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(57) ABSTRACT 

Methods and devices for dispersion of clusters of somatic 
plant embryos suspended in a liquid are disclosed. The meth
ods comprise i) subjecting the clusters of embryos to fluid 
dynamics forces causing axially extensional strain and radi
ally compressional strain and ii) subjecting the clusters of 
embryos to fluid dynamics forces causing axially compres
sional strain and radially extensional strain fluid dynamics 
and iii) repeating said steps in sequence until the individual 
embryos are separated from each other. The devices may 
comprise a flow channel including at least one constriction, 
such that clusters of embryos flowing through the flow chan
nel are first subjected to axially extensional strain and radially 
compressional strain, and then to axially compressional strain 
and radially extensional strain from fluid dynamics forces. 

18 Claims, 4 Drawing Sheets 
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METHODS AND DEVICES FOR DISPERSING 
SOMATIC PLANT EMBRYOS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is a U.S. National Phase patent application 
of PCT/US2009/039981, filed Apr. 9, 2009, which claims 
priority to U.S. Provisional patent application Ser. No. 
61/043,851, filed Apr. 10, 2008, all of which are hereby 10 

incorporated by reference in the present disclosure in their 
entirety. 

2 
gradually transferred to an environment ex vitro during which 
the sucrose content is reduced. The different treatments dur
ing germination into a plant requires repeated manual han
dling of individual germinants and plants adding a consider
able cost to the overall procedure. 

Production of Plants from Somatic Embryos 

The prior art procedure for producing plants from somatic 
embryos requires manual handling at several steps making 
the procedure time consuming, expensive and inaccurate. 

For conifer species, standard procedures used involve sev
eral steps when manual handling is required. The general 

BACKGROUND TO THE INVENTION 

General Introduction to Problem Area 

Somatic embryogenesis in plants is a process in which 
somatic embryos are formed from an initial explant being a 
cell in a plant tissue. The somatic embryos formed are geneti
cally identical copies of the plant providing the initial explant. 
The process of somatic embryo genesis thereby offers a tool to 
obtain large numbers of genotypically identical plants for 
multiplication of selected genotypes of commercial interest, 
for conservation of endangered species or for generating 
genetically uniform plant material for research purposes. 

15 
procedure is outlined in FIG. 1 (see e.g. von Arnold S, 
Clapham D. Spruce embryogenesis. 2008. Methods Mal Biol. 
2008; 427 :31-4 7; Belmonte MF, Donald G, Reid D M, Yeung 
EC and Stasolla C. 2005. Alterations of the glutathione redox 
state improve apical meristem structure and somatic embryo 

20 quality in white spruce (Picea glauca ). J Exp Bot, Vol. 56, No. 
419, pp. 2355-2364). 

There are four steps that rely on manual handling to obtain 
a small plant from the mature somatic embryo as seen in FIG. 
1. The first manual interaction is when [ 1] the mature embryo 

Physiological Background to the Procedures Related 
to the Problem 

25 is isolated from immature embryos (120), and placed hori
zontally in a plastic container under sterile conditions; the 
second [2] occur after 3-7 days of resting (130), then mature 
embryo is transferred to a gelled culture medium for initiation 
of germination processes. The germinated somatic embryo 

30 will under appropriate culture medium composition and light 
conditions initiate roots (140). The third manual transfer [3] is 
when the germinant having a small root formed is transferred 
to an upright position with the root partially immersed in 
liquid germination media (150). The fourth [ 4] and final 

35 

To produce plants from somatic embryos of conifers, a 
multi-step procedure is applied to meet the physiological 
needs of the different stages of development as described 
below and shown in FIG. 1. Initiation of somatic embryo gen
esis starts with induction of somatic embryos from an initial 
explant, typically an immature zygotic embryo, on a solidi
fied culture medium containing plant growth regulator. 
Somatic embryos continue to form, typically on the same 
composition culture medium, and a proliferating embryo
genic culture form. At the proliferating stage, several of the 40 

key features generally regarded as beneficial for the process 
of somatic embryogenesis process, take place: (i) the mass 
propagation of genotypically identical propagules through 
unlimited multiplication of immature somatic embryos; (ii) 
cryogenic storage of proliferating embryos substantiates an 45 

virtually eternal store of clones, i.e. a clone bank is estab
lished, (iii) transgenic modification of the immature somatic 
embryo allow for large scale propagation of genetically 
improved propagules. At the next step in the procedure, the 
proliferating somatic embryo is subjected to a growth 50 

medium that triggers embryo development to progress into 
the maturation stage. Conversion from proliferation to matu
ration only occurs in a fraction of the proliferating embryos in 
the culture. Low conversion rates are encountered more fre
quently in genotypes from recalcitrant conifer species, but are 55 

common in all conifer species as well as other plant species. 
The manual labour needed to collect embryos increase with 
the decrease in conversion rate, and thereby the cost and risk 
of contamination and other inaccuracies. Low conversion rate 
from proliferation to maturation is a major bottleneck for 60 

commercial large scale applications of somatic embryogen
esis procedures. For germination, mature somatic embryos 
are subjected to different culture regimes to induce root- and 
shoot formation, in a number of different steps; desiccation, 
sucrose treatment, red light induction, and blue light stimu- 65 

lation. Thereafter, germinated embryos deemed appropri
ately developed are transferred to a compost material and 

transfer is when the germinated embryos has a tap root and 
small lateral roots, then it is transferred into a solid substrate 
in a pot for further plant formation (160). 

