrically opposite loading strips. Tensile stress develops at the

center of the specimen [145]. Because the procedures are simple and the specimen prepara-

tion is easy, the Brazilian test has been widely used as an indirect method to test the tensile

strength of concrete and rock. The tensile strength, σt, is given by:

σt =
P

πRt
(6.1)

where P is the peak load and R and t are the radius and the thickness of the specimen,

respectively.

The uniaxial compression test (UCT) is used to measure the compression strength of

cylindrical mortar/concrete specimens under zero confining stress. The uniaxial compres-

sive strength (UCS), σc, is given by:

σc =
P

πR2
=

P

A0

(6.2)
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where A0 is the initial cross sectional area of the specimen.

Concrete is made of coarse aggregates and mortar. The Interfacial Transition Zone

(ITZ) between coarse aggregates and mortarmakes it challenging to calibrate DEM mod-

els of bonded particles. We proceed by first calibrating a mortar DEM model, and then

calibrating aggregate cluster properties against concrete mechanical test results, using the

calibrated mortar parameters. The experimental results used for calibration, presented be-

low, were obtained at the Georgia Tech Structural Engineering Laboratory, in partnership

with Dr. L. Stewart’s group in the School of Civil and Environmental Engineering.

6.2.1 Brazilian tests and uniaxial compression tests done on mortar

Samples used for the Brazilian tests were 150 mm in diameter and 100 mm in thickness

(150 × 100). The ratio diameter/thickness was chosen so as to avoid size effects [146,

121]. All cylinders were cast and stored in a fog room for 28 days before the tests. Three

Brazilian tests and three uniaxial compression tests were conducted. Results are shown in

Figure 6.1 and 6.2, respectively. A brittle failure was observed both in hte BTs and the

UCTs: stress increases with the strain until a peak value (strength) is reached, after which

stress drops abruptly. The average Brazilian tensile strength was 4.71 MPa and the average

compressive strength was 61.42 MPa. Less than 10% variability was noted for both BT and

UCT strength results.

6.2.2 Brazilian tests and uniaxial compression tests done on concrete

Concrete specimens were 150 mm in diameter and 300 mm in thickness. We performed

three BT and three UCT on concrete after a period of 28 days of curing time. Test results

are shown in Figure 6.3 and 6.4. Concrete specimens also exhibited a brittle behavior.

The average Brazilian tensile strength was 2.69 MPa and the average compressive strength

was 32.53 MPa, which corresponds, respectively, to 57% of the tensile splitting strength

of mortar and to 53% of mortar compressive strength. By observing the fracture surfaces
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Figure 6.1: Stress-strain curves of mortar cylinders in the Brazilian tests
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Figure 6.2: Stress-strain curves of mortar cylinders in the uniaxial compression tests
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after the tests, we found that fractures had propagated in mortar, in the aggregates and

at the mortar/aggregate interfaces. A large number of aggregates were crushed and new

fracture surfaces had appeared in the aggregates. These observations differ from previous

experimental results reported in the literature [147], in which it was noted that fractures

are more likely to propagate at the ITZ. Figure 6.5 shows the fracture surfaces after a test.

Table 6.1 summarizes the average strength results.
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Figure 6.3: Stress-strain curves of concrete cylinders in the Brazilian tests
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Figure 6.4: Stress-strain curves of concrete cylinders in the uniaxial compression tests
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Figure 6.5: Open surface of a specimen after a Brazilian test, showing fractures passing
through both coarse aggregates and ITZ

Table 6.1: Average tensile splitting strength and uniaxial compressive strength of mortar
and concrete

Materials Tensile strength (MPa) Uniaxial compressive strength (MPa)
Mortar 4.71 61.42

Concrete 2.69 32.53
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6.3 Discrete element model construction

6.3.1 Displacement softening contact bond model

The mechanical properties of the spherical elements that make a DEM model are the nor-

mal stiffness kn, the normal/shear stiffness ratio kn/ks, the friction coefficient µ and the

mass density ρ. In addition, a bond model is required to capture crack propagation in the

DEM simulations. Experimental results reported in numerous studies indicate that, after the

maximum load has been reached, concrete exhibits a gradual decrease of loading capacity

with increasing strain/displacement [148, 149, 150]. To capture this softening behavior, we

propose a displacement-softening contact model, inspired by the bond model proposed by

Ma and Huang [46]. Figure 6.6 illustrates the normal and shear force-displacement curves

employed in the contact model, which is governed by the following five microparameters:

normal loading stiffness knl, maximum normal force F n
max, normal softening stiffness kns,

bond stiffness ratio knl/ksl and maximum force ratio F s
max/F

n
max. The maximum normal

force F n
max is given by:

F n
max = π(R1 +R2)

