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1. Introduction

We shall study ergodic properties for a minimal set of the (local) skew product semiflow

generated by the following family of scalar parabolic equations:

ut = uxx + f(y · t, x, u, ux), t > 0, 0 < x < 1, (1.1)y

with Dirichlet

u(t, 0) = 0, u(t, 1) = 0, t > 0, (1.2)D

or Neumann

ux(t, 0) = 0, ux(t, 1) = 0, t > 0, (1.2)N

boundary conditions, where y ∈ Y , (Y, IR) is a minimal flow with compact metric phase

space Y , the function f(y, x, u, p) is Lipschitz in y, and for any y ∈ Y , f(y · t, x, u, p) is C2

in t, x, u, and p.

To be more precise, let X be a fractional power space ([14]) associated with the

operator u 7→ −uxx : D → L2(0, 1) that satisfies the imbedding X ↪→ C1[0, 1], where

D = {u|u ∈ H2(0, 1), u satisfies (1.2)D or (1.2)N}. Then equations (1.1)y-(1.2)D or

(1.1)y-(1.2)N generate a (local) skew-product semiflow ([31], [32], [33]) Πt on X × Y :

Πt(U, y) = (u(t, ·, U, y), y · t), (1.3)

where u(t, x, U, y) is the solution of (1.1)y-(1.2)D or (1.1)y-(1.2)N with u(0, x, U, y) = U(x),

y · t denotes the flow on Y .

Now, let (U0, y0) ∈ X × Y be such that {Πt(U0, y0)|t > 0} is bounded in its existence

interval. Then Πt(U0, y0) is globally defined ([14]) for all t > 0 and for any δ > 0,

{Πt(U0, y0)|t ≥ δ} is precompact ([14]). Moreover, the ω-limit set ω(U0, y0) of Πt(U0, y0)

(t > 0) is compact, connected, and invariant ([13]), that is, Πt restricted to ω(U0, y0)

defines a usual skew-product (two-sided) flow. We call an invariant set E ⊂ X ×Y of (1.3)

a minimal set (or (E, IR) is a minimal subflow of (1.3)) if there is a (U0, y0) ∈ E such that

{Πt(U0, y0)|t > 0} is bounded and E = ω(U0, y0) is minimal in the usual sense.

It is proved in [33] that any minimal subflow (E, IR) of (1.3) is an almost 1-1 extension

(or E is an almost 1-cover) of (Y, IR), that is, Y0 = {y ∈ Y |cardE ∩ P−1(y) = 1} is

a residual subset of Y , here P : X × Y → Y, (x, y) 7→ y is the natural projection. Of
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course, (E, IR) can be a 1-1 extension (1-cover) of (Y, IR) in many situations (see [32]). For

example, if (Y, IR) is a periodic minimal flow, then it has shown in [3], [5] that any minimal

subflow (E, IR) of (1.3) is a 1-1 extension of (Y, IR) hence a periodic minimal set. However,

there are many examples, even in the case that (Y, IR) is almost periodic, that a minimal

subflow (E, IR) of (1.3) is not a 1-1 (almost periodic) extension of (Y, IR) (see [16], [33] and

examples in section 5 of the current paper). An almost 1-1 extension (E, IR) of an almost

periodic minimal flow (Y, IR) is usually referred to as an almost automorphic extension

of (Y, IR). Points (U, y) = P−1P (U, y) ⊂ E are almost automorphic points since each

such point (U, y) corresponds to an (Bochner) almost automorphic solution u(t, x, U, y) of

(1.1)y − (1.2)D or (1.1)y-(1.2)N . In fact, as shown in [33], almost automorphy is quite

essential to the dynamics of scalar parabolic equations in one space dimension (which

particularly include scalar ODEs if one considers Neumann boundary conditions).

The current paper is devoted to study the almost automorphic phenomena from a

measure theoretical point of view. More precisely, we ask the following questions: 1)

When can a minimal set E (or minimal subflow (E, IR)) of (1.3) be uniquely ergodic? 2)

In the case of unique ergodicity, what can one say about the flow (E, IR)?

To partially answer the above questions, we obtain the following results.

1) A minimal set E of (1.3) is uniquely ergodic if and only if (Y, IR) is uniquely ergodic

and Y0 = {y ∈ Y |cardE ∩ P−1(y) = 1} has full measure.

2) If a minimal set of (1.3) is uniquely ergodic, then the flow (E, IR) is topologically

conjugate to a skew-product subflow of (IR1 × Y, IR).

The result 1) is a generalization of the work of Johnson ([15]) in almost periodic

linear scalar ODEs. It simply says that in order for a minimal set E of (1.3) to be uniquely

ergodic, the set Y0 is not only a topologically large set, it needs to be large in measure as

well.

Result 2) indicates that in the case of unique ergodicity, dynamics on a minimal set

E is expected to be simple since the flow (E, IR) in this case is essentially a scalar skew

product flow. We refer to a minimal subflow (E, IR) of (1.3) as a minimal PDE flow if

(E, IR) is not topologically conjugate to any subflow of (IR1 × Y, IR) simply because that

the space variable x will play a role in such a flow. An immediate consequence of the above
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result 2) is as follows. If (Y, IR) is almost periodic minimal, then any minimal PDE flow

of (1.3) is non-almost periodic almost automorphic since it is non-uniquely ergodic.

Ergodicity issue is important in studying dynamics of a minimal set of (1.3) in par-

ticular when (Y, IR) is almost periodic minimal. As shown in an example of section 5,

a non-unique ergodic almost automorphic minimal set E of (1.3) ((Y, IR) is almost peri-

odic minimal) may present certain complicated natures. This is certainly worthwhile for

a future study.

The paper is organized as follows. In section 2, we summarize some preliminary

materials such as zero number properties ([1], [4], [23]), Floquet theory ([8]), Sacker-Sell

spectrum ([6], [22], [26], [27]) and invariant manifold theory ([7], [9], [41]). We also review

invariant measure theory ([20], [24], [34]) and properties of almost automorphic functions

([37], [38], [39]). We characterize zero crossing numbers on invariant manifolds in section

3. Our main results are proved in section 4. In section 5, we discuss examples from [16],

[17], [40] which show that both uniquely ergodic and non-uniquely ergodic (non-almost

periodic) almost automorphic minimal sets exist in semiflow of type (1.3).

For simplicity, we only prove our main results for the case of Dirichlet boundary

conditions. The case of Neumann boundary conditions can be proved similarly.

2. Preliminary

2.1. Invariant Measures

Let (E, IR) be a flow with compact metric phase space E. An invariant measure on E

is a probability measure µ on E such that µ(A · t) = µ(A) for all Borel sets A ⊂ E and all

t ∈ IR, here A · t = {ω · t|ω ∈ A}. An invariant measure µ on E is ergodic if µ(A∆A · t) = 0

for all t ∈ IR implies that µ(A) = 0 or 1, where A∆A · t = (A \ A · t) ∪ (A · t \ A). It is

a consequence of Krylov-Bogoliubov theorem that invariant measures on E always exist

([24]). If E has only one invariant measure, that is, E is uniquely ergodic, then the unique

invariant measure on E is an ergodic measure.

Let C(E, IR1) be the space of continuous functions f : E → IR1. By Riesz Represen-

tation theorem, there is an isomorphism between bounded positive linear functionals l on

C(E, IR1) satisfying l(1) = 1 with the (regular, positive, Borel, probability) measures on

E which is given by

l(f) =

∫

E

f(ω)µ(dω), ∀f ∈ C(E, IR1). (2.1)
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Now, a measure µ on E is invariant if and only if l(ft) = l(f) for all f ∈ C(E, IR1)

and all t ∈ IR, where ft(ω) = f(ω · t). Also µ is ergodic if and only if for f ∈ L1(E, IR1)

one has

ft = f for all t ∈ IR ⇐⇒ f ≡ constant.