Item 

100 
101 
102 
103 
104 
120 
130 
140 
150 
160 

TABLE 1 

List of designations pertaining to FIG. 1. 

Designation 

Mature embryo 
Crown of a mature embryo 
Foot of a mature embryo 
Widtb of crown of a mature embryo 
Lengtb of a mature embryo 
Maturation phase 
Resting phase 
Germination phase 
In vitro plant formation phase 
Ex vitro plantformation phase 

Conversion from proliferation to maturation only occurs in 
a fraction of the proliferating embryos in the culture. Low 
conversion rates are encountered more frequently in geno
types from recalcitrant conifer species, but are common in all 
conifer species as well as other plant species. The manual 
labour needed to collect embryos increase with the decrease 
in conversion rate, and thereby the cost and risk of contami
nation and other inaccuracies. Low conversion rate from pro
liferation to maturation is a major bottleneck for commercial 
large scale applications of somatic embryogenesis proce
dures. For germination, mature somatic embryos are sub
jected to different culture regimes to induce root- and shoot 
formation, in a number of different steps; desiccation, sucrose 
treatment, red light induction, and blue light stimulation. 
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Thereafter, germinated embryos deemed appropriately devel
oped are transferred to a compost material and gradually 
transferred to an environment ex vitro during which the 
sucrose content is reduced. The different treatments during 
germination into a plant requires repeated manual handling of 
individual germinants and plants adding a considerable cost 
to the overall procedure. 

In the hitherto available method for producing plants from 
somatic embryos the embryos are picked out manually from 
the immature embryogenic tissue. This is time-consuming 10 

and ineffective. It would therefore be desirable to provide a 
way to make the separation of the embryos more effective. 
The somatic embryos produced are initially glued together by 
immature embryogenic tissue into clusters. It is an object of 

15 
the invention to provide effective means of producing somatic 
plant embryos, an automated means for gently dispersing the 
clusters of somatic embryos into individual embryos 
detached from the embryogenic tissue. The invention relates 

4 
The flow channel may have axisymmetric cross-section. 

The flow channel may have an essentially circular or oval 
cross-section. 

At least part of the flow channel may have a non-axisym
metric cross-section such as a rectangular cross-section. The 
cross-section of each non-axisymmetric constriction, having 
a maximal dimension, may preferably be oriented such that 
the maximal dimension of each constriction is rotated, pref-
erably at least 30°, more preferably about 90° in relation to 
maximal dimension of the next non-axisymmetric constric
tion in sequence. The cross-section of each constriction may 
represent a rectangle, having a first and a second side, wherein 
the first side is longer than the second side, and the constric
tions are oriented such that first side of each constriction is 
perpendicular to the first side of the next constriction in 
sequence having a rectangular cross-section. 

The advantages of the method and the device of dispersion 
include: 

to a method and a device for such dispersion. 

SUMMARY OF THE INVENTION 

20 (1) Not requiring moving parts, and therefore being robust 
(2) Being naturally applicable to a continuous flow system 
thereby not requiring operation in batch mode 
(3) Being gentle to the embryos 

The present invention relates to methods and devices for 
gently dispersing clusters of somatic plant embryos into indi
vidual embryos and immature embryogenic tissue. 

( 4) Being fast; the dispersion using the device requires only a 
25 few seconds to disperse hundreds of embryos 

A method of dispersion of clusters of plant embryos sus
pended in a liquid into individual plant embryos is disclosed, 
said method including at least one dispersion sequence, 
which comprises the following steps: 

i) subjecting the clusters of embryos to fluid dynamics 
forces causing axially extensional strain and radially 
compressional strain; 

30 

ii) subjecting the clusters of embryos to fluid dynamics 
35 

forces causing axially compressional strain and radially 
extensional strain from fluid dynamics forces; 

(5) The device being compact and completely enclosed 
allows easy sterilization. 

DEFINITIONS 

The terms somatic embryo, somatic plant embryo and plant 
somatic embryo are used interchangeably. The terms refer to 
plant embryos derived from somatic tissue of a plant. 

Norway spruce is a spruce species with the Latin name 
Picea abies native to Europe. 

The terms fluid dynamics and hydrodynamics are used 
interchangeably and refer to the same physical principles of 
flow of fluids. repeating said steps in sequence until the individual 

embryos are separated from each other. 
Preferably, the strength of the extensional and compres

sional strains increases with each repeated sequence. 

The terms channel and tube are used interchangeably with-
40 out specific implication to the geometry of the passage unless 

otherwise stated. 
A disperser for separating individual embryos contained in 

clusters of embryos is disclosed, comprising a flow channel 
including at least one constriction, such that clusters of 
embryos flowing through the flow channel are first subjected 45 

to axially extensional strain and radially compressional 
strain, and then to axially compressional strain and radially 
extensional strain from fluid dynamics forces. 

Preferably, the flow channel comprises at least two con
strictions, each constriction having an inner diameter, which 50 

is equal to or smaller than the inner diameter of the constric
tion immediately up-stream of thereof. 

Preferably, the flow channel includes an intermediate por
tion having a constant cross-section, between each constric
tion. 

Preferably, each intermediate portion has an inner diam
eter, which is equal to or smaller than the inner diameter of the 
intermediate portion immediately up-stream of thereof. 

