
Trust Modeling in Multi-Robot Patrolling*

Charles Pippin1 and Henrik Christensen2

Abstract— On typical multi-robot teams, there is an implicit
assumption that robots can be trusted to effectively perform
assigned tasks. The multi-robot patrolling task is an example
of a domain that is particularly sensitive to reliability and
performance of robots. Yet reliable performance of team
members may not always be a valid assumption even within
homogeneous teams. For instance, a robot’s performance may
deteriorate over time or a robot may not estimate tasks
correctly. Robots that can identify poorly performing team
members as performance deteriorates, can dynamically adjust
the task assignment strategy. This paper investigates the use
of an observation based trust model for detecting unreliable
robot team members. Robots can reason over this model to
perform dynamic task reassignment to trusted team members.
Experiments were performed in simulation and using a team
of indoor robots in a patrolling task to demonstrate both
centralized and decentralized approaches to task reassignment.
The results clearly demonstrate that the use of a trust model
can improve performance in the multi-robot patrolling task.

I. INTRODUCTION

In multi-agent systems, the act of delegating a goal to
another agent requires a mental belief, or trust, that the
agent will reliably complete the goal [1]. However, trust
is not often considered explicitly in multi-robot systems. In
conventional approaches, each robot team member explicitly
operates as part of a team and it may be assumed that
a robot will perform according to an expected operational
standard. However, fully autonomous robotic teams may
have different quality levels and operational capabilities.
Consider an example of search and rescue robots from
multiple different organizations forming an ad-hoc team to
cooperatively search for survivors after a disaster. Such teams
may be able to negotiate using common standards, but would
not be overseen by a single organization. Even within a group
of homogeneous robots, there are differences in performance
due to power levels, odometry calibration, wear and tear,
and sensor noise, for instance. Therefore, these teams may
need to learn which team members are trustworthy and
dynamically adjust their control strategies. Robots can use
observations of team member performance to build models
of how well others can be trusted to perform various tasks.
These observations could occur during online training or
learning and through real world exploration.

c©2014 IEEE. This is the author’s version of the paper.
*This work was supported internally by the Georgia Tech Research

Institute.
1C. Pippin is a senior research scientist with the Georgia Tech Research

Institute, Georgia Institute of Technology, Atlanta, GA, USA. pippin
at gatech.edu

2H. Christensen is the Director of the Center for Robotics and Intelligent
Machines, Georgia Institute of Technology, Atlanta, GA, USA. hic at
cc.gatech.edu

The multi-robot patrolling problem is a surveillance task
that uses multiple robots to repeatedly visit every important
location in a known environment, with the goal of minimiz-
ing the time in-between visits. This problem is interesting
from a multi-robot research perspective, because it presents
challenges in optimization and task assignment, cooperation,
communication and reliability. Cooperation is important in
this task, as it is necessary for the robots to work together to
improve the efficiency of the system as a whole. An effective
multi-robot patrol team should be able to visit points more
efficiently and with greater reliability than a single robot.
However, reliability is also important, particularly in security
applications. For instance, if robots on the team do not
perform as expected, the system should degrade gracefully.
Fully autonomous robot teams will require the ability to
evaluate performance of team members for multiple reasons:
human operators may not be able to manage large teams of
robots in dynamic environments, robot teams may form in an
ad-hoc fashion, and the performance metrics may not always
be human observable.

The performance criterion considered in this paper is the
refresh time, which is the time gap between any two visits
to the same location1. The maximum refresh time reflects
the bounds on the effectiveness of a robot team in detecting
events in the environment [7]. If a robot fails to perform its
assigned tasks or visits locations too infrequently, this will
affect the performance of the team, and other robots should
provide assistance.

The main contribution of this paper is the use of an
observation based model for deciding when robots can be
trusted to perform reliably in a multi-robot patrolling task.
The probability based model is more robust to noise in
observations as compared to threshold based approaches. The
use of this model in the patrolling task results in improved
performance when there are unreliable or untrustworthy
robots on the team.

This paper is organized as follows. In Section II we
present the related work for the multi-robot patrolling task.
In Section III , we review the multi-robot patrolling task, and
in Section IV, we introduce the use of a performance monitor
and a trust model. In Sections V and VI, we present results of
experiments using this approach on a team of indoor robots
and in simulation. Finally, in Section VII, we conclude and
present future work.