2σt/4 = A0σt, (6.3)

where R1 and R2 are the radii of the two particle in contact; σt is the bond tensile strength;

A0 is the bonding area. Equation 6.3 is based on the assumptions that the bonding area

between two spherical particles has a disc shape with diameter equal to the average radius

of the two particles in contact. The maximum tensile force that a bond can carry is the

product of the bonding area by the tensile strength. The maximum force ratio F s
max/F

n
max

is equal to the bond strength ratio τ/σt. Therefore, two sets of micro-properties are used in

our DEM simulations, i.e. the micro-properties of the particles:

{kn, kn/ks, µ, ρ} (6.4)
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and the micro-properties of the displacement softening contact bond model:

{knl, σt, kns, knl/ksl, τ/σt} . (6.5)

The relationships between the above micro-properties and the macroscopic properties of

the mortar and concrete DEM samples are discussed below.

kns
knl

A

BAδ δ

A0Gf

Displacement softening 
contact bond

B

ksl

Cδ

ax
Fmax

n
Fmax

s

O

A

Figure 6.6: Force-displacement relationships used in the displacement softening contact
bond model

In our analysis, we followed the method proposed in [99] and [119] to define particle

microparameters, as follows:

kn = 4RE, (6.6)

kn/ks = E/G, (6.7)

ρ = (1 + n)ρmat, (6.8)

where R is the particle radius; E and G are the Young’s modulus and shear modulus of

the material represented by the DEM sample, respectively; ρmat is the mass density of the

material and n is the porosity of the DEM specimen (around 35% in 3D simulations).

The normal loading stiffness knl is set equal to the average of the normal stiffnesses of

the two bonded balls. The bond tensile strength is set equal to the tensile strength of the

material represented by the DEM sample. In our displacement softening contact model,
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the bond shear strength is set much higher than tensile strength and shear stress does not

affect the bond breakage. This is a realistic hypothesis for DEM models of bonded and

aggregated materials, according to [151, 47]. The energy used to break a bond, which is

the area of OAB in Figure 6.6, is equal to the product of the fracture energy, Gf , by the

bonding area, A0. The normal softening stiffness kns is expressed as:

kns =
(F n

max)
2knl

2GfA0knl − (F n
max)

2 . (6.9)

The remaining two contact bond parameters, knl/ksl and τ/σt, control the shear behavior of

the material. In former studies [47, 151], a realistic ratio between the uniaxial compressive

strength and the Brazilian tensile strength (between 10 to 20 from most geomaterials) could

be obtained with a high stiffness ratio and strength ratio. Here, we calibrate knl/ksl and

τ/σt against experimental results. To summarize, the required micro-properties in Equation

6.4 and 6.5 can be expressed in the form:

{E,G, µ, ρmat, σt, Gf , knl/ksl, τ/σt} (6.10)

6.3.2 Generation of the mortar sample

We generated the cylinder specimens with the method proposed in [99], which will be

briefly introduced here. In a first step, an assembly of particles is generated in a material

vessel. The number of particles generated depends on the volume of the vessel, an esti-

mated porosity (35% for 3D model) and the given average particle size. At this time, all

particles are randomly located and may overlap, as shown in Figure 6.7(a). Then the radii

of all particles are modified uniformly so that an isotropic target stress, which is set to 1%

of the uniaxial compressive strength, can be achieved at all boundaries. Large overlaps

between particles are eliminated and force chains are generated (Figure 6.7(b)). In Figure

6.7(c), darker grey particles represent the “floating” particles, with a coordination number
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less than 3. By adjusting the radius of these particles, we can increase their coordination

number and obtain a densely packed sample. In a second step, we assign the displacement

softening contact bond at all particle-to-particle contacts. Lastly, we remove the bounding

walls and we relax the material, as shown in Figure 6.7(d).

(a) (b)

(c) (d)

Figure 6.7: Sketch illustrating the material-genesis procedures [99]

In our simulation, a cuboid mortar sample is first generated and then cut into the desired

size and shape – in this case, 150 × 100 cylinders for BTs and 100 × 200 cylinders for

UCTs, like in the experiments. The minimum particle particle size was 1 mm and the size

ratio between maximum particle size and the minimum particle size is 1.66. In each simu-

lation, we had 120,000 to 130,000 particles and it usually took 12 hours on a workstation

(i7-3770 3.4GHz CPU and 64 GB RAM) to simulate one test. DEM specimens for the BTs
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and UCTs are shown in Figure 6.8(a) and (b), respectively.
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Figure 6.8: Mortar DEM specimens used in the (a) Brazilian tests and the (b) Uniaxial
compression tests