55 

Preferably, each intermediate portion may have a length at 
least equal to the clusters of embryos to be dispersed. Prefer- 60 

ably, the length of each intermediate portion is in the interval 
from 2.5 mm to 60 mm, more preferably from about 5 mm to 
about 30 mm. The number of constrictions may be 3-100, 
preferably 5-20, most preferably about 10. Preferably, the 
constrictions have a cross-sectional area in the interval from 65 

0.75 to 1300 mm2
, more preferably in the interval from3 to 32 

mm2. 

The orthogonal directions in polar coordinates are given by 
axial, radial and angular (azimuthal) directions. These direc
tions correspond to the central axis of a cylinder which is 
normal to the circular cross-section of the cylinder, and the 
radial and angular directions pointing along the radius and 
normal to the radius on the cross-sectional surface, respec
tively. 

Axisymmetric flow refers to flow inside a tube where the 
cross-sectional surface of the tube is always circular, and 
therefore, there is symmetry with respect to the axis of the 
tube. In other words, nothing changes along the angular (or 
azimuthal) direction. 

Stress is force per unit area. 
Strain is the geometrical measure of deformation repre

senting the relative displacement between points in the mate
rial body; it is represented as the ratio or percentage of defor
mation in relation to the original dimension. 

Normal strain defines the ratio or percentage amount of 
stretch or compression along material line elements (ratio of 
the deformation to the original length in the direction of the 
deformation). 

Shear strain defines the ratio or percentage amount of 
deformation relative to the original dimension associated 
with the sliding of material plane layers over each other. 

Extensional strain is a normal strain where the element 
stretches. 
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Axially extensional strain is an element that stretches along 
the axial direction. 

Radially extensional strain is an element that stretches 
along the radial direction. 

Compressional strain is a normal strain where the element 
contracts. 

Axially compressional strain refers to deformation of an 
element that contracts along the axial direction. 

6 
Device for Dispersing Somatic Embryos 

To illustrate the construction of the disperser device, cer
tain possible embodiments are disclosed in detail. The level of 
detail should not be construed as limiting unless explicitly 
stated so. 
Overall Construction 

A disperser device for separating individual embryos con-

Radially compressional strain refers to deformation of an 
element that contracts along the radial direction. 10 

tained in clusters of embryos is provided. The devices dis
closed are for use with clusters of somatic embryos held 
together by immature embryogenic tissue suspended in a 
liquid flowing though the device. The liquid may be any liquid 

Rate of Stain is the change in strain with respect to time 
Hydraulic diameter, Dh, is a term used to characterize flow 

in noncirculartubes and chamiels. By definition, it is given by 
Dh,=4A/S where A is the cross-sectional area of the noncir
cular tube or chamiel and S is the wetted perimeter of the 
cross-section. 

Mean velocity in a channel is defined as the volumetric 
flow rate divided by the cross-sectional area of the channel. 

Contraction ratio is defined as the ratio of the mean velocity 
at the outlet to the mean velocity at the inlet in a chamiel. 

Mean stress is the stress that is averaged over a surface. 
Mean rate of strain is the rate of strain averaged over a 

surface. 
Dynamic viscosity of a fluid is the ratio of shear stress to 

rate of shear strain in a Newtonian fluid element. Water, 
glycerin, silicone oil are examples of Newtonian fluids. 

Rate of strain profile is a profile showing the variation of 
the rate of strain. 

Unit oflength in millimeter is abbreviated as "mm". 
Unit of rate of strain as reciprocal second is abbreviated as 

"1/s". 
In general, a flow with higher average rate of strain will 

impose higher average stress on a particle (or embryo) or on 
a cluster of particles (or cluster of embryos) suspended in the 
fluid. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 illustrates a general process of producing somatic 
plant embryos. 

FIG. 2 illustrates the coordinate parameters used in the 
description. 

FIG. 3 illustrates details ofa device of the invention where 
the flow channel is axisymmetric. 

FIG. 4 illustrates details of devices of the invention where 
parts of the flow channel are non-axisymmetric. 

DETAILED DESCRIPTION OF THE INVENTION 

Method of Dispersing Somatic Embryos 
A method of dispersion of clusters of plant embryos sus

pended in a liquid into individual plant embryos is provided. 
Said method includes at least one dispersion sequence, which 
comprises the following steps: 

i) subjecting the clusters of embryos to fluid dynamics 
forces causing axially extensional strain and radially 
compressional strain 

ii) subjecting the clusters of embryos to fluid dynamics 
forces causing axially compressional strain and radially 
extensional strain from fluid dynamics forces. 

which is not too viscous to flow in the apparatus, and which is 
benign to the embryos, preferably water. 

The disperser device comprises a flow chamiel. The flow 
15 channel may be manufactured as a single entity or as two or 

more parts comprising an individual segment each. The flow 
channel may for example be constructed of two parts, first 
segment (1)/(81) and second segment (2)/(82), see FIGS. 3/4, 
respectively. It may be advantageous to manufacture the 

20 device with several individual segments as this will enable the 
device to be more easily adapted to different starting materi
als and will simplify cleaning and maintenance. For example, 
the disperser flow channel segments (1) and (2) may be con
nected to a source of flowing fluid comprising clusters of 

25 embryos by a tube (41) atthe inlet (I). The first segment (1) of 
the disperser flow chamiel may be connected to the second 
segment (2) by a connecting tube (41a). In this example, the 
dispersed embryos leave the second segment (2) at the outlet 

30 

(0) connected to an outlet tube (90). 
The disperser device flow channel comprises at least one 

constriction, such that clusters of embryos flowing through 
the flow chamiel are first subjected to axially extensional 
strain and radially compressional strain, and then to axially 
compressional strain and radially extensional strain from 

35 fluid dynamics forces. When the flow chamiel comprises at 
least two constrictions, each constriction may have an inner 
diameter, which is equal to or smaller than the inner diameter 
of the constriction immediately up-stream of thereof in order 
to apply effective dispersing forces to the clusters of embryos. 

