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SUMMARY 
 
 
 
This research investigates the problem of constrained sequencing of a set of jobs on a 

conveyor system with the objective of minimizing setup cost.  A setup cost is associated 

with extra material, labor, or energy required due to the change of attributes in 

consecutive jobs at processing stations.  A finite set of attributes is considered in this 

research.  Sequencing is constrained by the availability of two elements – storage buffers 

and conveyor junctions.  The problem is motivated by the paint purge reduction problem 

at a major U.S. automotive manufacturer.  First, a diverging junction with a sequence-

independent setup cost and predefined attributes is modeled as an assignment problem 

and this model is extended by relaxing the initial assumptions in various ways.  We also 

model the constrained sequencing problem with an off-line buffer and develop heuristics 

for efficiently getting a good quality solution by exploiting the special problem structure.  

Finally, we conduct sensitivity analysis using numerical experiments, explain the case 

study, and discuss the use of the simulation model as a supplementary tool for analyzing 

the constrained sequencing problem.
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CHAPTER 1 

INTRODUCTION 

1.1   Motivation 

Information technology and computerized automation have greatly improved 

flexibility in modern manufacturing.  Today, most high-volume production systems may 

appear to be old fashioned transfer lines but in fact have become highly flexible, 

producing a large family of products such as electronics, automobiles, and other 

consumer goods.  One objective of striving for flexibility is to reduce the setup cost or 

time-to-respond to the ever-increasing diversity of customer demands.  However, even 

the most flexible systems may still incur some setup cost in job changes.  It is often 

desirable to change the job sequence to further reduce the setup cost and time. 

 

Conveyors are the most popular material transfer mechanism in high-volume 

production.  Conveyors can transfer large amounts of material with simple motion control 

and also provide buffer space.  However, simple conveyor segments are usually 

constrained to operate in a First-In-First-Out (FIFO) principle.  The sequence of materials 

on a simple conveyor segment cannot be changed by the conveyor itself.  To change the 

sequence in a conveyor system, one needs special mechanisms such as bypass, transfer, 

and spur.  The use of special mechanisms costs money and takes up floor space, 
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especially when transporting large jobs, making it important to minimize their use and to 

maximize their utilization in operation. 

 

However, merging or diverging conveyor junction points or off-line buffers (a 

conveyor itself can be considered as an on-line buffer) can also be used to change the 

sequence.  Junction points and off-line buffers are frequently observed in manufacturing 

facilities and changing the control logic of such equipment is relatively inexpensive.  

Therefore, using junction points or off-line buffers is preferred to using special 

mechanisms because of the reduced initial investment cost and floor space usage.   

 

Use of junction points and off-line buffers to change the job sequence can be found in 

the paint shop operation of automobile manufacturing where reducing the number of car 

color changes is desired.  Figure 1 shows a diverging junction with an off-line buffer 

where a single upstream conveyor feeds a finite sequence of cars into two downstream 

conveyors that lead to the paint booth.  Each car at the end of the upstream conveyor is 

allowed to visit off-line buffer before it is fed to the downstream conveyors.  It is 

desirable that color changes are minimized in the downstream conveyors.  In Figure 1, 

the number of setups to paint the five cars can vary from zero to four, depending on the 

dispatch sequence at the diverging point.  Note that the minimum number of setups 

becomes two if an off-line buffer does not exist. 
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Incoming ConveyorOutgoing Conveyors

Offline BufferStation 2

Station 1

 

Figure 1. Diverging Conveyors with an Off-line Buffer Example 

Figure 2 is an example of a converging junction with an off-line buffer where two 

upstream conveyors send a finite sequence of cars into a single downstream conveyor.  In 

Figure 2, the number of setups can be two to four.  Note that the minimum number of 

setups is three if no off-line buffer is available. 

Incoming ConveyorsOutgoing Conveyor

Station 1

Offline Buffer  

Figure 2. Converging Conveyors with an Off-line Buffer Example 

Our sequencing problem can be defined by the following two sets of elements.  First, 

the design parameters include: 

1) the number of upstream and downstream queues at the junction, 

2) the capacity of the upstream (and downstream) queues, 

3) the capacity of the off-line buffer at the junction—if one exists, 



 4

4) the discipline supported by the upstream queues, the downstream queues, and the 

off-line buffer, respectively, 

5) the configuration of the junction.  

 

Second, the known operational parameters include: 

1) the attributes of the jobs in each queue, 

2) the setup cost between consecutive jobs in the downstream queue. 

 

The operational decision is the dispatch sequence at the junction.  The setting of 

multiple upstream conveyors and multiple downstream conveyors—with or without 

storage buffers—is commonly observed in many real-world manufacturing environments, 

including the case study we conducted, as shown in Figure 3.  In Figure 3, for the car at 

the end of any upstream conveyor, this car may visit an off-line buffer, or bypass an off-

line buffer and go directly to one of the three downstream conveyors.  Since the car 

visiting off-line buffer will be ready to be released to one of downstream queues after 

some time, based on the queue discipline and transfer time of the off-line buffer, the off-

line buffer can be used to further reduce the number of color changes. 

 

Figure 3. Multiple Incoming and Outgoing Conveyors with an Off-line Buffer 
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While the optimal solution can be found by observation for the problem of 

minimizing the number of color changes in Figures 1 and 2, finding the optimal solution 

becomes very difficult when the number of incoming cars increases in a more complex 

junction.  The objective in production also may include minimizing cycle times or work 

in process.  As can be seen, the minimization of setup alone is rather complex and this 

research is restricted to part of the conveyor system design and control with the objective 

of minimizing setup costs. Diverging junctions, off-line buffers, and flexible attribute 

assignments are investigated while converging junctions are not covered. 

1.2   Problem Statement 

Consider the problem of constrained sequencing a finite set of jobs on a conveyor 

system with the objective of minimizing setup cost.  A setup occurs whenever two 

consecutive jobs do not share the same attribute at a processing station served by the 

conveyor system.  The conveyor system consists of FIFO conveyor segments and special 

mechanisms such as junctions and off-line buffers.  A junction is an interface between M 

upstream conveyors and N downstream conveyors with or without an off-line buffer.  It is 

assumed that M = 1 and N > 1 with or without an off-line buffer.  Time-based measures 

such as cycle time are not considered. 

 

The organization of this dissertation is as follows.  Relevant literature is reviewed in 

Chapter 2.  Related problems are defined and analytical solution methodology is 

proposed in Chapter 3.  In Chapter 4, a sensitivity analysis is conducted for the models 
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described in Chapter 3 using numerical experiments on randomly generated data as well 

as case study data.  In Chapter 5, details of the case study in an automobile paint shop as 

well as a discrete event simulation model as a supplementary tool for analyzing the 

constrained sequencing model is discussed.  Our research contributions are summarized 

and future research directions are discussed in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

Morley and Schelberg (1993), Morley (1996), and Morley and Ekberg (1998) 

discussed algorithms for assigning trucks to paint booths in a truck facility to minimize 

total makespan and the number of paint flushes.  They applied market-based bidding 

algorithms to a GM plant and reported a 100% increase of average color block size in 

their case study.  Their heuristic method turned out to have many advantages—easy to 

implement, robust with respect to schedule changes or machine breakdowns, and 

effective reduction of paint changeovers.  Campos, Bonabeau et al. (2001) compared 

Morley and Ekberg’s market-based approach with ant-inspired response threshold 

algorithm and used genetic algorithm for getting parameter values for the above two 

algorithms.  Kittithreerapronchai and Anderson (2003) simulated a market-based 

algorithm as well as an ant-inspired algorithm.  They found that some parameters in each 

algorithm could be removed since they are very insensitive to the objective function 

value.  All the above approaches use artificial intelligence (AI) techniques to tackle the 

constrained sequencing problem.  These AI approaches are easy to implement and robust 

to system disruptions such as paint booth breakdowns. 

 

Atassi (1996) proposed the use of temporary re-sequencing, facilitated by an automated 

storage and retrieval system (AS/RS).  The AS/RS acts as a buffer that can store cars 

before and after painting.  Using this buffer, a plant can perturb the order for painting cars 



 8

to create larger paint blocks and then restore the original sequence after painting.  Myron 

(1996) examined the effect of forming large blocks of cars with the same color at an 

automotive assembly plant.  Using discrete event simulation, he showed that a simple 

block protection rule could significantly reduce setup cost when it is coupled with pre- 

and post-sequencing using a fully flexible AS/RS. 

 

However, AI or simulation approaches have the drawback of an inability to provide 

any optimality guarantee or upper or lower bound.  In optimization modeling approaches, 

Choe, Sharp et al. (1993) was the first to model the constrained sequencing problem as an 

optimization problem and to get a upper bound.  He used an AS/RS to increase the size of 

paint blocks while maintaining a workload-balanced vehicle sequence.  More specifically, 

the problem is how to perturb the original car flow around the vehicle painting station to 

reduce color setup with the constraint of not violating maximum allowable deviation 

from the original sequence.  He modeled the problem as a traveling salesman problem 

with time windows, and succeeded in reducing the model to a manageable size and 

getting very tight bounds—empirically within 2.5% of optimality—by exploiting the 

special problem structure.  He also discussed various relaxations of the problems for 

getting a near-optimal solution within a reasonable time.  To our knowledge, he was the 

first to model the color change reduction problem using an optimization formulation.  

However, his model is different from the models in this research in that he used an 

AS/RS while we use diverging conveyors as well as off-line buffer to re-sequence the 

incoming cars. 
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Similar setup reduction problem with constrained sequencing occurs in rail 

classification yards.  In rail classification yards, freight cars are separated, sorted 

according to their final destination, and assembled to form new outbound train blocks.  

Because the classification process requires considerable resources, one of the objectives 

is to minimize reclassification.  Typically, cars with different final destinations but 

sharing some initial portion of their trips are assembled into blocks.  In each rail 

classification yard, blocks are built and staged on classification tracks where they wait for 

the departure of an outbound train.  The list of potential blocks that may go into each 

outbound train is specified by the makeup policy.  Therefore, one needs to send each to 

the appropriate classification track based on the sorting strategy.  In this rail classification 

problem, if a block at the converging junction fails to join the desired train, it recirculates 

back to the diverging junction (called ‘rehumping’).  Therefore, the rail classification 

problem can be regarded as a special case of the constrained sequencing problem with a 

diverging junction and a diverging/converging junction shown in Figure 4.  

. . .

 

Figure 4. the Rail Classification Problem as a Special Case of the Constrained 
Sequencing Problem 

The rail classification problem is similar to the constrained sequencing problem to be 

addressed in this research in terms of the decisions to be made.  However, it has two 

different features as follows.  First, departing and arriving train schedule constraints as 
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well as the capacity of each classification track should be explicitly considered.  Second, 

the number of changeovers should be counted on the rail for rehumping, not on the rail 

exiting the classification yard because attaching any ‘wrong’ car in a departing train is 

now allowed. 

 

This topic was explored by Siddiqee (1972), who compared four sorting and train 

formulation schemes in a railroad classification yard.  Yagar, Saccomanno et al. (1983) 

suggested a dynamic programming approach as well as a screening technique to optimize 

sorting and assembly operations.  The relative performance of different multistage sorting 

strategies were investigated by Daganzo, Dowling et al. (1983).  Each classification track 

is assigned several blocks and cars should be resorted during train formulation in 

multistage sorting.  They derive equations for the service time per car of triangular 

sorting in classification yards.  Three papers written by Daganzo (Daganzo (1986), 

Daganzo (1987), and Daganzo (1987)) also analyze and compare different classification 

strategies and give expressions for the switching work and space requirements.  Dynamic 

blocking, in which the assignment of blocks to classification tracks is allowed to vary 

through time, is considered in the last two papers.  See Assad (1980), Assad (1981), Choe, 

Sharp et al. (1993), and Cordeau, Toth et al. (1998) for a general review of rail 

transportation problems.  However, because the rail classification problem considers  

 

 of inherent difference between the rail classification problem and the constrained 

sequencing problem, all sorting strategies discussed in the above cited papers are 

unrealistic to apply to the constrained sequencing problem (either with a diverging 
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junction only, or with a random-access off-line buffer only) that are modeled in this 

dissertation.  

