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SUMMARY

Location based services (LBS) are gaining widespread usmptance and in-
creased daily usage. GPS based mobile navigation systearmii@j, location-related
social network updates and check-ins (Facebook), locdtamed games (Nokia), friend
gueries (Foursquare) and ads (Google) are some of the pd@&s available to mobile
users today. Despite these successes, current user sefalicehort of a vision where
mobile users could ask for continuous location-based seswvith always-up-to-date in-
formation around them, such as the list of friends or faeaiéstaurants within 15 minutes
of driving. Providing such a location based service in reaétfaces a number of technical
challenges.

In this dissertation research, we propose a suite of noehahigues and system archi-
tectures to address some known technical challenges ohoonuts location queries and
updates. Our solution approaches enable the creation gfprastical and scalable loca-
tion based services with better energy efficiency on mobidats and higher throughput
at the location servers. Our first contribution is the depelent of RoadTrack, a road
network aware and query-aware location update framewadkaasuite of algorithms. A
unique characteristic of RoadTrack is the innovative desfgamcounter points and system-
defined precincts to manage the desired spatial resolutitmtation updates for different
mobile clients while reducing the complexity and energystonption of location update
strategies. The second novelty of this dissertation rekeiarthe technical development
of Dandelion data structures and algorithms that can desuperior performance for the
periodic re-evaluation of continuous road-network distabased location queries, when
compared with the alternative of repeatedly performingtavaek expansion along a mo-

bile users trajectory. The third contribution of this dida@on research is the FastExpand

Xiv



algorithm that can speed up the computation of single-iskoetest-distance road network
qgueries. Finally, we have developed the open source GT NobinSobility simulator, a
discrete event simulation platform to generate realisticing trajectories for real road
maps. It has been downloaded and utilized by many to evatbatefficiency and effec-
tiveness of the location query and location update algmsthincluding the research efforts

in this dissertation.
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CHAPTER|

INTRODUCTION

Location based services (LBS) are gaining widespread useptance and increased daily
usage. GPS based mobile navigation systems (Garmin)idoeaiated social network up-
dates and check-ins (Facebook), location-based gamesa(\fslend queries (Foursquare)
and ads (Google) are just some of the popular LBS availabletnlenusers today. Accord-
ing to the International Telecommunications Union (ITWette were 5.3 billion mobile
subscribers worldwide (or 77 percent of the world populgtio 2010, and one out of six
mobile subscribers could access the mobile Internet. Usagepected to double within
five years as mobile overtakes the PC as the most popular wsttoig on the Web. Many
consumers prefer mobile browsers for banking, travel, pimap local info, news, video,
sports and blogs, and prefer apps for games, social medps aral music. Additionally,
many enterprises use location based applications suchhidevéleet management and
urban traffic analytics (IBM).

Despite these successes, current user services fall gloovision where mobile users
could ask for continuous location-based services with ybaigp-to-date information about
the world around them. Consider a simple continuous locafiary, where a moving user
asks for a constant update of the list of restaurants anddsivithin 10 minutes of driv-
ing from her current location, while she is on the move. Riimg such a service in real
time faces a number of technical challenges due to limitgtehya limited network and
computational resources. First, the user is interestedadations and directions that she
can actually follow and drive to (road network travel dista)) rather than those which are

physically close (Euclidean distance). Finding the cogeraf a network distance based



guery in a huge road network (graph) is computationally egpe. This problem is seri-
ously aggravated when such location-based services ndex delivered continuously in
real-time with super-fast response time. Second, thetatnlobtain the up-to-date location
of mobile users is critical to both the quality of locationegies and the range of location
guery services one can offer. However, it is widely recogdithat frequent updates cause
high update processing cost at the location server and loglepconsumption at the mo-
bile clients. Unfortunately, existing location updateagtgies are inefficient because they
are common to all mobile users and they assume that locagidates of mobile clients
are independent of each other. We argue that location upslate essential metric for
performance optimization of real time LBS delivery. Intgdint customization and differ-
entiation are critical to both the effectiveness of locatigpdate management and location
guery quality assurance.

In this dissertation research, we propose a suite of noehiniques and system ar-
chitectures to address the above challenges. Our solyppmaches enable the creation
of new, practical and scalable location based serviceslvatter energy efficiency on the
clients and higher throughput at the location servers.t,Rive propose the Dandelion al-
gorithm and a set of specialized data structures that speebeuperiodic re-evaluation
of continuous road-network distance based location gsiewben compared with the al-
ternative of performing a network expansion along a mobdersi trajectory repeatedly
while users are on the move. The key idea of our Dandelionlderreent is to reduce the
amount of unnecessary re-computations of continuousittgueries by careful identifi-
cation, administration and incremental adjustment of k@yecage locations in the graph.
Although the Dandelion algorithm is fast and effective @ahamnly improve the subsequent
computations of continuous road-network location quefié® second contribution of this
dissertation is the development of the FastExpand algorttiat can speed up the initial
computation of a road network query, e.g., the coverage ahge query, using a hybrid

expansion approach. The main idea of the FastExpand deweltdpis to partition the



large road-network (graph) into smaller units in order tofgen the shortest path com-
putations using a multi-step process. Concretely, we prpotenand use shortest path
shortcuts inside precincts, and only perform local gragiienear the focal location and
in the border regions of the query. Our third technical dbntron is the development of
RoadTrack, a road network aware and query-aware locatioateghmework and a suite
of algorithms. A unique characteristic of RoadTrack is theitglio conserve the battery
power of mobile clients and reduce server bandwidth and lyathaking the location up-
date schedule query-aware through three novel technidiesintroduce the concept of
encounter points as a baseline query awareness mechantsmttol and differentiate lo-
cation update strategies for mobile clients in the vicimifyactive location queries, while
meeting the need of location query evaluation. We employesysiefined precincts to
manage the desired spatial resolution of location updatedifferent mobile clients and
to control the scope of query awareness to be capitalizedyca Ibcation update strat-
egy, thus reducing the complexity of graph calculations aetivork usage. Finally our
road-network based check-free interval optimizationHertenhances the effectiveness of
the RoadTrack query-aware location update schedulingigigoroffering significant cost
reduction for location update management at both mobiéntdiand location servers. Fi-
nally, we have developed the GT MobiSim mobility simulatwwhich is used to generate
realistic driving trajectories for real road maps, and ssras the discrete event simulation
platform for evaluating the efficiency and effectivenesshaf location query and location
update algorithms in the dissertation. This mobility siatat has been downloaded more

than a hundred times since its first public release.

1.1 Roadmap

This thesis is organized as a series of chapters, each omsatietito a topic within the
scope of spatial query-processing techniques and lochisad services in general. Each

chapter gives a brief overview of the problem motivation &rthulation, before delving



into the technical details and our contributions. Expentakresults highlight the perfor-
mance of our proposed solutions under various realisticagtas, showcasing the flexibil-
ity of our algorithms under the most salient parametermeti Our chapters also survey
the related work.

Chapter 2 is dedicated to RoadTrack, our road network awarejaexy-aware loca-
tion update framework and a suite of algorithms, focusingfhicient and scalable query
answering in an environment populated by a large numbereysus

Chapter 3 presents our Dandelion algorithms and a set ofsjzec data structures that
speed up the periodic re-evaluation of continuous roadtrst distance based location
gueries, when compared with the alternative of performimge®vork expansion along a
mobile users trajectory repeatedly while users are on theemo

Chapter 4 is a presentation of our FastExpand algorithm é&ofiatét evaluation of single-
issue road-network distance based location queries.

Chapter 5 continues our focus on location based services & alhfferent perspec-
tive, whereby the proposed MapStitcher algorithm and msiog tool allows the semi-
automatic creation of self-made aerial imagery layers fi8 ®eb applications.

The thesis concludes in Chapter 6.

1.2 Bibliographic notes

Material in Chapter 2 appears in a paper co-authored with BhBamba, Arun lyengar,
Matt Weber and Ling Liu [37]. Material in Chapter 5 appears pa@er co-authored with
Jeremy Elson, Jon Howell, Drew Steedly and Matthew UyttetedgB6].



CHAPTER I

ROADTRACK

Mobile commerce and location based services (LBS) are sortigedastest growing IT
industries in the last five years. Location update of moHilents is a fundamental capa-
bility in mobile commerce and all types of LBS. Higher updategliency leads to higher
accuracy, but incurs unacceptably high cost of locationagament at the location servers.
We propose RADTRACK — a road-network based, query-aware location update framkew
with two unique features. First, we introduce the concepiretincts to control the gran-
ularity of location update resolution for mobile clientsitlare not of interest to any active
location query services. Second, we define query encouaietsgfor mobile objects that
are targets of active location query services, and utihesé¢ encounter points to define the
adequate location update schedule for each mobile. TdwbRRACK framework offers
three unique advantages. First, encounter points as arherdal query awareness mech-
anism enable us to control and differentiate location updattegies for mobile clients in
the vicinity of active location queries, while meeting theeds of location query evalua-
tion. Second, we employ system-defined precincts to mamegaesired spatial resolution
of location updates for different mobile clients and to cohthe scope of query awareness
to be capitalized by a location update strategy. Third, oadfnetwork based check-free
interval optimization further enhances the effectiverefsthe ROADTRACK query-aware
location update scheduling algorithm. This optimizatiooMides significant cost reduction
for location update management at both mobile clients acation servers. We evaluate
the ROADTRACK location update approach using a real world road-netwosketanobil-
ity simulator. Our experimental results demonstrate thatROADTRACK query aware

location update approach outperforms existing represeatacation update strategies in



terms of both client energy efficiency and server procedsiad.
A version of this chapter was published as a paper co-autheith Bhuvan Bamba,

Arun lyengar, Matt Weber and Ling Liu [37].

2.1 Introduction

We are entering a wireless and mobile Internet era where@aop vehicles are connected
at all times. In the past five years we have witnessed an asiogigrowth of mobile com-
merce and location based applications and services, whiatnty extend many traditional
businesses into new product offerings (e.g., location daskrertisement, location based
entertainment) but also create many opportunities for nesinesses and innovations. Con-
sider a metropolitan area with hundreds of thousands oftcle=hi Drivers and passengers
in these vehicles are interested in information relevarth&ir trips. For example, some
driver would like her vehicle to continuously display on aprhe list of Starbucks coffee
shops within 10 miles of her current location. Another driveay want to monitor the
traffic conditions five miles ahead of its current locatiomgy(gtraffic flow speed). The chal-
lenge is how to effectively monitor the location updates ahite users and continuously
serve location queries (traffic conditions, parking spa&arbucks coffee shops) with an
acceptable delay, overhead, and accuracy, as the mobremsge on the road.

There are two key performance challenges that may affectytbem scalability and
service quality in future mobile systems supporting lamatilependent services and ap-
plications: (1) the high cost of network bandwidth and egergnsumed on the mobile
clients for frequent location tracking and updates at tloation servers; and (2) the chal-
lenge of scaling large amount of location updates at thetilmtaerver as the number of
mobile clients demanding to be tracked increases in a lmtakktermination system. Fur-
thermore, handling frequent load peaks at location updatehsonization points is also
a challenge, since the server has to simultaneously haockigion updates from a large

number of mobile clients, and re-evaluate all registerediaplocation query services.



Location Update Problems and Existing Approaches

Monitoring location updates and evaluation of location rigge over static and moving
objects upon location updates have become the necessitydoy mobile systems and
location-based applications, such as fleet managemengo ¢eacking, child care, and
location-based advertisement and entertainment. Frégpelates cause high update pro-
cessing cost at the location server and high power consamptithe mobile clients [1].
Some European mobile service providers have started thdoased location management
for mobile object tracking. For instance, different prgimodels are applied to high fre-
guency location updates at different time intervals, sichwery three minutes, every one
minute, every 30 seconds, and so forth.

In contrast to location determination systems where laatibn techniques are em-
ployed to determine the position of a mobile subscriber withe area serviced by the
wireless network, the location update management addreékseproblem of when and
where to update the locations of mobile subscribers cuyréiaisted in the system. Rep-
resentative location update strategies to date includegierupdate (time based scheme),
point-based update using dead-reckoning, velocity vdxased update, and segment based
updates [10]. However, existing location update strategie inefficient because i) they
are common to all mobile users, and ii) they assume thatitotapdates of mobile clients
are autonomous and all mobile users should manage theirdnagpdates using a uniform
strategy. To the best of our knowledge, no customizatiorifterdntiation is incorporated
to the design of location update management strategies.

We argue that, as mobile and hand-held devices become mmaspe, more capable,
and both GPS and WiFi enabled [42, 23], as the operation ¢dstation update manage-
ment continues to grow, these assumptions are no longestrealFor instance, most of
the mobile systems and applications today need to managgeadad evolving number of
mobile objects. Often, only a subset of mobile objects intdnest to registered location

guery services. Thus, tracking location updates of all teallients uniformly is no longer



a cost effective solution. It is obvious that the locatiowlaie strategy for those clients that
are of no interest to any nearby and active location quemjcEs should be different from
and less costly compared to the location update strateggraEisfor mobile objects that
are the targets of active location query services in theegyst

Motivated by these observations, in this chapter we preBemb TRACK — a road-
network based, query-aware location update framework tsgdacing precincts and en-
counter points as two basic techniques to confine locatiaiatgs to the need of existing
location query services. These two basic building blocksbénus to effectively differ-
entiate and manage location updates for mobile objectglirgvon road networks. We
utilize precincts to manage the spatial resolution of liecatipdates for mobile clients that
are not immediate targets of any existing location queryises. We introduce encounter
points to implement the query-aware location update gjydi@ mobile clients nearby ac-
tive location queries. By combining precincts and encouptents, we can balance the
benefit and cost of query awareness and speed up the coropuibéncounter points. The
ROADTRACK location update management offers three unique advantBgss encounter
points as a fundamental query awareness mechanism enablearstrol and differentiate
location update strategies for mobile clients in the vigimf active location queries from
the rest. Second, by employing system-defined precinctsaweffectively manage the de-
sired spatial resolution of location updates for mobilemis with different needs for query
awareness. Third but not the least, we improve the efficieh&®0ADTRACK location up-
date approach by employing a suite of road-network basetkefnee interval optimization
techniques. We evaluate th@RDTRACK approach to location update management based
on a real world road-network mobility simulator [34]. Oumpeximental results show that
by making location update managemeguoery aware ROADTRACK approach significantly
outperforms existing representative location updatéesiras in terms of both client energy
efficiency and server processing load.