40 Preferably, the disperser device has a set of constrictions. The 
number of constrictions in a set of constrictions may for 
example vary from 1 to 100, 1 to 20, from 4 to 16 or 6 to 12, 
and the preferred number of constrictions is about 10, and 
depends on the nature of the clusters to be dispersed. Higher 

45 number provides more vigorous dispersing but increases the 
stress on the embryos to be dispersed. 

The flow chamiel may comprise an intermediate portion 
having an essentially constant cross-section, between each 
constriction. Each intermediate portion can have an inner 

50 diameter, which is equal to or smaller than the inner diameter 
of the intermediate portion immediately up-stream of thereof, 
thereby increasing the dispersing forces step by step. 

Preferably, the flow chamiels have an essentially circular 
cross-section, except for the constrictions which are subject 

55 to special considerations, as described below. Other geom
etries (such as oval, hexagonal, octagonal, rectangular with 
rounded corners, or triangular with rounded corners) may be 
used as long as the embryos do not become damaged during 
their passage of the flow channels as result of the geometry. 

60 Tubes having circular cross-sections are easy to manufacture. 
Also preferably, the flow chamiels are smooth on the inside. 
Any roughness on the inner surfaces may easily damage the 
delicate embryos and is thus best avoided. 

Said steps are repeated in sequence until the individual 
embryos are separated from each other. The strength of the 65 

extensional and compressional strains may be increased with 
each repeated sequence. 

Fluid Dynamics Considerations 
It is critical to avoid imposing too much hydrodynamic 

stress which could cause damage to the embryos. On the other 
hand, the stresses must be sufficient to disperse at least a 
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significant fraction of the clusters. The optimal levels of 
stresses for the clusters of embryos of a particular type, cell 
line or species to be dispersed may need to be determined 
experimentally. Once the optimal levels have been deter
mined or obtained, the necessary disperser device parameters 
may be calculated accordingly. Alternatively, a disperser hav
ing minimum and maximum dimensions dictated by the 
embryo size and cluster size, exerting gentle stress may be 
constructed to determine whether such dispersion is efficient 
for the embryos at hand (see below for details). If not, a 10 

disperser with more rigorous dispersing activity may be con
structed and tested, and the process repeated until a satisfac
tory result is obtained. 

Certain constants are preferably decided upon before cal- 15 

culating the remaining parameters of the disperser design. 

Dynamic viscosity of the fluid affect the hydrodynamic forces 

and the intended fluid should be chosen. Preferably, the fluid 

is essentially water, having well-known dynamic viscosity 20 

which can be taken as a constant in a constant temperature 

environment for the design of a disperser device. The 

dynamic viscosity of water is not generally significantly 

affected by small amounts of salts, simple carbohydrates, 25 

amino-acids or similar low molecular weight compounds. If 

the dynamic viscosity of the fluid cannot be obtained from 

literature, it may be experimentally measured by means 

known to the skilled person. 30 

Flow rate also affects the hydrodynamic forces. The 
desired flow rate may in part depend on desired capacity of 
the disperser device, wherein faster flow may allow higher 
capacity. For simplicity, the design of the disperser is prefer- 35 
ably based on a constant flow rate, which can be taken as 
another constant for the design of a disperser device. By 
varying the flow rate, the hydrodynamic forces may then be 
fine-tuned without having to modify the dimensions of the 
device. 

According to the invention, the inner dimensions of the 
flow channels vary along the flow direction forming at least 
one constriction, preferably a set of constrictions. The inner 

40 

dimensions at these constrictions are a critical parameter, 45 
since it is the value of the inner dimensions at the constriction 
that dictate the magnitude of the extensional and compressive 
hydrodynamic strains, and it is the said extensional and com
pressive hydrodynamic strains that impose extensional and 
compressive stresses on the clusters of embryos, gently fore- 50 

ing the embryos to separate from each other. 

8 
Key Dimensions 

Considering the above, several key dimensions need to be 
considered for the flow charmels: 

I. Inner cross-section dimensions and geometry of con
strictions 

II. Length of constrictions 

III. Inner cross-section dimensions and geometry outside 
of constrictions 

IV. Length of sections outside or between the constrictions 

The minimum cross-sectional dimension of the flow chan
nel should be larger than the largest dimension of the largest 
embryo to be dispersed. The maximum cross-sectional 
dimension of the flow charmel does not have to be larger than 
the largest dimension of the largest cluster to be dispersed. 
The intermediate portion (inter-constriction) dimensions of 
the flow charmel do not have to be larger than the largest 
dimension of the largest cluster to be dispersed. 

For illustrative purposes, a cylindrical coordinate system is 
defined, as illustrated in FIG. 2. The general direction of the 
flow in a disperser device is in the axial direction designated 
by axis z. The flow also has radial component of velocity in 
the direction r as it expands and contracts through the dis
perser device. The axial, radial and angular (in the direction of 
8) components of the fluid velocity are defined as u

2
, u" and 

Ue, respectively. 

The term axisymmetric flow is defined to mean that noth
ing changes in the angular direction, or more precisely 

where C•) represents any flow variable. The term 3/38 is the 
usual symbol used in mathematics to mean partial derivative 
which measures the rate of change of a dependent variable 
with respect to the independent variable in the denominator 
keeping all other independent variables constant. In an axi
symmetric embodiment of the disperser device, the flow is 
axisymmetric and the angular velocity component lie is zero. 