1In the literature, this is also referred to as the idle time of a node.
In considering robot performance, we prefer to use refresh time to avoid
confusion related to the idleness of a robot vs. the idle time of a node.

II. RELATED WORK

Recent examples of work on the problem of cooperative
patrolling by a multi-robot system are presented in [3], [4],
[13], [11] and [9]. A theoretical analysis of the patrolling
problem is provided by Chevaleyre [2]. The results showed
that the problem could be solved with a Traveling Salesman
Problem (TSP) approach. This is extended to the multi-robot
case by spacing each of the robots evenly along the path [2],
[3] in a cyclic TSP patrol. Chevaleyre also showed that it
makes sense to partition the graph in some cases, particularly
when there are long corridors or edges separating clusters of
nodes. An example such case is shown in Figure 1 when
l > h.

An approach for reassigning tasks from poorly performing
team members was presented in Parker’s L-ALLIANCE
framework, in which a robot monitored a peer robot and
took over a task from when the time for completing the task
exceeded a threshold [6]. Pippin and Christensen presented
an approach to monitoring robot performance as compared to
the performance of the team for determining when a robot’s
performance could be considered out of control [8].

Once poorly performing team member have been detected,
robots must decide whether to dynamically re-allocate tasks
among the better performing team members. In [10] the
authors presented an approach for using an auction algorithm
for dynamic task reassignment. In that work, however, a
threshold-based trust model was used. When the performance
of a single robot exceeded the average performance of the
team plus one standard deviation, the robot was marked
untrusted.

The choice of a dynamic task allocation mechanism is
independent of the application of a trust model. The trust
model can also be applied to different dimensions for per-
formance and reliability. In [9], a trust model was applied to
a sensor detection task in a multi-UAV patrol to determine
which team members can accurately perform a sensing task.

III. MULTI ROBOT PATROLLING

Many recent approaches to the patrolling task represent
areas in the environment with a topological map (a graph)
[7]. The nodes in a graph represent areas of interest in the
environment, and edges in the graph represent traversable
paths between two locations. Applying the notation from the
literature, we can refer to the graph as G(V,E), where V =
1 . . . n is the set of nodes and E is the set of edges. A weight
is associated with each edge, ei,j , representing the distance
between each edge. The graph is assumed to be metric and
undirected. Let R = 1 . . . r be the team of robots to assign
the set of nodes in each of the r graph partitions. When
the patrol task begins, there is an initial startup time for
all robots to navigate to their assigned starting nodes in the
graph and to begin patrolling. Robots patrol simultaneously
and repeatedly along the graph, visiting their assigned patrol
nodes, according to a given strategy [2].

Chevaleyre presents two main classes of patrolling strate-
gies, the cyclic strategy and partition based strategies [2].
In the cyclic based strategies, a single closed path, s, is

generated that visits all of the nodes in the graph at least
once. In the single robot case, a robot travels this closed
path indefinitely. In the worst case, the amount of time for
a robot to visit a node twice while following this strategy
is equal to the length of s. Calculating the closed path is
known to be NP-hard, and this problem is closely related to
the Traveling Salesman Problem [2].

In the multi-robot case, the simplest approach is to space
the robots along the closed path such that during the patrol
they maintain a constant distance between them [2], [3].
Cyclic strategies have known optimality bounds and are
preferred when the graph does not contain long edges that
connect clusters of nodes [2]. In addition, these strategies
have a deterministic behavior and this may not be desirable
for security application [11]. From a reliability perspective,
when one robot malfunctions, the remaining (r − 1)team
members can simply space themselves evenly over the patrol
cycle and continue patrolling. However, there are situations
in which robots may have degraded performance, but con-
tinue to function. In these situations it would be desirable to
allow the poorly performing robot to continue to perform a
subset of its original patrol path.

IV. APPROACH
A. Graph Partitioning

Graph partition approaches divide the graph into subsets
of nodes and assign these nodes to individual robots on the
team. Pasqualetti et al. present optimality bounds for three
major types of partition based patrol graphs: cycles, trees,
and chains, and remark that the selection of the roadmap may
not be unique for an environment and that the performance
can vary based on the choice of the graph structure [7]. For
the partitioning case, a cyclic graph can be transformed into
an acyclic roadmap using min-max path cover approaches or
a chain partition approach. For acyclic graphs, a tree based
approach can be used. For the purposes of this paper, we
convert a cyclic roadmap of the environment into a chain
partition, using the approximation algorithm described in [7].

h

d

l

Fig. 1. The patrol graph is shown on a map of the museum patrol
environment. Within rooms, nodes have a spacing of d for the
horizontal and vertical edges, and of h for the diagonal edges. The
graph can be optimally partitioned for 8 robots by cutting the long
edges, l, between rooms. The optimal route within partitions is of
length 2d+2h. The partition approach results in a lower max refresh
time compared to the cyclic TSP approach when l > h.