The rest of the chapter is organized as follows: We outlirerétierence system model



and discuss the design philosophy through an analysis sfiegirepresentative location
update strategies in Section 2.2. In Section 2.3, we intedloe concept, the computation,
and the usage of encounter points and the precinct and etecchased location update
strategy, including the data structure used at both theesand the client side. We present
the encounter points based check-free interval optinumaith Section 2.4. Section 2.6
reports our experimental evaluation on the effectiven&ssioROADTRACK query aware
location update approach. We conclude the chapter withetlaork and a summary of

contributions.

2.2 System Overview

A location update and monitoring system typically considta location database server,
some base-stations, application servers, and a large muohlreobile objects (mobile
clients) and static objects (such as gas stations, resiayrand so on). The location
database server (location server for short) manages tla¢idas of the moving objects.
The application servers register location queries of @ggrand synchronize with the loca-
tion server to continuously evaluate the queries agaicstion updates.

Figure 1 gives an architectural overview of the referencation monitoring system
used in the context of ®ADTRACK development. We assume that mobile clients and
the location server have a local copy of the same road netdatkbase that constrains
the movement of the clients; clients may store this on an SD. ckor the clients with
limited storage, a tile based partitioning of the road neknoap can be used [31]. We
assume that the mobile clients are able to communicate hélsérver through wireless
data channel, and they have computing capabilities to rutight-weighted road network
locator, which uses a static R-tree index on road segmentsddtfeir own road network
locations based on their GPS positions through map matchyapile clients may also
obtain their positions from the location determinationteys they subscribe to, such as

Google’s locator service available on iPhone and other fneahdl devices.
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Figure 1: Overview of the system architecture

2.2.1 Road network model

The road network is represented by a single undirected graph(V, £), composed of the
junction nodes’ = {ng, n1,...,ny} and undirected edges= {n;n;|n;,n; € V}. In this
chapter we frequently refer to an edge; as a road segment connecting the two end nodes
n; andn;. The listing order of the two end nodes of a segment; serves as the basis to
determine the direction of therogresscoordinate axis from node; to noden; along the
segmenty;n;. In other words, the segmenin; runs fromp = 0 at the first listed node
(n;) to p = length(n;n;) at the second listed node,). Though in this chapter we model
the road network using undirected graphs for simplicity, methods can be extended to
directed graphs. Junction nodes have either two or moreemtimg road segments, or are
dead-end nodes with only one connecting road segmertdad network locationdenoted
by L = (n;n;,p), is a tuple of two elements: a road network segment and theprogress

p along the segment. The road network distance is used assthacke metric in our system.

The distance between two locatiohs = (n;,n;,,p1) andL, = (n;,n,, ., p2) is the length
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of the shortest path between the two positidasand L., formally defined as follows:

dist(Ly, Ly) = length(ngn;,) — p1 + p2
E—1
+ min length(n; ni,.,)-
, ; gth(ni,ni,.,)

{i1,02,00si
2.2.2 Design Guidelines

A number of positioning systems are made publicly availéeracking the location up-
date of mobile objects moving on the road network, such ag@@ad_atitude and Skyhook
wireless WiFi positioning system [42]. Frequent locatiqulates enable the location server
to keep track of mobile clients’ current locations and eagtie accuracy of the location
query results. The algorithm that mobile clients employ ébednine when and where
to update their locations is often referred to as the looatipdate strategy. We below
describe the motivation, the advantages, and the chaBeofgeur query-aware location
update framework by analyzing and comparing a number oesgmtative location update
strategies.

Periodic update strategy. A periodic update strategi the simplest time-based location
update strategy, in which the location server maintaingatation update for each mobile
client at a fixed time interval. This update strategy imptiest mobile clients are treated
as stationary between updates.

Point-based update strategy. This approach uses the distance-based scheme and the
server only record an update when the mobile client travedsenthan a delta threshold
away in distance from the location of last update. The nurob&rcation updates per unit
time will depend upon the speed of the mobile user.

Vector-based update strategyA vector based update strategges the velocity vector of
the mobile client to make a simple prediction about its lmrat An update is only sent
when the current location of the mobile client deviates fritgrpredicted location by an

amount that is larger than a system-defined delta distameshtbld. This strategy treats

11



the velocity vector of the client as constant between ugdate

Segment based update strategyhA segment based update stratedyizes the underlying
road network to limit the number of updates. Mobile clierms assumed to move at a con-
stant speed on their current road segment. An update is $emt tle distance between the
current and the predicted location is larger than a systefimed delta threshold. We as-
sume that mobile clients change their velocities at the éméch segment, i.e., the mobile
client is assumed to have stopped at the segment end nodaamthange its movement
speed and direction and move forward accordingly. Thus alatepwill be sent when the
mobile client departs from a segment end node by delta distawe refer the reader to
[10] for more on these strategies.

Motivation of Our Approach.

We have discussed four representative location updategitea and each of them has some
weakness in terms of both client energy-efficiency and nétwandwidth or server load
optimization. Furthermore they all suffer from the commaefficiency — the location
update decision of mobile clients is independent of whethere are any location query
requests nearby. It is obvious that when mobile clientstriava region where there are no
location queries, one can benefit by using a location updiategy that enable the location
server to record their location updates at some criticadtioo points, leading to signifi-
cant saving in terms of client energy and bandwidth consiom@s well as server load
reduction. In RADTRACK two criteria are used to determine what should be considered
as critical location update points. First, we need to ineeethe location query awareness
of mobile clients. By making mobile users aware of querie$@irtvicinity, one can avoid
making those superfluous updates. Second, we need to masetaain freshness of loca-
tion updates for those mobile clients that are not in thenitigiof any location queries to
maintain adequate location tracking capability of theaystThe second criterion ensures
that all mobile clients need to update their current locatibthe location server from time

to time in order to keep their location record update to datbelocation server, though
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different mobile clients may use different scale of locatiesolution.

Bearing these two design guidelines in mind, we develgpexy-aware, precinct based
update strategyConcretely, we introduce the concept of encounter pointiaadoncept of
precinct as two building blocks. By keeping track of the emteupoints for each mobile
client moving on the road network, we are able to use the gawareness to differentiate
the location update strategy used for mobile clients thatrathe vicinity of active queries
from the location update strategy used for the mobile dcliehat are not targets of any
location queries. The use of precincts constrains the seh@dunter points that a mobile
client needs to keep track of to be small, and sets an uppedbmuwhen the mobile clients
have to update their locations regardless of whether theréoeation queries nearby. To
further reduce the cost of checking whether a mobile is ctoshe border points of its
current precinct or one of its encounter points, we developad network distance based
check-free interval optimization, providing significaetluction in terms of the number of
wakeups at the mobile client and the server update load.

The ROADTRACK query aware location update strategy is applicable to allingp
objects in a road network setting, be it vehicles or pedasséti This research is based on
the assumption that all moving objects are either movinghenpublic road networks, or
walk paths such as indoor buildings or university campugaths. As long as these walk

paths can be modeled as graphs, our approach can be appéetiydi

2.3 Precinct based update strategy

In this section we describe the basic design of our precindtencounter point based
location update method, and defer the check-free interasgth optimization to the next

section.
2.3.1 Precinct and Encounter Point

Precinct.

Precinct is introduced in ®ADTRACK for dual purposes. First, every mobile object is
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associated with a precinct in which it currently resides. e precinct as the spatial up-
per bound to enforce location updates of all mobiles whey thess their current precinct
boundary and enter a new neighbor precinct. Second, we grmppoinct to limit the scope
of query awareness and balance the tradeoff between tHeofdeeation accuracy main-
tained at the server and the reduction of location updateatdbe server. For example,
gueries about the restaurants in Miami are far away from tineent location of a mobile
client traveling in Atlanta downtown. Thus, the mobile dlie in Atlanta downtown should
not be made aware of queries about restaurants in Miami. Bydating system-defined
precincts we can conveniently limit the scope of query awareness faila clients resid-
ing within their precincts. This also ensures that the numbencounter points maintained
at a mobile client is small.

A precinctP = {Vp, Ep} is a subgraph of the road netwatk= (V, £) whereVp C V
and&p C €. Nodes inVp are eitherinternal or border nodes. Each internal node is
reachable from all other nodes of a precinct on a path contpafsenly internal nodes. All
edges in€ that are connected to an internal noden are also in€p. The partitioning
of the road network graph is created during the system liziiaon, and is stored together
with the road network data maintained at both the serverfaachbbile clients. We present
the precinct construction algorithms in the next section.

Encounter Points

We first informally introduce the concept of encounter poinet P = {Vp,Ep} denote

a precinct and)(R, F') denote an active location query, wheReis the query radius in
road network distance and is the focal location of) represented using the road network
location defined in Section 2.2. The quépyis said to be relevant to the precingtif a
segmenty;n; € Ep is entirely included in the query regiak as shown in Figure 2(a) or
partially covered by the query regidh Assume that the shaded area in Figure 2 represents
the query region computed in terms of road network distarara the focal location of the

guery, e.g., the query range of 2 miles from the focal locafib If a segment crosses
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the query boundary, i.e., one end-node is inside the quegigneand the other end-node
is outsideR, then we say that the segment is partially covered by theyque call the
road network location where a partially covered segmergsae the query boundary an
encounter pointFigure 2(b) shows an example encounter paintit is important to note
that even if both end-nodes are inside the query region,ggment may only be partially
covered, if there exists a network locatiéron the segment whose distanceftas greater
than the query range specified, i2L|dist(F, L) > R. In this case there are two encounter
points for the query on a single segment (see Figure 2(c)).natiequery range is small,
it is possible that the query only covers a portion of the sagnen which the query focal
location F' resides, thus there are two encounter points on a singleesgdmt with both
end-nodes outside the query region (Figure 2(d)).

Formally, given a set of location querig3) over the road network = (V, £), one can
determine the set of encounter poilits = { £, . . ., E,, }, each of which £;) is associated
with a range query);(R;, F;) with focal locationF; and rangeR;, and is represented as
a road network location that is exactly; distance fromF;. In other words, the set of
encounter point& satisfies thavVE; € Ep,3Q;(R;, F;) such thatdist(F;, E;) = R; and
BL|dist(F;,L) = RAL ¢ Ep, i.e., every encounter point is a road network location
that is exactly range?; distance fromF;. The encounter points are defined on the road
network. When a mobile client meets or crosses an encountet, fandicates that the
client exits or enters the scope in which the query resubbimsuted. Therefore, we use the
encounter points as the critical location reference pdortghose mobile clients to update
their locations at the server whenever they encounter ttrégsal points on the move.
Comparison with existing update strategies.

In Figure 3(a) we show five mobile clients traveling on a portof a road network, each
following a distinct update strategy. The two precincts ginend east) have the common

border pointsBs, By, By, Big, and connect to the rest of the road network at all the other
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Figure 2: Four major cases for determining encounter points on themeergwith end-

nodesn; andn;. The shaded coverage area represents the query regionrgf@Ue, F')
computedR road network distance away from focal locatibn
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(a) Updates without query-awareness

(c) Two queries £, Fb)

Figure 3: Example scenario with encounter points (E) and precinaidropoints (B) as
update trigger points
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border points (all border points shown as black squares)upper left) is doing segment-
based updates, triggering updates each time the clienttdepsegment end-node byita
distance. The grey circles show the delta-radius circlesrad the mobile’s location when
the updates occurd/, (upper right) has a point-based update strategy, and thnas s
update whenever its current location is at le&s$ta distance from its last reported location.
M3 (lower left) is a periodic update mobile client, updatingewvt seconds. The mobile
initially travels fast, continuing at a slow pace; as a reaybdates may be spatially too
sparse initially, and too dense when speeds are low. We dimloctations at the time of
updates as stars, since — unlike fafy, M, and M, — there is no distance threshold for
periodic updates, (lower right) has a vector-based update strategy, and qoesdly
segment geometry along the trajectory is the primary detemm of update scheduling.
However, all these mobiles’ updates are wasted, as thereayatstanding queries on this
portion of the road network. The fifth mobile client/s, following a RoadTrack update
strategy, sends no updates, as there are no queries paaseits trajectory does not cross
any precinct boundary points.

In Figure 3(b) a range query with focal locatidh (sun symbol) is installed, with the
associated encounter poirfis; . .. F5 (black rhombus symbol). Note that dead-ends are
not £ points inside a query coverage area (and Bqgtoints inside a precinct). We now
ask all mobiles to follow a RoadTrack strategyf; and M3 cross and update on precinct
boundary points only®,, B,, Bs; and B;», B11). M, enters, then exits the query region,
and thus also updates on encounter poifts {13, 14, Bg). M, crosses boundary point
By, but remains in the same precinct, and thus only updateB,;0Bs. Note thatB, is
a real boundary point, as not all connected segments aresisaime precinct, and thus
a precinct crossing is possible; whether this occurs or :10bt known in advance, so it
is imperative forM, to considerB, as a potential update trigger. Finally/s; sends no
updates, as it does not cross agyr £ points. Note that being on the inside or outside

of a query region makes little difference to mobile clierger the initial query evaluation
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(during query insertion), neither client activity comg@igt outside, nor completely inside
the query coverage area changes the query result. Furtheram precincts are used to
scope guery awareness, mobiles in the west precinct {é;@need not even consider the
guery’s encounter points (which are all in the east preginct

In Figure 3(c) an additional range query is added, in the westinct. M; now also
updates on this new query region’s encounter poifts,(F»;), but after entering the east

precinct viaBs it no longer needs to consider any points inside the easinutec
2.3.2 Construction of Precincts

Clearly the entire road network is a legitimate precinct. iirlty, the other extreme is
the single-segment precinct, where each segment of thenetrk is considered as
one precinct. We can use road network distance or hop coutktfine the size of the
preferred precincts. Assume that we use a system definedrietistance threshold to
partition the road network into precincts. The algorithmdonstructing precincts is sim-
ilar to a network expansion algorithm. A precinct is consted by starting at the cho-
sen segment and expanding along the neighboring segmehitsoarputing the network
distance. This process repeats until the network distadmeslitold is reached. The con-
struction process is repeated on the remaining segmernkslisegments in the road net-
work are grouped into precinct-based partitions. A distametric based partitioning uses
dist(n.,ng) = dist(n.,n;) +length(n;ny) for distance expansion. The algorithm for con-
structing the precinct partition of a given road networkgaeds in three steps. (1) The

partition algorithm starts by marking all segments and @liciions as 'uncovered’. (2)

A precinct center node. is selected at from an ordered queue of uncovered nodes (we

elaborate on this ordering below). A queue is maintainednduthe precinct construc-
tion process, which contains a list of candidate nodes irraing order of their distance
from n.. A node in the road network is a candidate node for the précieatered at..

if its distance ton.. is within the system supplied distance threshold. The qumtially
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contains onlyn.. At each expansion step, the entry;, dist(n.,n;)) at the head of the
queue is removedy, is marked as 'internal’, and all uncovered segments coedeitt
n; are added to the list of segments covered by the precinct.ségmentn;ny, ny is
added to the list of nodes covered by the precinct, and thde’sdlistance is calculated by
dist(ne, i) = dist(ne,n;) + length(n;ng). If ny is marked as 'border’ (for some other
precinct), then it is added to the list of nodes covered byctireent precinct with a *bor-
der’ flag; otherwisen,, is marked as ’internal’ anthy, dist(n., ny)) is added to the queue,
unless &ny, dist(n., ny)’) is already in the queue withist(n., ny) > dist(n., ng)’. When
the distance of the queue head node is larger than the spgmi&einct range, the precinct
construction is concluded by marking all remaining nodetha queue as 'border’, and
adding them to the list of nodes covered by the current peegith the 'border’ flag. (3)
The algorithm continues with the creation of the next preicimtil there are no uncov-
ered nodes. When no uncovered nodes remain, there may stithdmvered segments,
whose both end-nodes are border-points for other preciftigyle-segment precincts are

constructed for each of these remaining uncovered segments

An alternative approach to constructing precincts is totheesegment count (or hop
count) metric, i.e. we uséist(n.,ny,) = dist(n.,n;) + 1. Figure 4 shows a partitioning
of an example graph with both methods. The randomly selgutecinct center nodes are
marked bynq, no,n3 in both cases and are selected in the order of node index. Borde
nodes are shown with a solid square. Single-segment pte@ne highlighted with a grey
background. Both hop-count based partitioning (left in IFégd) and the distance based
partitioning (right in Figure 4) shows five precincts: thygecincts centered by, , nq, n3
respectively and two single-segment precincts.

