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Abstract

This paper presents the theoretical formulation and numerical implementa-

tion of an anisotropic damage model for materials with intrinsic transverse

isotropy. Crack initiation and propagation are modeled by phenomenolog-

ical damage evolution laws, controlled by four equivalent strain measures.

The latter are constructed so as to distinguish the mechanical response of

the material in tension and compression, along the direction perpendicular

to the bedding plane and within the bedding plane. To avoid mesh de-

pendency induced by softening, equivalent strains are replaced by nonlocal

counterparts, defined as weighted averages over a neighborhood scaled by

two internal length parameters. Finite Element equations are solved with a

normal plane arc length control algorithm, which allows passing limit points

in case of snap back or snap through. The model is calibrated against tri-

axial compression tests performed on shale, for different confinements and

loading orientations relative to the bedding plane. Gauss point simulations

confirm that the model successfully captures the variation of uniaxial tensile

strength with respect to the bedding orientation. Finite Element simula-
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Preprint submitted to International Journal of Solids and Structures January 22, 2018



tions of three-point bending tests and compression splitting tests show that

nonlocal enhancement indeed avoids mesh dependency, and that the axial

and transverse dimensions of the damage process zone are scaled by the two

characteristic lengths. Results further show that the damage process zone

is direction dependent both in tension and compression. The model can be

used for any type of textured brittle material; it allows representing several

concurrent damage mechanisms in the macroscopic response and interpreting

the failure mechanisms that control the damage process zone.

Keywords: Intrinsic anisotropy, Transverse isotropy, Continuum Damage

Mechanics, Anisotropic nonlocal regularization, Arc length control,

Anisotropic damage

1. Introduction

Many geomaterials exhibit strong orientation dependent mechanical be-

havior (anisotropy) due to bedding, layering or crack patterns, as evidenced

in shale (Niandou et al., 1997; Gautam and Wong, 2006; Sone and Zoback,

2013), clay stone (OKA et al., 2002), schists (Nasseri et al., 2003) and sand

(Dafalias et al., 2004). Laboratory tests, such as uniaxial and triaxial com-

pression tests (Niandou et al., 1997; Nasseri et al., 2003; Fu et al., 2012),

Brazilian indirect tension tests (Cho et al., 2012; Vervoort et al., 2014), di-

rect shear tests (Heng et al., 2015) and triaxial shear tests (Ye and Ghassemi,

2016), further demonstrate that material strength and failure modes signif-

icantly depend on the confining pressure and the loading orientation with

respect to microstructure. Prior to crack propagation, most geomaterials

can be considered transverse isotropic: the maximum uniaxial compressive
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strength is reached when weak planes are either parallel or perpendicular

to the loading direction, and the minimum strength is reached when weak

planes are oriented at 30◦−60◦ with respect to the loading direction (Donath,

1961; Niandou et al., 1997). In indirect tensile tests, the tensile strength is

maximum when tensile stress is applied within the weak plane, and gradually

decreases as the orientation angle between the tensile stress direction and the

bedding plane increases (Cho et al., 2012).

In geomaterials models, intrinsic and induced anisotropy are either ac-

counted for in the failure criterion or in the expression of the free energy.

Hill (1948) extended the von Mises yield criterion to orthotropic ductile ma-

terials, by using 6 quadratic stress terms. To further account for the strength

difference in tension and compression, Hoffman (1967) added 3 linear terms of

stress into Hill’s failure criterion. Tsai and Wu (1971) then expressed failure

criteria that depend on all possible linear and quadratic stress terms. These

yield criteria were used by de Borst (Schellekens and De Borst, 1990; Hasha-

gen and De Borst, 2001) to model perfectly plastic and hardening materials.

Reinicke and Ralston (1977) carried out limit analyses using parabolic yield

functions (Hoffman’s criteria).

Other approaches were proposed to introduce either the fourth order pro-

jection tensor or the second order microstructure tensor in the yield criteria

or in the expression of the free energy. Boehler and Sawczuk (1977) used

the microstructure tensor in the constitutive model for transverse isotropic

materials. Cazacu et al. (1998), Cazacu and Cristescu (1999) employed a

fourth order projection tensor to transform the stress tensor into a charac-

teristic tensor with embedded microstructure information. They extended
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the Mises-Schleicher yield criterion initially expressed for isotropic materials

to transversely isotropic materials, by using the fourth order characteristic

tensor. Another approach, based on different projection tensors, consists in

projecting the strength in Drucker-Prager and Mohr-Coulomb yield criteria

(Rouabhi et al., 2007). The microstructure tensor can also be constructed

with eigenvectors representing the axes of material symmetry to capture the

orientation dependence of strain hardening, softening, damage and plasticity

in shale (Pietruszczak and Mroz, 2000, 2001; Pietruszczak et al., 2002; Chen

et al., 2010). For soils, fabric tensors were used to represent microstructure in

yield criteria (Oda and Nakayama, 1989). Thermodynamic models were also

proposed, in which the free energy was expressed in terms of microstructure

tensor and strain invariants (Halm et al., 2002; Nedjar, 2016).

Alternatively, the Representative Element Volume (REV) can be viewed

as a set of cracks or planes of discontinuities. Intrinsic anisotropy is accounted

for by assigning different material properties to crack families of different

orientations (Chen et al., 2012; Hu et al., 2013). In micromechanics models,

a static constraint is applied to projections of stress on the crack planes,

and the expression of the REV free energy is obtained by homogenization.

In microplane models, a kinematic constraint is applied to projections of

strains on the crack planes; the principle of virtual work is used to upscale the

microscopic relationships and calculate the macroscopic stress. Anisotropy

is accounted for by considering complex microplane orientation distributions

and by formulating different evolution criteria for different microplanes (Li

et al., 2017).