B. Trust Model

This work relies on the use of a probability based trust
model, using the beta distribution [14], [5]. We rely espe-

cially on the trust mechanism from [14] for incorporating
direct trust and reputation into a probabilistic formulation.
This mechanism provides not only a trust belief about
an agent, but also a confidence value. The approach can
incorporate positive, α, and negative, β, histories to calculate
the belief and confidence values.

The trust model maintains a set of α and β values for each
robot that represent the histories of observations of that robot.
For a given robot team member, if the calculated trust value
is less than the trust threshold, τ , and with confidence greater
than γ, it is not trusted. However, a succession of positive
observations (direct or indirect) can move an untrusted agent
back to being trusted again. Furthermore, this approach is
tolerant of noise as it can take multiple observations to move
the value above or below the trust threshold. To better explain
this model, the equations from [14] for calculating the trust
value τ and confidence, γ, are included below.

Given α and β updates for a dimension of trust for robotj ,
it can calculate the Expected Value for trust using the trust
model as follows.

Etrusti,j =
α

α+ β
(1)

The value, Etrusti,j , is the expected trust value that the
trust model owned by roboti (or owned by a central trust
model) has toward robotj , given a set of observations, O1:t,
from the start through time t. Therefore, the trust value, τ ,
is

τ = [Etrusti,j |O1:t] (2)

The confidence factor, γ, represents the proportion of the
beta distribution that is within ε of τ . This value is calculated
as the integral of the PDF over the confidence interval,
divided by the integral over the full interval. If there are
relatively few observations, the distribution approaches the
uniform distribution and the portion of the distribution that
is within the confidence interval will be small, resulting in a
low value for γ.

γ =

∫ τ+ε
τ−ε X

α−1(1−X)β−1 dX∫ 1

0
Uα−1(1− U)β−1 dU

(3)

We define the set of untrusted robots, Υ, to include those
with a trust score below the minimum trust threshold, τ < θτ
and with confidence above the minimum confidence level,
γ > θγ . All other robots belong to the trusted set, T . The
Trust Authority maintains the current sets T and Υ, and can
be queried to determine the set membership for a robot.

Finally, the use of a trust model allows for the robot to
include different dimensions into the trust calculation. Each
dimension can be incorporated into the model and weighted.

C. Performance Monitor

In this work, we assume that an external monitor is
available to observe robot performance. Approaches to mon-
itoring depend on the environment, but may include human
observation, observation by other robots, computer vision
based techniques, and RFID tags for logging visits to lo-
cations. Here, we only consider that a monitoring technique

is available for use by the system and that it can reliably
report when a particular robot visits each node. In practice,
we allow for each robot to broadcast results messages when a
node is visited, and assume that these are reported truthfully
and also that the network reliably delivers these messages.

Each robot in the patrol graph shown in Figure 1 can have
2-3 neighbors. We define the set of neighbors for a robot,
r, to be Nr and the set of immediate neighbor nodes to be
V rn . Regarding the features that describe the performance of
the robot, the trust model described below can incorporate
multiple trust dimensions, using a mixture of weights for
each. Performance dimensions that may be considered as
input to the trust model include those related to sensors
(probability of detection, tracking accuracy), actions (exe-
cution time, distance, fuel consumed, trajectory accuracy)
and deliberation (explicit cooperation, correctness of plans
generated, appropriate behavior selection, etc.).

In this paper, we adopt the performance metric of max-
imum refresh time. That is, the goal of the system is to
minimize the maximum refresh time for all nodes in the
multi-robot patrol. When the refresh time of any robot’s
assigned nodes exceeds a threshold on this metric, we seek
to re-assign some of that poorly performing team member’s
nodes to others. Each robot self reports node visits to the
monitor which tracks the idle time for each node. At each
time step, the monitor can calculate the node with the
maximum refresh time for each robot. We set the amount
of time in between performance monitoring periods to be
the expected maximum refresh time for the patrol partition.