As we mentioned, nodes are selected to serve as precinersecording to a pre-
specified ordering. The ordering method has no bearing oodirectness or utility of the
precincts, but may have implications for both the numbetieht wakeups and the number

of updates received by the server. As a result, we can usalamaseeding of precincts as

20



|
I
\ 4

...._ [ N —
I
I
—
N
v = - ———
I
I
S R N
II\)
I
-
I
I
N

Figure 4: Graph partitioning with h=2 hop-based (left) and r=2 km aliste-based (right)
algorithm
our baseline scenario. Instead of such w@approach, a node ordering heuristic may be
applied, whereby the algorithm prioritizes nodes that hentany fast roads, as such nodes
are likely to be important traffic junctions. This means tha&t score nodes by the sum
of speed limits of their connecting segments, and alwaysshi@an uncovered node with
the highest score as the next precinct center. In formgdhis heuristic, our expectation
is that if mobile clients take the shortest path to their idesions, high-speed roads and
junctions will see more traffic than low-speed ones. Thenwaslace junctions with
high potential throughput in precinct centers, high-tcaffortions of the road network are
covered with relatively fewer precincts, and thus have tlospect of saving some border-
point triggered updates and allowing longer check-freeriretls between client wakeups.
Letdeg denote the average degree of a node. Witiop based partitioning, the average

number of nodes in a precinct may be estimated as:

h—1

Vplawg =1+ deg - Z(deg — 1),

=0

and the average total length of the segments in a singlenutasicalculated by

I(deg — deg"*!)

h
Lenp~ Y [-deg' =
nr ; ° 1 —deg

With d-distance based partitioning, we can substifute % above, wheré is the average

length of a road network segment.
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|Vpr|avg IS independent of the size of the complete road network. &ohn erecinct, dis-
tances between all nodes are pre-computed using the Flaydrall algorithm and stored
as aD distance matrix for this precinct. The complexity of thisgstfor all precincts is

k4 ~O(|Vel2,.) = O(IV] - |[Vel2,.) = O(|V|). Thus, given a road netwo® = (V, €)

|VP|lwg avg avg

and its precinct partitiol® = {Vp, Ep}, the total storage space for thhiedistance matri-
ces requires— - O(|Vp[2,)) = O(|V| - [Vplwy) = O(|V|) storage space. The distance
between an arbitrary locatioh = (n,n;, p) and node: can be computed using the node-
to-node distances from to the two end-nodes:{ andn;) of the segment,n; that L lies
on: dist(L,n) = min(dist(n;,n) + p,dist(n;,n) + (length(n;n;) — p)). The distance
between any two locations; = (n;n;,p;) and L, = (ngn;, p2) can be computed as the

minimum of the lengths of four potential routes as followsg$igure 5):

dist(Ly, Ly) =
= mz’n(routeik, route;, routejy, Toutejl)
=min(dist(n;,ng) + p1 + p2,
dist(n;,n;) + p1 + (length(ngng) — p2),
dist(nj, ng) + (length(n;n;) — p1) + p2,
dist(nj,n) + (length(n;n;) — p1)

— (length(ngny) — p2) ).

2.3.3 Data structures

In this section we give a brief overview of the data structursed at the server-side and the
client-side to facilitate the understanding of our pretlmsed location update framework.
Server side data structures.

Node Table, NT =_(nid{sid}) stores road network nodes with tk&l segment iden-
tifiers for the segments that connect to the node. A hash talllEx on thenid node

identifiers allows constant speed lookup.
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Figure 5: O(1) computation of distances between two arbitrary roadowk locationsl,
andLs,.

Segment Table, ST = (sidid;, nids, pid, {oid}, {qid}) stores road network segments
with the two end-nodesifd; andnids). A hash table on theid segment identifiers allows
constant speed lookup. We store the identifier of the préciovering the segmenpid),
the client identifiers for clients on the segmefii(/}), and the list of query identifiers for
queries (fully or partially) covering the segmetig{d}).

Precinct Table, PT = (pid {sid}, {(nid,isBorder)}, D) stores information about
a precinct with the identifiepid, along with the list of road network segments covered
({sid}), the list of nodes covered along with a flag showing whethemiode is 'border’ or
'internal’ ({(nid, isBorder)}), and the pre-computed node-to-node distance tdb)e (

Query Table, QT = (qidoid, range,F, {(sid, E, dir)}, {result}) stores queries in the
system with theyid query identifier, the:d identifier of the client the query is attached to,
therange specifying the road network distance based range of theygamed F' giving the
focal location of the query. Thé(sid, E, dir)} list contains tuples of segment identifiers
of segments at least partially covered by the query, eneogaiint locations for segments
not fully covered (omull for a completely covered segment), and a flag indicating lwhic
part of the segment is inside the query region (source-sitlrget-side). Théresult} list
stores client identifiers for the clients that satisfy themyu

Client Table, CT = (oid L, M) stores information about mobile clients in the system.

The table is indexed on the client identifier attributd. L is the most recently updated
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road network location of the client, stored agél, p) tuple, comprising of theid segment
identifier and the progress. Thé/ provides the client's mobility features required by the
system, such as movement speed, trajectory, and so forth.
Client side data structures
NT, ST, andPT are also present on the client side as part of their map dsgaba
Current Encounter points Table, CET = (sifl, dir) contains the encounter points
found for all queries in the client’s current precinct. Eanbbile client only stores the
encounter points for the precinct that includes the segemthich it is located. The CET
is delivered to the client by the server when a client infothesserver that she enters a new
precinct. Also the CET at a client is incrementally updatedhsy server to reflect query

insertions or deletions.
2.3.4 Computing with Encounter Points

Encounter points need to be computed whenever a new quargaged into the system,
or an existing query is terminated and removed from the gyste

Computing encounter pointsfor query insertion

A mobile user can issue a new location québy sending a message to the server in
the form of (oid, F',range). If the location of the mobile client with identifiesid in the
CT table is older thar#, its location information is updated with and the new query is
inserted intadQT with a new unique query identifigjid.

The algorithm to calculate the encounter points and thefssgments covered by the
query maintains a queue ¢Ohid, dist(F,nid)) tuples, storing node distances frafhin
ascending order; and a hash-table (initially empty) fonsexqgts, where segment identifiers
inserted into the hash-table indicate covered segmentsalforithm starts by investigat-
ing the distances of the two end-nodes of the segmgenton whichF'is located, to detect

any encounter points lying on this segment (Figure 2(d)). ¥ range, thenn; is outside
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the query range, and an encounter point i&'at (n,n;,p — range); otherwisen; is in-
serted in the queue. léngth(n;n;) — p > range, thenn; is outside the query range, and
an encounter point is & = (n;n;, p + range); otherwisen; is inserted in the queue.
Tuples are removed from the queue head, and all uncovereaestg reachable from
the current nodey; are investigated: the segment (of the form; or n;n;) is marked
as covered by inserting itgd in the hash-table, and the distance of the segment’s other
end-noden; is computed agist(F,n;) = dist(F,n;) + length(n;n;). If dist(F,n;) >
range, then the segment crosses the query boundary, and an eecqoit is located
at £ = (n;n;,length(n;n;) — (dist(F,n;) — range)) for n;n; (Figure 2(b)), or attl =
(n;n;, dist(F,n;) — range) for n;n,. Otherwise, the segment is entirely covered by the
query region, and the tuplen;, dist(F,n;)) is inserted into the queue, unless another
(n;, dist(F,n;)") is already in the queue witlhist(F,n;) > dist(F,n;)". The algorithm
terminates when the queue is empty, with the list of encaydmts, and the list of (com-
pletely or partially) covered segmergigstored in the hash-table. Note that the case of two
encounter points on a single segment (Figure 2(d)) is hdratierectly by adding~; when
the current node is;, and addingt; when the current node is;.
The segments ig, are retrieved from the segment talsié’, and the query identifier
qid is appended to the list of queries covering the segment.
Using encounter pointsto answer a query
The set of completely or partially covered segme#tg &nd encounter points of a query
are computed using a network expansion algorithm when tiveisis notified of the query
insertion. The initial result of the query is calculated lgrieving all segments of,
from ST, then retrieving albid clients that are listed on these segments. For segments
with no encounter points, all mobile client&l on the segment are added to the result set;
otherwise mobile client locations are retrieved frof' to determine if they lie inside the

guery region. For a client that lies on a segment with a siag@®unter point£’s location
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must enclose the client’s location, determined by the deordi

enclosing((E, dir), L) :=
(dir = source A\ Lyig < E.p)V

(dir = target A\ Lyiq > E.p),

to be added to the result set. For a client that lies on a segmiém two encounter
points, we distinguish two cases: if the query coveragenelddo an area around the
end-nodes (Figure 2(c)E1.p < Es.p A diry = target A diry = source), then one
of enclosing((E4, diry), Lyq) of enclosing((Es, dirs), Lyg) must be true; if the query
coverage area is the middle of the segment, with the endsnodeovered (Figure 2(d);
E1.p > Ey.p Adiry = source A diry = target), then bothenclosing((E4, diry), Liq) and
enclosing((Es, dirs), Leiq) Mmust be true.

Throughout the iteration over the segmentg£gfa list of precincts that overlaps with
the query range is built. The query will be installed on therdk residing within all these
covered precincts. However, clients in different pregnetill be aware of a different —
precinct-specific — set of encounter points associated tithquery. Also some covered
precincts might be exempt from the need of being query-aveareh as those that do not
contain any encounter points. Each precinct is retrievethfP7’, and its segments are
retrieved fromST. In the first iteration over segments in the precinct, a listrmcounter
points found in the current precinct are bu]HIg(d). If Eg"d is not empty, then in the second
iteration clients on each segment in the current precireesant a query-installation mes-
sage containin@igid. Clients residing in precincts that cover the boundariehefquery
will be aware of the query. Clients in precincts further awalf be unaware of the new
guery; and if the query range covers a sufficiently large,aseme precincts entirely cov-
ered by the query (near the central area of the query arelajomilain no encounter points,

so clients in these precincts will also be unaware.
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Figure 6: Two overlapping range queries with focal locatiofisand F5, and radiuses
d,=1.75 km andi,=1 km (left), and precincP; with queries displayed (right).

B, 521 Eqq B,
= Oy e —————— 1
M1 M2 M5
E,,

P,: precinct #1

E;; B: precinct bour‘ldary points
M, E: encounter points
B, M: moving clients

Figure 7. Check-free paths for mobile¥/y, ..., Ms, that are inside precind®;, when
gueries present are those shown on Figure 6.
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2.4 Optimization with encounter dependent check-free interval

When a mobile client first becomes a registered user, it sgtanibrientation request to the
server, including her current location. Mobile users riegiesd with the system can be either
active or disconnected. A mobile client is required to sefwtation update message to the
server in three cases: (i) When a mobile user is becomingesittivh a disconnected state,
she sends the location database server a location updasageesf typeP. The server
responds to & message by sending the list of encounter poiR)srf the user’s precinct.
(i) When a mobile user is crossing a precinct boundaty(¢id, L)), she sends the server
a location update message of tyBeThe server responds to tiiemessage by sending the
list of all current encounter point&] found inside the new precinct. (iii) When a mobile
user is crossing an encounter poitt:(oid, L, E)), the client sends to the server a location
update message of tyge. When the server receives an E-message, it updates the result
set of the query attached to tikeencounter point, either inserting (when entering a query
region) or removing (when exiting a query regiei), and notifying the issuer of the query
corresponding to the encounter point of the change in thétrest of the query.

A naive approach to implementing the precinct-based locatpalate scheduling is pe-
riodic checking of whether a mobile client has crossed a Hagnpoint or encounter point
and thus needs to send a location update to the server. Stislodas typically made based
on the motion behavior of the client, the nearby queries Aactbrresponding encounter
points, and the precinct boundary points. An obvious drakled the periodic checking
method is the unnecessary energy and resource consumpgactamobile client, espe-
cially when the mobile client is far away from any of the boandpoints or encounter
points for a given time period. We optimize the periodic dtieg method by introducing
the road network based check-free interval mechanisms;hnaddlows us to significantly
enhance the performance of our precinct-based updateldoigedlgorithm.

Check-Free Road Network Locations

For each mobile user, we can compute a road network base#-tieeczone, based on

28



its road network locatiorl.., its movement speed, its trajectory if available, and &l th
encounter pointsK) and boundary pointgB() of its current precinct. By check-free, we
mean that as long as the mobile client travels within thisiporof the network, no location
update is necessary. One way to compute the check-freedosaif a mobile client is
to start from its current network location and perform théofeing three tasks. First,
find the dominating encounter points and boundary pointsois# compute all the paths
from the client’s current location to every dominating emct@r point or boundary point.
We call these paths dominating check-free paths. Third,pcenthe region covered by
the dominating check-free paths obtained in the previogs. dntuitively the dominating
encounter or boundary points are those that are closer tuthent network location of the
mobile client. Given two encounter poinks and E», if the distance of2; to L. is smaller
than the distance af; to L. and the path froni.. to E; is covered by the path from, to
Es, then we say; is dominatingE, with respect ta...