6.3.3 Generation of the concrete sample

In order to generate realistic aggregate shapes, we scanned 20 representative aggregates

with an X-ray scanner. Aggregate shapes were characterized by 20,000 to 30,000 points,

which provided detailed information about particle shapes and surface textures. However,

the aggregates modeled with the DEM usually contain 100 to 200 spherical elements, re-

duce the computation time needed for the generation of the DEM sample. We thus simpli-

fied the raw dataset by decrease the density of the points at the surface of the aggregates, so

as to limit the computation time while maintaining geometric accuracy. Figure 6.9 shows

the original scan data, the simplified data and the corresponding DEM shapes obtained for

four aggregates.
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Figure 6.9: Generation of aggregate shapes in the DEM model

The DEM concrete model is generated as follows:

1. Create the mortar sample using the method presented in Section 6.3.2.

2. Calculate the number, sizes and positions of the aggregates. The number of coarse

aggregates in each fraction size, ni is given by

ni = Vtη(P2i − P1i)/Vi (6.11)

where Vt is the total volume of the specimen; η is the volume fraction of the coarse

aggregates; P1i and P2i are the percentage of aggregates finer than d1i and d2i in the

PSD curve; Vi is the average volume of an aggregate in this size fraction. Within

each size fraction, the size of an aggregate is assumed to follow a uniform distribu-

tion. A MATLAB code was written to generate non-overlapping spheres within the

sample boundary, with the given number of aggregates and the given aggregate sizes.

Each sphere generated by the MATLAB code corresponds to an aggregate of specific

volume.

3. Replace the spheres by realistic aggregate shapes. We replace each sphere with a

realistic shape randomly chosen from the set of shapes obtained by X-ray scanning
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(here, we used 20 different aggregate shapes). After the replacement, some aggre-

gates may overlap, which slightly decreases the total volume fraction of the aggre-

gates. In addition, some aggregate fractions may be outside of the boundary of the

specimen.

4. Find the spherical elements and the contacts within the aggregates. Another MAT-

LAB algorithm is created to loop through all spherical elements and contacts, and

check whether they belongs to an aggregate or not. Then the aggregate volume frac-

tion is calculated as the ratio of the number of spheres in the aggregates by the total

number of spheres in the specimen. We compare this volume fraction with the vol-

ume fraction found experimentally, update the parameter η accordingly, and repeat

step 2 to 4 if the difference is larger than 1%.

5. Change the properties of the spherical elements and bonds in the aggregate shapes

and in the ITZ. To account for the local increase of porosity in the ITZ, we removed

a certain portion of displacement softening contact bonds at the aggregate/mortar

interface.

6. Generate voids. Another important difference between mortar and concrete is the

void ratio. An estimated void ratio of 4% is used in our model, which is a reasonable

estimation according to images of X-ray Computed Tomographic images obtained in

[152].

Figure 6.8(a) and (b) show the DEM concrete samples used to simulate the BTs and UCTs,

respectively.
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Figure 6.10: DEM concrete specimens used to simulate (a) Brazilian tests and (b) Uniaxial
compression tests
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6.4 Calibration of the DEM concrete model

6.4.1 Mortar model calibration against experimental results

We obtain mortar’s Young’s modulus from the empirical equation proposed in ACI 318:

E = 4700
√
f ′c, (6.12)

where f ′c is the uniaxial compressive strength, reported in Table 6.1. Following [143], we

assume that the mortar’s Poisson’s ratio is 0.2. The shear modulus G is then given by

E/(2(1 + µ)). For the DEM friction coefficient, we use an empirical value of 0.5, recom-

mended in the state-of-the art [123]. The mass density of the particles used in the mortar

DEM model is calculated from Equation 6.8. The tensile strength of the bonds, σt, is set

equal to that of the mortar specimen. Due to the size effects that occur in Brazilian tests,

the tensile strength reported in Table 6.1 is higher than the tensile strength of the material

tested [44]. We use the relationship proposed in [153] to calculate mortar tensile strength

from the BT strength and the specimen diameter. For mortar, Gf ranges from 20 N/mm to

200 N/mm, depending on the type of mortar [146, 154, 155, 156, 157]. In our simulation,

we use Gf = 80 N/mm,, because this value provides the best fit with experimental results.

With the DEM, it is challenging to simulate BTs and UCTs with a realistic ratio uniaxial

compressive strength over Brazilian strength (UCS/BS). Different methods were used in

previous studies, for example by generating angular particles to increase the interlocking

forces, increasing the initial compressive strength, modifying the strength ratio, and creat-

ing new contact models [47, 151, 158]. In our displacement softening contact model, the

ratio of UCS/BS is mainly controlled by two parameters: knl/ksl and τ/σt. In a Brazilian

test, the failure mechanism is a combination of shear failure at the loading point and tensile

failure at the center [159]. A low knl/ksl decreases the shear stress, thus yielding a lower

Brazilian tensile strength. A large τ/σt increases the shear strength measured in the uniax-
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ial compressive test. Mortar parameters obtaied after calibration are summarized in Table

6.2.