The max refresh time for a robot is the maximum refresh
time for all nodes assigned to robot r. Let Irk be the set
of the refresh times at the previous k node visits for a
robot, r. Let Irn denote the refresh time of a node visited
by robot r and being the nth visit by r to any node assigned
to it. The running max refresh time for a single robot,
Mr
k = max(Irk..n), is the observed maximum refresh time

for a robot over the window (n − k, . . . , n − 1, n), where
0 < k ≤ n, and MR

k for all robots. The leave-one-out
running max refresh average is the average running max
refresh time over all other trusted robots, M

T−r
k . Then, the

threshold for the max refresh time, θMr
, is defined as the

leave-one-out running max refresh average, plus ρ standard
deviations (here, ρ = 3).

θMr = M
T−r
k + ρ ∗ σ; (4)

We define a patrol period as the expected amount of time
to perform a patrol of the maximum partition plus a constant
factor. This factor is included to capture the additional time
needed to navigate due to the nonholonomic motion of the
robot and related to time spent navigating around obstacles.
At the end of each patrol period, the monitor checks whether
Mr
k > θMr

for each robot. In that case, a robot is considered
to be performing poorly and the trust model is updated with
a negative observation, β.

In addition to the max refresh time, we can consider the
metric of average refresh time. The average node refresh time

for a robot, Ark, is the average refresh time per node for a
robot in the last patrol period. The threshold for the average
refresh time, θAr , is defined as the average node refresh time
for all trusted robots, plus ρ standard deviations.

θAr = A
T

k + ρ ∗ σ; (5)

D. Task Reassignment Methods

We considered two types of task reassignment methods,
for the centralized and localized task reassignment case. Both
approaches rely upon a central trust authority for the mainte-
nance and sharing of the trust model. These approaches are
described further below.

1) Central Observation and Assignment: In this approach,
the centralized monitor records the node visit frequency for
each robot and updates the trust model with positive and
negative performance observations when a robot is within
or exceeds the performance thresholds, respectively. This
algorithm is shown in Figure 2.

When a robot’s max refresh time is observed to exceed the
threshold, and this is not due to the robot assisting others,
then the trust model is updated with a negative instance.
In the other case, we do not automatically update the trust
model with a positive result because the max refresh time
could be low for a poor performer, if other robots have come
to assist it, but the average for the remaining nodes could still
be high. In this case, we also consider the average refresh
time metric, and if it is below the threshold, the trust model
is then updated with a positive signal.

If a robot moves from the trusted set to the untrusted set,
T → Υ, the central monitor reassigns one of the nodes from
the untrusted robot to a neighboring robot in T . Similarly,
if a robot moves from Υ → T , the central monitor returns
all of its original tasks. Once a robot assists another robot
by taking a new node, it is added to the set of Assistors, so
that it will not have its trust score penalized for the resulting
increased refresh time.

2) Local Observation and Assignment: In this approach,
each robot locally cooperates, but without coordination. This
algorithm is shown in Figure 3. Here, each robot locally
reports the performance observed for each of their neighbors,
by observing the visit frequencies of the nodes in neighboring
partitions, and sending positive and negative performance
observations to the central trust authority when the average
running refresh time for a node, Avk, exceeds the expected
max cycle time. The expected max cycle time is defined as
the expected time for a good performer to complete a full
cycle, times a factor to allow for a small amount of motion
error. In addition, robots periodically query the central trust
authority to get the trust score for their neighbors. From
all of the untrusted neighboring robots, the robot will select
the most untrusted neighbor. If one is found, the robot will
add the closest neighboring node from the most untrusted
neighbor to its own patrol list, and send the task reassign
message to the untrusted neighbor for that node. To prevent
an assisting robot from itself becoming untrusted, a robot
sends an assisting neighbor message to the trust authority.

1: loop
2: Do Every P Seconds:
3: for all r : Robots do
4: if (Mr

k > θMr
)and(r /∈ Assistors) then

5: UpdateTrustModel(r, β);
6: else
7: if Ark < θAr

then
8: UpdateTrustModel(r, α);
9: end if

10: end if
11: end for
12: for all r : Robots do
13: if r ∈ T → r ∈ Υ then
14: g ← select ∈ T ∩Nr;
15: SendReassignTaskMessage(r, g);
16: end if
17: if r ∈ Υ→ r ∈ T then
18: SendReturnAllTasksMessage(r);
19: end if
20: end for
21: end loop

Fig. 2. The Central Observation and Assignment pseudocode: the central
monitor observes node visits, updates the trust model and reassign tasks
when a robot becomes untrusted.