(See [20], [34]).

2.2. Almost Automorphic Minimal Set

Definition 2.1. 1) Let E be a complete metric space. A continuous function f : IR1 → E

is almost automorphic if given a sequence {t
′

n} ⊂ IR1, there is a subsequence {tn} ⊂ {t
′

n}

and a function g : IR1 → E such that f(tn + t) → g(t), g(t − tn) → f(t) pointwise as

n → ∞.

2) A flow (E, IR) with compact metric phase space E is said to be

almost automorphic minimal if it contains a dense almost automorphic motion {x0 · t}.

The point x0 is referred to as an almost automorphic point.

3) Consider a homomorphism of minimal flows p : (E, IR) → (Y, IR), where

(Y, IR) is (Bohr) almost periodic minimal. (E, IR) is said to be an almost automorphic

(almost periodic) extension of (Y, IR) if (E, IR) is an almost 1-1 (a 1-1) extension of

(Y, IR).

Remark 2.1. 1) The notion of almost automorphic function was first introduced by

Bochner ([2]) in his work in differential geometry. Subsequent studies were made by Veech

([37], [38], [39]). Flor ([12]), Reich ([25]), and Terras ([35], [36]) etc. Applications to differ-

ential equations were considered in works of Fink [11], Johnson [18], Veech [37], Shen and Yi

[31], [32], [33] and others. An almost automorphic function can be viewed as a generalized

almost periodic function since an (Bohr) almost periodic function is necessary an almost

automorphic function but the converse is not true (see [38] for an example of non-almost

periodic almost automorphic function and [16], [33] for examples of non-almost periodic

almost automorphic solutions in almost periodic scalar ordinary and parabolic equations).

2) The connection between the almost automorphy and the almost periodicity was

indicated in [37] as follows: a function is (Bohr) almost periodic if and only if its compact

hull consists of almost automorphic functions, while the hull of an (non-almost periodic)

almost automorphic function contains only residually many almost automorphic functions.
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3) If (E, IR) contains a dense almost automorphic motion, then it is point distal ([40]),

hence is necessary minimal (see [40] or [33] for discussions).

4) Let p : (E, IR) → (Y, IR) be homomorphism of minimal flows, where (Y, IR) is

(Bohr) almost periodic minimal. If (E, IR) is an almost automorphic extension of (Y, IR),

then (E, IR) is almost automorphic minimal, moreover, almost automorphic points on E

are precisely those x = E ∩ p−1(px). In the case that (Y, IR) in (1.3) is almost periodic

minimal, it follows from Shen and Yi ([33]) that any minimal set E ⊂ X × Y of (1.3) is

an almost automorphic extension of Y , hence an almost automorphic minimal set.

2.3. Zero Number Properties

For a given C1 function v : [0, 1] → IR1, the zero number of v is defined as

Z(v(·)) = #{x ∈ (0, 1)|v(x) = 0}.

The following lemma can be found originally in [1], [23], and is improved in a recent work

[4].

Lemma 2.1. Consider the scalar linear parabolic equation:






vt = a(t, x)vxx + b(t, x)vx + c(t, x)v, t > 0, x ∈ (0, 1),

v(t, 0) = 0, v(t, 1) = 0, t > 0,

(2.2)

where a, at, ax, b, and c are bounded continuous functions, a ≥ δ > 0. Let v(t, x) be a

classical nontrivial solution of (2.2). Then, the following holds:

1) Z(v(t, ·)) is finite for t > 0 and is nonincreasing as t increases;

2) Z(v(t, ·)) can drop only at t0 such that v(t0, ·) has a multiple zero in [0, 1];

3) Z(v(t, ·)) can drop only finite times, and there exists a t∗ > 0 such that v(t, ·) has only

simple zeros in [0, 1] as t ≥ t∗ (hence Z(v(t, ·)) = constant as t ≥ t∗).

2.4. Floquet Theory

Consider the following linear parabolic equation:






wt = wxx + b(x, ω · t)w, t > 0, 0 < x < 1,

w(t, 0) = 0, w(t, 1) = 0, t > 0,

(2.3)

where ω ∈ Ω, ω · t is a flow on a compact metric space Ω, b : [0, 1]×Ω → IR1 is continuous.

Suppose that for any w0 ∈ L2(0, 1), the solution w(t, x, w0, ω) of (2.3) with w(0, x, w0, ω) =

w0(x) exists. The following results are due to [8].
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Theorem 2.2. 1) There is a sequence {wn}
∞

n=1, wn : [0, 1] × Ω → IR1 (n = 1, 2, · · ·)

such that wn(·, ω) ∈ C1,γ[0, 1] for any γ with 0 ≤ γ < 1, wn(0, ω) = wn(1, ω) = 0, and

‖wn(·, ω)‖L2(0,1) = 1 for any ω ∈ Ω. {wn(·, ω)}∞n=1 forms a (Floquet) basis of L2(0, 1)

and Z(wn(·, ω)) = n − 1 for all ω ∈ Ω. Let Wn(ω) = span{wn(·, ω)}, n = 1, 2, · · ·.

Then
⊕n2

i=n1
Wi(ω) = {w0 ∈ L2(0, 1)|w(t, ·, w0, ω) is exponentially bounded in L2(0, 1),

and n1 − 1 ≤ Z(w(t, ·, w0, ω)) ≤ n2 − 1 for all t ∈ IR1} ∪ {0} for any n1, n2 with n1 ≤ n2.

2) Suppose w0(x) =
∑

∞

n=1 c0
nwn(x, ω) (c0

n’s are called Fourier coefficients). Then

w(t, x, w0, ω) =

∞
∑

n=1

cn(t)wn(x, ω · t), (2.4)

where

c
′

n = µn(ω · t)cn, (2.5)

cn(0) = c0
n, µn(ω · t) =

∫ 1

0
[b(x, ω · t)wn(x, ω · t)2 −wnx(x, ω · t)2]dx, n = 1, 2 · · ·. Moreover,

for each n ≥ 1, there are Tn > 0, κn > 0 which are independent of ω ∈ Ω such that

∫ t+Tn

t

µn+1(ω · s)ds −

∫ t+Tn

t

µn(ω · s)ds ≤ −κn, (2.6)

for all ω ∈ Ω and t ∈ IR1.

3) Define Ψ(·) : Ω → L(L2(0, 1), l2) by Ψ(ω)w0 = {c0
n}

∞

n=1, where w0(x) =
∑

∞

n=1 c0
nwn(x, ω). Then Ψ(ω · t)w(t, x, w0, ω) = {cn(t)}, here cn(t)’s are given in (2.5).

Moreover, Ψ is continuous, Ψ(ω) is an isomorphsim for each ω ∈ Ω, and there are positive

constants K1, K2 which are independent of ω such that

‖Ψ(ω)‖ ≤ K1 and ‖Ψ−1(ω)‖ ≤ K2.

2.5. Exponential Dichotomy (ED) and Sacker-Sell (S-S) Spectrum

Consider






vt = vxx + a(x, ω · t)vx + b(x, ω · t)v, t > 0, 0 < x < 1

v(t, 0) = 0, v(t, 1) = 0, t > 0,

(2.7)

where ω ∈ Ω, ω · t is a flow on compact metric space Ω, a(x, ω) and b(x, ω) are continuous

in x, ω, and for any given ω ∈ Ω, a(x, ω · t) is C1 in x, t. Let X be a fractional power
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space associated to the operator u 7→ −uxx : H2
0 (0, 1) → L2(0, 1) and Φ(t, ω) : X → X be

the evolution operator generated by (2.7), that is, the evolution operator of the following

equation:

v
′

= A(ω · t)v, t > 0, ω ∈ Ω, v ∈ X, (2.8)

where A(ω)v = vxx + a(x, ω)vx + b(x, ω)v, ω · t is as in (2.7).