Table 6.2: Mortar DEM model parameters

Parameter Mortar Aggregate
Young’s modulus E: GPa 36.8 36.8

Shear modulus G: GPa 30.7 30.7
Friction coefficient µ 0.5 0.5
Density ρmat: kg/m3 2400 2400

Tensile strength σt: MPa 3.85 3.5
Fracture energy: N/m 80 72.7
Stiffness ratio knl/ksl 6.0 6.0
Strength ratio τ/σt 20 20

We conducted the simulations of the UCT and the BT twice to check that DEM ran-

domization effects would not affect the calibration results. Simulation results are presented

in Figures 6.11 to 6.14. The BTS and UCS are in agreement with the strenghts measured

experimentally, with an error of less than 5%. The ratio of UCS/BS, which is around 13.0

in our experiments, is properly reproduced in the DEM simulations. Figure 6.12 shows the

location of broken bonds at several stages of the BTs. At 50% of the peak load, micro-

cracks appear near the loading platens, which is typical of a loacal shear mechanism close

to the loading supports. At 90% of the peak load, the number of cracks near the loading

platens increase. In addition, micro-cracks appear at the center, which reveals a tensile

failure mechanism, induced by horizontal tensile stress. At the peak load, the micro-cracks

which originated at the center propagate to wards the loading platens. After the peak, the

specimen rapidly breaks into two fragments.

In the UCT, we observe randomly distributed micro-cracks at 50% of the peak load. No

obvious shear band or fracture can be identified at this point. When the load reaches 90%

of the peak load, we can observe more micro-cracks, preferentially oriented along the di-

rections of two shear failure planes (shear bands). At this loading stage, the stiffness of the

material starts to decrease due to material softening induced by micro-crack propagation.
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Figure 6.11: Stress-strain curves of mortar in the Brazilian tests simulated by the DEM
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Figure 6.12: Micro-cracks in mortar at different stages of the Brazilian tests
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As we continue loading from 90% to 100% of the peak load, the number of broken bonds

in the shear bands increase rapidly. Figure 6.14 clearly shows a fracture pattern character-

ized by more than one oblique plane. Note that these failure planes are not parallel to each

other [160]. This failure mode is one of the four most common failure modes reported by

ASTM codes [161], along with diagonal fractures, columnar vertical cracks and the combi-

nation of conic and vertical cracks. The observed failure mechanism is typical of fixed ends

boundary conditions, [162, 163], in which strong confinement is used at loading platens to

prevent any lateral displacement of the specimen. The fixed ends boundary condition is

used in both our experiments and simulations.
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Figure 6.13: Stress-strain curves of mortar in the uniaxial compression tests simulated by
the DEM

6.4.2 Concrete model calibration against experimental results

The coarse aggregates used in the concrete tested in our experiments are made of granite

from Norcross, GA. In most concretes, coarse aggregates are found to be much stronger

than mortar and have much lower probability to break [147, 164]. Contrary to those obser-

vations, in both the BTs and UCTs we conducted, a large number of coarse aggregates were

crushed and fresh aggregate surfaces were exposed, which indicates that aggregates had a

lower tensile strength and a lowaer compressive strength than mortar. Not surprisingly, our
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Figure 6.14: Micro-cracks in mortar at different stages of the uniaxial compression tests
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calibration simulations yield a lower bond strength σt for coarse aggregates than for mortar.

In addition, we assume that the ultimate bond displacement at failure is the same as that of

mortar, so that the fracture energy of aggregates, Gf , is proportional to the aggregate bond

strength. The ITZ also contributes to the relative lower strength of concrete compared to

that of mortar [25]. The existence of coarse aggregates leads to a local increase in porosity

and thus to a smaller bond area between aggregates and mortar. To account for the effect

ofthe ITZ, we removed 20% of the displacement softening contact bonds between aggre-

gate particles and mortar particles. This value of 20% was obtained by trial and error. The

effect of this ratio on concrete strength will be discussed in the next section.

We conducted the BT and UCT simulations three times, to check if DEM randomization

would have any effects on the results. Simulation results are shown in Figures 6.15 to 6.18.

The coarse aggregate properties obtained after calibration are summarized in Table 6.2.