 

Another decision-making problem can be found in the Order Accumulation / 

Sortation System (OAS) in a typical automated distribution center.  In a common order 

picking system design, the sortation functions are separated from the order picking 

functions.  To retrieve the items of an order from the warehouse, picking systems are 

used and many of these systems use ‘pick-wave’ where a group of orders is picked 

simultaneously with each picker being responsible for picking a single group of items for 

all the orders in a wave.  Such a wave approach has been found to be more efficient than 

a serial picking scheme (where each picker selects all the items for one or more orders) in 

many systems.  However, wave picking requires further sorting that is not required by 

serial picking systems.  After retrieval by the sorting system from the warehouse, items 

move as a wave to OAS where they are assigned to one of shipping lanes for sortation 

into orders.  Assignments are made based on the adopted lane assignment strategy and if 

recirculation is allowed, an item recirculates OAS until a shipping lane is assigned to that 

item.  Therefore, identifying the optimal lane assignment strategy can be considered as a 

special case of the constrained sequencing problem with a diverging junction and an off-

line buffer (i.e. recirculating conveyor) as in Figure 5. 
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. . .

Shipping Lanes

Recirculating Conveyor

From Picking System

 

Figure 5. Lane Assignment Problem as a Special Case of the Constrained 
Sequencing Problem 

However, like the rail classification problem, the lane assignment problem in OAS 

has a few characteristics different from the constrained sequencing problem as follows.  

First, capacity of each shipping lane needs to be explicitly considered.  Second, an order 

may be pre-assigned to a specific shipping lane (e.g. a shipping lane dedicated for FedEx).  

Finally, if an order is not pre-assigned, usually a nonempty lane is dedicated to an order 

until the lane receives all items of that order.  As a result, there are two common 

categories of lane assignment strategies – fixed priority rules and the next available rules 

(i.e. incidental rules).  Fixed priority rules include such popular rules as ‘sort the largest 

(or smallest) orders first’ while the next available rules assign the next available lane to 

the item belonging to an order that has not yet assigned any lane. 

 

Research on OAS is relatively scarce even though there exist many implementation of 

such systems in industry (see Johnson and Lofgren (1994), Gould (1991), Gould (1991), 

Horrey (1983), Schwind (1992), and Witt (1989)).  In one of the first papers to analyze 

OAS, Bozer and Sharp (1985) used simulation to evaluate the throughput of OAS as a 

function of the number and length of lanes, the presence of a recirculation conveyor, the 

control system, and the induction capacity with the assumption that each lane is assigned 
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to one order.  Bozer, Quiroz et al. (1988) also used simulation to examine various line 

assignment strategies as well as wave release strategies under the assumption that there 

are more orders than lanes in OAS, finding incidental rules consistently outperforms 

fixed priority rules.  Johnson (1998) proves this result by an analytical model for OAS.  

Choe (1990), Choe and Sharp (1991), Choe, Sharp et al. (1992), and Choe, Sharp et al. 

(1993) deal with questions on the design of both the picking system and its relationship to 

OAS.  They developed approximate queueing models for the picking and OAS 

subsystems and incorporated those models into an overall analysis of the effect of picking 

schemes.  Meller (1997) developed an algorithm for finding optimal lane assignment 

strategy when truck-loading requirements governs the sequence of order sortation.  

Customer orders are reverse loaded to company owned trucks with pre-specified delivery 

routes in the appropriate sequence based on the truck’s route.  A binary integer program 

is formulated and solved and this model assigns trucks and orders to shipping lanes with 

the objective of minimizing the total sorting time.  Apart from the research specific to 

OAS, research on conveyor theory has been widely conducted (Muth (1979) for a general 

review and Bastani (1990) for recent works).  However, all of those works deal with 

issues on material flow on the conveyor system (e.g. throughput, number of 

loading/unloading stations, time delay, and capacity). 

 

Despite the fact that there is a large body of literature on sequencing assembly lines, 

most work adopts a static approach as a basic assumption of the problem (see Baybars 

(1986) and Yano and Bolat (1989) for a general review) and does not consider the 

constraints imposed by the material handling devices, such as strict FIFO constraints on a 
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conveyor.  The primary concern of a static approach is how to determine a single job 

sequence for the entire line for an available or recurring set of jobs, whereas the objective 

is, typically, to balance workload among the different processing departments (see Lee 

and Vairaktarakis (1997) and Yano and Rachamadugu (1991)).  However, a dynamic 

approach would change the sequence on the fly for a given line without mechanical 

sequencing constraints. 

 

Few papers, especially those that deal with mixed assembly lines, consider sequence-

dependent setups.  For example, Burns and Daganzo (1987) and Bolat, Savsar et al. 

(1994) consider lines where different jobs have different attributes or options and a setup 

occurs whenever two jobs with different options follow each other.  They develop 

heuristics for sequencing these jobs with the objective of minimizing total setup cost.  

However, they do not consider the issue of constrained sequencing and assume that jobs 

have unique attributes.  The issue of sequencing jobs with options is also discussed by 

Yano and Rachamadugu (1991) that consider cases where jobs with different options 

have different processing times.  However, they assume that there is no setup between 

jobs with different options. 

 

The issue of sequence-dependent setups has been addressed extensively in the 

traditional scheduling literature.  Most such papers consider a single machine problem 

with multiple jobs, where individual jobs may belong to different families.  A setup 

occurs whenever two consecutive jobs belong to different families.  The individual jobs, 

irrespective of family membership, may carry different weights and have different due 
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dates.  The objective is to determine a sequence of jobs that optimizes one or more 

performance measures—typically, a function of job completion time such as maximum 

lateness, weighted completion time, or weighted tardiness.  Examples of this work 

include Monma and Potts (1999), Potts and Wassenhove (1992), Unal and Kiran (1992), 

and Webster and Baker (1995).  In general, scheduling with sequence-dependent setups is 

NP-hard, with polynomial algorithms available only for a few special cases (see Bruno 

and Downey (1978) and Laporte (1992)). 

 

In all of the above literature on scheduling, mixed assembly line, or sequence-

dependent setups, it is assumed that there is full flexibility as to how jobs are 

sequenced—i.e. not constrained by the sequence change mechanism.  It is also assumed 

that setups are family- or lot-specific, with family or lot membership being known.  The 

problems discussed in this dissertation are different from all those in above literature in 

two aspects.  First, it is assumed that there is only constrained flexibility in how jobs can 

be re-sequenced.  Second, some flexibility is allowed in assigning attributes that 

determine family membership among jobs.  To our knowledge, this is the first attempt to 

consider the issue of sequencing with constrained flexibility and job-dependent setups. 
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CHAPTER 3 

ANALYTICAL APPROACH 

3.1   Models for Diverging Junctions 

3.1.1   Constant Setup Cost with a Fixed Number of Downstream Queues 

The simplest diverging junction is a single upstream queue feeding Q identical 

downstream queues.  The problem is to decide which job is sent to which downstream 

queue to minimize total setup cost on all downstream queues.  The following are 

assumed: 

 

1. The number of downstream queues is fixed. 

2. Setup cost is independent of job attributes and downstream queues. 

3. The number of jobs in the upstream queue is fixed. 

4. The attributes of all jobs in the upstream queue are fixed. 

5. The capacity of each downstream queue is unlimited. 

6. There is no setup cost for the first and last jobs sent to each downstream queue. 

7. Queues follow the FIFO discipline. 

8. All setups are done instantaneously—no setup time. 

 

Assumption 6 means that if all jobs in a downstream queue have identical attributes, 

then no setup cost is assumed for that queue.  This assumption can be relaxed by adding 
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constraints that explicitly consider setup costs for the first and last jobs.  Assumption 1 

and 2 are relaxed in Section 3.1.2 and 3.2 as the model is extended.  The following 

notations are introduced: 

th th

 upstream queue
 number of downstream queues
 number of jobs in 
 changeover cost, a constant for each changeover

if the attribute of  job in  is different from the attribute of  job 
ij

U
Q
N U
C

C i U j
C

=
=
=
=

=

th th

th

in 
0 otherwise

1 if  job in  is located right before the j  job in  on a downstream queue
0 otherwise

1 if  job in  is the last item to be sent to a downstream queue
 

0 otherwise

ij

jq

q

U

i U U
x

j U
y

z






= 



= 


th1 if  job in  is the first item to be sent to a downstream queue
0 otherwisei

i U
= 


 

One can find the following properties of the constrained sequencing problem. 

 

 

Property 1.1 – Dispatching Constraint 

The FIFO discipline of U prohibits the ith job in U from being dispatched before the 

(i-1)th job in U is dispatched. 

 

Property 1.2 – Conservation of Precedence Relationship 

Due to Property 1.1, the precedence relationship among jobs in U is maintained in 

each downstream queue.  That is, if the ith job precedes the jth job in U and both are 



 18

dispatched to the same downstream queue, then the ith job precedes the jth job in the 

downstream queue. 

 

The above two properties restrict the range of xij so that index i is always less than j.  

In addition, if each job as well as each downstream queue is represented as a node in a 

network, then represent each feasible arc in this network can be associated with xij, yjq, or 

zqi.  In addition, the definitions of xij,  yjq, and zqi  require that each node has exactly one 

incoming arc and one outgoing arc.  This way the constrained sequencing problem can be 

transformed as a network problem.  Figure 6 shows a possible dispatching result from the 

example in Figures 1, where Figure 7 is the associated network representation. 

Incoming ConveyorOutgoing Conveyors

Station 2

Station 1

 

Figure 6. A Possible Dispatching Result for the Example in Figure 1 
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Figure 7. Network Representation Associated with Figure 6 
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The network described above can be interpreted such that if a job is directly 

connected with another job by variable x, then these two jobs are sent to the same 

downstream queue and are adjacent to each other in that queue.  For the first job sent to a 

downstream queue, the incoming arc to the associated node is represented by z.  For the 

last job, the outgoing arc from the associated node is represented by y.  In Figure 7, a 

downstream queue has jobs 1 and 4, and another downstream queue has jobs 2, 3, and 5, 

in sequence. 

 

The above network representation can be transformed into the following mixed-

integer programming (MIP) formulation. 
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The objective function (1-1) is the total setup cost of all jobs after dispatching.  The 

Property 1.1 and 1.2 are ensured by not defining variables xij if index i is equal to or 

bigger than j.  (1-2) ensures that any job i is assigned a successor job among all jobs after 

the ith job in U, or is assigned as the last job in a downstream queue.  (1-3) ensures that 
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any job j is assigned a predecessor job among all jobs preceding the ith job in U, or is 

assigned as the first job in a downstream queue.  The intention of (1-4) and (1-5) is that 

each downstream queue is assigned exactly one first job and one last job, respectively.  

Note that if the first job is the same as the last job, then only one job is assigned to that 

downstream queue.  The unintended result of (1-4) and (1-5) is that each downstream 

queue is utilized—i.e. at least one job is assigned—even when it is not necessary.  In 

reality, achieving the minimum setup cost may not require all Q queues to be utilized.  To 

find the minimum number of queues for achieving the minimum cost, one may try to find 

an optimal solution with Q, Q – 1, Q – 2, … queues until the minimum cost starts to 

increase.  Another possible way of simultaneously identifying the number of queues to be 

used as well as the minimum cost is explained in Section 3.1.2. 

 

Constraint (1-6) is added because the meaning of the decision variables demands 

integrality.  However, (1-6) can be removed without loss of generality because of the 

following reasoning.  A matrix is called totally unimodular if the determinant of every 

square submatrix formed from it has determinant –1, 0, or +1 (Bazaraa, Jarvis et al. 

(1990)).  If our MIP formulation is represented as ‘maximize c subject to Ax = b where b 

is a binary variables vector’, then A is a node-arc incidence matrix of a network because 

our formulation can be represented as a network.  Note that the node-arc matrix is 

composed of (0, 1, –1), has two no-zero entries in each column, and the summation of 

each column equals zero. 
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In addition, if a matrix composed of (0, 1, –1) has no more than two no-zero entries in 

each column and the summation of all elements in column j equals zero if column j 

contains two no-zero coefficients, then this matrix is totally unimodular (Nemhauser and 

Wolsey (1988)).  Therefore, A is totally unimodular because A is composed of (0, 1, –1), 

has two no-zero entries in each column, and the summation of each column equals zero.  

Furthermore, if A is totally unimodular and each element of b is integer-valued, then the 

optimal solution assigns all variables integer values (see Shapiro (1979) for a proof).  

Therefore, (1-6) can be removed.  With (1-6) removed, the formulation reduces to the 

well-solved assignment problem.  The removal of (1-6) without loss of generality can 

also be proved by showing one-to-one correspondence relationship between two equally 

sized sets composed of all jobs and queues as illustrated in Figure 8. 

b3 4
JOBS QUEUES

a5

b3 4

JOBS QUEUES

a5

 

Figure 8. Assignment Problem Example of 3 Jobs and 2 Queues 

Because the Hungarian method can solve the assignment problem optimally in O(N3), 

modeling it as an assignment problem—compared to modeling it as an MIP or LP 

problem—has advantages in terms of speed and implementation cost.  For speed, 

practical problems can be solved with a few hundred jobs to optimality in several seconds, 
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allowing for on-the-spot optimal control in many applications.  For implementation cost, 

dispatching logic in diverging or converging junctions of conveyors is usually 

implemented by Programmable Logic Controllers (PLCs).  A PLC has limited memory, 

usually a few megabytes, and CPU power.  Therefore, in most cases implementing an 

MIP- or LP-based algorithm in PLC environment requires an external system—where the 

MIP/LP solver is loaded—and a network module connecting the external system and 

PLC, causing high hardware and software costs.  In contrast, implementing an 

assignment-problem-based algorithm can save implementation time and cost since it can 

be implemented in a PLC standalone environment and is relatively easy to program and 

debug. 