Definition 2.2. Equation (2.7) (or (2.8)) is said to have an exponential dichotomy on Ω

if there exist β > 0, K > 0 and continuous projections P (ω) : X → X such that for any

ω ∈ Ω, the following holds:

1) Φ(t, ω)P (ω) = P (ω · t)Φ(t, ω), t ∈ IR+;

2) Φ(t, ω)|R(P (ω)) : R(P (ω)) → R(P (ω · t)) is an isomorphism for t ∈ IR+ (hence

Φ(−t, ω) := Φ−1(t, ω · −t) : R(P (ω)) → R(P (ω · −t)) is well defined for t ∈ IR+);

3)

‖Φ(t, ω)(I − P (ω))‖ ≤ Ke−βt, t ∈ IR+,

‖Φ(t, ω)P (ω)‖ ≤ Keβt, t ∈ IR−.
(2.9)

Remark 2.2. 1) (2.9) is equivalent to

‖Φ(t − s, ω · s)(I − P (ω · s))‖ ≤ Ke−β(t−s), t ≥ s, t, s ∈ IR1,

‖Φ(t − s, ω · s)P (ω · s)‖ ≤ Keβ(t−s), t ≤ s, t, s ∈ IR1
(2.10)

for any ω ∈ Ω.

2)

R(P (ω)) = {v ∈ X|Φ(t, ω)v exists for t ∈ IR1,

Φ(t, ω)v → 0 exponentially as t → −∞}

= {v ∈ X|Φ(t, ω)v exists for t ∈ IR1, Φ(t, ω)v → 0 as t → −∞},

and
R(I − P (ω)) = {v ∈ X|Φ(t, ω)v → 0 exponentially as t → ∞}

= {v ∈ X|Φ(t, ω)v → 0 as t → ∞}.

Now, for any given λ ∈ IR1, consider

v
′

= (A(ω · t) − λ)v, t > 0, ω ∈ Ω, v ∈ X, (2.11)λ
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where A(ω) and ω · t are as in (2.8).

Definition 2.3. Σ(Ω) = {λ ∈ IR1|(2.11)λ has no ED on Ω} is called the

(Sacker-Sell) spectrum of (2.7) (or (2.8)).

Remark 2.3. Σ(Ω) is of the following form: Σ(Ω) = ∪∞

k=1Ik, where Ik = [ak, bk] and {Ik}

is ordered from right to left, that is, · · · < an ≤ bn < an−1 ≤ bn−1 < · · · < a2 ≤ b2 < a1 ≤

b1 ([6], [22], [26], [27]).

Suppose that Σ(Ω) = ∪∞

k=1Ik (Ik = [ak, bk]) is the spectrum of (2.7). For any given

0 < n1 ≤ n2 ≤ ∞, if n2 6= ∞, let

V n1,n2(ω) = {v ∈ X|‖Φ(t, ω)v‖ = o(ea−t) as t → −∞,

‖Φ(t, ω)v‖ = o(eb+t) as t → ∞},

where a−, b+ are such that λ1 < a− < an2
≤ bn1

< b+ < λ2 for any λ1 ∈ ∪∞

k=n2+1Ik and

λ2 ∈ ∪n1−1
k=1 Ik. If n2 = ∞, let

V n1,n2(ω) = {v ∈ X|‖Φ(t, ω)v‖ = o(eb+t) as t → ∞},

where b+ is such that bn1
< b+ < λ for any λ ∈ ∪n1−1

k=1 Ik.

Definition 2.4. V n1,n2(ω) is called the invariant subspace of (2.7) (or (2.8)) associated

to the spectrum set ∪n2

k=n1
Ik at ω ∈ Ω.

Remark 2.4. For given ω ∈ Ω, let w(t, x) = exp( 1
2

∫ x

0
a(s, ω · t)ds)v(t, x). Then (2.7)

becomes






wt = wxx + b∗(x, ω · t)w, t > 0, 0 < x < 1,

w(t, 0) = 0, , w(t, 1) = 0, t > 0,

(2.7)
′

for some continuous function b∗ : [0, 1]×Ω → IR1, where ω · t is as in (2.7). Moreover, one

has

1) (2.7) has ED on Ω if and only if (2.7)
′

has ED on Ω. It follows that if Σ(Ω) and

Σ
′

(Ω) are the spectrum of (2.7) and (2.7)
′

respectively, then Σ(Ω) = Σ
′

(Ω).

2) Suppose that Σ(Ω) = ∪∞

k=1Ik and {wn(·, ω)} is the Floquet basis of (2.7)
′

.

Then for any given 0 < n1 ≤ n2, V n1,n2(ω) = exp(−1
2

∫ x

0
a(s, ω)ds)V

′n
′

1,n
′

2(ω) (i.e.

V n1,n2(ω) = {v(·)|v(x) = exp(−1
2

∫ x

0
a(s, ω)ds)w(x), w(·) ∈ V

′n
′

1,n
′

2), where V
′n

′

1,n
′

2(ω) =
⊕n

′

2

k=n
′

1

span{wn(·, ω)}, n
′

1 = dimV 1,n1−1(ω) + 1, n
′

2 = dimV 1,n2(ω). Therefore, by The-

orem 2.2, N1 ≤ Z(v(·)) ≤ N1 + N2 − 1 and N1 ≤ Z(w(·)) ≤ N1 + N2 − 1 for any
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v ∈ V n1,n2(ω) \ {0}, w ∈ V
′n

′

1,n
′

2(ω) \ {0}, where N1 = n
′

1 − 1 = dimV 1,n1−1(ω),

N2 = n
′

2 − n
′

1 = dimV n1,n2(ω).

3) Suppose that 0 ∈ Σ(Ω) and n0 is such that 0 ∈ In0
⊂ Σ(Ω). Then

V s(ω) = V n0+1,∞(ω), V cs(ω) = V n0,∞(ω), V c(ω) = V n0,n0(ω), V cu(ω) = V 1,n0(ω),

and V u(ω) = V 1,n0−1(ω) are referred to as stable, center stable, center, center unstable,

and unstable subspaces of (2.7) (or (2.8)) at ω ∈ Ω respectively.

2.6. Invariant Manifolds

Consider

v
′

= A(ω · t)v + F (v, ω · t), t > 0, ω ∈ Ω, v ∈ X, (2.12)

where ω · t and A(ω · t) are as in (2.8), F (·, ω) ∈ C1(X, X0), F (v, ·) ∈ C0(Y, X0) (v ∈ X),

F (v, y) = o(‖v‖) (X0 = L2(0, 1)). It is well known that the solution operator Λt(·, ω) of

(2.12) exists in usual sense (that is, for any v ∈ X, Λ0(v, ω) = v, Λt(v, ω) ∈ D(A(ω · t)) ,

Λt(v, ω) is differentiable in t with respect to X0 norm and satisfies (2.12) for t > 0) ([14]).

Now suppose that Σ(Ω) = ∪∞

k=1Ik is the spectrum of (2.8). The following theorem

can be proved using arguments of [7], [9], [21], [30].