Once implemented in the Finite Element Method (FEM), anisotropic
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models that account for plastic/damage softening suffer from mesh depen-

dency. Integration-based nonlocal formulations alleviate spurious mesh sen-

sitivity but cannot be easily used with stress-based yield/damage criteria,

in which the out-of-balance stress at a point has to be calculated iteratively

from the yet-unknown stress in a given neighborhood. Hence in this paper,

we integrate a measure of strain to formulate a nonlocal anisotropic damage

model for transverse isotropic geomaterials. In Section 2, we formulate a con-

stitutive law for predicting stress-induced anisotropy in an initially transverse

isotropic material. The evolution laws of damage components are expressed

in terms of equivalent strains, which are direction dependent. Two internal

length parameters are used to avoid mesh dependency and account for in-

trinsic anisotropy. In Section 3, we calibrate the model against stress/strain

curves obtained during triaxial compression tests performed on shale. A

sensitivity analysis is presented based on a series of uniaxial tension tests

simulated on a single element (at the Gauss point). In Section 4, we present

simulations of three-point bending and splitting tests and we show that the

size of the fracture process zone is direction dependent, but mesh indepen-

dent. Results also reveal the underlying failure mechanisms associated to

damage orientation. Note that we use Voigt matrix notations throughout

the paper. Lower cases are used for scalar variables, bold lower cases for

vectors and bold upper cases for matrices. Note that the soil mechanics sign

convention is adopted throughout the paper, in which compression is counted

positive.
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2. Formulation and Implementation of the Nonlocal Anisotropic

Damage Model for Transverse Isotropic Materials

2.1. Damage operator and damaged stiffness tensor

At the scale of the REV, the inception, propagation and coalescence of

micro-cracks result in hardening or softening of stress/strain relations and

stiffness reduction. The nominal stress, σ, is related to the damaged effective

stress, σ̂, through

σ̂ = Mσ (1)

Where M is a damage operator. Assuming that damage components in each

direction evolve independently, the damage operator M has a diagonal form,

as follows:

Mii =
1

1− ωi
i = 1, 2, ..., 6 (2)

Note that Voigt notations are adopted here, so that σ̂4 = τ̂23 = τ23
1−ω4

, in

which:

ω4 = 1− (1− ω2)(1− ω3)

ω5 = 1− (1− ω1)(1− ω3)

ω6 = 1− (1− ω1)(1− ω2)

(3)

The diagonal form of M ensures that the damaged compliance matrix re-

sulting from equation 1 is symmetrical. We consider a geomaterial with

transverse isotropy with respect to the normal direction of bedding planes.

Fig.1 shows the example of shale, which is a sedimentary rock (Gautam and

Wong, 2006; Waters et al., 2011; Ye et al., 2016). We set the local coordi-

nate system so that direction 1, called the axial direction, is perpendicular

to the bedding plane. Directions 2 and 3, along the bedding plane, are called
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Figure 1: Definition of the intrinsic damage directions in transverse isotropic shale, mod-

ified from Bramlette (1943).

transverse directions. Correspondingly, in Eq.2, ω1 is called axial damage

and ω2, ω3 are the transverse damage variables.

We focus on transverse isotropic behavior in quasi-brittle materials. With

negligible inelastic deformation, the non-linear stress/strain behavior results

from damage evolution only (micro-crack development). Adopting the prin-

ciple of strain equivalence, the constitutive relation is expressed as

ε = S0Mσ. (4)

For a transverse isotropic material, the elastic compliance matrix S0 depends
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on 5 parameters. In the local coordinate system, S0 is expressed as:

S0 =



1
E1

−ν12
E2
−ν12

E2
0 0 0

−ν21
E1

1
E2

−ν23
E2

0 0 0

−ν21
E1
−ν32

E2

1
E2

0 0 0

0 0 0 2(1+ν23)
E2

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12


(5)

Where ν12
E2

= ν21
E1
, ν23 = ν32 and G13 = G12.

We construct damage evolution laws that directly relate damage com-

ponents to equivalent strain measures, defined below. We focus on plane

strain loading conditions, in which the out-of-plane components of equivalent

strains are zero, and consequently, the out-of-plane component of damage,

ω3, is zero. With ω3 = 0, the damaged stiffness matrix C can be explicitly

expressed as

C =


C11 C12 C13 0

C21 C22 C23 0

C31 C32 C33 0

0 0 0 C44

 (6)
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in which

C11 = E1(1− ω1)((1− ω2)ν
2
23 − 1)/D

C22 = E2(1− ω2)((1− ω1)ν12ν21 − 1)/D

C33 = E2(1− ω1)(1− ω2)(ν21ν12 − 1)/D

C44 = G12(1− ω1)(1− ω2)

C12 = −E1ν21(1− ω1)(1− ω2)(1 + ν23)/D

C21 = −E2ν12(1− ω1)(1− ω2)(1 + ν23)/D

C13 = −E1ν21(1− ω1)(1 + (1− ω2)ν23)/D

C31 = −E2ν12(1− ω1)(1 + (1− ω2)ν23)/D

C32 = C23 = −E2(1− ω2)(ν23 + (1− ω1)ν12ν21)/D

(7)

Where σ = C : ε, E2ν12 = E1ν21, and

D = (1− ω2)ν
2
23 + 2(1− ω1)(1− ω2)ν12ν21ν23 + (1− ω1)(2− ω2)ν12ν21 − 1

(8)

2.2. Concept of equivalent strain

Equivalent strains can take various forms (Huerta and Pijaudier-Cabot,

1994; Mazars, 1986; De Vree et al., 1995; Desmorat et al., 2007; Comi and

Perego, 2004; Jirásek and Patzák, 2002). For isotropic materials, the most

widely used equivalent strains are: the energy release rate thermodynamically

conjugated to damage (Huerta and Pijaudier-Cabot, 1994), the square root

of the positive principal strains (Mazars, 1986), and a modified von Mises

strain (De Vree et al., 1995). Equivalent strain measures were introduced in

damage evolution laws to capture unilateral effects, differences of behavior

in tension and compression, and macroscopic hardening and softening due to
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mixed mode micro crack initiation and propagation. For direction dependent

transverse isotropic materials, a complete set of new equivalent strains needs

to be defined. Inspired from the stress invariants used in Hill’s yield criterion

(Hill, 1948) and in Hashin’s failure criterion (Hashin, 1980) (for unidirec-

tional fiber composites), we introduce the following strain measures, which

are strain invariants if axis 1 is normal to the bedding planes:

I1 = ε11

I2 = ε22 + ε33

I3 =
1

4
(ε22 − ε33)2 + ε223

I4 = ε212 + ε213

I5 = 2ε12ε13ε23 − ε22ε213 − ε33ε212

(9)

I3 is the square of the maximum transverse shear strain while I4 is the square

of the maximum axial shear strain. Following the form of Hill’s and Hashin’s

models, we choose a quadratic damage criterion. Based on the invariants

defined above, the most general form of a transversely isotropic quadratic

failure criterion is

A1I
2
1 + A2I

2
2 + A3I3 + A4I4 +B12I1I2 = 1 (10)

In which A1, A2, A3, A4 and B12 are material parameters. Field investiga-

tion and laboratory experiments (Tien and Kuo, 2001; Gallant et al., 2007)

indicate that there are two primary failure modes in transversely isotropic

rock (Fig.2): the sliding mode, in which failure is controlled by the shear

strength of the bedding planes, and the non-sliding mode, in which failure

is controlled by the strength of the matrix material. In sliding mode, fail-

ure is the result of normal and shear stresses, and occurs along the bedding
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Figure 2: The two primary failure modes in transversely isotropic materials.

plane (x2 − x3). In terms of continuum mechanics variables, it implies that

failure in sliding mode is controlled by strain components ε11, ε12 and ε13. In

non-sliding mode, the normal direction of the failure surface is contained in

the bedding plane. Due to material isotropy in the bedding plane (x2 − x3),

failure in non-sliding mode is controlled by all strain components except ε11.