 

3.1.2   Attribute Dependent Setup Cost with a Variable Number of 

Downstream Queues 

3.1.2.1   Introduction 
 

In reality, setup cost often depends on downstream queues and the attributes of the 

job to be processed.  For example, the setup cost for color change in the paint shop 

usually depends on the paint color to be changed.  In general, setup cost depends on both 

the job just finished and the job to be processed next. 

 

In addition, in the simple constrained sequencing problem model discussed in Section 

3.1.1, each downstream queue is forced to have at least one job.  In the conveyor system 

design stage, the number of downstream conveyors is a design parameter.  The cost of an 

additional conveyor, processing station, and extra floor space can outweigh the cost 
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savings from setup reduction.  In system operation, utilizing each additional downstream 

queue and workstation may incur extra costs for the labor, energy, and initial process 

setup.  At one extreme, if the number of downstream queues is equal to one, no re-

sequencing is possible.  At the other extreme, if the number of queues is equal to the 

number of attributes, no setup cost is necessary because each queue can have jobs with 

identical attributes.  Therefore, for a given set of jobs and cost values, if R and K denote 

the optimum number of downstream queues and the number of attributes, respectively, 

then the following condition holds: 

       KR ≤≤1           (2-1) 

 

Based on (2-1), the maximum number of downstream queues one needs to consider is 

K.  Each downstream queue is designated to a specific attribute if K queues are available 

for use.  However, when the queue installation cost is considered, the optimum number of 

downstream queues is a variable and is often less than K.  The rationale here is to start 

with maximum K, then to decide which queue to use and which queue not to use to 

minimize total cost.  First, define the cost parameters as follows: 

 

qC
U

UjUiC

q

ij

 queue downstream installing ofcost 
advance)in known  isit  and in  jobeach  given to is attribute specific a that case (for the

queue downstream

 aon  in  job   thebeforeright  located is in  job cost when  changeover thth

=′′

=′

 

Recall from Section 3.1.1, constraints (1-4) and (1-5) restrict each queue to exactly 

one incoming unit flow and one outgoing unit flow, shown in Figure 9. 
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Figure 9. Part of the Network Representation for the Model in Section 4.1.1 

A side effect of these constraints is that each queue is assigned at least one job.  In 

this Section, the number of queues to be constructed is an integer in  and some queues are 

allowed have no assigned job.  The challenge is to allow some queues have no assigned 

job and, at the same time, to maintain a node-arc model. 

 

  Although there might be different ways of modeling such a situation, the approach 

taken here is to use all K queue nodes.  Virtual arcs wqj are defined to designate the 

outgoing flow from the unused queue node q to other queue node.  Similarly, virtual arcs 

wiq are defined to designate the incoming flow to queue node q—q may or may not be 

used—to go from other queue node.  The extended queue node in this definition is 

depicted in Figure 10. 
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Figure 10. Extension the Network Representation in Figure 8 

For each queue node, constraints: 
1 1,

1
N K

ik ik
i i i k

y w
= = ≠

+ =∑ ∑  and 
1 1,

1
N K

kj kj
j j j k

z w
= = ≠

+ =∑ ∑  are 

added.  The former restricts a queue to have an entering arc either from a job, or from 

another queue. The latter similarly restricts the exiting arc.  With the addition of virtual 

arcs and the above two constraints, a node-arc model can be built for the problem.  

 

3.1.2.2   Installation Cost Calculation 
 

The fact that no job is assigned to a queue with virtual links complicates the 

calculation for installation cost.  Furthermore, a queue with or without an assigned job 

may be connected with other queues via virtual arcs. One way to handle this is to assign 

half of the installation cost to each arc connecting a job and a queue. 

 

In this way, if queue q is connected from a job and connects to a job, the total cost 

becomes correct. If queue q is connected from queue i (q ≠ i) and connects to a job, an 

adjustment need to be made by associating cost 
2

iq CC ′′−′′
 to virtual arc wiq.  This 
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treatment makes up the installation cost for queue q (
2 2

q q
q

C C
C

′′ ′′
′′+ = ) which cancels out 

the installation cost for queue i ( 0
2 2

i iC C′′ ′′
− = ). 

 

Before the other cases are explained, the auxiliary installation cost associated with 

queue q, denoted as ACq, is defined.  ACq represents the summation of costs of the arcs 

that start from or end at queue q.  Then ACq is defined as follows: 

1 1 1, 1,

1 1 1, 1,

1 1 1 1( ) ( ) ( )
2 2 2 2

1 1 1( ) ( ) ( )
2 4 4

N N K K

q q iq qj q i iq j q qj
i j i i q j j q

N N K K

q iq qj q i iq j q qj
i j i i q j j q

AC C y z C C w C C w

C y z C C w C C w

= = = ≠ = ≠

= = = ≠ = ≠

 
′′ ′′ ′′ ′′ ′′= + + − + − 

 

′′ ′′ ′′ ′′ ′′= + + − + −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

 

Note that terms 
1, 1,

1 1( ) ( )
2 2

K K

q i iq j q qj
i i q j j q

C C w C C w
= ≠ = ≠

 
′′ ′′ ′′ ′′− + − 

 
∑ ∑  are divided by 2 because 

these terms are double-counted when ACq is summed for all queues for use in the MIP 

formulation.  Since queues are interconnected by variable w, ACq inevitably takes the 

following recursive form: 

ACq = true installation cost of queue q  +  f(wiq, ACi) + f(wqj, ACj), where f( ) denotes 

a function.               (2-2) 

 

It will be shown that all f(wiq, ACi) and  f(wqj, ACj) terms in (2-2) eventually cancel 

out if one sums ACq over all queues, resulting in ( q
q

AC∑ = total queue installation cost).  

First, from 
1 1,

1
N K

ik ik
i i i k

y w
= = ≠

+ =∑ ∑  and 
1 1,

1
N K

kj kj
j j j k

z w
= = ≠

+ =∑ ∑ , one can derive 
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1 1, 1 1,

0 , , , 1
N K N K

iq iq qj qj
i i i q j j j q

y w z w
= = ≠ = = ≠

≤ ≤∑ ∑ ∑ ∑  and all these variables are integers by 

definition.  Therefore, each queue q can be classified into the following four cases based 

on all possible combinations made by ∑∑∑∑
≠=≠===

K

qjj
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K

qii
iq
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j
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iq wwzy
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Case 1: qwwzy
K

qjj
qj

K

qii
iq

N

j
qj

N

i
iq ∀==== ∑∑∑∑

≠=≠===

0  and  1
,1,111

  

For Case 1, ACq = q

N

i

N

j
qjiqq CzyC ′′=+′′ ∑ ∑

= =1 1
)(

2
1 .  Because 

1, 1,
0 

K K

iq qj
i i q j j q

w w
= ≠ = ≠

= =∑ ∑ , 

queue q is not connected with any other queue and it is clear that ACq = the true 

installation cost of queue q = qC ′′ .  Figure 11 shows an example for Case 1.  This 

example—as well as other examples corresponding to other Cases—is one of the possible 

dispatching results from the situation explained in Figure 1, without an off-line buffer.  In 

Figure 10, ACq = qC′′  and q a b
q

AC C C′′ ′′= +∑  which represents the total queue installation 

cost correctly. 
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Figure 11. Network Representation Associated with Figure 6: Revisited 
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Case 2: qwzwy
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1,
0 

K
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w
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=∑ , there 

is only one queue, denoted r, connected with queue q and queue r belongs to either Case 

3 or Case 4.  Therefore, 

ACq = 1 1
4 4q r qrC C w′′ ′′+  

1,

3 1 if  belongs to Case 3
4 4
1 1 if  belongs to Case 4
4 4

r r qr

r K

j qj r rq
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C C w r
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C w C w r
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1,

if  belongs to Case 3
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4

r
K

q r
j qj

j j r

C r
AC AC

C w r
= ≠

′′
∴ + =  ′′


∑
       (2-3) 

If queue r belongs to Case 3, there is only one queue, q, that is connected with queue 

r and ACq + ACr  = rC′′  by (2-3).  If queue r belongs to Case 4, queue r is connected with 

a queue belonging either to Case 2 or Case 4.  The sub-network of the associated problem 

network, composed of queues including q and r and arcs connecting these queues takes 

form by sequentially connecting one queue in Case 2, some queues in Case 4, and one 

queue in Case 3; the number of queues in Case 4 ranges from zero to Q–2.  By using (2-

3), (2-4), and (2-5), one can get b r
b

AC C′′=∑ , where b ∈ set of all queues in this sub-

network.  If this sub-network is interpreted such that queue r is used and all other queues 

in the sub-network are not used, AC for each queue in this sub-network represents queue 
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installation cost correctly.  An illustrative example of Case 2 is shown in Figure 12, 

where  ACq + ACr  = rC′′ ; queue r is in Case 3. 

r
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Figure 12. Example of Case 2 

Case 3: qwywz
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For Case 3, ACq = 
1,

3 1
4 4

K

q i iq
i i q

C C w
= ≠

′′ ′′− ∑ .  Because  1
,1

=∑
≠=

K

qii
iqw and 

1,

0
K

qj
j j q

w
= ≠

=∑ , there 

is only one queue, p, connected with queue q and queue p belongs to either Case 2 or 

Case 4.  Therefore, 

1,
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       (2-4) 

If queue p belongs to Case 2, there is only one queue, q, that is connected with queue 

p and ACq + ACp  = pC′′  by (2-4).  If queue p belongs to Case 4,it is connected with a 
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queue belonging either to Case 3 or Case 4.  The sub-network composed of queues that 

include q and p and arcs connecting these queues takes form by sequentially connecting 

one queue in Case 3, some queues in Case 4, and one queue in Case 2; the number of 

queues in Case 4 ranges from zero to Q–2.  By using (2-3), (2-4), and (2-5), one can get 

b q
b

AC C′′=∑ , where b ∈ set of all queues in this sub-network.  If this sub-network is 

interpreted such that queue q is used and all other queues in this sub-network are not used, 

then AC for each queue in this sub-network represents the queue installation cost 

correctly.  Figure 13 shows an example of Case 3 where ACq + ACp  = qC′′ ; queue p is in 

Case 2. 
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Figure 13. Example of Case 3 
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For Case 4, ACq = 
1, 1,
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queue q is connected from a queue, s, belonging to Case 2 or Case 4 and is connected to a 

queue, t, belonging to Case 3 or Case 4.  Therefore, 
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     (2-5) 

 

Using similar reasoning to that for Case 2 and Case 3, one can think of a sub-network 

composed of queues including q and s, and t and arcs connecting these queues.  In 

addition, one can conclude that AC for each queue in this sub-network represents the 
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queue installation cost correctly.  An example of Case 4 is shown in Figure 14 where ACq 

+ ACs + ACt  = tC′′ ; queue s is in Case 2 and queue t is in Case 3.  

q

1 2 3 4
JOBS

QUEUES
t

z
t 1 y 5s

5

s

w sq

x23x12 x34 x45

wqt

 

Figure 14. Example of Case 4 

Summarizing the discussions in the above four Cases, the following facts can be 

derived: 

• f(wiq, ACi) and  f(wqj, ACj) will eventually cancel out to zero if one sums up  

ACq over all queues, resulting in 
1

K

q
q

AC
=
∑ = total queue installation cost. 

• 1
,1

=∑
≠=

K

qjj
qjw  means that queue q is a queue with no assigned job, and                        

0
,1

=∑
≠=

K

qjj
qjw  means that queue q is a queue with at least one job assigned. 

 

Note that if cost 
2

i jC C′′ ′′−
 (not 

2
ij CC ′′−′′

) is associated with variable wij, then 

1,

1
K

iq
i i q

w
= ≠

=∑  means that queue q is a queue with no assigned job, and                        

1,

0
K

iq
i i q

w
= ≠

=∑  means that queue q is a queue with at least one job assigned. 
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Finally, one needs to calculate 
1

K

q
q

AC
=
∑  

1 1 1 1 1, 1,

1 1 1 1( ) ( ) ( )
2 2 2 2
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q i j q i i q j j q

C y z C C w C C w
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   
′′ ′′ ′′ ′′ ′′= + + − + −   

   
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1 1 1 1 1,

1 1( ) ( )
2 2

K N N K K

q iq qj j i ij
q i j i j j i
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′′ ′′ ′′= + + −∑ ∑ ∑ ∑ ∑ . 