Check-Free Interval

In order to detect when a mobile user on the move crosses anitgc point or a precinct
boundary point, we need to determine when to perform thesargcheck. To address the
inefficiency of periodic checking for the mobile clientsthae far away from any encounter
point or boundary point, we introduce the check method based check-free interval
computed for each mobile client. A check-free interval s lilngest time that a client can
sleep without comparing its location against any domimggtiaundary or encounter points,
while being assured that any such update triggering pomtsat missed. The check-free
interval can be computed as the shortest of the maximundspeghted distances (i.e.,
shortest travel time) to alB and E' points within the current precinct. The maximum speed
is a road segment specific constanf’y,) stored with the road network data. The pre-
calculated node-to-node distance tablas used for the fast calculation of tlvheck-free

pathlengths (Figure 5). For a given road network locatignthe check-free interval; is
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computed as follows:
dist(L., L)

t.f = min
T LeBuE vl

Consider the case of two overlapping queries on the road metwith £ and F; as
the focal location respectively as shown in Figure 6. Forpghgposes of the check-free
interval computation, it is actually irrelevant to congidehich parts of the segment are
inside or outside one, two, or more query regions; only tieations of£ and B points are
important. The check-free paths for five mobiléd;( M, M3, My, M) in this example
are shown as darker line fragments in Figure 7.

Detection of crossing encounter or boundary points

We compute a check-free interval for every mobile clienthe tontext of its current
precinct using all the encounter points and boundary poifitee mobile client does not
need to perform any crossing check with respect to the erteopoints and boundary
points until its check-free interval is over. The mobileedli may enter sleep mode if it
does not have other active services. Upon the expiratiots chieck-free interval, the mo-
bile client needs to determine whether it has crossedfamy B points. If the precinct
(pid) of the segment at the last location is different than theipa of the current location,
then the client has crossed at least éhpoint, and thus &lz update is issued to the server,
which in turn sends the encounter point Beif the new precinct to this client.

If no precinct change has occurred, then we perform the erieopoint crossing de-
tection. Given the last and current locations, there may bkipre paths between the two
locations and each path may have a different set of E pointen@hat the result of a query
is independent of which concrete path the mobile has agttadten to move from the last
location to the current location, any path between the ladtthe current location is suit-
able. We choose the shortest path to collect the E pointsdd@ this path. For any sgf,
of encounter points associated with a query, crossing ammaweber of E points will leave
the query result unchanged, since the mobile remains iisidemains outside) the query

range bounded by the two E points both before and after hiement. However, if there
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are an odd number of E points on this shortest path, this ntbahghe overall movement
of the mobile changes the query result. For all queries tha¢ lan associated E point on
the shortest path, we determine the number of E points owpéuaib query. If any of these

numbers is odd, then a query result has changed, afig; aipdate is issued.

2.5 Location query answering accuracy

The goal of any location update scheme is to enable the systanswer location-referencing
gueries. One implication of this goal is that an update s&hanfieasible, which reduces
the number of updates while still allowing the system to niisejoal of answering queries
— by making clients query-aware. However, it is also possiblpropose a very simple
update scheme that greatly reduces the number of locatibetesr by having clients send
their updates only every 20 minutes, for example. Such @sysitill still be able to answer
location queries, but the quality of query results will bégar: a driver moving at 60 kph
might be 20 km from its last known location. While it is cleat Example, that a 1 minute
periodic update scheme is more accurate than a 2 minutedpetpdate scheme, it is not
readily apparent how either of these compare with eg. ampee@nd encounter-point based
update scheme, which does not have an update period paraifegssess the quality of
various location query answering systems (including tleation update scheme used in a
system), we need a definition loication query answering accuratiyat is universal, i.e. is
a metric computable for and comparable across locationycareswering systems. In the
following, we consider the major requirements for desigrsach a metric.

R1) The metric should be sensitive to the presence of queCiessider for a moment
a simple inaccuracy metric: Let thieean location delta on update (MLDW)easure the
distance (in meters) between the reported location of atcdiethe time of update, and the
location of the client as known by the server just before tpdate; and averaged over all

updates of all clients within a specified time window:

MLDU — Zt2i |diST((]f|4i(t)sz'(t))| _
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As the goal of the location query answering system is therateanswering of queries,
a basic requirement for a metric is that when no queries asept, then query-answering
accuracy should be indicated as "perfect” (inaccuracy.i0j example, the MLDU metric
fails this test, because it doesn’t consider when the dewianhatters (when a query is
present), and when it is irrelevant (when there are no gsiémi@n area, but clients there
still send updates, as in the case of periodic updates) hier etords, the query answering
accuracy metric should not attempt to measure accuracy tieea are no queries to be
answered.

R2) The metric should be independent of the number of qudfie® did not demand
this, then testing a system with 100 queries might have accuracy 10 times as large
as when testing with 10 queries. This requirement seemicgtyradicts R1, but there is
a clear domain for both requirements: While in R1 we suggestvieado not measure
inaccuracy when and where there is nothing to measure (bedhare are no queries in
an area), here we suggest that we do not measure inaccuressesxly when and where
there is something to measure (because there are manygjuerie

R3) The metric should be independent of the number of timesaydue-)evaluation
is attempted. While an encounter-point based update schaypeome with incremental
guery evaluation on every update, a periodic update scheayecome with a single re-
evaluation of all queries after all synchronized clientsraiited their updates. Measuring
inaccuracy only when (re-)evaluation takes place wouldmrtbat simply reducing peri-
odic update frequency from once every 2 seconds to once dveegonds would reduce
inaccuracy by half, when in fact inaccuracy has likely justibled.

R4) The metric should be dependent on query result reportitgcation update chang-
ing a query result that is known by the server, but not replddghe query originator means
that there is an inaccuracy in query answering. Togethdr 8)itthis means that we don’t
care when or how (incrementally or not) a system processesitm updates; we only care

how fast location updates are propagated through to quéeginators.
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R5) The metric should be independent of the length of the measent time window.
During a time window of 10 minutes, there are roughly twicenay opportunities to
make some inaccuracies in answering queries, than in a timdow of 5 minutes — this
should not be reflected in our metric.

R6) The metric should be independent of the number of clighgy.stem that has twice
as many clients also has roughly twice as many updates, acel & many opportunities to
mis-report client locations in query results — this shous aot be reflected in our metric.

R7) The metric should aggregate inaccuracies in units of {geeonds). There are
several ways in which "inaccuracy” may be measured, agtgddar all queries and times,
and related to the maximum possible inaccuracy, to arriee @rcentage. Consider the
query (@ issued by client (the query originator). A client that is inside the queryiogg
@, but is regarded as outsidg by ¢ (i.e. a false negative), or a client that is outside the
guery region@, but is regarded as inside by ¢ (i.e. a false positive) are said to be
fault with respect to QWhile a client may be in fault witld),, it may simultaneously be
not in fault with another),. A fault(Q, c,t,, t;) is the movement of a clientfrom the
moment it ought to change a query resultpfto the moment it actually changes the query
result). Every time a client enters or exits a query area, a fault @apgpossibly for a
very brief time): the query originator’s view of the movedkdt is momentarily out of sync
with reality, and the query result is temporarily inaccaratet us briefly consider three

possible fault measurement and aggregation modes:

e Count Count the number of false negative and false positive quenyits, and relate

to the total number of correct query results.

e Distance (meters)Measure the distances traveled by clients a) after thetaieaters
a query regior, before they are recognized as query results (i.e. uneeteatur-
sions), and b) after exiting a query region, before they acegnized as no longer

guery results (i.e. undetected excursions).
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e Time (secondsMeasure the elapsed time between when a client entesséegitery
region and when the resulting query result change is rezedniThis approach is

similar to distance-based aggregation.

A fault typically starts with a client entering (exiting) aiery region, and terminates
when the query originator is informed of the entry (exit). Kent may enter, then exit
(or exit, then reenter) a query region without the resulingfgaever being realized by the
guery originator — for example, because the incursion (esxan) happens entirely between
two updates several minutes apart. Nonetheless, suchlardiygh fault is a source of in-
accuracy. In addition to faults in the vicinity of a query Inolary, on the initiation of a
new query, both false positives and false negatives mayedausts throughout the query
region: For example, the locations of clients in a precinithwo queries (and thus infre-
guent updates) are poorly known until the clients send iocatpdates in response to the

encounter points of the newly installed query.

2.6 Experimental evaluation

In this section we present the experimental evaluation ofjoery-aware location update
approach through four sets of experiments. We first compardR0ADTRACK location
update approach with the four representative update giesteiscussed in Section 2.2 in
terms of number of updates per unit time at both server amhtclinder two types of
road networks: urban and rural. We show that the query-aloaagion update strategy
significantly outperforms existing update strategies mmnge of both client computation
cost ¢#wakeups) and server updates for both urban and rural roabriet. The second
set of experiments measures the scalability a/ABRTRACK by varying the number of
mobile objects in the system. The third set of experimenésrenes the effect of different
mobility models of mobile clients, different query chamxastics, and the precinct size
on the effectiveness of our query aware location updateoggpr Our experiments show

that the query-aware update strategy offers consistefdarpsgince in terms of both server
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Table 1: Road networks used in experiments
Style [ County location [| Total length Segments Junctions Avg. segment length Jmdegree
urban| Miami-Dade, FL| 15650 km (315h) 109416 79101 143.0 m (10.4 sec) mean: 3.4, 8nax
rural | Coconino, AZ 36212 km (733 h) 81918 67911 442.1 m (32.2 sec) mean: 2.4, nax:

update load and client wakeup load under different road oxtvwobility models, different

precinct sizes , different query loads, different queryuagdand different query distribution
models (uniform and hotspot). The last set of experimengsniixes the cost of precinct
construction in terms of computation time, average numbaodes, number of precincts,

size of precinct.
2.6.1 Experiment setup

We use real road networks obtained from the US Census Bure#8ER/Line collec-
tion [43] in our experiments (Table 1). Maximum speeds aez#jed for each of four road
classes at 30 mph for residential, 55 mph for highway, 70 ropfréeway, and 30 mph for
freeway interchange (i.e. 48, 89, 113 and 48 km/h).

We created an event-based simulator for the evaluation oframework. Instead of
applying a timestepping approach, a central ordered evweuajyis used to schedule four
types of events: change in the mobility pattern of an objesloCity vector change), query
insertion, query deletion, and client wakeup. The singledaded simulation consists of
removing the events from the queue head, taking the assigyreed action (eg. run client
code on client wakeup, which might issue an update, whictrim¢auses the execution of
server code), and inserting new events into the queue (suttieanext requested wakeup
with a future timestamp). The queue is initiated with the itiglpattern change and query
insertion/deletion events, generated bynability modeland query modelfor the entire
requested duration of the simulation. We consider two nitglihodels in this chapter:
random waypoint movement on road network (RWR), and randgmmtddel on road net-

work (RTR). In both mobility models, each mobile object mouegependently of others,
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with a speed that changes only when entering a new segmehitaah is chosen accord-

ing to the speed limit and speed distribution defined for g#ggreent. In a RWR model, the

client selects and travels a new segment at random at eadfiojuythen repeats. In a RTR

model, the client chooses a random trip destination on thg mnavels the fastest route;

then repeats. Client speeds are chosen from a bell-curwébdigin (a Gaussian with a

standard deviation of 0.2 times the mean) that is croppeueait® mean (segment speed
limit).

The query model we used maintains a 10% location query lodeisystem by default
(i.e., the number of queries is one tenth of the number of leatlients). Note that this
is an aggressive query load, as it signifies that our systeivecengages the attention
of %th of the population at any one time. Query ranges are chosen &d>aussian
distribution with a mean of 1 km, and standard deviation @flin. In order to simulate a
more realistic scenario than that given by a uniform distrdn of query centers, we create
a query hotspot scenario, whereby queries are highly corated in some region of the
map. The center of a hotspot is a road network location chiveena random distribution
over all road network locations in the network. Once the pwt<enter is established,
a weight is assigned to each road segment in the network.eIEflortest road network
distance between the hotspot center and the mid-point ajraesat isd in kilometers, then
we assign the weight; = o4, with o« = 0.5. Each segment then hasiézii;i chance of
being selected as a query center location. Finally, the kmobiject closest to the midpoint

of the selected segment is chosen as the query’s originator.
2.6.2 Messaging cost of update strategies

We compare the number of client wakeups and server updatis foa various location
update approaches by varying the number of users in thensy3tkis set of experiments
uses a client population with size ranging fra®00 to 20 000 clients. We compare the

following strategies: (1) periodic updates every 15 sespii@l) point-based tracking, (3)
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Figure 8: Scaling of update strategies with number of mobile clienisal map, partition
r =4x)
vector-based tracking, (4) segment-based tracking, anen@unter point-based wakeup
and update strategy. For the first four query unaware appesathe wakeup frequency
and the reevaluation frequency at the server is set at 1mdscand the deviation thresh-
old is set to 25 m. For the query-aware RoadTrack approacheie maximum wakeup
frequency of once every 15 seconds (4/min), in order to afjlewWormance of all methods
at similar operating points with regards to accuracy. Thagarison on the rural Coconino
County map, with partition radii of 4 times the mean segmengtle (i.e.,r = 1768 m)
shows that the encounter based method results in a sigtificaduced rate of wakeups
(Figure 8(b)). The advantage of RoadTrack is the that wakaupsinnecessary when a
client is distant from encounter points (query boundardes) precinct border nodes. Note
that periodic, point-, vector-, and segment-based appexall produce 4 wakeups per
minute due to their 15 sec reevaluation setting — since akeftee interval type optimiza-
tion is not available, they wastefully execute periodid-sblecks.

The number of server side updates is shown in Figure 8(a} &tperiment confirms

the conceptual insight that the precinct-based RoadTrgmoaph outperforms all existing
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approaches even in the worst case. Note that since the quaeadyid a constant 10%, the
increase in the number of mobile clients also brings a ptopwal increase in the number
of queries at the same time. As a result, not only does the aunfbmobiles per precinct
increase, but the number of encounter points per precisgtiatreases. As each encounter
point is an update trigger, the number of updates issuedralsessarily increases. The
RoadTrack strategy allows a reduction to 8%, 14%, 22%, and &2dpdates, relative to
the other four comparison methods, respectively, everedtitthest mobile load studied.

