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SUMMARY

Location based services (LBS) are gaining widespread user acceptance and in-

creased daily usage. GPS based mobile navigation systems (Garmin), location-related

social network updates and check-ins (Facebook), location-based games (Nokia), friend

queries (Foursquare) and ads (Google) are some of the popular LBSs available to mobile

users today. Despite these successes, current user services fall short of a vision where

mobile users could ask for continuous location-based services with always-up-to-date in-

formation around them, such as the list of friends or favorite restaurants within 15 minutes

of driving. Providing such a location based service in real time faces a number of technical

challenges.

In this dissertation research, we propose a suite of novel techniques and system archi-

tectures to address some known technical challenges of continuous location queries and

updates. Our solution approaches enable the creation of new, practical and scalable loca-

tion based services with better energy efficiency on mobile clients and higher throughput

at the location servers. Our first contribution is the development of RoadTrack, a road

network aware and query-aware location update framework and a suite of algorithms. A

unique characteristic of RoadTrack is the innovative designof encounter points and system-

defined precincts to manage the desired spatial resolution of location updates for different

mobile clients while reducing the complexity and energy consumption of location update

strategies. The second novelty of this dissertation research is the technical development

of Dandelion data structures and algorithms that can deliver superior performance for the

periodic re-evaluation of continuous road-network distance based location queries, when

compared with the alternative of repeatedly performing a network expansion along a mo-

bile users trajectory. The third contribution of this dissertation research is the FastExpand

xiv



algorithm that can speed up the computation of single-issueshortest-distance road network

queries. Finally, we have developed the open source GT MobiSim mobility simulator, a

discrete event simulation platform to generate realistic driving trajectories for real road

maps. It has been downloaded and utilized by many to evaluatethe efficiency and effec-

tiveness of the location query and location update algorithms, including the research efforts

in this dissertation.
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CHAPTER I

INTRODUCTION

Location based services (LBS) are gaining widespread user acceptance and increased daily

usage. GPS based mobile navigation systems (Garmin), location-related social network up-

dates and check-ins (Facebook), location-based games (Nokia), friend queries (Foursquare)

and ads (Google) are just some of the popular LBS available to mobile users today. Accord-

ing to the International Telecommunications Union (ITU), there were 5.3 billion mobile

subscribers worldwide (or 77 percent of the world population) in 2010, and one out of six

mobile subscribers could access the mobile Internet. Usageis expected to double within

five years as mobile overtakes the PC as the most popular way ofgetting on the Web. Many

consumers prefer mobile browsers for banking, travel, shopping, local info, news, video,

sports and blogs, and prefer apps for games, social media, maps and music. Additionally,

many enterprises use location based applications such as vehicle fleet management and

urban traffic analytics (IBM).

Despite these successes, current user services fall short of a vision where mobile users

could ask for continuous location-based services with always-up-to-date information about

the world around them. Consider a simple continuous locationquery, where a moving user

asks for a constant update of the list of restaurants and friends within 10 minutes of driv-

ing from her current location, while she is on the move. Providing such a service in real

time faces a number of technical challenges due to limited battery, limited network and

computational resources. First, the user is interested in locations and directions that she

can actually follow and drive to (road network travel distance), rather than those which are

physically close (Euclidean distance). Finding the coverage of a network distance based

1



query in a huge road network (graph) is computationally expensive. This problem is seri-

ously aggravated when such location-based services need tobe delivered continuously in

real-time with super-fast response time. Second, the ability to obtain the up-to-date location

of mobile users is critical to both the quality of location queries and the range of location

query services one can offer. However, it is widely recognized that frequent updates cause

high update processing cost at the location server and high power consumption at the mo-

bile clients. Unfortunately, existing location update strategies are inefficient because they

are common to all mobile users and they assume that location updates of mobile clients

are independent of each other. We argue that location updateis an essential metric for

performance optimization of real time LBS delivery. Intelligent customization and differ-

entiation are critical to both the effectiveness of location update management and location

query quality assurance.

In this dissertation research, we propose a suite of novel techniques and system ar-

chitectures to address the above challenges. Our solution approaches enable the creation

of new, practical and scalable location based services withbetter energy efficiency on the

clients and higher throughput at the location servers. First, we propose the Dandelion al-

gorithm and a set of specialized data structures that speed up the periodic re-evaluation

of continuous road-network distance based location queries, when compared with the al-

ternative of performing a network expansion along a mobile users trajectory repeatedly

while users are on the move. The key idea of our Dandelion development is to reduce the

amount of unnecessary re-computations of continuous location queries by careful identifi-

cation, administration and incremental adjustment of key coverage locations in the graph.

Although the Dandelion algorithm is fast and effective, it can only improve the subsequent

computations of continuous road-network location queries. The second contribution of this

dissertation is the development of the FastExpand algorithm that can speed up the initial

computation of a road network query, e.g., the coverage of a range query, using a hybrid

expansion approach. The main idea of the FastExpand development is to partition the

2



large road-network (graph) into smaller units in order to perform the shortest path com-

putations using a multi-step process. Concretely, we precompute and use shortest path

shortcuts inside precincts, and only perform local graph search near the focal location and

in the border regions of the query. Our third technical contribution is the development of

RoadTrack, a road network aware and query-aware location update framework and a suite

of algorithms. A unique characteristic of RoadTrack is the ability to conserve the battery

power of mobile clients and reduce server bandwidth and loadby making the location up-

date schedule query-aware through three novel techniques.We introduce the concept of

encounter points as a baseline query awareness mechanism tocontrol and differentiate lo-

cation update strategies for mobile clients in the vicinityof active location queries, while

meeting the need of location query evaluation. We employ system-defined precincts to

manage the desired spatial resolution of location updates for different mobile clients and

to control the scope of query awareness to be capitalized on by a location update strat-

egy, thus reducing the complexity of graph calculations andnetwork usage. Finally our

road-network based check-free interval optimization further enhances the effectiveness of

the RoadTrack query-aware location update scheduling algorithm, offering significant cost

reduction for location update management at both mobile clients and location servers. Fi-

nally, we have developed the GT MobiSim mobility simulator,which is used to generate

realistic driving trajectories for real road maps, and serves as the discrete event simulation

platform for evaluating the efficiency and effectiveness ofthe location query and location

update algorithms in the dissertation. This mobility simulator has been downloaded more

than a hundred times since its first public release.

1.1 Roadmap

This thesis is organized as a series of chapters, each one dedicated to a topic within the

scope of spatial query-processing techniques and locationbased services in general. Each

chapter gives a brief overview of the problem motivation andformulation, before delving
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into the technical details and our contributions. Experimental results highlight the perfor-

mance of our proposed solutions under various realistic scenarios, showcasing the flexibil-

ity of our algorithms under the most salient parameterizations. Our chapters also survey

the related work.

Chapter 2 is dedicated to RoadTrack, our road network aware andquery-aware loca-

tion update framework and a suite of algorithms, focusing onefficient and scalable query

answering in an environment populated by a large number of users.

Chapter 3 presents our Dandelion algorithms and a set of specialized data structures that

speed up the periodic re-evaluation of continuous road-network distance based location

queries, when compared with the alternative of performing anetwork expansion along a

mobile users trajectory repeatedly while users are on the move.

Chapter 4 is a presentation of our FastExpand algorithm for the fast evaluation of single-

issue road-network distance based location queries.

Chapter 5 continues our focus on location based services froma different perspec-

tive, whereby the proposed MapStitcher algorithm and processing tool allows the semi-

automatic creation of self-made aerial imagery layers for GIS web applications.

The thesis concludes in Chapter 6.

1.2 Bibliographic notes

Material in Chapter 2 appears in a paper co-authored with Bhuvan Bamba, Arun Iyengar,

Matt Weber and Ling Liu [37]. Material in Chapter 5 appears in apaper co-authored with

Jeremy Elson, Jon Howell, Drew Steedly and Matthew Uyttendaele [36].
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CHAPTER II

ROADTRACK

Mobile commerce and location based services (LBS) are some ofthe fastest growing IT

industries in the last five years. Location update of mobile clients is a fundamental capa-

bility in mobile commerce and all types of LBS. Higher update frequency leads to higher

accuracy, but incurs unacceptably high cost of location management at the location servers.

We propose ROADTRACK – a road-network based, query-aware location update framework

with two unique features. First, we introduce the concept ofprecincts to control the gran-

ularity of location update resolution for mobile clients that are not of interest to any active

location query services. Second, we define query encounter points for mobile objects that

are targets of active location query services, and utilize these encounter points to define the

adequate location update schedule for each mobile. The ROADTRACK framework offers

three unique advantages. First, encounter points as a fundamental query awareness mech-

anism enable us to control and differentiate location update strategies for mobile clients in

the vicinity of active location queries, while meeting the needs of location query evalua-

tion. Second, we employ system-defined precincts to manage the desired spatial resolution

of location updates for different mobile clients and to control the scope of query awareness

to be capitalized by a location update strategy. Third, our road-network based check-free

interval optimization further enhances the effectivenessof the ROADTRACK query-aware

location update scheduling algorithm. This optimization provides significant cost reduction

for location update management at both mobile clients and location servers. We evaluate

the ROADTRACK location update approach using a real world road-network based mobil-

ity simulator. Our experimental results demonstrate that the ROADTRACK query aware

location update approach outperforms existing representative location update strategies in
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terms of both client energy efficiency and server processingload.

A version of this chapter was published as a paper co-authored with Bhuvan Bamba,

Arun Iyengar, Matt Weber and Ling Liu [37].

2.1 Introduction

We are entering a wireless and mobile Internet era where people and vehicles are connected

at all times. In the past five years we have witnessed an astonishing growth of mobile com-

merce and location based applications and services, which not only extend many traditional

businesses into new product offerings (e.g., location based advertisement, location based

entertainment) but also create many opportunities for new businesses and innovations. Con-

sider a metropolitan area with hundreds of thousands of vehicles. Drivers and passengers

in these vehicles are interested in information relevant totheir trips. For example, some

driver would like her vehicle to continuously display on a map the list of Starbucks coffee

shops within 10 miles of her current location. Another driver may want to monitor the

traffic conditions five miles ahead of its current location (e.g., traffic flow speed). The chal-

lenge is how to effectively monitor the location updates of mobile users and continuously

serve location queries (traffic conditions, parking spaces, Starbucks coffee shops) with an

acceptable delay, overhead, and accuracy, as the mobile users move on the road.

There are two key performance challenges that may affect thesystem scalability and

service quality in future mobile systems supporting location-dependent services and ap-

plications: (1) the high cost of network bandwidth and energy consumed on the mobile

clients for frequent location tracking and updates at the location servers; and (2) the chal-

lenge of scaling large amount of location updates at the location server as the number of

mobile clients demanding to be tracked increases in a location determination system. Fur-

thermore, handling frequent load peaks at location update synchronization points is also

a challenge, since the server has to simultaneously handle location updates from a large

number of mobile clients, and re-evaluate all registered spatial location query services.
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Location Update Problems and Existing Approaches

Monitoring location updates and evaluation of location queries over static and moving

objects upon location updates have become the necessity formany mobile systems and

location-based applications, such as fleet management, cargo tracking, child care, and

location-based advertisement and entertainment. Frequent updates cause high update pro-

cessing cost at the location server and high power consumption at the mobile clients [1].

Some European mobile service providers have started the cost-based location management

for mobile object tracking. For instance, different pricing models are applied to high fre-

quency location updates at different time intervals, such as every three minutes, every one

minute, every 30 seconds, and so forth.

In contrast to location determination systems where localization techniques are em-

ployed to determine the position of a mobile subscriber within the area serviced by the

wireless network, the location update management addresses the problem of when and

where to update the locations of mobile subscribers currently hosted in the system. Rep-

resentative location update strategies to date include periodic update (time based scheme),

point-based update using dead-reckoning, velocity vectorbased update, and segment based

updates [10]. However, existing location update strategies are inefficient because i) they

are common to all mobile users, and ii) they assume that location updates of mobile clients

are autonomous and all mobile users should manage their location updates using a uniform

strategy. To the best of our knowledge, no customization or differentiation is incorporated

to the design of location update management strategies.

We argue that, as mobile and hand-held devices become more pervasive, more capable,

and both GPS and WiFi enabled [42, 23], as the operation cost of location update manage-

ment continues to grow, these assumptions are no longer realistic. For instance, most of

the mobile systems and applications today need to manage a large and evolving number of

mobile objects. Often, only a subset of mobile objects is of interest to registered location

query services. Thus, tracking location updates of all mobile clients uniformly is no longer
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a cost effective solution. It is obvious that the location update strategy for those clients that

are of no interest to any nearby and active location query services should be different from

and less costly compared to the location update strategy designed for mobile objects that

are the targets of active location query services in the system.

Motivated by these observations, in this chapter we presentROADTRACK − a road-

network based, query-aware location update framework by introducing precincts and en-

counter points as two basic techniques to confine location updates to the need of existing

location query services. These two basic building blocks enable us to effectively differ-

entiate and manage location updates for mobile objects traveling on road networks. We

utilize precincts to manage the spatial resolution of location updates for mobile clients that

are not immediate targets of any existing location query services. We introduce encounter

points to implement the query-aware location update strategy for mobile clients nearby ac-

tive location queries. By combining precincts and encounterpoints, we can balance the

benefit and cost of query awareness and speed up the computation of encounter points. The

ROADTRACK location update management offers three unique advantages. First, encounter

points as a fundamental query awareness mechanism enable usto control and differentiate

location update strategies for mobile clients in the vicinity of active location queries from

the rest. Second, by employing system-defined precincts, wecan effectively manage the de-

sired spatial resolution of location updates for mobile clients with different needs for query

awareness. Third but not the least, we improve the efficiencyof ROADTRACK location up-

date approach by employing a suite of road-network based check-free interval optimization

techniques. We evaluate the ROADTRACK approach to location update management based

on a real world road-network mobility simulator [34]. Our experimental results show that

by making location update managementquery aware, ROADTRACK approach significantly

outperforms existing representative location update strategies in terms of both client energy

efficiency and server processing load.

The rest of the chapter is organized as follows: We outline the reference system model
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and discuss the design philosophy through an analysis of existing representative location

update strategies in Section 2.2. In Section 2.3, we introduce the concept, the computation,

and the usage of encounter points and the precinct and encounter based location update

strategy, including the data structure used at both the server and the client side. We present

the encounter points based check-free interval optimization in Section 2.4. Section 2.6

reports our experimental evaluation on the effectiveness of our ROADTRACK query aware

location update approach. We conclude the chapter with related work and a summary of

contributions.

2.2 System Overview

A location update and monitoring system typically consistsof a location database server,

some base-stations, application servers, and a large number of mobile objects (mobile

clients) and static objects (such as gas stations, restaurants, and so on). The location

database server (location server for short) manages the locations of the moving objects.

The application servers register location queries of interest, and synchronize with the loca-

tion server to continuously evaluate the queries against location updates.

Figure 1 gives an architectural overview of the reference location monitoring system

used in the context of ROADTRACK development. We assume that mobile clients and

the location server have a local copy of the same road networkdatabase that constrains

the movement of the clients; clients may store this on an SD card. For the clients with

limited storage, a tile based partitioning of the road network map can be used [31]. We

assume that the mobile clients are able to communicate with the server through wireless

data channel, and they have computing capabilities to run our light-weighted road network

locator, which uses a static R-tree index on road segments to find their own road network

locations based on their GPS positions through map matching. Mobile clients may also

obtain their positions from the location determination system they subscribe to, such as

Google’s locator service available on iPhone and other hand-held devices.
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Figure 1: Overview of the system architecture

2.2.1 Road network model

The road network is represented by a single undirected graphG = (V , E), composed of the

junction nodesV = {n0, n1, . . . , nN} and undirected edgesE = {ninj|ni, nj ∈ V}. In this

chapter we frequently refer to an edgeninj as a road segment connecting the two end nodes

ni andnj. The listing order of the two end nodes of a segmentninj serves as the basis to

determine the direction of theprogresscoordinate axis from nodeni to nodenj along the

segmentninj. In other words, the segmentninj runs fromp = 0 at the first listed node

(ni) to p = length(ninj) at the second listed node (nj). Though in this chapter we model

the road network using undirected graphs for simplicity, our methods can be extended to

directed graphs. Junction nodes have either two or more connecting road segments, or are

dead-end nodes with only one connecting road segment. Aroad network location, denoted

byL = (ninj , p), is a tuple of two elements: a road network segmentninj and theprogress

p along the segment. The road network distance is used as the distance metric in our system.

The distance between two locationsL1 = (ni0ni1 , p1) andL2 = (niknik+1
, p2) is the length
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of the shortest path between the two positionsL1 andL2, formally defined as follows:

dist(L1, L2) = length(ni0ni1)− p1 + p2

+ min
{i1,i2,...,ik}

k−1
∑

α=1

length(niαniα+1
).

2.2.2 Design Guidelines

A number of positioning systems are made publicly availablefor tracking the location up-

date of mobile objects moving on the road network, such as Google’s Latitude and Skyhook

wireless WiFi positioning system [42]. Frequent location updates enable the location server

to keep track of mobile clients’ current locations and ensure the accuracy of the location

query results. The algorithm that mobile clients employ to determine when and where

to update their locations is often referred to as the location update strategy. We below

describe the motivation, the advantages, and the challenges of our query-aware location

update framework by analyzing and comparing a number of representative location update

strategies.

Periodic update strategy.A periodic update strategyis the simplest time-based location

update strategy, in which the location server maintains thelocation update for each mobile

client at a fixed time interval. This update strategy impliesthat mobile clients are treated

as stationary between updates.

Point-based update strategy. This approach uses the distance-based scheme and the

server only record an update when the mobile client travels more than a delta threshold

away in distance from the location of last update. The numberof location updates per unit

time will depend upon the speed of the mobile user.

Vector-based update strategy.A vector based update strategyuses the velocity vector of

the mobile client to make a simple prediction about its location. An update is only sent

when the current location of the mobile client deviates fromits predicted location by an

amount that is larger than a system-defined delta distance threshold. This strategy treats
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the velocity vector of the client as constant between updates.

Segment based update strategy.A segment based update strategyutilizes the underlying

road network to limit the number of updates. Mobile clients are assumed to move at a con-

stant speed on their current road segment. An update is sent when the distance between the

current and the predicted location is larger than a system-defined delta threshold. We as-

sume that mobile clients change their velocities at the end of each segment, i.e., the mobile

client is assumed to have stopped at the segment end node and can change its movement

speed and direction and move forward accordingly. Thus an update will be sent when the

mobile client departs from a segment end node by delta distance. We refer the reader to

[10] for more on these strategies.

Motivation of Our Approach.

We have discussed four representative location update strategies and each of them has some

weakness in terms of both client energy-efficiency and network bandwidth or server load

optimization. Furthermore they all suffer from the common inefficiency− the location

update decision of mobile clients is independent of whetherthere are any location query

requests nearby. It is obvious that when mobile clients travel in a region where there are no

location queries, one can benefit by using a location update strategy that enable the location

server to record their location updates at some critical location points, leading to signifi-

cant saving in terms of client energy and bandwidth consumption as well as server load

reduction. In ROADTRACK two criteria are used to determine what should be considered

as critical location update points. First, we need to increase the location query awareness

of mobile clients. By making mobile users aware of queries in their vicinity, one can avoid

making those superfluous updates. Second, we need to maintain certain freshness of loca-

tion updates for those mobile clients that are not in the vicinity of any location queries to

maintain adequate location tracking capability of the system. The second criterion ensures

that all mobile clients need to update their current location at the location server from time

to time in order to keep their location record update to date at the location server, though
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different mobile clients may use different scale of location resolution.

Bearing these two design guidelines in mind, we develop aquery-aware, precinct based

update strategy. Concretely, we introduce the concept of encounter point andthe concept of

precinct as two building blocks. By keeping track of the encounter points for each mobile

client moving on the road network, we are able to use the queryawareness to differentiate

the location update strategy used for mobile clients that are in the vicinity of active queries

from the location update strategy used for the mobile clients that are not targets of any

location queries. The use of precincts constrains the set ofencounter points that a mobile

client needs to keep track of to be small, and sets an upper bound on when the mobile clients

have to update their locations regardless of whether there are location queries nearby. To

further reduce the cost of checking whether a mobile is closeto the border points of its

current precinct or one of its encounter points, we develop aroad network distance based

check-free interval optimization, providing significant reduction in terms of the number of

wakeups at the mobile client and the server update load.

The ROADTRACK query aware location update strategy is applicable to all moving

objects in a road network setting, be it vehicles or pedestrians. This research is based on

the assumption that all moving objects are either moving on the public road networks, or

walk paths such as indoor buildings or university campus walk paths. As long as these walk

paths can be modeled as graphs, our approach can be applied directly.

2.3 Precinct based update strategy

In this section we describe the basic design of our precinct and encounter point based

location update method, and defer the check-free interval based optimization to the next

section.

2.3.1 Precinct and Encounter Point

Precinct.

Precinct is introduced in ROADTRACK for dual purposes. First, every mobile object is
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associated with a precinct in which it currently resides. Weuse precinct as the spatial up-

per bound to enforce location updates of all mobiles when they cross their current precinct

boundary and enter a new neighbor precinct. Second, we employ precinct to limit the scope

of query awareness and balance the tradeoff between the level of location accuracy main-

tained at the server and the reduction of location update cost at the server. For example,

queries about the restaurants in Miami are far away from the current location of a mobile

client traveling in Atlanta downtown. Thus, the mobile clients in Atlanta downtown should

not be made aware of queries about restaurants in Miami. By introducing system-defined

precincts, we can conveniently limit the scope of query awareness for mobile clients resid-

ing within their precincts. This also ensures that the number of encounter points maintained

at a mobile client is small.

A precinctP = {VP , EP} is a subgraph of the road networkG = (V , E) whereVP ⊂ V

andEP ⊂ E . Nodes inVP are eitherinternal or border nodes. Each internal node is

reachable from all other nodes of a precinct on a path composed of only internal nodes. All

edges inE that are connected to an internal node inVP are also inEP . The partitioning

of the road network graph is created during the system initialization, and is stored together

with the road network data maintained at both the server and the mobile clients. We present

the precinct construction algorithms in the next section.

Encounter Points.

We first informally introduce the concept of encounter point. Let P = {VP , EP} denote

a precinct andQ(R,F ) denote an active location query, whereR is the query radius in

road network distance andF is the focal location ofQ represented using the road network

location defined in Section 2.2. The queryQ is said to be relevant to the precinctP if a

segmentninj ∈ EP is entirely included in the query regionR as shown in Figure 2(a) or

partially covered by the query regionR. Assume that the shaded area in Figure 2 represents

the query region computed in terms of road network distance from the focal location of the

query, e.g., the query range of 2 miles from the focal location F . If a segment crosses
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the query boundary, i.e., one end-node is inside the query region and the other end-node

is outsideR, then we say that the segment is partially covered by the query. We call the

road network location where a partially covered segment crosses the query boundary an

encounter point. Figure 2(b) shows an example encounter pointE. It is important to note

that even if both end-nodes are inside the query region, the segment may only be partially

covered, if there exists a network locationL on the segment whose distance toF is greater

than the query range specified, i.e.,∃L|dist(F,L) > R. In this case there are two encounter

points for the query on a single segment (see Figure 2(c)). When the query range is small,

it is possible that the query only covers a portion of the segment on which the query focal

locationF resides, thus there are two encounter points on a single segment but with both

end-nodes outside the query region (Figure 2(d)).

Formally, given a set of location queries(Q) over the road networkG = (V , E), one can

determine the set of encounter pointsEF = {E1, . . . , En}, each of which (Ej) is associated

with a range queryQi(Ri, Fi) with focal locationFi and rangeRi, and is represented as

a road network location that is exactlyRi distance fromFi. In other words, the set of

encounter pointsE satisfies that∀Ei ∈ EF , ∃Qi(Ri, Fi) such thatdist(Fi, Ei) = Ri and

@L|dist(Fi, L) = R ∧ L 6∈ EF , i.e., every encounter point is a road network location

that is exactly rangeRi distance fromFi. The encounter points are defined on the road

network. When a mobile client meets or crosses an encounter point, it indicates that the

client exits or enters the scope in which the query result is computed. Therefore, we use the

encounter points as the critical location reference pointsfor those mobile clients to update

their locations at the server whenever they encounter thesecritical points on the move.

Comparison with existing update strategies.

In Figure 3(a) we show five mobile clients traveling on a portion of a road network, each

following a distinct update strategy. The two precincts (west and east) have the common

border pointsB3, B4, B9, B10, and connect to the rest of the road network at all the other
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Figure 2: Four major cases for determining encounter points on the segment with end-
nodesni andnj. The shaded coverage area represents the query region of query Q(R,F )
computedR road network distance away from focal locationF .
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Figure 3: Example scenario with encounter points (E) and precinct border points (B) as
update trigger points
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border points (all border points shown as black squares).M1 (upper left) is doing segment-

based updates, triggering updates each time the client departs a segment end-node bydelta

distance. The grey circles show the delta-radius circles around the mobile’s location when

the updates occur.M2 (upper right) has a point-based update strategy, and thus sends an

update whenever its current location is at leastdelta distance from its last reported location.

M3 (lower left) is a periodic update mobile client, updating every t seconds. The mobile

initially travels fast, continuing at a slow pace; as a result, updates may be spatially too

sparse initially, and too dense when speeds are low. We show the locations at the time of

updates as stars, since – unlike forM1, M2 andM4 – there is no distance threshold for

periodic updates.M4 (lower right) has a vector-based update strategy, and consequently

segment geometry along the trajectory is the primary determinant of update scheduling.

However, all these mobiles’ updates are wasted, as there areno outstanding queries on this

portion of the road network. The fifth mobile client,M5, following a RoadTrack update

strategy, sends no updates, as there are no queries present,and its trajectory does not cross

any precinct boundary points.

In Figure 3(b) a range query with focal locationF1 (sun symbol) is installed, with the

associated encounter pointsE11 . . . E15 (black rhombus symbol). Note that dead-ends are

not E points inside a query coverage area (and notB points inside a precinct). We now

ask all mobiles to follow a RoadTrack strategy:M1 andM3 cross and update on precinct

boundary points only (B1, B2, B3; andB12, B11). M2 enters, then exits the query region,

and thus also updates on encounter points (B5, E13, E14, B6). M4 crosses boundary point

B9, but remains in the same precinct, and thus only updates onB7, B8. Note thatB9 is

a real boundary point, as not all connected segments are in the same precinct, and thus

a precinct crossing is possible; whether this occurs or not is not known in advance, so it

is imperative forM4 to considerB9 as a potential update trigger. Finally,M5 sends no

updates, as it does not cross anyB or E points. Note that being on the inside or outside

of a query region makes little difference to mobile clients:after the initial query evaluation
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(during query insertion), neither client activity completely outside, nor completely inside

the query coverage area changes the query result. Furthermore, as precincts are used to

scope query awareness, mobiles in the west precinct (e.g.M3) need not even consider the

query’s encounter points (which are all in the east precinct).