 

3.1.2.3   Model Formulation 
 

Now one can formulate the MIP model that explicitly considers the number of 

available queues and the attribute-dependent setup cost as follows: 
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The first term in (2-6) is the sum of the setup cost of all jobs in all downstream 

queues, as in the simple model in Section 3.1.1, while the second term is the cost of 
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adding queue q and the third term is for canceling the cost correction due to over 

accounting in the second term.  (2-6) can be simplified by using (2-7) and (2-8) as 

follows: 

∑ ∑∑∑ ∑∑∑
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An explanation for constraints (2-7), (2-6), and (2-11) is given in Section 3.1.1.  For 

(2-6), (2-9), and (2-10), newly added variables w are needed to identify unused queues.  

Again, (2-11) can be safely removed using the same reasoning as in Section 

3.1.1―totally unimodular.  As a result, the problem becomes the well-solved assignment 

problem again.  Note that it is meaningless to differentiate the cost of installing 

downstream queues from the cost of using downstream queues.  Differentiating these two 

costs is meaningful only when it is possible to have a downstream queue that is not used 

in dispatching, which is not the case in our model―for any solution having an unused 

downstream queue, an equal or better solution having no unused downstream queue can 

be found.  As a simple proof, for any solution having an unused queue, think of the 

modified solution with one job assigned to the unused queue.  Because of the assumption 

that there is no setup cost for the first job assigned to a downstream queue, the modified 
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solution has an equal or lesser total setup cost, depending whether or not the predecessor 

job and the successor job of the assigned job have the same attributes. 

3.2   Models for an Off-line Buffer 

3.2.1  Generalized Sequence-dependent Setup Cost 

Now let us consider the constrained sequencing problem with one upstream queue, 

one downstream queue, and one off-line random access buffer between them.  In this case, 

the job can bypass or visit off-line buffer.  Furthermore, the job in off-line buffer stays for 

a while and is released to downstream queue later, making it possible to re-sequence the 

original sequence.  In manufacturing systems, buffers allow workstations to operate more 

independently, cushioning against machine failures, worker or part shortages, and 

production rate differences (Askin and Standridge (1993)).  Use of an off-line random 

access buffer or multiple off-line buffers with single capacity can be observed in many 

manufacturing systems. 

 

Our objective is still to reduce the total number of attribute changes between adjacent 

jobs.  Note that this model can be applied to multiple off-line random access buffers case 

because these multiple buffers can be modeled as one buffer problem without loss of 

generality, if these multiple buffers share one input/output point.  The old definitions of U, 

D, A, and v, are used as they are, while B is defined as buffer size and x redefined as 

follows.  Note that the definition of xij has been modified because the old definitions used 

in previous Sections are not appropriate for modeling off-line buffer cases. 
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0   otherwiseijk
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
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An off-line buffer usually does not provide full sequencing flexibility, and the 

following Theorem 2.1 differentiates feasible instances from infeasible ones.  Note that if 

B ≥ N, full sequencing flexibility is always guaranteed.   

 

Theorem 2.1 

For the constrained sequencing problem with an off-line buffer with capacity B, there 

exists a limit on how much a job in U can be moved forward in D.  Specifically, 

KkNjNiBjikjixijk ,,1,,,1,,,1, where,, 0 LLL ===>−∀=  

 

Proof 

For any i, let us consider the range of values that j can take.  If ith job of U visits off-

line buffer, j > i should hold because off-line buffer is randomly accessible and ith job 

can be reinserted at jth position in D as long as j > i.  If ith job bypasses off-line buffer, 

i – B ≤  j ≤ i holds because at most B jobs can stay in off-line buffer at the same time.  

More specifically, when ith job bypasses off-line buffer, j = i holds if off-line buffer 

doesn’t contain any job, and  j = i – B holds if off-line buffer contains B jobs.  
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Combining these two possible cases, one can conclude that xijk = 0 for all i and j 

where i – j > B by the definition of xijk. ڤ 

 

Figure 15 shows an illustrative example with B = 1 derived from the problem 

discussed in Figure 1.  It shows all possible decisions available on 3rd job of U where 

solid lines represent cases of bypassing off-line buffer (i.e. x32 or x33 = 1) and dotted lines 

represent cases of visiting off-line buffer (i.e. x34 or x35 = 1). 

U

D

1 2 3 4 5

1 2 3 4 5

x35x
33

x
34x 32

 

Figure 15. Network Representation Example of Constrained Sequencing Problem 
with an Off-line Buffer of Capacity 1 

Using theorem 2.1 and the network model described in Figure 14, the MIP model can 

be formulated for one downstream queue and one off-line buffer as follows.  Note that 

this formulation is for the case where the setup cost depends on both the attribute of the 

job just finished and the attribute of the job to be processed next. 
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(4-2) and (4-3) are flow conservation constraints.  (4-2) makes sure that each job is 

sent downstream exactly once while (4-3) is for forcing that each slot in the downstream 

queue receives one job.  (4-4) is from theorem 2.1, preventing any re-sequencing caused 

by having more than B slots in off-line buffer.  (4-5) counts the number of attribute 

changes by forcing vjkl = 1 only when the job at jth position of D has attribute k and the 

job at j+1th position of D has attribute l.  More specifically, if ∑
=

N

i
ijkx

1
 or 

∑
=

+

N

i
ljix

1
,1, becomes zero, because 10

1
≤≤ ∑

=

N

i
ijkx , 10

1
,1, ≤≤∑

=
+

N

i
ljix , vjkl is forced to be zero 

to minimize the objective function (4-1).  That means vjkl = 1 only when 

1
1

,1,
1

==∑∑
=

+
=

N

i
lji

N

i
ijk xx .  (4-6) restricts the range of values that vjkl can take, like (3-6) and 

(3’-6) in Appendix A. 
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Since the above formulation is a MIP, generally the constrained sequencing problem 

with an off-line buffer is an NP-hard problem.  Therefore solving the problem with large 

instances takes prohibitively long time, especially when each dispatching decision should 

be made for each incoming job on rolling horizon time window (in our case study, 

average time between arrivals of adjacent jobs was 1 minute, meaning each decision 

should be made in 30 ~ 45 seconds).   Therefore we need to develop heuristics with 

reasonably short solution time and good average performance compared to optimal 

solution. 

 

First, it will be shown that constrained sequencing problem with an off-line buffer of 

capacity B is equivalent to constrained sequencing problem with B off-line buffers of 

capacity 1.  Then a method of optimally solving constrained sequencing problem with an 

off-line buffer of capacity 1 (with polynomial time) will be developed.  Finally, to obtain 

a good quality feasible solution in a reasonable time, we will propose heuristics of 

sequentially solving constrained sequencing problem with an off-line buffer of capacity 1 

for B times. 

 

Theorem 2.2 

Constrained sequencing problem with a random-access off-line buffer of capacity B is 

equivalent to constrained sequencing problem with B off-line buffers of capacity 1. 
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This can be proved by showing random deposit to and random pick from the buffers, 

or by showing the relationship between adjacent off-line buffers of capacity 1.  Here, the 

former can be proved as follows (the formal proof of the latter is in the Appendix).  First 

of all, let us denote constrained sequencing problem with an off-line buffer of capacity B 

as problem α, constrained sequencing problem with B off-line buffers of capacity 1 as 

problem β, respectively.  Then in problem α, for any job in the incoming sequence, if that 

job reaches junction point, the decision whether that job bypasses or visits off-line buffer 

needs to be made.  If off-line buffer is visited, one needs to decide when that job is 

released to downstream queue.  Since all slots of off-line buffer in problem α, as well as 

all off-line buffers in problem β are randomly accessible, problem α and problem β are 

identical in available options (bypassing or visiting off-line buffer).  Furthermore, in 

problem α, if ith job of U visits off-line buffer (of capacity B), 

0  , , where , 1, , , 1, , , 1, ,ijkx i j k i j i N j N k K= ∀ > = = =L L L  holds by 

theorem 2.1, and in problem β, exactly the same restriction holds if ith job of U visits one 

of B buffers of capacity 1 because all B off-line buffers are randomly accessible and ith 

job can be reinserted at jth position in D as long as j > i.  Therefore, for any of three 

different kinds of decisions (bypassing, visiting, or leaving off-line buffer) on each job in 

the incoming sequence, it can be shown that problem α and problem β are identical in all 

available options.  As a result, we can find one (and the only one) feasible solution of 

problem α for any feasible solution of problem β, and vice versa.  Therefore problem α 

and problem β are identical. 
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To develop polynomial time algorithm of optimally solving constrained sequencing 

problem with an off-line buffer of capacity 1, the following theorem that is unique to the 

case of buffer capacity 1 need to be exploited. 

 

Theorem 2.3 

For constrained sequencing problem with an off-line buffer of capacity 1, there exists 

an unchanged sequence block from ith job to j – 1th job of U.  Specifically, if 

1 where , 1, , 1, 2, , , 1, ,ijkx i j i N j N k K= < = − = =L L L ,       then 

1, , 2, 1, , 1, 1i i k i i k j j kx x x+ + + −= = = =L . 

 

Proof 

As explained in proof of Theorem 2.1, 1 where ijkx i j= <  means ith job of U visits 

off-line buffer and is placed at jth position of D.  Since buffer capacity is one, as soon as 

ith job of U visits off-line buffer, no other job can visit off-line buffer until that job is 

released from off-line buffer.  Therefore i+1, …, jth job of U are forced to bypass off-line 

buffer, making 1, , 2, 1, , 1, 1i i k i i k j j kx x x+ + + −= = = =L  ڤ              .

 

Theorem 2.3 enables all possible options to be identified for each job in U.  

Specifically, for each job in the conveyor junction point, bypassing off-line buffer is 

always possible while visiting off-line buffer is possible only when off-line buffer is 

empty.  Therefore, if status of an off-line buffer (either empty or occupied) as well as 

status of each job (either bypassing or visiting an off-line buffer) is tracked, constrained 

sequencing problem with an off-line buffer of capacity 1 can be modeled as a shortest 
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path problem.  To model the problem as shortest path problem, two kinds of nodes need 

to be defined first: (α, G) and (β, S),  α ∈ {1, …, N},  β ∈ {1, …, N–1}, where 

 G bypasses off-line buffer, 

 S visits off-line buffer, and 

 α and β is job number (i.e. α th job) in U. 

 

We assume that the changeover cost depends on both the job just finished and the job 

to be processed next.  Therefore, to calculate the changeover cost between these two jobs, 

all of four possible combinations (case of bypassing or visiting an off-line buffer for each 

job) need to be identified and changeover cost needs to be calculated for each 

combination.  For example, if ith job of U bypasses but (i+1)th job visits an off-line buffer, 

changeover cost depends on the ith job and (i+2)th job because (i+2)th job bypasses an off-

line buffer by Theorem 2.3, making ith job and (i+2)th job adjacent in D.  Therefore, arcs 

need to be defined in eight different categories as follows: 

1) Arc from (α, G) to (α+1, G) with cost , 1Cα α +′ , meaning that (α+1)th job of U 

bypasses off-line buffer, where α ∈ {1, …, N–1}. 

 

2) Arc from (α, G) to (α+1, S) with cost , 2Cα α +′ , meaning that (α+1)th job of U visits 

off-line buffer, where α ∈ {1, …, N–2}. 

 



 43

3) Arc from (β, S) to (β+σ, G) with cost 
2

, 1 1, ,
1

i i
i

C C C
σ

β β β σ β β β σ

−

+ + + + − +
=

′ ′ ′+ +∑ , meaning that 

β th job of U that was in off-line buffer is reinserted at (β+σ–1)th position of D, and 

β+σ th job of U bypasses off-line buffer, where 

β ∈ {1, …, N–1}, σ ∈ {2, …, N–1}, β+σ  ≤ N. 

 

4) Arc from (β, S) to (β+σ, S) with cost 
2

, 1 1, , 1
1

i i
i

C C C
σ

β β β σ β β β σ

−

+ + + + − + +
=

′ ′ ′+ +∑ , meaning 

that β th job of U that was in off-line buffer is reinserted at (β+σ–1)th position of D, 

and β+σ th job of U visits off-line buffer, where 

β ∈ {1, …, N–1}, σ ∈ {2, …, N–2}, β+σ  ≤ N. 

 

5) Arc from (β, S) to sink node with cost 
1

, 1 ,
1

N

i i N
i

C C
β

β β β

− −

+ + +
=

′ ′+∑ , meaning that β th job 

of U that was in off-line buffer is reinserted at the end (i.e. (β+σ–1)th position) of D, 

where β ∈ {1, …, N–1}. 

