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ABSTRACT 

Attempts to automate the sewing process of garment 
manufacturing have employed substitutes for human guidance 
of fabric into somewhat conventional sewing machines.  A 
new approach has been proposed and partially verified in 
prototype form.  It consists of several subsystems responsible 
for 1) gross fabric motion, 2) precision detection of the fabric 
location and 3) exact placement of the needle in the fabric.  
Gross motion employs steerable rollers capable of moving the 
fabric.  Fine fabric motion employs vision sensing technology 
to count threads in the fabric.  Exact placement employs servo 
controlled dogs for moving the fabric to exactly place the 
needle.  This paper will explain the concept and the extent of 
verification of its realization. 

INTRODUCTION 
Clothing is one of the three basic necessities of human life 

and a means of personal expression.  As such, clothing or 
garment manufacturing is one of the oldest and largest 
industries in the world.  However, unlike other mass industries 
such as the automobile industry, the apparel industry is 
primarily supported by a manual production line.  This paper 
proposes a system of automation which diverges from previous 
attempts in several ways, most notably in the immediate 
objective of the process and also the means of achieving it.  
The objective becomes placement of each stitch between the 
correct threads of the warp and weft (fill) of the component 
pieces of fabric, to be achieved by novel sensing and material 
handling devices.  If this can be achieved, the resulting 
garment will have the proper shape when draped over the 
wearer’s body. 

The need for automation in garment manufacturing has 
been recognized by many since the early 1980s and is discussed 
comprehensively by Byrne [1

A joint $55 million program between the Ministry of 
International Trade and Industry (MITI) and industry, called the 
TRAAS program, was started in 1982.  The ultimate goal of 
the program was to automate the garment manufacturing 
process from start, with a roll of fabric, to finish, with a 
complete, inspected garment.  While the project claimed to be 
successful, and did demonstrate a method to produce tailored 
women's jackets, it failed to compete with traditional 
methodologies. 

] and summarized here.  During 
the 1980s, millions of dollars were spent on apparel industry 
research in the United States, Japan and industrialized Europe. 

Draper Laboratories in the U.S. was provided with $25 
million of support from the government and industry with the 
goal of automating parts of the sewing process, beginning with 
setting a sleeve into a coat and then moving to automated 
seaming.  In Europe, the BRITE project put millions of dollars 
towards automated sewing.  Neither program resulted in 
successfully automating the entire process, although some 
minor gains were made. 

CURRENT GARMENT MANUFACTURING SYSTEMS 

Conventional Industrial Sewing Machines 
Current industrial sewing is done mostly by hand with 

some processes being semi-autonomous.  Cutting stacks of 
fabric, for example, is readily performed by NC machines, and 
pockets can be automatically sewn.  The primary tool for the 
core process is the standard sewing machine, partially shown in 
Fig. 1. The important components with regard to this paper are 
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the needle, needle bar, presser foot, feed dog, and the bobbin.  
These parts are the essential components directly involved in 
fabric handling and actually making the stitch. 

 
The way in which a sewing machine makes a stitch is quite 

simple.  While the needle is above the fabric, the dog feeds the 
fabric by pushing the fabric up against the presser foot and 
pulling it underneath the sewing needle.  As the dog completes 
this motion, it begins to move down, and the needle also moves 
down.  In the next step, the dog continues to move down and 
disengages the fabric.  The needle penetrates the fabric, which 
is kept taut by the presser foot.  The needle creates the stitch, 
called a lock stitch, using the bobbin, which holds a separate 
roll of thread.  The needle is lifted back through the fabric, 
completing the stitch and tightening it as it continues to move 
above the fabric.  As the needle is lifted, the dog is also 
brought up once again to advance the fabric for the next stitch. 

A typical garment is composed of many parts. For 
example, a pair of jeans has 11 different components, with 22-
24 fabric pieces in all.  Due to the wide variety of parts and 
processes that must be carried out to assemble the parts, a 
flexible system that mimics the capabilities of a standard 
sewing machine, but that is automated, is desirable.  Also, 
fashion, personal preferences and sizes result in an enormous 
number of variations even for a “standard” item.  Therefore, 
most attempts at automating the sewing process have started 
with the current sewing machine and have attempted to 
augment the device in such a way as to replace the operator. 

