Graphs of small rank-width are pivot-minors of graphs of small tree-width Sang-il Oum (KAIST) joint work with O-Joung Kwon.

Graph Theory at Georgia Tech 2012.5.9

Rank-width
 (O. and Seymour 2005)

- Width parameter of graphs
- Generalizing tree-width (Dense graphs can have small rank-width)
- Small rank-width implies many algorithmic problems to be solvable in polynomial time
- Any problem expressible in MSOL can be solved in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time for graphs of rank-width at most k (for fixed k) (Courcelle Makowsky Rotics, 2000)

Pivot-minors

- Containment relation, suitable - H is a pivot-minor of G if for the study on rank-width

Pivot: Flip adjacencies between "blue" pairs and swap v and w
 H is obtained from G by applying a sequence of pivots and deleting vertices.

H is a pivot-minor of G

Theorem (Kwon-O.)

Known results

If rank-width(G)=k, then there is a graph H such that
(i) tree-width $(\mathrm{H})=2 \mathrm{k}$
(ii) G is a pivot-minor of H .
rank-width $2 \mathrm{k}+$ I
pivot-minors of
a graph of tree-width 2 k
rank-width k

- (O. 08) If tree-width $(\mathrm{H})=\mathrm{k}$, then rank-width $(H) \leq k+l$.
- (O. 05) If rank-width(H)=k, then rank-width(pivotminor of H$) \leq \mathrm{k}$.

Corollary of Known ...: Let I be a minor ideal. The minimal pivotminor ideal containing I is \{all graphs\}
iff
I contains all planar graphs.

Theorem (Kwon-O.)

Known results

- (O. 08) If tree-width $(\mathrm{H})=\mathrm{k}$, then rank-width $(\mathrm{H}) \leq \mathrm{k}+\mathrm{l}$.
- (O. 05) If rank-width $(\mathrm{H})=\mathrm{k}$, then rank-width(pivotminor of H$) \leq \mathrm{k}$.

Corollary of Known ...: Let I be a minor ideal. The minimal pivotminor ideal containing I is \{all graphs\}
iff
I contains
all planar graphs.

Rank-width (Oum, Seymour 2005)

Cut-Rank

Rank-decomposition (T, H)

Rank-width (Oum, Seymour 2005)

Cut-Rank

$$
\rho_{\mathrm{G}}(\mathrm{X})=\operatorname{rank}
$$

Rank-decomposition (T, H)

Rank-width (Oum, Seymour 2005)

Cut-Rank

$$
\rho_{G}(X)=\text { rank } x:\left\{\begin{array}{l}
l \\
0 \text { if } x \sim y
\end{array}\right.
$$

rk over GF(2)

Rank-decomposition (T, μ)

Rank-width (Oum, Seymour 2005)

Cut-Rank

$$
\rho_{\mathrm{G}}(\mathrm{X})=\text { rank } x: x: \begin{aligned}
& \text { if } x \sim y \\
& 0 \text { otherwise }
\end{aligned}
$$

Rank-decomposition (T, μ)

Width of $(\mathrm{T}, \mu)=\max ($ Width (e) : e is an edge of T$)$

Rank-width (Oum, Seymour 2005)

Cut-Rank

$$
\rho_{\mathrm{G}}(\mathrm{X})=\text { rank }
$$

$$
\begin{aligned}
& X^{c} \\
& x
\end{aligned}
$$

Rank-decomposition (T, μ)

Width of $(\mathrm{T}, \mu)=\max ($ Width (e) : e is an edge of T)
Rank-width: Min Width of All Rank-Decompositions

Rank-width (Oum, Seymour 2005)

Cut-Rank

$$
\rho_{\mathrm{G}}(\mathrm{X})=\text { rank }
$$

Rank-decomposition (T, μ)

Width of $(T, \mu)=\max ($ Width (e) : e is an edge of T)
Rank-width: Min Width of All Rank-Decompositions
Fact: Rank-width \leq Clique-width $\leq 2^{1+\text { Rank-width }}$ -

Rank-width (Oum, Seymour 2005)

Cut-Rank

rk over GF(2)

$$
\rho_{\mathrm{G}}(X)=\operatorname{rank} \quad x: \begin{aligned}
& l \\
& 0 \text { if } x \sim y
\end{aligned}
$$

Rank-decomposition (T, μ)

Width of $(T, \mu)=\max ($ Width (e) : e is an edge of T)