 

6) Arc from source node to (1, G) with cost zero, meaning that 1st job of U bypasses 

off-line buffer. 

 

7) Arc from source node to (1, S) with cost zero, meaning that 1st job of U visits off-

line buffer. 
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8)  Arc from (N, G) to sink node with cost zero, meaning that the last (i.e. N th) job of 

U bypasses off-line buffer. 

 

Arc 1 means bypassing while arc 2 means visiting an off-line buffer.  Arc 6 and 8 are 

special cases of arc 1 while arc 7 is a special case of arc 2.  Note that the costs associated 

with arc 6, 7, and 8 are zero because of the assumption that no changeover cost is 

associated with the first and last jobs in D.  Also note that node (N, S) is undefined 

because any arc connected with this node means that the N th job visits an off-line buffer 

which is not allowed by assumption.  Arc 3 and 4 represent decisions related with when 

the job leaves an off-line buffer and is reinserted in D.  If β th job of U that was in off-line 

buffer is reinserted before (β+σ)th job, then all jobs between β th job and (β+σ)th job 

should bypass an off-line buffer by Theorem 2.3.  Therefore, total changeover cost for 

these jobs can be calculated, as shown in arc 3 and 4 arc cost.  Note that once a job visits 

an off-line buffer, it does not leave the off-line buffer until the following job is sent to D.  

Therefore, no arc from (β, S) to (β+1, S) is defined.  Table 1 shows arcs classification 

based on the starting and ending nodes of each arc.  

Table 1. Classification of Arcs in Shortest Path Problem Network 

Ending  Node
G S

Starting G Bypass (Arc 1, 6, 8) Visit (Arc 2, 7)
Node S Leave (Arc 3, 5) Leave & Visit (Arc 4)  

Then for any feasible solution of the original problem (constrained sequencing 

problem with an off-line buffer of capacity 1), a unique matching path from source to 
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sink node can be found, and vice versa.  In addition, in that case objective function value 

of the original problem is the same as cost of the matching path.  Figure 16 shows a 

simple example of such a shortest path problem network corresponding the original 

problem with 4 jobs.  In this example, for a feasible path from source  (1, G)  (2, S) 

 (4, G)  sink node, there exists a unique feasible solution of the original problem, and 

that solution means that 2nd job of U visits off-line buffer and it is reinserted in 4th 

position of D (no other job visits off-line buffer).  Furthermore, the reverse (for any 

feasible solution of the original problem, there exists a unique path in the network) also 

holds and the costs of these two solutions are the same (= C’13 + C’32 + C’24).  Therefore 

it can be proved that the original problem is equivalent to the associated shortest path 

problem.  Then the constrained sequencing problem can be solved with an off-line buffer 

of capacity one in polynomial time with complexity O(N2) by applying Dijkstra’s 

algorithm (Ahuja, Magnanti et al. (1993)). 

JOBS 1 2 3 4

source

1, S

1, G C ’ 12

C ’13

C ’ 23

C ’ 32+
C ’ 24

C ’ 21+
C ’ 13

4, GC ’ 34

sink

0

C ’ 34+C’ 42

2, G 3, G

0

0 C ’ 43C ’ 23+C ’ 34+C ’ 41

2, S 3, S

C’ 23+C
’ 31+C

’ 14
C ’24

C ’ 21+C ’ 14  

Figure 16. Simple Example of Shortest Path Problem Network 

Furthermore, solution time for the above shortest path problem can be reduced by 

removing some arcs through exploiting the special structure of the constrained 

sequencing problem.  First, for constrained sequencing problem with an off-line buffer of 
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capacity 1, let attribute block be the ith job, …, (i + e)th job of U, where e ≥ 1 and all jobs 

in the block have identical attributes. 

 

 

Theorem 3.1 

It is optimal for all jobs in an attribute block of U to bypass an off-line buffer. 

 

Proof 

Let Sα be a feasible solution where a, …, (a + b)th job of D have attribute l (attribute 

block) and Sβ be a feasible solution identical to Sα except sending the (a + n)th job of 

Sα to an off-line buffer and reinserting it at the mth position of D, 1 ≤ n < b, a + b < m 

≤ N.  Furthermore, if we define 

 
th1 for , if the attribute of the  job in  is 

0   otherwise 

i
i

jk
S j D k

X


= 


, then 

Xjl
α = Xjl

β  for 1 ≤ j < a + n, m < j ≤ N 

Xjl
α = Xj+1,l

β for a + n < j < m. 

Sending the (a + n)th job of U to an off-line buffer does not change the number of 

changeovers while reinserting at the mth position of D increases the number of 

changeovers by up to two.  Because the sequence of Sα and Sβ are identical except on 

(a + n)th and mth position of U, 

the number of changeovers of Sα  ≤ the number of changeovers of Sβ.           

Furthermore, by Theorem 2.3, the maximum number of jobs in an attribute block that 

can be reinserted outside the attribute block is one.  Therefore, for any feasible 
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solution sending any job of an attribute block to an off-line buffer, equally good or 

better solution can be found by forcing all jobs in the attribute block to bypass an off-

line buffer.          ڤ 

 

Using Theorem 3.1, all nodes (*, S) representing jobs in an attribute block can be 

removed from the shortest path problem network.  Consequently, all arcs connected with 

those nodes can also be removed. 

 

Theorem 3.2 

It is optimal not to insert any job (with different attribute) inside an attribute block. 

 

Proof 

In addition to the definitions in the proof of Theorem 3.1, redefine Sβ as a feasible 

solution where the attribute block in Sα is split by sending the mth job (with attribute 

other than l) of U to an off-line buffer and reinserting it at the (a + n)th position of D, 

1 ≤ m < a, 1 ≤ n < b.  Then 

Xjl
α = Xjl

β  for 1 ≤ j < m, a + n < j ≤ N 

Xjl
α = Xj+1,l

β for m ≤ j < a + n. 

Sending the mth job of U to an off-line buffer can decrease the number of changeovers 

by at most two while reinserting at the (a + n)th position of D increases the number of 

changeovers by two.  Because the sequence of Sα and Sβ are identical except on mth 

and (a + n)th position of U, 

∴ the number of changeovers of Sα  ≤ the number of changeovers of Sβ           ڤ 
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Using Theorem 3.2, all instances of arc 3 and 4 that go from a job with different 

attribute to a job belonging to an attribute block can be removed from the shortest path 

problem network. 

 

Finally, a feasible solution can be obtained by sequentially solving shortest path 

problem associated with each off-line buffer (of capacity 1) B times.  Note that even 

though this heuristic algorithm is fast with O(N2B) complexity and based on local optimal 

solution from each stage (shortest path problem), there is no guarantee of performance or 

optimality for the constrained sequencing problem with an off-line buffer of capacity B.   

 

3.2.2  Basic Sequence-dependent Setup Cost 

The formulation discussed in Section 3.2.1 is for the generalized sequence-dependent 

setup cost.  If setup cost depends only on the attribute of the job just finished, or only on 

the attribute of the job to be processed, the size of the formulation can be reduced.  Such 

reduction is especially important because our formulation is NP-hard.   First, an indicator 

variable ujk needs to be defined: 



 +

=
otherwise   0

 attribute havenot  does  in  job 1  while attribute has  in  job  if1 thth kDjkDj
u jk  

 

Then the MIP formulation can be modified as follows: 
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(5-5) makes ujk = 1 only when jth job in D has attribute k while j+1th job in D does not 

have attribute k.  Note that for all the other constrains except (5-5), the same constraints 

shown in Section 3.2.1 are used.  Also note that there is no advantage of using the 

simplified cost structure discussed in Section 3.2.2 for the heuristic discussed in Section 

3.2.1. 

3.3   Model Customization 

Since all models discussed in this dissertation use either MIP or LP formulation and 

the structure of these models are relatively simple, various ways of customizing the 

model can be found to meet the requirements specific to each application.  In this Section 

a few examples of customizing the models are illustrated. 
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3.3.1   Generalization of the Model in Section 3.1.2 

In Section 3.1.2 we discussed the case with explicit consideration of downstream 

queue addition cost and the setup cost with implicit assumption that any queue is subject 

to selection.  However, in general cases there may be some queues that should be always 

used along with queues that may or may not be used.  To model such a situation, the 

following constraint needs to be added: 

used be should that queues downstream ofset 
,,0

=′
∈∀′∈∀≠=

Q
QiQqiqwqi  

 

By the definition of wqi, it is clear that wqi = 1 means queue q has been left out for use.  

Therefore we need to make sure that wqi = 0 for all queues that should be used.  Note that 

similar results can be found by setting QqCq ′∈∀=′′ ,0 . 
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CHAPTER 4 

NUMERICAL RESULTS 

Many different kinds of variables and parameters are used in defining and modeling 

constrained sequencing problem, making it difficult to explore all possible combinations.  

The case study at an automobile assembly plant showed that certain issues are more 

important than others in reality.  Therefore, numerical experiments have been conducted 

focusing on answering the following questions: 

 

(1) How the characteristics of the input sequence of jobs (number of attributes and 

number of jobs) affect the performance of the model?          

(2) How is the solution affected by system characteristics, such as number of 

downstream queues, off-line queue capacity, and changeover costs? 

(3) More specifically, how much cost saving can be realized by increasing the 

number of downstream queues and off-line queue capacity and it is ever desirable 

to have full re-sequencing flexibility? 

(4) How computationally efficient is our solution approach, and is it amenable to 

environments where a solution must be obtained in several seconds? 

(5) What are the performance characteristics of our models to the case study data? 

(6) How good is the quality of the solutions obtained from the heuristic algorithm and 

how is it affected by problem characteristics?  Is the use of the optimal solution 

justifiable compared to the solution from the heuristic algorithm? 
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4.1   Sensitivity Analysis on the Models 

To answer questions (1) ~ (3), a series of experiments have been conducted for 

randomly generated problems with varying number of attributes, jobs, downstream 

queues on the formulation described in Section 3.1.1.  Setup costs are assumed identical 

for any attribute changeover to minimize effects of setup costs on the model. 

 

Experimental experiments results are shown in Table 2, Figure 16, 17, and 18.  To 

minimize fluctuations of objective function value (due to different attribute distribution 

of the input sequence) and solution time (due to multi-user environment), 30 experiments 

have been made per each combination of parameter values, resulting in a total of 6600 

experiments. 
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Table 2. Numerical Experiments Results for the Analytical Model (in # of 
Changeovers) 

Number of Number of Number of Downstream Queues
Attributes Jobs 1 2 3 4 5 6 7 8 9

100 65 22 0 0 0 0 0 0 0
200 127 42 0 0 0 0 0 0 0

3 300 197 63 0 0 0 0 0 0 0
400 269 87 0 0 0 0 0 0 0
500 342 120 0 0 0 0 0 0 0
100 75 35 12 0 0 0 0 0 0
200 157 73 29 0 0 0 0 0 0

4 300 228 104 42 0 0 0 0 0 0
400 298 141 52 0 0 0 0 0 0
500 369 176 66 0 0 0 0 0 0
100 85 47 23 10 0 0 0 0 0
200 164 97 52 21 0 0 0 0 0

5 300 242 126 68 28 0 0 0 0 0
400 322 171 93 39 0 0 0 0 0
500 404 223 123 50 0 0 0 0 0
100 85 49 28 14 6 0 0 0 0
200 168 95 58 30 10 0 0 0 0

6 300 255 157 97 54 23 0 0 0 0
400 324 198 122 68 29 0 0 0 0
500 417 247 149 85 33 0 0 0 0
100 88 56 39 23 11 3 0 0 0
200 164 101 67 41 24 10 0 0 0

7 300 268 167 106 64 34 12 0 0 0
400 338 208 138 88 50 21 0 0 0
500 409 255 166 106 59 25 0 0 0
100 78 52 34 24 15 8 3 0 0
200 175 119 83 56 35 20 9 0 0

8 300 248 159 110 74 51 31 13 0 0
400 345 221 149 100 67 40 18 0 0
500 441 295 203 136 87 48 20 0 0
100 87 65 47 34 25 18 11 5 0
200 182 127 94 70 50 34 21 10 0

9 300 273 186 132 96 69 45 25 10 0
400 341 235 169 123 89 60 37 16 0
500 438 303 221 159 111 73 42 19 0
100 92 63 45 34 26 19 13 8 3
200 181 126 89 67 49 34 23 14 6

10 300 264 190 144 111 83 59 39 23 11
400 336 230 174 132 95 69 47 27 12
500 447 312 236 179 131 90 58 34 16  

In Table 2, column with one downstream queue means cases where no re-sequencing 

can be made.  Note that if number of downstream queues is equal or bigger than the 

number of total attributes in the incoming sequence, the number of changeovers can be 

reduced to zero.  Figure 17 shows that the number of changeovers reduces as the number 
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of queues increases.  Furthermore, Figure 18 shows data on reduced changeovers 

(compared to the original sequence) indicating that the benefit of adding additional 

downstream queue quickly diminishes as total number of downstream queues increases.  