In Figure 3(c) an additional range query is added, in the westprecinct.M1 now also

updates on this new query region’s encounter points (E21, E22), but after entering the east

precinct viaB3 it no longer needs to consider any points inside the east precinct.

2.3.2 Construction of Precincts

Clearly the entire road network is a legitimate precinct. Similarly, the other extreme is

the single-segment precinct, where each segment of the roadnetwork is considered as

one precinct. We can use road network distance or hop count todefine the size of the

preferred precincts. Assume that we use a system defined network distance threshold to

partition the road network into precincts. The algorithm for constructing precincts is sim-

ilar to a network expansion algorithm. A precinct is constructed by starting at the cho-

sen segment and expanding along the neighboring segments and computing the network

distance. This process repeats until the network distance threshold is reached. The con-

struction process is repeated on the remaining segments until all segments in the road net-

work are grouped into precinct-based partitions. A distance-metric based partitioning uses

dist(nc, nk) = dist(nc, nj)+ length(njnk) for distance expansion. The algorithm for con-

structing the precinct partition of a given road network proceeds in three steps. (1) The

partition algorithm starts by marking all segments and all junctions as ’uncovered’. (2)

A precinct center nodenc is selected at from an ordered queue of uncovered nodes (we

elaborate on this ordering below). A queue is maintained during the precinct construc-

tion process, which contains a list of candidate nodes in ascending order of their distance

from nc. A node in the road network is a candidate node for the precinct centered atnc

if its distance tonc is within the system supplied distance threshold. The queueinitially
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contains onlync. At each expansion step, the entry(nj, dist(nc, nj)) at the head of the

queue is removed,nj is marked as ’internal’, and all uncovered segments connected to

nj are added to the list of segments covered by the precinct. Forsegmentnjnk, nk is

added to the list of nodes covered by the precinct, and this node’s distance is calculated by

dist(nc, nk) = dist(nc, nj) + length(njnk). If nk is marked as ’border’ (for some other

precinct), then it is added to the list of nodes covered by thecurrent precinct with a ’bor-

der’ flag; otherwise,nk is marked as ’internal’ and(nk, dist(nc, nk)) is added to the queue,

unless a(nk, dist(nc, nk)
′) is already in the queue withdist(nc, nk) ≥ dist(nc, nk)

′. When

the distance of the queue head node is larger than the specified precinct range, the precinct

construction is concluded by marking all remaining nodes inthe queue as ’border’, and

adding them to the list of nodes covered by the current precinct with the ’border’ flag. (3)

The algorithm continues with the creation of the next precinct until there are no uncov-

ered nodes. When no uncovered nodes remain, there may still beuncovered segments,

whose both end-nodes are border-points for other precincts. Single-segment precincts are

constructed for each of these remaining uncovered segments.

An alternative approach to constructing precincts is to usethe segment count (or hop

count) metric, i.e. we usedist(nc, nk) = dist(nc, nj) + 1. Figure 4 shows a partitioning

of an example graph with both methods. The randomly selectedprecinct center nodes are

marked byn1, n2, n3 in both cases and are selected in the order of node index. Border

nodes are shown with a solid square. Single-segment precincts are highlighted with a grey

background. Both hop-count based partitioning (left in Figure 4) and the distance based

partitioning (right in Figure 4) shows five precincts: threeprecincts centered byn1, n2, n3

respectively and two single-segment precincts.

As we mentioned, nodes are selected to serve as precinct centers according to a pre-

specified ordering. The ordering method has no bearing on thecorrectness or utility of the

precincts, but may have implications for both the number of client wakeups and the number

of updates received by the server. As a result, we can use a random seeding of precincts as
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Figure 4: Graph partitioning with h=2 hop-based (left) and r=2 km distance-based (right)
algorithm

our baseline scenario. Instead of such a naı̈ve approach, a node ordering heuristic may be

applied, whereby the algorithm prioritizes nodes that lie on many fast roads, as such nodes

are likely to be important traffic junctions. This means thatwe score nodes by the sum

of speed limits of their connecting segments, and always choose an uncovered node with

the highest score as the next precinct center. In formulating this heuristic, our expectation

is that if mobile clients take the shortest path to their destinations, high-speed roads and

junctions will see more traffic than low-speed ones. Then, aswe place junctions with

high potential throughput in precinct centers, high-traffic portions of the road network are

covered with relatively fewer precincts, and thus have the prospect of saving some border-

point triggered updates and allowing longer check-free intervals between client wakeups.

Letdeg denote the average degree of a node. Withh-hop based partitioning, the average

number of nodes in a precinct may be estimated as:

|VP |avg ≈ 1 + deg ·

h−1
∑

i=0

(deg − 1)i,

and the average total length of the segments in a single precinct is calculated by

LenP ≈
h

∑

i=1

l · degi =
l(deg − degh+1)

1− deg
.

With d-distance based partitioning, we can substituteh = d
l

above, wherel is the average

length of a road network segment.
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|VP |avg is independent of the size of the complete road network. For each precinct, dis-

tances between all nodes are pre-computed using the Floyd-Warshall algorithm and stored

as aD distance matrix for this precinct. The complexity of this step for all precincts is

|V|
|VP |avg

· O(|VP |
3
avg) = O(|V| · |VP |

2
avg) = O(|V|). Thus, given a road networkG = (V , E)

and its precinct partitionP = {VP , EP}, the total storage space for theD distance matri-

ces require |V|
|VP |avg

· O(|VP |
2
avg) = O(|V| · |VP |avg) = O(|V|) storage space. The distance

between an arbitrary locationL = (ninj, p) and noden can be computed using the node-

to-node distances fromn to the two end-nodes (ni andnj) of the segmentninj thatL lies

on: dist(L, n) = min(dist(ni, n) + p, dist(nj, n) + (length(ninj) − p)). The distance

between any two locationsL1 = (ninj, p1) andL2 = (nknl, p2) can be computed as the

minimum of the lengths of four potential routes as follows (see Figure 5):

dist(L1, L2) =

=min(routeik, routeil, routejk, routejl)

=min( dist(ni, nk) + p1 + p2,

dist(ni, nl) + p1 + (length(nknl)− p2),

dist(nj, nk) + (length(ninj)− p1) + p2,

dist(nj, nl) + (length(ninj)− p1)

− (length(nknl)− p2) ).

2.3.3 Data structures

In this section we give a brief overview of the data structures used at the server-side and the

client-side to facilitate the understanding of our precinct based location update framework.

Server side data structures.

Node Table, NT = (nid, {sid}) stores road network nodes with thesid segment iden-

tifiers for the segments that connect to the node. A hash tableindex on thenid node

identifiers allows constant speed lookup.
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Figure 5: O(1) computation of distances between two arbitrary road network locationsL1

andL2.

Segment Table, ST = (sid, nid1, nid2, pid, {oid}, {qid}) stores road network segments

with the two end-nodes (nid1 andnid2). A hash table on thesid segment identifiers allows

constant speed lookup. We store the identifier of the precinct covering the segment (pid),

the client identifiers for clients on the segment ({oid}), and the list of query identifiers for

queries (fully or partially) covering the segment ({qid}).

Precinct Table, PT = (pid, {sid}, {(nid, isBorder)}, D) stores information about

a precinct with the identifierpid, along with the list of road network segments covered

({sid}), the list of nodes covered along with a flag showing whether the node is ’border’ or

’internal’ ({(nid, isBorder)}), and the pre-computed node-to-node distance table (D).

Query Table, QT = (qid, oid, range,F , {(sid, E, dir)}, {result}) stores queries in the

system with theqid query identifier, theoid identifier of the client the query is attached to,

therange specifying the road network distance based range of the query, andF giving the

focal location of the query. The{(sid, E, dir)} list contains tuples of segment identifiers

of segments at least partially covered by the query, encounter point locations for segments

not fully covered (ornull for a completely covered segment), and a flag indicating which

part of the segment is inside the query region (source-side or target-side). The{result} list

stores client identifiers for the clients that satisfy the query.

Client Table, CT = (oid, L, M) stores information about mobile clients in the system.

The table is indexed on the client identifier attributeoid. L is the most recently updated
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road network location of the client, stored as a(sid, p) tuple, comprising of thesidsegment

identifier and thep progress. TheM provides the client’s mobility features required by the

system, such as movement speed, trajectory, and so forth.

Client side data structures

NT , ST , andPT are also present on the client side as part of their map database.

Current Encounter points Table, CET = (sid,E, dir) contains the encounter points

found for all queries in the client’s current precinct. Eachmobile client only stores the

encounter points for the precinct that includes the segmenton which it is located. The CET

is delivered to the client by the server when a client informsthe server that she enters a new

precinct. Also the CET at a client is incrementally updated bythe server to reflect query

insertions or deletions.

2.3.4 Computing with Encounter Points

Encounter points need to be computed whenever a new query is inserted into the system,

or an existing query is terminated and removed from the system.

Computing encounter points for query insertion

A mobile user can issue a new location queryQ by sending a message to the server in

the form of(oid, F, range). If the location of the mobile client with identifieroid in the

CT table is older thanF , its location information is updated withF and the new query is

inserted intoQT with a new unique query identifierqid.

The algorithm to calculate the encounter points and the set of segments covered by the

query maintains a queue of(nid, dist(F, nid)) tuples, storing node distances fromF in

ascending order; and a hash-table (initially empty) for segments, where segment identifiers

inserted into the hash-table indicate covered segments. The algorithm starts by investigat-

ing the distances of the two end-nodes of the segmentninj on whichF is located, to detect

any encounter points lying on this segment (Figure 2(d)). Ifp > range, thenni is outside
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the query range, and an encounter point is atE = (ninj, p − range); otherwiseni is in-

serted in the queue. Iflength(ninj) − p > range, thennj is outside the query range, and

an encounter point is atE = (ninj , p+ range); otherwisenj is inserted in the queue.

Tuples are removed from the queue head, and all uncovered segments reachable from

the current nodeni are investigated: the segment (of the formninj or njni) is marked

as covered by inserting itssid in the hash-table, and the distance of the segment’s other

end-nodenj is computed asdist(F, nj) = dist(F, ni) + length(ninj). If dist(F, nj) >

range, then the segment crosses the query boundary, and an encounter point is located

at E = (ninj , length(ninj) − (dist(F, nj) − range)) for ninj (Figure 2(b)), or atE =

(njni, dist(F, nj) − range) for njni. Otherwise, the segment is entirely covered by the

query region, and the tuple(nj , dist(F, nj)) is inserted into the queue, unless another

(nj, dist(F, nj)
′) is already in the queue withdist(F, nj) ≥ dist(F, nj)

′. The algorithm

terminates when the queue is empty, with the list of encounter points, and the list of (com-

pletely or partially) covered segmentsEq stored in the hash-table. Note that the case of two

encounter points on a single segment (Figure 2(d)) is handled correctly by addingE1 when

the current node isni, and addingE2 when the current node isnj.

The segments inEq are retrieved from the segment tableST , and the query identifier

qid is appended to the list of queries covering the segment.

Using encounter points to answer a query

The set of completely or partially covered segments (Eq) and encounter points of a query

are computed using a network expansion algorithm when the server is notified of the query

insertion. The initial result of the query is calculated by retrieving all segments ofEq

from ST , then retrieving alloid clients that are listed on these segments. For segments

with no encounter points, all mobile clientsoid on the segment are added to the result set;

otherwise mobile client locations are retrieved fromCT to determine if they lie inside the

query region. For a client that lies on a segment with a singleencounter point,E’s location
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must enclose the client’s location, determined by the condition

enclosing((E, dir), L) :=

(dir = source ∧ Loid ≤ E.p)∨

(dir = target ∧ Loid ≥ E.p),

to be added to the result set. For a client that lies on a segment with two encounter

points, we distinguish two cases: if the query coverage extends to an area around the

end-nodes (Figure 2(c);E1.p < E2.p ∧ dir1 = target ∧ dir2 = source), then one

of enclosing((E1, dir1), Loid) or enclosing((E2, dir2), Loid) must be true; if the query

coverage area is the middle of the segment, with the end-nodes uncovered (Figure 2(d);

E1.p > E2.p∧ dir1 = source∧ dir2 = target), then bothenclosing((E1, dir1), Loid) and

enclosing((E2, dir2), Loid) must be true.

Throughout the iteration over the segments ofEq, a list of precincts that overlaps with

the query range is built. The query will be installed on the clients residing within all these

covered precincts. However, clients in different precincts will be aware of a different –

precinct-specific – set of encounter points associated withthis query. Also some covered

precincts might be exempt from the need of being query-aware, such as those that do not

contain any encounter points. Each precinct is retrieved from PT , and its segments are

retrieved fromST . In the first iteration over segments in the precinct, a list of encounter

points found in the current precinct are built (Epid
q ). If Epid

q is not empty, then in the second

iteration clients on each segment in the current precinct are sent a query-installation mes-

sage containingEpid
q . Clients residing in precincts that cover the boundaries of the query

will be aware of the query. Clients in precincts further away will be unaware of the new

query; and if the query range covers a sufficiently large area, some precincts entirely cov-

ered by the query (near the central area of the query area) will contain no encounter points,

so clients in these precincts will also be unaware.
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Figure 6: Two overlapping range queries with focal locationsF1 andF2, and radiuses
d1=1.75 km andd2=1 km (left), and precinctP1 with queries displayed (right).
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Figure 7: Check-free paths for mobilesM1, . . . ,M5, that are inside precinctP1, when
queries present are those shown on Figure 6.
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2.4 Optimization with encounter dependent check-free interval

When a mobile client first becomes a registered user, it submits an orientation request to the

server, including her current location. Mobile users registered with the system can be either

active or disconnected. A mobile client is required to send alocation update message to the

server in three cases: (i) When a mobile user is becoming active from a disconnected state,

she sends the location database server a location update message of typeP . The server

responds to aP message by sending the list of encounter points (E) in the user’s precinct.

(ii) When a mobile user is crossing a precinct boundary (UB(oid, L)), she sends the server

a location update message of typeB. The server responds to theB-message by sending the

list of all current encounter points (E) found inside the new precinct. (iii) When a mobile

user is crossing an encounter point (UE(oid, L,E)), the client sends to the server a location

update message of typeE. When the server receives an E-message, it updates the result

set of the query attached to theE encounter point, either inserting (when entering a query

region) or removing (when exiting a query region)oid, and notifying the issuer of the query

corresponding to the encounter point of the change in the result set of the query.

A näıve approach to implementing the precinct-based location update scheduling is pe-

riodic checking of whether a mobile client has crossed a boundary point or encounter point

and thus needs to send a location update to the server. Such decision is typically made based

on the motion behavior of the client, the nearby queries and the corresponding encounter

points, and the precinct boundary points. An obvious drawback of the periodic checking

method is the unnecessary energy and resource consumption at each mobile client, espe-

cially when the mobile client is far away from any of the boundary points or encounter

points for a given time period. We optimize the periodic checking method by introducing

the road network based check-free interval mechanisms, which allows us to significantly

enhance the performance of our precinct-based update scheduling algorithm.

Check-Free Road Network Locations

For each mobile user, we can compute a road network based check-free zone, based on
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its road network locationLc, its movement speed, its trajectory if available, and all the

encounter points (E) and boundary points (B) of its current precinct. By check-free, we

mean that as long as the mobile client travels within this portion of the network, no location

update is necessary. One way to compute the check-free locations of a mobile client is

to start from its current network location and perform the following three tasks. First,

find the dominating encounter points and boundary points. Second, compute all the paths

from the client’s current location to every dominating encounter point or boundary point.

We call these paths dominating check-free paths. Third, compute the region covered by

the dominating check-free paths obtained in the previous step. Intuitively the dominating

encounter or boundary points are those that are closer to thecurrent network location of the

mobile client. Given two encounter pointsE1 andE2, if the distance ofE1 toLc is smaller

than the distance ofE2 to Lc and the path fromLc to E1 is covered by the path fromLc to

E2, then we sayE1 is dominatingE2 with respect toLc.

Check-Free Interval

In order to detect when a mobile user on the move crosses an encounter point or a precinct

boundary point, we need to determine when to perform the crossing check. To address the

inefficiency of periodic checking for the mobile clients that are far away from any encounter

point or boundary point, we introduce the check method basedon acheck-free interval

computed for each mobile client. A check-free interval is the longest time that a client can

sleep without comparing its location against any dominating boundary or encounter points,

while being assured that any such update triggering points are not missed. The check-free

interval can be computed as the shortest of the maximum-speed weighted distances (i.e.,

shortest travel time) to allB andE points within the current precinct. The maximum speed

is a road segment specific constant (vsegmax) stored with the road network data. The pre-

calculated node-to-node distance tableD is used for the fast calculation of thecheck-free

path lengths (Figure 5). For a given road network locationLc, the check-free intervaltcf is
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computed as follows:

tcf = min
L∈B∪E

dist(Lc, L)

v
seg
max

.

Consider the case of two overlapping queries on the road network with F1 andF2 as

the focal location respectively as shown in Figure 6. For thepurposes of the check-free

interval computation, it is actually irrelevant to consider which parts of the segment are

inside or outside one, two, or more query regions; only the locations ofE andB points are

important. The check-free paths for five mobiles (M1,M2,M3,M4,M5) in this example

are shown as darker line fragments in Figure 7.

Detection of crossing encounter or boundary points

We compute a check-free interval for every mobile client in the context of its current

precinct using all the encounter points and boundary points. The mobile client does not

need to perform any crossing check with respect to the encounter points and boundary

points until its check-free interval is over. The mobile client may enter sleep mode if it

does not have other active services. Upon the expiration of its check-free interval, the mo-

bile client needs to determine whether it has crossed anyE or B points. If the precinct

(pid) of the segment at the last location is different than the precinct of the current location,

then the client has crossed at least oneB point, and thus aUB update is issued to the server,

which in turn sends the encounter point setE of the new precinct to this client.

If no precinct change has occurred, then we perform the encounter point crossing de-

tection. Given the last and current locations, there may be multiple paths between the two

locations and each path may have a different set of E points. Given that the result of a query

is independent of which concrete path the mobile has actually taken to move from the last

location to the current location, any path between the last and the current location is suit-

able. We choose the shortest path to collect the E points located on this path. For any setEq

of encounter points associated with a query, crossing an even number of E points will leave

the query result unchanged, since the mobile remains inside(or remains outside) the query

range bounded by the two E points both before and after his movement. However, if there
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are an odd number of E points on this shortest path, this meansthat the overall movement

of the mobile changes the query result. For all queries that have an associated E point on

the shortest path, we determine the number of E points owned by that query. If any of these

numbers is odd, then a query result has changed, and anUE update is issued.

2.5 Location query answering accuracy

The goal of any location update scheme is to enable the systemto answer location-referencing

queries. One implication of this goal is that an update scheme is feasible, which reduces

the number of updates while still allowing the system to meetits goal of answering queries

– by making clients query-aware. However, it is also possible to propose a very simple

update scheme that greatly reduces the number of location updates: by having clients send

their updates only every 20 minutes, for example. Such a system will still be able to answer

location queries, but the quality of query results will be subpar: a driver moving at 60 kph

might be 20 km from its last known location. While it is clear, for example, that a 1 minute

periodic update scheme is more accurate than a 2 minute periodic update scheme, it is not

readily apparent how either of these compare with eg. a precinct- and encounter-point based

update scheme, which does not have an update period parameter. To assess the quality of

various location query answering systems (including the location update scheme used in a

system), we need a definition oflocation query answering accuracythat is universal, i.e. is

a metric computable for and comparable across location query answering systems. In the

following, we consider the major requirements for designing such a metric.

R1) The metric should be sensitive to the presence of queries.Consider for a moment

a simple inaccuracy metric: Let themean location delta on update (MLDU)measure the

distance (in meters) between the reported location of a client at the time of update, and the

location of the client as known by the server just before thisupdate; and averaged over all

updates of all clients within a specified time window:

MLDU =
∑

t

∑
i |dist(Li(t),L̂i(t))|

|U |
.
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As the goal of the location query answering system is the accurate answering of queries,

a basic requirement for a metric is that when no queries are present, then query-answering

accuracy should be indicated as ”perfect” (inaccuracy is 0). For example, the MLDU metric

fails this test, because it doesn’t consider when the deviation matters (when a query is

present), and when it is irrelevant (when there are no queries in an area, but clients there

still send updates, as in the case of periodic updates). In other words, the query answering

accuracy metric should not attempt to measure accuracy whenthere are no queries to be

answered.

R2) The metric should be independent of the number of queries.If we did not demand

this, then testing a system with 100 queries might have an inaccuracy 10 times as large

as when testing with 10 queries. This requirement seeminglycontradicts R1, but there is

a clear domain for both requirements: While in R1 we suggest that we do not measure

inaccuracy when and where there is nothing to measure (because there are no queries in

an area), here we suggest that we do not measure inaccuracy excessively when and where

there is something to measure (because there are many queries).

R3) The metric should be independent of the number of times a query (re-)evaluation

is attempted. While an encounter-point based update scheme may come with incremental

query evaluation on every update, a periodic update scheme may come with a single re-

evaluation of all queries after all synchronized clients submitted their updates. Measuring

inaccuracy only when (re-)evaluation takes place would mean that simply reducing peri-

odic update frequency from once every 2 seconds to once every4 seconds would reduce

inaccuracy by half, when in fact inaccuracy has likely just doubled.

R4) The metric should be dependent on query result reporting.A location update chang-

ing a query result that is known by the server, but not reported to the query originator means

that there is an inaccuracy in query answering. Together with 3), this means that we don’t

care when or how (incrementally or not) a system processes location updates; we only care

how fast location updates are propagated through to query originators.
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R5) The metric should be independent of the length of the measurement time window.

During a time window of 10 minutes, there are roughly twice asmany opportunities to

make some inaccuracies in answering queries, than in a time window of 5 minutes – this

should not be reflected in our metric.

R6) The metric should be independent of the number of clients.A system that has twice

as many clients also has roughly twice as many updates, and twice as many opportunities to

mis-report client locations in query results – this should also not be reflected in our metric.

R7) The metric should aggregate inaccuracies in units of time(seconds). There are

several ways in which ”inaccuracy” may be measured, aggregated for all queries and times,

and related to the maximum possible inaccuracy, to arrive ata percentage. Consider the

queryQ issued by clientq (the query originator). A client that is inside the query region

Q, but is regarded as outsideQ by q (i.e. a false negative), or a client that is outside the

query regionQ, but is regarded as insideQ by q (i.e. a false positive) are said to bein

fault with respect to Q. While a client may be in fault withQ1, it may simultaneously be

not in fault with anotherQ2. A fault(Q, c, t1, t2) is the movement of a clientc from the

moment it ought to change a query result ofQ, to the moment it actually changes the query

resultQ. Every time a client enters or exits a query area, a fault happens (possibly for a

very brief time): the query originator’s view of the moved client is momentarily out of sync

with reality, and the query result is temporarily inaccurate. Let us briefly consider three

possible fault measurement and aggregation modes:

• Count. Count the number of false negative and false positive query results, and relate

to the total number of correct query results.

• Distance (meters). Measure the distances traveled by clients a) after the client enters

a query regionQ, before they are recognized as query results (i.e. undetected incur-

sions), and b) after exiting a query region, before they are recognized as no longer

query results (i.e. undetected excursions).
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• Time (seconds). Measure the elapsed time between when a client enters/exits a query

region and when the resulting query result change is recognized. This approach is

similar to distance-based aggregation.

A fault typically starts with a client entering (exiting) a query region, and terminates

when the query originator is informed of the entry (exit). A client may enter, then exit

(or exit, then reenter) a query region without the result change ever being realized by the

query originator – for example, because the incursion (excursion) happens entirely between

two updates several minutes apart. Nonetheless, such a fly-through fault is a source of in-

accuracy. In addition to faults in the vicinity of a query boundary, on the initiation of a

new query, both false positives and false negatives may cause faults throughout the query

region: For example, the locations of clients in a precinct with no queries (and thus infre-

quent updates) are poorly known until the clients send location updates in response to the

encounter points of the newly installed query.

2.6 Experimental evaluation

In this section we present the experimental evaluation of our query-aware location update

approach through four sets of experiments. We first compare our ROADTRACK location

update approach with the four representative update strategies discussed in Section 2.2 in

terms of number of updates per unit time at both server and client under two types of

road networks: urban and rural. We show that the query-awarelocation update strategy

significantly outperforms existing update strategies in terms of both client computation

cost (#wakeups) and server updates for both urban and rural road networks. The second

set of experiments measures the scalability of ROADTRACK by varying the number of

mobile objects in the system. The third set of experiments examines the effect of different

mobility models of mobile clients, different query characteristics, and the precinct size

on the effectiveness of our query aware location update approach. Our experiments show

that the query-aware update strategy offers consistent performance in terms of both server
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Table 1: Road networks used in experiments
Style County location Total length Segments Junctions Avg. segment length Junction degree

urban Miami-Dade, FL 15 650 km (315 h) 109 416 79 101 143.0 m (10.4 sec) mean: 3.4, max: 8
rural Coconino, AZ 36 212 km (733 h) 81 918 67 911 442.1 m (32.2 sec) mean: 2.4, max:6

update load and client wakeup load under different road network mobility models, different

precinct sizes , different query loads, different query radius, and different query distribution

models (uniform and hotspot). The last set of experiments examines the cost of precinct

construction in terms of computation time, average number of nodes, number of precincts,

size of precinct.

2.6.1 Experiment setup

We use real road networks obtained from the US Census Bureau’s TIGER/Line collec-

tion [43] in our experiments (Table 1). Maximum speeds are specified for each of four road

classes at 30 mph for residential, 55 mph for highway, 70 mph for freeway, and 30 mph for

freeway interchange (i.e. 48, 89, 113 and 48 km/h).