Theorem 2.3. There is a δ0 > 0 such that for any 0 < δ∗ < δ0 and 0 < n1 ≤ n2 ≤ ∞,

(2.12) possess for each ω ∈ Ω a local invariant manifold W n1,n2(ω, δ∗) which satisfies the

following properties:

1) There are M > 0, and bounded continuous function hn1,n2 : ∪ω∈Ω

(

V n1,n2(ω) ×

{ω}
)

→ ∪ω∈Ω

(

V n2+1,∞(ω)
⊕

V 1,n1−1(ω)
)

with hn1,n2(·, ω) : V n1,n2(ω) →

V n2+1,∞(ω)
⊕

V 1,n1−1(ω) being C1 for each fixed ω ∈ Ω, and hn1,n2(v, ω) = o(‖v‖),

‖∂hn1,n2

∂v
(v, ω)‖ ≤ M for all ω ∈ Ω, v ∈ V n1,n2(ω) such that

Wn1,n2(ω, δ∗) =
{

v
n1,n2

0 + hn1,n2(vn1,n2

0 , ω)|vn1,n2

0 ∈ V n1,n2(ω) ∩ {v ∈ X|‖v‖ < δ∗}
}

.

Moreover, W n1,n2(ω, δ∗) are diffeomorphic to V n1,n2(ω) ∩ {v ∈ X|‖v‖ < δ∗}, and

Wn1,n2(ω, δ∗) are tangent to V n1,n2(ω) at 0 ∈ X for each ω ∈ Ω.

2) W n1,n2(ω, δ∗) is locally invariant in the sense that for any v ∈ W n1,n2(ω, δ∗), there

is a τ > 0 such that Λt(v, ω) ∈ W n1,n2(ω · t, δ∗) for any t ∈ IR1 with 0 < t < τ .

Remark 2.5. 1) The existence of δ0 in the above theorem which is independent of n1 and

n2 is due to the increasing of the gaps between the spectrum intervals In and In+1 as n

increases (see [7], [8]).
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2) Note that as usual W n1,n2(ω, δ∗) is constructed in terms of appropriate rate con-

ditions for the solutions of (2.12) by replacing F by a cut-off function F̃ (see [7]). It then

follows that for any n1 ≤ n2 ≤ n3 ≤ ∞ and ω ∈ Ω, W n1,n2(ω, δ∗) ⊂ W n1,n3(ω, δ∗), and

for any u ∈ W n1,∞(ω, δ∗), there are un ∈ Wn1,n(ω, δ∗) (n1 ≤ n < ∞) such that un → u

as n → ∞.

3) For any 0 < n1 ≤ n2 < ∞ and ω ∈ Ω, there are δ∗1 < δ0, τ > 0 such that

ΛtW
n1,n2(ω, δ∗1) ⊂ W n1,n2(ω · t, δ∗) for any t with |t| < τ .

Definition 2.5. Suppose that 0 ∈ Σ(Ω) and 0 ∈ In0
= [an0

, bn0
] ⊂ Σ(Ω). Then

W s(ω, δ∗) = W n0+1,∞(ω, δ∗), W cs(ω, δ∗) = W n0,∞(ω, δ∗), W c(ω, δ∗) = W n0,n0(ω, δ∗),

W cu(ω, δ∗) = W 1,n0(ω, δ∗), and W u(ω, δ∗) = W 1,n0−1(ω, δ∗) are referred to as local stable,

center stable, center, center unstable, and unstable manifolds of (2.12) at ω ∈ Ω respec-

tively.

Remark 2.6. 1) W s(ω, δ∗) and W u(ω, δ∗) are overflowing invariant in the sense that if δ∗

is sufficiently small, then

Λt(W
s(ω, δ∗), ω) ⊂ W s(ω · t, δ∗) for t � 1,

and

Λt(W
u(ω, δ∗), ω) ⊂ W u(ω · t, δ∗) for t � −1.

Moreover, one has

Λt(v, ω) → 0 as t → ∞, for any v ∈ W s(ω, δ∗),

and

Λt(v, ω) → 0 as t → −∞, for any v ∈ W u(ω, δ∗).

2) By the invariant foliation theory ([7], [9]), one has that for any ω ∈ Ω,

W cs(ω, δ∗) = ∪uc∈W c(ω,δ∗)W̄s(uc, ω, δ∗),

where W̄s(uc, ω, δ∗) is the so called stable leaf of (2.12) at uc, and it is invariant in the

sense that if τ > 0 is such that Λt(uc, ω) ∈ W c(ω · t, δ∗) and Λt(u, ω) ∈ W cs(ω, δ∗) for all

0 ≤ t < τ , where u ∈ W̄s(uc, ω, δ∗), then Λt(u, ω) ⊂ W̄s(Λt(uc, ω), ω · t, δ∗) for 0 ≤ t < τ .

Moreover, if dimV c(ω) = 1, then by the constructions of [7], [9], there are M, ρ > 0
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such that for any u ∈ W̄s(uc, ω, δ∗) (uc 6= 0) and τ > 0 with Λt(u, ω) ∈ W cs(ω · t, δ∗),

Λt(uc, ω) ∈ W c(ω · t, δ∗) for 0 ≤ t < τ , one has that

‖Λt(u, ω)− Λt(uc, ω)‖

‖Λt(uc, ω)‖
≤ Me−ρt ‖u − uc‖

‖uc‖

for 0 ≤ t < τ .

3. Zero Numbers on Invariant Manifolds

Let Ω = E ⊂ X × Y be a compact invariant set of (1.3). For any ω = (U, y) ∈ Ω,

denote ω · t = Πt(U, y). Let v = u − u(t, ·, U, y) in (1.1)y − (1.2)D. Then v satisfies the

following equation







vt = vxx + a(x, ω·, t)vx + b(x, ω · t)v + f̃(v, vx, x, ω · t), t > 0, 0 < x < 1,

v(t, 0) = 0, v(t, 1) = 0, t > 0,

(3.1)

where f̃(v, vx, x, ω) = f(y, x, v+U, vx+Ux)−f(y, x, U, Ux)−a(x, ω)vx−b(x, ω)v, a(x, ω) =

fp(y, x, U, Ux), b(x, ω) = fu(y, x, U, Ux).

Denote A(ω) = ∂2

∂x2 + a(·, ω) ∂
∂x

+ b(·, ω), F (v, ω) = f̃(v, vx, ·, ω). Then (3.1) can be

written as

v
′

= A(ω · t)v + F (v, ω · t). (3.2)

Suppose that Σ(Ω) = ∪∞

k=1Ik ({Ik} is ordered from right to the left) is the Sacker-Sell

spectrum of the linear equation associated to (3.2):

v
′

= A(ω · t)v, t > 0, ω ∈ Ω, v ∈ X. (3.3)

For any given 0 < n1 ≤ n2 ≤ ∞, let V n1,n2(ω) be the invariant subspace of (3.3)

associated to the spectrum set ∪n2

k=n1
Ik at ω ∈ Ω.

Lemma 3.1. For given 0 < n1 ≤ n2 ≤ ∞, N1 ≤ Z(v(·)) ≤ N1 + N2 − 1 for any v ∈

V n1,n2(ω), where N1 = dimV 1,n1−1(ω), N2 = dimV n1,n2(ω).

Proof. It directly follows from Remark 2.4 2).

For given 0 < n1 ≤ n2 ≤ ∞ and ω = (U, y) ∈ Ω, by Theorem 2.3, there is a well

defined local invariant manifold W n1,n2(ω, δ∗) of (3.2) (or (3.1)). Let

Mn1,n2(ω, δ∗) = {u ∈ X|u − U ∈ W n1,n2(ω, δ∗)}. (3.4)

12



Mn1,n2(ω, δ∗) is referred to as a local invariant manifold of (1.1)y-(1.2)D (or (1.3)) at (U, y).