Prior Research Results 
Early research efforts at the university level focused on 

control of fabric through a standard industrial sewing machine. 
One of the earliest attempts was by Frank Paul at Clemson 
University [2

David Gershon, at the Weizmann Institute of Science in 
Israel, extended the work begun at Clemson [

].  His system used machine vision to detect the 
edge of a piece of fabric and then plan a seam path at an offset 
to that edge. Difficulties arose due to outgoing filaments, 
inhomogeneous cuts, and wrinkles in the fabric.  In addition, 
the project dealt only with manipulating a single piece of fabric 
and ignored the joining of multiple pieces.  Finally, the results 
showed the need for real-time feedback during the sewing 
process. 

3

In maintaining proper fabric tension, tension measurement 
has been used to detect error in the feed rate of the robot 
relative to the dogs.  The objective of the controller was to 
prevent the fabric from buckling due to compression or tension, 
which resulted in a poor quality seam.  Tension measurement 
has not proven to be a method that is robust enough, given the 
wide range of fabric properties. 

].  Gershon 
used a similar setup with a traditional industrial sewing 
machine and industrial robotic manipulator.  However, he 
added real-time feedback and control.  He decomposed the 

sewing process into four tasks: contour tracking, tension 
control, robot feed control, and sewing. To account for error 
and to maintain proper tension in the fabric, a separate control 
loop was used to maintain the tension in the fabric based on a 
force sensor in the end effector. 

To fix problems associated with tension control and 
difficulties arising from the range of fabric properties, fuzzy 
logic and neuro-controllers were applied to a similar system by 
Panagiotis Koustoumpardis and Nikos Aspragathos [4

THE PROPOSED SYSTEM 

]. The 
results did show improved robustness over previous work, but 
they still did not address the issue of attaching two pieces of 
fabric together; instead, it focused on the control of a single 
piece of fabric.  

Overview 
To sew two pieces of fabric together, a number of 

processes must be coordinated.  First, the individual sheets of 
fabric must be transported to the sewing table and placed flat on 
the table.  Next, the two plies must be aligned properly and 
moved to the sewing head.  The paired pieces are then fed 
through the sewing machine and sewn together.  While this is 
occurring, the sheets must maintain proper alignment with 
respect to the needle and with respect to each other and must be 
fed at the proper rate and maintained at the proper tension.  It 
is important to note that these requirements are for each sheet 
of fabric individually.  At the end of the seam, the seam must 
be serged to complete the seam and to prevent it from coming 
undone.  Finally, the sewing thread must be cut and the 
finished piece must be transported to the next stage of the 
process. 

In order to efficiently and reliably complete these varied 
tasks, an integrated system using multiple types of sensors and 
actuators is proposed as summarized below.  

An overhead pick-and-place robot with a special end 
effector is used to pull individual plies of fabric from a stack of 
pre-cut fabric pieces.  Much research has been done focusing 
on developing a unique end effector that will allow a robotic 
arm to pick up a single piece of fabric at a time [ 5

An array of small, inexpensive “budgers” provides a useful 
method for transporting the fabric to the sewing head while 
ensuring that it lays flat and in the correct orientation.  Each 
budger consists of a steered ball driven by two motors to rotate 
the ball in two perpendicular axes.  Traction between the 
fabric and the ball is enhanced by a slight vacuum drawing a 
flow of air through the fabric via a series of holes in the ball.   

-9].  
Because these components are fairly conventional, they will not 
be further described here. 

At the sewing head, the actuation method is an adaptation 
of the current sewing machine feed mechanism.  Currently a 
sewing machine uses a feed dog to move the fabric through the 
sewing head relying on the operator to maintain the fabric 

 
Figure 1: Standard sewing machine. [2] 
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orientation and keep up with the feed rate, also operator-
controlled via a foot pedal.  Previous attempts at automated 
sewing used the sewing dogs on a standard sewing machine and 
had a robot perform exactly the operations a human operator 
would perform. 

This project endeavors to replace the standard sewing dogs 
and human operator with servo-controlled dogs.  By using the 
feed dog mechanism as the method by which to control the 
fabric, the difficulties of fabric feed rate, tension control, and 
fabric position control can all be more adequately addressed.  
The budgers provide the large fabric motions that the human 
operator would normally provide and hence coordination 
between budgers and dogs will be necessary. 