Concrete stress-strain curves are similar to those of mortar. However, because the coarse

aggregates increase the heterogeneity of the specimens, a variability of 16.0% (respectively

7.0%) is observed for the BTS (respectively UCS) among the three simulations (Figures

6.15 and 6.17). The sequence of bond breakage events in concrete is similar to that in

mortar. In the BT, micro-cracks first appear at the loading platens but the failure is caused

by tensile micro-cracks that originate at the center of the specimen and then propagate

towards the platens. The failure plane after the peak load is not a straight line, because of

the specimen heterogeneity caused by the presence of aggregates. Like in mortar, multiple

shear failure planes are observed, see Figure 6.18. Due to the lower loading capacity of

concrete, the number of micro-cracks is less than in mortar. In other words, fractures form

at an earlier stage, passing through the weak aggregates and the ITZ. A detailed analysis

of the influence of the relative fraction of inactive bonds at the ITZ will be presented in the

next section. To sum up, the existence of coarse aggregates greatly affects both the BTS

and the UCS, but the presence of aggregates does not influence the failure mechanisms

involved.
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Figure 6.15: Stress-strain curves of concrete in the Brazilian tests simulated with the DEM
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Figure 6.16: Micro-cracks in concrete at different stages of the Brazilian tests
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Figure 6.17: Stress-strain curves of concrete in the uniaxial compression tests simulated
with the DEM

6.5 Sensitivity analysis

In Section 6.4, we calibrated our DEM model to reproduce the behavior of concrete, which

exhibited lower strenght than mortar. Some authors hypothesized that the ITZ is a weak

surface that lowers concrete strength compare to a mortar of same water/cement ratio and

fine aggregates volume fraction [143, 25]. The ITZ is a layer of around 30 µm that can

only be observed through scanning electron microscopy (SEM); it is hence challenging to

monitor the ITZ during concrete loading. In addition, it was noted taht concrete strength

decreases with the strength of coarse aggregates [165, 166], but most studies focused on

strong aggregates materials. Despite qualitative observations, quantitaitive analyses of the

effect of the ITZ and aggregate strength on concrete strength are lacking. Therefore, in

this section we will study the sensitivity of concrete strength to the ITZ and to aggregate

strength by simulating the BT and the UCT wit hour DEM model. We generate the DEM

specimens following the method explained in Section 6.3.3 and we use the calibrated pa-

rameters listed in Table 6.2.
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Figure 6.18: Micro-cracks in concrete at different stages of the uniaxial compression tests

115



6.5.1 Effect of the Interfacial Transition Zone (ITZ) on concrete strength

In our model, the weakening effect of the ITZ is accounted for by deleting a fraction of

the aggregate/mortar bonds. We define the contact ratio, α, as the number of displacement

softening contact bonds used at aggregate/mortar interfaces over the total number of inter-

facial contacts.The model was calibrated for α = 80%. We now vary α between 50% and

100% to understand the influence of mortar/aggregate adhesive surface on concrete BTS

and UCS. Results are presented in Figures 6.19 and 6.20, respectively. Note that for each

contact ratio α we conducted the BT and UCT simulatiosn at least three times. Only the

average results are shown here. The ITZ greatly affects concrete strength: the BTS and the

UCS respectively increase by 227.5% and 222.0% when α is varied from 50% to 100%.

The stress/strain curves are similar in all simulations: At first, stress increases with strain

but the stiffness gradually decreases due bond softening and breakage; Then stress reaches

a peak value and the specimen starts to fail; As the specimen is further compressed, stress

decreases rapidly and a large number of bonds break. Figure 6.21 and 6.22 show that the

strength-contact ratio relationship is linear for both the BT and the UCT. The higher α, the

higher the strength. Contacts without displacement softening contact bonds can be viewed

as internal micro-cracks or micro-flaws, similar to the ITZ in actual concrete. Micro-crack

interaction and coalescence occurs in specimens with low contact ratio, which drastically

lowers concrete strength.

6.5.2 Effect of aggregate tensile strength on concrete strength

In the concrete tested in this study, the volume fraction of coarse aggregates amounts to

nearly 45%. Aggregates are thus expected to play an important role in concrete mechanical

behavior. The calibrated tensile strength of the coarse aggregates is 3.5 MPa, which is lower

than the mortar BTS. During the BTs and UCTs, we note indeed that concrete strength is

lower than that of mortar, and we observe a large number of crushed aggregates. Materials

commonly used for coarse aggregates include quartzite, limestone, marble, low strength
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Figure 6.19: Stress-strain curves of concrete with different interface contact ratios in the
Brazilian tests
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Figure 6.20: Stress-strain curves of concrete with different interface contact ratios in the
uniaxial compression tests
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Figure 6.21: Effect of the interface contact ratio α on concrete BTS
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Figure 6.22: Effect of interface contact ratio α on concrete UCS
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granite and high strength granite. Corresponding aggregate tensile strengths span from

3.0 MPa up to 15.0 MPa [167, 24]. In order to understand the effect of aggregate tensile

strength on concrete BTS and UCS, concrete specimens with different aggregate strengths

are generated and subjected to BTs and UCTs. As mentioned in Section 6.4.2, we assume

that the ultimate bond displacement at failure is the same for all aggregates, so that the

change of aggregate strength dictates the change of fracture energy, Gf . BT and UCT

simulation results are shown in Figure 6.23 and 6.24, respectively. In general, concrete

strength increases with aggregate strength, except in the simulation of the UCT with coarse

aggregates with a tensile strength of 3.5 MPa. The exact reason for this unknown; this

discrepancy may stem from the variability of concrete specimens generated with the DEM.