We further explore the scalability of our system by usingcprets with radii that are
8 times the mean segment length (ie.= 3536 m), and also running the simulations
on the urban Miami-Dade County map (where= 1144 m). The larger precinct size
provides a significant boost for RoadTrack: Wakeups are estlon longer check-free
intervals, as border points are — on average — further frorhilmalients (Figure 9(c)).
At the highest load setting, updates are reduced to 6%, 9%, a4d 34% of the query
unaware approaches’ updates (Figure 9(a)). %l'huaan segment length of the urban, high
density topology means that the distance-based partippaieates segments that cover
smaller areas, and thus the average distance from mobdetglto precinct boundaries
increases. The high density also means that a query withathe sadius (as measured on
the roads) produces more encounter points. These factogseorincrease in the number of
both wakeups and updates when compared with the low-demsalmap, but the update
count is still significantly lower in comparison with the forteference strategies (11%,
28%, 31%, and 46% of the updates of those methods, Figureaa®(d)).

We also plot the effect of precinct seeding and the pariigmetric, when no queries
are present, and thus all updates and wakeups are trigggreetinct boundaries only
(Figure 10). We point out that the presence of precinct batied causes wakeups and
updates even without the presence of queries. This prop®rtgesign, ensures that the
server maintains the location tracking ability for all miebclients, regardless of whether

there are queries nearby or not. The benefit of an encouatadstrategy over strategies
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that are query-unaware (such as periodic, point-based,ne¢thods) is the reduction of
unnecessary wakeups and updates. On the other hand, iegpaate only issued at query
boundaries, in the case of very few queries in a region, atctieuld go for an extended
period of time without an update, and the server would be kentbcontact the client
for a location update in order to answer a new query. The remquént to issue updates at
precinct boundaries not only allows a client to be aware efgborder points in its vicinity
(after the server sends this information about the new peggibut also allows the server
to maintain an approximate location (bounded by the cunpestinct’s boundary) of the
client's whereabouts. These figures consistently showdhger partitions help reduce both
updates and wakeups. We compare our precinct-based gtvatbgegment-based updates
—at aradius of 1 hop, precinct-based updating is very sirttlaegment-based updates. As
a result, the number of wakeups are only slightly improvednfisegment-based periodic
wakeups when the precinct radius is small, but the improvergap increases linearly
with precinct size (Figure 10(b)). The number of updatesgbér for low precinct sizes,
as thedelta threshold used for segment-based updates (and the rgsunliccuracy) is not
present in RoadTrack, but the update count drops to half egement-based updates at a
radius of 8 times mean segment length (Figure 10(a)).

In the following we concentrate on the urban map, which is aencballenging terrain

for RoadTrack due to the higher density network topology.
2.6.3 Effect of client behavior profile

We investigate our method with respect to its sensitivitgliffierent characteristics of client
behavior in two dimensions: mobility model and query radiissribution (Figure 11(c) and
12(c)). For mobility models, we consider the RWR and RTR typledviors; for query size
distributions, we vary the mean of the Gaussian distriloutiefining query radii chosen
by clients, while keeping the standard deviation of the Geumsat 10% of the mean. Our

gualitative conclusion is that the RWR movement model ishéljgmore advantageous for
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precinctr = 8x)

our approach, but this advantage decreases as query @eage at client side. In all other
experiments reported in this chapter, we employ the RTR mewve model, to avoid any

unfair comparisons.
2.6.4 Effect of precinct size and query load

We investigate the effect of precinct size on our metric$iwit000 clients, uniform and
hotspot query distribution (Figure 11(b) and 12(b)). Thawdations show that a hotspot
distribution of query centers takes advantage of the featof our approach, producing
fewer updates and wakeups.

We inject a query load varying from 0% to 40% (i.e., O to 400@res), and run
measurements using distance metric partitioning with #ukus set to 4 and 8 times the
mean segment length (i.e.,= 572 m for 4x, andr = 1144 m for 8x), with the results
shown in Figure 11(a) and 12(a). The number of wakeups deesegith growing precinct
size, as the influence of precinct boundaries on the cheekifiterval decreases. As many
wakeups are false alarms (an update is not actually requitleel number of wakeups is

less impacted by an increase in query load, than the numhgadaftes (Figure 11(a)).
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2.6.5 Precinct construction

The number of partitions created as a function of the regdestecinct radius is shown
in Figure 13(a). Distance-based partitioning is shown asation of distance values that
are multiples of the average segment length of 143 m, offeconvenient comparison
with hop-based partitioning, shown as a function of the haynt (e.g., partitioning with
"3 [hops]”, and "3 [times mean segment length] § - 143 m)” settings are shown at the
same X axis value). The average number of graph nodes pengrgeows only linearly
with the precinct radius, largely due to the skew effect oferiteftover” smaller precincts
when the requested precinct size is large (Figure 13(c)e Stbrage space required for
the pre-computed node-to-node distance matrices is defipélde number of node pairs
per precinct. This storage requirement (Figure 13(d)),taedvall clock time required to
compute it (Figure 13(b)) grow approximately as the squangrecinct size. We remark
that when precinct center nodes are selected using ourstietbiased seeding method, the
number of precincts is reduced. In our experiments — unlessdnotherwise — we thus
used heuristic-based precinct seeding, and distanceenpatrtitioning with 8 times the
mean segment length (i.e.= 1144 m).

We also provide a comparison with partitioning the largeakumap (Figure 14(a)—
14(d)), and note that while the average number of nodes geirmt is almost indepen-
dent of the partitioning method, the number of node pairsl @ resulting increased
pre-computation time) increases markedly with distaresed partitioning for our rural

map, due to the different topology.

2.7 Reated work

We review several threads of related work, which are mosteagit to the location update
efficiency, and which we present grouped in a number of theifies aspects we consider
are (i) whether the mobile clients are query-aware, (ii) thbethe goal is to reduce the

number of updates or something else, and (iii) whether theements of mobile clients
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are on a road network. For our grouping, we do not consideémfamtion) other important
dimensions, such as (i) query type (eg. window, circulageaar KNN type), (ii) query
persistence (eg. snhapshot or continuous), and (iii) the éombinations of query and
client mobility assumptions (static or moving).

The first group of work explores the idea of reducing the nunabdéocation updates
in presence of a road network, but without making mobilentiejuery aware. The clients
run the prediction model and only issue an update when traigti@n deviation from the
actual location grows higher than a system defined threskaldexample, [10] compares
a number of query unaware client location tracking appreacpoint-based, vector-based,
constant speed segment-based, and constant acceleegjioprg-based with acceleration
profile which groups several basic segments together tacovedrasic segment-based track-
ing. As we show in this paper, the number of location updaté@sbe significantly reduced
when clients are query-aware, as there is no need for cltentsue updates in locales
where outstanding queries are scarce. Even in the worstttesprecinct based approach
outperforms the existing solutions.

The second group of work explores the idea of reducing quesggssing load at the
server by making clients query-aware but in a world wherestramts on client mobility
do not exist (i.e., without a road network). For example, NMiyles [15] uses the grid struc-
ture to define a monitoring region for each query, and onknts within the monitoring
region need to be aware of the query. To make clients queayegwhe proposed tech-
niques use some information derived from and aggregatessanultiple queries, and not
the full query information. This derived information is $ea the clients on a downlink
connection, and then used to determine when or where thg cgmilt may have changed,
prompting the posting of an update on the uplink connectidhé server. [22, 8, 38] give a
solution for static continuous queries over moving objdaysmonitoring violations of safe
region areas. The safe region of a mobile client is a reclanguwea where answers to all

gueries remain the same. The work in [48] introduced the epinafvalidity period which
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is a time period during which the query answer remains thees@ased on a maximum
guery speed, though the solution is developed for INN moguryies over static objects.
[47] introduced the concept o@lidity region which is an area around a moving query’s
focal location where the query answer is the same. The tqubsiare for the server-side
computation of validity regions for moving KNN and windowegies over static objects.
The validity region is represented as a convex polygon (and arcle in certain cases).
The solution applies to snapshot queries, as opposed tmaons queries, as it is not con-
cerned with keeping results up-to-date. The authors ind28tribe a solution for moving
continuous queries over moving objects, by monitoringations of distance thresholds.
Thresholds are created to signal a potential change of qasujts, and clients are aware
of each query’s focal location and one or two thresholds. kjuMries are discussed in par-
ticular, but the solution could be adapted to other typesiefigs. One common limitation
for all the work in this group is the lack of consideration ofd network constraints in
their mobility model.

As we show in this chapter, when road constraints on quexiss @such as a distance
or travel time range measured in the network), the solutiostraddress the jump in com-
plexity: we use encounter points to implement the query aness and identify the critical
points on road network segments where location update dtb@uperformed. In addition,
we use precincts to impose locality on query-awareness @iseéttthe upper bound for
mobiles to update their locations.

The third group of work explores the idea of reducing servadlfor answering queries
in the presence of periodic updates, without making cliepitsry-aware or considering
the mobility constraints of clients. An example is [46], wihicompares grid index based
indexing of objects and kNN queries.

The fourth group of work explores the idea of reducing selo@d for query processing
in the presence of a road network. The incorporation of regdorks in server optimiza-

tion of mobile queries started to gain attraction by [35, Z24most influential line of work
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in this group is the idea of speeding query answering by preputing distances after par-
titioning the road network graph [24]. However, no considi®n is given to improve the
server load for query processing by utilizing a road netwmaiked, query-aware location
update scheme. We believe that theA® TRACK development can be beneficial for further
reduction of server load for processing location queriesoal networks.

[35] suggests Euclidean restriction and a network expanajgproach to prune the
search space for snapshot kNN and range queries over digais Static objects serve as
generator points for a disjoint set of Voronoi-polygonsexing the road network, such that
a polygon’s generator point is the closest generator poiatltroad network locations in-
side a polygon. Road network distances are pre-computedbatallborder pointsnside
a Voronoi-polygon, which are then used to find the k polygoith the nearest neighbors.
[9] uses pre-computed NN lists to speed up continuous mduiig queries over static ob-
jects. [20] proposes storingdistance signaturat nodes (containing approximate distance
information for a limited number of relevant objects) to sgeip snapshot KNN and range
location queries over static objects.

[21] proposes a network reduction technique which simgliftee road graph, while
preserving network distances, in order to answer snap$idtdueries over static objects.
[30] proposes a solution for moving continuous kNN queriesranoving objects, using
memory-resident server-side data structures. An edge sédnles the list of queries affected
by each edgeirifluence lis}, along with theinfluencing intervalthe progress component
of the road network location in our terminology) of theark (query boundary locations)
for each query. A query table stores the basic query infdongfocal location and:),
the result set, and an expansion tree rooted at the focaidacaThe expansion tree is
incrementally updated, which allows for an incrementalrgueevaluation.

Most of the existing approaches in this group fail to explo& opportunities in making
clients query aware in terms of server side performancevogdition. Thus they fail to

scale the location update scheduling in the presence ofwailgganumber of clients and
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when hotspots query workloads exist.

Even though location queries have to be at least partialyaleated on location up-
date, efficient location query evaluation is traditionansidered a separate problem from
efficient location updates; our work is in the latter catggéithough not our focus in this
chapter, when objects being queried on have their updatet ceduced, query evaluation
costs are also reduced.

The fifth group of work explores the idea of reducing servedi®y making clients
guery-aware, but in a world where constraints on client hitgldo not exist (i.e. without
a road network). [38] gives a solution for static continuaasdow queries over moving
objects, introducing the concept séfe region which is a rectangular (or circular) area
around a moving client’s location, where all query answersain unchanged. Safe re-
gions are computed by the server, and sent to the clients ewalikk connection. The
computational load of query answering is reduced by the coatilon of a frequently re-
freshed velocity-constrained index on mobile clients @aswering new queries), and an
occasionally refreshed index on queries (for incrementgidating query results and com-
puting safe regions). [7, 8] builds on the solution, propgsio reduce the safe region
computation cost caused by large numbers of queries in ttersy The universe is par-
titioned into disjoint rectanguladomains and each query’s overlap with each domain is
handled as a separateonitoring region Mobile clients are only aware of monitoring re-
gions inside their curreresident domainand send updates when crossing the boundary
of a monitoring region or the resident domain. Domains areagad with a quad-tree-like
hierarchy, allowing clients with a larger computationapaeity to have a larger resident
domain (with more monitoring regions), and thus need toagswer updates. [15] builds
on these ideas to give a solution for moving continuous @ra@ange queries over moving
objects. The universe is covered with a uniform grid, andyatl cells at least partially
covering a query region are part of the queryisnitoring region(this is a different defini-

tion). Mobile clients are aware of queries’ individual gestnies, for those queries whose
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monitoring region overlaps the client’s current grid cafid only send updates when cross-
ing the boundary of a query region or a grid cell. Clients cotepusafe periodusing
their maximum velocity assumption; during this time pertbd client's movement is en-
sured not to prompt an update, and thus the client is temiporalieved from checking for
the aforementioned update conditions. Velocity vectaediatracking is used for mobile
gueries: clients which carry a mobile query also send antepathen their predicted and
real locations are further than a given threshold; thesatgscare then used to readjust the

set of grid cells that compose the query’s monitoring region

2.8 Conclusion

In recent years, some LBS providers have initiated a payeasgp model for location
tracking and location update services, with the primarnectyje of avoiding unexpected
sudden load surges at location servers. For example, mades can pay a fixed price
for being tracked or for keeping their location updated g¥&e or 10 minutes. With the
rapid escalation of location based applications and sesvand the growing demand of
being informed at all times, the problem of scaling locatiggdates and location track-
ing systems and services, if not addressed, will becomefarpgnce bottleneck for the
success of the mobile commerce and mobile service industrithis chapter we have
presented RADTRACK — a query-aware, precinct based location update framewark fo
scaling location updates and location tracking servicesAdI RACK development makes
three original contributions. First, we introduce enceurgoints as a fundamental query
awareness mechanism enable us to control and differettizdéon update strategies for
mobile clients in the vicinity of active location querieec®nd, we employ system-defined
precincts to manage the desired spatial resolution ofilmtatpdates for all mobile clients
and to control the scope of query awareness capitalizeddgedion update strategy. Third
but not the least, we develop a road network distance basmkdhee interval optimiza-

tion, which further enhances the effectiveness OARBTRACK and enables us to effectively
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manage location updates of mobile clients traveling on m&@vorks by minimizing the
unnecessary checks of whether they have crossed an encpaimteor precinct boundary
point. We evaluate the ®A\DTRACK location update approach using a real world road-
network based mobility simulator. Our experimental resshow that the BADTRACK
guery aware, precinct-based location update strategyedotns existing representative
location update strategies in terms of both client compurtafficiency and server update

load.
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CHAPTER Il

DANDELION

When a driver asks for nearby gas stations within 10 minuéegtdistance, to be answered
continuously for the next 8 hours, while she is driving on head trip from Atlanta to
Florida, then she has issued a continuous spatial netwoderguery. This driver is the
guery focal object and is a) interested in some locationsatewithin a specified travel
time or road distance, measured along the segment edges abdall network graph, b)
frequently in motion, and c) needs query results relativegiocurrent location over some
period of time, while the query focal location is constanthyanging as the mobile user
moves on the road.