For the actuators at the sewing head to achieve high 
position accuracy, sensing must be precise because it 
determines the stitch position and stitch length.  A major 
hurdle in using machine vision to provide position feedback 
using vision has been the errors introduced by variability of the 
edges of fabric due to outgoing filaments and deformation of 
the cloth off of the table surface [10].  To alleviate this issue, a 
new vision technique is proposed and has been demonstrated as 
a prototype to provide fabric position information by tracking 
individual threads in the fabric. Therefore, the position of the 
fabric is to be measured in threads rather than millimeters or 
inches.  In the previous research described above, fabric 
position is based on the shape of the fabric relative to a global 
coordinate system.  As such, any fabric deformation results in 
position error.  Using the fabric’s threads for position 
detection at the point of the needle’s entry into the fabric avoids 
errors.  It also avoids problems of noise in the fabric edge. No 
previous work has attempted to track fabric threads to measure 
position and orientation.  However, a number of papers have 
been written on using vision to detect thread-based information 
on fabric, such as fabric defects or fabric weave patterns [11-
16].

Integrating the various components of the system requires a 
control hierarchy such as the one shown in Fig. 2.  

Budger Design and Test 
Electric motors (currently both stepping motors and DC 

motors have been tried) spin the perforated ball and control the 
angle of the spinning axis as shown in Figure 3.  A slight 
vacuum is critical to maintaining the normal force between the 

fabric and the ball high enough to move the fabric. The vacuum 
pulls air through the holes created in the ball, as seen in Figure 
3. The holes pass through the center of the ball, allowing air to 
flow through the fabric to the vacuum chamber. The budgers 
have demonstrated effectiveness at moving and steering fabric 
at rates up to 160 in/sec, but with some slip, necessitating 
vision feedback control. 

The motors that control the budgers must have position 
sensors in order to follow a given trajectory.  However, due to 
the nonlinear mechanical properties and varieties of fabric, and 
noticeable slip between the budgers and the fabric, position 
feedback of the fabric itself is necessary. The vision system will 
observe the position, alignment, and shape of the fabric to 
ensure that the fabric remains aligned.  This is one of two 
vision systems and is described below in greater detail. More 
precise sensing at the thread level will occur at the sewing 
head. 

 
The ability of a single budger to steer is illustrated in 

Figure 4.  The square of cloth begins stationary in the first 
frame and is moved forward quickly, first to the left and then to 
the right. Coordinated action of two or more budgers can 
produce near arbitrary translation and rotation (including 
rotating in place). The coordination of two or more rollers is 
almost identical to the coordination of independent steering of 
multiple wheels on a vehicle in which the vehicle is upside 
down and subject to the same holonomic constraints.  Driving 
the balls in a holonomic fashion is also feasible but complicates 
the construction of the budger. 

Machine Vision for Budger Control 
Vision for budger control has been developed by Killpack 

in the course of work at Georgia Tech’s Robotics and 
Intelligent Machines (RIM) program [17].  Killpack looked at 
prior work in vision tracking and position estimation. Since 
fabric is flexible and subject to out-of-plane motion an 
appropriate model of modest complexity is needed.  Past work 
in simulating or modeling cloth behavior can be largely divided 
into geometrical or physical techniques or a hybrid of both. Ng 
et al [18] summarized the initial work in this field. They 
explained that geometrical techniques do not consider 
properties of cloth but focus on appearance, especially folds 
and creases represented by geometrical equations. Physical 
techniques generally use triangular or rectangular grids with 
points of finite mass at the intersections. Real-time 
implementation of models has also been considered, for 
example by Meyer et al [19]. 

 

 
Figure 3: Budger for gross fabric motion. 