Upon receipt of this message, the trust authority enters an
annotation to the trust record for that robot which it uses to
allow for decreased performance in the assisting robot.

V. EXPERIMENTS

A. Robot Platform

A set of experiments was performed using the TurtleBot
indoor mobile robot platform.2 The robot has a bumper
sensor and a single axis gyroscope. The robot also uses a
Kinect sensor, which includes an infrared laser projector
and corresponding infrared camera which generate range
data of the scene for indoor distances up to 6 meters.
The TurtleBot carries a net-book laptop which runs Linux
and the same ROS libraries and behaviors used in the
simulation experiments. The open-source Robot Operating
System (ROS) architecture [12] was used to implement the
robot messaging, low-level control and behaviors. Each robot
uses the ROS navigation stack for navigation, localization,
and obstacle avoidance. Each robot also runs a custom
Patrol behavior which implements the graph chain partition
algorithm, and repeatedly navigates to the nodes in the
robot’s patrol path. The experimental setup also includes
a central monitor node which listens for task completion
messages and includes the performance monitoring and task
reassignment components. Robots communicated with the
central monitor by sending messages using UDP broadcast
over the local network, and it is assumed that the robots
honestly report task completion. Messages are paired with
acknowledgements to ensure delivery.

2http://TurtleBot.com

1: loop
2: Do Every P Seconds:
3: for all v : V rn do
4: if (Avk > E(MaxCycle)) then
5: UpdateTrustModel(getNodeOwner(v), β);
6: else
7: UpdateTrustModel(getNodeOwner(v), α)
8: end if
9: end for

10: u←MostUntrusted(U ∩Nr);
11: if (u) then
12: SendReassignTaskMessage(u);
13: SendAssistingMessage(u);
14: end if
15: end loop

Fig. 3. The Local Observation and Assignment pseudocode: the local
monitor on each robot observes neighboring node refresh times, updates
the trust model and reassign neighbor nodes to itself when a neighboring
robot becomes untrusted.

In each experiment, one of the robots is explicitly marked
as a poor performer. The performance for this type of robot
is affected by randomly adjusting the maximum forward
velocity of the robot after each visit to a patrol node. The
robots that perform normally have a maximum speed of
0.25ms−1 and the maximum speed of the poor performer
is determined by sampling from a normal distribution with
µ = 0.15ms−1 and σ = 0.10ms−1. This results in increased
max refresh times for the patrol nodes assigned to the poor
performer.

Fig. 4. Multiple TurtleBots are shown patrolling in the experimental
environment, setup to resemble an art museum with multiple rooms.

B. Patrol Graph

Each robot, r, was provided with a copy of the environ-
mental map and patrol graph, shown in Figure 1, as well as
the ith graph partition assigned to the rth robot, which also
corresponded to a single room. This graph has properties
that make it easy to analyze the optimality for performing
partitions. In the initial case, when it is assumed that all
robots are performing equally well, it is easy to see that the
optimal partition for 8 robots is to assign one robot to each
room. In this environment, the partition approach results in

better performance than the cyclic approach when the edge
between the rooms is long. Referring again to Figure in
Figure 1, this occurs when the length of the diagonal edge, h,
is greater than the corridor distance, l, between the clusters
of nodes in each room.

C. Experimental Setup

1) Robot Experiments: The museum experimental envi-
ronment was designed to resemble an art museum with 8
equally sized rooms, as shown in Figure 4. The environment
was approximately 10m x 30m in size. Upon startup, each
robot began patrolling the nodes located in their partition.
The setup also consisted of a centralized monitor node that
recorded the frequency of visits to each node by robots.
Upon completion of each node visit, robots broadcast a node
visited message, using a UDP network broadcast, and this
was recorded by the monitor. These messages were also
available to the robots.

Two different types of experiments were performed us-
ing a centralized trust model, to compare the use of trust
monitoring with centralized and local observation and task
assignment approaches. Each experiment ran for over 30
minutes, with all 8 robots patrolling continuously.

2) Simulation Experiments: Simulations were run with
eight robots on a team in the simulated museum environ-
ment. The experiments used the Stage multi-robot simulation
environment [15], using the same ROS behaviors from the
real robot experiments. Four different experiment types were
performed, and each experiment was performed five times.