The computational costs of answering such continuous nmktvemge queries are pro-
hibitive, as a shortest path based network expansion neebe tun repeatedly at each
and every location where the query is evaluated. We arguetiminuous network range
queries, whose focal locations are "not far” from each gthawe substantial overlap in
their segment coverage. Such a large overlap may offerfeignt reuse opportunities for
performance acceleration. We propose the Dandelion apiprima fast re-evaluations of
continuous network range queries with three original gbations. First, we propose the
concept of Dandelion tree and associated techniques taaeburepresent the coverage
of a network range query with arbitrary range. Second, we&des suite of primitive op-
erations to compute the coverage at a current focal locayoreuse of the coverage at a
previous query focal location. Third, we develop three Ddioth reuse algorithms, each
powered with additional reuse abstraction techniquestfimently identify the portion of
the Dandelion tree that can be used as the basis for reuseaighdrfexpansion. An ex-

tensive experimental evaluation on the Dandelion apprehotvs that the Dandelion reuse
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model and algorithms can significantly outperform the cotemal shortest path network
expansion model (NE) in terms of coverage computation costdn-trivial radius size and

high re-evaluation frequency.

3.1 Introduction

We are entering an era of ubiquitous connectivity and cootils services while moving on
the road. One of the most frequently used continuous sertagenobile users is continuous
spatial range queries over nearby points of interests, asi@as stations, restaurants, and
so forth, while moving on the road networks. "Inform me of tjes stations within 10
miles of my current location in the next 3 hours of my traved”dne example of such
road-network distance based continuous spatial rangey,qwéich runs continuously in
the next 3 hours, returning the gas stations within 10 mifesip current location. The
re-evaluation frequency of this query can be set by a moks#e explicitly or by a system-
default interval, such as every 5 minutes.

Continuous spatial range queries over road networks hage timique features. First,
a mobile user who initiates such a continuous query is igtecein some road-network
locations that they can travel to by following the spatiatsipaints of road networks. Thus,
given a current location of a mobile user, the range querjuatian needs to use the road
network distance measure, namely a shortest path distalecedoad network graph, no
matter if the road network distance is based on travel timsegment length. Second,
the focal point of the query, which is the current locatiortled mobile user, is constantly
changing. Thus, mobile users would like to continuouslenez updated results of such
spatial range queries as they move on the road over somealérione during their trips.

Determining the area covered by a Euclidean range quemaigstforward: for a query
with ranger and focal locatior(zy, y), all (z,y) locations that satisfyr — x()* + (y —
yo)? < r? fall under the query area, i.e. locations that are within@nggtric circle centered

at the focal location. When a range query is based on the raa@redistance, such a neat
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geometric description of the covered locations is no lopgasible. In order to find all the
road network segments and thus locations covered by a gnaehmetwork distance range,
the spatial network graph must be analyzed. The standaodthlgn for determining graph
vertices that are within the given range of a vertex is thevagt expansion (NE) algorithm,
a variant of Dijkstra’s algorithm [12] for finding shortesaghs from a single source. A
spatial network range query is a standing query, continyaouaning over the given period
of time, during which the query focal location keeps moviagd continuous network
range query evaluation needs to perform the network expar{BlE) from scratch as the
mobile moves from one location to another. The cost of suchpedation is prohibitively
expensive.

In this chapter we argue that when the continuous networieguieries are evaluated
frequently, and the current focal point is close to the pesifocal query point, many short-
est paths computed based on the previous focal query pairteaeused to compute the
shortest paths from the current focal point, as there is & lovgrlap of the road segments
in the search space of these consecutive evaluations chthe setwork range query.

Existing research efforts have focused on designing neexingd algorithms that are
road-network aware in order to speed up such network ranggy gomputations. However,
few efforts have been dedicated to exploring the reuse typities for speeding up the
evaluation of continuous network range queries.

Applications of continuous spatial network range queries.

Many location based applications are based on continuaatsaspetwork range queries,
ranging from tourism assistant, mobile commerce, locatiased advertisement, to loca-
tion based social media. Concretely, a taxi driver in Maramathight want to monitor for
customers within 900 feet. It is known that a standard Maahablock is a rectangle of
approximately 264 by 900 feet. Thus, specifying "1 block’ flois query is not optimal, as
it may evaluate the query using a road distanc8.ék larger on longer Street blocks as

on shorter Avenue blocks. Additionally, there are many wmg-travel restrictions in the
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road networks of New York City and a grid network topology, &éimas a range limit given
in Euclidean distance might often turn out to be much faremording to the odometer.
Similarly, with an Euclidean range limit, customers in Brbak Queens or New Jersey
might also be returned as the matches of this range querie wdaching them from the
current location of the taxi driver would require a substrdetour to cross a body of
water on a crowded tunnel or bridge. Furthermore, duringgatked rush hours, the taxi
driver might want to find customers within 3 minutes (wheninigkiraffic into account),
instead of within a certain network distance. Taking als#heonsiderations, the taxi driver
will want to use a road network distance based range quetytwé option of switching
between segment length based and travel time based netavg& measure. Alternatively,
a UPS or FedEx express delivery driver might want to contisiyomonitor his 5-minute
travel distance neighborhood as he moves on the road to fothdeamice any new package
pickup requests. This would enable UPS and FedEx to imptmiegdervice efficiency and
reduce their cost of per-package pickup. Similarly, a &udriver on vacation might want
to keep an eye on major attractions within 50 miles of drivisgng her GPS device. An
SUV driver might want to know at all times the gas stationd beacan reach in 2 minutes
over the next hour of driving. A businessman might want t@nexnotifications about the
next contacted services that he can drive to within an howolkege student might want
to keep track of which of his buddies are nearby, given thepeemvalking paths and bike
routes.

Scope and Contributions.

In this chapter we present the design and implementationasfdBlion, a smart reuse
framework for efficient evaluation of continuous networkga queries. First, we propose
a smart reuse algorithm and related data structures. Theagenent allows the reuse of

both query results and shortest paths computed at the piefgoal point of a spatial range
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guery to compute the query coverage at the new focal poina ésult, continuous (mov-
ing) spatial network range queries can be evaluated withfgigntly reduced cost, com-
pared to repeatedly running network expansion from scratt@ach of the focal locations
as a mobile user travels on the road. In summary, the desigarddandelion approach is
based on the fundamental observation that snapshot spatibrk range queries, whose
focal points are not far from each other, have substantidlap in the set of segments that
they cover, offering significant opportunities for reuseaajood number of shortest path
computations. Our key contribution lies in devising tecfuas that can efficiently reuse
previous shortest path computations, when the segmentageyérom subsequent network
range query evaluations have high overlap with the prevevatuation.

The dandelion framework consists of three original contrdns. First, we propose the
concept of Dandelion tree to accurately represent the ageeof a network range query
with arbitrary range, by keeping track of three key netwaraltion points: border points
(BOP), dead-end points (DEP), and zip points (ZIP). Secorddesign three BOP-Push
and three BOP-Pull primitive operations to compute the GyemltF’ by maximum reuse
of the coverage at previous query focal location Third but not the least, we define the
data structures and three Dandelion reuse algorithms toegifiy identify the portion of
the Dandelion tree that can be used as the basis for reuseidhdrfexpansion. The ba-
sic Dandelion algorithm enables reuse by dividing the Dhodéree (query coverage) of
a query into the forward (FWD) and backward (BWD) halves, alilmyseparate mainte-
nance of the key data structures for each half to reduce #retsgpace. The Dandelion-T
algorithm introduces and utilizes the Trident and Guide@atuctures to compose a more
reuse-efficient Dandelion-T tree, leading to faster quergvaluation than the Dandelion
basic algorithm. Finally the Dandelion2 algorithm furtleghances Dandelion-T in terms
of query re-evaluation cost, by introducing two primitivarisformation operationmove
andjump. This development can effectively transform one Danddliea to another with

a minimum set of primitive transformation operations.
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We conduct a series of extensive experiments and our reshdts that the Dandelion
reuse model and algorithms can significantly outperformateventional shortest path
network expansion algorithm (NE) in terms of coverage catajion cost for non-trivial
radius size and high re-evaluation frequency.

Finally, we would like to note that the dandelion algorithor the reuse of spatial
network range query coverage is generic, and is not restiiti answering continuous
queries.

The rest of the chapter is organized as follows: Section B22gnts an overview and
notations for Dandelion reuse. Section 3.3 contains thadéation of our coverage reuse
model. Section 3.4, Section 3.5 and Section 3.6 describedhstruction of a Dandelion
tree and re-evaluation of coverage at current facalsing our three successively more
sophisticated data structures and algorithms. Sectionepdrts the results of a series of
experiments running on real road network maps. We outlieedlated work in Section 3.8

and concluding in Section 3.9.

3.2 Dandelion: Design Overview

3.2.1 Basic Concepts and Notations

Road Network. In Dandelion, a spatial network is defined as a directed géaph(V, E),

in which V' consists of the set aV vertices (also called road junctions), each of which is
assigned a unique identifiey (1 < ¢ < N); and E’ consisting of the set oV edges (also
called road segments), each of which is assigned a uniquéfidee; ; (1 < i,j < N),
denoting a directed segment fromto v;. Edges are undirected by default, but travel
restrictions (such as one-way streets) may be imposed amegqué&Ve do not distinguish
multiple lanes of the same direction on a road segment. Fdr ezad segment, road-
related information can be maintained, such as segmernthi¢ag. 0.7 miles), speed limit
(e.g. 55 mph), restrictions (e.g. one-way road), etc. Thgtleand speed limit of a road

segment; ; is denoted byeglength(e; ;) in miles andspeedlimit(e; ;) in miles per hour
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respectively. Other road-related information such asecuttraffic data, if available, can be
easily incorporated to provide more accurate travel time.

Segment Length based Shortest Path.et v; andv, denote two road junction nodes and
vy, 09 € V. We define a path from a node junctionto a node junction, as a sequence

of road segment edges, one connected to another, denoted as, i,, - - -, €i,_,.ip» €i .2

(k > 0). The length of a path betweeny; andv, is computed as follows:

pathlength(h) = seglength(ey ;) + seglength(e;, o)+

k—1

Z seglength(ei, i)

a=1
For any two junction nodes anduv,, there may exist more than one way to travel from
vy to vy, we usePathSet (v, v9) to denote the set of all paths betwegrandv,. We define
a segment length-based shortest path betweandv,, denoted byi_shortestpath(vy, vs),

as follows:

sl_shortestpath(vy,ve) = {hg|pathlength(hg) =

i thiength(h
e Pai oy oy PO ETIR )}

seglength(e; ;)
speedlimit(e; ;)

Travel Time based Shortest Path.The travel time of a road segment; is

Thus the travel time of a pathis calculated as follows:

B seglength(ey ;)

thtime(h
pathtime(h) speedlimit(ey ;)

seglength(e;, 2) kzi seglength(e;, ;.. ,)

speedlimit(e;,2) <= speedlimit(e;, i,.,)

The travel time-based shortest path betweesndv,, denoted byt_shortestpath(vy, vs),

is defined as follows:
tt_shortestpath(vy,vy) = {hy|pathtime(hy) =

min athtime(h
hEPathSet(vl,vg)p ( )}
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To differentiate the standard shortest path computed uSijkgtras network expan-
sion algorithm, which computes shortest path between twbces, we call the shortest
path computed between any two network locations using tirauta abovehe extended
shortest path
Network Location. A network locationis defined in terms of segment ID and progress,
denoted ad. = (e,p), on a segment (e € E). If e connects two vertices; andv; and
i # j,thenL = (e, p) with p = 0 denotes the network locationat andL = (e, p) with
p = length(e) denotes the network location at. Theprogressp (0 < p < length(e))
denotes (determines) where the locatior= (e, p) lies on thee; ; segment between, to
(%F
Road Network Distance.The road network distance between two road network location
Ly = (ei,4y-p1) @nd Ly = (e, j,, p2) is the length of the shortest path betwdanand L,
in terms of either segment length or travel time. HBagment length-based road network
distanceandtravel time-based road network distanaee formally defined respectively as

follows:

sldistance(Ly, Lo) = seglength(e;, i,) — p1 + p2+

pathlength(sl_shortestpath(v;,,v;,))

length(e;, ;,) —
ttdistance(Ly, Ly) = segieny ‘ (e Lia) plJr
speedlimit(e;, i,)

b2
speedlimit(ej, j,)

pathtime(tt_shortestpath(v;,, v;,))

Even though the segment length-based distance is the moshaoly used distance
measure on road networks, it may not provide sufficient asdrate distance information
in terms of actual travel time from the current locatidn X to the destination/{,). For
instance, highway road segments are much longer but albomvith higher speed limits

and thus may have relatively lower travel time compared toestocal road segments. To
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ensure high accuracy and high performance of query prowgssi DANDELION we use
the travel time-based distance as the default shortesbrletiistance between two network
locations, denoted byetwork_dist(Ly, Ls).

Query Coverage and Border Points. A continuous network range query is defined by
query identifierQ, query focal pointF’ and query radius, denoted as)(F,r). A query
focal point F' refers to the network location where the quérys issued or evaluated. For
presentation brevity, we refer to a query simply by its fooalation when it causes no
ambiguity in the rest of the chapter. We define the coverageqferyQ;(F, ) by the set
of all network locations that satisfy the query range caodivf network_dist(F, L) < r,

denoted asoverage(Q;(F,r)).
coverageéQ;(F,r)) = {L|network_dist(F,L) < r}

We also refer to network locations inside the coverageoasredocations.
The segment coveragaef a query( is the set of all segments that contain at least one

network location that is covered by the quépy Formally we have

segcoverageQ;(F,r)) = {eijle;; € E,v;,v; €V,
network_dist(F,v;) <rV

network_dist(F,v;) <r}

We say that a segmeat connectingy; andw; is fully covered byQ); (F, r) if both
network_dist(F,v;) < r andnetwork_dist(F,v;) < r hold. We say that a segment is
partially covered byy; (F, r) if either network_dist(F,v;) > r or network_dist(F,v;) >
r holds. On dully covered segmenall network locations on the segment satisfy the query
range condition ofietwork_dist(F, L) < r, whereas on partially covered segmeisbme
network locations on the segment satisfy the range queryitton of network_dist(F, L) <
r, and others do not, namebetwork _dist(F, L) > r.