 
 
Figure 2: Block diagram of control hierarchy. 
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Tracking the large motions of a piece of fabric is necessary 

to deliver the fabric to the sewing head accurately.  It is 
considered acceptable to place clearly identifiable markings or 
fiducials on the fabric to facilitate this task, although existing 
features on the fabric may eliminate this need.  The vision 
system must track these individual fiducials and estimate the 
position of the cloth.  Estimation can be improved with a 
suitable model of the cloth behavior.  A Kalman filter or 
Extended Kalman Filter (EKF) is commonly used to estimate 
the position of a body in the presence of noise and requires a 
model of the fabric.  For this application, two different models 
for the cloth were compared. The first modeled only x, y, and 
theta displacements and velocities at the center of mass of the 
cloth. This was done by modeling the cloth as a rigid plate with 
a nominal mass and coefficients of friction (static and 
dynamic). The second model includes a two-dimensional non-
rigid finite element mesh where the node positions represent the 
states of the cloth. At each time step, the motion of the center of 
mass of the cloth was still predicted. In the prediction step of 
the EKF the positions of the nodes are then calculated 
according to their relative position with respect to the center 
from the last time step. During the measurement update in the 
EKF, the nodes are allowed to move in a non-rigid fashion.  
The cloth to be used for this research is denim. Although for 
denim, the assumption of a rigid object for tracking will 
perhaps be sufficient, it is not general enough for other types of 
materials or even extreme cases where the cloth moves rapidly 
or non-rigidly. For this reason, both a completely rigid model 
and a mesh model of the cloth were considered.  

The tracking process involved four distinct events of 
1) initialization, 2) state prediction, 3) measurement with data 
association and 4) state correction. The initialization stage 
concerns only the initial frames of the sequence. Background 
subtraction could be used to identify the cloth (foreground) 
from the background of the conveyor system. Background 
subtraction and manual selection was used to identify the 
region of interest (ROI) for now.  

The algorithm was initially implemented in Matlab and 
three cloth movement tests were performed. The first is the 
simple translation of the cloth in a single direction with one 
applied force in that direction. The second test is a rotation and 
translation of the cloth induced by a force with a moment arm. 
The third test is the compression and tension of the cloth from 
both sides causing a folding and unfolding in the middle. These 
tests permit us to test the limits of the current implementation 
and look for improvements. 

The data was collected and stored and the estimation in 
Matlab was based on one of several alternative assumptions 
with corresponding of computational burden:  

- no assumed model or force  
- only the assumed force for the rigid model 
- an assumed force and the EKF for the rigid model  
- no assumed force and the EKF for the rigid model  
- an assumed force and the EKF for the mesh model  
- no assumed force and the EKF for the mesh model  
For testing these assumptions, the cloth was moved by 

hand under the camera.  The consequence of different 
processing techniques is shown in Figure 5 through Figure 8. 
For each frame, the predicted location of 20 feature points was 
measured against the manually extracted location of those 
feature points and we call this error the residual. The average 
pixel error for each frame was reported as well as the worst 
error. We assume that for an overhead camera setup, the image 
can be rectified so that it is parallel with the plane of the 
workspace. This would mean that pixel error reported is 
proportional to cloth prediction error in length units as long as 
the cloth remains mostly in the plane. For the rigid assumption 
and simple translation, error is greatly reduced by the EKF as 
shown comparing Figure 5 to Figure 6, where the error remains 
in the vicinity of 2 pixels.  This is probably adequate unless 
the fabric is prone to buckling as is the case when the direction 
of motion is reversed.  

Particularly challenging is the case when the cloth 
momentarily buckles and is then straightened out.  In this 
case, a grid description of a flexible body gives great 
improvement.   This difference is dramatically shown when 
comparing Figure 7 and Figure 8.  The use of improved 
models is still under consideration and more extensive testing is 
needed to ensure that other forms of buckling are adequately 
considered. 

While no attempt was made to achieve real-time operation 
in these tests, attention was given to the potential shift to real 
time with customized hardware and software. The speed of 
these experiments relative to other published data is given in 
Table 1.  No attempt has been made to account for differences 
in hardware, but it indicates that the combination of hardware 
and software is moving encouragingly close to real time. 