Figures 6.25 and 6.26 show that the relationship between aggregate tensile strength and

concrete strength is quasi-linear both on the BT and in the UCT. It it also noticeable that

when the aggregate strength increased by more than 300%, concrete BTS and UCS increase

by less 68%. In other words, both the ITZ and aggregate tensile strength influence concrete

strength, but concrete strength is most sensitive to the contact ratio α in the ITZ.
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Figure 6.23: Stress-strain curves of concrete with different aggregate tensile strengths in
the Brazilian tests
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Figure 6.24: Stress-strain curves of concrete with different aggregate tensile strengths dur-
ing the uniaxial compression tests
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Figure 6.25: Effect of coarse aggregate tensile strength on concrete BTS
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Figure 6.26: Effect of coarse aggregate tensile strength on concrete UCS

6.6 Conclusions

We proposed a displacement softening contact bond model and we calibrated a bonded

particle DEM model of mortar against results of BT and UCT conduceted on mortar spec-

imens. Coarse aggregates were then generated from point clouds obtained by scanning

actual aggegates used in concrete. The aggregate bond parameterswere calibrated against

concrete BTs and UCTs, with the calibrated mortar parameters. The proposed DEM model

captures the mortar and concrete mechanical behavior with a realistic ratio of UCS/BTS.

We then studied the influence of coarse aggregate tensile strength and of the adhesive area

of the ITZ on concrete strength. The main conclusions are the following:

1. Concrete BTS and UCS increse with aggregate tensile strength and with teh ITZ

contact ratio α.

In our tests, mortar BTS and UCS are about twice as much as concrete BTS and UCS,

respectively. Other authors had also noticed that concrete could have lower strength

than mortar, and attributed this phenomenon to the weak surfaces in the ITZ. Our

study confirms that the ITZ is the primary cause of low concrete strength. Aggregate

volume fraction is usually around 30% or more. We found that multiplying the ag-
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gregate tensile strength by four could increase concrete strength by 2/3. The effect

of aggregate tensile strength on concrete strength had never been quantified before.

2. The proposed displacement softening contact bond model can capture mortar and

concrete failure mechanisms in both the BT and the UCT. In the BT, micro-cracks

first appear at the vicinity of the loading platens. But failure is induced by fractures

tha initiate at the center of the specimen and that coalesce with the cracks loacted

close to the platens. Specimens subjected to UCTs exhibits multiple shear failure

planes – usually, two symmetric shear bands. A realistic ratio of UCT/BT is obtained.

Micro-parameters used in the proposed bond model are closely related to the macro-

scale material properties, which facilitates calibration.

3. The ITZ is accounted for by deleting bonds at the mortar/aggregate interface.The ITZ

can be seen as a distribution of interfacial micro-cracks, like in actual concrete. Both

in the BT and the UCT, a linear relationship exisits between the contact ratio α in the

ITZ and concrete strength, for 0.5 ≤ α ≥ 1.0.

4. Concrete strength is linearly related to aggregate tensile strength. Weak aggregates

decrease concrete strength. However, the influence of aggregate tensile strength on

conrte strength is much lower than that of the ITZ.

The proposed softening displacement contact bond model is suitable to predict the behavior

of concrete with the DEM. Results of the sensitivity analysis presented here suggest that

increasing the adhesive area of the mortar/aggregate interface should improve the mechan-

ical performance of concrete. Future studies will aim to understand the topological and

physical factors that control the rheology of the aggregate/mortar interface.
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CHAPTER 7

CONCLUSION

7.1 Summary

In this thesis, we propose a micro-mechanical analysis of quasi-static particulate fragmen-

tation by means of the Discrete Element Method (DEM).