We created an event-based simulator for the evaluation of our framework. Instead of

applying a timestepping approach, a central ordered event queue is used to schedule four

types of events: change in the mobility pattern of an object (velocity vector change), query

insertion, query deletion, and client wakeup. The single-threaded simulation consists of

removing the events from the queue head, taking the assignedevent action (eg. run client

code on client wakeup, which might issue an update, which in turn causes the execution of

server code), and inserting new events into the queue (such as the next requested wakeup

with a future timestamp). The queue is initiated with the mobility pattern change and query

insertion/deletion events, generated by amobility modelandquery model, for the entire

requested duration of the simulation. We consider two mobility models in this chapter:

random waypoint movement on road network (RWR), and random trip model on road net-

work (RTR). In both mobility models, each mobile object movesindependently of others,
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with a speed that changes only when entering a new segment, and which is chosen accord-

ing to the speed limit and speed distribution defined for the segment. In a RWR model, the

client selects and travels a new segment at random at each junction; then repeats. In a RTR

model, the client chooses a random trip destination on the map, travels the fastest route;

then repeats. Client speeds are chosen from a bell-curve distribution (a Gaussian with a

standard deviation of 0.2 times the mean) that is cropped above its mean (segment speed

limit).

The query model we used maintains a 10% location query load inthe system by default

(i.e., the number of queries is one tenth of the number of mobile clients). Note that this

is an aggressive query load, as it signifies that our system actively engages the attention

of 1
10
th of the population at any one time. Query ranges are chosen from a Gaussian

distribution with a mean of 1 km, and standard deviation of 0.1 km. In order to simulate a

more realistic scenario than that given by a uniform distribution of query centers, we create

a query hotspot scenario, whereby queries are highly concentrated in some region of the

map. The center of a hotspot is a road network location chosenfrom a random distribution

over all road network locations in the network. Once the hotspot center is established,

a weight is assigned to each road segment in the network. If the shortest road network

distance between the hotspot center and the mid-point of a segment isd in kilometers, then

we assign the weightwi = αd, with α = 0.5. Each segment then has awi∑
i wi

chance of

being selected as a query center location. Finally, the mobile object closest to the midpoint

of the selected segment is chosen as the query’s originator.

2.6.2 Messaging cost of update strategies

We compare the number of client wakeups and server update loads for various location

update approaches by varying the number of users in the system. This set of experiments

uses a client population with size ranging from5000 to 20 000 clients. We compare the

following strategies: (1) periodic updates every 15 seconds; (2) point-based tracking, (3)
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Figure 8: Scaling of update strategies with number of mobile clients (rural map, partition
r = 4×)

vector-based tracking, (4) segment-based tracking, and (5) encounter point-based wakeup

and update strategy. For the first four query unaware approaches, the wakeup frequency

and the reevaluation frequency at the server is set at 15 seconds, and the deviation thresh-

old is set to 25 m. For the query-aware RoadTrack approach, we set a maximum wakeup

frequency of once every 15 seconds (4/min), in order to allowperformance of all methods

at similar operating points with regards to accuracy. The comparison on the rural Coconino

County map, with partition radii of 4 times the mean segment length (i.e.,r = 1768 m)

shows that the encounter based method results in a significantly reduced rate of wakeups

(Figure 8(b)). The advantage of RoadTrack is the that wakeupsare unnecessary when a

client is distant from encounter points (query boundaries)and precinct border nodes. Note

that periodic, point-, vector-, and segment-based approaches all produce 4 wakeups per

minute due to their 15 sec reevaluation setting – since a check-free interval type optimiza-

tion is not available, they wastefully execute periodic self-checks.

The number of server side updates is shown in Figure 8(a). This experiment confirms

the conceptual insight that the precinct-based RoadTrack approach outperforms all existing
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approaches even in the worst case. Note that since the query load is a constant 10%, the

increase in the number of mobile clients also brings a proportional increase in the number

of queries at the same time. As a result, not only does the number of mobiles per precinct

increase, but the number of encounter points per precinct also increases. As each encounter

point is an update trigger, the number of updates issued alsonecessarily increases. The

RoadTrack strategy allows a reduction to 8%, 14%, 22%, and 52%of updates, relative to

the other four comparison methods, respectively, even at the highest mobile load studied.

We further explore the scalability of our system by using precincts with radii that are

8 times the mean segment length (i.e.,r = 3536 m), and also running the simulations

on the urban Miami-Dade County map (wherer = 1144 m). The larger precinct size

provides a significant boost for RoadTrack: Wakeups are reduced on longer check-free

intervals, as border points are – on average – further from mobile clients (Figure 9(c)).

At the highest load setting, updates are reduced to 6%, 9%, 14%, and 34% of the query

unaware approaches’ updates (Figure 9(a)). The1
3

mean segment length of the urban, high

density topology means that the distance-based partitioning creates segments that cover

smaller areas, and thus the average distance from mobile clients to precinct boundaries

increases. The high density also means that a query with the same radius (as measured on

the roads) produces more encounter points. These factors bring an increase in the number of

both wakeups and updates when compared with the low-densityrural map, but the update

count is still significantly lower in comparison with the four reference strategies (11%,

28%, 31%, and 46% of the updates of those methods, Figure 9(b)and 9(d)).

We also plot the effect of precinct seeding and the partitioning metric, when no queries

are present, and thus all updates and wakeups are triggered by precinct boundaries only

(Figure 10). We point out that the presence of precinct boundaries causes wakeups and

updates even without the presence of queries. This property, by design, ensures that the

server maintains the location tracking ability for all mobile clients, regardless of whether

there are queries nearby or not. The benefit of an encounter-based strategy over strategies
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Figure 9: Comparison of rural and urban performance (with 8× distance-metric partition-
ing for the two maps in Table 1)
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that are query-unaware (such as periodic, point-based, etc. methods) is the reduction of

unnecessary wakeups and updates. On the other hand, if updates were only issued at query

boundaries, in the case of very few queries in a region, a client could go for an extended

period of time without an update, and the server would be unable to contact the client

for a location update in order to answer a new query. The requirement to issue updates at

precinct boundaries not only allows a client to be aware of query border points in its vicinity

(after the server sends this information about the new precinct), but also allows the server

to maintain an approximate location (bounded by the currentprecinct’s boundary) of the

client’s whereabouts. These figures consistently show thatlarger partitions help reduce both

updates and wakeups. We compare our precinct-based strategy with segment-based updates

– at a radius of 1 hop, precinct-based updating is very similar to segment-based updates. As

a result, the number of wakeups are only slightly improved from segment-based periodic

wakeups when the precinct radius is small, but the improvement gap increases linearly

with precinct size (Figure 10(b)). The number of updates is higher for low precinct sizes,

as thedelta threshold used for segment-based updates (and the resulting inaccuracy) is not

present in RoadTrack, but the update count drops to half of thesegment-based updates at a

radius of 8 times mean segment length (Figure 10(a)).

In the following we concentrate on the urban map, which is a more challenging terrain

for RoadTrack due to the higher density network topology.

2.6.3 Effect of client behavior profile

We investigate our method with respect to its sensitivity todifferent characteristics of client

behavior in two dimensions: mobility model and query radiusdistribution (Figure 11(c) and

12(c)). For mobility models, we consider the RWR and RTR type behaviors; for query size

distributions, we vary the mean of the Gaussian distribution defining query radii chosen

by clients, while keeping the standard deviation of the Gaussian at 10% of the mean. Our

qualitative conclusion is that the RWR movement model is slightly more advantageous for
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Figure 10: Comparison of precinct-triggered and segment-based strategies (urban map,
precinctr = 8×)

our approach, but this advantage decreases as query radii increase at client side. In all other

experiments reported in this chapter, we employ the RTR movement model, to avoid any

unfair comparisons.

2.6.4 Effect of precinct size and query load

We investigate the effect of precinct size on our metrics with 10 000 clients, uniform and

hotspot query distribution (Figure 11(b) and 12(b)). The simulations show that a hotspot

distribution of query centers takes advantage of the features of our approach, producing

fewer updates and wakeups.

We inject a query load varying from 0% to 40% (i.e., 0 to 4000 queries), and run

measurements using distance metric partitioning with the radius set to 4 and 8 times the

mean segment length (i.e.,r = 572 m for 4×, andr = 1144 m for 8×), with the results

shown in Figure 11(a) and 12(a). The number of wakeups decreases with growing precinct

size, as the influence of precinct boundaries on the check-free interval decreases. As many

wakeups are false alarms (an update is not actually required), the number of wakeups is

less impacted by an increase in query load, than the number ofupdates (Figure 11(a)).
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Figure 11: Server update load [fastest wakeup setting:(a), (b): 15 sec,(c), (d): 5 sec]
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2.6.5 Precinct construction

The number of partitions created as a function of the requested precinct radius is shown

in Figure 13(a). Distance-based partitioning is shown as a function of distance values that

are multiples of the average segment length of 143 m, offering convenient comparison

with hop-based partitioning, shown as a function of the hop count (e.g., partitioning with

”3 [hops]”, and ”3 [times mean segment length] (= 3 · 143 m)” settings are shown at the

same X axis value). The average number of graph nodes per precinct grows only linearly

with the precinct radius, largely due to the skew effect of more ”leftover” smaller precincts

when the requested precinct size is large (Figure 13(c)). The storage space required for

the pre-computed node-to-node distance matrices is definedby the number of node pairs

per precinct. This storage requirement (Figure 13(d)), andthe wall clock time required to

compute it (Figure 13(b)) grow approximately as the square of precinct size. We remark

that when precinct center nodes are selected using our heuristic-based seeding method, the

number of precincts is reduced. In our experiments – unless noted otherwise – we thus

used heuristic-based precinct seeding, and distance-metric partitioning with 8 times the

mean segment length (i.e.,r = 1144 m).

We also provide a comparison with partitioning the large rural map (Figure 14(a)–

14(d)), and note that while the average number of nodes per precinct is almost indepen-

dent of the partitioning method, the number of node pairs (and the resulting increased

pre-computation time) increases markedly with distance-based partitioning for our rural

map, due to the different topology.

2.7 Related work

We review several threads of related work, which are most relevant to the location update

efficiency, and which we present grouped in a number of themes. The aspects we consider

are (i) whether the mobile clients are query-aware, (ii) whether the goal is to reduce the

number of updates or something else, and (iii) whether the movements of mobile clients
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Figure 13: Effects of precinct radius on partitioning with hop and distance metrics (urban
map)
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map)
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are on a road network. For our grouping, we do not consider (but mention) other important

dimensions, such as (i) query type (eg. window, circular range or kNN type), (ii) query

persistence (eg. snapshot or continuous), and (iii) the four combinations of query and

client mobility assumptions (static or moving).

The first group of work explores the idea of reducing the number of location updates

in presence of a road network, but without making mobile clients query aware. The clients

run the prediction model and only issue an update when the prediction deviation from the

actual location grows higher than a system defined threshold. For example, [10] compares

a number of query unaware client location tracking approaches: point-based, vector-based,

constant speed segment-based, and constant acceleration segment-based with acceleration

profile which groups several basic segments together to improve basic segment-based track-

ing. As we show in this paper, the number of location updates can be significantly reduced

when clients are query-aware, as there is no need for clientsto issue updates in locales

where outstanding queries are scarce. Even in the worst case, the precinct based approach

outperforms the existing solutions.

The second group of work explores the idea of reducing query processing load at the

server by making clients query-aware but in a world where constraints on client mobility

do not exist (i.e., without a road network). For example, MobiEyes [15] uses the grid struc-

ture to define a monitoring region for each query, and only clients within the monitoring

region need to be aware of the query. To make clients query-aware, the proposed tech-

niques use some information derived from and aggregated across multiple queries, and not

the full query information. This derived information is sent to the clients on a downlink

connection, and then used to determine when or where the query result may have changed,

prompting the posting of an update on the uplink connection to the server. [22, 8, 38] give a

solution for static continuous queries over moving objects, by monitoring violations of safe

region areas. The safe region of a mobile client is a rectangular area where answers to all

queries remain the same. The work in [48] introduced the concept ofvalidity period, which
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is a time period during which the query answer remains the same, based on a maximum

query speed, though the solution is developed for 1NN movingqueries over static objects.

[47] introduced the concept ofvalidity region, which is an area around a moving query’s

focal location where the query answer is the same. The techniques are for the server-side

computation of validity regions for moving kNN and window queries over static objects.

The validity region is represented as a convex polygon (and as a circle in certain cases).

The solution applies to snapshot queries, as opposed to continuous queries, as it is not con-

cerned with keeping results up-to-date. The authors in [29]describe a solution for moving

continuous queries over moving objects, by monitoring violations of distance thresholds.

Thresholds are created to signal a potential change of queryresults, and clients are aware

of each query’s focal location and one or two thresholds. kNNqueries are discussed in par-

ticular, but the solution could be adapted to other types of queries. One common limitation

for all the work in this group is the lack of consideration of road network constraints in

their mobility model.

As we show in this chapter, when road constraints on queries exist (such as a distance

or travel time range measured in the network), the solution must address the jump in com-

plexity: we use encounter points to implement the query awareness and identify the critical

points on road network segments where location update should be performed. In addition,

we use precincts to impose locality on query-awareness and to set the upper bound for

mobiles to update their locations.

The third group of work explores the idea of reducing server load for answering queries

in the presence of periodic updates, without making clientsquery-aware or considering

the mobility constraints of clients. An example is [46], which compares grid index based

indexing of objects and kNN queries.

The fourth group of work explores the idea of reducing serverload for query processing

in the presence of a road network. The incorporation of road networks in server optimiza-

tion of mobile queries started to gain attraction by [35, 24]. A most influential line of work
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in this group is the idea of speeding query answering by pre-computing distances after par-

titioning the road network graph [24]. However, no consideration is given to improve the

server load for query processing by utilizing a road networkbased, query-aware location

update scheme. We believe that the ROADTRACK development can be beneficial for further

reduction of server load for processing location queries onroad networks.

[35] suggests Euclidean restriction and a network expansion approach to prune the

search space for snapshot kNN and range queries over static objects. Static objects serve as

generator points for a disjoint set of Voronoi-polygons covering the road network, such that

a polygon’s generator point is the closest generator point to all road network locations in-

side a polygon. Road network distances are pre-computed between allborder pointsinside

a Voronoi-polygon, which are then used to find the k polygons with the nearest neighbors.

[9] uses pre-computed NN lists to speed up continuous movingkNN queries over static ob-

jects. [20] proposes storing adistance signatureat nodes (containing approximate distance

information for a limited number of relevant objects) to speed up snapshot kNN and range

location queries over static objects.

[21] proposes a network reduction technique which simplifies the road graph, while

preserving network distances, in order to answer snapshot kNN queries over static objects.

[30] proposes a solution for moving continuous kNN queries over moving objects, using

memory-resident server-side data structures. An edge table stores the list of queries affected

by each edge (influence list), along with theinfluencing interval(the progress component

of the road network location in our terminology) of themark (query boundary locations)

for each query. A query table stores the basic query information (focal location andk),

the result set, and an expansion tree rooted at the focal location. The expansion tree is

incrementally updated, which allows for an incremental query reevaluation.

Most of the existing approaches in this group fail to exploitthe opportunities in making

clients query aware in terms of server side performance optimization. Thus they fail to

scale the location update scheduling in the presence of a growing number of clients and
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when hotspots query workloads exist.

Even though location queries have to be at least partially reevaluated on location up-

date, efficient location query evaluation is traditionallyconsidered a separate problem from

efficient location updates; our work is in the latter category. Although not our focus in this

chapter, when objects being queried on have their update count reduced, query evaluation

costs are also reduced.

The fifth group of work explores the idea of reducing server load by making clients

query-aware, but in a world where constraints on client mobility do not exist (i.e. without

a road network). [38] gives a solution for static continuouswindow queries over moving

objects, introducing the concept ofsafe region, which is a rectangular (or circular) area

around a moving client’s location, where all query answers remain unchanged. Safe re-

gions are computed by the server, and sent to the clients on a downlink connection. The

computational load of query answering is reduced by the combination of a frequently re-

freshed velocity-constrained index on mobile clients (foranswering new queries), and an

occasionally refreshed index on queries (for incrementally updating query results and com-

puting safe regions). [7, 8] builds on the solution, proposing to reduce the safe region

computation cost caused by large numbers of queries in the system. The universe is par-

titioned into disjoint rectangulardomains, and each query’s overlap with each domain is

handled as a separatemonitoring region. Mobile clients are only aware of monitoring re-

gions inside their currentresident domain, and send updates when crossing the boundary

of a monitoring region or the resident domain. Domains are managed with a quad-tree-like

hierarchy, allowing clients with a larger computational capacity to have a larger resident

domain (with more monitoring regions), and thus need to issue fewer updates. [15] builds

on these ideas to give a solution for moving continuous circular range queries over moving

objects. The universe is covered with a uniform grid, and allgrid cells at least partially

covering a query region are part of the query’smonitoring region(this is a different defini-

tion). Mobile clients are aware of queries’ individual geometries, for those queries whose
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monitoring region overlaps the client’s current grid cell,and only send updates when cross-

ing the boundary of a query region or a grid cell. Clients compute asafe periodusing

their maximum velocity assumption; during this time periodthe client’s movement is en-

sured not to prompt an update, and thus the client is temporarily relieved from checking for

the aforementioned update conditions. Velocity vector-based tracking is used for mobile

queries: clients which carry a mobile query also send an update when their predicted and

real locations are further than a given threshold; these updates are then used to readjust the

set of grid cells that compose the query’s monitoring region.

2.8 Conclusion

In recent years, some LBS providers have initiated a pay-as-you-go model for location

tracking and location update services, with the primary objective of avoiding unexpected

sudden load surges at location servers. For example, mobileusers can pay a fixed price

for being tracked or for keeping their location updated every five or 10 minutes. With the

rapid escalation of location based applications and services and the growing demand of

being informed at all times, the problem of scaling locationupdates and location track-

ing systems and services, if not addressed, will become a performance bottleneck for the

success of the mobile commerce and mobile service industry.In this chapter we have

presented ROADTRACK − a query-aware, precinct based location update framework for

scaling location updates and location tracking services. ROADTRACK development makes

three original contributions. First, we introduce encounter points as a fundamental query

awareness mechanism enable us to control and differentiatelocation update strategies for

mobile clients in the vicinity of active location queries. Second, we employ system-defined

precincts to manage the desired spatial resolution of location updates for all mobile clients

and to control the scope of query awareness capitalized by a location update strategy. Third

but not the least, we develop a road network distance based check-free interval optimiza-

tion, which further enhances the effectiveness of ROADTRACK and enables us to effectively
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manage location updates of mobile clients traveling on roadnetworks by minimizing the

unnecessary checks of whether they have crossed an encounter point or precinct boundary

point. We evaluate the ROADTRACK location update approach using a real world road-

network based mobility simulator. Our experimental results show that the ROADTRACK

query aware, precinct-based location update strategy outperforms existing representative

location update strategies in terms of both client computation efficiency and server update

load.
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CHAPTER III

DANDELION

When a driver asks for nearby gas stations within 10 minutes travel distance, to be answered

continuously for the next 8 hours, while she is driving on herroad trip from Atlanta to

Florida, then she has issued a continuous spatial network range query. This driver is the

query focal object and is a) interested in some locations that are within a specified travel

time or road distance, measured along the segment edges of the road network graph, b)

frequently in motion, and c) needs query results relative toher current location over some

period of time, while the query focal location is constantlychanging as the mobile user

moves on the road.

The computational costs of answering such continuous network range queries are pro-

hibitive, as a shortest path based network expansion needs to be run repeatedly at each

and every location where the query is evaluated. We argue that continuous network range

queries, whose focal locations are ”not far” from each other, have substantial overlap in

their segment coverage. Such a large overlap may offer significant reuse opportunities for

performance acceleration. We propose the Dandelion approach for fast re-evaluations of

continuous network range queries with three original contributions. First, we propose the

concept of Dandelion tree and associated techniques to accurately represent the coverage

of a network range query with arbitrary range. Second, we design a suite of primitive op-

erations to compute the coverage at a current focal locationby reuse of the coverage at a

previous query focal location. Third, we develop three Dandelion reuse algorithms, each

powered with additional reuse abstraction techniques, to efficiently identify the portion of

the Dandelion tree that can be used as the basis for reuse and further expansion. An ex-

tensive experimental evaluation on the Dandelion approachshows that the Dandelion reuse
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model and algorithms can significantly outperform the conventional shortest path network

expansion model (NE) in terms of coverage computation cost for non-trivial radius size and

high re-evaluation frequency.

3.1 Introduction

We are entering an era of ubiquitous connectivity and continuous services while moving on

the road. One of the most frequently used continuous services by mobile users is continuous

spatial range queries over nearby points of interests, suchas gas stations, restaurants, and

so forth, while moving on the road networks. ”Inform me of thegas stations within 10

miles of my current location in the next 3 hours of my travel” is one example of such

road-network distance based continuous spatial range query, which runs continuously in

the next 3 hours, returning the gas stations within 10 miles of my current location. The

re-evaluation frequency of this query can be set by a mobile user explicitly or by a system-

default interval, such as every 5 minutes.

Continuous spatial range queries over road networks have three unique features. First,

a mobile user who initiates such a continuous query is interested in some road-network

locations that they can travel to by following the spatial constraints of road networks. Thus,

given a current location of a mobile user, the range query evaluation needs to use the road

network distance measure, namely a shortest path distance over a road network graph, no

matter if the road network distance is based on travel time orsegment length. Second,

the focal point of the query, which is the current location ofthe mobile user, is constantly

changing. Thus, mobile users would like to continuously receive updated results of such

spatial range queries as they move on the road over some period of time during their trips.

Determining the area covered by a Euclidean range query is straightforward: for a query

with ranger and focal location(x0, y0), all (x, y) locations that satisfy(x − x0)
2 + (y −

y0)
2 < r2 fall under the query area, i.e. locations that are within a geometric circle centered

at the focal location. When a range query is based on the road network distance, such a neat
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geometric description of the covered locations is no longerpossible. In order to find all the

road network segments and thus locations covered by a given road-network distance range,

the spatial network graph must be analyzed. The standard algorithm for determining graph

vertices that are within the given range of a vertex is the network expansion (NE) algorithm,

a variant of Dijkstra’s algorithm [12] for finding shortest paths from a single source. A

spatial network range query is a standing query, continuously running over the given period

of time, during which the query focal location keeps moving,and continuous network

range query evaluation needs to perform the network expansion (NE) from scratch as the

mobile moves from one location to another. The cost of such computation is prohibitively

expensive.

In this chapter we argue that when the continuous network range queries are evaluated

frequently, and the current focal point is close to the previous focal query point, many short-

est paths computed based on the previous focal query point can be reused to compute the

shortest paths from the current focal point, as there is a huge overlap of the road segments

in the search space of these consecutive evaluations of the same network range query.

Existing research efforts have focused on designing new indexing algorithms that are

road-network aware in order to speed up such network range query computations. However,

few efforts have been dedicated to exploring the reuse opportunities for speeding up the

evaluation of continuous network range queries.

Applications of continuous spatial network range queries.

Many location based applications are based on continuous spatial network range queries,

ranging from tourism assistant, mobile commerce, location-based advertisement, to loca-

tion based social media. Concretely, a taxi driver in Manhattan might want to monitor for

customers within 900 feet. It is known that a standard Manhattan block is a rectangle of

approximately 264 by 900 feet. Thus, specifying ”1 block” for this query is not optimal, as

it may evaluate the query using a road distance of3.4× larger on longer Street blocks as

on shorter Avenue blocks. Additionally, there are many one-way travel restrictions in the
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road networks of New York City and a grid network topology, andthus a range limit given

in Euclidean distance might often turn out to be much fartheraccording to the odometer.

Similarly, with an Euclidean range limit, customers in Brooklyn, Queens or New Jersey

might also be returned as the matches of this range query, while reaching them from the

current location of the taxi driver would require a substantial detour to cross a body of

water on a crowded tunnel or bridge. Furthermore, during jam-packed rush hours, the taxi

driver might want to find customers within 3 minutes (when taking traffic into account),

instead of within a certain network distance. Taking all these considerations, the taxi driver

will want to use a road network distance based range query with the option of switching

between segment length based and travel time based network range measure. Alternatively,

a UPS or FedEx express delivery driver might want to continuously monitor his 5-minute

travel distance neighborhood as he moves on the road to find and service any new package

pickup requests. This would enable UPS and FedEx to improve their service efficiency and

reduce their cost of per-package pickup. Similarly, a tourist driver on vacation might want

to keep an eye on major attractions within 50 miles of drivingusing her GPS device. An

SUV driver might want to know at all times the gas stations that he can reach in 2 minutes

over the next hour of driving. A businessman might want to receive notifications about the

next contacted services that he can drive to within an hour. Acollege student might want

to keep track of which of his buddies are nearby, given the campus walking paths and bike

routes.

Scope and Contributions.

In this chapter we present the design and implementation of Dandelion, a smart reuse

framework for efficient evaluation of continuous network range queries. First, we propose

a smart reuse algorithm and related data structures. This development allows the reuse of

both query results and shortest paths computed at the previous focal point of a spatial range
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query to compute the query coverage at the new focal point. Asa result, continuous (mov-

ing) spatial network range queries can be evaluated with significantly reduced cost, com-

pared to repeatedly running network expansion from scratchat each of the focal locations

as a mobile user travels on the road. In summary, the design ofour Dandelion approach is

based on the fundamental observation that snapshot spatialnetwork range queries, whose

focal points are not far from each other, have substantial overlap in the set of segments that

they cover, offering significant opportunities for reuse ofa good number of shortest path

computations. Our key contribution lies in devising techniques that can efficiently reuse

previous shortest path computations, when the segment coverage from subsequent network

range query evaluations have high overlap with the previousevaluation.

The dandelion framework consists of three original contributions. First, we propose the

concept of Dandelion tree to accurately represent the coverage of a network range query

with arbitrary range, by keeping track of three key network location points: border points

(BOP), dead-end points (DEP), and zip points (ZIP). Second, we design three BOP-Push

and three BOP-Pull primitive operations to compute the coverage atF by maximum reuse

of the coverage at previous query focal locationF . Third but not the least, we define the

data structures and three Dandelion reuse algorithms to efficiently identify the portion of

the Dandelion tree that can be used as the basis for reuse and further expansion. The ba-

sic Dandelion algorithm enables reuse by dividing the Dandelion tree (query coverage) of

a query into the forward (FWD) and backward (BWD) halves, allowing separate mainte-

nance of the key data structures for each half to reduce the search space. The Dandelion-T

algorithm introduces and utilizes the Trident and Guide data structures to compose a more

reuse-efficient Dandelion-T tree, leading to faster query re-evaluation than the Dandelion

basic algorithm. Finally the Dandelion2 algorithm furtherenhances Dandelion-T in terms

of query re-evaluation cost, by introducing two primitive transformation operationsmove

andjump. This development can effectively transform one Dandeliontree to another with

a minimum set of primitive transformation operations.
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We conduct a series of extensive experiments and our resultsshow that the Dandelion

reuse model and algorithms can significantly outperform theconventional shortest path

network expansion algorithm (NE) in terms of coverage computation cost for non-trivial

radius size and high re-evaluation frequency.