1) naive strategy: The robots patrol the set of nodes in
the initial partition. One of the robots on the team was
marked as a poor performer.

2) central trust model strategy: A central monitor ob-
serves the performance of the robots on the team and
maintains a central trust model. When a robot becomes
untrusted, the central monitor reassigns tasks optimally
to a neighboring robot if providing assistance would
result in an improved max refresh time, where the max
refresh time for the assisting robot would be less than
the current max refresh time..

3) local trust model strategy: A local monitor on each
robot observes the performance of its neighboring
robots on the team and maintains a local trust model,
with local task reassignment. When a neighbor robot
becomes untrusted, the local strategy will assist if no
other neighbors have already assisted. The monitoring
and coordination between robots is performed by send-
ing messages.

4) all perform: The robots patrol the set of nodes in the
initial partition as expected. None of the robots are
poor performers.

VI. RESULTS

A. Robot Experimental Results

In the centralized task assignment approach, robot 3 was
explicitly set as a poor performer, after several minutes
of normal performance. The central monitor observed each

robot’s performance and updated the trust model with positve
or negative observations, based on the robot’s performance.
The trust model scores for each robot in this experiment are
shown in Figure 5. It is worth noting that the trust score for
robot 4 and also robot 6 dipped briefly during the experiment
due to localization errors. However, the model allows for
noise tolerance, and the trust scores recovered when the
robot’s localization recovered.

After the robot 3 was observed performing poorly, its
trust score decreased until it reached the low threshold (0.5)
for trust and became untrusted. At this point, the central
monitor dynamically reassigned one of the poor performer’s
tasks to the trusted robot 1, as shown in Figure 6. The
robot trajectories during the experiment reflect this task
reassignment, with robot 1 picking up a patrol node from
robot 3, as shown in Figure 7.

The refresh times for robot 3 and robot 1 are shown in
Figure 8. The values for robot 1 are typical for all good
performers. The refresh time for robot 1 increased after the
task reassignment, because of the additional time to cover
the reassigned node. However, the max refresh time across
the team was improved as a result. We also plot the expected
max refresh time. However, the actual max refresh time for
the good performers is slightly higher due to the motion
model for the robot.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500 1800

T
ru

s
t

S
c
o

re

Time (s)

robot 0
robot 1
robot 2
robot 3
robot 4
robot 5
robot 6
robot 7

Fig. 5. The trust scores for each robot are plotted during the
experiment. The trust score for robot 3 decreases as the robot begins
to perform poorly. The rest of the robot’s trust scores increase
monotonically, with the exception of robots 4 and 6, whose scores
are slightly decreased due to temporary localization errors.

Fig. 6. The tasks assignments are shown on the task monitor’s
display. The centralized approach reassigned a task from poorly
performing robot 3 to the trusted, neighboring robot, 1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

robot 0

robot 1

robot 2

robot 3

robot 4

robot 5

robot 6

robot 7

Fig. 7. The trajectories of each of the robots are shown for the
entire central trust strategy experiment.

0 200 400 600 800 1000
0

50

100

150

200

250

300

→ poor performance begins

→ task reassignment

Time (seconds)

M
a
x
 R

e
fr

e
s
h
 T

im
e

Expected Max Refresh

Good Performer

Poor Performer

Fig. 8. Central Strategy: The refresh time for a good performer and
a poor performer is shown during the period before and after the
initial task reassignment. The refresh time increases due to the poor
performer robot 3, but decreases after a task reassignment. (The
performance of the good performers initially exceeds the expected
max refresh time due to nonholonomic motion model of the robots.)

In the local assignment approach, each robot reported the
trust of their neighbors to the central authority, which main-
tained the trust scores. Here, we again explicitly designated
robot 3 as a poor performer, this time from the beginning
of the experiment. Over time, this caused its trust score to
drop below the threshold. Each of the 3 neighbors to robot
3 observed this and each took over a task, leaving robot 3
with only 1 node to patrol. The neighbors each reassigned a
task to themselves and sent a reassign task message to robot
3. As shown in Figure 9, the experimental monitor updated
the display to reflect the task reassignment after receiving
these messages, but it is not necessary to the experiment.
The robot trajectories during the experiment reflect this task
reassignment, with robots 1, 5, and 2 picking up a patrol
node from robot 3, as shown in Figure 10. An additional
observation was that robot 6 performed poorly, perhaps
because there were additional obstacles in its environment
and this caused neighboring robots 4 and 7 to come over
and assist it as well. A photo from the viewpoint of Robot
1 is shown in Figure 11, reflecting robots 1 and 2 in the
partition of robot 3 to pick up tasks.