The rate of axial strain in flow at the centreline of an 
axisymmetric tube is defined by 

where when this quantity is positive the flow is in extensional 
strain and when negative flow is in compressional strain. 

55 Similarly, the rate of radial strain is measured by 

According to the invention, the dimensions of the constric
tions are selected according to the level of extensional and 
compressive stress that is required to be imposed on the 
cluster of embryos and the size of the cluster and the specific 
species of embryo to be dispersed, taking into account the 
previously chosen fluid type and flow rate. Preferably, the 
inner dimensions of the constrictions decrease sequentially 
from the largest dimensions at the upstream inlet side of the 60 

tube to the smallest diameter at the downstream outlet of the 
tube. The smallest inner dimensions at the extreme down
stream side (at the outlet where the embryos have been fully 
dispersed) have to be at least large enough to allow a single 
embryo to pass without damaging the embryo. A preferred 
minimum dimension is equal or larger than the broadest part 
of an embryo to be dispersed. 

where in general when positive represents radial extension 
and when negative represents radial compression. 

Following the same definition as above for axisymmetric 
65 extension and compression, for a non-axisymmetric disperser 

device, the flow is not axisymmetric, and thereby all compo
nents of the rate of strain tensor will be nonzero. 
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Determining Lengths of Constrictions and Intermediate Por
tions 

The length of different parts of the disperser can be calcu
lated based on various axial profiles for the mean rate of 
strain, 

d/U 

dz' 

10 
to the largest dimension of any cluster to be dispersed. For 
example, in the case of Norway spruce cluster matured in 
laboratory Petri dish, the section of the straight tube needs to 
be at least 10 mm long since the cluster is about 10 mm in size. 
For embryo clusters matured in a bioreactor, where the size of 
the cluster is larger, the tube length and the initial diameter 
should be adjusted to accommodate the larger size of the 
cluster. As the clusters become smaller as the dispersion 
progresses, the length of the intermediate portions may also 

variation, where U is the symbol forthe mean velocity defined 
as the volumetric flow rate divided by the cross-sectional area 

10 successively decrease. For instance, the length of the inter
mediate portions may be about 60 mm (preferably about 30 
mm) in the beginning of the disperser flow channel and about 
2.5 mm (preferably about 5 mm) at the end of the flow chan-

of the tube in the r-8 plane. The rate of strain along the flow 
direction can be constant, vary linearly with z, vary quadrati- 15 
cally with z, vary as the rate of strain varies along a channel 
with 'flat walls', or have other functional dependence on z. 

The precise functional dependence and variation of the 
mean rate of strain on z is not as significant as the actual 
magnitude of the mean rate of strain. For simplicity, we use 20 

the case when the mean rate of strain, B, defined by 

25 

nel. 
Determining Cross-Section Dimensions 

The mean hydrodynamic stress is proportional to the mean 
rate of strain through the dynamic viscosity of the fluid, which 
is preferably water. 

The contraction ratio, CR,, is defined as the ratio of the inlet 
to outlet cross-sectional area or mean velocity, or written in 
terms of the hydraulic radius, this can be stated as, 

R2 
CR~ -'!c!_ 

I - R2 ' 
l,i 

Equation 2, 

since area is proportional to radius squared. This relation 
from now on is referred to as Eq. (2). Examples of these 

is a constant. Thus, the length of each section (such as for 
example i=61, ... 80 in FIG. 4), symbolized by L, for the 
axisymmetric tube can be computed based on the constant 
mean rate of strain in that section, B,, given by 30 parameters computed for several cases are shown in Table 5. 

Equation 1 

For Norway spruce, the contraction ratio of3 corresponding 
to a mean rate of strain, B of 11 reciprocal second (1/s) for 
contraction diameter from 9.5 millimeter (mm) to 5.5 mm 
which is considered to exert gentle extensional and compres-

35 sional stress on the embryo cluster. Where the contraction 
ratio of7 corresponding to a meanrate of strain of36 (1/s) for 
contraction diameter from 9.5 mm to 3.5 mm is considered to 
be a relatively strong extensional and compressional stress. 

where Q is the volumetric flow rate which is always constant 
along the channel (based on the principle of conservation of 
mass), R is the radius of the tube, and the subscripts "O" and 
"1" associated with the radius R define the inlet and outlet 40 

radius of each section, respectively. This relation for length 
from now on is referred to as Eq. (1 ). The mean rate of strain 

Whenever the flow encounters a converging passage or oth
erwise referred to as a contraction characterized by the cross
sectional area of the passage decreasing in the flow direction, 
the flow in general will experience an axial extensional rate of 
strain and a radial compressional rate of strain. The opposite 
condition is when the flow encounters a diverging passage or 

B, can be positive or negative, which means that the embryo 
cluster experiences a mean rate of extensional strain for posi
tive B, and a mean rate of compressional strain for negative 
value ofB,. A large number of combinations for the length L, 
and the mean rate of strain B, are possible. 

Eq. (1) can be generalized to the non-axisymmetric case by 
using the concept of the hydraulic radius, Rh, for each case, 
which is defined as one half the hydraulic diameter, or math
ematically stated Rh Dh/2 where Dh is the hydraulic diam
eter as defined above. 