Finally, we would like to note that the dandelion algorithm for the reuse of spatial

network range query coverage is generic, and is not restricted to answering continuous

queries.

The rest of the chapter is organized as follows: Section 3.2 presents an overview and

notations for Dandelion reuse. Section 3.3 contains the formulation of our coverage reuse

model. Section 3.4, Section 3.5 and Section 3.6 describe theconstruction of a Dandelion

tree and re-evaluation of coverage at current focalF using our three successively more

sophisticated data structures and algorithms. Section 3.7reports the results of a series of

experiments running on real road network maps. We outline the related work in Section 3.8

and concluding in Section 3.9.

3.2 Dandelion: Design Overview

3.2.1 Basic Concepts and Notations

Road Network. In Dandelion, a spatial network is defined as a directed graphG = (V,E),

in which V consists of the set ofN vertices (also called road junctions), each of which is

assigned a unique identifiervi (1 ≤ i ≤ N ); andE consisting of the set ofNE edges (also

called road segments), each of which is assigned a unique identifier ei,j (1 ≤ i, j ≤ N ),

denoting a directed segment fromvi to vj. Edges are undirected by default, but travel

restrictions (such as one-way streets) may be imposed on queries. We do not distinguish

multiple lanes of the same direction on a road segment. For each road segment, road-

related information can be maintained, such as segment length (e.g. 0.7 miles), speed limit

(e.g. 55 mph), restrictions (e.g. one-way road), etc. The length and speed limit of a road

segmentei,j is denoted byseglength(ei,j) in miles andspeedlimit(ei,j) in miles per hour
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respectively. Other road-related information such as current traffic data, if available, can be

easily incorporated to provide more accurate travel time.

Segment Length based Shortest Path.Let v1 andv2 denote two road junction nodes and

v1, v2 ∈ V . We define a path from a node junctionv1 to a node junctionv2 as a sequence

of road segment edges, one connected to another, denoted ase1,i1 , ei1,i2 , . . . , eik−1,ik , eik,2

(k > 0). The length of a pathh betweenv1 andv2 is computed as follows:

pathlength(h) = seglength(e1,i1) + seglength(eik,2)+

k−1
∑

α=1

seglength(eiα,iα+1
)

For any two junction nodesv1 andv2, there may exist more than one way to travel from

v1 to v2, we usePathSet(v1, v2) to denote the set of all paths betweenv1 andv2. We define

a segment length-based shortest path betweenv1 andv2, denoted bysl shortestpath(v1, v2),

as follows:

sl shortestpath(v1, v2) = {hsl|pathlength(hsl) =

min
h∈PathSet(v1,v2)

pathlength(h)}

Travel Time based Shortest Path.The travel time of a road segmentei,j is seglength(ei,j)

speedlimit(ei,j)
.

Thus the travel time of a pathh is calculated as follows:

pathtime(h) =
seglength(e1,i1)

speedlimit(e1,i1)
+

seglength(eik,2)

speedlimit(eik,2)
+

k−1
∑

α=1

seglength(eiα,iα+1
)

speedlimit(eiα,iα+1
)

The travel time-based shortest path betweenv1 andv2, denoted bytt shortestpath(v1, v2),

is defined as follows:

tt shortestpath(v1, v2) = {htt|pathtime(htt) =

min
h∈PathSet(v1,v2)

pathtime(h)}
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To differentiate the standard shortest path computed usingDijkstras network expan-

sion algorithm, which computes shortest path between two vertices, we call the shortest

path computed between any two network locations using the formula abovethe extended

shortest path.

Network Location. A network locationis defined in terms of segment ID and progress,

denoted asL = (e, p), on a segmente (e ∈ E). If e connects two verticesvi andvj and

i 6= j, thenL = (e, p) with p = 0 denotes the network location atvi, andL = (e, p) with

p = length(e) denotes the network location atvj. Theprogressp (0 < p < length(e))

denotes (determines) where the locationL = (e, p) lies on theei,j segment betweenvi to

vj.

Road Network Distance.The road network distance between two road network locations

L1 = (ei1,i2 , p1) andL2 = (ej1,j2 , p2) is the length of the shortest path betweenL1 andL2

in terms of either segment length or travel time. Thesegment length-based road network

distanceandtravel time-based road network distanceare formally defined respectively as

follows:

sldistance(L1, L2) = seglength(ei1,i2)− p1 + p2+

pathlength(sl shortestpath(vi2 , vj1))

ttdistance(L1, L2) =
seglength(ei1,i2)− p1

speedlimit(ei1,i2)
+

p2

speedlimit(ej1,j2)
+

pathtime(tt shortestpath(vi2 , vj1))

Even though the segment length-based distance is the most commonly used distance

measure on road networks, it may not provide sufficient and accurate distance information

in terms of actual travel time from the current location (L1) to the destination (L2). For

instance, highway road segments are much longer but also with much higher speed limits

and thus may have relatively lower travel time compared to some local road segments. To
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ensure high accuracy and high performance of query processing, in DANDELION we use

the travel time-based distance as the default shortest network distance between two network

locations, denoted bynetwork dist(L1, L2).

Query Coverage and Border Points. A continuous network range query is defined by

query identifierQ, query focal pointF and query radiusr, denoted asQ(F, r). A query

focal pointF refers to the network location where the queryQ is issued or evaluated. For

presentation brevity, we refer to a query simply by its focallocation when it causes no

ambiguity in the rest of the chapter. We define the coverage ofa queryQi(F, r) by the set

of all network locations that satisfy the query range condition of network dist(F,L) ≤ r,

denoted ascoverage(Qi(F, r)).

coverage(Qi(F, r)) = {L|network dist(F,L) ≤ r}

We also refer to network locations inside the coverage ascoveredlocations.

Thesegment coverageof a queryQ is the set of all segments that contain at least one

network location that is covered by the queryQ. Formally we have

segcoverage(Qi(F, r)) = {eij|eij ∈ E, vi, vj ∈ V,

network dist(F, vi) ≤ r∨

network dist(F, vj) ≤ r}

We say that a segmenteij connectingvi andvj is fully covered byQi(F, r) if both

network dist(F, vi) ≤ r andnetwork dist(F, vj) ≤ r hold. We say that a segmenteij is

partially covered byQi(F, r) if eithernetwork dist(F, vi) > r or network dist(F, vj) >

r holds. On afully covered segment, all network locations on the segment satisfy the query

range condition ofnetwork dist(F,L) ≤ r, whereas on apartially covered segmentsome

network locations on the segment satisfy the range query condition ofnetwork dist(F,L) ≤

r, and others do not, namelynetwork dist(F,L) > r.

To evaluate a queryQ(F, r), we need to start from the focal locationF and expand

segment by segment until the length of the path equalsr. The ending network location
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of each such a path of lengthr is referred to as a border point (BOP) ofQ(F, r) such

that network dist(F,BOP ) = r. The set of border points of a network range query

Qi(F, r), denoted asBOP (Qi(F, r)), is the set of the network locations that have the

network distance ofr from F , and is formally defined as follows:

BOP(Qi(F, r)) = {L|network dist(F,L) = r}

Fully covered segments of a queryQ contain no border points. Partially covered seg-

ments contain one or moreborder-points(BOP), each of which is a network location that

demarcates a portion of the segment covered and not covered.A road segment can have

0, 1 or 2 BOPs associated with a query. Note that when a road segment has two BOPs

associated with a queryQ, the network distance based range ofQ can be either smaller or

longer than the segment length.

Segment to objects mapping.Queries are usually answered in terms of (static or moving)

objects of interest, which satisfy a given query condition (such as being within a certain

road network distance). When a mapping of segments to objectsof interest is available,

updating query results can be weaved into our proposed Dandelion algorithm. Objects

on segments (or portions of segments) that are no longer covered/newly covered after the

focal location of the query Q has moved, can be removed/addedto the query result set

incrementally.

3.2.2 Problem Statement and Design Objective

A continuous network range query, issued over a time periodT by a mobile userA, denoted

byCQ(F, r, T ), can be practically evaluated by processing a time series ofsnapshot (static)

network range queries at successive query focal locationsF0, F1, F2, . . . , Fm (m > 1) as

the mobile user moves on the road network. The set of focal locations (F0, F1, F2, . . . , Fm,

m > 1) forms a time series of network location samples of the network paths traveled by

this mobile user in the given query intervalT , say 3 hours.

All the snapshot queries sayQ(Fi, r) (i = 1, 2, . . . ,m) are evaluated independently
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using a shortest path network expansion algorithm in two steps: segment coverage of the

snapshot and the segment-to-object mapping.

Concretely, letQ(Fk, r) be a snapshot query to be evaluated. AssumingFk is at a

junction nodevi, the snapshot query evaluation will be performed in two phases: First,

starting atvi, for each one-hop path connectingvi with vj (j¿0), we run a test to compare

the length of the path fromvi to vj to the query radiusr. If r is a time interval, say 5

minutes, we use travel distance of the path. Ifr is spatial distance range, say 2 miles,

we use segment length of the path. Ifr is larger than the path considered, we extend the

paths used for comparison; otherwise, we go to the next phase. At the end of the first

phase, we have computed the segment coverage of the snapshotqueryQ(Fk, r). In Phase

2, we obtain the objects-of-interest by performing a segment-to-object mapping using an

inverted segment-object index. As the segment coverage of aquery is the main bottleneck

of a snapshot query evaluation, in the rest of the chapter we focus on fast computation of

the coverage of a road-network range query (in terms of segments and partial segments.

In Dandelion, we argue that the problem ofefficiently evaluating a continuous network

range query with moving focal pointshould explore reuse opportunities between consecu-

tive snapshot query evaluations for a number of reasons.

First, given a continuous network range queryCQ(F, r, T ), the sequence of snapshot

evaluations,Q(F0, r), Q(F1, r), . . . , Q(Fm, r) (m ≥ 1), share the same query radiusr and

the same interest in the type of objects in the vicinity of travel paths of the same mobile

user. Second, these snapshot queries differ only by their focal points of the queries. Thus,

the segment coverage of a snapshot range query with focal locationFi often has significant

overlap with the segment coverage of the subsequent query evaluation with focal location

Fi+1 (0 ≤ i ≤ m). Second, the snapshot coverage atFi can be effectively reused to

calculate the snapshot coverage at the successive locationFi+1. Third, if such reuse can be

computed significantly faster than the time complexity of re-computing segment coverage

of each snapshot evaluation by the Network Expansion (NE) algorithm from scratch, then
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Figure 15: Observation I: Large overlap (pink) exists between the coverages of two
nearby queries with focal locationsF (red) andF ′ (blue), both withr = 600 m range.

this reuse capability can be the key to efficiently answeringthe continuous network range

queryQi.

3.3 Dandelion Reuse Model

We observe that the spatial network range queries with focallocations (sayF andF ) are

”not far” from each other, have substantial overlap in theirsegment coverage. Such a large

overlap may offer significant reuse opportunities to accelerate the processing of continuous

network range queries by minimizing the amount of duplicateshortest path computations.

Bearing this observation in mind, we propose a Dandelion reuse framework and a suite of

algorithms for fast re-evaluations of continuous network range queries.

Based on this problem formulation, we now introduce Theorem 1and three lemmas

which form the basic design of Dandelion.

Theorem 1: Given two snapshot road network range queries, both with the same range,

at nearby focal locationsF andF ′, there exists an efficient way to transform the coverage

at F into the coverage atF ′.

In the following, we describe three lemmas that lead to the proof of the above theorem.
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Lemma 1: LetF andF denote two snapshot range queries with the same query radius

r. If F andF are sufficiently close in terms of road network distance with respect tor,

namelynetwork dist(F, F ) � r, we say that there is a substantial overlap between the

coverage of the two nearby snapshot range queries and thus some portions of the com-

puted coverage at focal locationF may be reused efficiently to derive the coverage at focal

locationF ′.

Consider the two snapshot queries with query radiusr = 600 m at F (red sun) and

F ′ (blue sun) respectively in Figure 15(a), within∆ = network dist(F, F ) = 200 m of

each other. The red dotted border-points (BOPs shown as triangles on segments) for the

query atF are replaced by blue BOPs forF ′; segments marked by red dotted lines are

no longer covered atF ′, and segments marked by blue thin lines were not covered before

at F . Despite these differences, many network locations (segments marked in pink thick

lines) are shared by both queriesF andF . We note that this large coverage overlap exists

when the network distance∆ = network dist(F, F ) between the two focal locations is

relatively small compared tor (e.g., 1
3

in Figure 2). Although we can expect that coverage

reuse is most effective when∆ � r, reuse should be beneficial as long as the condition of

network dist(F, F ) < r holds.

The diagram in Figure 15(b) gives an intuitive illustrationof the coverage arithmetic:

By representing the coverage atF as F-only + shared, the coverage atF ′ as shared +

F’-only, the dandelion approach is aimed at fast algorithms to compute the following trans-

formation:

(coverage at F’) = (coverage at F) - (F-only) + (F’-only).

From this example, we observe that a large number of segmentsare shared in both snap-

shots before and after anF displacement, especially whenF andF are relatively close

with respect to the query radius, and thusF − only andF ′ − only are relatively small

compared to (coverageatF ). The set of these common segments provide the potential of

maximal reuse.
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Figure 16: Observation II: A shortest path tree to border- and zip-points (Dandelion tree)
may be used to represent coverage of a query. (r = 13)

We now discuss how to efficiently compute the coverage of a continuous network range

query, and especially how to compute the shared segment coverage betweenF andF , the

F -only coverage and theF ′-only coverage.

Recall the shortest path network expansion algorithm, when applying it to a network

distance based range query, we will need to construct the shortest path tree anchored at

the focal location of the query. By using the traditional shortest path NE, several problems

may occur. First, focal locations of queries need to be anchored at a road junction. Second,

partially covered segments will not be included in the SPT due to the fact that the network

expansion condition is bounded tor. Third, no mechanisms to handle the situation where

two border points on the same segment cross each other, whichmay consequently lead to

errors in the evaluation.

Consider a simple snapshot range query withr = 13 on Figure 16, the traditional

shortest path tree(SPT; Fig. 16(a)), calculated by NE, is only able to represent queries

rooted at vertex locations. Parent pointers (shown as arrows) from each covered (red) vertex

within the ranger are used to navigate the tree. Thus, only two segments are included in

the SPT: AB segment and AC segment.

In the case of a snapshot query with non-vertex focal locationF , as shown in Fig. 16(b),

we can add the expansion from non-vertex locationF on segment AC to both end nodes
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of the segment. From A and B, we apply the standard shortest path network expansion.

As shown in Fig. 16(b), three segments marked in thick red color are included in the SPT:

AC, AB, CD; while the segments CB and BD are treated as not covered. Thus the objects

of interest to this query that reside on these latter two missing segments are missed in the

result of the query.

By extending the standard NE expansion to include the handling of non-vertex focal

point and non-vertex border points, we can correctly compute the segments covered by a

query either fully or partially.

Based on the extended shortest path and the border points, we below define the extended

shortest path tree for a snapshot query.

Extended shortest path tree.Let Q(F, r) denote a continuous range query with focal

point F and query radiusr. Let BP (Q) denote the set of border points ofQ such that

∀Bi ∈ BP (Q): network dist(F,BPi) = r. We refer to the tree withF as the root and all

BPi as leaf nodes, as theextended shortest path treeof Q. Note that all internal nodes of

this tree are road junction nodes. The root and the leaf nodesmay or may not be junction

nodes. Each child node maintains a pointer to its parent nodein this extended SPT. It can

trace the shortest path ofr length from all BOPs toF . Also the segments associated to the

rootF and border points ofQ are recorded as a part of the root and leaf node, respectively.

The tree traversal path from leaf nodeBPi to rootF represent the shortest path from query

focal locationF to network locationBPi.

Covered, Partially covered and Uncovered Segments.For a given query and its

extended shortest path tree, all the internal nodes of this extended SPT are road junction

nodes. For each pair of internal nodesvi andvj, if vi is a parent node ofvj or vice versa, then

we call the segment withvi andvj as the two end nodes acoveredsegment. Otherwise, ifvi

andvj are two end nodes of a segment in the road network, we call thissegmentuncovered

by the queryQ. We call all the segments that are attached to root or leaf nodes of the

extended SPT thepartially coveredsegments.
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Given a continual range query and a sequence of its snapshot evaluations, say

F0, F1, F2, . . . , Fm, we construct the initial extended SPT using network expansion at the

initial installation time. The construction algorithm takes the query as the input and utilizes

the network distance based shortest path formula to computethe internal nodes, starting

from the focal locationF of the query, until it reaches all the border points of the query us-

ing network expansion. For each subsequent snapshot query evaluation, we use Dandelion

algorithms to construct the extended SPT for the next snapshot evaluation by maximizing

the reuse potential of the previous extended SPT.

Lemma 2: An extended shortest path tree is well suited to represent allthe network

locations covered by a query.

This lemma states that every network location covered by a query Q is included in

the extended shortest path tree ofQ. More specifically, all road junction nodes covered

by the query are also represented as the internal nodes in this extended SPT. Segments

that are fully or partially covered by the query are represented in this extended SPT. By

introducing border-points (BOPs) on partially covered segments, we are able to keep track

of all network locations that are covered.

Concretely, given an extended shortest path tree rooted at the focal pointF of a query,

we refer to the internal nodevi who is the parent of some leaf nodes (i.e., border points of

the query) as the last junction node of SPT and we havenetwork dist(F, vi) ≤ r.

When the extended shortest path network expansion has reached the last junction node

vi andnetwork dist(F, vi) + di = r, wheredi is the final distance on the edge fromvi to

vj andnetwork dist(F, vj) > r, then a BOP is placed on the edgevivj, atr − di distance

from vi (i.e., at exactlyr distance fromF ). Thus, the BOPs, just like covered junction

vertices, keep a pointer to their parent vertex in thisextended shortest path tree to border,

ensuring that . all shortest paths ofr length− from all BOPs toF are included in this

extended SPT.
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Fig. 16(c) shows that the segment CD is partially covered by the query as it has two bor-

der pointsB1 andB2 residing on the segment CD. The shortest path from F via C to D end-

ing atB1 on the segment from D to B satisfiesnetwork dist(F,D) ≤ r,network dist(F,B1) =

r andnetwork dist(F,B) > r. Similarly, the shortest path from F via B and ending atB2

on the segment from B to D is represented bynetwork dist(F,B) ≤ r,network dist(F,B2) =

r andnetwork dist(F,D) > r. These two border points do not cross each other. We refer

to them as non-crossing border points.

Fig. 16(d) shows the case in which two border points are crossing one another on the

same segment CB. The shortest path from F expanded to C and ending atB3 on the segment

from C to B is represented bynetwork dist(F,C) ≤ r, networkdis(F,B3) < r and

network dist(F,B) > r. Similarly, the shortest path from F expanded to B and endingat

B4 (crossingB3) on the segment from B to C is represented bynetworkdis(F,B4) < r.

These two border points are crossed by each other. We refer tothis case as crossing border

points. To facilitate the query coverage reuse, in Dandelion, we introduce zip point to

represent two crossing border points residing on a single segment.

Zip Points. Let vi andvj be the two end nodes of a segment in the road network graph. If

vi andvj are the last junction nodes in the extended SPT (with final distancesdi via vi and

dj via vj), then the segment withvi andvj as the end nodes is either an uncovered or a par-

tially covered segment by the extended SPT. Thus, there exists a network locationZ on this

segment that is equidistant fromF via both verticesvi andvj. Leta = network dist(Z, vi)

andb = network dist(Z, vj). We havenetwork dist(F, vi)+a = network dist(F, vj)+b

anda+b = seglen(vi, vj). If such a location did not exist, then a shortest path fromF to vj

would exist viavi, vi would be a parent node ofvj (or vice versa), and the segment connect-

ing vi andvj would be a covered segment by the extended SPT, which is a contradiction.

In Dandelion, we mark such locations aszip points(ZIP).

In fact, zip point is resulting from the crossing of two BOPs ona single segment. As the

focal location of a query moves, the two BOPs on a single segment (covering some portion
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from the two opposing ends of the segment) move closer, the distance on the common

segment between the two BOPs grows smaller, until it disappears; when two BOPs are

crossing each other, then two ZIPs are created. The Zip name comes from the effect of

”zipping up” two sub-trees of the Dandelion shortest path tree with the two BOPs as leaf

nodes respectively.

Dandelion Tree. Let CQ(F, r, T ) be a continuous road network range query and let

Q(F0, r), Q(F1, r), Q(F2, r), . . . , Q(Fk, r) denote the sequence of evaluations ofCQ(F, r, T )

in the duration defined byT . For each snapshot queryQ(Fi, r), we call its extended short-

est path tree (with border-points and zip-points as leaf nodes and the focal locationF as the

root) aDandelion tree. We refer to internal nodes of a Dandelion tree as internal covers.

When a mobile user moves from a focal locationF to the next focal locationF , if

networkdisl(F, F ) � r (one extreme case whereF is 500 meters forward fromF on the

same road segment), then most of the internal covers in the Dandelion tree rooted atF will

stay the same in the Dandelion tree rooted atF . Thus we can reuse the Dandelion tree

rooted atF to compute the Dandelion tree rooted atF as the update to the Dandelion tree

rooted atF is limited only to the rootF (moved toF ) and the leaf nodes (BOPs and ZIPs),

which moved bynetworkdisl(F, F ).

Lemma III: The coverage represented by a Dandelion can be unambiguously sepa-

rated into a forward half (FWD) and a backward half (BWD). The twohalves are separated

by ZIP points with the special property that the two equidistant paths to a ZIP start in the

opposite direction atF .

We first define the FWD half and BWD half of the coverage of a query. Given a con-

tinuous road network range queryCQ(F, r, T ), the evaluation of this standing query is

performed by executing the snapshot queryQ(Fi, r) over the time durationT periodically

until T expires, and the focal locationFi changes as the query issuer moves forward (i =

0, 1, 2, . . . , k, F = F0). We refer to these snapshot queries asQ(F0, r)Q(F1, r), Q(F2, r),

. . . , Q(Fk, r). The sequence of road network locationsF0, F1, F2, . . . , Fk forms a travel
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trajectory of the query issuer. Given any focal locationFi, we call the moving direction

of this trajectory fromFi to Fi+1 the forward direction. Regardless of the actual travel

direction of the query issuer, there are always two root covers emanating from the query

focalF in the opposite direction on the same segment, sayeij = (vi, vj). If F is moved to

F via vi or towardsvi, then we call the root cover fromF to vi the fwd cover and refer to

the root cover fromF to vj thebwdcover. All covers in the tree are descendants of either

textitfwd or bwd, and thus can be easily separated into a FWD and a BWD set. Given a

focal F and the coverage of the snapshot queryQ(F, r), those internal nodes withvi as

their ancestor node in the Dandelion tree rooted atF form the FWD half of the coverage

of Q(F, r). Similarly, those internal nodes withvj as their ancestor node in the Dandelion

tree rooted atF form the BWD half of the coverage.

In the case where the query focalF is located at one of the two ends of a segment,

if the end nodevi is a junction connected byd segments, and the other end nodes of the

d − 1 segments are denoted byvs1 , vs2 , . . . , vsd−1
. If F moves to the junctionvi from vsl

(2 ≤ l ≤ d − 1), then those internal nodes withvl as their ancestor node in the Dandelion

tree rooted atF form the BWD half of the coverage ofQ(F, r). Those internal nodes with

vi as their ancestor node in the Dandelion tree rooted atF are part of the FWD half of the

coverage.

ZIP Active Point − ZAP. While ZIPs are reachable via two equidistant paths origi-

nating fromF , the FWD/BWD delimiter ZIP points’ paths are different from thevery first

segment (either textitfwd orbwd). We may refer to ZIP points as ”ZIP Active Points”

(ZAP), if they need to be distinguished from regular ZIP points, but behave similarly oth-

erwise.

The main idea of the Dandelion basic algorithm is to utilize the FWD half coverage

and the BWD half coverage of a snapshot query to maximize the reuse when using the

coverage of query atF to compute the coverage of query atF . Concretely, the BOPs in the

two halves of the coverage need to be updated differently to ensure the network distances
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from the new border points to the new focalF equals tor.

Figure 17 provides an illustrative example. The coverage ofa query with initial focal

pointF is shown in Figure 17(a). The segments marked in thick red lines are those in the

FWD half and the segments marked in thick dotted green lines are the BWD half. The

coverage of the query after its focal point moved fromF to F is shown in Figure 17(b).

Compared to Figure 17(a), only the three border pointsBOP7, BOP8, BOP9 are moved

forward by distance ofnetwork dist(F, F ). Thus to compute the FWD half and the BWD

half coverage ofF , we can reuse most of the coverage ofF . This is because only the

update of these three BOPs are performed to obtain the FWD half of F . Similarly only a

few updates are needed to compute the BWD half ofF . The coverage reuse is shown in

Figure 17(c).

3.4 Dandelion Basic Algorithms

In this section we will present the basic algorithm for constructing a Dandelion tree an-

chored atF and the algorithm for reuse of the Dandelion tree anchored atF to compute the

Dandelion tree atF . The algorithm for constructing the initial query coverage(Dandelion

tree) takes the query focalF and the query radiusr and computes the Dandelion tree an-

chored atF one hop at a time. We can model this process as growing the Dandelion. The

FWD and BWD coverages are grown simulatenously.

The algorithm for Dandelion reuse takes as input a Dandeliontree atF and the new

query focal locationF , and outputs the coverage ofQ(F , r), assumingF is the previous

snapshot focal point andr is the query radius. One way to maximize the reuse opportunity

is to computeF −shared cover,F −only cover andF −only cover such that the coverage

of F will be the union ofF − shared cover andF − only cover.F − only cover can be

computed by examining the growing part of the Dandelion treewhen the focal location is

moved fromF toF . Similarly,F − shared can be computed by examining both the FWD

coverage and the BWD coverage of the Dandelion tree. Thus we will divide our discussion
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Figure 17: Evolution of BWD (green) and FWD (red) portions of coverage of a query at
F as it is transformed toF ′.
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Figure 18: Primitive BOP Push Operations

into two phases: growing Dandelion (FWD) and BWD Dandelion. In the growing Dande-

lion computation, the Dandelion tree may grow by updating the BOPs, ZIPs and some of its

internal nodes. To maximize reuse of the query coverage ofF in computing the coverage

of F , we introduce three primitive BOP push operations, which transform BOPs into new

BOPs, ZIPs or dead points in the road network, called DEPs. Similarly, we introduce three

primitive BOP pull operations for computing the BWD Dandelion at F .