Consequently, we are seeking two failure criteria expressed in the following

form:

A1I
2
1 + A4I4 = 1

A2I
2
2 + A3I3 + A4I4 = 1

(11)

for the sliding mode and the non-sliding mode, respectively.

We define the equivalent strain measures as εeq1 /κ
0
1 =

√
A1I21 + A4I4 and

εeq2 /κ
0
2 =

√
A2I22 + A3I3 + A4I4. Noting εt011 (respectively εt022) and εc011 (respec-

tively εc022) the initial tensile and compressive strain thresholds for the sliding

mode (respectively for the non-sliding mode), we have κ01=ε
t0
11 (respectively

κ02=ε
t0
22) in tension, κ01=ε

c0
11 (respectively κ02=ε

c0
22) in compression. Hence the

equivalent strain in the axial direction is constructed as:

εeq1j =

√
I21 + I4

(
εj011/ε

s0
12

)2
=

√√√√(ε11)2 + ((ε12)2 + (ε13)2)

(
εj011
εs012

)2

, j = t, c

(12)

We took Aj1 = 1/(εj011)
2 and A4 = 1/(εs012)

2 where εs012 is the initial out-of-
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bedding-plane shear strain threshold. Similarly, the equivalent strain in the

transverse directions is defined as:

εeq2j =

√√√√I22 + I3

(
εj022
εs023

)2

+ I4

(
εj022
εs012

)2

, j = t, c

εeq2j =

√√√√(ε22 + ε33)
2 +

1

4

(
εj022
εs023

)2

[(ε22 − ε33)2 + ε223] +

(
εj022
εs012

)2

(ε212 + ε213)

(13)

We took Aj2 = 1/(εj022)
2 and A3 = 1/(εs023)

2, where εs023 is the initial shear strain

threshold within the bedding plane.

2.3. Damage criteria and evolution laws in tension

Since crack orientations and propagation modes are different in tension

and compression (Jin and Arson, 2017a,b), we distinguish tensile and com-

pressive damage components, noted ωit, ωic, i = 1, 2, 3 respectively. Unlike

Mazars and Pijaudier-Cabot (1989), in which total damage is calculated as

the weighted average of tensile and compressive damage components, we

consider that tensile damage components ωit and compressive damage com-

ponents ωic are two sets of independent internal state variables. When the

volumetric strain εv = ε1 + ε2 + ε3 is positive (respectively, negative), com-

pressive damage components ωic (respectively, tensile damage components

ωit) are substituted into Eq.2 to construct the damage operator. As a result,

unilateral effects due to crack closure can be captured. Damage components

take values between 0 (no micro-crack in the direction considered) and 1 (no

more stiffness in the direction considered).
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Two loading surfaces are used to distinguish micro-crack propagation in

the axial and transverse directions. For tensile damage, we consider the two

following damage criteria:

g1t(ε, κ1) = εeq1t − κ1, g2t(ε, κ2) = εeq2c − κ2 (14)

Where the equivalent strains εeqi are scalar measures of strain defined in

the axial and transverse directions. κ1 and κ2 are the internal variables

that control the evolution of damage: they represent the equivalent strain

thresholds before the initiation of damage in directions 1 and 2, respectively.

After damage initiation, κ1 and κ2 are the largest equivalent strains ever

reached during the past loading history of the material. Damage can only

grow if the current stress state reaches the boundary of the elastic domain,

gi = 0. Karush-Kuhn-Tucker complementary conditions are used to account

for loading-unloading stress paths:

g1 ≤ 0, κ̇1 ≥ 0, κ̇1g1 = 0

g2 ≤ 0, κ̇2 ≥ 0, κ̇2g2 = 0
(15)

Now, we establish a relationship between the internal variables κ1, κ2,

defined as the maximum equivalent strains ever encountered in the material,

and the damage variable ω. Since both the internal variables and the damage

components grow monotonically, it is admissible to postulate the evolution

law of damage in the form ωi = f(κi), i = 1, 2. The exact form of the function

f should be identified from actual stress paths monitored in experiments,

such as uniaxial stress-strain curve in axial and transverse directions. In the

absence of such data, we assume that in tension, the axial damage component

follows an exponential law, which reflects rapid micro crack propagation in
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mixed I-II mode:

ω1t =

0, if κ1 ≤ εt011

1− exp
(
−κ1−εt011

αt
11

)
, if κ1 > εt011

(16)

Where αt11 is a material parameter that controls the damage growth rate.

We use a similar evolution law for tensile damage growth in the transverse

directions:

λ2t =
1

2
(χ2t + χ3t) =

0, if κ2 ≤ εt022

1− exp
(
−κ2−εt022

αt
22

)
, if κ2 > εt022

(17)

Where αt22 controls the ductility of the response in the transverse directions.

Based on the definition of the equivalent strain εeq2t , we split the transverse

damage components as follows:

χ2t = 2λ2t
ε222 + ε22ε33 + (1

4
〈ε22 − ε33〉2 + 1

2
(ε23)

2)
(
εt022
εs023

)2
+ ε212

(
εt022
εs012

)2
(κ2)2

χ3t = 2λ2t
ε233 + ε22ε33 + (1

4
〈ε33 − ε22〉2 + 1

2
(ε23)

2)
(
εt022
εs023

)2
+ ε213

(
εt022
εs012

)2
(κ2)2

ω2t =

ω̄2t, if χ2t ≤ ω̄2t

χ2t, if χ2t > ω̄2t

, ω3t =

ω̄3t, if χ3t ≤ ω̄3t

χ3t, if χ3t > ω̄3t

(18)

Where we introduced the McAuley brackets: 〈x〉 = 0 if x < 0, 〈x〉 = x

if x ≥ 0. ω̄2t and ω̄3t are the tensile damage values in the two transverse

directions at the previous increment. Fig.3(a) below shows the evolution

of tensile damage with the tensile equivalent strain: once the threshold is

reached, damage evolves rapidly, and the growth rate slows down close to

final failure.
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2.4. Damage criteria and evolution laws in compression

Different from mixed mode crack propagation, pure mode II sliding in

compression is confining (normal) stress dependent. We reconstruct the two

compressive loading surfaces in axial and transverse directions as:

g1c(ε, κ1) = εeq1c + η〈(σ2 + σ3)/2〉 − κ1

g2c(ε, κ2) = εeq2c + η〈σ1〉 − κ2
(19)

Where η controls the influence of the confining stress on compressive damage.