Thread Counting Vision System 
Central to the proposed approach for garment manufacture 

is the ability to reliably “count threads” in the fabric cut parts.  
More specifically, this refers to a process of:  
• continuously monitoring a small region of fabric in the 

immediate vicinity of a dog (which may be either cutting 
or sewing) 

 

 
(a) Starting position of the fabric 

 
(b) Fabric directed to the left 

 
(c) Fabric directed to the right 
Figure 4: Fabric movement by one budger. 
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• allowing for local deformation of that region of fabric so 
that the center point is kept within the proper context of the 
non-Euclidean thread-based coordinate system relative to 
an original starting point or datum, maintaining 

1. The cumulative number of warp threads that have passed 
the center point, 

2. The cumulative number of fill threads that have passed 
the center point, and 

3. The current angular orientation of the fabric. 
 

 
 

Table 1  Processing rates by various researchers. 
Authors Rate of analyzing frames 
Pritchard et al. (2003) [20] 0.0028 fps 
Hasler et al. (2007) [21] 2.7E-5 fps 
Hernandez et al. (2008) [22] 0.025 fps 
Bradley (2008) [23] 2.78E-4 fps 
Killpack et al. (2008) [17] 4 fps 

 
Note that the cumulative count includes both positive and 

negative increments. The third requirement above, maintaining 
at least an approximate angular orientation, is key to knowing 
whether the passage of a thread represents warp or fill, and 
whether it is a positive or negative increment.  A more precise 
estimate of angular orientation is required to rotate the dogs for 
closed-loop control of stitch patterns at arbitrary angles relative 
to warp and fill. 

This thread-counting process has only recently become 
feasible at the speeds required for a production environment.  
The primary enabling technologies are very fast imaging 
devices and moderately priced computational hardware that 
allow both sensing and computation to be performed in a small 
unit that can be replicated numerous times throughout a 
production machine while still meeting cost targets.  Indeed, 
CMOS imaging devices are now commercially available for 
less than $50 that are capable of exceeding the requirement of 
1500 frames per second.  Although strong lighting is required 
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Figure 5: Magnitude of residual between measurement 
and prediction for force alone. 
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Figure 6: Magnitude of Residual for EKF with assumed 
force. 
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Figure 7: Residual for back and forth motion with no 
model. 
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Figure 8: Residual for back and forth with EKF and 
mesh model. 
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for such high-speed operation, it is perfectly reasonable for a 
controlled manufacturing environment. 

The requirement of a high frame rate results from the need 
to recognize very small motion (less than the width of a thread) 
in successive frames, i.e., to satisfy the Shannon sampling 
theorem as it applies to the spatial frequencies of the image.  
This is true regardless of whether a spatial-domain approach or 
a frequency-domain approach is taken.  In fact, a hybrid of 
spatial and frequency techniques has been demonstrated at this 
point, achieving the initial objectives.  As illustrated in Figure 
9, features (corners, specifically) are first extracted from raw 
image data.  Two parallel algorithms estimate translation and 
rotation, respectively.  Both utilize corner features resulting 
from a Harris corner detection algorithm [24], not only because 
corners are generally strong invariant features, but also because 
weave patterns exhibit them in abundance. A sample fabric 
image is shown in Figure 10, with detected corners 
superimposed.  There is no assumption that all corners will be 
detected or that the same corners will appear in successive 
frames – only that a very large number of the same corners will 
appear in successive frames. 

The left branch of Figure 9 is the approach used to detect 
fabric translation, measured at the center of the image 
(corresponding to the center of the dog’s local coordinate 
system).  The process is illustrated with images in Figure 11 
and Figure 12.  Although these are generated from simulated 
frames that include deliberate noise and miscorrelation, they are 
representative of millions of data frames which have been 
acquired with prototype hardware in the laboratory.  In Figure 
11, two successive frames have simply been compared to find 
the pairwise sets of nearest corners in each frame.  Each set 
results in a vector that describes the hypothesized motion 
during the frame interval at that point on the fabric.  Some of 
the correlations appear obviously incorrect in the figure 
however, the miscorrelated pairs can be eliminated, and a more 
accurate average translation can be determined, resulting in 
dx/dy, as shown in Figure 9.  This enables not only discrete 
thread counting, but actually fractional thread counting.  All 
that is required is to perform a coordinate transformation 
between the camera frame of reference and the fabric itself.  
This requires a method of estimating the fabric rotation 
(dTheta), shown as the right branch of Figure 9. 