In Chapter 2, we provided an overview of the state-of-the-art techniques available to

characterize and model fragmentation in granular media. Photo-elasticity and X-ray Com-

puted Tomography [49] are the most commonly used techniques to visualize stress distri-

butions and contact evolutions during breakage, respectively. Single particles subject to

uniaxial compression fail due to the development of tensile stress at the center [11]. Parti-

cle strength is size dependent [86]. At the scale of the granular assembly, it was proposed

that the ultimate PSD of granular material can be characterized by a Weibull distribution

[39, 36]. A relative breakage index can be defined based on the difference between the cur-

rent PSD and the initial PSD, normalized by the difference between the ultimate PSD and

the initial PSD. In contiuum mechanics, particle breakage is usually modeled by relating

energy dissipation to the increase of particles’ surface and/or to the frictional displacement

field [30, 55]. The evolution of energy distribution reveals the evolution of breakage and

the resulting plastic deformation. The DEM allows simulating particle fragmentation ei-

ther through the breakage of bonds within clusters of spherical elements (cluster method),

or through the replacement of large particles by smaller ones, which represent fragments

(replacement method).

In Chapter 3, we studied size and shielding effects during single particle crushing. Pre-

vious studies show that particle tensile strength decreases with particle size. At the same

time, particle strength increases with the coordination number, which statistically increases
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with particle size. To date, there is no clear understnading of what originates size effects

and how size effects counter-act shielding effects in a granular assembly. To elucidate

these two phenomena, we modeled a crushable sand particle as a quasi-spherical cluster

of bonded non-breakable spherical elements. A series of single-particle uniaxial compres-

sion tests were simulated with the DEM. Rigid walls were placed around the particles to

represent the confinement effect of neighboring particles. We varied the particle diameter

and the number of walls, to study the effects of particle size and coordination number, re-

spectively. We found that the cluster tensile strength did not depend on the cluster size as

long as the ratio spherical element size / cluster size was smaller than 0.014. In addition,

results show that particle strength depends: (1) linearly on particle coordination number;

(2) quadratically on particle porosity.

We study particle breakage within a granular assembly in Chapter 4. We proposed a

new DEM breakage model that combines the cluster method and the replacement method.

The orientation of the breakage plane, the size of the fragments and the relative position

of the particles after breakage are determined from X-ray Computer Tomography obser-

vations. An important improvement upon previously published models is that during the

tensile splitting, the breakage plane is defined by the contact carrying the maximum nor-

mal force and direction of minimum principal stress, instead of assuming that the breakage

plane contains the two maximum contact force vectors. The model allows simulating sev-

eral cycles of splitting breakage and cluster fragment breakage. Because of the clusters

introduced in the model, angular fragments can be produced during the simulation, depict-

ing a realistic evolution of particle shape during crushing. By calibrating parameters in this

model, we could accurately quantify the evolution of the PSD. Using the new breakage

model also results in good agreement with the experimental stress – strain relationship.

In chapter 5, we analyzed the evolution of energy distribution in granular assemblies

subject to breakage. We first proposed to redefine the so-called “coupling angle” used in

breakage mechanics to couple the breakage and plasticity yield surfaces as a function of
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the breakage parameters. This new relationship allowed capturing the transition between

brittle and ductile behavior. Then, we proposed a method to calculate the distribution of

energy in particulate assemblies subjected to confined comminution, under a wide range

of compressive stresses. The work input, calculated by integrating the load-displacement

curve, is written as the sum of the elastic deformation energy, the breakage energy and

the redistribution energy. The latter can be viewed as the sum of the energy dissipated

by friction at grain contacts and the kineric energy of the grains being rearranged during

the comminution process. Results show that: (1) At least 60% of the work input is dis-

sipated by particle redistribution; (2) The fraction of elastic deformation energy increases

and the fraction of redistribution energy decreases as the compression stress increases; (3)

The breakage energy accounts for less than 5% of the total input energy, and this value is

independent of the compressive stress; (4) The energy dissipated by redistribution is be-

tween 14 to 30 times larger than the breakage energy. The evolution of the relative energy

fractions confirms that the coupling angle is not a constant material parameter, but rather, a

function of the breakage index.

In chapter 6 we focus the fragmentation of coarse aggregates in concrete. Published

studies indicate that coarse aggregates have a strong influence on the mechanical behavior

of concrete [24]. The interfacial transition zone (ITZ) between coarse aggregates and mor-

tar also affects concrete strength. Despite these qualitative observations, no quantitative

analysis was conducted so far to understand the effects of coarse aggregate strength and of

the ITZ on concrete strength. To bridge this gap, we proposed a displacement softening

contact bond model and we calibrated a bonded particle DEM model of mortar against re-

sults of Brazilan tests (BTs) and uniaxial compression tests (UCTs) conducted on mortar

specimens. Coarse aggregates were then generated from point clouds obtained by scanning

actual aggegates used in concrete. The aggregate bond parameters were calibrated against

concrete BTs and UCTs, with the calibrated mortar parameters. The proposed DEM model

captures the mortar and concrete mechanical behavior with a realistic ratio of uniaxial com-
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pression strength (UCS) over Brazilan test strength (BTS). We then studied the influence of

coarse aggregate tensile strength and of the adhesive area of the ITZ on concrete strength.