The refresh times for robot 3 and robot 1 are shown in
Figure 12. The refresh time for robot 3 drops to almost zero

after it is left with only 1 node to cover. The max refresh
time for robot 1 (and the other assisting robots) are similar
to those for the previous experiments, in this case multiple
robots are performing assistance. A benefit of this approach
is that multiple robots can affect the trust score, rather than
relying on a centralized observer. A possible extension would
be to allow the trust reporting for a robot to be weighted by
the trust level of the robot reporting the score.

The centralized assignment approach has the advantage of
being able to optimally reallocate tasks in this environment;
however, it may not always be possible to use a central task
allocation. The local method can also be used, however, this
preforms a greedy re-assignment and could result in multiple
neighbors assisting the same robot unless a coordination
mechanism is used.

Fig. 9. The three neighbors of the poorly performing robot 3 each
pick up a task. Robot 6 also performed poorly due to localization
errors and also had tasks picked up by its neighbors.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

robot 0

robot 1

robot 2

robot 3

robot 4

robot 5

robot 6

robot 7

Fig. 10. The trajectories of each of the robots are shown for the
entire local trust strategy experiment.

B. Simulation Experimental Results

The results from the simulations are shown in Figure 13,
with the running max refresh time, MR

k , shown for each of
the strategies. The simulation results are consistent with the
experiments in the real environment. Both the central trust
and local trust strategies resulted in an improved max refresh
time over the naive approach, when a poor performer was
present. In these experiments, the local trust approach used a
coordination mechanism between neighboring robots to pre-
vent multiple robots from assisting the same poor performer.
While the trust model approaches resulted in improved max
refresh times, there is still room for improvement. In both
trust model cases, task assignment approach only reassigned
a single side node to a neighboring robot, reducing the patrol
distance from the poor performer by a distance of h, from
2d+2h to 2d+h, while adding a distance of 2l to the assisting
robot. Assignments from multiple neighboring nodes could

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300
→ task reassignment

Time (seconds)

M
a
x
 R

e
fr

e
s
h
 T

im
e

Expected Max Refresh

Good Performer

Poor Performer

Fig. 12. Local Strategy: The refresh time for a good performer
and a poor performer is shown during the period before and after
the initial task reassignment. The refresh time increases due to the
poor performer robot 3, but decreases after a task reassignment.

 0

 50

 100

 150

 200

 250

R
u

n
n

in
g

 M
a

x
 R

e
fr

e
s
h

 T
im

e

Trust Strategy

naive
central trust model

local trust model
all perform

Fig. 13. Experimental results from simulations in the museum
environment are shown. Both the centralized and local trust strate-
gies result in improved patrol performance over the naive strategy,
when a poor performer is present. Error bars represent one standard
deviation.

reduce the max refresh time further, but with an additional
resource expenditure for the assisting robots.

C. Discussion

For both the central and local assignment approaches
presented here, the use of a trust model allows for more
tolerance for noise in the system and for exploitation of
performance history. With a threshold only approach, a single
noisy observation could cause a robot to become untrusted,
resulting in task reassignments. However, the use of a trust
model incorporates multiple observations and in the local
case, can incorporate observations from multiple observers.

While both approaches result in an improved max refresh
time, the central approach can more efficiently allocate
robots, but requires a central mechanism which may not
always be possible. On the other hand the local approach
performed a decentralized task allocation with no negotiation

Fig. 11. Multiple robots are shown patrolling the museum environment from the viewpoint of a camera placed on robot 1. In this
experiment, after robot 3 is observed performing poorly, its neighbors each pick up one of robot 3’s tasks and send it a task reassignment
message.

between robots or a central node, excluding the reassign
task message. However, this still required a central trust
authority. Additional experiments in simulation using a local
trust model and local reassignment showed that with more
coordination between robots a local reassignment can be used
without over subscribing the assisting robots. In practice,
the decision for where to place the trust authority and task
reassignment mechanism is dependent on several factors of
the environment, including communication, the state model,
the trust monitoring approach to observation and task reas-
signment approach.