Note that the McAuley brackets are introduced to account for compressive

confining stress only. Similar to tensile loading functions in Eq.14, the in-

ternal state variables κ1, κ2 in Eq.19 represent the largest value taken by the

terms εeq1c+η〈(σ2+σ3)/2〉, εeq2c+η〈σ1〉 in the entire loading history of the mate-

rial. Since geomaterials exhibit a pre-peak hardening and post-peak softening

behavior for mode II sliding in compression (Amendt et al., 2013), we choose

an evolution function f(κ1) with a low growth rate at the beginning and a

high growth rate after the peak, as follows:

ω1c =


0, if κ1 ≤ εc011

exp[(κ1−βc
11)/α

c
11]

1+exp[(κ1−βc
11)/α

c
11]
, if κ1 > εc011

(20)

Where βc11 and αc11 are parameters that represent the initiation of softening in

the absence of confinement and the damage growth rate in the axial direction,

respectively. Fig.3(b) shows the evolution of compressive damage with the

compressive equivalent strain. We define the evolution function f(κ2) in the

transverse directions in a similar way as in the axial direction, as follows:

λ2c =
1

2
(χ2c + χ3c) =


0, if κ2 ≤ εc022

exp[(κ2−βc
22)/α

c
22]

1+exp[(κ2−βc
22)/α

c
22]
, if κ2 > εc022

(21)
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In which we split the transverse damage components based on the definition

of equivalent strain εeq2c in Eq.13 and loading surface in Eq.19, as follows:

χ2c = 2λ2c
ε222 + ε22ε33 + (1

4
〈ε22 − ε33〉2 + 1

2
(ε23)

2)
(
εc022
εs023

)2
+ ε212

(
εc022
εs012

)2
+ η〈σ1〉

2

(κ2)2

χ3c = 2λ2c
ε233 + ε22ε33 + (1

4
〈ε33 − ε22〉2 + 1

2
(ε23)

2)
(
εc022
εs023

)2
+ ε213

(
εc022
εs012

)2
+ η〈σ1〉

2

(κ2)2

ω2c =

ω̄2c, if χ2c ≤ ω̄2c

χ2c, if χ2c > ω̄2c

, ω3c =

ω̄3c, if χ3c ≤ ω̄3c

χ3c, if χ3c > ω̄3c

(22)
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Figure 3: Explicit damage evolution laws.

2.5. Anisotropic nonlocal regularization

The accumulation of damage leads to a softening behavior, which results

in localized failure paths in finite element simulations. The energy required to

create a unit area of fracture, which should be a material constant, does not
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converge upon mesh refinement (Jirásek, 1998). Mathematically, the partial

differential equations governing quasi-static problems loose ellipticity, which

makes the boundary problem ill-posed. Several regularization techniques ex-

ist to avoid mesh dependency and fracture localization, including: the intro-

duction of integration-based variables in the constitutive model (Pijaudier-

Cabot and Bažant, 1987; Bažant and Pijaudier-Cabot, 1988; Desmorat et al.,

2007; Grassl et al., 2014), gradient-enhanced formulations (De Borst et al.,

1995; Peerlings et al., 1996a,b; Geers et al., 1998; Peerlings et al., 1998), the

micropolar (Cosserat) continuum theory (Lin et al., 2015; Vernerey et al.,

2007), and the local regularization of material properties based on element

size and direction (crack band theory) (Hoover and Bažant, 2014; Bažant and

Oh, 1983). All of these regularization methods involve an internal length pa-

rameter, typically a characteristic length equal to 2 to 3 times the maximum

grain size (Bažant and Pijaudier-Cabot, 1989). Note that the gradient theory

requires additional boundary conditions, which have no physical meaning, to

calculate the third order double stress tensor. The crack band theory fails to

capture the process zone of macro fractures. The micropolar continum the-

ory is particularly suitable for modeling shear bands in granular materials.

Here, we adopt a versatile integral-based nonlocal regularization technique,

in which the damage evolution and subsequent stiffness reduction at a mate-

rial point not only depend on the stress state at that point, but also on the

stress of points located within a certain neighborhood, the size of which is

controlled by internal length parameters. Numerically, we replace the local

equivalent strains εeqi,k, used to check damage criteria, by their nonlocal coun-

terparts εeqi,k. The nonlocal equivalent strain εeqi,k is caclulated as the weighted
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average of the local equivalent strain over an influence volume V , as follows:

εeqi,k(x) =

∫
V

α(x, ξ)εeqi,k(ξ)dV (ξ), (i = 1/2, k = t/c). (23)

Where x and ξ are the position vectors of the local point considered and

of a point located in the influence volume, respectively. α(x, ξ) is a weight

function, which decreases monotonically when the distance r = ‖x − ξ‖

increases. In a uniform equivalent strain field εeq(x), the nonlocal strain

εeq(x) should be uniform and equal to εeq(x). That is why the weight function

should also satisfy the following normalizing condition:∫
V

α(x, ξ)dV (ξ) = 1. (24)

More generally, we ensure that the partition of unity is satisfied by defining

the weight function as follows:

α(x, ξ) =
α0(x, ξ)

Vr(x)
=

α0(x, ξ)∫
V
α0(x, ξ)dV (ξ)

. (25)

Where Vr(x) is called the characteristic volume. For isotropic materials,

the weight function α0(x, ξ) is often defined as a Gauss function (normal

distribution) or a bell-shaped function, with a single internal length. For

transversely isotropic materials however, the nonlocal influence zone is di-

rection dependent. Due to the weakening effects of the bedding plane, the

development of damage at a point has more influence when cracks propa-

gate in planes that contain the transverse directions than the axial direction

(Fig.1). Noting lci the internal length in direction i, we have: lc3 = lc2 > lc1 .

Based on these considerations, we propose the following modified bell-shaped
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weight function:

α0(x, ξ) =
〈

1−
3∑
i=1

‖xi − ξi‖2

l2ci

〉2
. (26)

The internal lengths lci provide the size of the volume of influence (Fig.4),

therefore no cut-off is needed (unlike in the Gauss function).
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Figure 4: Modified bell-shaped weight function for the nonlocal formulation, with lc1 =

0.01, lc2 = 0.02.