In the subsequent sections, we first introduce the BOP Push andPull Operations and

then we describe the data structures for promoting Dandelion reuse. We will also de-

scribe the Dandelion basic reuse algorithm, which divides the query coverage into FWD

and BWD halves. To improve the efficiency of Dandelion basic algorithms, we introduce

two advanced Dandelion algorithms− Dandelion-Trident and Dandelion2 in Section 3.5

and Section 3.6 respectively. All three Dandelion algorithms utilize BOPs, ZIPs, fully

covered and partially covered segments, query coverage andDandelion tree as the funda-

mental basics, but one improves the other by using a more-compact and reuse-conscious

data structure.

3.4.1 BOP Push and Pull Operations

We conceptualize the growing phase of a Dandelion tree as a series of local BOP update

operations, in which a BOP is ”pushed” outward and to a location that is outside the query

coverage ofF . There are only three types of BOP push operations (BOP-push ops) that

are used in the growing of a Dandelion tree: BOP-Push-Split, BOP-Push-Dead, and BOP-

Push-Zip.
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BOP-Push-Split: BOP→ (d-1)× BOP.

At a d-way junction, a single BOP, residing on the segment fromv1 to v2, is split into

d − 1 BOPs, denoted byBOP1, BOP2, . . . , BOPd−1 (d > 1), one on each of thed − 1

not-covered segments connected to the junction. Thus the segment fromv1 to v2 becomes

an internal cover. An internal cover can never serve as the basis for further expansion

(only covers in the perimeter of the query), thus we no longerneed to update its distance

from F , even after the query moves to a newF ′′ location. This is a primary source of

performance improvement in the Dandelion algorithm, as theinternal segments do not

need to be updated. Fig. 33(b) shows an illustrative example.

BOP-Push-Dead: BOP→ (d-1)× DEP.

Reaching the end of a dead-end segment, a BOP is transformed into a DEP, and its location

no longer needs to be updated, as it cannot serve as a basis forfurther expansion in the

growing Dandelion phase. Fig. 33(d) gives an example illustration. However, we need to

keep track of the distances at these ”unmovable” BOPs as they may serve as the basis for

the Dandelion shrinking ifF is moving backward. Thus we include them in the perimeter.

BOP-Push-Zip: 2× BOP→ 2× ZIP. When two BOPs are pushed across one another

on a segment, they are transformed into two ZIPs, as shown in Fig. 33(f). ZIPs – like DEPs

– are unmovable, but we need to keep track of their distances from the focal pointF , as

they can serve as the basis for further expansion. Consequently, ZIPs are considered part

of the perimeter.

Similarly, when the query focalF is moved toF , some part of the Dandelion tree atF

will no longer be included in the Dandelion tree atF . We can conceptualize this shrinking

of a Dandelion tree atF as a series of local BOP update operations, in which a BOP is

”pulled” and merged through three types of primitive BOP pulloperations: BOP-Pull-

Merge, BOP-Pull-Undead, BOP-Pull-Unzip.

BOP-Pull-Merge: (d− 1)× BOP→ BOP.

At a d-way junction, two or more BOPs, residing on different segments sharing the same
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end node, sayv1, are merged into one BOP on a segment connected tov1. We add this

BOP into the perimeter set to replace the previous BOPs in the coverage ofF . The segment

from v1 to v2 becomes only partially covered. This is the reverse of the example shown on

Fig. 33(b).

BOP-Pull-Undead: DEP→ BOP.

Some border points of DEP-type points may be pulled to alive when query focal is moved

from F to F . This is the reverse of the example shown on Fig. 33(d).

BOP-Pull-Unzip: 2 × ZIP → 2 × BOP. When two ZIPs are pulled from opposite

directions on a segment, they are transformed into two BOPs, in the reverse of the example

shown on Fig. 33(f). Update to the perimeter set is performedto reflect such transformation.

We have discussed four important road network points: border points (BOP), dead-end

points (DEP), inactive zip points (ZIP), and active zip points (ZAP). We distinguish these

four types of points in the FWD and BWD portion of the Dandelion tree with a prefix

(e.g. fBOP is a border point in the forward tree and bZIP is a ZIPin the backward tree).

Figure 19 gives a brief overview of the state transitions of these four network location

points. First, consider the construction of the Dandelion tree as a gradual growing of the

tree by incrementally increasing its range from 0 tor. Initially, there is only a singleF

focal point, and the query has a range of 0. When the range is first increased, the simplest

tree is created: with one fBOP and one bBOP, assuming thatF is not at a junction node.

As we grow the query range continuosuly until reachingr, all other points are derived from

these two points.

3.4.2 Data structures and Dandelion Tree Construction

In this section, we describe four key data structures for construction and reuse of a Dande-

lion tree:cover, SegCovMap, ordered priority queueandperimeter.

A cover is a fundamental data structure representing the basic information about a fully

covered or a partially covered segment. A cover is specified by the following components:
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Figure 19: State transition and lifecycle of four points in agrow operation.

(i) the cover type (BOP, DEP, ZIP or internal); (ii) asegpointer to its underlying segment;

(iii) the coveredEndIdx, indicating which of the two ends of the segment is closer toF (and

is thus guaranteed to be within the query coverage area, while the other end may fall outside

of it); (iv) the progressindicating the portion of the segment that is covered (whichis by

definition the full segment length for DEP and internal covers); (v) aparentpointer to the

internal-type cover that is upstream from the cover on the path towardsF , the root of the

Dandelion tree; and (vi) for ZIP points an additionalzipperpointer to the paired ZIP cover.

Furthermore, Dandelion covers contain a singlehalf bit, which can be used to determine

if two covers are in the same half of the Dandelion tree. To facilitate reuse, thehalf bit by

itself does not indicate whether that half is FWD or BWD. In orderto determine whether

that half is FWD or BWD, the comparison must be performed to find whether the half bit

of the cover is the same as the half bit of thefwd or bwdcover ofF . This allows the reuse

of the Dandelion tree ofF to compute the Dandelion tree ofF regardless which direction

the path fromF to F is.

A SegCovMapis a hash mapping from segment ID to the list of covers on that segment.

A segment may map to either 1 cover (1 BOP; 1 DEP; 1 internal), or2 covers (2 BOPs; 2

ZIPs). The segment ofF is special case, as it may map to 1 BOP + 1 internal cover; or in a
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special situation to 2 BOPs + 1 internal cover; or 2 ZIPs + 1 internal cover. The SegCovMap

can be used to for coverage checking (i.e. to determine, whether any specified road network

location is covered by the query or not), and is also used to find existing covers on a segment

(e.g. for detecting whether a BOP-Push-Zip operation needs to occur). The SegCovMap

can be viewed as an inverted index that maps segments to the covers on them and is updated

mostly by addingd−1 new covers at ad-way junction during a BOP-Push-Split operation.

Removals also occur to SegCovMap. For example, segments in theportion of FWD, which

are not shared by the FWD atF , must be removed one by one when reusing the FWD atF

to compute the FWD atF .

An ordered priority queue is used to process covers during coverage growing, and

perform the BOP push operations in the correct sequence. The queue is ordered by the

smallest distance fromF . Three basic operations are performed on the ordered priority

queue. An ”enqueue” operation happens when a cover is inserted into the ordered priority

queue. A ”dequeue” operation takes place when a previously enqueued cover must be

removed from the queue. A ”popqueue” operation occurs when the head of the queue is

popped out for processing. The initialization of the queue may differ depending on whether

the queue is used to create the initial Dandelion tree (coverage) or the queue is used to

compute the coverage atF by maximizing the reuse of the coverage atF .

A perimeter set is an unordered set, containing all the non-internal covers, as these

may serve as the basis for further expansion. In the basic Dandelion reuse algorithm, a

hash table is used for quick containment checking and removal of a non-internal cover

from the perimeter.

Dandelion Tree Construction.

Upon installation of a continuous road network range queryCQ(F, r, T ), its initial evalu-

ation is to construct a Dandelion tree anchored atF scoped by the network distance range

r. The algorithm starts the creation of an initial Dandelion tree using the ordered priority

queue. We assume thatF is a location on a segment. First, the queue is initialized with the
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two root BOP covers (fwd andbwd), both located at exactlyF , but each with a different

coveredEndIdx. The Dandelion tree grows as we examine each cover in the queue and up-

date the queue accordingly. BOP-Push operations are performed in asplit-then-push-out

fashion: when a cover is popped from the queue, if the cover isa partial covered segment,

then it is pushed out to the end of the current segment, and if its distance toF is less than

query radiusr, then its distance is updated, and this cover is re-enqueued. When this cover

is encountered at the head of the queue again, itsprogressis at a junction node, and if the

junction is not a dead end, then this cover can be immediatelypushed and split onto the

connecting segments. This ensures that the border points ofthe query are computed hop by

hop fromF with r radius. Continuing this process, the children covers are in turn pushed

out to the end of their respective segments, if their distances toF are less than query ra-

dius r, then theirprogressand distances fromF are updated, and they are enqueued for

subsequent examination.

If a push-out results in a distance toF farther thanr, then the push is limited by placing

a BOP on the segment such that the BOP is at exactlyr distance fromF , and this BOP

is not enqueued. Immediately after the push-out of a child BOP, theoverpush-detectionis

performed: SegCovMap is consulted for other covers on the segment, and for each such

cover, we check (i) if the pushed-out BOP is the only BOP on the segment or else if it does

not cross any other BOP on the segment, if yes, we add this BOP to theperimeter setand

also add this BOP as a leaf in the Dandelion tree. (ii) Otherwie, if the pushed-out BOP has

beenoverpushed(i.e., pushed beyond the location of another BOP on the same segment),

then two BOPs have crossed over each other and a BOP-Push-Zip isperformed, and the

two BOPs equidistant ZIP location is computed (which is guaranteed to be on the current

segment due to the processing order guaranteed by the priority queue). The ZIPs are added

to both the Dandelion tree as lead nodes and to theperimeter set.

When a BOP-Push-Split is pushed and splits the current BOP intod−1 BOP segments,

some of them may no longer be pushed before reaching the road-network distancer from
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F , because they are dead-end segments and at a dead end (DEP) there are no outgoing

segments to split onto, then a BOP-Push-Dead is invoked instead BOP-Push-Split.

When the cover popped from the ordered priority queue is a fully covered segment, it

is added to the Dandelion tree as an internal node and is not enqueued.

This process iterates until all covers in the queue are examined. As a result, the Dande-

lion tree is fully constructed.

To maximize the reuse opportunity, we keep a separate SegCovMap and a separate

perimeter set for FWD and BWD. There are two obvious advantages of this design. First,

it allows the wholesale disposal of the segment-to-cover mapping in the BWD portion of

a Dandelion tree efficiently. In addition, shouldF ′ be in BWD (if the user travels in a

beeline after the query coverage re-evaluation atF ), then the FWD and BWD SegCovMap

and perimeter set are simply swapped first. This swapping also explains why a cover’shalf

bit is not by itself an indicator of containment in FWD. If the bit were a direct indicator

of one half, then after a swap, all the covers in the newly-FWD Dandelion half tree would

need to be traversed for updating this bit. This is another example of the Dandelion design

that maximizes both the reuse potential and the reuse efficiency by minimizing unnecessary

computation and update operations.

3.4.3 Dandelion Basic FWD-BWD Reuse Algorithm

We have described the algorithm to construct an initial Dandelion tree (coverage) for the

initial evaluation of a continuous road network range queryusing the ordered priority

queue. Given the query focalF , the the queue is initialized with only two root covers:

the fwd cover and thebwdcover. Upon the completion of the tree construction, we obtain

the FWD portion of the coverage and the BWD portion of the coverage from the Dande-

lion tree respectively, as shown in Figure 31(a). In the basic Dandelion reuse, we keep a

separate SevCovMap and a separate perimeter set for FWD coverage and BWD coverage

in order to speed up the computation of the coverage atF by reuse of the coverage atF .

80



FF

BWDBWD FWDFWD

rr

(a) Coverage atF .

FF’’

FWDFWD’’ 00

rr

(b) Part ofF coverage reusable atF ′.

FF’’

rr

∆∆
F

W
D

+
F

W
D

+

∆∆
B

W
D

B
W

D --

∆B2B

∆
F

2
F

∆
F

2
F∆
F

2
B

∆
F

2
B

(c) Coverage changes in aF -to-F transformation.

FF’’

BWDBWD’’ FWDFWD’’

rr

(d) Coverage atF ′.

Figure 20: Schematic of evolution of BWD and FWD portions of coverage of a query at
F as it is transformed toF ′. (All dist. on road – real coverage not octogonal. Coverage at
F shown dashed on all figures for reference.)

81



FF
(a) Coverage atF .

FF’’

FWDFWD’’ 00

(b) Portion of coverage atF reusable atF ′.

FF

FF’’

CC
FWD+FWD+ CC

F2FF2FCC
F2BF2B

CC
B2BB2BCC

BWDBWD--

FWDFWD’’ 00

(c) Changes in coverage during a transformation
from F to F ′.

FF’’

(d) Coverage atF ′.

Figure 21: Example of evolution of BWD and FWD portions of coverage of a query atF
as it is transformed toF ′.

82



When the query focal point is moved fromF toF , the basic Dandelion reuse algorithm

aims at computing the FWD coverage and the BWD coverage atF by maximizing the

reuse of the FWD coverage and BWD coverage atF . The key insight for Dandelion tree

reuse is that a forward portion of the Dandelion tree will have the same structure at bothF

andF ′, denoted by FWD0 (see Figure 31(b)), and all distances of BOPs, DEPs and ZIPs in

FWD simply need to be increased by thedx displacement betweenF andF ′ to be correct

in the new FWD’ tree (regardless of the actual route taken by the user, as a coverage only

depends onF ’s location andr). The FWD′ subtree is simply the portion of FWD that is

also forward from the new focal locationF ′.

However, those segments that are in FWD, but not in FWD′ need to be removed from

both the SegCovMap and the perimeter set (see Figure 31(c)). These segments can be found

by traversing in the Dandelion tree all of the side-trees along the shortest path fromF toF ′.

As covers in these side-trees are removed, the ZIP points that straddle the demarcation line

between FWD′ and the non-overlapping part of FWD are turned into BOPs (by a simple

type change). Finally, the FWD perimeter set will only contain those BOPs whose distances

and paths are correct with respect to the new focal locationF ′.

Construction of Dandelion Tree atF by Reuse. One way to reuse the coverage at

F in constructing the Dandelion tree atF is to initialize the ordered priority queue with

both the FWD′0 perimeter set (instead of a new rootfwd cover), and a new rootbwdcover.

Subsequently, the queue is processed iteratively as described in the initial query coverage

computation. As a result, only the perimeter of FWD′
0 has been traversed, and its internal

covers (which may be numerous) have been reused completely,without ever being touched

during the re-use.

Figure 31 shows the conceptual formulation of FWD′
0. Figure 21 gives a detailed ex-

ample. FWD′0 is the reusable portion of the coverage.∆FWD+ is the FWD portion of the

query coverage atF ′ that has not been covered atF . ∆F2F is the portion of the query

coverage that is in both FWD and FWD’, but via different paths, and is thus not reusable.
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∆F2B is the portion of the FWD tree that is in BWD’ atF ′. ∆B2B is the portion of the

BWD tree that is also in BWD’, but still must be recomputed, as the distances into it may

have changed in unpredictable ways (notably, due to paths that lead into this portion via

∆F2B, as they are shorter than those fromF ′ backwards viaF ). ∆BWD- is the portion of

the BWD tree that is no longer covered atF ′.

In summary, we can classify covers into three categories on each re-evaluation: (i) New

covers signify segment covers that have been created duringthe re-evaluation step. (ii)

Reused, but updated, covers are those that were created during a previous re-evaluation,

but have been modified in the current step (for example, reused BOPs would fall in this

category). (iii) Reused and not updated covers are those thatare present in a current re-

evaluation step in exactly the same form as in the previous step (e.g. internal covers in

FWD′
0). Our experiences with Dandelion show that when the query radius reaches a non-

trivial size, the ratio of the three reuse types stabilizes,indicating good scalability of the

Dandelion reuse algorithms.

3.5 Dandelion-T

In the Dandelion basic reuse algorithm, to compute the Dandelion tree at the new focal

locationF , we need to first identify FWD′0, namely the FWD portion that is shared at both

F andF . This requires the algorithm to traverse the perimeter set of the FWD coverage

in order to find those BOPs in FWD′0, and then follow the parent pointers at BOPs to

obtain the entire shared portion of FWD, namely FWD′
0. Given that the perimeter set is

an unordered set of all non-internal covers (partially covered segments) with a hash table

for quick containment check and removal, when the size of theperimeter set is large, a

sequential scan of the perimeter set can be quite expensive,even though we keep a separate

perimeter set for FWD and BWD.

We envision that a fast way to identify those covers shared bythe Dandelion tree (cov-

erage) atF and the Dandelion tree (coverage) atF is to have the capability to find all the
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Figure 22: Trident and Guide data structures.

non-internal covers in a subtree anchored at a given internal cover. This capability will

allow us to quickly find those non-internal covers that are part of the subtree anchored at an

internal cover, which is included in both the coverage atF and the coverage atF , without

scanning irrelevant covers in the perimeter set. This motivates us to introduce Trident, a

new data structure that allows us to create an inverted cover-to-perimeter index such that we

can find the set of non-internal covers in the subtree anchored at any given cover efficiently,

speeding up the Dandelion reuse based query re-evaluations.

Clearly, in Dandelion-T we no longer need to keep a separate perimeter set for FWD

and BWD due to the integral update of a correctly ordered perimeter-list during all BOP-

push and BOP-pull operations.

In the rest of the chapter we call the Dandelion basic reuse algorithm simply as Dande-

lion and refer to the Dandelion that supports the Trident structure asDandelion-T.

Trident is a value-added auxiliary data structure to extenda cover in the basic Dande-

lion in order to further improve the performance of Dandelion reuse. A Trident cover is an

extended cover that contains three additional pointers in addition to the information about

a cover, which allows the management of the perimeter set as alinked list (instead of a

hash table) and also enables us to quickly find the set of BOPs inthe perimeter set that

are descendants of the Trident cover. Formally, atrident cover (Fig. 22) contains all the

attributes of a simple cover (Fig 22(a)), except for thehalf bit, and also contains: aleft
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and aright pointer, which ensure that the perimeter list traversed from left to right contains

all the BOP, DEP and ZIP covers that are descendants of the trident; and acw (clockwise)

pointer, pointing clockwise towards tridents in the perimeter of the Dandelion. All three

pointers of a Trident− left, right andcwpoint to aguidedata structure (Fig. 22(c)), which

does not represent any location on the road network, and simply serves as an interstitial be-

tween covers. A guide contains a singlecw (clockwise) pointer to a trident in the clockwise

direction. With this guide structure, all covers in the perimeter are linked in a clockwise

fashion, making the access to the BOPs relevant to any given cover convenient and fast.

Therefore the perimeter is composed of an alternating list of tridents and guides; each tri-

dent is an extended cover of either type BOP or DEP or ZIP. The FWDhalf of a Dandelion

tree is accessible by iterating from fwd.left to fwd.right (and similarly for BWD). Also it is

worth to note that fwd.left = bwd.right, and fwd.right = bwd.left.

Figure 23 gives an intuitive view of some part of a sample Dandelion-T. Figure 23(a)

shows the sample portion of the Dandelion-T with internal and BOP type tridents. Fig-

ure 23(b) shows the sample portion of the Dandelion-T with tridents of all four types (in-

cluding ZIP and DEP tridents).

The correctness of a perimeter list with tridents and guidescan be maintained using the

three primitive BOP-Push operations for trident covers, which is a slight modification of the

three basic BOP-Push operations in the Dandelion basic algorithm (recall Section 3.4.1).

Figure 24 provides an intuitive illustration of trident structure updates.

By design, any complex operation in the FWD Dandelion can be broken down into the

three simple BOP-Push operations (and similarly for the BWD Dandelion), while keeping

all trident covers in a correct clockwise ordering in the perimeter. Figure 25 shows an

example of how a proposed new BOP-Push-Merge subop can be replaced with a BOP-

Push-Split followed by a BOP-Push-Zip.

All ZIP points also remain in the perimeter. To help understand what a clockwise

ordering means in the case where BOPs are pushed into ZIPs, we provide an example in
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(a) Dandelion-T with internal and BOP type tri-
dents.

(b) Dandelion-T with internal, BOP, DEP and ZIP
type tridents.

Figure 23: Detail of a sample Dandelion-T tree portion.

Figure 26 to show the detailed steps of how the ordering is maintained once the creation

of a ZIP is taken into account. Concretely, Figure 26(a) showstwo BOPs before entering

the crossing street. Figure 26(b) shows the two BOPs are now split into four BOPs after

expansion of each BOP onto the other two segments by crossing the nearby three way

junction. Figure 26(c) shows the case in which two BOPs on the cross-street expand by

crossing one another and BOP-Push-Zip generates two ZIPs to replace the two BOPs on

the cross-street segment. Due to the space constraint, in this chapter we omit the theoretical

analysis of the correctness of the ordering of tridents and guides in the perimeter set.

We have implemented Dandelion (basic reuse) and Dandelion-T (trident powered reuse)

in our first prototype system. To provide an intuitive visualization of Dandelion reuse en-

abled network range query evaluation, we present some visualization screenshots taken

from our prototype of Dandelion and Dandelion-T, ranging from the simplest query cover-

age with only two BOPs (Fig 27(a)), to simple queries with onlyBOPs (Fig 27(b) and

Fig 27(c)), and to highly complicated query coverage trees (Fig 28(a) and Fig 28(b)).

Fig 27(b) shows a query with very small query radius in terms of network distance of
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Figure 24: Dandelion-T data structure updates after FWD BOP-Push ops.
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Figure 25: Decomposition of a complex BOP-Push-Merge situation into basic subopera-
tions.

(a) 2 BOPs before cross-street.(b) 4 BOPs after expansion onto
cross-street.

(c) 2 BOPs + 2 ZIPs after zipping
on cross-street.

Figure 26: Ladder example showing the correct ordering of ZIPs in the perimeter.
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(a) Simplest possible query. (b) Small query. (c) Small query with left/right
pointers.

Figure 27: Sample small queries. (r = 20− 200 m; map scales not comparable)

less than 200 meters. Fig 27(c) shows a small radius query with tridents and guides in the

perimeter, while highlightingleft andright pointers. Fig 28(a) shows a sample query with

relatively larger radius of 2000 meters with the query coverage computed using Dandelion.

Fig 28(b) shows a sample query with the same radius of 2000 meters but at a different

query focal point with the query coverage computed using Dandelion-T, and highlighting

the left andright pointers.

3.6 Tree-transformation with Dandelion2

We have shown that Dandelion2 is faster and more effective than Dandelion basic algorithm

for speeding up the re-evaluations by maximum reuse, thanksto the compact trident data

structure to maintain a correctly ordered perimeter list during the transformation of the

Dandelion tree atF to the Dandelion tree atF . However, by carefully examining the

transformation process in Dandelion and Dandelion-T, we observe that when the query

focal point is moved fromF toF , the transformation of the Dandelion tree (coverage) atF

to the Dandelion tree (coverage) atF can be done more intelligently and more efficiently.

First, we argue that the coverage at any location depends only on query parameters

(such as focal location and query range) and the topology of the underlying spatial network,

and it should be independent of the method used to calculate the coverage. Concretely, there

may be multiple paths fromF toF . Thus, transformation operations along any path fromF
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(a) Large query. (b) Large query with left/right pointers.

Figure 28: Sample large queries. (r = 2000 m; map scales not comparable)

toF ′ must yield the same coverage atF ′. By utilizing this path-independence property, we

can perform the transformation along the shortest path or the path with the fewest number

of segments (and thus operations), instead of using the actual path taken by the mobile user

who issued the continuous range query.

Second, the coverage-transformation fromF to F ′ can be broken down into a series of

primitive mov (move) andjmp (jump) operations.

A mov dx operation transforms the coverage atF1 = (e, p1) into the coverage atF2 =

(e, p2), wherep2 = p1 + dx; i.e., it moves the query’s coverage from a focal locationF1

on a segment to another locationF2 on the same segment. The parameter ofmov is a real

valuedx, which is the distance movement on the segment, consideringthe origin (p = 0)

of the segment is at the end-vertex with the lower index. Ifdx > 0, then the movement is

towards the end-vertex with the higher index (the ”end” of the segment); and ifdx < 0,

then the movement is towards the lower index vertex (the ”start” of the segment).

A jmp e2 operation transforms the coverage atF1 = (e1, len(e1)) into the coverage at

F2 = (e2, 0), wheree1 ande2 are connected edges andF1 ≡ F2; i.e., the primitivejmp

91



F F’

mov 50m mov 100m mov 50m

jmp v 1v2

v1v1 v2 v2v0 v3

jmp v 2v3

sidetree 11

sidetree 21

Figure 29: Observation III: Breakdown of tree-transformation fromF toF ′, as shown on
Figure 15(a), into a series of mov and jmp operations.

operation jumps the query’s coverage from one segment’s endto the next segment’s begin-

ning, without actually moving the coverage by any distance.The parameter ofjmp is the

edge to jump to, and a jump is only a valid operation at the end of a segment. ByF1 ≡ F2,

we mean that the network location exactly at ad-way vertex can be described byd different

forms, one per edge, say(ei, p) (i = 1, 2, . . . , d), and all these forms represent the same

network location. Furthermore, the progressp can be any value in the range of [0,len(e)]

(the total length of the edge), in all possible combinations. Clearly, ajmp operation does

not move either the focal location, the border-points, or the covered network locations. Al-

though the network locations before and after the jump are equivalent,jmp transforms the

coverage from a focal location immediately before a junction, to the coverage immediately

past the junction. Using the example in Figure 29, it is a movefromF1 = (e1, len(e1)− ε)

to F2 = (e2, ε) while ε → 0).

Consider Figure 29, which breaks the∆ = 200 m distance between the two queries

of Figure 15 into a series of 5 transformation steps: (1)mov 50mmoves the query focal

location fromF to (v0v1, 100m); (2) jmp v1v2 jumps the focal location from the current

(v0v1, 100m) to (v1v2, 0m), both of which are exactly atv1; (3) mov 100mmoves us from

the start of thev0v1 edge to its end; (4)jmp v2, v3 is a new jump without movement; and
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finally (5) mov 50mmoves the focal location to the desiredF ′.