Suppose that 0 ∈ Σ(Ω) and n0 is such that In0
= [a0, b0] ⊂ Σ with a0 ≤ 0 ≤ b0. For

given ω = (U, y) ∈ Ω, δ∗ > 0, let

Ms(ω, δ∗) = Mn0+1,∞(ω, δ∗),

M cs(ω.δ∗) = Mn0,∞(ω, δ∗),

M c(ω, δ∗) = Mn0,n0(ω, δ∗),

M cu(ω, δ∗) = M1,n0(ω, δ∗),

Mu(ω, δ∗) = M1,n0−1(ω, δ∗).

Then Ms(ω, δ∗), M cs(ω, δ∗), M c(ω, δ∗), M cu(ω, δ∗), and Mu(ω, δ∗) are continuous in

ω ∈ Ω and are referred to as local stable, center stable, center, center unstable, and

unstable manifolds of (1.1) (or (1.3)) at ω = (U, y) ∈ Ω respectively.

Remark 3.1. By Remark 2.6 2), for any ω = (U, y) ∈ Ω, one has that

M cs(ω, δ∗) = ∪uc∈Mc(ω,δ∗)M̄s(uc, ω, δ∗),

where M̄s(uc, ω, δ∗) = {u ∈ X|u − U ∈ W̄ s(uc − U, ω, δ∗) and M̄s(U, ω, δ∗) = Ms(ω, δ∗).

Moreover, if dimV c(ω) = 1, then there are M, ρ > 0 such that for any u∗ ∈ M̄s(uc, ω, δ∗),

uc 6= U , and τ > 0 with u(t, ·, u∗, y) ∈ M cs(ω · t, δ∗), u(t, ·, uc, y) ∈ M c(ω, δ∗) for any

0 ≤ t < τ , one has that

‖u(t, ·, u∗, y)− u(t, ·, uc, y)‖

‖u(t, ·, uc, y) − u(t, ·, U, y)‖
≤ Me−ρt ‖u

∗ − uc‖

‖uc − U‖

for 0 ≤ t < τ .

Theorem 3.2. Let δ0 be as in Theorem 2.3 and is sufficiently small. For any given

0 < n1 ≤ n2 < ∞, let N1 and N2 be as in Lemma 3.1. Then the following holds.

1) If n2 < ∞, then there is a δ∗n1,n2
< δ0 such that N1 ≤ Z(u(·)−U(·)) ≤ N1 +N2−1

for any u ∈ Mn1,n2(ω, δ∗n1,n2
) \ {U} (ω = (U, y) ∈ Ω).

2) If n1 > 0 is such that In1
⊂ IR− = {λ ∈ IR1|λ < 0}, then for any 0 < δ∗ < δ0,

n1 ≤ n2 ≤ ∞, u ∈ Mn1,n2(ω, δ∗) \ {U} (ω = (U, y) ∈ Ω), Z(u(·) − U(·)) ≥ N1.

3) If n1 > 0 is such that 0 ∈ In1
and dimV n1,n1(ω) = 1, then there is a 0 < δ∗n1,∞ < δ0

such that Z(u(·) − U(·)) ≥ N1 for any u ∈ Mn1,∞(ω, δ∗n1,∞) \ {U} (ω = (U, y) ∈ Ω).
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Proof. 1) Suppose that the theorem is not true for some 0 < n1 ≤ n2 < ∞. Then

there are δ∗n → 0, ωn = (Un, yn) ∈ Ω, and un ∈ Wn1,n2(ωn, δ∗n) \ {Un} such that

Z(un(·) − Un(·)) < N1 or Z(un(·) − Un(·)) ≥ N1 + N2. Let vn(·) =
un(·) − Un(·)
‖un − Un‖

.

Since un − Un ∈ Wn1,n2(ωn, δ∗n), n2 < ∞ and Ω is compact, {vn(·)} is relatively com-

pact. Without loss of generality, we assume that vn(·) → v∗ and ωn = (Un, yn) →

ω∗ = (U∗, y∗) as n → ∞. Then v∗ ∈ V n1,n2(ω∗). Moreover, by Remark 2.5 3),

v∗(t, ·) = limn→∞

u(t, ·, un, yn) − u(t, ·, Un, yn)
‖un − Un‖

satisfies (3.3) with ω = ω∗ for |t| �

1. Now by Lemma 3.1, N1 ≤ Z(v(t, ·)) ≤ N1 + N2 − 1 for |t| � 1. Suppose

that t1 > 0, t2 < 0 (|t1|, |t2| � 1) are such that v(t1, ·), v(t2, ·) have only sim-

ple zeros in [0, 1]. Then Z(u(t1, ·, un, yn) − u(t1, ·, Un, yn)) = Z(v(t1, ·)) ≥ N1 and

Z(u(t2, ·, un, yn) − u(t2, ·, Un, yn)) = Z(v(t2, ·)) ≤ N1 + N2 − 1 as n � 1. By Lemma

2.1, N1 ≤ Z(un(·) − Un(·)) ≤ N1 + N2 − 1, a contradiction.

2) Suppose that n1 is such that In1
⊂ IR−. We first prove that 2) is true for any

n2 < ∞. In fact, by Remark 2.6 1), when δ0 is sufficiently small, for any n1 ≤ n2 < ∞,

0 < δ∗ < δ0, and u∗ ∈ Mn1,n2(ω, δ∗)\{U}, u(t, ·, u∗, y) ∈ Mn1,n2(ω ·t, δ∗n1,n2
)\{u(t, ·, U, y)}

as t � 1. Then by 1), one has that Z(u(t, ·, u∗, y) − u(t, ·, U, y)) ≥ N1 for t � 1. It then

follows from Lemma 2.1 that Z(u∗(·) − U(·)) ≥ N1.

Next we prove that 2) also holds when n2 = ∞. Let u∗ ∈ Mn1,∞(ω, δ∗) \ {U}. By

Remark 2.5 2), there are un ∈ Mn1,n(ω, δ∗)\{U} (n1 ≤ n < ∞) such that un → u∗ as n →

∞. Now suppose that 0 < t0 � 1 is such that u(t0, ·, u
∗, y) − u(t0, ·, U, y) has only simple

zeros in [0, 1]. Then Z(u(t0, ·, u
∗, y) − u(t0, ·, U, y)) = Z(u(t0, ·, un, y) − u(t0, ·, U, y)) ≥ N1

as n � 1. This implies that Z(u∗(·) − U(·)) ≥ N1.

3) Suppose that n1 is such that 0 ∈ In1
and dimV n1,n1(ω) = 1.

First, we note that by 1), Z(u(·) − U(·)) = N1, and by Theorem 2.3 1),

u − U = v
n1,n1

0 + hn1,n1(vn1,n1

0 , ω) (3.5)

for any u ∈ Mn1,n1(ω, δ∗n1,n1
) \ {U} , where 0 6= v

n1,n1

0 ∈ V n1,n1(ω), hn1,n1(v, ω) = o(‖v‖).

Next, by Theorem 2.2, V n1,n1(ω) = span{wN1
(·, ω)}. Since wN1

(·, ω) has only simple

zeros in [0, 1] and Ω is compact, there is a δc > 0 such that for any v ∈ X with ‖v‖ ≤ δc,

and ω ∈ Ω,

Z(wN1
(·, ω)) = Z

( wN1
(·, ω)

‖wN1
(·, ω)‖

+ v(·)
)

= N1, (3.6)
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and for any u ∈ Mn1,n1(ω, δ∗n1,n1
) \ {U},

‖hn1,n1(vn1,n1

0 , ω)‖

‖vn1,n1

0 ‖
<

δc

2
(3.7)

when δ∗n1,n1
is sufficiently small, where v

n1,n1

0 is as in (3.5).