Rank-width: Min Width of All Rank-Decompositions

Fact: Rank-width \leq Clique-width $\leq 2^{1+\text { Rank-width }}$ -

Examples

Graph	Rank-width	Tree-width
Trees	I	I
K_{n}	I	$\mathrm{n}-\mathrm{I}$
nxn grid	$\mathrm{n}-\mathrm{I}$	n

Properties

-If rank-width $(\mathrm{G})=\mathrm{k}$, then rank-width $(\overline{\mathrm{G}}) \leq \mathrm{k}+\mathrm{I}$.
-For fixed k, it is possible to decide rank-width $\leq \mathrm{k}$ in $\mathbf{O}\left(\mathbf{n}^{3}\right)$ time, and if yes, output a rank-decomposition of width $\leq k$. (Hlineny, Oum '08)

- NP-complete to decide rank-width $\leq \mathrm{k}$ for an input k: implied by Seymour and Thomas (1994), "Call routing and the ratcatcher"
- Graphs of rank-width $\leq k$ are wqo by pivot-minors (O. '08)
-If H is a pivot-minor of G , then rank-width $(\mathrm{H}) \leq$ rank-width(G).

Proof

Theorem (Kwon-O.)

If rank-width(G)=k,
then there is a graph H such
that
(i) tree-width $(\mathrm{H})=2 \mathrm{k}$
(ii) G is a pivot-minor of H .

Given a graph G
and a rank-decomposition (T, μ) of width k , we explicitly construct
a graph H , called a rank-expansion, such that
(i) tree-width $(\mathrm{H}) \leq 2 \mathrm{k}$
(ii) G is a pivot-minor of H .

Our proof: $|V(H)| \leq(2 k+1) n-6 k$ (We assume $\mathrm{n} \geq 3$ and G is connected)

outside world

For each vertex v in A or B, find a subset C_{v} of C such that
(neighbors of v outside)= sum (neighbors of vertices in x outside: x in C_{v}) as a $0-I$ vector over $G F(2)$

Since C is a basis, Cv is uniquely determined

Edges between $\mathrm{A} \cup \mathrm{B}$ and C
Add edges from v to C_{v}
Edges between A and B
Join them if they are adjacent in $\underset{\text { KAIIT }}{G}$

Theorem I:
$\mathrm{G}=\mathrm{H}$ pivot (all black matching edges) - (vertices on matching edges)

Theorem I:
 $\mathrm{G}=\mathrm{H}$ pivot (all black matching edges) - (vertices on matching edges)

Sketch: Proved directly or by some
linear algebraic lemma (matrix multiplication)

Theorem 2:
 tree-width (H) $\leq 2 \mathrm{k}$

$\cdot \mathrm{a}, \mathrm{b}, \mathrm{c} \leq \mathrm{k}$
-there is a matching covering C in the red edges
(we choose C so that $C \subseteq A \cup B$)

Observations

Pivot-minors

- Containment relation, suitable - H is a pivot-minor of G if for the study on rank-width

Pivot: Flip adjacencies between "blue" pairs and swap v and w
 H is obtained from G by applying a sequence of pivots and deleting vertices.

H is a pivot-minor of G

Vertex-minors

- Another Containment relation, - H is a vertex-minor of G if suitable for rank-width

Local Complementation: Flip adjacencies between

H is obtained from G by applying a sequence of local complementations and deleting vertices.

$\mathrm{G} * 3 * 4-3$ is a vertex-minor of G

Rank-width

- Graphs of rank-width I are exactly distance-hereditary graphs (O.06)
- In our proof, when $\mathrm{k}=\mathrm{I}$, we only create a tree + disjoint triangles. -If we replace a triangle by a claw ($\Delta-Y$ operation) from H, we obtain a new graph H'.

Corollary:
A graph is distance-hereditary iff
it is a vertex-minor of a tree

More corollaries

- A graph is distance-hereditary (rank-width I) iff it is a vertex-minor of a tree.
- A graph is bipartite distance-hereditary (rank-width I) iff it is a pivot-minor of a tree.
- If a graph has linear rank-width k, then it is a pivot-minor of a graph of path-width $k+1$.
- A graph has linear rank-width I iff it is a vertex-minor of a path.
- A graph is bipartite and linear rank-width I iff it is a pivot-minor of a path.

One more thing

Happy birthday Robin!