This means that a limited number of downstream queues would be sufficient in general 

for reducing changeovers and that full re-sequencing capability (10 or more downstream 

queues in the following figures) would be rarely justified. 

Relationship between # of Queues and # of Changeovers
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Figure 17. Relationship between # of Queues and # of Changeovers 
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Relationship between # of Queues and # of Reduced Changeovers
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Figure 18. Relationship between # of Queues and # of Reduced Changeovers 

Figure 19 shows that the number of attributes is positively correlated with the number 

of changeovers.  This phenomenon can be explained as follows.  Since all jobs were 

randomly generated with equal probability for all attributes, more number of attributes 

means there is less number of jobs in each attribute set if the number of jobs is fixed.  As 

a result, the average distance between adjacent jobs with the same attribute increases.  

Finally, the number of changeovers increases because of reduced probability to find the 

job with the same attribute on dispatching. 
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Relationship between # of Attributes and # of Changeovers
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Figure 19. Relationship between # of Attributes and # of Changeovers 

4.2   Solution Time 

All experiments have been done on a multi-user Unix platform (Sun 280R with dual 

900MHz UltraSparc-III-Cu CPU’s and 2GB RAM) and CPLEX version 8.1.0 

environment.  CPLEX Solution times for varying problem sizes, number of attributes, 

and downstream queues are shown in Table 3. 
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Table 3. CPLEX Solution Times (in seconds) 

Number of Number of Number of Downstream Queues
Attributes Jobs 1 2 3 4 5 6 7 8 9

100 0.05 0.08 N/A N/A N/A N/A N/A N/A N/A
200 0.40 0.41 N/A N/A N/A N/A N/A N/A N/A

3 300 1.42 1.22 N/A N/A N/A N/A N/A N/A N/A
400 3.65 2.73 N/A N/A N/A N/A N/A N/A N/A
500 6.47 5.55 N/A N/A N/A N/A N/A N/A N/A
100 0.06 0.10 0.05 N/A N/A N/A N/A N/A N/A
200 0.44 0.54 0.39 N/A N/A N/A N/A N/A N/A

4 300 1.54 1.61 1.15 N/A N/A N/A N/A N/A N/A
400 4.29 3.79 2.62 N/A N/A N/A N/A N/A N/A
500 8.03 7.53 5.34 N/A N/A N/A N/A N/A N/A
100 0.06 0.09 0.07 0.07 N/A N/A N/A N/A N/A
200 0.49 0.60 0.50 0.39 N/A N/A N/A N/A N/A

5 300 1.81 1.81 1.53 1.16 N/A N/A N/A N/A N/A
400 4.52 4.30 3.50 2.60 N/A N/A N/A N/A N/A
500 8.47 8.51 7.10 5.21 N/A N/A N/A N/A N/A
100 0.05 0.11 0.08 0.07 0.06 N/A N/A N/A N/A
200 0.48 0.65 0.59 0.50 0.40 N/A N/A N/A N/A

6 300 1.78 2.06 1.72 1.43 1.16 N/A N/A N/A N/A
400 4.97 4.85 4.12 3.32 2.70 N/A N/A N/A N/A
500 9.28 9.95 8.32 7.09 5.00 N/A N/A N/A N/A
100 0.06 0.09 0.09 0.08 0.07 0.06 N/A N/A N/A
200 0.54 0.67 0.63 0.55 0.48 0.41 N/A N/A N/A

7 300 2.01 2.32 2.22 1.90 1.60 1.21 N/A N/A N/A
400 5.19 5.24 4.69 4.19 3.56 2.48 N/A N/A N/A
500 9.58 10.57 9.35 7.98 6.67 5.23 N/A N/A N/A
100 0.06 0.11 0.09 0.08 0.07 0.08 0.08 N/A N/A
200 0.49 0.71 0.63 0.59 0.54 0.51 0.41 N/A N/A

8 300 1.97 2.33 2.01 1.66 0.15 1.48 1.13 N/A N/A
400 5.17 5.40 4.84 4.23 3.87 3.28 2.72 N/A N/A
500 10.58 11.97 11.12 9.37 8.24 6.86 5.13 N/A N/A
100 0.05 0.12 0.10 0.09 0.08 0.08 0.08 0.07 N/A
200 0.53 0.75 0.64 0.63 0.59 0.56 0.54 0.48 N/A

9 300 2.10 2.54 2.26 2.06 2.02 1.78 1.48 1.21 N/A
400 5.33 5.35 5.18 4.78 4.24 3.82 3.67 2.92 N/A
500 10.75 11.87 11.10 10.05 8.90 7.69 6.70 5.28 N/A
100 0.06 0.11 0.09 0.08 0.08 0.08 0.09 0.09 0.07
200 0.53 0.78 0.76 0.72 0.67 0.61 0.53 0.52 0.46

10 300 1.99 2.46 2.13 2.15 1.98 1.81 1.59 1.32 1.23
400 5.51 5.60 5.04 4.96 4.51 3.97 3.79 3.31 2.65
500 10.94 12.35 11.59 10.23 9.22 8.15 7.24 6.24 5.17
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As expected, solution time is positively correlated with number of attributes (see 

Figure 20) and number of jobs (see Figure 21) increases.  However, Figure 22 shows that 

solution time decreases as number of downstream queues increases. 

5.2 Relationship between # of Attributes and Solution Time
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Figure 20. Relationship between # of Attributes and Solution Time 

Relationship between # of Jobs and Solution Time
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Figure 21. Relationship between # of Jobs and Solution Time 

Relationship between # of Queues and Solution Time
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Figure 22. Relationship Between # of Queues and Solution Time 

 Note that the maximum solution time for 1000 jobs was kept within three minutes on 

several informal experiments that have been conducted.  In summary, numerical results 

show that solution time is not a big concern for most practical applications including 

cases where decisions should be made on the spot. 

4.3   Solution Quality of the Heuristic Algorithm 

The numerical experiments results for the heuristic algorithm are shown in Table 4.  

In addition, Table 5 shows results of benchmarking heuristic algorithm-based solutions 

against optimal solutions in Table 1.  Note that the numbers in Table 5 represent the 
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increased percentage of changeovers (compared to the optimal solution) due to using the 

heuristic algorithm. 
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Table 4. Numerical Experiments Results for the Heuristic Algorithm (in # of 
Changeovers) 

Number of Number of Number of Downstream Queues
Attributes Jobs 1 2 3 4 5 6 7 8 9

100 65 39 N/A N/A N/A N/A N/A N/A N/A
200 127 57 N/A N/A N/A N/A N/A N/A N/A

3 300 197 90 N/A N/A N/A N/A N/A N/A N/A
400 269 134 N/A N/A N/A N/A N/A N/A N/A
500 342 182 N/A N/A N/A N/A N/A N/A N/A
100 75 48 27 N/A N/A N/A N/A N/A N/A
200 157 109 50 N/A N/A N/A N/A N/A N/A

4 300 228 156 69 N/A N/A N/A N/A N/A N/A
400 298 200 99 N/A N/A N/A N/A N/A N/A
500 369 253 129 N/A N/A N/A N/A N/A N/A
100 85 63 48 18 N/A N/A N/A N/A N/A
200 164 128 78 44 N/A N/A N/A N/A N/A

5 300 242 165 115 63 N/A N/A N/A N/A N/A
400 322 246 159 76 N/A N/A N/A N/A N/A
500 404 310 214 102 N/A N/A N/A N/A N/A
100 85 66 46 32 13 N/A N/A N/A N/A
200 168 124 94 61 29 N/A N/A N/A N/A

6 300 255 207 149 108 61 N/A N/A N/A N/A
400 324 254 194 118 61 N/A N/A N/A N/A
500 417 322 238 169 79 N/A N/A N/A N/A
100 88 74 63 44 26 12 N/A N/A N/A
200 164 142 109 89 48 32 N/A N/A N/A

7 300 268 213 171 111 84 34 N/A N/A N/A
400 338 280 222 161 116 47 N/A N/A N/A
500 409 340 257 203 133 68 N/A N/A N/A
100 78 62 49 41 36 21 8 N/A N/A
200 175 151 127 99 72 44 24 N/A N/A

8 300 248 200 175 131 95 73 33 N/A N/A
400 345 282 234 189 133 102 51 N/A N/A
500 441 376 308 242 184 113 67 N/A N/A
100 87 76 66 56 48 27 19 12 N/A
200 182 159 139 112 95 73 51 19 N/A

9 300 273 235 205 170 133 95 69 38 N/A
400 341 296 245 209 172 122 88 38 N/A
500 438 385 329 280 233 175 129 45 N/A
100 92 76 69 58 41 35 30 19 12
200 181 154 125 109 84 69 48 31 19

10 300 264 237 211 185 143 130 79 62 27
400 336 281 250 217 182 143 100 65 38
500 447 402 339 296 233 185 135 105 42  
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Table 5. Results of Benchmarking Heuristic Algorithm-based Solutions against 
Optimal Solutions (in Percentage) 

Number of Number of Number of Downstream Queues
Attributes Jobs 2 3 4 5 6 7 8 9

100 77% N/A N/A N/A N/A N/A N/A N/A
200 36% N/A N/A N/A N/A N/A N/A N/A

3 300 43% N/A N/A N/A N/A N/A N/A N/A
400 54% N/A N/A N/A N/A N/A N/A N/A
500 52% N/A N/A N/A N/A N/A N/A N/A
100 37% 125% N/A N/A N/A N/A N/A N/A
200 49% 72% N/A N/A N/A N/A N/A N/A

4 300 50% 64% N/A N/A N/A N/A N/A N/A
400 42% 90% N/A N/A N/A N/A N/A N/A
500 44% 95% N/A N/A N/A N/A N/A N/A
100 34% 109% 80% N/A N/A N/A N/A N/A
200 32% 50% 110% N/A N/A N/A N/A N/A

5 300 31% 69% 125% N/A N/A N/A N/A N/A
400 44% 71% 95% N/A N/A N/A N/A N/A
500 39% 74% 104% N/A N/A N/A N/A N/A
100 35% 64% 129% 117% N/A N/A N/A N/A
200 31% 62% 103% 190% N/A N/A N/A N/A

6 300 32% 54% 100% 165% N/A N/A N/A N/A
400 28% 59% 74% 110% N/A N/A N/A N/A
500 30% 60% 99% 139% N/A N/A N/A N/A
100 32% 62% 91% 136% 300% N/A N/A N/A
200 41% 63% 117% 100% 220% N/A N/A N/A

7 300 28% 61% 73% 147% 183% N/A N/A N/A
400 35% 61% 83% 132% 124% N/A N/A N/A
500 33% 55% 92% 125% 172% N/A N/A N/A
100 19% 44% 71% 140% 163% 167% N/A N/A
200 27% 53% 77% 106% 120% 167% N/A N/A

8 300 26% 59% 77% 86% 135% 154% N/A N/A
400 28% 57% 89% 99% 155% 183% N/A N/A
500 27% 52% 78% 111% 135% 235% N/A N/A
100 17% 40% 65% 92% 50% 73% 140% N/A
200 25% 48% 60% 90% 115% 143% 90% N/A

9 300 26% 55% 77% 93% 111% 176% 280% N/A
400 26% 45% 70% 93% 103% 138% 138% N/A
500 27% 49% 76% 110% 140% 207% 137% N/A
100 21% 53% 71% 58% 84% 131% 138% 300%
200 22% 40% 63% 71% 103% 109% 121% 217%

10 300 25% 47% 67% 72% 120% 103% 170% 145%
400 22% 44% 64% 92% 107% 113% 141% 217%
500 29% 44% 65% 78% 106% 133% 209% 163%

 

 



 63

Table 5 shows that finding optimal solution is justifiable in most cases, while Table 4 

indicates that the heuristic algorithm is still worth implementing if getting optimal 

solution is impossible or requires excessive initial investment cost.  Note that the solution 

times for the heuristic algorithm were less than 0.7 second when implemented in Java and 

run on a Pentium IV PC with a Pentium 1.5 GHz processor. 