Actually, as Figure 12 shows, it is possible to estimate 
differential rotation as part of the same algorithm that computes 
translation.  But better results, free of accumulating 
incremental errors, can be attained by considering the weave 
pattern.  Whereas the dx/dy pattern is small and repeats so 
often as to be unrecognizable from frame to frame due to 
aliasing, the rotational orientation is easily recognizable in 
successive frames as long as differential rotation is less than 45 
degrees.  So, a conventional approach of taking a 2D FFT is 
utilized, resulting in strong peaks corresponding to the spatial 
frequencies of the warp and fill threads.  Tracking the 
corresponding angular orientation of these peaks in the spatial 
image from one frame to the next ensures that the fabric angle 
is estimated correctly. 

Prototypes of the vision system have been developed to 
demonstrate the feasibility of real-time tracking of threads.  
An initial prototype was developed utilizing an existing vision 
system.  It consisted of an OP9630 camera and a Xilinx 

Spartan 2e FPGA.  Images were collected from the camera at 
15 fps and real-time tracking of the fabric was demonstrated. 
Following the initial prototype, additional work was performed 
to execute the processes at a minimum of 1500 frames per 
second.  For this second prototype effort, a high speed CMOS 
camera (Photonfocus MV-1024E-40-CL), a precision lens 
(Fujinon CF16HA-1) and a high-speed Xilinx FPGA 
development board (with a Virtex 5 FPGA) were utilized.  
The camera was able to capture and send a 128x128 pixel 
image at a rate of 1500 fps to the FPGA board.  The FPGA 
board then tracked the movement of the fabric and passed the 
information via USB to a PC. 

 

 
Servo Dog Capability Development 
The specifications and technology to meet them was 
established in work by Ryder Winck at Georgia Tech [25-26].    
The maximum travel of a servo dog needs to be only the 
distance of the longest stitch length anticipated for the 
application.  Typical sewing speeds for non-autonomous 
sewing can be up to 5,000 stitches per minute, which is about 
80 stitches per second. Assuming an average stitch length of 
approximately 2 millimeters, the servo actuators must be able 
to accelerate up to about 23 g’s or 225 m/s2 in order to compete 
with the speed of the current manual sewing process. 

Corner Detection

Camera/Fabric Coordinate 
Transformation

2D FFT

Peak Threshold

Peak Search

Peak Track

Corner Track

Image Data

Corners

dx/dy

dTheta

dx’/dy’

Motion integration

 
Figure 9: Thread Counting Vision algorithm. 
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 The accuracy of the dog’s motion must be proportional to 
the length of travel because large variations in stitch length and 
stitch position cause unacceptably poor seam quality.  In other 
words, the position accuracy should be on the order of fractions 
of a millimeter. 

The servo dogs are located in front of the needle, unlike the 
standard feed dog, in order to be able to orient the fabric 
properly before the fabric reaches the needle.  Therefore, they 
no longer will have the presser foot to push against and instead 
will be mounted above the fabric and push down against the 
surface of the table. 

Figure 13 depicts the six different degrees of freedom 
fabric might exhibit on the surface of constraint. If one can 
assume that, with respect to the dogs, the stretch and shear are 
negligible and that the fabric only needs to be able to orient to 
the sewing head and feed into it, then only the two degrees of 
freedom described above (forward/back and rotate) are 
necessary.  However, because the fabric has the potential to 
buckle and stretch at the sewing head, it is likely that the three 
degrees of freedom associated with fabric deformation will also 
need to be controlled. 

In addition to multiple degrees of freedom, the servo dogs 
must be able to control two sheets of fabric, which overcomes a 
significant deficiency in previous designs for automated 
sewing. A better solution is to separate the two sheets with a 
surface in between them, such as a thin steel plate, as shown in 
Figure 15, and have servo dogs above and below the plate, one 
set of two dogs for each ply. 

 

 
To obtain the high accelerations required for the servo dogs 

to keep up with the sewing machine, an average DC or stepper 
motor is insufficient.  Instead, voice coil motors are used.  In 
general, voice coil motors have a low force output per motor 
mass and so it is beneficial to mount the motors apart from the 
moving part of the servo dog to reduce the inertia of the dogs.  
Therefore a cable drive system is necessary to transmit the 
force from the motor to the dogs.  To accurately control the 
position of the voice coil motors, an optical linear encoder 
provides a precise non-contact solution. 
 A prototype of the proposed actuator has been developed 
to demonstrate the feasibility of multi-degree-of-freedom servo 
control at the high accelerations, accuracy and precision 
required.  The prototype is designed to have two degrees of 
freedom, the minimum number of degrees of freedom for 
controlling a fabric sheet on a surface.  The prototype uses 
two voice coil motors and a cable drive system to transfer 

 
Figure 13: Fabric on a surface has six degrees of 

freedom:  two directions of translation (a) (b), one 
direction of rotation (c), two directions of stretch (d) (e) 

and one direction of shear (f). 
 