In a Finite Element code, nonlocal averaging and integration are per-

formed by summation over Gauss points located inside the influence zone

(De Vree et al., 1995). For instance, the nonlocal equivalent strain is calcu-

lated as follows:

εeqi,k(x) =

∑NGP

j=1 α(T (x− ξj)T )εeqi,k(ξj)∆Vj∑NGP

j=1 α(T (x− ξj)T )∆Vj
(27)

Where NGP is the total number of Gauss points located within the influence

zone. ∆Vj is the integration volume associated with the jth neighboring

Gauss point. T is the rotation matrix that transforms global coordinates

to local coordinates. In plane strain conditions (adopted in this study), we
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have:

T =

 cosφ −sinφ

sinφ cosφ

 (28)

Where φ is the counter-clockwise angle between the global and local coordi-

nate systems. In Eq.27, the distance ‖xi− ξi‖ first introduced in Eq. 26 was

replaced by the transformed coordinate components of vector T (x− ξj)T .

2.6. Finite Element implementation

Since the damage evolution laws are expressed explicitly, no iteration is

needed at the Gauss point to update the state of stress, strain and damage.

However, due to the nonlocal formulation adopted here, the calculation of

state and internal variables at a point requires calculating the average of

the values taken by those variables at the Gauss points located in the influ-

ence zone, as explained in Eq.27. In order to handle these calculations, we

used an open source package called ‘Object Oriented Finite Element Method’

(OOFEM) (Patzák and Bittnar, 2004; Patzák, 2012). We used 3D elements

without nonlocal regularization and 2D triangular plane strain elements with

nonlocal regularization for the following simulations.

At the Gauss point, from the constitutive relations above, the consistent

tangent operator (Jacobian matrix) in plane strain can be explicitly derived

as follows:

J =
dσ

dε
=

dC(ω1, ω2)

dε
: ε+ C(ω1, ω2)

= (
dC

dω1

dω1

dκ1

dκ1
dε

+
dC

dω2

dω2

dκ2

dκ2
dε

) : ε+ C(ω1, ω2)
(29)
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In tension, we have:

dω1

dκ1
=

dω1

dεeq1t
=

exp(− (εeq1t − εt11)/αt11)
αt11

dω2

dκ2
=

dω2

dεeq2t
=

exp(− (εeq2t − εt22)/αt22)
αt22

dεeq1t
dε

=
1

εeq1t

[
2ε11 0 0 2ε12

(
εt11
εs12

)2 ]T
dεeq2t
dε

=
1

εeq2t

[
0 [2 + 1

2

(
εt022
εs023

)2
]ε22 0 2ε12

(
εt22
εs12

)2 ]T
(30)

We obtain the explicit expression of the Jacobian matrix for a compressive

stress state in a similar way. The discretization ensures quadratic convergence

when solving the global equilibrium equations.

However, with nonlocal enhancement, the Jacobian matrix depends on

the state and internal variables of all the Gauss points located within the

nonlocal influence zone (Eq.27). Deriving the analytical expression of the

tangent operator for a nonlocal formulation is challenging and computation-

nally intensive (Jirásek and Patzák, 2002; Liu et al., 2016; de Pouplana and

Oñate, 2016). After assembling all the Finite Element equations, the global

stiffness matrix becomes non-symmetric and the half band size increases. In

the present case, the proposed nonlocal model considers intrinsic anisotropy,

thus matrix rotation is needed whenever the local and global coordinate sys-

tems do not coincide. All of these complicated operations make it unfeasible

to obtain the nonlocal consistent tangent stiffness matrix analytically. That

being said, symmetrical positive definite local secant operators can be used

without changing the assembling process. Even if quadratic convergence is

lost, the computation terminates successfully (Desmorat et al., 2007; Pegon

and Anthoine, 1997).
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In addition, the degradation of stiffness due to damage induces strain

softening, which may result in a global force-displacement curve that exhibits

multiple limit points (snap through) and a descending curve (snap-back).

A standard load controlled or displacement controlled algorithm based on

Newton-Raphson iteration scheme is insufficient to find localized post-peak

solutions. In order to overcome this limitation, we adopt an arc length control

algorithm. Initially proposed in (Riks, 1979), the essential idea of arc length

control is to change the increment of load and the increment of displacement

simultaneously. The increments of load and displacement are constrained to

ensure that solutions obtained at convergence are indeed on the constitutive

stress/strain curve. In this study, we use the so-called spherical arc length

method (Crisfield, 1981), in which the constraint equation is expressed as:

ds =
√

duTdu+ dλ2ψ2qTq (31)

where ds is the arc length, du is the increment of displacement, q is the

external load imposed and λ is a parameter controlling the intensity of the

load increment. ψ controls the ratio between the load and displacement in-

crements. Because the constraint equation involves all the degrees of freedom

of the domain, it might still encounter convergence issues when localization

occurs. Hence, we implement a local version of the arc length control algo-

rithm, based on the local normal plane method (May and Duan, 1997): only

the displacement of dominating elements, i.e. elements that contribute to

damage growth within the process zone, are used to formulate the constraint

equation: ∑
e

[∇(due1)
T∇(duei )] = (ds)2 (i = 1, 2, 3, ...) (32)
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Where e is the element number within the set of dominating elements. Note

that the set of dominating elements is only updated at the beginning of

each loading increment. For an element with n nodes, ∇u is the relative

displacement vector, defined as follows:

∇(ue) = [ue1 − uen, ue2 − ue1, ue3 − ue2, ..., uen − uen−1] (33)

3. Calibration and Sensitivity of the Local Damage Model

3.1. Calibration for Bakken shale

The proposed nonlocal anisotropic damage model depends on 5 elastic pa-

rameters (E1, E2, ν12, ν23, G12), 13 constitutive parameters that control dam-

age growth under tension and compression (εt011, α
t
11, ε

t0
22, α

t
22, ε

s0
12, ε

s0
23, ε

c0
11, α

c
11,

βc11, ε
c0
22, α

c
22, β

c
22, η), and two internal length parameters (lc1, lc2). Except for

the fitting parameters α, β and η, all the model parameters have a sound

physical meaning. For example, εc022 represents the damage initiation thresh-

old due to compressive strains in the transverse direction. Several stress paths

with loading in both axial and transverse directions are required to calibrate

all the model parameters, including uniaxial and triaxial compression tests,

uniaxial tension tests and directional shear tests. In addition, microstruc-

ture images or acoustic measurements are needed to determine the internal

lengths. In the following, we calibrate the local damage model against a

series of triaxial compression tests performed on North Dakota Bakken shale

plugs in ConocoPhillips rock mechanics laboratory (Amendt et al., 2013).