4.4   Results of the Case Study Data 

To verify if our solution methodology works well on the real world manufacturing 

system, data have been collected on a sequence of 4897 cars with a total of 9 colors going 

to the paint booth of the paint shop in an automobile manufacturing facility.  Case study 

details are discussed in the next Chapter.  Figure 23 shows that the introduction of the 

second downstream queue results in an average cost reduction of 41% and that only 19% 

of the maximum possible cost reduction is realized with the third downstream queue, 

with the incremental benefit of additional queues quickly diminishing.  Because the total 

number of colors is 9, it is predicted that the number of reduced changeovers drops to 

zero for 10 or more downstream queues and Figure 22 confirms our prediction. 
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Impact of # of Queues on # of Reduced Changeovers (Case Study Data)
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Figure 23. Impact of # of Queues on # of Reduced Changeovers (Case Study Data) 

Note that the total cost reduction amount obtainable on the plant level is expected to 

be much higher since the plant in the case study has several diverging or converging 

conveyor points in the paint shop. 



 65

CHAPTER 5 

CASE STUDY 

The constrained sequencing problem on conveyors for setup reduction was motivated 

by a project with an automotive assembly plant in US.  The initial objective of the project 

was to try to reduce the number of setups via changing the control logic at conveyor 

diverging / converging points because control logic change incurs relatively less 

interruption in production and is inexpensive in implementation.  The long term 

objectives of the project include changing physical configuration of the plant as well as 

offering insights for future system designs.  Due to system complexity, we initially 

observed and applied the existing control logic in the simulation model.  We then built 

the mathematical model for each of the isolated junctions (diverging junctions and 

junctions with an off-line buffer) as discussed in the prior chapters and verified solution 

quality as well as applicability to real life production environment using the simulation 

model.  In this chapter, we first report the initial case study and then apply our method to 

explore improvement.    

5.1   Paint Purge Reduction in Automotive Assembly 

Automotive manufacturing is a complex task involving many steps of machining and 

assembly.  Among them, the painting process is an important part of the entire 

automobile manufacturing system.  Because most car models offer multiple colors and 
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orders normally consists of cars with different colors, frequent color change is 

unavoidable if the order sequence is to be maintained.  However, color change in the 

painting process is expensive because of wasted paint, solvent (for removing residual 

paint from paint gun nozzles), and time.  Moreover, the solvent as well as the paint often 

contain environmental pollutants such as Volatile Organic Compounds (VOCs). 

 

There have been several approaches utilized in the automotive industry to deal with 

this problem.  Some plants batch cars with the same color in the production order.  This 

approach requires excessive storage space and equipment and as well as causing higher 

WIP and longer order cycle times.  Therefore, some other plants try to reduce the time 

and/or cost of each color change setup.  In our case study, the plant adopted the latter 

approach.  They installed advanced equipment eliminating setup time to change the color.  

However, color change still results in wasted paint and solvent. Therefore,  it is desirable 

to reduce the number of color changes by re-sequencing cars via conveyor junctions.  

Besides its original function of transporting cars among processing stations, the conveyor 

system can be also used for temporary buffering and re-sequencing cars to maximize 

average color block size, which is equivalent to minimizing the total number of color 

changes. 

 

The paint shop consists of a few phases.  Vehicles enter the first phase as solid sheet 

metal bodies (Body-In-White or BIW) that are fed from the body shop and exit the last 

phase painted (at several paint booths) and burnt (at a few ovens).  The main processes 
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include prime spray, prime oven, dry sand, enamel spray, and enamel oven.  The bodies 

flow through these processes on conveyors.   

 

Throughout the automotive assembly system, various processing steps on the vehicles 

such as parallel ovens and metal repair disrupt the original sequence as well as existing 

color blocks.  In fact, all operations done in any assembly plant can introduce disruptions 

to the scheduled job sequence.  Disruptions can be classified as controllable and 

uncontrollable.  Controllable disruptions can be further classified as facility-related (i.e. 

assembly stations and paint booths), process-related (i.e. off-line processes), and 

operation-related (i.e. dedicated handling requirement of specific units).  Uncontrollable 

disruptions are mostly related to repairs and rework operations.  Painting is a delicate 

process prone to various quality problems.  As a result, over half of the disruption points 

are located in the paint shop of an automobile assembly plant. 

 

The system has over 10 diverging conveyor junctions including one in front of the 

prime ovens, the prime storage area, the enamel spray booths, and the enamel ovens to 

which the analytical models discussed in Section 3.1 can be applied.  It also has more 

than 10 converging junctions and one FIFO off-line buffer.  However, it does not have a 

random access off-line buffer, preventing us from applying the analytical model in 

Section 3.2 without conveyor configuration changes. 

 

In terms of information technology infrastructure, the conveyor system in the paint 

shop is controlled by more than 20 PLCs, each managing one control point in the system.  



 68

Each PLC is linked to some sensors nearby to provide local view of the entire conveyor 

system in the paint shop.  There is no data communication among the PLCs.  The 

decision at each control point should be made within half minute of a status change 

because of the dynamically changing car sequence.  Furthermore, the logic in the PLC is 

implemented as ladder diagram.  Ladder diagram is convenient for logical operation but 

limited in computation, data handling, and communications.  Therefore, implementing 

optimization algorithm requires additional hardware and interface, resulting in not being 

considered in the initial phase because of the associated investment cost. 

5.2   Simulation Study 

5.2.1   Need for Simulation Modeling 

Simulation can accommodate much more realistic situations than that is possible with 

analytical models, such as time delays, control logic, parallel processing, shared 

resources, and variety of probability distributions to simulate randomness in the system.  

Therefore, simulation has been extensively used for simulating production activities 

including automotive production processes.  Example of successful applications can be 

found in Park, Matson et al. (1998) and Graehl (1992).  Ulgen and Gunal (1998) 

discusses the use of computer simulation in design and operation of automobile assembly 

plants as well as automotive components manufacturing plants.  With its inherent ability 

for modeling randomness, computer simulation is an ideal tool for evaluating different 

rule sets and for predicting the throughput capability of a selectivity system.  Simulation 
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modeling provides an easier option for evaluating different scenarios without affecting 

the current operation of the actual system. 

 

In general, the mathematically optimal solution of an analytical model may not be an 

optimal solution for the modeled system because of the abstraction in the modeling 

process.  First, analytical model cannot address all aspects of the real system.  One  

example is that the cycle time of each conveyor has been one of the top concerns of the 

engineers on the field while our analytical models are unable to handle any time-related 

constraint.  Another example is the handling of rework.  Second, analytical models are 

usually able to model partial system while optimizing the whole system is typically 

desired.  In our case study, the entire painting processes can be thought of as a collection 

of conveyors connected via various junctions.  While our analytical model yields the 

optimal or near-optimal solution for each subsystem composed of one diverging junction 

(with or without off-line buffer), the set of these local optimal solutions may not 

constitute the global optimal solution set of the whole system.  Therefore, simulation 

results can be used to find the performance of the partial solutions from the analytical 

model.  These limitations of the mathematical model make our simulation model 

indispensable for evaluating solutions including the solution from the mathematical 

model. 

 

Simulation model can also be used to conduct what-if analysis and sensitivity analysis.  

For example, sometimes simply observing simulation animation may enable identifying 

bottlenecks in the manufacturing process flow.  Furthermore, required changes to achieve 
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a goal (e.g. getting the desired throughput) can be identified manually (by trial and errors) 

or automatically (systematic parameter optimization functionality that some commercial 

simulation software packages supports) through repeated simulation runs with different 

set of parameter values. 

 

Finally, since physical change in existing conveyor system is very expensive 

considering equipment downtime and installation cost, the use of simulation model to 

study the effect of system changes is indispensable even though building a high-fidelity 

simulation model itself is a large undertaking.  However, state-of-the-art simulation 

software packages provide sophisticated programming constructs and abilities allowing 

intricate operating details of such complex systems to be modeled with relative ease and 

accuracy (Jayaraman, Narayanaswamy et al. (1997)). 

 

5.2.2   Simulation Model Details 

5.2.2.1   Input Data 
 

In our case study, we need information on conveyor configuration, incoming car 

sequence, processing time on each workstation, and rework.  For conveyor configuration 

information, the plant CAD file was linked to the simulation model for dimensional 

accuracy.  For car sequence information, the plant uses in-line sensors to identify the 

color of the incoming car.  However, the plant database stores only the frequency 

distribution of colors, not the sequence of the car colors that we need.  Therefore, we 

manually collected the color sequence data for 4897 cars – equivalent to 82 hours of 

production volume.  The color frequency distribution of the manually collected data 
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matched historical data stored in the database.  Based on this, we assume that the 

collected sequence is representative of long-run averages.  We  then create pseudo 

random sequences based on the color distribution and use them in the simulation model.  

All other information, including data on conveyor speed and processing time for each 

workstation, we used the data derived from the plant database.  However, we note that the 

simulation model shows that the number of reduced color changeovers is slightly bigger 

when manually collected sequence data are used (compared to the pseudo random 

sequence).  It is suspected that such difference is due to the fact that pseudo random 

sequence is independent and identically distributed while the actual sequence manually 

collected data was not. 

 

5.2.2.2   Simulation Model Language Selection 
 

AutoMod was chosen as the simulation model platform mainly because its 3D 

animation capability, convenience for simulating manufacturing processes and support 

for customizable control logic in junction points although it does not provide connectivity 

to general-purpose programming languages such as Java, C/C++, or Visual Basic.  

However, the limited embedded programming language for model customization in 

AutoMod caused more than half of our model development time spent on developing and 

debugging user-defined libraries (written in the embedded programming language of 

AutoMod) and it is believed that at least some of these libraries, or APIs (Application 

Programming Interfaces) for general-purpose languages need to be provided by the 

software vendor.  Figure 24 and Figure 25 shows our simulation model screenshots. 
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Figure 24. Simulation Model Screenshot - Prime Storage Area 

 

Figure 25. Simulation Model Screenshot - Prime Scuff Area 
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5.3   Proposed Changes and Effect 

The diverging control point before the enamel ovens was selected for this case study.  

Because of the practical difficulties in obtaining an optimal solution as well as in 

implementing PC-based algorithm discussed in Section 5.1, in addition to the analytical 

model discussed in Chapter 3, we also developed  heuristic algorithm for the diverging 

conveyor junction and evaluated it using the simulation model.  The current heuristic 

algorithm is described as follows: 

 

Let L be the set of last jobs sent to each of the downstream queues. 

Step 1. For each job at the exit of U, search L for the same attribute. 

Step 2. If a job with the same attribute is found in L, send the current job to that 

downstream queue and go to Step 4. 

Step 3.  If no job with the same attribute is found in L, send the current job to a 

downstream queue containing the minimum number of jobs. 

Step 4. Repeat this algorithm until no job is left in U. 

 

Our revised heuristic algorithm is as follows: 

Let L2 be the set of second to last jobs sent to each downstream queue. 

Step 1. For each job at the exit of U, search L for the same attribute. 

Step 2. If a job with the same attribute is found in L, send the current job to that 

downstream queue and go to Step 5. 

Step 3. If no job with the same attribute is found in L, search L2 for the same attribute. 
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Step 4. If a job with the same attribute is found in L2, send the current job to a 

downstream queue containing the minimum number of jobs, as long as this queue is the 

queue associated with the job found in L2. 

Step 5. Repeat this algorithm until no job is left in U. 

 

Figure 26 is the simulation run results using the randomly generated data of 500 cars 

with 9 colors and 2 downstream conveyors.  They show the number of changeovers 

resulting from the original sequence, the existing heuristic, the revised heuristic and the 

analytical model in Section 3.1.1. The result show that the existing algorithm reduced the 

change over by 12%, the revised algorithm by 20% and the optimization model by 31%. 

Therefore, the revised algorithm is a good alternative to using the analytical model, 

especially when getting the optimal solution is not possible (in the case of using a PLC). 

Simulation Run Results
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Figure 26. Simulation Run Results 
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CHAPTER 6 

CONTRIBUTIONS AND FUTURE DIRECTIONS 

6.1   Contributions 

This dissertation is the first attempt to define, classify, and model the constrained 

sequencing problem and to generalize the problem on various assumptions.  Specifically, 

analytical models have been developed for constrained sequencing problem with a 

diverging junction as well as with random access off-line buffer.  We also modeled cases 

where number of downstream queues needs to be decided simultaneously as well as cases 

where setup cost depends on both the job just finished and the job to be processed next.  

It has been proved that problems with practical size such as several hundred jobs can be 

solved quickly by these models.  In addition, for the constrained sequencing problem 

with an off-line buffer, special problem structure has been identified and a practical 

solution algorithm based on that structure has been developed. 

 

The numerical experiments on those models helped revealing the characteristics of 

the models.  The numerical experiment results showed that our formulations could be 

used for real time control.  A case study also has been conducted on the paint shop 

project in an automotive plant to verify the validity of our approach on the manufacturing 

environment.  Finally, a discrete event simulation model has been developed.  In the case 
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study environment, this model has been used to test solutions from our analytical models 

as well as from other heuristic algorithms. 