Now, note that Mn1,∞(ω, δ∗) = M cs(ω, δ∗) and Mn1,n1(ω, δ∗) = M c(ω, δ∗). Fix a δ∗

with 0 < δ∗ < δ0. By Remark 3.1, Mn1,∞(ω, δ∗) = ∪uc∈Mc(ω,δ∗)M̄s(uc, ω, δ∗), and there is

a δ∗n1,∞ > 0 such that for any u∗ ∈ M̄s(uc, ω, δ∗n1,∞) \ {uc} and uc ∈ M c(ω, δ∗n1,∞) \ {U},

the following holds.

i) If τ > 0 is such that u(t, ·, uc, y) ∈ M c(ω · t, δ∗n1,n1
) \ {u(t, ·, U, y)} for 0 ≤ t < τ , then

u(t, ·, u∗, y) ∈ Mn1,∞(ω · t, δ∗) for 0 ≤ t < τ .

ii) If τ > 0 is such that u(t, ·, uc, y) ∈ M c(ω · t, δ∗n1,n1
) \ {u(t, ·, U, y)} for 0 ≤ t < τ and

u(τ, ·, uc, y) 6∈ M c(ω · τ, δ∗n1,n1
) \ {u(τ, ·, U, y)}, then

‖u(τ, ·, u∗, y) − u(τ, ·, uc, y)‖

‖u(τ, ·, uc, y)− u(τ, ·, U, y)‖
≤

δc

2
. (3.8)

iii) If for any t > 0, u(t, ·, uc, y) ∈ M c(ω · t, δ∗n1,n1
) \ {u(t, ·, U, y)}, then

‖u(t, ·, u∗, y) − u(t, ·, uc, y)‖

‖u(t, ·, uc, y) − u(t, ·, U, y)‖
<

δc

2
(3.9)

when t � 1.

Now let u∗ ∈ Mn1,∞(ω, δ∗n1,∞) \ {U}. If u ∈ Mn1+1,∞(ω, δ∗n1,∞) \ {U}, then by 2),

Z(u∗(·) − U(·)) ≥ N1 + 1 > N1. If u ∈ Mn1,∞(ω, δ∗n1,∞) \ Mn1+1,∞(ω, δ∗n1,∞), then by

Remark 3.1, there is a uc ∈ Mn1,n1(ω, δ∗n1,∞) \ {U} such that u∗ ∈ M̄s(uc, ω, δ∗n1,∞) \ {U}.

Therefore, by (3.5),

u(t, ·, u∗, y) − u(t, ·, U, y)

= u(t, ·, uc, y) − u(t, ·, U, y) + u(t, ·, u∗, y) − u(t, ·, uc, y)

= c(t)wN1
(·, ω · t) + hn1,n1(c(t)wN1

(·, ω · t), ω · t) + u(t, ·, u∗, y) − u(t, ·, uc, y)

= c(t)‖wN1
(·, ω · t)‖

[ wN1
(·, ω · t)

‖wN1
(·, ω · t)‖

+
hn1,n1(c(t)wN1

(·, ω · t), ω · t)

c(t)‖wN1
(·, ω · t)‖

+
u(t, ·, u∗, y)− u(t, ·, uc, y)

c(t)‖wN1
(·, ω · t)‖

]
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for some non-zero scalar function c(t). By (3.7) and (3.8) or (3.9),

‖hn1,n1(c(t)wN1
(·, ω · t), ω · t)‖

|c(t)| · ‖wN1
(·, ω · t)‖

+
‖u(t, ·, u∗, y)− u(t, ·, uc, y)‖

|c(t)| · ‖wN1
(·, ω · t)‖

≤ δc

for some t > 0. Hence, by (3.6), one has that

Z(u(t, ·, u∗, y)− u(t, ·, U, y)) = Z(wN1
(·, ω · t)) = N1

for some t > 0. This implies that Z(u∗(·) − U(·)) ≥ N1. 3) is proved.

Corollary 3.3. Suppose that 0 ∈ Σ(Ω) and n0 is such that 0 ∈ In0
, dimV c(ω)(=

dimV n0,n0(ω)) = 1. Let Nu = dimV u(ω)(= dimV 1,n0−1(ω)). Then for δ∗ sufficiently

small, one has

Z(u(·) − U(·)) ≥ Nu + 1 for u ∈ M s(ω, δ∗) \ {U},

Z(u(·) − U(·)) ≥ Nu for u ∈ M cs(ω, δ∗) \ {U},

Z(u(·) − U(·)) = Nu for u ∈ M c(ω, δ∗) \ {U},

Z(u(·) − U(·)) ≤ Nu for u ∈ M cu(ω, δ∗) \ {U},

and

Z(u(·) − U(·)) ≤ Nu − 1 for u ∈ Mu(ω, δ∗) \ {U},

where ω = (U, y) ∈ Ω.

4. Ergodicity of Minimal Sets

Lemma 4.1. Let E be a minimal set of (1.3). Then one has

1) E is an almost 1-cover of Y , that is, Y0 = {y ∈ Y |card(E ∩ P−1(y)) = 1} is a

residual subset of Y ;

2) If E is hyperbolic, that is, the linearized equation







vt = vxx + a(x, ω · t)vx + b(x, ω · t)v, t > 0, 0 < x < 1

v(t, 0) = 0, v(t, 1) = 0, t > 0
(4.1)

has an exponential dichotomy on E, where ω = (U, y) ∈ E, a(x, ω) = fp(y, x, U(x), Ux(x)),

b(x, ω) = fu(y, x, U(x), Ux(x)), then E is a 1-cover of Y .

Proof. See [32], [33].
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Let E be a minimal invariant set of (1.3), and Σ(E) be the S-S spectrum of (4.1).

Lemma 4.2. Suppose that 0 ∈ Σ(E). Then for any (U1, y), (U2, y) ∈ E with ‖U1 −U2‖ �

1, one has V s(U1, y)
⊕

V cu(U2, y) = X, and V cs(U1, y)
⊕

V u(U2, y) = X. Consequently,

(U1 + V s(U1, y)) ∩ (U2 + V cu(U2, y)) 6= ∅, and (U1 + V cs(U1, y)) ∩ (U2 + V u(U2, y)) 6= ∅,

where V s(Ui, y), V cs(Ui, y), V cu(Ui, y), and V u(Ui, y) are the stable, center stable, center

unstable, and unstable subspaces of (4.1) at (Ui, y) ∈ E (i = 1, 2) respectively.

Proof. It follows from the same arguments as in Lemma 4.1 of [32].

Lemma 4.3. Let E be a minimal set of (1.3) and suppose that 0 ∈ Σ(E). Then for any

(U1, y), (U2, y) ∈ E with ‖U1 − U2‖ � 1, one has that M s(U1, y, δ∗) ∩ M cu(U2, y, δ∗) 6= ∅,

and M cs(U1, y, δ∗)∩Mu(U2, y, δ∗) 6= ∅, where M s(Ui, y, δ∗), M cs(Ui, y, δ∗), M cu(Ui, y, δ∗),

and Mu(Ui, y, δ∗) are the local stable, center stable, center unstable, and unstable manifolds

of (1.3) at ω = (Ui, y)(i = 1, 2) respectively.

Proof. It follows from the above Lemma 4.2 and the arguments in Lemma 4.2 of [32].

Lemma 4.4. Let E be a minimal set of (1.3) and assume that E is not a precise 1-cover

of Y . If dimV c(ω) = 1, then Z(U1(·) − U2(·)) = Nu for any (U1, y), (U2, y) ∈ E with

U1 6= U2, where Nu are as in Corollary 3.3.