It is also worth noting that the design of the environment
may affect the ability for a robot to assist a teammate,
because there is a cost associated with traversing the corridor
between patrol partitions. If it is expected that robots will
need to frequently assist each other, it may be worthwhile to
redesign the placement of the nodes and the size of the team
Finally, it might be useful to reallocate all tasks belonging to
a poorly performing robot and re-partition the tasks among
the remaining (n − 1) robots if this would result in better
max refresh times.

VII. CONCLUSIONS
This paper presents a method for using robot performance

observations to build model of robot trust and apply it to dy-
namic task allocation in the multi-robot patrolling problem.
The experimental results showed that a monitoring approach
with trust modeling can be effective for detecting poorly-
performing team members. In addition, a task reassignment
mechanism can be effective for more efficiently re-assigning
patrol tasks, when compared to the naive approach which
does not monitor individual robot performance or adjust task
assignments. This may prove useful in situations in which
multi-robot teams are dynamically formed or when not all
team members are likely to perform effectively over time.

Future work will explore the use of a multi-dimensional
trust model and apply this model to other problem domains
in multi-robot systems.

ACKNOWLEDGMENT
C. P. thanks Stephen Camp for his assistance with the ex-

perimental setup and execution. The authors also appreciate

the helpful comments from the anonymous reviewers.

REFERENCES

[1] C. Castelfranchi and R. Falcone. Social trust: Cognitive anatomy,
social importance, quantification and dynamics. In Proceedings of the
First International Workshop on Trust, pages 35–49, 1998.

[2] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling prob-
lem. In Intelligent Agent Technology, 2004. (IAT 2004). Proceedings.
IEEE/WIC/ACM International Conference on, pages 302 – 308, Sept.
2004.

[3] Y. Elmaliach, N. Agmon, and G. Kaminka. Multi-robot area patrol
under frequency constraints. In Robotics and Automation, 2007 IEEE
International Conference on, pages 385 –390, April 2007.

[4] K.-S. Hwang, J.-L. Lin, and H.-L. Huang. Cooperative patrol planning
of multi-robot systems by a competitive auction system. In ICCAS-
SICE, 2009, pages 4359 –4363, aug. 2009.

[5] A. Jøsang and R. Ismail. The beta reputation system. In Proceedings
of the 15th Bled Electronic Commerce Conference, 2002.

[6] L. E. Parker. ALLIANCE: An architecture for fault tolerant multi-
robot cooperation. In IEEE Transactions on Robotics and Automation,
volume 14, pages 220–240, 1998.

[7] F. Pasqualetti, A. Franchi, and F. Bullo. On cooperative patrolling: Op-
timal trajectories, complexity analysis, and approximation algorithms.
Robotics, IEEE Transactions on, 28(3):592 –606, June 2012.

[8] C. Pippin and H. Christensen. Performance based monitoring using
statistical control charts on multi-robot teams. In Information Fusion
(FUSION), 2012 15th International Conference on, pages 390 –395,
July 2012.

[9] C. Pippin, H. Christensen, and L. Weiss. Dynamic, cooperative multi-
robot patrolling with a team of UAVs. In SPIE. 8741, Unmanned
Systems Technology XV, number 874103, May 2013.

[10] C. Pippin, H. Christensen, and L. Weiss. Performance based task
assignment in multi-robot patrolling. In Proceedings of the 2013 ACM
Symposium on Applied Computing, SAC ’13. ACM, March 2013.

[11] D. Portugal and R. Rocha. On the performance and scalability of multi-
robot patrolling algorithms. In Safety, Security, and Rescue Robotics
(SSRR), 2011 IEEE International Symposium on, pages 50 –55, Nov.
2011.

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Y. Ng. ROS: an open-source robot
operating system. In Proceedings of the Open-Source Software
workshop at the International Conference on Robotics and Automation
(ICRA), 2009.

[13] E. Stump and N. Michael. Multi-robot persistent surveillance planning
as a vehicle routing problem. In Automation Science and Engineering
(CASE), 2011 IEEE Conference on, pages 569 –575, Aug. 2011.

[14] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. TRAVOS:
Trust and reputation in the context of inaccurate information sources.
Journal of Autonomous Agents and Multi-Agent Systems, 12, 2006.

[15] R. Vaughan. Massively multi-robot simulation in Stage. Swarm
Intelligence, pages 189–208, 2008.