To evaluate a querg)(F,r), we need to start from the focal locatidn and expand

segment by segment until the length of the path equal¥he ending network location
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of each such a path of lengthis referred to as a border point (BOP) @ F,r) such
that network_dist(F, BOP) = r. The set of border points of a network range query
Qi(F,r), denoted asBOP(Q;(F,r)), is the set of the network locations that have the

network distance of from F', and is formally defined as follows:
BOP(Q,(F,r)) = {L|network_dist(F,L) = r}

Fully covered segments of a queycontain no border points. Partially covered seg-
ments contain one or mot®rder-points(BOP), each of which is a network location that
demarcates a portion of the segment covered and not covAreshd segment can have
0, 1 or 2 BOPs associated with a query. Note that when a roadesggms two BOPs
associated with a query, the network distance based range&tan be either smaller or
longer than the segment length.

Segment to objects mappingQueries are usually answered in terms of (static or moving)
objects of interest, which satisfy a given query conditisach as being within a certain
road network distance). When a mapping of segments to obpéctgerest is available,
updating query results can be weaved into our proposed Mandsgorithm. Objects

on segments (or portions of segments) that are no longeredvewly covered after the
focal location of the query Q has moved, can be removed/atmd¢ide query result set

incrementally.
3.2.2 Problem Statement and Design Objective

A continuous network range query, issued over a time péfribg a mobile user, denoted
by CQ(F,r,T), can be practically evaluated by processing a time serigsagshot (static)
network range queries at successive query focal locatigns;, Fs, ..., F,, (m > 1) as
the mobile user moves on the road network. The set of focatimas ¢, £, Fy, ..., F,,
m > 1) forms a time series of network location samples of the ngtwaths traveled by
this mobile user in the given query intervé) say 3 hours.

All the snapshot queries say(F;,r) (i = 1,2,...,m) are evaluated independently
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using a shortest path network expansion algorithm in twpssteegment coverage of the
snhapshot and the segment-to-object mapping.

Concretely, letQ(Fy,r) be a snapshot query to be evaluated. Assuntipgs at a
junction nodev;, the snapshot query evaluation will be performed in two phag-irst,
starting atv;, for each one-hop path connectingwith v; (j¢0), we run a test to compare
the length of the path from; to v; to the query radius. If r is a time interval, say 5
minutes, we use travel distance of the path.r i6 spatial distance range, say 2 miles,
we use segment length of the path.rlis larger than the path considered, we extend the
paths used for comparison; otherwise, we go to the next phase¢he end of the first
phase, we have computed the segment coverage of the snapsig@)(F}., ). In Phase
2, we obtain the objects-of-interest by performing a segr@object mapping using an
inverted segment-object index. As the segment coverageoégy is the main bottleneck
of a snapshot query evaluation, in the rest of the chapteromesfon fast computation of
the coverage of a road-network range query (in terms of setmaad partial segments.

In Dandelion, we argue that the problemefficiently evaluating a continuous network
range query with moving focal poishould explore reuse opportunities between consecu-
tive snapshot query evaluations for a number of reasons.

First, given a continuous network range quérQ)(F, r,T'), the sequence of snapshot
evaluations@(Fo, ), Q(F1,7),...,Q(Fy,r) (m > 1), share the same query radiuand
the same interest in the type of objects in the vicinity of@&tgpaths of the same mobile
user. Second, these snapshot queries differ only by theat fmints of the queries. Thus,
the segment coverage of a snapshot range query with focldod’; often has significant
overlap with the segment coverage of the subsequent quahyagion with focal location
F;.1 (0 < i < m). Second, the snapshot coveragefatcan be effectively reused to
calculate the snapshot coverage at the successive lodationThird, if such reuse can be
computed significantly faster than the time complexity eEoenputing segment coverage

of each snapshot evaluation by the Network Expansion (Ng9rethm from scratch, then
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Figure 15: Observation | Large overlap (pink) exists between the myes of two
nearby queries with focal locatioris (red) andF” (blue), both withr = 600 m range.

this reuse capability can be the key to efficiently answetitggcontinuous network range

queryQ;.
3.3 Danddion Reuse Model

We observe that the spatial network range queries with flocaltions (say’ and F) are
"not far” from each other, have substantial overlap in tlsegment coverage. Such a large
overlap may offer significant reuse opportunities to acgedéethe processing of continuous
network range queries by minimizing the amount of duplicdiertest path computations.
Bearing this observation in mind, we propose a Dandelioneréwasnework and a suite of
algorithms for fast re-evaluations of continuous netwankge queries.

Based on this problem formulation, we now introduce Theoreamd three lemmas
which form the basic design of Dandelion.

Theorem 1: Given two snapshot road network range queries, both with the sange,
at nearby focal locationg” and F’, there exists an efficient way to transform the coverage
at I into the coverage at”.

In the following, we describe three lemmas that lead to tle®pof the above theorem.
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Lemma 1: Let F and F' denote two shapshot range queries with the same query radius
r. If F and F' are sufficiently close in terms of road network distance witipest tor,
namelynetwork_dist(F, F') < r, we say that there is a substantial overlap between the
coverage of the two nearby snapshot range queries and thus pontions of the com-
puted coverage at focal locatiafi may be reused efficiently to derive the coverage at focal
location F”.

Consider the two snapshot queries with query radius 600 m at F' (red sun) and
F’ (blue sun) respectively in Figure 15(a), withia = network_dist(F, F') = 200 m of
each other. The red dotted border-points (BOPs shown agleswon segments) for the
guery atl" are replaced by blue BOPs fét'; segments marked by red dotted lines are
no longer covered at’, and segments marked by blue thin lines were not covereaeefo
at F. Despite these differences, many network locations (satgmaarked in pink thick
lines) are shared by both queriesand F'. We note that this large coverage overlap exists
when the network distanc& = network_dist(F, F') between the two focal locations is
relatively small compared to(e.g.,% in Figure 2). Although we can expect that coverage
reuse is most effective wheh < r, reuse should be beneficial as long as the condition of
network_dist(F, F') < r holds.

The diagram in Figure 15(b) gives an intuitive illustratiohthe coverage arithmetic:
By representing the coverage BtasF-only + shared the coverage at” asshared +
F’-only, the dandelion approach is aimed at fast algorithms to coertpe following trans-

formation:
(coverage at F’) = (coverage at F) - (F-only) + (F’-only)

From this example, we observe that a large number of segraestshared in both snap-
shots before and after afi displacement, especially when and F' are relatively close
with respect to the query radius, and thkis- only and F’ — only are relatively small
compared todoverageat F'). The set of these common segments provide the potential of

maximal reuse.
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0
(@) Shortest path tre(b) SPT from non-(c) SPT to border-points(d) SPT to border- and
(SPT). vertex location. zip-points (Dandelion).

Figure 16: Observation II: A shortest path tree to border- and zip-sdiPandelion tree)
may be used to represent coverage of a query: {3)

We now discuss how to efficiently compute the coverage of rmoous network range
guery, and especially how to compute the shared segmentagw/betweert’ and I, the
F-only coverage and the&’-only coverage.

Recall the shortest path network expansion algorithm, wipgtyang it to a network
distance based range query, we will need to construct theestigpath tree anchored at
the focal location of the query. By using the traditional $ést path NE, several problems
may occur. First, focal locations of queries need to be amchat a road junction. Second,
partially covered segments will not be included in the SP& authe fact that the network
expansion condition is boundedto Third, no mechanisms to handle the situation where
two border points on the same segment cross each other, wigigltonsequently lead to
errors in the evaluation.

Consider a simple snapshot range query with= 13 on Figure 16, the traditional
shortest path tre¢SPT; Fig. 16(a)), calculated by NE, is only able to représgreries
rooted at vertex locations. Parent pointers (shown as ajrfsam each covered (red) vertex
within the range- are used to navigate the tree. Thus, only two segments dtelattin
the SPT: AB segment and AC segment.

In the case of a snapshot query with non-vertex focal londticas shown in Fig. 16(b),

we can add the expansion from non-vertex locatioon segment AC to both end nodes
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of the segment. From A and B, we apply the standard shortelstnatvork expansion.
As shown in Fig. 16(b), three segments marked in thick redraaie included in the SPT:
AC, AB, CD; while the segments CB and BD are treated as not covetmas the objects
of interest to this query that reside on these latter two imgssegments are missed in the
result of the query.

By extending the standard NE expansion to include the hapdifmon-vertex focal
point and non-vertex border points, we can correctly comple segments covered by a
query either fully or partially.

Based on the extended shortest path and the border pointg|eve tefine the extended
shortest path tree for a snapshot query.

Extended shortest path tree.Let Q(F, ) denote a continuous range query with focal
point F' and query radiug. Let BP(Q) denote the set of border points @f such that
VB; € BP(Q): network_dist(F, BP;) = r. We refer to the tree witlf" as the root and all
BP; as leaf nodes, as tlextended shortest path tre¢ (). Note that all internal nodes of
this tree are road junction nodes. The root and the leaf n@@dgsor may not be junction
nodes. Each child node maintains a pointer to its parent motles extended SPT. It can
trace the shortest path olength from all BOPs td". Also the segments associated to the
root F' and border points af) are recorded as a part of the root and leaf node, respectively
The tree traversal path from leaf no8&>; to root F' represent the shortest path from query
focal locationF’ to network locationB P,.

Covered, Partially covered and Uncovered SegmentsFor a given query and its
extended shortest path tree, all the internal nodes of #tended SPT are road junction
nodes. For each pair of internal nodeandv,, if v; is a parent node af; or vice versa, then
we call the segment with; andv; as the two end nodescaveredsegment. Otherwise, if
andwv; are two end nodes of a segment in the road network, we cabéigimentincovered
by the query@. We call all the segments that are attached to root or leaésad the

extended SPT thpartially coveredsegments.

67



Given a continual range query and a sequence of its snapsilaagons, say
Fy, Iy, Fs, ..., F,,, we construct the initial extended SPT using network exjoanst the
initial installation time. The construction algorithm &sthe query as the input and utilizes
the network distance based shortest path formula to contpateternal nodes, starting
from the focal locatiorF’ of the query, until it reaches all the border points of thergues-
ing network expansion. For each subsequent snapshot quadnagon, we use Dandelion
algorithms to construct the extended SPT for the next sragstaluation by maximizing
the reuse potential of the previous extended SPT.

Lemma 2: An extended shortest path tree is well suited to represerthalhetwork
locations covered by a query.

This lemma states that every network location covered byeyg@} is included in
the extended shortest path tree(pf More specifically, all road junction nodes covered
by the query are also represented as the internal nodessirextended SPT. Segments
that are fully or partially covered by the query are représern this extended SPT. By
introducing border-points (BOPs) on partially covered segts, we are able to keep track
of all network locations that are covered.

Concretely, given an extended shortest path tree roote@ &bl pointF’ of a query,
we refer to the internal nodg who is the parent of some leaf nodes (i.e., border points of
the query) as the last junction node of SPT and we haveork_dist(F,v;) < r.

When the extended shortest path network expansion has cedEhkast junction node
v; andnetwork_dist(F,v;) + d; = r, whered; is the final distance on the edge framto
v; andnetwork_dist(F,v;) > r, then a BOP is placed on the edge;, atr — d; distance
from v; (i.e., at exactlyr distance fromF’). Thus, the BOPs, just like covered junction
vertices, keep a pointer to their parent vertex in #tended shortest path tree to border
ensuring that . all shortest pathsofength — from all BOPs toF" are included in this

extended SPT.
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Fig. 16(c) shows that the segment CD is partially covered bytrery as it has two bor-
der pointsB; andB; residing on the segment CD. The shortest path from F via C todd en
ing atB; on the segment from D to B satisfiestwork_dist(F, D) < r, network_dist(F, By) =
r andnetwork _dist(F, B) > r. Similarly, the shortest path from F via B and endind3at
on the segment from B to D is representedib¥work_dist(F, B) < r, network_dist(F, By) =
r andnetwork _dist(F, D) > r. These two border points do not cross each other. We refer
to them as non-crossing border points.

Fig. 16(d) shows the case in which two border points are crgsme another on the
same segment CB. The shortest path from F expanded to C and enéinon the segment
from C to B is represented byetwork _dist(F,C) < r, networkgis(F, Bs) < r and
network_dist(F, B) > r. Similarly, the shortest path from F expanded to B and ending
B, (crossingBs;) on the segment from B to C is representediayworkgis(F, By) < r.
These two border points are crossed by each other. We refestoase as crossing border
points. To facilitate the query coverage reuse, in Dandelwe introduce zip point to
represent two crossing border points residing on a singjmeat.
Zip Points. Letv; andv; be the two end nodes of a segment in the road network graph. If
v; andv; are the last junction nodes in the extended SPT (with finghdees; via v; and
d; viav;), then the segment withy andv; as the end nodes is either an uncovered or a par-
tially covered segment by the extended SPT. Thus, thertsexirgetwork locatior¥ on this
segment that is equidistant frafvia both vertices; andv;. Leta = network_dist(Z, v;)
andb = network_dist(Z,v;). We havenetwork_dist(F, v;)+a = network_dist(F,v;)+b
anda+b = seglen(v;, v;). If such alocation did not exist, then a shortest path ffoto v,
would exist viav;, v; would be a parent node of (or vice versa), and the segment connect-
ing v; andv,; would be a covered segment by the extended SPT, which is sadastion.
In Dandelion, we mark such locationsap points(ZIP).

In fact, zip point is resulting from the crossing of two BOPsaosingle segment. As the

focal location of a query moves, the two BOPs on a single segyfnevering some portion
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from the two opposing ends of the segment) move closer, thtardie on the common
segment between the two BOPs grows smaller, until it disapp&een two BOPs are
crossing each other, then two ZIPs are created. The Zip namesfrom the effect of
"zipping up” two sub-trees of the Dandelion shortest padte twith the two BOPs as leaf
nodes respectively.

Dandelion Tree. Let CQ(F,r,T) be a continuous road network range query and let
Q(Fy, 1), Q(F1,7),Q(Fy,r),...,Q(Fk,r)denote the sequence of evaluation§'6f( F, r, T)
in the duration defined by'. For each snapshot quet}( £}, r), we call its extended short-
est path tree (with border-points and zip-points as leaés@uhd the focal locatiof as the
root) aDandelion tree We refer to internal nodes of a Dandelion tree as internatio

When a mobile user moves from a focal locatibrto the next focal locatiorF’, if
networkqisl(F, F') < r (one extreme case whefeis 500 meters forward fromy’ on the
same road segment), then most of the internal covers in thdddan tree rooted at will
stay the same in the Dandelion tree rooted“atThus we can reuse the Dandelion tree
rooted atF’ to compute the Dandelion tree rootedraas the update to the Dandelion tree
rooted atF’ is limited only to the roott" (moved toF’) and the leaf nodes (BOPs and ZIPs),
which moved bynetworkqisl(F, F').