Proof. Since E is not a precise 1-cover of Y , 0 ∈ Σ(E). Recall Nu = dimV u(ω), where

V u(ω) is the unstable subspace of (4.1) at ω = (U, y) ∈ E. Now for given ω1 = (U1, y), ω2 =

(U2, y) ∈ E with U1 6= U2, by Lemma 4.1 1), one easily sees that U1 · tn − U2 · tn → 0 and

U1 · sn − U2 · sn → 0 as n → ∞ for some sequences tn → ∞ and sn → −∞. Without loss

of generality, we assume that U1(·) − U2(·) has only simple zeros in [0, 1]. Then there is

ε > 0 such that for any v ∈ X with ‖v‖ < ε,

Z(U1(·) − U2(·) + v(·)) = Z(U1(·) − U2(·)). (4.2)

Now, by Lemma 4.3, for n � 1, W cs(ω1 · tn, δ∗) ∩ W u(ω2 · tn, δ∗) 6= ∅ and W s(ω1 ·

sn, δ∗) ∩ W cu(ω2 · tn, δ∗) 6= ∅. Let w+
n ∈ W cs(ω1 · tn, δ∗) ∩ W u(ω2 · tn, δ∗) and w−

n ∈

W s(ω1·sn, δ∗)∩W cu(ω2·tn, δ∗). Then u(t, ·, w+
n , yn·tn) exists for t < 0 and u(t, ·, w−

n , yn·sn)

exists for t > 0. Moreover ‖u(−tn, ·, w+
n , yn ·tn)−u(−tn, ·, ω2·tn)‖ = ‖u(−tn, ·, w+

n , yn ·tn)−
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U2(·)‖ → 0 as n → ∞ and ‖u(−sn, ·, w−

n , yn · sn) − u(−sn, ·, w1 · sn)‖ = ‖u(−sn, ·, w−

n , yn ·

sn) − U1(·)‖ → 0 as n → ∞. Therefore, by (4.2) and Corollary 3.3, when n � 1,

Z(U1(·) − U2(·)) = Z(U1(·) − u(−tn, ·, w+
n , yn · tn))

= Z(u(−tn, ·, ω1 · tn) − u(−tn, ·, w+
n , yn · tn))

≥ Z(u(tn, ·, U1, y) − w+
n (·))

≥ Nu,

and
Z(U1(·) − U2(·)) = Z(u(−sn, ·, w−

n , yn · sn) − U2(·))

= Z(u(−sn, ·, w−

n , yn · sn) − u(−sn, ·, ω2 · sn))

≤ Z(w−

n (·) − u(sn, ·, U2, yn))

≤ Nu.

This proves the lemma.

Lemma 4.5. Let E be a minimal set of (1.3). If E is uniquely ergodic, then the S-

S spectrum Σ(E) of (4.1) consists of pure points, that is, Σ(E) = {λ1, λ2, · · ·}, and

dimV n,n(U, y) = 1 for any n ((U, y) ∈ E).

Proof. First of all, for any given ω = (U, y) ∈ E, let w(t, x) = exp( 1
2

∫ x

0
a(s, ω ·t)ds)v(t, x).

Then (4.1) becomes







wt = wxx + b∗(x, ω · t)w, t > 0, 0 < x < 1,

w(t, 0) = 0, w(t, 1) = 0, t > 0
(4.3)

for some continuous function b∗ : [0, 1]× E → IR1.

Now, by Floquet theory (Theorem 2.2), (4.3) can be decomposed into infinitely many

scalar ODEs:

c
′

n = µn(ω · t)cn, (4.4)n

where µn(ω · t) =
∫ 1

0
[b∗(x, ω · t)wn(x, ω · t)2 − wnx(x, ω · t)2]ds, (n = 1, 2, 3, · · ·). Suppose

that Σn(E) is the S-S spectrum of (4.4)n. Then σ(E) = ∪∞

n=1Σn(E) ([8]).

Next, by the unique ergodicity of E and the relation between Lyapunov expo-

nents of (4.4)n and its S-S spectrum ([20]), we have Σn(E) = {λn}, where λn =

limt→∞
1
t

∫ t

0
µn(ω · t)dt for ν− a.e. ω ∈ E, ν is the unique ergodic measure of E. Hence,

Σ(E) = {λ1, λ2, λ3, · · ·}.
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Finally, by the relative dichotomy relation (2.6), we have λ1 > λ2 > λ3 > · · ·, and

λn → −∞ as n → ∞. Therefore, for any given n, dimV n,n(ω) = 1. This proves the

lemma.

Lemma 4.6. Let E be a minimal set of (1.3). Define

Ẽ = {(Ux(0), y)|(U, y) ∈ E} (4.5)

If for any (U1, y), (U2, y) ∈ E with U1 6= U2, Z(u(t, ·, U2, y) − u(t, ·, U2, y)) is a constant

for all t ∈ IR1, then the following holds:

1) h : E → Ẽ, (U, y) 7→ (Ux(0), y) is a homomorphism, and

Π̃th(U, y) = (ux(t, 0, U, y), y · t) = h(u(t, ·, U, y), y · t) (4.6)

defines a flow on Ẽ;

2) If (U1, y), (U2, y) are such that hyU1 > hyU2, then hy·tu(t, 0, U1, y) > hy·tu(t, 0, U2, y)

for all t ∈ IR1, where hyU = Ux(0).

proof. 1) h is clearly onto and continuous. Now let (U1, y), (U2, y) ∈ E be such that

U1 6= U2. By our condition and Lemma 2.1, U1(·) − U2(·) has only simple zeros in [0, 1].

In particular, hyU1 6= hyU2. It can be easily verified that Π̃t defines a flow on Ẽ.

2) We only note that Π̃t on Ẽ is a scalar skew-product subflow.

The following is our main result 2) stated in section 1.

Corollary 4.7. Let E be a uniquely ergodic minimal set of (1.3). The flow on E is

topologically conjugated to the scalar skew-product flow (4.6). Consequently, if flow on

E is not topologically conjugate to any scalar skew-product flow, then E is non-almost

periodic almost automorphic.

Proof. The corollary obviously holds if E is a 1-cover of Y . The purely almost 1-cover

case of E is an immediate consequence of Lemma 4.4, Lemma 4.5, and Lemma 4.6.

We note that in the case of Neumann boundary conditions, Ẽ in (4.5), (4.6) should

be defined as

Ẽ = {(U(0), y)|(U, y) ∈ E}.

We now prove our main result 1) stated in section 1. Many arguments of our proof

follows from [15].
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Theorem 4.8. Let E be a minimal set of (1.3) and denote Y0 = {y ∈ Y |cardE∩P−1(y) =

1}. Then E is uniquely ergodic if and only if (Y, IR) is uniquely ergodic and ν(Y0) = 1,

where ν is the ergodic measure on Y .

Proof. We note that if E is precisely a 1-cover of Y , then the theorem holds automatically.

Thus, without loss of generality, we shall assume that E is not a 1-cover of Y . It then

follows from Lemma 4.1 2) that E is not hyperbolic.

First, we prove the ‘only if’ part. It is clear that Y must be uniquely ergodic since

the projection P : E → Y defines a flow homomorphism. Let ν be the ergodic measure

on Y and let Y0 = {y ∈ Y |cardE ∩ P−1(y) = 1}. By Lemma 4.1 1), Y0 ⊂ Y is residual

and invariant. Now if ν(Y0) 6= 1, then ν(Y0) = 0, that is, Y c
0 = Y \ Y0 is invariant and

ν(Y c
0 ) = 1. Define for each y ∈ Y ,

A(y) = {Ux(0)|(U, y) ∈ E ∩ P−1(y)}, (4.7)

and

a1(y) = maxA(y), a2(y) = min A(y). (4.8)

It is easy to see that a1 : Y → IR1 is upper semi-continuous and a2 : Y → IR1 is lower semi-

continuous. It follows from Corollary 4.7 that a1(y) > a2(y) for y ∈ Y c
0 and Π̃t(ai(y), y) =

(ai(y ·t), y ·t) (i = 1, 2), t ∈ IR1, where Π̃t is defined in (4.6). Now consider linear functional

li : C(E, IR1) → IR1,

li(F ) =

∫

Y

F (h−1(ai(y), y))ν(dy), (4.9)

i = 1, 2, where h is as in Lemma 4.6. It is clear that li (i = 1, 2) define invariant measures

on E (see section 2). Assume that l1 = l2. Take F ∈ C(E, IR1): F (U, y) = Ux(0) for

(U, y) ∈ E. It is clear by (4.9) that a1(y) ≡ a2(y) for ν− a. e. y ∈ Y , a contradiction.