Plugs were all cored from the same depth and lithology, both parallel and

perpendicular to the bedding plane, and were selected to avoid major bedding
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discontinuities. For model calibration, we used the stress/strain curves ob-

tained for a loading perpendicular to the bedding plane under confinements

of 1000 psi (6.9 MPa) and 3000 psi (20.7 MPa), and the stress/strain curve

obtained for a loading parallel to the bedding plane under a confinement of

3000 psi (20.7 MPa). We validated the model using stress/strain data with

loading direction perpendicular to the bedding plane under 2000 psi (13.8

MPa) confinement. The stress paths used for calibration allow determining

E1, E2, ν12, ν23, ε
c0
11, α

c
11, β

c
11, ε

c0
22, α

c
22, β

c
22, η. In the absence of sufficient experi-

mental data, the values of the other parameters (G12, ε
t0
11, α

t
11, ε

t0
22, α

t
22, ε

s0
12, ε

s0
23)

will be assigned values found in the literature for rock materials, as explained

below.

We first used a linear regression to obtain the elastic parameters E1, E2,

ν12, ν23, as shown in Fig.5(e). For all loading directions, only the linear

portion of the stress-strain curves were exploited for calibration. Then we

used the Interior Point Algorithm in MATLAB to determine the unknown

vector B = (εc011, α
c
11, β

c
11, ε

c0
22, α

c
22, β

c
22, η) that minimizes the squared residual

of the distance between experimental results yi and numerical predictions

fi(X,B). The residual, minimized iteratively, is defined as:

R(B) =
n∑
i=1

[yi − fi(X,B)]2 (34)

Where X stands for the vector of known input variables of strain. The algo-

rithm was initialized with an initial guess, as well as the lower bound and the

upper bound of the coefficients of the unknown parameter vector B. Then,

triaxial compression tests with different confinement and loading orientations

were simulated with the proposed model at the material point, and the value
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of the residual R(B) was calculated based on the set of parameters obtained

at the previous iteration. The gradient of the residual R(B) with respect to

each parameter in the vector B was calculated and used to minimize the dif-

ference between numerical and experimental stress-strain curves, as follows:

Bn+1 = Bn − γn∆R(B) (35)

Where γn is the barrier parameter, which is updated at each iteration step

in the Interior Point Algorithm.

Fig.5(a) shows the stress-strain experimental data (markers) and numeri-

cal predictions (lines) after calibration with confinements of 6.9 MPa (colored

in red) and 20.7 MPa (colored in black), when loading is applied perpendicu-

lar to the bedding plane. In addition, we simulated the triaxial compression

test with a confinement of 13.8 MPa (blue lines) using the calibrated parame-

ters, and compared the predictions with the experimental data (blue squares).

Note that we only used the first portion of the post-peak experimental data,

after macroscopic fractures initiate, but before macroscopic fracture propaga-

tion becomes dominated by friction along the fracture planes (a propagation

regime that cannot be captured by the proposed model). Both lateral and

axial stress/strain curves obtained numerically satisfactorily match the ex-

perimental data for all confinements, and the proposed model captures the

nonlinear hardening and softening behavior and the dependence of strength

to confinement. Fig.5(b) shows the evolution of damage for the three tests

where loading is perpendicular to the bedding plane. In continuum dam-

age models proposed for materials with no intrinsic anisotropy, transverse

damage is produced to reflect the presence of vertical cracks due to devia-
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Figure 5: Calibration of the proposed model against triaxial compression tests performed

on Bakken shale for different loading orientations with respect to the bedding plane.
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Table 1: Material parameters calibrated from triaxial compression tests.

Direction Elasticity Compression

Axial E1/GPa ν12 εc011 βc11 αc11 η/MPa−1

3.59 0.22 2.51× 10−3 8.02× 10−3 2.41× 10−3 2.08× 10−4

Transverse E2/GPa ν23 εc022 βc22 αc22 η/MPa−1

3.77 0.33 1.98× 10−3 6.39× 10−3 2.46× 10−3 2.08× 10−4

toric stress (Jin et al., 2017; Xu and Arson, 2014; Jin and Arson, 2017c).

By contrast, according to the constitutive model in Eq.4, axial damage ω1 is

produced, which results in a reduction of the axial stiffness. When the confin-

ing stress is increased, damage initiation occurs at higher axial stress. After

damage intiation, the damage rate is independent of the confining pressure.

Fig.5(c) compares the predictions of the calibrated model againts ex-

perimental results for a triaxial compression test performed with a loading

parallel to the bedding plane, under a 20.7 MPa confinement. Experimental

measurements are indicated by circle markers and numerical predictions are

represented by dotted lines. For the sake of comparison with the experi-

mental results, we average the two horizontal strain components generated

from the model, which are predicted as different due to transverse isotropy,

but are not distinguished in the experimental dataset. The experimental

and numerical curves match satisfactorily and the proposed model captures

the dependence of strength to the loading direction at equal confining pres-

sure (Fig.5(a) and Fig.5(c)). The material parameters calibrated for North

Dakota Bakken shale are listed in Table 1.
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Table 2: Material parameters assigned with no calibration for the sensitivity analysis.

Direction Shear Tension

Axial εs012 εt11 αt11 G12/GPa

1.8× 10−4 1.5× 10−4 3.0× 10−4 14.68

Transverse εs023 εt22 αt22

2.6× 10−4 2.5× 10−4 4.0× 10−4

3.2. Sensitivity analysis of uniaxial tension test

In the absence of datasets on tension and shear tests conducted at various

angles compared to the bedding plane, it is impossible to calibrate the re-

mainder of the model parameters (εt011, α
t
11, ε

t0
22, α

t
22, ε

s0
12, ε

s0
23, G12). So we used

values that correspond to typical rock properties (Cho et al., 2012) (see Ta-

ble 2). In order to check that the chosen model parameters are reasonable

and to demonstrate that the proposed model can capture the direction de-

pendent stress-strain behavior, we simulated a series of uniaxial tensile tests

for various orientation angles θ between the loading axis and the direction

normal to the bedding plane (Fig.6(c)). We used a single-cubic-element FEM

model with the chosen damage parameters reported in Table 2 and with the

calibrated elastic parameters given in Table 1. Displacements at the four

bottom nodes were fixed and concentrated forces were applied at the four

nodes of the upper face. The arc length control algorithm was used. After

the simulations, we extracted the state variables (stress, strain and damage)

from the 8 Gauss points and averaged them to generate the plots shown in

Fig.6.