45 otherwise referred to as a expansion characterized by the 
cross-sectional area of the passage increasing in the flow 
direction, the flow in general will experience an axial com
pressional rate of strain and a radial extensional rate of strain. 
The terms "axial" and "radial" refer to the spatial directions 

50 along the center axis of the tube in general direction of the 
flow (axial), and along the radius of the tube from center 
toward the surface of the tube normal to the axial direction 
(radial). When the cluster enters a contraction, it is elongated 
in the flow direction. As the cluster leaves a contraction and 

The equations to determine the length of the contraction or 
expansion section based on linear, quadratic or 'flat wall' 
formulation can also be considered. Such equations can be 55 

found in the literature for various types of contractions (for 
reference, see e.g., Parsheh M., Brown, M., andAidun, C. K., 
"Fiber Orientation in a Planar Contraction: Shape Effect" Int. 
J. Multiphase Flow, 32, 1354-1369, 2006.) 

The case of linear or quadratic mean rate of strain can be 60 

considered if there are limitations for the length of the dis
perser unit. However, the constant mean rate of strain will be 
sufficient to disperse the cluster if applied in gradually 
increasing magnitude of the mean rate of strain. 

The length of intermediate portions (inter-constriction 65 

parts) of the flow channel is determined based on the size of 
the embryo cluster to be dispersed and should be at least equal 

enters the expansion, it is compressed along the flow and 
stretched along the radial direction. This repeated elongation 
and compression through the disperser imposes gentle force 
on the individual embryos relative to each other. For example, 
when two attached embryos in a cluster are entering a con-
traction, the leading embryo is forced to move faster than the 
trailing embryo because the fluid surrounding the leading 
embryo is moving faster downstream than the fluids sur
rounding the trailing embryo. This action results in a gentle 
and yet finite pull imposed on one embryo relative to the other 
encouraging the embryos to separate. On the other hand, 
when the pair of embryos is entering an expansion, the 
embryos are pressed toward each other along the axial direc-
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tion but pulled away from each other in the radial direction 
further encouraging the embryos to separate. 
Axisymmetric Cross-Sections 

The flow channel may have essentially axisymmetric 
cross-section throughout the length. For example, the flow 
channel may have an essentially circular cross-section. 
Non-Axisymmetric Cross-Sections 

12 
table is the inlet hydraulic diameter, the second colunm is the 
outlet or the contraction hydraulic diameter. Thethird column 
is the contraction ratio calculated from Eq. (2). The fourth 
column is the volumetric flow rate with a typical value of 
4000 mm3 /s which is equal to 4 milliliter/s. The fifth column 
is the desired rate of strain ofl 0 (1/s ). The sixth colunm is the 
calculated length of the contraction based on the fixed rate of 
strain in the fifth column, in this case 10 (1/s ). The seventh 
column is the computed mean rate of strain based on the equal 

At least part of the flow channel may have a non-axisym
metric cross-section. A non-axisymmetric disperser device 
(see e.g. FIG. 4), has a similar interior as the symmetric 
disperser device with the difference that the interior at the 
constrictions are not essentially circular. 

10 length of 10 mm from the following relation derived from Eq. 
(1) 

The interior can be of any non circular cross section form, 
like oval, hexagonal, octagonal, triangular, elliptical, oval, 
square or rectangular in cross sections (43a), (45a), (47a), 15 

(49a), (53a), (55a), (57a), or (59a). Even irregularly shaped 
cross-sections may be used. 

Equation 3 

Axisymmetric cross-sections and non-axisymmetric 
cross-sections can be combined in the same disperser. 

This relation derived from Eq. ( 1) will be referred to as Eq. 
(3) from now on. For example, i=61, ... 80 for a device of 

20 FIG. 4. Preferably, the cross-section of each non-axisymmetric 
constriction, having a maximal dimension, is oriented such 
that the maximal dimension of each constriction is rotated, 
preferably at least 30° C., more preferably about 90° in rela
tion to maximal dimension of the next non-axisymmetric 
constriction in sequence. Such differentially oriented cross- 25 

sections provide more effective dispersing than similarly ori
ented cross-sections. 

Preferably, at least part of the flow channel has a rectangu-
lar cross-section. A preferred form of constrictions is a rect
angular form with rounded comers. 30 

Preferably, the cross-section of each constriction repre
sents a rectangle, having a first and a second side, wherein the 
first side is longer and the second side, and the constrictions 
are oriented such that first side of each constriction is perpen
dicular to the first side of the next constriction in sequence 35 

having a rectangular cross-section. Such rectangular alternat
ing cross-sections provide more effective dispersing than 
constant cross-sections. The corners of the cross-sections are 
preferably rounded to minimize stresses to the embryos. 

One way of expressing the size of the cross-sections is their 40 

cross-sectional area (perpendicular to the flow direction). The 
constrictions may have a cross-sectional area in the interval 
from 0. 7 5 to 1300 mm2

, preferably in the interval from 3 to 3 2 
mm2. 
Certain Specific Embodiments 

Exemplary dimensions for an axisymmetric disperser are 
presented in Tables 2 and3. The tables 2 and3 give a preferred 
combination of dimensions for Norway spruce embryo clus
ters that are matured in a typical laboratory protocol or with a 
partially immersed bioreactor. 