6.2   Future Research 

Even though this dissertation did extensive analysis on diverging junction cases and 

one off-line buffer cases with random access principle, no analysis has been made on 

converging junction cases as well as off-line buffer cases with other disciples such as 

FIFO.  If making an optimization model for converging junction cases can be done 

successfully, a whole conveyor system can be analyzed systematically by dividing the 

system into each diverging or converging junction and applying the appropriate model to 

each junction.  This way heuristics can be devised to obtain a feasible solution for the 

whole system and the performance of the heuristics may be good because the solution is 

composed of local optimal solutions for each junction point. 

 

Other constraints such as those on cycle time limitations and line balancing also need 

to be integrated into the models discussed in this research.  In the case study, reducing the 

number of color changeovers (i.e. increasing average color block size) was usually not on 

the highest priority in making production decisions.  In other words, the solution 

optimized only for reducing the number of changeovers is very likely to be declined on 

implementation stage because performance of other criteria (that are considered more 

important than the number of changeovers) would be degraded greatly. 
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Finally, using diverging or converging junction alone may not be the best solution for 

all cases requiring re-sequencing, especially when full re-sequencing capability is desired.  

In fact, many manufacturing facilities use AS/RS or selectivity bank for re-sequencing 

purpose.  However, since it believed that the approach of using junctions for re-

sequencing is almost always beneficial even with the existence of AS/RS or selectivity 

bank, the following two functionalities need to be included in the analytical models as 

well as the simulation model discussed in this research: 

1) Optimal capacity of AS/RS or selectivity bank in facility design phase needs 

to be decided.  Since AS/RS or selectivity bank is expensive, minimizing its 

capacity is desired and use of junctions can greatly contribute to reducing 

required capacity while meeting re-sequencing requirements. 

2) Optimal dispatching decision needs to be made on all diverging/converging 

conveyor junctions as well as on all diverging points (where jobs can go to 

AS/RS or to the next processing facility) and all converging points (where 

jobs can be received from AS/RS or from the previous processing facility). 
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APPENDIX A: MODELS FOR CONSTRAINED 
SEQUENCING & ATTRIBUTE ASSIGNING PROBLEM 
 
 
 

In many cases, some attributes can be assigned at the time of being transferred to the 

downstream queues.  In other cases, an attribute, such as the earmarked color of a car, can 

be swapped with another car with different color later in the sequence, to further reduce 

the number of setups.  If the assumption that attributes of the incoming sequence are 

given in advance is relaxed, the number of setups can be reduced further.  However, in 

such cases the decision making process is more complex because decisions how to assign 

or swap attributes for the incoming sequence also need to be made.  To model the above 

situation, subscripts need to be added to the old definition of xij to designate a pair of jobs 

with a pair of earmarked attributes: 

 
otherwise0

queue downstream aon  in   attributewith  
 job   thebeforeright  located is in   attribute with job  if1 thth









= Ul
jUki

xijkl  

 The main reason for extending the dimension of xij into xijkl is that the attributes of the 

adjacent jobs in downstream queues need to be considered explicitly because they are 

dynamically assigned or swapped during problem solving process.  Note that 0=Njklx is 

undefined for all j, k, and l.  In addition, a definition needs to be made as follows: 

   
otherwise0

in  job   toassigned becan   attribute if1 th





=′ Uik
Aik  

Finally, yiq and zqj need to be redefined as follows: 
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th

th

1 if  job with attribute  in  is the last item to be sent to a downstream queue
0 otherwise

1 if  job with attribute  in  is the first item to be sent to a downstream queue
0 otherwis

jlq

qik

j l U
y

i k U
z


= 


=
e





 

The relationship among the above redefined variables in the model is illustrated in an 

example shown in Figure 27 where queue a receives job 2 and 4 while queue b receives 

job 2, 3, and 5 sequentially. 
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Figure 27. Network Relationship among Redefined Variables 

Then the MIP based on extended network representation can be formulated as follows.  

Note that in this formulation the setup cost depends on both the attribute of the job just 

finished and the attribute of the job to be processed next. 
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(3-6) is for restricting the range of values that ith job in U can take.  ∑
=

Q

q
iqy

1

= 1 for any 

i means that ith job is the last job to be sent to a downstream queue and by (3-2), xijkl = 0 

for all j, k, and l.  If ∑
=

Q

q
iqy

1

= 0, by (3-6) xijkl is forced to be zero for all j and l when Aik = 0.  

Note that (3-6) can be generalized by being replaced by lkjiAx ijklijkl ,,,, ∀′≤ .  This 

alternative enables more sophisticated control on the range that xijkl can take, but it also 

increases the number of constraints by 
2

)2()1( −− NKKN .  (3-7) guarantees that exactly 

one attribute is assigned to each job in the incoming sequence.  Contrary to models in 

Section 3.1.1 and 3.1.2, (3-8) cannot be removed in this model because there is no 

guarantee that LP relaxation of the above formulation has integer optimal solution.  All 

the other constraints in this formulation are simply the extended version of the 
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counterparts found in the formulation of Section 3.1.1 and 3.1.2 where detailed 

explanation of each constraint is available. 

 

The above formulation assumes that the setup cost depends on both the attribute of 

the job just finished and the attribute of the job to be processed.  However, sometimes the 

setup cost depends only on the attribute of the job just finished, or only on the attribute of 

the job to be processed.  In either case, the formulation size can be reduced by modifying 

the formulation and notations.  Note that the total number of variables of the formulation 

is reduced by 
2

)1()1( −− KKNN  while the number of constraints remains the same.  First, 

variables and constant are defined as follows: 

 









=

=




=

otherwise0
queue downstream aon  in  )not  is item  of (attribute 

item   thebeforeright  located is in   attribute with job  if1

 attribute fromcost  changeover
otherwise   0

 in position   sent to is in   attribute with job  if1

th

thth

thth

Ukj
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kC

DjUki
x

ijk

k

ijk

 

Then the formulation can be modified as follows: 
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 (3’-6) is for checking attribute change.  Because of (3’-1), (3’-2), and (3’-6), 

indicator variable tijk becomes one for any possible combination i, j, and k only when 

1=ilkx  and 0
1

=∑
+=

N

jm
jmkx  (in all other cases tijk becomes zero because of (3’-1)).  In other 

words, tijk becomes one only when the following two conditions are met: 

 

1. the queue is re-sequenced so that job i with attribute k is right before job j in a 

downstream queue ( 1=ijkx ), and 

2. attribute k is not assigned to job j ( 0
1

=∑
+=

N

jm
jmkx ). 
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Both of the above two formulations can also be modified for solving constrained 

sequencing and swapping problem defined as follows.  Let us consider a constrained 

sequencing problem with determined attributes (as in Section 3.1.1 and 3.1.2).  It is 

assumed that each job has additional attribute (denoted as secondary attribute) other than 

the attribute associated with setup cost (denoted as primary attribute).  Then one can 

think of a set of jobs that have different primary attributes and identical secondary 

attribute.  If “swapping” among the jobs in the incoming sequence is allowed, then the 

number of setups may be reduced further. 

 

One example found on the manufacturing environment is the color change reduction 

problem (as described in Chapter 5) where number of color changes can be further 

reduced by swapping two cars in the incoming sequence if the colors to be painted 

(primary attribute) are different and all the other options (secondary attribute) are 

identical for these two cars.  This method is used to alter the sequence of vehicles by 

changing their identification rather than physically switching their location.  Distribution 

of secondary attributes directly impacts the effectiveness of vehicle swapping.  At several 

points in the assembly process, a plant will read vehicle identifications and automatically 

swap vehicle identification tags.  Tag swapping can be done physically, or electronically 

if RF (Radio Frequency) tags are used.  Myron (1996) and Atassi (1996) report use of 

swapping technique at Ford Motor Company’s Wixom Assembly Plant to create a new 

sequence that more closely matches the National Blend, Ford’s way of making master 

production schedule to sequence cars to balance the workload in the final production area 

called trim and chassis.  
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To model the constrained sequencing and swapping problem, the following constraint 

needs to be added to the formulations in (3’–1) ~ (3’–9): 

1 1

,
s

N K

ijkl s s
i I j i l

x I s S k K
∈ = + =

= ∀ ∈ ∈∑∑∑ , where         (3-9) 

S = secondary attribute set of jobs in U, 

Is = set of jobs having secondary attribute s in U, 

sI  = cardinality of Is, and 

Ks = primary attribute set of jobs in Is. 

 

Constraint (3-9) can be interpreted as follows. Since swapping among jobs having 

different primary attributes and the same secondary attribute is allowed, (3-9) needs to be 

added to make sure that for each primary attribute, the total number of jobs having that 

primary attribute does not change after swapping. 
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APPENDIX B: MODEL FOR DIVERGING JUNCTION 
& OFF-LINE BUFFER 

 
 
 

By combining the results obtained in Section 3.1 and 3.2, general cases where 

diverging junctions and off-line buffers are used simultaneously can be modeled.  The 

formulation discussed in this Section models the case where attributes of all jobs in the 

upstream queue are fixed.  Notations in the previous Sections were reused except newly 

defining variable xhijk as follows: 

th th1 if  job with attribute  in  is located right before the  job in  on a
     downstream queue (index  represents temporary position in offline buffer)
0   otherwise

hijk

h k U j U
x i


= 



 

 

The basic idea of modeling both off-line buffer and diverging conveyors is that the 

model for off-line buffer and the model for diverging conveyors can be combined without 

loss of generality.  Specifically, the model for diverging conveyors in Section 3.1 enables 

us to find the optimal solution for a given input sequence while the model for off-line 

buffer in Section 3.2 allows us to identify all the possible downstream sequence for an 

initial input sequence.  In addition, the only relationship between the above two models is 

that the output of the off-line buffer model becomes the input of the diverging queues 

model because jobs stored in the off-line buffer need to be released to one of downstream 

queues.  Therefore, combining these two models can successfully identify optimal 

solution for the given initial sequence in upstream queue.  Figure 28 shows how the 

relationship between the model for off-line buffer and the model for diverging conveyors 

can be used for developing integrated model for both off-line buffer and diverging queues.  
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Figure 27 is followed by the resulting formulation.  It is assumed that setup cost depends 

only on the attribute of the job to be changed and that attributes of jobs in the input 

sequence are fixed for simpler formulation. 

...

Initial given sequence

Set of possible 
sequences by using 

offline buffer

...

Set of possible 
sequences

 by using downstream 
queue

subscript hsubscript isubscript j  

Figure 28. Relationship between Off-line Buffer Model and Diverging Queues 
Model 
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APPENDIX C: PROOF OF THEOREM 2.2 

 
 
 

Theorem 2.2 

Constrained sequencing problem with an off-line buffer of capacity B is equivalent to 

constrained sequencing problem with B off-line buffers of capacity 1. 

 

Proof 

In constrained sequencing problem with B off-line buffers of capacity 1, incoming job 

sequence goes through B buffers sequentially.  x is redefined as follows: 

th

th th

th

1 if  job with attribute  of the incoming sequence to the junction  
     with  offline buffer is in  position of the incoming sequence to 
     the junction with  offline buffer 
0   

a bi j k

i k
a j

x
b

=

otherwise








 

,where 1, , , 1, , , 1, , , 1, , , 1, , 1a bi N j N k K a B b B= = = = = +L L L L L  ( jB+1 

means jth position of D) .  Then by theorem 2.1,  

1 1 10  , , where 1
B Bh i k B B B Bx h i k h i

− − −= ∀ > + .         (4-8) 

Since the outgoing sequence from the junction with (B-1)th off-line buffer is the 

incoming sequence to the junction with Bth off-line buffer, 

1 1 10  , , where 1
B Bi j k B B B Bx i j k i j

+ + += ∀ > + .         (4-9) 

By (4-8) and (4-9), 

1 1 1 1 1 10  , , where 2
B Bh j k B B B Bx h j k h j

− + − + − += ∀ > + .      (4-10) 

Similarly, from (4-10) 
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2 1 2 1 2 10  , , where 3
B Bg j k B B B Bx g j k g j

− + − + − += ∀ > + . 

Finally, 

1 1 1 1 1 10  , , where 
Be j k B Bx e j k e B j

+ + += ∀ > + .       (4-11) 

(4-11) is the same as Theorem 2.1 which is for constrained sequencing problem with 

an off-line buffer of capacity B, meaning that all the possible re-sequencing options 

by using an off-line buffer with capacity B is exactly the same as options by using B 

off-line buffers of capacity 1.  Therefore constrained sequencing problem with an off-

line buffer of capacity B is equivalent to constrained sequencing problem with B off-

line buffers of capacity 1.                 ڤ 
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