In short, we argue that the coverage at any location is independent of the method used

to calculate the coverage, though it may depend on query parameters, such as focal location

and range and the underlying spatial network topology. Thus, we can prove that the series

of mov and jmp transformation operations along any path fromF to F ′ must yield the

same coverage atF ′. Thus, by utilizing the pair of primitive transformation operationsmov

and jmp , one can obtain an optimal implementation of the coverage transformation from

F to F by simply performing the transformation along the shortestpath or the path with

the fewest number of segments (and thus operations), instead of being concerned with the

actual path taken by the mobile user who issued the continuous network range query.

Figure 30 shows the evolution of BWD (green) and FWD (red) portions of the coverage

of a query atF , as it is successively transformed fromF (Figure 30(a)) toF ′ (Figure 30(b))

and then toF ′′ (Figure 30(c)), withr = 600 m and all distances are to scale. From this

example, we can see the advantage of themov andjmp transformation for Dandelion reuse.

Note thatF andF are on the same segment. With amov operation,F is pushed to the end-

vertex with the higher index on the same segment. The vertex is a 3-way junction and thus

the segment whereF was located is now marked as a cover in BWD (color of the segment is

changed from partially red to green). The other two segmentsare covers common in FWD

at bothF andF . The four ZAPs are pushed by the equal distance ofnetwork dist(F, F )

and the ZAP segments are updated in FWD and removed from BWD atF . ZIP3 and

DEP3 are unchanged.BOP6 andBOP7 become aZIPB6+7. BOP8 is push-split into

BOP8a andBOP8b. BOP5 is push-dead toDEPB5. Similarly, the coverage afterjmp at

F chooses the right segment to push forward, making the left cover to be removed from

FWD and inserted into BWD. The change of the left cover atF to be in the BWD coverage

triggered the transformation of all segment covers connected to this cover into the same

half (BWD in this case).

Now consider the Dandelion tree with the constant ranger: by usingmov and jmp
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Figure 30: Evolution of BWD (green) and FWD (red) portions of coverage of a query at
F as it is successively transformed toF ′ and then toF ′′. (r = 600 m and all distances are
to scale.)
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Figure 31: Schematic of evolution of BWD and FWD portions of coverage of a query at
F as it is successively transformed toF ′ and then toF ′′. (All dist. on road – real coverage
not octogonal. Coverage atF shown dashed on all figures for reference.)
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Figure 32: State diagram of the lifecycle of points in the course ofmov andjmp opera-
tions. (Reversal of direction not shown.)

operations we transform it fromF to new focal locations in the steps shown in Figure 32.

On the forward side, amov may transform a single fwd BOP into multiple fwd BOPs when

the movement takes it beyond a junction. A single fwd BOP may also be transformed into

a fwd DEP when reaching the end of a dead-end segment, or transformed together with

another fwd BOP, into a single fwd ZIP, when pushed together ona single segment. Ajmp

transforms all fwd non-internal covers in the sidetree(s),regardless of the specific type,

that are being jumped over, into bwd non-internal covers. Onthe backward side, the oper-

ations are symmetrical to the forward side operations but inreverse order, as summarized

in Table 2. The three principal operation-pairs are illustrated on Figure 33.
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Subop Before After Inverse subop

BOP-Push-Split 1 BOP * BOP BOP-Pull-Merge
BOP-Push-Dead 1 BOP 1 DEP DEP-Pull-Undead
BOP-Push-Zip 1 BOP 1 ZIP ZIP-Pull-Unzip
BOP-Push-Merge * BOP 1 BOP BOP-Pull-Split
ZAP-Push-Merge * BOP 1 BOP ZAP-Push-Split

Table 2: Suboperations that change the number or type of points. (Frequent subops in
bold. Push subops are applicable only on the FWD side, and Pullsubops only on the BWD
side.)
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Figure 33: Subops.
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3.7 Experimental evaluation

This section presents the experimental evaluation of the proposed Dandelion approach. We

present three sets of experimental results: First, the performance comparison of the Dan-

delion algorithms with the conventional shortest path network expansion (NE) algorithm.

Second, we performed the comparison and evaluation of the impact of different parameters

on Dandelion reuse efficacy at various query ranges and re-evaluation periods. Third, we

presented detailed, un-aggregated measurements on the life of an example query to gain

further understanding of Dandelion algorithms and the effectiveness of Dandelion reuse.

3.7.1 Experimental Setup

All experimental results reported in this chapter were conducted using our prototype im-

plementation of Dandelion, using Java 1.7.0 with a version 2.6 Linux kernel, on a 3.0 GHz

Intel Xeon machine with 8 GB memory.

In all the experimental results reported in this section, each data point is the result of

a single simulation run using multiple simultaneous, similarly parameterized continuous

queries executed along different routes in the road network. We eliminate first-run effect

artifacts by preceding each simulation run with a warm-up period. The mobility traces of

query issuing mobile objects are generated by a random trip model of the GT MobiSim

simulator [34], wherein each mobile client selects a randomdestination on the road net-

work, then travels the fastest route to that destination, using speeds at or below the posted

speed limits on the traveled road segments; and finally, after reaching its destination, re-

peats with the next randomly selected destination and starts the trip again. The movements

of the individual queries are independent of each other, andthe queries do not interfere

with each other. The road networks used in simulations are full county maps from the US

Census [43].
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3.7.2 Comparing Dandelion with standard NE

In order to make a fair comparison with standard NE, we dividethe cost of Dandelion

into initial query coverage computation at initial focal point F and subsequent coverage

re-evaluations at subsequent focal locations. We show thatalthough the initial coverage

computation of Dandelion is relatively expensive comparedto the standard NE, the sub-

sequent coverage re-evaluations through Dandelion reuse provide significant payoffs over

the one-time initial computation cost.

Figure 34(a) shows the initial evaluation computation costs for NE, Dandelion and

Dandelion-T as a function of the query radius, measured in wall clock time. Addition-

ally, Figure 34(b) plots the performance of the two Dandelion algorithms as a percentage

of the NE performance over similarly parameterized queries. The initial evaluation cost is

the time required to calculate the coverage data structure (a shortest path tree for Network

Expansion; or a Dandelion data structure) for a newly issuedquery (i.e. when no reuse

is possible). Since the initial evaluation of a query is a one-time event, it is only depen-

dent on the (randomly chosen) focal location and surrounding map topology of the query

issuers at the start of the simulation, and is independent oftemporal proprieties, such as the

re-evaluation period or the route taken and the speed of the mobile users on the traveled

segments. Consequently, the initial evaluation cost is shown without reference to the irrel-

evant re-evaluation period. As the number of segments covered by a query, is proportional

to the square of the query radius, we see a marked rise in the initial evaluation cost with an

increase in query radius.

As the Dandelion data structure is more sophisticated than the simple shortest path tree,

we also observe that the initial cost of building a Dandeliontree is around 40% higher than

that of NE when the query radius is large. However, the extra cost pays off handsomely

for subsequent re-evaluations through maximum reuse. It isalso interesting to note that

but the initial evaluation of Dandelion is lower than NE whenthe query radius is very

small (500 m), as a result of the extremely simple structure of the coverage. The initial
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Figure 34: Average of initial and reevaluation query calculation costs of Dandelion, with
re-evaluation periods of1 s and5 s.
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evaluation cost of Dandelion-T bears a similar but slightlybetter profile, as its costs are

relatively lower, at around a 20–30% overhead to NE. This improvement is due to the

superior perimeter set management via trident covers in Dandelion-T. The savings come

from not having to maintain a separate perimeter-set hash-table and perform unnecessary

search and computation on irrelevant non-internal covers.

Figure 34(c) and Figure 34(d) show the average re-evaluation costs as a function of the

query radius. In both figures, Dandelion and Dandelion-T arecompared to NE in terms

of cost of re-evaluation in seconds and in percentage of NE performance respectively. The

average re-evaluation cost at the current focal locationF is the average time required to cal-

culate the coverage data structure, given that the data structure is already available from the

previous, nearby focal location. As the NE approach is unable to reuse a previously com-

puted shortest path tree, it is at a severe disadvantage to Dandelion, which is designed to

maximize reuse. Note that the re-evaluation cost for NE is independent of the re-evaluation

period. The reason that re-evaluation cost in Figure 34(c) is not directly comparable to the

initial evaluation cost shown in Figure 34(a) is the following: as the re-evaluation costs are

averaged over not only all queries, but the entire lifetime of all queries, and is thus depen-

dent on the network topology surrounding the trajectories of the mobile users who issued

queries. In comparison, Dandelion maintains the core FWD′
0 portion of the expansion tree

unchanged, and only calculates the BWD subtree and a portion ofthe FWD tree in each

step. As a result, the re-evaluation cost of Dandelion is decreasing as a function of the query

range, since larger queries provide an opportunity for reuse of not only more segments but

also a larger proportion of the total number of segments in the coverage. When the query

radius is not too small (more than 500–1000 m), re-evaluation using a Dandelion tree is

faster than using NE, providing savings in the 20–40% range over NE for large queries in

each re-evaluation.

Cost Analysis of NE and Dandelion.We would like to note that comparing to NE,

although Dandelion has higher overhead for the initial evaluation, it is a one-time cost
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Figure 35: Breakeven query runtime of Dandelion algorithms against NE,with re-
evaluation periods of1 s and5 s.

and the saving from subsequent re-evaluation is recurring each time when the query is re-

evaluated. Thus the overall payoff is significant, especially for long running continuous

network range queries with reasonably sized radius. This observation is confirmed by the

relative performance of Dandelion at 1 sec and 5 sec re-evaluation periods in Figure 34:

higher re-evaluation frequency decreases the computational cost by around 10–20% and

larger query radius reduces the computational cost up to 40–50%. These factors indi-

cate that Dandelion is especially well suited for large roadnetwork queries that must be

continuously re-evaluated in near real-time, at a high frequency. Additionally, by incor-

porating Trident covers in the perimeter-set management, Dandelion-T offers additional

performance improvement over the basic Dandelion algorithm.

Figure 35 provides the experimental results on the breakeven query runtime of Dande-

lion against NE. Before we illustrate the plots in Figure 35, we first provide a brief analysis

of the cost comparison between Dandelion and NE.

Let dt denote a re-evaluation period. Dandelion’s highertDinit initial cost and lowertDre

re-evaluation cost lead to a total computation cost ofCD = tDinit + tDre ·
t
dt

after t seconds
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of query time. Similarly, NE’s lowertNE
init initial cost and highertNE

re re-evaluation cost

lead to a total computation cost ofCNE = tNE
init + tNE

re · t
dt

after t seconds of query time.

Therefore, given a road network map and a constant query radius, there exists a break-even

time tb which is whenCD = CNE. If a query runs shorter thantb, thenCD > CNE, and

therefore it is cheaper to simply re-evaluate the coverage every time from scratch using NE.

However, if a query runs longer thantb, thenCD < CNE, and therefore using Dandelion

pays off. Thetb break-even time is derived as:

CD = CNE

tDinit + tDre ·
tb

dt
= tNE

init + tNE
re ·

tb

dt

tb = dt ·
tDinit − tNE

init

tNE
re − tDre

We conduct a set of experiments to measure such break-even time for the Dandelion

algorithm against NE by varying query radius from 500 metersto 5000 kilometers. This set

of experiments helps answer the question such as ”How long should a query run, so that the

it becomes cheaper overall to run Dandelion than NE?” or in other words, ”After how many

seconds does the investment of the Dandelion reuse data structures and algorithms in the

higher initial computation pay off (due to the much lower subsequent incremental coverage

computation cost)?”. Figure 35(a) shows the payoff time in seconds for the Dandelion

algorithm comparing with NE.

First, we observe that for very small queries (500 m radius),the higher initial cost of

Dandeliondoes notpay off, as the re-evaluation cost is also relatively higherfor Dandelion

compared with NE. The experimental result matches our analysis that when queries have

small radius, the number of segments covered is so few that simply recomputing the short-

est path tree from scratch is inexpensive in comparison to building the Dandelion reuse

structures. Thus, using NE is recommended. However, as queries get larger (with 1 km or
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higher radius), running Dandelion does in fact become cheaper after some time, but this pri-

marily depends on the re-evaluation period. With re-evaluation at every second, after only

around 1 sec of query runtime (i.e., after a single re-evaluation following the initial evalu-

ation), Dandelion already breaks even. When re-evaluationsare performed less frequently

(e.g., every 5 sec), the re-evaluation is more costly due to the higher displacement, thus for

the queries with radius of 1000 m moving along the same spatial region of the same map

as the ones we used in the experiments, NE wins the competition. However, with a larger

query radius of 2 km or higher using re-evaluation frequencyof 5 sec, the break-even time

is around 5 sec, which again indicates that Dandelion pays off after a single re-evaluation

following the initial evaluation. As queries get larger, the break-even time drops below the

periodic re-evaluation frequency ofdt. From Figure 35(a), we also observe that the payoff

time increases slightly when the radius is increased from 3 km to 4 km and then drops back

to around 3 seconds when the radius rises to 5 km. These ups anddowns are due to the

routes on the map the query issuers took given the random tripmodel used in the simulation

to generate queries and mobility traces of mobile users. In summary, Dandelion generally

outperforms NE for queries with larger radius and higher frequency of evaluations.

Figure 35(b) shows the break-even time for the Dandelion-T algorithm against NE.

We note that for Dandelion-T, the payoff timetb (see y-axis) is much lower than Dande-

lion basic algorithm, around1
3
dt, indicating that there is substantial margin of safety in

performance when using Dandelion-T compared to NE, and thatDandelion comfortably

outperforms NE with non-trivial query radius and long running continuous range queries

on road networks.

3.7.3 Impact of Different Parameters on Reuse Efficiency

In this set of experiments, we investigate the effect of two factors on query performance.

First, we vary the query radius from 500 m to 5 km. Second, we vary the re-evaluation

period from 1 sec to 5 sec, and preform query re-evaluations for a simulated 10 minutes.
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Figure 36: Average number of overlapping segments across coverages atconsecutive
re-evaluationF locations, with re-evaluation periods of1 s and5 s.

Note that both the re-evaluation period and the query lifetime are measured with the internal

clock of the simulated world

Figure 36(a) shows the potential for reuse, by plotting the number of fully-covered

(i.e. internal) segments, averaged over all consecutive re-evaluation focal locationsF and

F ′. With an increase in query size, the overlap, and thus the potential for cover reuse

grows quadratically. Additionally, Figure 36(b) plots theoverlapping segment count as a

proportion of the total number of covered segments. While small queries offer less overlap

between two re-evaluation locations, the ratio of the overlap to the entire coverage increases

above 90–95% as query radii grow. Comparing the overlap giventwo re-evaluation periods,

we observe that a higher frequency of re-evaluations also increases the ratio of the overlap,

due to smaller query focal location displacement.

We show the averagedx displacement on Figure 37(a), both in terms of number of

segments, and in terms of meters (actual road network distance betweenF andF ′). With

a high re-evaluation period (1 sec), most re-evaluations take place on the same segment

(dx < 1 segment), while with a lower period (5 sec), most re-evaluations take place on

connected segments (dx > 1 segment). The average displacement is less than 10 meters

105



1 5
0

1

2

3

4

5

6

query reevaluation period [s]

av
er

ag
e 

dx
 s

iz
e

# of segments
10 meters

(a) Re-evaluation period in distance units.

Figure 37: Re-evaluation displacement.

for the faster, and more than 60 meters for the slower re-evaluation.

Figure 38(a) and Figure 38(b) show the measurement of the number of Dandelion cover

types and a percentage of the total coverage in a stack on style, respectively. While the

need to manage these key road network locations may seem tedious, their total is less

than 60% of the count of covered segments. With small query radii, the proportion of

BOPs dominates, but as the query radius increases, BOPs make for around 5% of the total

coverage (as they are only present in the outer perimeter of the query, whose length is

proportional to the query radius, while the size of the coverage is proportional to the square

of the query radius). Furthermore, the large number of ZIPs (and also DEPs) are immovable

when reused, leading to further performance gains over NE.

Figure 39 evaluates the efficiency of reuse by measuring the average number of covered

(reused) segments and the percentage of covered segments for queries with varying radius.

Covers are classified into three categories on each re-evaluation: New covers signify seg-

ment covers that have been created during the re-evaluationstep. Reused, but updated

covers are those that were created during a previous re-evaluation, but have been modified

in the current step (for example, reused BOPs would fall in this category). Reused and not
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Figure 38: Cover types in Dandelion coverage.
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Figure 39: Average number of segments reused, with re-evaluation periods of1 s and5 s.
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Figure 40: Average number of queue operations performed, with re-evaluation periods of
1 s and5 s.

updated covers are those that are present in a current re-evaluation step in exactly the same

form as in the previous step (e.g. internal covers in FWD′
0). Figure 39(a) shows all three

types of covers measured at re-evaluation frequency of 1 secand 5 sec for varying radius.

The number of reused and non-updated covers is the highest for both frequencies. The

reused and updated covers are the lowest in comparison for both 1 sec and 5 sec frequency,

and the number of new covered segments inserted to the coverage are in the middle. Fig-

ure 39(b) shows the percentage of the covered segments over the total coverage. We would

like to note that after an initial rise in the percentage of covered segments, the ratio of

the three reuse types over the total number of covered segments stabilizes as query radius

increases, showing an excellent scalability of Dandelion reuse.

3.7.4 Effectiveness of Data Structures

In this section we evaluate the key data structures used in Dandelion and how effective they

are with respect to reuse scalability.

Recall Section 3.4.2, where we have discussed the ordered priority queue and three

types of queue operations (enqueue, dequeue and popqueue) for computing the coverage
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Figure 41: Average number of SegCovMap updates, with re-evaluation periods of1 s and
5 s.

initially and incrementally. Figure 40 measures the average number of queue operations

performed at different evaluation intervals. The number ofqueue operations performed is

shown in Figure 40(a) and the percentage of queue operationsover the total coverage is

given in Figure 40(b). From both figures we observe that enqueue operations are slightly

lower than the number of popqueue operations, and dequeue operations are the lowest for

varying radius and re-evaluation frequency, a good indicator of why Dandelion reuse is

effective and profitable.

We now evaluate the effect of SegCovMap on Dandelion reuse efficiency. The Seg-

CovMap is served as an inverted index of segments to the coverson them, and is updated

mostly by adding new covers for all but the entry segment at a junction during a BOP-

Push-Split operation. Figure 41 measures the average number of updates to SegCovMap

at different re-evaluation frequencies. Fig 41(a) measures the total count of SegCovMap

updates and Fig 41(b)) shows the percentage of SegCovMap updates over the total num-

ber of covered segments. However, SegCovMap removals also occur, as segments in the

portion of FWD, which are not present in FWD′0, must be removed one by one. For this

experiment, we use the implementation of Dandelion basic algorithm that maximizes reuse
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Figure 42: Perimeter updates and side-tree SegCovMap removal operations, with re-
evaluation periods of1 s and5 s.

of FWD. Thus the SegCovMap for BWD is wholesale discarded, eliminating the need for

any SegCovMap removal updates. That is why both figures show that the removal of covers

in the bypassed side-trees is manageably low at around 15% when the re-evaluation period

is high (5 sec), and almost negligible at around 5% when the re-evaluation period is low

(1 sec).

In the next set of experiments we evaluate the effectivenessof the perimeter set. Re-

call that for Dandelion, we keep a separate perimeter set forFWD and BWD, which is

hashed for quick containment checking and beneficial for performance of the Dandelion,

as FWD and BWD are always examined separately. However, such a separate perimeter

set is obviated in Dandelion-T due to the integral update of acorrectly ordered perimeter-

list during all push and pull operations. Figure 42(a) showsthe number of segments that

have performed perimeter updates and side-tree SegCovMap removal operations, and Fig-

ure 42(b) shows the same measurement result as a percentage of the total coverage. In

both figures, we break out the aforementioned SegCovMap removal costs into perimeter

set removals and side-tree removals. From the measurementswe observe that perimeter

set removals are the smallest in comparison to side-tree removals and perimeter set add
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Figure 43: Average age and staleness of covers, with re-evaluation periods of1 s and5 s.

operations, which is the highest of the three types of operations measured.

3.7.5 Staleness of Covers and Maps on Reuse Efficacy

In this section we measure some additional parameters, to gain additional insight into the

effectiveness of Dandelion reuse. First, we want to measurethe age of a cover, which is

defined by the time elapsed since its creation, regardless ofany subsequent updates to the

cover (such as pushing and distance changes for a BOP). Second, we want to measure the

staleness of a cover, which is the time elapsed since its lastupdate of any kind, and is thus

an even stricter measure of how long covers live. Both measures can shed some light on

how effective the Dandelion coverage reuse is in subsequentre-evaluations. Intuitively,

higher age and higher staleness both indicate that the reuseis effective. For example, at

5 km radius, the average life of a cover is 35–40 seconds, and has gone for 20–25 seconds

without any update. Note that for NE, both age and staleness are always 0, as the coverage

is always entirely recomputed (even if e.g. the mobile object is not moving).

Figure 43(a) shows the age and the staleness of covers with varying re-evaluation fre-

quencies. This experimental result shows that both age and staleness of covers are increas-

ing as the query radius increases, though neither of them is sensitive to the frequency of
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Table 3: Road networks used in experiments
Style County location Total length Segments Junctions Avg. segment length Junction degree

urban Kings, NY 3 011 km (62 h) 21 954 13 003 137.2 m (10.1 sec) mean: 3.4, max: 8
suburban Cook, IL 26 022 km (524 h) 213 306 165 061 122.0 m (8.8 sec) mean: 2.6, max: 9
rural Coconino, AZ 40 437 km (819 h) 91 346 81 396 442.7 m (32.3 sec) mean: 2.2, max: 6

re-evaluation. However, the increasing gap between the agecurves and the staleness curves

shows the effectiveness of cover reuse since many covers arelong lived. Figure 43(b)

shows the result of comparing covered segments in Dandelionwith NE traversed segments

and the number of push operations performed. It shows that comparing to the total number

of segments traversed in NE, the total number of covered segments is smaller and increases

slower as the radius increases. Furthermore the total number of push operations is the

smallest of all three and grows much slower as the query radius increases. This set of ex-

periments demonstrates again that Dandelion coverage reuse is highly effective as it uses

fewer covered segments and fewer push operations, comparedto the number of traversed

segments in NE.

In the next set of experiments, we compare the Dandelion algorithm against the baseline

Network Expansion algorithm on three maps (Table 3): Cook county, IL (Chicago area,

Fig. 44(b)) is a suburban city map, with residential areas and dead-end streets or cul-de-

sacs. Kings county, NY (Brooklyn area, Fig. 44(a)) is a built-up city map, with a dense,

regular grid structure, short streets, and most intersections with four connecting streets.

Coconino county, AZ (Fig. 44(c)) is a rural map, with long highways passing across a

desert region, with an occasional small town.

From Figure 44 we can observe that the three maps represent three different scales of

the road network topologies (urban, suburban and rural) in terms of geometry and spatial

density.

Figure 45 shows the initial evaluation cost and re-evaluation cost as function of the

query radius. Although the computational cost is heavily dependent on the topology of

the map (especially striking for the rural map), and the initial evaluation cost for all three

maps are more expensive than NE, as shown in Figure 45(a). Figure 46(b) shows that
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(a) Kings, NY (b) Cook, IL (c) Coconino, AZ

Figure 44: Typical map sections (same scale).

both Dandelion and Dandelion-T incur smaller cost of re-evaluation when the query radius

increases above 1 km and the cost reduction is more significant when the radius gets larger.

Also Dandelion-T consistently outperforms Dandelion basic algorithm in all three types of

road networks. Figure 45(b) and Figure 46(d) show the cost ofre-evaluation as a percentage

of the performance of the NE algorithm for initial evaluation and reuse based re-evaluations

respectively. Clearly, both Dandelion and Dandelion-T pay more in the initial evaluation

cost and pay less in the re-evaluation cost. In summary, Dandelion algorithms in general

outperform NE with high costs at low query radii, and lower and stable costs as queries

increase in size.

3.7.6 Life of a query

Our experimental results presented so far have been averaged over simulations of many

mobile users and many continuous network range queries of similar temporal and spatial

features. In this section we present four sets of experimental results about the life of a
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Figure 45: Average of initial and reevaluation query calculation costs of Dandelion, on
three maps.
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Figure 46: Computational cost, overlap and covers.

single example query, to gain insight into the un-averaged performance of the Dandelion

algorithms against the standard NE algorithm. We follow thelife of a continuous road-

network range query with 5 km radius, which is re-evaluated every second, for a total

simulated time of 10 minutes. The mobile user who issued the query is traveling along

a pre-selected long route in the suburban Chicago area, at speeds within the posted speed

limits on respective road segments.

Coverage Computation Cost.
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Figure 46(a) shows the computational cost of evaluating thequery coverage of Dandelion,

Dandelion-T and standard NE. First, we note that the cost of evaluating the coverage using

NE tracks the size of the coverage, and is thus dependent on the location of the query

focal object, but not the temporal properties of the query, resulting in a smooth cost-curve

on the top in red (colored red) – which is higher than the cost-curves of the Dandelion

(green curve) and Dandelion-T (blue curve). The cost-curves of both Dandelion algorithms

show that the ability to reuse portions of the previously computed query coverage tree can

indeed reduce the computation required to calculate a coverage at a next location. However,

we note several singularities in the Dandelion cost-curves, where the cost of re-evaluation

exhibits a sudden jump from one focal location to the next, and falling sharply from this

local maximum in the subsequent re-evaluations. These costspikes are due to the topology

of the road network, and the trajectory that the user takes init, and represent situations,

where FWD′0 is too small to be beneficial. We note that the spikes are not due to stop-and-

reverse mobility characteristics, as in such a case the datafor the BWD and FWD halves

are swapped (i.e., BWD becomes FWD), and thus normal reuse is possible and maximized.

Figure 46(c) shows the total number of segments covered (completely or partially) by

this query. Note that the higher curve represents the cover count update and the lower curve

represents the overlapping segment count update, both in the life time of the query in 600

seconds, as the query focal object is moving on the road network. At the beginning of the

trip, the coverage is around 500 segments initially, and it rises up to 3 times at the peak.

This variation in the extent of the coverage is solely a function of the query focal location

and surrounding map topology at each re-evaluation, and is entirely independent of both

the query processing method used to calculate the shortest path coverage and the temporal

properties of the query re-evaluation (such as re-evaluation frequency, user travel speed).