Thus, l1, l2 defines distinct invariant measures on E. This contradicts with the unique

ergodicity of E. Therefore, ν(Y0) = 1.

To prove the ‘if’ part of the theorem, we consider the set E0 = {(U, y) ∈ E|(U, y) =

E ∩ P−1(y)}. Then the natural projection P defines a flow isomorphism between E0 and

Y0. Now let ν be the unique ergodic measure on Y and let µ be an invariant measure on

E. One has that P (µ) = ν, that is, µ(D) = ν(P (D)) for all Borel sets D ⊂ E0 ⊂ E. Note

that µ(E0) = ν(Y0) = 1. Therefore, E is uniquely ergodic.
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5. Examples

We discuss examples of almost automorphic minimal sets of skew-product flows which

are generated from certain scalar almost periodic ODEs (note that solutions of a scalar

ODE are spatial homogeneous solutions of a scalar parabolic equation with the Neumann

boundary conditions).

5.1. Uniquely Ergodic Minimal Set

A linear almost periodic scalar ODE

x
′

= A(t)x + B(t) (5.1)

is constructed by Johnson in [16] satisfying following properties:

a) A(t), B(t) are uniform limits of 2n-periodic functions An(t), Bn(t) respectively;

b)
∫ t

0
A(s)ds → ∞ as t → ∞;

c) If x0(t) is the solution of (5.1) satisfying x0(0) = 0, then |x0(t)| ≤ 1, and

x0(2
n) =







1
5 , n ≥ 4, n odd

0, n even.

(5.2)

The solution x0(t) can not be almost periodic. If not, the frequence module of x0(·)

must be contained in that of A(·) and B(·). Note that limn→∞ A(2n) and limn→∞ B(2n)

exist. It follows that limn→∞ x0(2
n) also exists (see [11]), which contradicts to (5.2).

Let Y = Hull(A, B). One can define functions a, b : Y → IR1 such that if y0 = (A, B),

then a(y0 · t) ≡ A(t), b(y0 · t) ≡ B(t) (see [15], [42]). Thus, equations

x
′

= a(y · t)x + b(y · t) (5.3)y

generate a skew product flow Πt : IR1 × Y → IR1 × Y ,

Πt(x∗, y∗) = (x(t, x∗, y∗), y∗ · t), (5.4)

where x(t, x∗, y∗) is the solution of (5.3)y∗
with initial value x∗.

Since limt→∞

∫ t

0
A(s)ds = ∞, all nontrivial solution of

x
′

= A(t)x (5.5)
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are unbounded. It follows that x0(t) is the only bounded solution of (5.1), that is E =

ω(0, y0) is the only minimal set of Πt, and moreover, E is a non-almost periodic almost

automorphic minimal set. It is shown in Johnson [15] that this minimal set E is uniquely

ergodic.

5.2 Non-uniquely Ergodic Minimal Set

An idea of constructing such an example is given by Johnson ([17], [18]) as follows.

Consider linear ODE system

z
′

= A(y · t)z, (5.6)

where z ∈ IR2, y ∈ Y , Y is an almost periodic minimal set. Let θ = Argz. Then θ satisfies

a scalar equation

θ
′

= f(θ, y · t), (5.7)

where f is periodic in θ with period π. Thus, (5.7) induces a skew-product flow Π̃t

on P 1 × Y , where P 1 is the real project 1-space. By S-S spectrum theory ([26], [27]),

the spectrum of (5.6) is either a single point, two single points, or a nondegenerate closed

interval. Now, suppose that the S-S spectrum Σ of (5.7) is a nondegenerate closed interval.

It is shown in [19], [26] that Π̃t contains a unique minimal set Ẽ, and in [18] that there

are exactly two ergodic measures on Ẽ. We then lift the flow Π̃t to Πt on IR1 ×Y , that is,

Πt is generated by

x
′

= f(x, y · t), x ∈ IR1. (5.8)

It follows that Πt has a minimal set with exactly two ergodic measures (it therefore can

not be almost periodic).

A typical such system is the equation constructed by Vinograd ([41]) as follows.

Consider

x
′

=

(

0 1 + a(y · t)
1 − a(y · t) 0

)

x, (5.9)

where y ∈ T 2, y · t = (y1 + t, y2 + αt), α is irrational.

Let θ = argx. Then θ satisfies

θ
′

= −a(y · t) + cos 2θ. (5.10)

The equation (5.9) has the following properties.

1) a(y) is the limit of a nondecreasing sequence {an(y)} and an(y) ≥ 0.
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2) For y0 = (0, 0) ∈ T 2, the equation

θ
′

= −an(y0 · t) + cos 2θ (5.11)n

has for each n two solutions {θn
1 (t)}, {θn

2 (t)} such that

−
π

4
< θn

1 (t) < θn+1
1 (t) < θn+1

2 (t) < θn
2 (t) <

π

4
(n ≥ 1), (5.12)

0 < inf
t

(θn
1 (t), θn

2 (t)) ≡ γn → 0. (5.13)

3) The equation

x
′

=

(

0 1 + an(y · t)
1 − an(y · t) 0

)

x (5.14)n

has two Lyapunov exponents βn, −βn with βn > 1
2 .

We now review some properties of (5.9), (5.10) studied in Johnson [17].

1) The S-S spectrum of (5.14)n is Σn = {−βn, βn} and the S-S spectrum Σ of (5.9) is a

nondegenerate interval containing [− 1
2 , 1

2 ].

2) Sets En
1 = cl{θn

1 (t), y0 ·t)}, En
2 = cl{(θn

2 (t), y0 ·t)} are disjoint almost periodic minimal

sets of the flow Πn
t on P 1×T 2 which is generated by (5.11)n, that is En

1 , En
2 are 1-cover

of T 2.

3) Let En
1 = {(gn(y), y)|y ∈ T 2}, En

2 = {(hn(y), y)|y ∈ T 2}. Then

−
π

4
< gn(y) ≤ gn+1(y) < hn+1(y) ≤ hn(y) <

π

4
.

4) Let g(y) = limn→∞ gn(y), h(y) = limn→∞ hn(y). Then Y0 = {y ∈ T 2|g(y) = h(y)} is

a residual subset of T 2. Let E = clg(y0 · t), y0 ∈ Y and Ẽ = {(θ, y) ∈ P 1 × T 2|g(y) ≤

θ ≤ h(y)}. Then E ⊂ Ẽ is the unique almost automorphic minimal set of Πt which

has exactly two ergodic measures.

5) Ẽ is an isolated invariant set. Ẽ has the following complicated nature: a) Ẽ is

connected; b) Ẽ is locally connected at all points where g(y) = h(y); c) Ẽ is not

locally connected at all points.

This example simply shows that in the case of scalar almost periodic ODE (thus in

scalar parabolic PDE in one space dimension with the Neumann boundary conditions) if

minimal set E of the generated skew product flow is almost automorphic but not uniquely

ergodic, then one may expect a complicated topological and dynamical nature on E or in
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vincinity of E (using theory of [28], one can obtain more information about Ẽ and E, e.g.,

points g(y) and h(y) are ‘expansion points’).
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