45 

50 

Exemplary dimensions for a non-axisymmetric disperser 
suitable for Norway spruce embryos are presented in Tables 4 
and 5. In table 4, two alternative embodiments are presented 
designated Alt 1 and Alt 2. The constrictions are essentially 
rectangular and oriented in an alternating fashion. The dis- 55 

perser in Alt 1 imposes a more gradual extensional and com
pressive stress on the cluster of embryos where Alt 2 imposes 
a larger extensional and compressive stress. Alt 1 andAlt 2 are 
used depending on the maturation process of the embryos. 
When the embryo cluster is developed such that the cluster is 60 

loosely packed, Alt 1 in combination with the axisymmetric 
disperser would be sufficient to disperse the embryos. Other
wise, Alt 2 needs to be used. 

Table 5 provides an example of the calculation based on 
Eq. (1), where the length of each contraction is determined 65 

based on a fixed desired rate of strain or the rate of strain is 
calculated based on a fixed length, L,. The first colunm in this 

EXAMPLES 

Example 1 

Preferred Dimensions of the Disperser 

TABLE2 

Inner diameter measures of the flow channel 

Cross section Preferred Inner diameter 
position with Inner diameter for Norway Spruce 

reference to FIG. 3. [mm] (see example 2) 

(3) 3.0-10.0 9.0-9.5 
(4) 2.0-9.0 5.0-5.5 
(5) 3.0-10.0 9.0-9.5 
(6) 2.0-9.0 4.75-5.0 
(7) 3.0-10.0 9.0-9.5 
(8) 2.0-9.0 4.0-4.25 
(9) 3.0-10.0 9.0-9.5 

(10) 2.0-9.0 5.5-6.0 
(11) 2.0-9.0 5.75-6.0 
(12) 1.0-8.0 3.25-3.5 
(13) 2.0-9.0 5.75-6.0 
(14) 1.0-8.0 3.0-3.25 
(15) 2.0-9.0 5.75-6.0 
(16) 1.0-8.0 2.5-2.75 
(17) 2.0-9.0 5.75-6.0 
(18) 1.0-8.0 2.5-2.75 
(19) 2.0-9.0 5.75-6.0 
(20) 2.0-9.0 5.75-6.0 

TABLE3 

Exemplified preferred lengths for Norway Spruce of the 
different parts of an axisymmetric flow channel. 

Length on details 
in FIG. 3. Length [mm] 

(21) 30.0 
(22) 10.0 
(23) 30.0 
(24) 5.0 
(25) 30.0 
(26) 5.0 
(27) 20.0 
(28) 10.0 
(29) 20.0 
(30) 30.0 
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(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(53) 
(54) 
(55) 
(56) 
(57) 
(58) 
(59) 
(60) 

13 
TABLE 3-continued 

Exemplified preferred lengths for Nmway Spruce of the 
different parts of an axisymmetric flow channel. 

Length on details 
in FIG. 3. Length [mm] 

(31) 5.0 
(32) 30.0 
(33) 5.0 
(34) 30.0 
(35) 5.0 
(36) 30.0 
(37) 5.0 
(38) 20.0 
(39) 10.0 
(40) 10.0 

TABLE4 

Exemplified inner cross-section dimensions for Norway spruce, 
with reference to FIG. 4. 

Inner Black arrow Width 
Shape of dimensions side [mm] side 
inner [mm] (83)-(90) [mm] 

section Alt.1 Alt.2 Alt.1 Alt. 2 Alt.1 Alt.2 

circular 9.5 9.5 
Rectangular (83) 5.0 (83)4.75 9.5 9.5 
circular 9.5 9.5 
Rectangular (84) 9.5 (84) 9.5 5.0 4.25 
circular 9.5 9.5 
Rectangular (85) 5.0 (85) 3.75 9.5 9.5 
circular 9.5 9.5 
Rectangular (86) 9.5 (86) 9.5 5.0 3.5 
circular 9.5 9.5 
circular 6.0 6.0 
circular 6.0 6.0 
Rectangular (87) 3.5 (87) 3.25 6.0 6.0 
circular 6.0 6.0 
Rectangular (88) 6.0 (88) 6.0 3.5 3.25 
circular 6.0 6.0 
Rectangular (89) 3.5 (89) 2.75 6.0 6.0 
circular 6.0 6.0 
Rectangular (90) 6.0 (90) 6.0 3.5 2.75 
circular 6.0 6.0 

TABLES 

14 
Example 2 

Dispersion of Norway Spruce Somatic Embryos 

One of the disperser systems built according to the inven
tion consists of dimensions similar to the Table 3 Alt. 2 case 
with 6 non-axisymmetric and 4 axi-symmetric sections posi
tioned in series one after another in decreasing cross-sec
tional area of the constriction. 

10 Several clusters of embryogenic mass of Norway Spruce 
(cell line 06:28:05) with average hydraulic diameter of the 
cross-section taken from the mid-section of the cluster rang
ing from 5 mm to 30 mm were collected from a periodically 
and partially immersed bioreactor and fed into a disperser of 

15 the invention described above.A total often (10) tube sections 

20 

25 

30 

35 

40 

were attached by 180° circular tube bends in a spiral pattern. 
The lower section of the tube bends were fixed in plastic so the 
whole structure was permanently held in place. As the flow 
was initiated by a peristaltic pump, the clusters were observed 
entering the disperser and through the sections with axi
symmetric and non-axisymmetric contraction and expansion 
sections. The embryos were observed to be completely dis
persed as passing through the last section of the disperser, 
showing the effectiveness of the invention to fully disperse 
the cluster. The embryos were not physically damaged by the 
dispersion. 