The lower curve in this figure shows the number of segments overlapping between two

consecutive re-evaluation locations, initially at 0 (whenthe query is issued). Interestingly,

the overlapping segments closely follow the curve of the extent of the coverage in the entire
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duration of the simulation. This intuitively verifies the observation that as the coverage

increases, the overlapping cover occurances are increasedas well. We would like to note

that unlike the coverage count, the overlapping segment count does depend on the temporal

properties of the query, such as the re-evaluation frequency, which can in turn depend

on the travel speed of the mobile user. However, we conjecture that with slightly lower

frequency of re-evaluation, the curve shape will remain approximating the curve of the

coverage update but the overlapping curve at lower frequency will be lower with a bigger

gap to the coverage curve, compared to the overlapping curveat high frequency of every

one second.

Figure 46(b) measure the perimeter size of the three cover types (BOP, DEP, ZIP)

present in a Dandelion tree (stacked on) and Figure 46(d) shows the ratio of the perimeter

size over the total coverage size at each re-evaluation location. The maximum potential

for reuse is given by the overlap (the number of completely covered segments), which is

around 90% throughout the lifetime of this query, mostly independent of the changes in

the size of the coverage along the route (but dependent on thetemporal properties of the

query). The total number of all non-internal covers is around 50% for this query. Fur-

thermore, the majority of the non-internal covers are DEP and ZIP types, giving potential

for further optimizations, as these points are generally immobile; only BOP covers (which

only make up 5–10% of the number of covered segments) will conceivably be moved in

the subsequent re-evaluation for maximum reuse.

Queue Operations

Fig. 47(a) and Fig. 47(b) show the number of queue operationsfor the NE algorithm,

stacked on for dequeue and popqueue. The NE algorithm pops the front of the queue

around 70%, and dequeues around 5% of the total coverage at any location, regardless of

the absolute number of queue operations tracking the size ofcoverage as it changes with

the movement of the focal location on the network. The dequeue operations occur when a

shorter path via a new node is found to a node that was enqueuedwith a longer tentative
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Figure 47: Queue operations (NE compared with Dandelion).
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(a) Side-tree cover removals.
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Figure 48: Side-tree SegCovMap removal operations for Dandelion.

distance. We note that 15–20% of the covered segments are never enqueued, as no further

expansion is possible from them.

Fig 47(c) and Fig. 47(d) show that the queue operation profilefor Dandelion is notice-

ably different compared to Fig. 47(a) and Fig. 47(b). This highlights the computational

cost improvement shown previously in Fig. 46(a). First, we observe that the total number

of dequeue and enqueue operations can be as low as only 10% of the total number of cov-

ered segments, indicating massive tree reusability. Second, the cost-spikes for Dandelion

algorithms correspond to spikes in both the number of enqueued and dequeued segments.

Impact of Reuse Data Structures.

The entire BWD tree (SegCovMap and perimeter set) can be discarded in a single step,

as the two halves of the query are maintained in separate datastructures. However, the

portion of the FWD tree (∆F2F) that has been bypassed, and which was forward ofF ,

but is no longer forward at the subsequentF ′ location, needs to be traversed and its covers

removed one by one from the SegCovMap. We show the total numberof such side-tree

cover removals on Figure 48. While such side-tree removals are costly (e.g. having to

remove around 80% of the covered segments in the worst case here), they are also rare.
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Figure 49: Perimeter updates (basic Dandelion only).

Figure 48(b) sheds light on the origin of the performance deterioration spikes in the previ-

ous figures: As the focal object crosses an intersection, side-roads at that intersection may

be the roots of an extensive side-tree, covering e.g. 80% of the total number of segments

in the coverage. As the user bypasses such a side-tree, a large portion of the total coverage

ceases to be in FWD (necessitating a costly removal of the manysegments in the side-tree

from SegCovMap), and is subsequently to be found in BWD (necessitating the recomputa-

tion of the Dandelion tree covering these segments, as the BWD tree needs to be discarded

between re-evaluations).

Furthermore, for the basic Dandelion algorithm, we maintain the set of non-internal

covers (the perimeter set), so that we can initialize the queue with this set, enabling full

reuse of all internal covers in FWD′0. The number of add and remove operations performed

on the perimeter set are shown on Figure 49. The ordinary perimeter update operations

take place in the course of a DEP-Push-Split suboperation, with the removal of a single

BOP cover from the perimeter set (as it becomes an internal cover), and the addition of

one BOP cover for each of the newly partially covered segments. However, Fig. 49(b)

also exhibits the spikes (corresponding to side-tree bypassing) seen in previous figures,
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with the aggregate of cover additions and removals both at 80% in one case (corresponding

to the largest side-tree bypass on Fig. 48(b)). We conclude that the perimeter set update

operations place additional computational costs on Dandelion, at exactly the same time

when the SegCovMap removal costs jump, and when the size of FWD drops (and thus the

reusable FWD′0 size drops), and the size (and thus cost) of re-calculating BWDjumps. All

these effects are due to the same root cause of bypassing a large FWD side-tree, which

then on is part of BWD. We note that as Dandelion-T is designed toautomatically keep

the perimeter in order without any additional computations, the entire perimeter set update

cost is saved, resulting in a performance improvement over basic Dandelion in exactly the

aforementioned critical high-cost situations.

The update of the SegCovMap only involves additions (never removals) in the case of

NE (Fig. 50(a)), as covers are never individually removed. Rather, the entire SegCovMap is

wholesale discarded and entirely recomputed at each step, resulting in all covered segments

being added to SegCovMap. As some segments contain 2 BOPs (fromthe direction of the

two endpoints, but not joining as ZIPs), the total number of SegCovMap add operations is

marginally higher than 100% of the number of covered segments (Fig. 50(b)). In contrast,

the Dandelion algorithms save the cost of adding covers in FWD′
0, displaying the now-well-

known pattern that is lower (most often substantially lower) than 100% of the number of

covered segments, spiking when side-tree segment removalsoccur sporadically (Fig. 50(c)

and Fig. 50(d)).

Effectiveness of Dandelion Reuse

This set of experiments help us gain additional insight intothe effectiveness of reuse. Fig-

ure 51(a) shows the average age and staleness of covers at each re-evaluation. Recall that

the age of a cover is the time elapsed since its creation, regardless of any subsequent updates

to the cover (such as pushing and distance changes for a BOP). The staleness of a cover is

the time elapsed since its last update of any kind, and is thusan even stricter measure of

how long covers live.
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Figure 50: Total SegCovMap adjustment operations (NE compared with Dandelion).
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Figure 51: Effectiveness of Dandelion cover reuse.
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With a re-evaluation frequency of 1 second for our example query, we observe that,

rising from an age of 0 initially, covers – on average – can live for more than 80 seconds and

be reused without any update whatsoever for more than 50 seconds. Both cover lifetime

metrics (age and staleness) exhibit sudden drops, which correspond to the bypassing of

large side-trees (recall Fig. 48).

An alternate view of reuse is shown on the stacked Figure 51(c) and Figure 51(d), where

all covers are either marked ”new” (created during the latest re-evaluation), ”upd” (updated

during the latest re-evaluation, but previously existing,i.e. reused after an update), or

”nonupd” (neither created, nor updated in the latest re-evaluation, i.e. completely reused).

Finally, we show the amount of displacement (dx) between eachF and consecutive

F ′ re-evaluation location, in Figure 51(b). Mostdx values are zero-segment displacements

(i.e. bothF andF ′ are on the same segment), with some relating to two connectedsegments

(dx = 1 segment), and only a few to segments further apart. Viewedas actual road distances

in meters,dx is dependent on the speed chosen by the user, and reflects the segment-wise

constant speed mobility model followed by the user in our simulation.

3.7.7 Reuse Effectiveness of Dandelion2

Figure 52 presents the performance comparison of the Dandelion2, powered by FWD/BWD,

trident, mov and jump transformation primitives, with Dandelion, Dandelion-T and NE in

terms of cost of initial evaluation and re-evaluation with varying radius. Fig. 52(a) and

Fig. 52(b)) show the initial evaluation cost and the cost ratio of Dandelion over NE. Al-

though the initial evaluation cost is higher for all Dandelion algorithms due to the build-up

of more complex data structures, the initial evaluation cost for Dandelion2 is only approxi-

mately 10% higher than it is for NE. In contrast, Fig. 52(c)) shows that all three Dandelion

algorithms result in faster re-evaluation costs than NE when the query radius is larger than

1 km. Fig. 52(d)) shows that Dandelion2 algorithm significantly outperforms Danderlion-T,

Dandelion and NE for re-evaluation frequency of 1 sec and 5 sec. The cost of re-evaluation
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Figure 52: Average of initial and reevaluation query calculation costs of NE and three
Dandelion versions, with re-evaluation periods of1 s and5 s.
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using Dandelion2 drops to around 20% of the cost of re-evaluation using NE. The re-

markable5× speed-up by Dandelion2 is a substantial performance improvement, and such

speed-upincreasesas the radius of queries and thus the cost of re-evaluation increase.

3.8 Related work

Graph algorithms are subject to general interest in computer science due to their widespread

applicability to many problems that can be modeled as a graph. Dijkstra’s keystone paper

on the calculation of single-source shortest paths in a network [12] has been written more

than 50 years ago, but retains its relevance today from robotics to Internet routing, and

is the algorithm of choice for calculating routes and nearbypoint-of-interest queries in

commercially available personal navigation devices. The fact that Disjktra’s algorithm (and

its broader interpretation as the Network Expansion algorithm) has retained such a central

role is not only a testament to Dijkstra’s insight, but also to the fundamental difficulty of

improving upon it.

The challenge of any proposed improvement on NE is highlighted by the careful study

in [35]. The paper – among other contributions – investigates whether road network range

query evaluation could be improved by proposing aEuclidean restriction, i.e. applying a

filter first in the Euclidean (non-network) space, and only performing graph search after

this initial culling of results. The two approaches are termed Range Euclidean Restriction

(RER; restrict then expand) and Range Network Expansion (RNE; expand then restrict).

The experimental results show that, consistent with the theoretical framework, RER does

not improve, but rather increase the computational cost over RNE.

Recently, the work in [30] considers improvements to nearest-neighbor (kNN) contin-

uous road network query answering by attempting to reuse certain information from one

query location to the next. The paper highlights the relevance of maintaining anexpansion

treein proposing an Incremental Monitoring Algorithm (IMA). The concept ofmarksis in-

troduced, which denote the boundaries of the query, and keeping track of partially covered
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segments is recognized in the concept of theinfluencing interval. The incremental monitor-

ing approach attempts to identify avalid expansion tree, which corresponds to the portion

of the expansion tree that can be reused. However, the proposed approach suffers from two

fatal flaws. First, the algorithm does not consider a networkwhere the valid and invalid

portions of the expansion tree can meet, which means that thealgorithm is only workable

on unrealistic tree type network graphs (i.e. road networkswhere one cannot drive around

a block in a loop, to return to the same location). Secondly, the algorithm does not consider

how the valid portion of an expansion tree can be identified, and how expansion at a new

location could be initialized with the border points of sucha valid expansion tree. As a

result, even the valid portion of the expansion tree must be traversed at a new location,

entirely negating any performance improvements that mightbe realized after finding the

valid expansion tree.

The related problem of computing nearest neighbors in a regular land surface vertex

graph is considered in [45]. The proposed algorithm proposes an Angular Surface Index

Tree (ASI-Tree), a thin and tall tree, that partitions the coverage of the query into angular

sub-trees, and succeeds in maintaining these sub-trees to keep track of the kNN objects due

to the high density of the vertex network, the relatively small displacement of the query

center, and the relative sparseness of nearest neighbors ina large network.

The problem of computing shortest path trees (SPT) in the face of edge length changes

is investigated in [32], primarily in the context of Internet packet routing. While different

from our problem, in that it does not consider the displacement of the root of the SPT

itself, the Dynamic SPT computation proposed in the paper isrelevant, as it highlights the

possibility for partial reuse in the face of at least a limited number of changes in the network

graph.

The authors of the above paper further propose a ball-and-string model of dynamically

rebalancing SPT trees in the face of network edge updates in [33]. The ball-and-string

conceptualization is an important conceptual step forward, and the paper makes the insight
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that the problem of re-calculating SPTs after network edge updates can be formulated as a

linear programming task.

3.9 Conclusion

The computational costs of answering continuous network range queries are known to be

prohibitively high, as a shortest path based network expansion needs to be run repeatedly

at each and every location where the query is evaluated. We argue that continuous network

range queries, whose focal locations are ”not far” from eachother, have substantial overlap

in their segment coverage. Such a large overlap may offer significant reuse opportuni-

ties for performance enhancement. We have presented the design and implementation of

Dandelion reuse framework and a suite of algorithms for fastre-evaluations of continuous

network range queries. The chapter makes three original contributions. First, we propose

the concept of Dandelion tree to accurately represent the coverage of a network range query

with arbitrary range, by keeping track of three key network location points: border points

(BOP), dead-end points (DEP), and zip points (ZIP). Second, we design three BOP-Push

and three BOP-Pull primitive operations to compute the coverage atF by maximum reuse

of the coverage at previous query focal locationF . Third but not the least, we define the

data structures and three Dandelion reuse algorithms to efficiently identify the portion of

the Dandelion tree that can be used as the basis for reuse and further expansion. The ba-

sic Dandelion algorithm enables reuse by dividing the Dandelion tree (query coverage) of

a query into the forward (FWD) and backward (BWD) halves, allowing separate mainte-

nance of the key data structures for each half to reduce the search space. The Dandelion-T

algorithm introduces and utilizes the Trident and Guide data structures to compose a more

reuse-efficient Dandelion-T tree, leading to faster query re-evaluation than Dandelion ba-

sic algorithm. Finally the Dandelion2 algorithm further enhances Dandelion-T in terms of

query re-evaluation cost by introducing the two primitive transformation operationsmove

andjump. This development can effectively transform one Dandeliontree to another with a
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minimum set of primitive transformation operations. We conduct a series of extensive ex-

periments and our results show that Dandelion reuse model and algorithms can significantly

outperform the conventional shortest path network expansion algorithm (NE) in terms of

coverage computation cost for non-trivial radius size and high re-evaluation frequency.
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CHAPTER IV

FASTEXPAND

We addressed the problem of speeding up continuous road-network queries in Chapter 3.

In this chapter, we briefly consider the problem of accelerating the computation of range

query coverages in road networks, even when the query is onlyevaluated a single time, and

thus a reuse-oriented approach is not applicable. Our approach is to divide-and-conquer

by constructing precincts over the road network graph. The concept of precinct was first

introduced in Chapter 2, and the alternatives of hop- or distance-based precinct radius def-

initions apply here as well, including the choice of road network distances or road network

travel times to be used as the relevant metric.

4.1 FastExpand query coverage

Figure 53(a) shows a range-query that is evaluated along theedges of the road network.

The query has a range of 1500 m (with a standard block size of 100 m), and produces two

border points (BOPs). Such a long-range query produces a highsegment coverage, with a

large number of connected segments on the inside of the querybeing completely covered.

This observation is further highlighted on Figure 53(b), where the high-connectivity inter-

mediate neighborhood bounded by four boundary points (B1, B2, B3, B4) is highlighted.

This high-connectivity intermediate neighborhood is completely covered by the query, but

contains many segment that add to its complexity, but do not contribute to the distance cal-

culations of a long-range shortest path query. Figure 54(a)further highlights that the many

small local-neighborhood segments do not play a role, when one is only concerned with

the shortest paths between other points in the network. In this case, only the four boundary

point serve as entry points into this neighborhood, and any further internal graph structure

may be disregarded. In fact, we may replace the complex neighborhood with six fast-track
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Figure 53: Construction steps of a FastExpand expansion network for anr = 1500 m

radius range query.
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traversal shortcuts, as shown on Figure 54(b), and still ensure the correctness of all distance

calculations that contain this selected neighborhood. We use the already familiarprecinct

term to denote such neighborhoods, and their pre-computed traversal shortcuts. All high

connectivity neighborhoods may be ”flattened” in this way, by creating a precinct coverage

of the entire road network, as described in Chapter 2. Figure 53(c) continues our example

with the shortcuts of the intermediate precincts shown in this simplified network.

For purposes of shortest path distances, precincts are black boxes, as illustrated on Fig-

ure 53(d), as the pre-computed shortest paths between pairsof precinct boundary points are

utilized as shortcuts, without the need to refer to the internal graph structure found inside a

precinct. The distance computation can’t take advantage ofprecinct-based shortcuts in the

immediate vicinity of the query focal locationF , and near the query border points locations

BOPi, even though these locations are also found inside some neighborhood. This gives

rise to three distinct precinct types.

A seed precinctis the single precinct containing theF focal location. Low-level local

graph search must be performed in a seed precinct, until the search reached the boundary

points of the seed precinct.

The core precinctsare those fully covered intermediate neighborhoods that can be

safely traversed using pre-computed shortcuts, as they areneither close to the focal lo-

cation, nor close the any border point.

Theborder precinctsare those partially covered neighborhoods that contain at least one

border point of the query. Because some segments inside a border precinct are covered,

while other segments are not covered, a local search must be performed, and the shortcuts

can’t be taken advantage of.

Figure 53(e) shows our continuing example, with all segments assigned to one of the

three precinct types. Figure 55 shows a general example, where a road network range

query’s coverage is tiled by a composite of seed, core and border precincts. Figure 56

shows a screenshot of the FastExpand coverage of an example query, with shortcuts in core
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from Figure 53(b).
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Figure 55: Tiling of a road network range query’s coverage by a composite of seed, core
and border precinct types.

Figure 56: Screenshot of the FastExpand coverage of a query (shortcutsin core precincts
in blue; local segments in seed and border precincts in red).
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precincts drawn in blue, while local segments in seed and border precincts are drawn in

red. TheF focal location is the black dot inside the red local segmentsof the central seed

precinct.

The evaluation of the coverage of a road network range follows a modified Network

Expansion algorithm, whereby a priority queue of shortest tentative node distances is

maintained, and the least distance node is processed at eachstep. The expansion start

regularly fromF , with a local search in the graph. However, unique to the FastExpand

algorithm is the need make a choice between continuing with alocal search or with a

shortcut-based fast search, at each precinct boundary point. For each boundary pointB,

the reach distances (ρ) are pre-computed and stored. The reach ofBij within precinct

Pj is the ρij = max(network dist(Bij, L)) distance, such that∃L ∈ Pj. One reach

distance is stored for each precinct that a boundary point isconnected to. When a yet-

unexamined precinctPj is first encountered by popping itsBij boundary point from the

queue, we test whether it is possible to reach anL location withinPj, such that the path

from F to L via Bij is longer than ther range of the query. If such a path exists, then

networkdist(F,Bij) + ρij > r. Testing thisdrop-down criterionensures that we stop

the network expansion using the core precinct shortcuts as soon as the potential for en-

countering a query coverage border point (BOP ) inside the next precinct arises, and we

drop down to pursue the expansion in the original graph. Subsequently, the local search

terminates regularly, when aBOP border point at exactlyr distance fromF is met.

4.2 Experimental evaluation

In our first set of experiments, we use ad = 500m distance-based precinct radius partition-

ing of the Cook county, IL city map, and perform a comparison with Network Expansion.

Figure 57(a) shows the query evaluation costs using the two algorithms, with various query

radius settings. Figure 57(b) shows the query evaluation costs for FastExpand as a per-

centage of the Network Expansion baseline. As expected, FastExpand outperforms NE by
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Figure 57: Road network range query evaluation costs of FastExpand, with increasing
query radius settings.

taking advantage of the pre-computed shortcuts.

Figure 58(a) shows the number of segments inspected using the two algorithms, with

various query radius settings. Figure 58(b) shows the number of inspected segments for

FastExpand as a percentage of the Network Expansion baseline. We note the same pattern

of FastExpand outperformance, as on the previous set of graphs.

We compare the FastExpand algorithm against the baseline Network Expansion algo-

rithm on two maps (Table 3), usingd = 200 m precinct radius partitioning: Cook county,

IL (Chicago area, Fig. 44(b)) is a suburban city map, with residential areas and dead-end

streets or cul-de-sacs. Coconino county, AZ (Fig. 44(c)) is arural map, with long highways

passing across a desert region, with an occasional small town.

Figure 59(a) shows the number of segments inspected using the two algorithms, during

expansion for the rural and urban maps. Figure 59(b) shows the number of inspected seg-

ments for FastExpand as a percentage of the Network Expansion baseline. We observe that

our shortcut- and precinct-based algorithm performs even better on rural maps, where the

network topology allows the creation and use of an even more effective precinct partition-

ing.
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Figure 58: Segments inspected during evaluation of a road network range query, with
increasing query radius settings.
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Figure 59: Segments inspected during evaluation of a road network range query, on a
rural (AZ) and an urban map (IL).
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4.3 Conclusion

In recent years, algorithms for finding shortest paths in road networks have enjoyed ongoing

interest, as seen in [40], [2], [3], [41], [16], [28] and manymore. The problem of computing

the full coverage of a road network range query, – where no target exists, but only a source,

– is a related, albeit somewhat different problem.

In this brief chapter, we considered the problem of accelerating the computation of

range query coverages in road networks, even when the query is only evaluated a single

time, and thus a reuse-oriented approach is not applicable.We presented our approach of

constructing precincts over the road network graph to eliminate the unnecessary complexity

of local neighborhood streets and replaced them with fast shortcuts. We provided a clas-

sification of precincts into seed, core and border types, anda criterion to determine when

the coverage computation should choose local search instead of shortcut based search. Our

experimental results showed that this approach is able to speed up the computation of indi-

vidual static road network queries.

138



CHAPTER V

MAPSTITCHER

Commercial aerial imagery websites, such as Google Maps, MapQuest, Microsoft Virtual

Earth, and Yahoo! Maps, provide high-resolution seamless orthographic imagery for many

populated areas, employing sophisticated equipment and proprietary image post-processing

pipelines. There are many areas of the world with poor coverage where locals might benefit

from recent, high-resolution orthographic imagery, but which do not fit into the schedules

and scaling model of the big sites.

This chapter describes MapStitcher, a system that orthorectifies and geographically reg-

isters imagery using only low-cost capturing equipment. MapStitcher combines manually-

entered relationships between images and known ground references with a MOPs-based

image-stitching technique that automatically discovers image-to-image relationships. Our

image registration pipeline first extracts and matches feature points, then clusters images,

then uses RANSAC-initialized bundle adjustment to simultaneously optimize all constraints

over the entire image set. Simultaneous optimization balances the requirements of precise

stitching and absolute placement accuracy. We used this technique to image a portion of the

Skagit River Valley in the vicinity of the town of Concrete, WA (pop. 790) at 0.15 m/pixel.

Our technique is more accurate than stitching followed by “rubber-sheeting” (deforming

the stitched image into global coordinates), while it also requires less effort and produces a

better-stitched composite than rubber-sheeting images separately.

A version of this chapter was published as a paper co-authored with Jeremy Elson, Jon

Howell, Drew Steedly and Matthew Uyttendaele [36].
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5.1 Introduction

Commercial aerial imagery sites, such as Google Maps, MapQuest, Microsoft Virtual

Earth, and Yahoo! Maps, provide high-resolution seamless orthographic imagery for densely

populated areas. To be able to image large areas in a cost-efficient manner, their tech-

niques depend on special-purpose cameras mounted in gyro-stabilized mounts and flown

in autopilot-equipped airplanes. Together, these components tightly constrain the param-

eters of the captured images, easing the task of post-processing the collection of images

into a single orthorectified image mosaic. While allowing to amortize the cost of the sys-

tem by imaging large areas, the equipment is also quite expensive; for example, the Vex-

cel UltraCam-D camera costs over half a million dollars. Furthermore, there are only a few

competitors, and they tend to prioritize imaging populous markets. Users in small markets

would also stand to benefit from access to recent, high-resolution geographically registered

aerial imagery. However, it is beyond the means of small communities and other “long tail”

users to purchase the expensive tools used by the large imaging operations. In addition, the

post-processing pipelines used in the industry are proprietary, posing an additional barrier

to entry for localized operations.

A quick survey of the image tiles available on public imagerysites reveals the lack of

resolution for many regions of the Earth. For example, whilemost of the United States is

covered at a 1 m/pixel resolution, with metropolitan areas imaged at 0.25 m/pixel (see Fig-

ure 60(a) and Figure 60(b), showing the eastern United States), other continents are mostly

covered at 16 m/pixel (see Figure 60(c) and Figure 60(d), showing an area of the Earth

bounded by the Equator (S), the Arctic Circle (N), 0◦(W). and 90◦E longitudes (E); some

large cities and Western European countries have higher resolution coverage). Further-

more, the imagery update schedules of the big sites are independent of important changes

in the environment, such as natural disasters, construction and demolition of roads, build-

ings and parking spaces. This chapter describes a system designed to provide such imagery
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at a low cost of entry in a timely fashion: imagery is capturedwith a consumer-grade cam-

era mounted on hardware-store plumbing pipe in a minimally-equipped light airplane, and

post-processed with a generic pipeline that depends on a small amount of human annota-

tion. While this approach has a higher cost per image of human annotation, the dramatically

lower capital costs lead to lower overall cost for a small imaging project.

We contrast our approach with two simpler techniques for orthorectifying poorly-constrained

aerial imagery.

The first approach is to simply manually annotate every captured image and then de-

form each image into place (“rubber-sheeting”) with a tool such as MapCruncher [13].

MapCruncher scales well, allowing users to readily reproject existing maps, publishing

multi-gigapixel images on the web in a client-bandwidth-friendly tiled format that inter-

operates with Microsoft Virtual Earth. Our experiments with this approach identified two

problems: First, because the post-processing system only had information about global

placement, relative inter-image placement often suffered, leading to obvious discontinu-

ities at image boundaries. Second, where the images coveredundifferentiated or entirely

changed terrain, such as a construction site, there was no easy way to manually label the

images with ground reference pairs.

In the second approach, the captured images are stitched into a single image of large ex-

tent using a modern photo stitching tool [4] that makes inter-image camera-pose estimates

to reproject the images to eliminate boundary discontinuities. The resulting “panoramic”

image represents a single theoretical image taken from a single logical viewpoint; this im-

age is then related to ground references, and translated to abrowser accessible user inter-

face [13]. In practice, the lack of global constraints causes the photo stitcher to accumulate

error and emit images that correspond to no real viewpoint ofthe original terrain.

This chapter describes MapStitcher, an image orthorectification system that combines

the two approaches above simultaneously. MapStitcher’s stitching component discovers
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(a) Resolution of coverage in Virtual Earth over the
eastern United States.