Fig.6(a) presents the stress-strain curves of uniaxial tension tests simu-
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lated with different bedding plane orientations. The elastic part is almost

the same in all tests because the Young’s moduli E1, E2 in the axial and

transverse directions are very close (Table 1). However, the maximum stress

reached during the test varies with θ: the peak stress is minimum when the

loading is applied perpendicular to the bedding plane (θ = 0◦), and increases

when θ increases. Fig.6(b) shows that, for higher orientation angles θ, the in-

tiation of the axial damage ω1 occurs under higher axial strain. For θ = 90◦,

no axial damage is produced (i.e., no cracks along the bedding plane); in-

stead, transverse damage ω2 is produced (i.e. cracks perpendicular to the

bedding plane in non-sliding mode). Fig.6(c) provides the variations of the

uniaxial tensile strength (maximum stress reached during loading) with the

loading orientation θ. Numerical analyses satisfactorily reproduce published

results of indirect Brazilian tests (Cho et al., 2012), both in trend and order

of magnitude.

4. Simulation of Anisotropic Fracture Localization

In this section, we solve boundary value problems with the Finite Ele-

ment Method to test the ability of the model to simulate mesh-independent

and direction dependent fracture propagation in mixed mode. We use the

constitutive parameters listed in Table 1 and Table 2.

4.1. Three-point bending test

We simulate a three-point bending test. The specimen geometry, notch

size and boundary conditions are shown in Fig.7. Linear triangular elements

are used in plane strain conditions. The transverse characteristic length lc2

is set to 20mm (internal length parallel to the bedding). We study various
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Figure 7: Geometry and boundary conditions adopted in the three-point bending test.

ratios R = lc2/lc1 to investigate the influence of nonlocal anisotropy on the

global response.

Influence of nonlocal enhancement. We first test the nonlocal regularization

technique by simulating the three point bending test with and without non-

local enhancement, for three different mesh densities. In all tests, the loading

direction is perpendicular to the bedding plane (orientation noted θ = 90◦)

and the internal length ratio is set to R = 2. Fig.8 shows the post-failure

distribution of the transverse damage component ω2, which corresponds to

vertical cracks perpendicular to the bedding plane that propagate by layer

breaking (non-sliding mode). Comparing Fig.8(a) and (b), we note that sim-

ulations done with the local model exhibit a strong mesh dependency: the

width of the fracture process zone is one element in size, no matter what the

size of the elements is. As a result, the energy dissipated tends to zero upon

mesh refinement. For very fine meshes, no convergence is reached. On the

contrary, no mesh dependence is noted with the nonlocal model, as shown

in Fig.8(c) and (d). Fig.11(a) shows the variations of the vertical force with

vertical displacement at the node where the external load is applied. The

peak force and subsequent softening behavior match for all simulations done
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Figure 8: Damage distribution in local axis-2 (i.e. vertical cracks perpendicular to the

bedding plane) obtained in the three-point bending tests, without and with nonlocal en-

hancement, for various mesh densities. In all cases, bedding orientation angle is θ = 90◦,

and the internal length ratio is lc2/lc1 = 2.

with the nonlocal model, whereas they differ in the simulations done with

the local model. Results thus confirm that the regularization technique not

only alleviates mesh dependency for the failure path, but also for the global

response of the domain. Note that in this particular test, nonlocal enhance-

ment results in an increased stiffness of the domain, which turns out to be

2-3 times larger than that obtained with the local model. This points out

the importance of proper calibration of the internal length parameters.

Influence of the bedding orientation (intrinsic anisotropy). Now that we showed

that the nonlocal model alleviates mesh dependency, we perform all the simu-

lations with the median-sized mesh. Fig.9 shows the damage process zone for

different bedding orientations, and highlights the underlying failure mecha-
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nism. When the loading force is parallel to the bedding plane (θ = 0◦),

only axial damage (ω1) develops, wich corresponds to weak plane debonding.

Damage propagates in pure mode I right above the notch. In the case of

θ = 30◦, failure in mixed mode is observed. Damage propagates in both

the axial (ω1) and transverse (ω2) directions of the bedding coordinate sys-

tem. The failure path initially follows the bedding direction, and then turns

up to be parallel to the loading force direction. The extent of the damage

zone is larger for ω1 than ω2. Similarly, when the bedding orientation an-

gle is 60◦ with respect to the horizontal axis, damage propagates in mixed

mode in both axial and transverse directions (ω1, ω2). The adopted resolu-

tion algorithm still has some shortcomings when the global response exhibits

severe snap back behavior: convergence issues still exist and it is impossible

to obtain the final expected damage zone. Here, we show the intermediate

damage process zone, obtained just before the calculation stopped: at this

stage, damage propagates mostly along the bedding plane; alignment with

the loading force has just started. When the bedding plane is horizontal

(θ = 90◦), the damage zone aligns with the notch like in the case of a ver-

tical bedding plane (θ = 0◦), but failure is mostly due to layer breakage

and not weak plane debonding: ω2 > ω1. As expected, the overall size of

the damage process zone increases as the angle θ between the loading direc-

tion and the transverse bedding plane direction increases. Fig.11(b) shows

the load-deflection curves obtained at the node where the external force is

applied, for the four cases simulated. The maximum load force required to

induce failure increases as the bedding orientation angle θ increases. This

could be expected: weak plane debonding at θ = 0◦ requires less energy than
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Figure 9: Spatial distribution of the tensile damage components expressed in the local

coordinate system of the bedding plane, for loads applied at an angle θ = 0◦, 30◦, 60◦, 90◦

compared to the transverse direction of the bedding plane.

layer breakage at θ = 90◦. Note that the local arc length control method

employed in the resolution algorithm makes it possible to predict the snap

back behavior (decreasing load with decreasing displacement) in the case of

θ 6= 90◦.

Influence of the ratio of internal lengths (microstructure). We analyze the

influence of the internal length ratio R = lc2/lc1 for lc2 = 20 mm (Fig.10).

We use the median sized mesh and we study two bedding orientations: θ =

0◦, 90◦. Damage propagates in mode I due to weak layer debonding in the case

of θ = 0◦, and due to layer breakage in the case of θ = 90◦. Since the extent

of the influence zone in the transverse direction is the same in all simulations

(i.e., lc2 is fixed), the width of the transverse damage process zone is the same
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for all simulations with θ = 90◦. By contrast, the length of the transverse

damage zone inccreases with lc1. Similarly, for θ = 0◦, the area of the axial

damage zone increases with lc1 (i.e. increases when R = lc2/lc1 decreases).

Microstructure anisotropy, represented by the internal length parameters,

thus translates into anisotropy of the damage process zone. When comparing

the load-displacement curves (Fig.11), we note that for both θ = 0◦ and 90◦,

a higher peak force is reached for a lower internal length ratio R (i.e. for an

increasing internal length lc1). A lower force is required to cause failure by

weak plane debonding when the axial internal length lc1 is high. For θ = 0◦,

we note that the post-peak portion of the load-displacement curves match.