The invention claimed is: 
1. A method of dispersion of clusters of plant embryos 

suspended in a liquid into individual plant embryos flowing 
through a flow channel, the method comprising: 

feeding clusters of plant embryos into a disperser for sepa
rating individual somatic plant embryos contained in the 
clusters of embryos, 

subjecting the clusters of plant embryos to axially exten
sional strain and radially compressional strain; 

subjecting the clusters of plant embryos to fluid dynamics 
forces causing axially compressional strain and radially 
extensional strain from fluid dynamics forces; and 

repeating the subjecting steps in sequence until the indi
vidual plant embryos are separated from each other, 

wherein the disperser comprises a flow channel including 
at least two constrictions, 

Examples of dimension parameters computed based on the desired mean rate of 
strain and/or based on a fixed length with hydraulic tube radius also applying to non

axisymmetric section of the disperser 

Computed 
Mean 

Computed Rate of 
length, L strain 
(mm) for (1/s) 

Fixed rate based on 
B; of strain Fixed 

Tube Contraction Fixed equal to Length of 
diameter, Contraction ratio, CR as Volumetric rate of 10.0 (1/s) lOmm 

2Ro diameter, defined flow rate strain based on based on 
(mm) 2R1 (mm) above (mm-3/s) (1/s) Eq. (1) Eq. (3) 

9.50 5.50 2.98 4000 10.00 11.2 11.19 
9.50 4.50 4.46 4000 10.00 19.5 19.51 
9.50 3.50 7.37 4000 10.00 35.9 35.93 
6.00 3.50 2.94 4000 10.00 27.4 27.43 
6.00 3.25 3.41 4000 10.00 34.1 34.07 
6.00 2.75 4.76 4000 10.00 53.2 53.20 
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wherein each constriction of the at least two constrictions 
has an inner diameter that is equal to or smaller than the 
inner diameter of the constriction immediately 
up-stream thereof, 

wherein each constriction of the at least two constrictions 
has a cross-sectional area in the interval from 0.75 to 
1300 mm2 

wherein the minimum cross-sectional dimension of the 
flow channel is larger than the largest dimension of the 
largest embryo in the clusters of plant embryos to be 
dispersed, 

wherein the flow channel includes an intermediate portion 
between sequential constrictions, the intermediate por
tion having an essentially constant cross-section. 

2. The method of claim 1, wherein the strength of the 
extensional and compressional strains increases with each 
repeated sequence. 

16 
10. The method of claim 1, wherein at least part of the flow 

channel of the disperser, into which the clusters of plant 
embryos are fed, has a non-axisymmetric cross-section. 

11. The method of claim 10, wherein the cross-section of 
each non-axisymmetric constriction, having a maximal 
dimension, is oriented such that the maximal dimension of 
each constriction is rotated at least 30° in relation to the 
maximal dimension of the next non-axisymmetric constric
tion in sequence. 

10 
12. The method of claim 10, wherein the cross-section of 

each non-axisymmetric constriction is a rectangle, having a 
first and a second side, wherein the first side is longer than the 
second side, and the non-axisymmetric constrictions are ori
ented such that first side of each constriction is perpendicular 

15 
to the first side of the next non-axisymmetric constriction in 
sequence having a rectangular cross-section. 

3. The method of claim 1, wherein each intermediate por
tion of the disperser, into which the clusters of plant embryos 20 

are fed, has an inner diameter that is equal to or smaller than 
the inner diameter of the intermediate portion immediately 
up-stream thereof. 

13. The method of claim 5, wherein the length of each 
intermediate portion of the disperser, into which the clusters 
of plant embryos are fed, is in the interval from about 5 mm to 
about30mm. 

14. The method of claim 6, wherein the disperser, into 
which the clusters of plant embryos are fed, comprises 5-20 
constrictions. 

15. The method of claim 6, wherein the disperser, into 
which the clusters of plant embryos are fed, comprises 10 
constrictions. 

4. The method of claim 1, wherein each intermediate por
tion of the disperser, into which the clusters of plant embryos 25 

are fed, has a length at least equal to the largest dimension of 
any cluster of plant embryos to be dispersed. 

16. The method of claim 11, wherein the maximal dimen
sion of each constriction of the disperser, into which the 
clusters of plant embryos are fed, is rotated at least about 90° 
in relation to the maximal dimension of the next non-axisym
metric constriction in sequence. 

5. The method of claim 4, wherein the length of each 
intermediate portion is in the interval from 2.5 mm to 60 mm. 

6. The method of claim 1, wherein the disperser, into which 30 

the clusters of plant embryos are fed, comprises 2-100 con-
17. The method of claim 10, wherein each intermediate 

portion of the disperser, into which the clusters of plant 
embryos are fed, has an inner diameter that is equal to or 

35 
smaller than the inner diameter of the intermediate portion 
immediately up-stream thereof. 

strictions. 
7. The method of claim 1, wherein each constriction of the 

plurality of constrictions of the disperser, into which the 
clusters of plant embryos are fed, has a cross-sectional area in 
the interval from 3 to 32 mm2

. 

8. The method of claim 1, wherein the flow channel of the 
disperser, into which the clusters of plant embryos are fed, has 
an axisymmetric cross-section. 

9. The method of claim 1, wherein the flow channel of the 
disperser, into which the clusters of plant embryos are fed, has 
an essentially circular or oval cross-section. 

18. The disperser of claim 8, wherein each intermediate 
portion of the method, into which the clusters of plant 
embryos are fed, has an inner diameter that is equal to or 

40 
smaller than the inner diameter of the intermediate portion 
immediately up-stream thereof. 

* * * * * 