 
Figure 10: Image of blue denim, with features resulting 
from a Harris corner detector superimposed. 
 

 
 

Figure 11: The result of associating the nearest corners of 
two successive frames of corner features, where corner 
translation is shown with a vector. 
 

 
Figure 12: The result of subtracting the average dx/dy 
translation, leaving only the rotational component and 
some obviously miscorrelated corner features (which can 
optionally be removed in a second pass of the algorithm). 
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power to the servo dog while allowing the motors to be 
mounted apart from the servo dog.   

 
 

 
 

The system uses linear optical encoders for position control 
of the voice coil motors, but the position control of the fabric 
itself is open loop control. Ultimately work-piece feedback 
would be provided by the thread counting vision system.  A 
single dog is used to achieve both forward and reverse motion 
and rotation.  This is sufficient for obtaining in-plane motion 
but cannot stretch or shear the fabric.  The entire device is 
mounted on an industrial sewing machine that had been 
modified to allow for the servo dog.  For out-of-plane motion, 
the dog is mechanically attached to the sewing needle to force 
proper timing between the contact of the servo dog and needle 
with the fabric. 

The sewing machine used for the prototype is a Juki DLN-
415-5 Single Needle Lockstitch Sewing Machine, shown in 
Figure 16, with the servo dog frame attached. 

The sewing needle to dog linkage system, shown in Figure 
17, mechanically connects the servo dog to the sewing needle, 
ensuring proper timing between the two devices. The actuator 
used for the prototype consists of a Gee Plus VM2618-180 
voice coil motor and Renishaw RGH24Z30F00A linear optical 
encoder.  The voice coil motor has a peak force of about 10 N 
and a total travel of 4 mm at a force greater than 90% of the 
peak force.  The travel of the actuator is mechanically limited 
to just over 4 mm of stroke.  Therefore, with a desired 

acceleration of 23 g’s or 225 m/s2, the total allowable moving 
mass is about 44 grams.  The motor itself has a moving mass 
of 6 grams. 
 

 
 

 
 

The cable drive system shown in Figure 18 transfers power 
from the actuators to the mechanical dog.  This permits the 
actuator housings to be stationary and is a lightweight method 
of transferring power.  Because of the change in distance as 
the dog moves up and down, albeit small, it is necessary that 
the cable be flexible.   

The prototype actuator has demonstrated the capability of 
controlling the fabric over a closed trajectory.  Two test 
trajectories are shown below in Figure 19 and Figure 20.  The 
control is entirely open loop with respect to the fabric position.  
Attempts at following a closed trajectory have confirmed the 
need for feedback control of the fabric position primarily to 
account for fabric slip at the point of contact with the actuator.  
This can be seen in Figure 19 where the final straight line is not 
at a perfect ninety-degree angle to the vertical line and in the 
varied lengths of each motion although the motions were 
programmed to be the same length. 

 
Figure 17: A CAD model of the servo dog prototype 

mounted on a sewing machine.  The primary 
components of the system are highlighted. 

 
Figure 14: The blocks represent the servo-controlled 

dogs and the arrows show how five degrees of freedom 
can be controlled: translation up/back (a), translation 
left/right (b), rotation (c), stretch in one direction (d), 

and shear (e) 

 
Figure 15: A thin plate separates two sheets of fabric.  

Each sheet is individually controlled by two manipulators 
although only one can be seen in this side view 

 
 

Figure 16: The sewing machine with prototype frame 
mounted. 
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 CONCLUSIONS AND FUTURE WORK 
Based on the work to date, the approach proposed seems to 

be technically feasible, although additional work on the thread 
counting vision system is needed and is underway.  It also 
appears that the approach can be economically viable, based on 
other evaluations.  Obviously, a fully functioning, integrated 
system will demand much more work and significant funding. 
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