We hypothesize that the internal length lc2, fixed to the same value in all the

simulations, controls the post-peak softening behavior. The exceptionally

high value of the peak force for R = 1, θ = 0◦ can be explained by the large

size of the influence zone in that particular case, delimited by the circles in

Fig.10.

4.2. Splitting test

We simulate splitting tests described in Comi and Perego (2001) to in-

vestigate compressive damage development for various bedding orientations.

The geometry and boundary conditions are shown in Fig.12. Plane strain

triangular elements are used to mesh the domain. Since the nonlocal formu-

lation proved to successfully alleviate mesh dependency in the previous case

studies, we only use one mesh density for the splitting test simulations. The

transverse characteristic length lc2 is set to 20mm; the axial internal length

lc1 is set to 10mm. We simulate a force-controlled test, which allows using

the local arc length control method to solve the global FEM equations by
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Figure 10: Spatial distribution of the tensile damage component in the transverse direction

2 (cracks perpendicular to the bedding plane) for orientation angle θ = 90◦, and in the

axial direction 1 (cracks parallel to the bedding plane) for orientation angle θ = 0◦, for

various internal length ratios defined as R = lc2/lc1.

scaling load and displacement increments at each iteration. A uniform stress

is applied on the top central part of the sample, and we stop the simulation

once the applied stress reaches 100 MPa (Fig.12).

Fig.13 shows the spatial distribution of damage for various bedding ori-

entations, and also indicates the potential failure path at macro scale. For

θ = 0◦ (vertical bedding plane, parallel to the loading direction), the fail-

ure mechanism is dominated by the propagation of horizontal cracks, i.e.

transverse compression damage ω2c. This is counter-intuitive: the failure

mechanism was expected to be controlled by weak plane debonding resulting

in verical planes. This discrepancy comes from the construction of the model

itself, in which compressive equivalent strains are used to calculate compres-

sive damage in axial and transverse directions, which are directly injected in

the expression of the stiffness tensor to account for the degradation of elastic
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Figure 11: Force-displacement curves at the node where the load is applied during the

three-point bending tests.
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Figure 12: Geometry, mesh and boundary conditions of the splitting test, simulated based

on experiments reported in (Comi and Perego, 2001).

properties. Similarly for θ = 90◦ (horizontal bedding plane, perpendicular

to the loading direction), the main failure mechanism is the development of

horizontal cracks, i.e. axial compressive damage ω1c. However, both of these

two cases yield vertical fracture paths (damage concentration zone) along the

central line at sample scale, which is conform to experimental observations

(Comi and Perego, 2001). For θ = 30◦ and θ = 60◦, the proposed model does

not only capture the macro failure paths (the fracture propagates through

the sample at an angle with respect to the loading direction), but also reveals

the underlying failure mechanism. The compressive shear damage ω2c con-

trols the failure for the case of θ = 30◦, and the compressive sliding along the

layers ω1c is the dominating failure mechanism for θ = 60◦. It is clear that

the development of damage and the formation of fracture paths are direction
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Figure 13: Spatial distribution of the tensile and compressive damage components in the

axial and transverse directions, with a bedding plane of various orientations.

dependent.

5. Conclusions

The proposed model is designed to predict the complex non-linear be-

havior of materials with intrinsic anisotropy upon crack propagation. Crack

initiation and propagation are modeled by phenomenological damage evolu-

tion laws. The principle of equivalent elastic deformation is used to calculate

the stiffness tensor of the damaged material. Following the choice of stress

invariants made in Hill’s quadratic yield criteria (for orthotropic materials)

and Hashin’s failure criteria (for unidirectional fiber composites), four equiv-

alent strain measures are constructed to distinguish the mechanical response
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of the material in tension and compression, along the direction perpendicular

to the bedding plane and within the bedding plane. Damage evolution laws

are formulated explicitly in terms of the maximum equivalent strain ever

encountered in the loading history. For Finite Element implementation, the

equivalent strains are replaced by nonlocal counterparts, defined as weighted

averages over a certain neighborhood, the size of which is controlled by two

internal length parameters that represent microstructure anisotropy. Due to

the complexities involved in the derivation of the tangent operator with non-

local models, we used a local secant operator and solved the Finite Element

equations with a normal plane arc length control algorithm, which allows

passing limit points in case of snap back or snap through.

Model calibration requires knowing the material behavior for several bed-

ding plane orientations under several independent stress paths. Elastic and

compression damage parameters were calibrated against triaxial compres-

sion test data of Bakken shale with axial loading parallel and perpendicular

to the bedding under different confinements. Sensitivity analyzes confirmed

that the model successfully captures the variation of uniaxial tensile strength

with respect to the bedding orientation. Finite Element simulations of three-

point bending tests and compression splitting tests showed that nonlocal en-

hancement indeed avoids mesh dependency and that the size of the damage

process zone along and perpendicular to the bedding plane is scaled by the

two characteristic lengths. Results further show that the damage process

zone is direction dependent both in tension and compression. In particular,

the three-point bending test simulations reveal that mixed mode fracture

propagation dominates when the loading force is not aligned with the bed-
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ding plane.

Although calibrated for geomaterials, the proposed damage model with

anisotropic nonlocal enhancement can be applied to any brittle textured ma-

terial, such as ceramics, polymers or metals. Anisotropy is accounted for at

the microstructure scale and at the phenomenological scale of the REV. Dam-

age constitutive laws are direction-specific, which makes it possible to rep-

resent several concurrent damage mechanisms in the macroscopic response,

and to interpret the failure mechanisms that control the damage process

zone. Hence, the proposed modeling approach and the associated numerical

methods employed in this paper can be utilized to solve a wide range of engi-

neering problems involving the mechanical integrity of structural members,

borehole stability, or delamination of composites, to cite only a few. Future

work will be dedicated to calibration methods and microstructure-enrichment

for a more precise and computationally effective topological representation

of the damage process zone.

Acknowledgements

Financial support for this research was provided by the U.S. National Science

Foundation (grants 1552368 and 1449501). The authors thank Dr. Seth

Busetti from ConocoPhillips for the technical conversations on the intrinsic

and stress induced anisotropy of shale.

41



References

Amendt, D., Busetti, S., Wenning, Q., et al., 2013. Mechanical character-

ization in unconventional reservoirs: A facies-based methodology. Petro-

physics 54 (05), 457–464.
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Bažant, Z. P., Pijaudier-Cabot, G., 1988. Nonlocal continuum damage, local-

ization instability and convergence. Journal of Applied Mechanics 55 (2),

287–293.
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