We define the contact ratio, α, as the number of active bonds at the aggregate/mortar in-

terface over the total number of interfacial contacts. Our conclusions are that: (1) concrete

BTS and UCS increse with aggregate tensile strength and with the ITZ contact ratio α; (2)

the proposed displacement softening contact bond model can capture mortar and concrete

failure mechanisms in both the BT and the UCT; (3) Concrete strength is linearly related

to aggregate tensile strength.

7.2 Future Work

Many challenges need to be overcome to relax some of the assumptions that we made in

our DEM models. Below are some ideas to continue and improve the work.

1. We will consider multiple failure modes in the replacement method. Currently the

replacement method proposed in Chapter 4 assumes that first generation of breakage

is always caused by tensile failure. This assumption leads to under-estimating the

volume of fines that are generated from surface chipping. Adding other failure modes

will increase the accuracy of the simulation results.

2. Many factors such as size, coordination number, contact positions and force magni-

tude control breakage processes. We envision to use machien learning to train our

DEM simulator to predict specific breakage events (e.g., tensile splitting, multi-fold

fragmentation, chipping, abrasion) from XCT images.

3. An appplication of the two improvements proposed above is to validate the proposed

displacement softening contact bond model against triaxial tests. So far, the model

was calibrated against Brazilian tests and uniaxial compression tests conducted on

mortar and concrete. Additional tests used for validation will have to be performed

on the same concrete as that used for model calibration. More complex stress paths
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will be simulated to identify the loading conditions that lead to specific breakage

events.

4. Epoxy resins have been widely used as coating materials, structural adhesives, and

electrical insulators. In civil engineering, epoxy injection is used to repair cracks in

concrete [168, 169]. Both concrete and epoxy could be modeled with the DEM by

using the displacement softening contact model, which would allow understanding

the effects of aggregate/mortar topology on concrete strength, as well as optimizing

the distribution of epoxy resin in concrete for reparation purposes.

5. Models proposed so far are restricted to quasi-static loading conditions. However,

many granular media, such as railway ballast or pavement aggregates, are subjected

to dynamic loads. It is therefore important to understand how the development of

kinetic energy in a granular assembly affects the process of fragmentation. According

to previous studies, it is anticipated that breakage is more prominent under quasi-

static loading conditions than under dynamic loads [170].

6. In this thesis, we focused on purely mechanical processes. However, recent studies

[171, 172] indicate that the presence of water plays a critical role on particle breakage

and the subsequent collapse of granular assemblies. One hypothesis that was put

forward is the the development of corrosion stress initiates cracks at grain contacts

[173, 174].
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[82] L. Scholtès, F.-V. Donzé, and M. Khanal, “Scale effects on strength of geomaterials,
case study: Coal,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 5,
pp. 1131–1146, 2011.

[83] W. L. Lim, “Mechanics of railway ballast behaviour,” PhD thesis, University of
Nottingham, 2004.

134



[84] A. A. Griffith, “The phenomena of rupture and flow in solids,” Philosophical trans-
actions of the royal society of london. Series A, containing papers of a mathemati-
cal or physical character, vol. 221, pp. 163–198, 1921.

[85] B. Darvell, “Uniaxial compression tests and the validity of indirect tensile strength,”
Journal of Materials Science, vol. 25, no. l990, pp. 757–780, 1990.

[86] D.-M. Lee, “The angles of friction of granular fills.,” PhD thesis, University of
Cambridge, 1992.

[87] W. Weibull, A statistical theory of the strength of materials, 151. Generalstabens
litografiska anstalts förlag, 1939.

[88] P. A. Cundall and O. D. Strack, “A discrete numerical model for granular assem-
blies,” Geotechnique, vol. 29, no. 1, pp. 47–65, 1979.

[89] Itasca, Particle flow code in three dimensions, version 4.0. Itasca Consulting Group,
Inc., Minnesota., 2008.

[90] M. B. Cil and K. A. Alshibli, “3d modeling of sand particle fracture using discrete
element method and synchrotron micro-tomography images,” in Geo-Congress 2014
Technical Papers@ sGeo-characterization and Modeling for Sustainability, ASCE,
2014, pp. 2822–2829.

[91] I Cavarretta and C O’SULLIVAN, “The mechanics of rigid irregular particles sub-
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imental investigation of localised deformation in sand: A discrete particle tracking
approach,” Acta Geotechnica, vol. 7, no. 1, pp. 1 –13, 2012.

[109] G. Guida, F. Casini, G. M. B. Viggiani, E. Andò, and G. Viggiani, “Breakage mech-
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