(b) Resolution of coverage in Yahoo! Maps over the
eastern United States.

(c) Resolution of coverage in Virtual Earth over por-
tions of Africa, Europe and Asia.

(d) Resolution of coverage in Yahoo! Maps over
portions of Africa, Europe and Asia.

0.25 m/pixel
1 m/pixel

16 m/pixel

Figure 60: Resolution of orthophoto coverage in large mapping websites.

inter-image constraints. A human annotates a few images with ground reference con-

straints. Then MapStitcher estimates the pose of each image’s camera by first initializing
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Figure 61: Our operation: a consumer camera zip-tied to a PVC pipe protruding from a
hand-flown Cessna 177.

with RANSAC, a general technique for fitting a model in the presence of outliers. Then

it uses bundle adjustment to minimize error across the entire constraint set, both relative

and global. The resulting system is robust to poorly-constrained camera geometry, requires

global constraints on only a small subset of images, and produces output with minimal

image-boundary discontinuities.

We demonstrate MapStitcher by capturing imagery of the Skagit River Valley in the

vicinity of the town of Concrete, Washington. Concrete’s population of 790 has a long

wait before major services will find it profitable to send a photo mission with expensive

equipment. Our mission, in contrast, involved an ordinary four-seat Cessna ($160/hour

rental, including pilot), three feet of PVC pipe, a consumerdigital camera ($300), and two

people: one pilot and one to operate the camera shutter and change the batteries (Figure 61).

In post-processing, we identified 25 ground reference pairs, and used 60 photos to produce

a 208 megapixel image at a resolution of 0.15 m/pixel (Figure62).

5.2 Related Work

The creation of aerial mosaics to form composite photomaps is described in [11]. Our

method is analogous with the creation of semicontrolled mosaics, where ground reference
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Figure 62: Our 0.15 m/pixel composite aerial imagery, showing a portion of the Skagit
River Valley near Concrete, WA, overlaid on a map of the area.

pairs on a small number of images are combined with tie pointsbetween images to com-

pute the transformation parameters. Ourstitch-firstcontrol method is analogous with the

creation of uncontrolled mosaics, and theno-stitchmethod is analogous with the creation

of controlled mosaics. However, these digital mosaicking approaches only attempt to solve

for rotation and translation parameters, assuming vertical camera positions during image

acquisition.

In order to perform digital mosaicking with less constrained cameras, the problem of

estimating camera parameters must be tackled. Analytical aerotriangulation with simul-

taneous bundle adjustment aims to recover the 3D coordinates of object points, and the

3D location and exterior orientation parameters of all exposure stations [11]. These goals

are similar to our objectives in our camera parameter estimation step. Using GPS to ob-

tain a priori knowledge about the three-dimensional position of the exposure stations is a

possible improvement [44]. Alternatives to bundle adjustment for solving the equations to
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estimate projection matrices and scene point locations areexplored in [26]. For an intro-

duction to 3D reconstruction of cameras and scene structurefrom photographs, we refer

the reader to [17]. The problem of 3D scene reconstruction using bundle adjustment has

also been explored recently in a computer vision context [5]. Bundle adjustment based

methods [27] can benefit from initialization with RANSAC [14]. Specific techniques also

exist for the estimation of interior [19] and exterior parameters [18] of cameras from line

measurements, and for n-point camera pose determination [39].

5.3 Goals of Aerial Image Composition

Before describing MapStitcher’s image processing pipeline, we first describe its design

goals.

The pipeline should convert an input set of overlapping images, acquired individually,

into a single virtual image that covers the same area. In constructing this composite image,

we would like to simultaneously optimize for two goals. The first is geographic fidelity:

features should have the correct shape in the composite image. For example, a straight road

should not appear to curve in the image. The second goal is seamlessness: the boundaries

between the input images should be invisible in the composite image. That is, there should

not be visible discontinuities in features such as roads.

To ensure our system is practical and economical, we also have two usability goals. The

first is that our pipeline should accept reasonably unconstrained input images—for exam-

ple, it should not require pictures taken exactly straight down, or with cameras whose exact

geometry or position is known. Such stringent requirementswould significantly increase

the cost of image acquisition. Our second usability goal is that the pipeline should require

a minimum of user effort. A few hours of image acquisition should not be followed by

weeks of manual post-processing.

In light of these goals, it is instructive to consider the weaknesses of other methods for

generating a geographically accurate composite image. In this section, we will consider
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Figure 63: The user interface of both MapCruncher and MapStitcher. Users can specify
ground reference pairs by finding the same feature in their own image and the standard
Virtual Earth imagery. If the area has been manually surveyed, latitude and longitude can
also be entered numerically.

two that are commonly used in low-cost applications: individually “rubber-sheeting” each

photo in the set, and rubber-sheeting a composite photo thatwas created with an image

stitching tool. The main weakness of these methods is that they optimize for only one

goal—geography or seamlessness—at a time.

The first method is exemplified by the previous work, MapCruncher [13], which can

perform approximate Mercator reprojection of any image drawn to scale after being given

a few correspondence points as exemplars. We call these points ground reference pairs—

that is, correspondences between a pixel in an input image and a latitude and longitude in

WGS84. MapCruncher has a simple interface, depicted in Figure63, for specifying these
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pairs. Although surveying techniques (e.g., GPS) can be used, the fastest and easiest way is

to establish ground reference pairs is to visually compare the newly acquired imagery with

the existing imagery that is part of Microsoft Virtual Earth. We have found this technique

useful because a typical use-case is overlaying recent high-resolution images on top of

extant older or lower-resolution images. MapCruncher showsthe user’s images in one

window and Virtual Earth in another.

MapCruncher was originally designed for use with maps. Our initial tests in using

it for aerial image compositing were promising, but had two major drawbacks. First,

MapCruncher considers the placement of each image individually, without global con-

straints. As a result, relative inter-image placement often suffers, causing obvious dis-

continuities at image boundaries, such as those shown in Figure 64. Second, where the

images cover undifferentiated or entirely changed terrain, such as a new construction site,

generation of ground reference pairs is difficult. The evaluation refers to this technique as

no-stitch.

A second common approach is a two-step procedure. First, usea modern photo stitch-

ing tool [4] that makes inter-image camera-pose estimates and reprojects the images to

eliminate boundary discontinuities. Next, rubber-sheet the mosaic to fit it to the depicted

geography. In practice, we have found the lack of geographicconstraints during the mo-

saic step causes the photo stitcher to accumulate error and emit images that correspond

to no real viewpoint of the original terrain. For example, the mosaic shown in Figure 65

depicts about a mile of a straight north-south street, captured with a dozen individual pho-

tos shot from an airplane. Without geographic constraints,the stitcher incorrectly emits a

(seamless) photo of a curving road. The evaluation refers tothis technique asstitch-first.
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Figure 64: When overlapping aerial images are rubbersheeted individually, discontinu-
ities at the image boundaries are obvious.

5.4 The MapStitcher Image Pipeline

The MapStitcher image pipeline works by simultaneously combining user-specified geo-

graphic image constraints, similar to MapCruncher, and automatically generated image-

stitching constraints, similar to a photo stitcher. With relatively little user effort, Map-

Stitcher can convert a series of overlapping aerial images into a seamless, orthorectified,

and geographically accurate composite. Users typically only need to specify a small num-

ber (e.g., 10) of ground reference pairs. For example, references might be set for only the

first and last images in a series; the positions of intermediate images are estimated auto-

matically using feature comparisons in the overlapping regions.
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Figure 65: A straight road, captured with 12 aerial photographs and mosaicked using an
image stitcher. Without geographic constraints, the road appears to curve.
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Image compositing is accomplished by first solving for the position and orientation of

the camera at the moment each image was acquired. Then, each image is reprojected into

an orthographic approximation and superimposed.

A homographic projection is used to model the view of the camera at each instant it

acquires each image. Our model includes bothintrinsic andextrinsiccamera parameters.

Intrinsic parameters are properties of the camera itself: currently just its focal length, cap-

tured in theF matrix. The extrinsic camera parameters are the translation and rotation,

captured in theT andR matrices, respectively. In our model, a ground point (pground) is

projected to an image point (pimage) according to the chained transformations:

q =F · T · R ·Mpre · pground,

pimage =Mpost ·

(

qx
qz

qy
qz

)′

,

wherepground and q are 3D points represented as 4D homogeneous coordinates;F ,

T , R andMpre are 4D matrices;Mpost is a 2D matrix; andpimage is a 2D point. As a

typical scene spans10−6 equatorial circumferences in Mercator coordinates, theMpre pre-

transform matrix is used to scale the scene so that its size iscomparable to the size of its

projection on the camera’s image plane, which has a largest dimension of1.0. This scaling

avoids rounding errors that lead to ill-conditioned optimizations. TheMpost post-transform

matrix ensures that the scene’s projection is centered on the image plane. This centering is

required to model the symmetry of the perspective projection around the center of the real

camera’s imaging surface.

The remainder of this section will describe how all of the camera parameters are es-

timated for each image acquired. Generally speaking, the procedure entails the following

steps:

1. The user specifies ground reference pairs for a subset of the images to be stitched

(Figure 63).
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2. MapStitcher automatically finds common features in images that overlap (Section 5.4.1).

3. Each camera’s model parameters are initialized to the “not estimated” state.

4. Iterate:

(a) Initial estimates for camera model parameters are made for each camera in a

“not estimated” state, that has sufficient ground referencepairs (Section 5.4.2).

(b) Nonlinear optimization (bundle adjustment) is used to globally optimize the pa-

rameters of all cameras with estimates. Both the user-supplied ground reference

pairs and constraints introduced by feature match pairs areused in this global

optimzation step (Section 5.4.3).

(c) Synthetic ground reference pairs are temporarily created where two images

overlap, and at least one has a camera with a known model (Section 5.4.4).

These are used to initialize camera parameter estimates in future iterations of

Step 4a.

5. ... until there are no camera poses given new estimates in Step 4a.

5.4.1 Automatic Extraction and Matching of Feature Points

MapStitcher uses Multi-Scale Oriented Patches (MOPs) [6] to identify corresponding fea-

tures in the overlapping portions of adjacent images. MOPs can robustly identify features

in common across images, even if they vary in scale, orientation and intensities.

The extraction of feature-matches is a five step process:

1. Interest points are identified (Figure 66(a)) on each image separately as local maxima

of a ”corner strength” function. The orientation of interest points is also computed.

2. The number of interest points is reduced for each image, while a uniform distribution

of point locations on the image is maintained. The goal of this step is to reduce the
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(a) Feature points. (b) Feature matches. (c) Geometrically con-
sistent feature matches
after outlier rejection.

(d) Transformed images
based on established tie
points.

Figure 66: Automatic establishment of feature match point correspondences between two
images.

total number of interest points, since the computational requirements for matching

are superlinear.

3. A 64-dimensional feature descriptor vector is computed for each remaining interest

point using the local image structure.

4. The lowest three non-zero wavelet frequencies of the feature vectors are used to cre-

ate a three dimensional hash-table. This hash-table provides fast lookup for feature

points. Fast approximate feature matching is performed by lookups in this hash-

table: a set of approximately matching feature points are found – across all images –

for each feature point. Some of the matches are eliminated asoutliers using a simple

heuristic (Figure 66(b)).

5. Finally, RANSAC is applied to remove additional outliers,by finding geometrically

consistent feature matches (Figure 66(c)).

We refer the reader to [6] for specific details of the algorithm.

After the feature matching step is complete, MapStitcher has a list of feature point
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matches(Figure 66(d))—that is, pairs of points on overlapping photos that visually corre-

spond to the same features on the ground.

5.4.2 Camera Parameter Initialization

Nonlinear estimation algorithms converge most reliably when given an initial estimate in

the neighborhood of the final answer. Therefore, we estimateeach camera’s parameters

before starting bundle adjustment.

The camera extrinsics (rotation and translation) for each image are initialized by per-

forming RANSAC [14] on two sets of points: the ground-point and image-point half of

each ground reference pair. First, the inverse of the post-transformation matrix is applied to

the image points, to ensure correct centering (M−1
post·pimage). Second, the pre-transformation

matrix is applied to the ground points, to ensure correct scaling (Mpre · pground). Finally,

RANSAC is preformed between these two sets of points, resulting in a transformation

matrix for each image, that is then used as the first estimation in the bundle adjustment

algorithm.

The camera intriniscs (i.e. the focal length) are directly initialized from the EXIF meta-

data fields recorded in the image file by the actual camera. If EXIF information is unavail-

able, we assume the image was taken with a40◦ angle of view.

5.4.3 Optimization Using Bundle Adjustment

Once camera models have been given initial estimates, they are refined using an iterative

nonlinear optimization process calledbundle adjustment[11]. Given a number of param-

eters to adjust (known in bundle-adjustment terminology asactive states), and an error

metric based on those parameters, a bundle adjuster iteratively makes small updates to the

parameters until the error metric falls below a threshold.

As discussed in previous sections, MapStitcher has two types of constraints: constraints

that pull images towards their correct geography and constraints that place images to mini-

mize seams at their overlap points. These two constraints are represented by two different
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types of error metrics to the bundle adjuster.

The representation of the geographic constraints are straightforward. The camera in-

trinsics and extrinsics are represented as active states. The user-supplied ground reference

pairs are used to compute the error metric. MapStitcher computes the projection of the

ground point into the image plane using the hypothesized camera parameters. The distance

from the projected ground point to the user-selected image point is the error.

Image-stitching constraints are somewhat more complex to model. In this case, the

stitcher does not have a known ground point—only a set of image points that, according to

the feature matcher (Section 5.4.1), depict the same groundfeature. We add a new active

state for each group of feature match points; it represents the hypothesized point on the

ground depicted by those features. The initial estimate of this ground point is the centroid

of the projection of all the feature match points onto the ground, given the estimates of

those images’ camera models. In each iteration of the bundleadjuster, the hypothetical

ground point is projected back into the image plane of each image using the updated camera

models. The error metric is the sum (over each image) of the distances in image space from

these projections to the corresponding feature match points.

For further technical details, we refer the reader to [5], which describes the application

of the bundle adjustment algorithm in a similar context.

5.4.4 Grounding Images Iteratively

If the user originally supplies ground reference pairs foreveryimage in the mosaic, the

procedure described above will work in a single step. Each camera’s parameters could be

initially estimated based on its image’s ground reference pairs, and all parameters could

be optimized in a single bundle-adjustment operation. However, such a system would

be difficult to use: it can be time-consuming to find ground reference pairs manually and

many mosaics contain dozens or hundreds of images. To minimize user effort, MapStitcher

creates synthetic ground reference pairs using adjacent overlapping images that already
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have camera model estimates.

For example, imagine that our mosaic has imagesA andB. A has user-supplied ground

reference pairs, butB does not. The feature matching algorithm tells us that pixel(Ax, Ay)

in imageA depicts the same feature as pixel(Bx, By) in imageB. MapStitcher first “boot-

straps” the mosaic usingA’s ground reference pairs to estimateA’s camera parameters. It

then uses those parameters to project(Ax, Ay) onto a ground point(Axg, Ayg), and creates

a synthetic ground reference pair for imageB: (Bx, By) corresponds to(Axg, Ayg). This

technique can be used iteratively to propagate camera modelestimates to an entire contigu-

ous set of overlapping images. We call this successive propagation theripple algorithm.

Note that after each ripple, aglobal bundle adjustment is performed, as described in the

previous section.

An example for a succession of ripple steps is shown in Figure5.4.4. (For illustrative

purposes, we depict only a small number of feature match points.) In the initial ripple,

ground reference pairs (marked (i) on Figure 67(a)) are usedto calculate the homographic

transformations for image #2 and #9.

In the second ripple, feature match point pairs (marked (ii)on Figure 67(b)) are found

that have one of their points on the known-model images: #2 and #9. These feature matches

add images #1, #3 and #8 to the ripple. Note that although #1 and #3 overlap, the feature

extraction and matching algorithm didn’t find any feature match points between them in

this case. The ground location of the feature match points are calculated using the homo-

graphic transformation obtained for image #2 and #9 in the initial ripple. After bundle

adjustment, the ripple’s three new images will also have their parameters for homographic

transformation.

In the third ripple (Figure 67(c)), feature match points on images #3 and #8 add images

#4, #5 and #7 to the ripple. Note that the two feature match points between the floating

images #4 and #5, marked (iv), are feature match points without at least one image with a

known position, and thus are not used in the RANSAC initialization of the third ripple.
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In the fourth ripple (Figure 67(d)), feature match points attach image #6 to both #5

and #7. Note that up until this ripple, there were two independent image groups: images

#1–#5 were grounded based on ground reference pairs from image #2, and images #7–#9

were grounded based on ground reference pairs from image #9.The link provided by #6

joins these two groups, and the subsequent bundle adjustment jointly refines all 9 camera

modelstogetherfor the first time in search of a globally optimal solution. Inaddition,

the feature match points marked (iv) between #4 and #5 can nowbe grounded (using the

homographic projections from the previous ripple), which allows them to be used in the

bundle adjustment. After the fourth ripple, all images in the cluster are grounded with

homographic transformations, and the algorithm terminates.

5.5 Evaluation

MapStitcher is designed to produce a well-georeferenced aerial imagery layer stack with

low human data-entry cost. To evaluate its design, we perform an experiment that com-

pares a MapStitcher orthorectified image with two control methods,no-stitchandstitch-

first. We measure each method on two criteria: cost of registration measured in number of

manual ground reference pairs, and quality of registrationmeasured in deviation of unref-

erenced points from ground truth. In these experiments, “ground truth” is defined by the

lower-resolution Virtual Earth aerial photography of the subject region, and is affected by

distortions in the Virtual Earth orthorectification pipeline.

5.5.1 Experiment Description

For this experiment, we use as input 60 source images we captured of the Skagit River

Valley in the vicinity of the town of Concrete, WA. We used eachof the three techniques to

combine all source images to produce a single orthorectified, tiled composite image of 208

megapixels.
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5.5.2 Measuring Cost

For theno-stitchmethod, we registered 257 points (mean 4.3 points per image;Figure 68(a)).

For thestitch-firstmethod, we stitched the images with the fully automatic photo stitcher

described in [4]. We georegistered the resulting compositeimage with 25 manually-entered

ground reference pairs (Figure 68(b)).

For the MapStitcher method, we registered 25 points spread out on 5 images (mean 0.4

points per image over the whole set; Figure 68(c)). We show the five images with manually

entered ground reference pairs after transformation, on Figure 69, while Figure 62 shows

all 60 images georegistered based on these five images.

Figure 70 shows the number of manual ground reference pairs for the three methods.

5.5.3 Measuring Quality

We manually selected 12 recognizable points in the scene, each from separate source im-

ages, none of which were used as manually-entered referencepoints in any of the methods.

We measured the “ground truth” position of each point in the low-resolution Virtual Earth

image. For each method, we computed the mean distance between where the method ge-

olocates each point versus the point’s ground truth position.

Figure 71 shows the mean and standard deviation of the registration errors for the three

methods. Theno-stitchmethod produces the best quality orthorectification, with25.1 m

mean error and15.8 m standard deviation, but using10.3 times as many manual points as

the other methods. The referencestitch-firstmethod results in a mean error of354.1 m

(with a large167.9 m standard deviation), showing that it is difficult to recovergeography

as a discrete step if a mosaic is created using seamless-boundary constraints alone. Our

method, which jointly optimizes image-to-ground and image-to-image alignment, results

in a mean error that is234% (58.83 m) of the no-stitch method (with a standard deviation

of 37.9 m), while needing only9.7% of the manually entered ground reference pairs of

the latter method. The increased error may be due to placing too much relative weight on
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image-to-image alignment—that is, in some cases, we may be sacrificing absolute posi-

tional accuracy for the sake of output that looks better.

5.6 Future Work

While our current system produces composite imagery whose georeferencing quality ap-

proaches that of the manual no-stitch method, it suffers from similar problems as that

method: image boundaries remain clearly visible at some image boundaries. Panorama

stitching techniques employ graphcut algorithms to reducevisible seams in the final com-

posite [25], and gain compensation and multi-band blendingis used to correct for un-

modelled camera effects (e.g. vignetting) [4]. Our application would also benefit from

these techniques. MapStitcher currently has noa priori information about the relative po-

sitions of any images, and thus must attempt to find feature matches between all image

pairs. Adding a constraint that indicates potential image overlaps will simplify the prob-

lem of finding feature matches, as the number of candidate images to be considered will

be reduced fromO(n2) to a constant-sized neighborhood. This will significantly improve

processing speed and reduce feature match outliers, and canbe achieved using a low-cost

(consumer-grade) GPS that is only loosely coupled to the image acquisition process.

5.7 Conclusion

MapStitcher produces orthorectified aerial imagery mosaics from images with poorly con-

strained geometry and only minimal manual labeling. The result is a system with low

capital cost that produces high-quality image mosaics. We anticipate that access to such

low-cost imaging will lead to a much wider grass-roots effort to produce aerial photogra-

phy. We hope to facilitate community-supported efforts aimed, for example, at better cov-

erage of non-urban areas, timely coverage of special eventsor natural disasters, or more

frequent coverage of fast-changing areas. Ultimately, if aerial imaging becomes as cheap

and easy to produce as a blog, we may see aerial imagery with the same rich, decentralized
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diversity as the blogosphere.

159



WXYZ [
(a) Initial ripple; only ground reference pairs are used\]]̂_ ` a

bc
(b) Second ripple; feature match points link some
floating images to already grounded onesdeeef

degf
deef

h i j
k l

m
no

(c) Third ripple; some feature match points link more
than two images

p q r
s t u

v
wx yzz{

(d) Fourth and final ripple; a globally optimal solu-
tion is approached when independently estimated im-
age groups join

Figure 67: A succession of ripples is used to estimate the position of all images, even
though only a subset have user-specified ground reference pairs.
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(a) Ground reference points forno-stitchmethod.

(b) Ground reference points forstitch-firstmethod.

(c) Ground reference points for MapStitcher method.

Figure 68: Locations of ground reference points.
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Figure 69: The only images with manually entered ground reference pairs in our Map-
Stitcher example.
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Figure 70: Number of manually entered ground reference pairs.
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Figure 71: Mean and standard deviation of registration error.
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CHAPTER VI

CONCLUSION

The theme of this thesis is the creation of location based services that are efficient, scalable

and available to all end users. In this chapter, we provide a recap of the main topics and

conclusions of our work.

We have presented ROADTRACK − a query-aware, precinct based location update

framework for scaling location updates and location tracking services. ROADTRACK de-

velopment makes three original contributions. First, we introduce encounter points as a

fundamental query awareness mechanism enable us to controland differentiate location

update strategies for mobile clients in the vicinity of active location queries. Second, we

employ system-defined precincts to manage the desired spatial resolution of location up-

dates for all mobile clients and to control the scope of queryawareness capitalized by a

location update strategy. Third but not the least, we develop a road network distance based

check-free interval optimization, which further enhancesthe effectiveness of ROADTRACK

and enables us to effectively manage location updates of mobile clients traveling on road

networks by minimizing the unnecessary checks of whether they have crossed an encounter

point or precinct boundary point. We evaluate the ROADTRACK location update approach

using a real world road-network based mobility simulator. Our experimental results show

that the ROADTRACK query aware, precinct-based location update strategy outperforms

existing representative location update strategies in terms of both client computation effi-

ciency and server update load.

The computational costs of answering continuous network range queries are known to

be prohibitively high, as a shortest path based network expansion needs to be run repeatedly

at each and every location where the query is evaluated. We argue that continuous network
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range queries, whose focal locations are ”not far” from eachother, have substantial overlap

in their segment coverage. Such a large overlap may offer significant reuse opportuni-

ties for performance enhancement. We have presented the design and implementation of

Dandelion reuse framework and a suite of algorithms for fastre-evaluations of continuous

network range queries. The chapter makes three original contributions. First, we propose

the concept of Dandelion tree to accurately represent the coverage of a network range query

with arbitrary range, by keeping track of three key network location points: border points

(BOP), dead-end points (DEP), and zip points (ZIP). Second, we design three BOP-Push

and three BOP-Pull primitive operations to compute the coverage atF by maximum reuse

of the coverage at previous query focal locationF . Third but not the least, we define the

data structures and three Dandelion reuse algorithms to efficiently identify the portion of

the Dandelion tree that can be used as the basis for reuse and further expansion. The ba-

sic Dandelion algorithm enables reuse by dividing the Dandelion tree (query coverage) of

a query into the forward (FWD) and backward (BWD) halves, allowing separate mainte-

nance of the key data structures for each half to reduce the search space. The Dandelion-T

algorithm introduces and utilizes the Trident and Guide data structures to compose a more

reuse-efficient Dandelion-T tree, leading to faster query re-evaluation than Dandelion ba-

sic algorithm. Finally the Dandelion2 algorithm further enhances Dandelion-T in terms of

query re-evaluation cost by introducing the two primitive transformation operationsmove

andjump. This development can effectively transform one Dandeliontree to another with a

minimum set of primitive transformation operations. We conduct a series of extensive ex-

periments and our results show that Dandelion reuse model and algorithms can significantly

outperform the conventional shortest path network expansion algorithm (NE) in terms of

coverage computation cost for non-trivial radius size and high re-evaluation frequency.

We also considered the problem of accelerating the computation of range query cov-

erages in road networks, even when the query is only evaluated a single time, and thus

a reuse-oriented approach is not applicable. We presented our approach of constructing
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precincts over the road network graph to eliminate the unnecessary complexity of local

neighborhood streets and replaced them with fast shortcuts. We provided a classification of

precincts into seed, core and border types, and a criterion to determine when the coverage

computation should choose local search instead of shortcutbased search.

Finally, in a different flavor of location based services, but continuing our focus on

applicability to realistic scenarios, MapStitcher produces orthorectified aerial imagery mo-

saics from images with poorly constrained geometry and onlyminimal manual labeling.

The result is a system with low capital cost that produces high-quality image mosaics. We

anticipate that access to such low-cost imaging will lead toa much wider grass-roots effort

to produce aerial photography. We hope to facilitate community-supported efforts aimed,

for example, at better coverage of non-urban areas, timely coverage of special events or

natural disasters, or more frequent coverage of fast-changing areas. Ultimately, if aerial

imaging becomes as cheap and easy to produce as a blog, we may see aerial imagery with

the same rich, decentralized diversity as the blogosphere.

We believe that location based services – while available tousers in many forms today

– are still an area in its infancy. We hope that this thesis canbe a useful contribution to the

furtherance of knowledge in this field.
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