Lemma lll: The coverage represented by a Dandelion can be unambigusaph-
rated into a forward half (FWD) and a backward half (BWD). The tvaives are separated
by ZIP points with the special property that the two equidistzaths to a ZIP start in the
opposite direction af'.

We first define the FWD half and BWD half of the coverage of a quelyeBa con-
tinuous road network range que€yQ(F,r,T'), the evaluation of this standing query is
performed by executing the snapshot qu@iyF;, r) over the time duratiofi’ periodically
until 7" expires, and the focal locatiafi changes as the query issuer moves forware (
0,1,2,...,k, F = Fp). We refer to these snapshot queries@sy, r)Q(F1,r), Q(Fy, 1),

.., Q(Fy,r). The sequence of road network locatiafig Fi, F», ..., F}, forms a travel
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trajectory of the query issuer. Given any focal locatign we call the moving direction

of this trajectory fromF; to F; ., the forward direction. Regardless of the actual travel
direction of the query issuer, there are always two root eenanating from the query
focal £ in the opposite direction on the same segmentesay: (v;, v;). If F'is moved to

F' via v; or towardsy;, then we call the root cover fror to v; thefwd cover and refer to
the root cover fron¥’ to v; thebwd cover. All covers in the tree are descendants of either
textitfwd or bwd and thus can be easily separated into a FWD and a BWD set. Given a
focal I’ and the coverage of the snapshot qu@F, ), those internal nodes with as
their ancestor node in the Dandelion tree rooted &rm the FWD half of the coverage
of Q(F,r). Similarly, those internal nodes with as their ancestor node in the Dandelion
tree rooted af’ form the BWD half of the coverage.

In the case where the query foc&lis located at one of the two ends of a segment,
if the end nodey; is a junction connected hy segments, and the other end nodes of the
d — 1 segments are denoted by, vs,, ..., vs, ,. If F moves to the junction; from v,

(2 <1 <d-1), then those internal nodes withas their ancestor node in the Dandelion
tree rooted af’ form the BWD half of the coverage 6§(F, ). Those internal nodes with
v; as their ancestor node in the Dandelion tree rootefd ate part of the FWD half of the
coverage.

ZIP Active Point — ZAP. While ZIPs are reachable via two equidistant paths origi-
nating from#’, the FWD/BWD delimiter ZIP points’ paths are different from trey first
segment (either textitiwd dowd). We may refer to ZIP points as "ZIP Active Points”
(ZAP), if they need to be distinguished from regular ZIP pejiut behave similarly oth-
erwise.

The main idea of the Dandelion basic algorithm is to utilize FWD half coverage
and the BWD half coverage of a snapshot query to maximize theeratlnen using the
coverage of query & to compute the coverage of queryfat Concretely, the BOPs in the

two halves of the coverage need to be updated differentiysare the network distances
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from the new border points to the new fodakequals ta-.

Figure 17 provides an illustrative example. The coverage g@fiery with initial focal
point £ is shown in Figure 17(a). The segments marked in thick resslare those in the
FWD half and the segments marked in thick dotted green linesher BWD half. The
coverage of the query after its focal point moved fréihto F is shown in Figure 17(b).
Compared to Figure 17(a), only the three border poisP;, BO Py, BO P, are moved
forward by distance ofetwork_dist(F, F'). Thus to compute the FWD half and the BWD
half coverage off’, we can reuse most of the coverageraf This is because only the
update of these three BOPs are performed to obtain the FWD half &imilarly only a
few updates are needed to compute the BWD half'ofThe coverage reuse is shown in

Figure 17(c).

3.4 Dandelion Basic Algorithms

In this section we will present the basic algorithm for comsting a Dandelion tree an-
chored att" and the algorithm for reuse of the Dandelion tree anchorédtatcompute the
Dandelion tree at’. The algorithm for constructing the initial query covergBandelion
tree) takes the query focél and the query radius and computes the Dandelion tree an-
chored atF’ one hop at a time. We can model this process as growing thedllandThe
FWD and BWD coverages are grown simulatenously.

The algorithm for Dandelion reuse takes as input a Dandétesm at/” and the new
query focal location', and outputs the coverage Qf F', ), assumingF’ is the previous
snapshot focal point andis the query radius. One way to maximize the reuse oppoytunit
is to computel” — shared cover,F — only cover andF — only cover such that the coverage
of F will be the union of " — shared cover andf’ — only cover. F' — only cover can be
computed by examining the growing part of the Dandelion tvaen the focal location is
moved fromF' to F'. Similarly, F' — shared can be computed by examining both the FWD

coverage and the BWD coverage of the Dandelion tree. Thus wdiwide our discussion
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(a) BOP-Push-Split. (b) BOP-Push-Dead. (c) BOP-Push-Zip.

Figure 18: Primitive BOP Push Operations

into two phases: growing Dandelion (FWD) and BWD Dandelion hiegrowing Dande-
lion computation, the Dandelion tree may grow by updatirrgBOPs, ZIPs and some of its
internal nodes. To maximize reuse of the query coverage iof computing the coverage
of I, we introduce three primitive BOP push operations, whichdfarm BOPs into new
BOPs, ZIPs or dead points in the road network, called DEPsil&lyn we introduce three
primitive BOP pull operations for computing the BWD Dandelidrifa

In the subsequent sections, we first introduce the BOP PusiRalh@®perations and
then we describe the data structures for promoting Dandekose. We will also de-
scribe the Dandelion basic reuse algorithm, which dividesduery coverage into FWD
and BWD halves. To improve the efficiency of Dandelion basioalgms, we introduce
two advanced Dandelion algorithms Dandelion-Trident and Dandelion2 in Section 3.5
and Section 3.6 respectively. All three Dandelion algonhutilize BOPs, ZIPs, fully
covered and patrtially covered segments, query coverag®andelion tree as the funda-
mental basics, but one improves the other by using a morgaochand reuse-conscious

data structure.
3.4.1 BOP Push and Pull Operations

We conceptualize the growing phase of a Dandelion tree ases € local BOP update
operations, in which a BOP is "pushed” outward and to a locatiat is outside the query
coverage ofF. There are only three types of BOP push operati®@BR-push opg that
are used in the growing of a Dandelion tree: BOP-Push-Spli@BQsh-Dead, and BOP-
Push-Zip.
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BOP-Push-Split BOP — (d-1) x BOP.
At a d-way junction, a single BOP, residing on the segment frgnto vy, is split into
d — 1 BOPs, denoted by3OP;,, BOP,,..., BOP; 1 (d > 1), one on each of thé — 1
not-covered segments connected to the junction. Thus treesg fromv; to v, becomes
an internal cover. An internal cover can never serve as tles lfar further expansion
(only covers in the perimeter of the query), thus we no lomgerd to update its distance
from F', even after the query moves to a néW location. This is a primary source of
performance improvement in the Dandelion algorithm, asititernal segments do not
need to be updated. Fig. 33(b) shows an illustrative example

BOP-Push-Dead BOP — (d-1) x DEP.

Reaching the end of a dead-end segment, a BOP is transforredd P, and its location
no longer needs to be updated, as it cannot serve as a basisthar expansion in the
growing Dandelion phase. Fig. 33(d) gives an example ratgin. However, we need to
keep track of the distances at these "unmovable” BOPs as thgyserve as the basis for
the Dandelion shrinking if' is moving backward. Thus we include them in the perimeter.

BOP-Push-Zip: 2 x BOP— 2 x ZIP. When two BOPs are pushed across one another
on a segment, they are transformed into two ZIPs, as showigir38(f). ZIPs — like DEPs
— are unmovable, but we need to keep track of their distamoes the focal pointF’, as
they can serve as the basis for further expansion. Consdyjuéifts are considered part
of the perimeter.

Similarly, when the query focal’ is moved toF’, some part of the Dandelion treefat
will no longer be included in the Dandelion treefat We can conceptualize this shrinking
of a Dandelion tree af’ as a series of local BOP update operations, in which a BOP is
"pulled” and merged through three types of primitive BOP mylerations: BOP-Pull-
Merge, BOP-Pull-Undead, BOP-Pull-Unzip.

BOP-Pull-Merge: (d — 1)x BOP— BOP.

At a d-way junction, two or more BOPs, residing on different segtaeharing the same
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end node, say;, are merged into one BOP on a segment connectegl. td&Ve add this
BOP into the perimeter set to replace the previous BOPs in Werage ofF'. The segment
from v; to v, becomes only partially covered. This is the reverse of tlzergte shown on
Fig. 33(b).

BOP-Pull-Undead DEP — BOP.

Some border points of DEP-type points may be pulled to alikemquery focal is moved
from F'to F. This is the reverse of the example shown on Fig. 33(d).

BOP-Pull-Unzip: 2 x ZIP — 2 x BOP. When two ZIPs are pulled from opposite
directions on a segment, they are transformed into two B@Rkgireverse of the example
shown on Fig. 33(f). Update to the perimeter set is perfortaeeflect such transformation.

We have discussed four important road network points: kgrdimts (BOP), dead-end
points (DEP), inactive zip points (ZIP), and active zip gsi(ZAP). We distinguish these
four types of points in the FWD and BWD portion of the Dandeliogetwith a prefix
(e.g. fBOP is a border point in the forward tree and bZIP is aidlthe backward tree).
Figure 19 gives a brief overview of the state transitionshafse four network location
points. First, consider the construction of the Dandelree &as a gradual growing of the
tree by incrementally increasing its range from O-tolnitially, there is only a single”
focal point, and the query has a range of 0. When the rangetignreased, the simplest
tree is created: with one fBOP and one bBOP, assumingihatnot at a junction node.
As we grow the query range continuosuly until reachingll other points are derived from

these two points.
3.4.2 Data structures and Dandelion Tree Construction

In this section, we describe four key data structures fostrantion and reuse of a Dande-
lion tree:cover, SegCovMap, ordered priority quearedperimeter
A coveris a fundamental data structure representing the basiomafiton about a fully

covered or a partially covered segment. A cover is specifyetthd following components:
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BOP-Push-Dead BOP-Push-Dead

Figure 19: State transition and lifecycle of four points iryaow operation.

(i) the cover type (BOP, DEP, ZIP or internal); (iilsagpointer to its underlying segment;
(i) the coveredEndldxindicating which of the two ends of the segment is closer {and
is thus guaranteed to be within the query coverage areag Wialother end may fall outside
of it); (iv) the progressindicating the portion of the segment that is covered (whschy
definition the full segment length for DEP and internal caye(v) aparentpointer to the
internal-type cover that is upstream from the cover on ttk tmvardsF, the root of the
Dandelion tree; and (vi) for ZIP points an additiozgperpointer to the paired ZIP cover.
Furthermore, Dandelion covers contain a singddf bit, which can be used to determine
if two covers are in the same half of the Dandelion tree. Tdifate reuse, thdalf bit by
itself does not indicate whether that half is FWD or BWD. In ortiedetermine whether
that half is FWD or BWD, the comparison must be performed to findtvbr the half bit
of the cover is the same as the half bit of thel or bwd cover of F. This allows the reuse
of the Dandelion tree of' to compute the Dandelion tree éfregardless which direction
the path fromF' to F'is.

A SegCovMapis a hash mapping from segment ID to the list of covers on #ghent.
A segment may map to either 1 cover (1 BOP; 1 DEP; 1 internal},@vers (2 BOPs; 2

ZIPs). The segment df is special case, as it may map to 1 BOP + 1 internal cover; orin a
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special situation to 2 BOPs + 1 internal cover; or 2 ZIPs + Irivdkcover. The SegCovMap
can be used to for coverage checking (i.e. to determine hghany specified road network
location is covered by the query or not), and is also used doefiisting covers on a segment
(e.g. for detecting whether a BOP-Push-Zip operation needsdur). The SegCovMap
can be viewed as an inverted index that maps segments towees@n them and is updated
mostly by adding/ — 1 new covers at d-way junction during a BOP-Push-Split operation.
Removals also occur to SegCovMap. For example, segmentspothen of FWD, which
are not shared by the FWD &t must be removed one by one when reusing the FWD at
to compute the FWD ak'.

An ordered priority queue is used to process covers during coverage growing, and
perform the BOP push operations in the correct sequence. Uéaegs ordered by the
smallest distance from’. Three basic operations are performed on the ordered tyriori
gueue. An "enqueue” operation happens when a cover is @wsarto the ordered priority
gueue. A "dequeue” operation takes place when a previousiyeued cover must be
removed from the queue. A "popgueue” operation occurs wherhead of the queue is
popped out for processing. The initialization of the queay eiffer depending on whether
the queue is used to create the initial Dandelion tree (e@eror the queue is used to
compute the coverage atby maximizing the reuse of the coveragefat

A perimeter setis an unordered set, containing all the non-internal cow@sshese
may serve as the basis for further expansion. In the basic&am reuse algorithm, a
hash table is used for quick containment checking and relhajva non-internal cover
from the perimeter.

Dandelion Tree Construction.

Upon installation of a continuous road network range quegy( £, r, T'), its initial evalu-
ation is to construct a Dandelion tree anchored a&coped by the network distance range
r. The algorithm starts the creation of an initial Dandelimetusing the ordered priority

gueue. We assume thatis a location on a segment. First, the queue is initializeti thie
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two root BOP coversfivd andbwd), both located at exactly’, but each with a different
coveredEndldxThe Dandelion tree grows as we examine each cover in theecaradiup-
date the queue accordingly. BOP-Push operations are parfoimasplit-then-push-out
fashion: when a cover is popped from the queue, if the covaepartial covered segment,
then it is pushed out to the end of the current segment, atgldistance td" is less than
query radiug, then its distance is updated, and this cover is re-enqué\bdn this cover
is encountered at the head of the queue agaipraigressis at a junction node, and if the
junction is not a dead end, then this cover can be immedigiethed and split onto the
connecting segments. This ensures that the border poittie gliery are computed hop by
hop from F" with r radius. Continuing this process, the children covers ararimpushed
out to the end of their respective segments, if their distario /" are less than query ra-
diusr, then theirprogressand distances fronk’ are updated, and they are enqueued for
subsequent examination.

If a push-out results in a distancekofarther than-, then the push is limited by placing
a BOP on the segment such that the BOP is at exactlistance fromF', and this BOP
is not enqueued. Immediately after the push-out of a child B@#vverpush-detectiors
performed: SegCovMap is consulted for other covers on theeefj and for each such
cover, we check (i) if the pushed-out BOP is the only BOP on tgengait or else if it does
not cross any other BOP on the segment, if yes, we add this BOfe petimeter seand
also add this BOP as a leaf in the Dandelion tree. (ii) Othenifvibe pushed-out BOP has
beenoverpushedi.e., pushed beyond the location of another BOP on the sagmes#),
then two BOPs have crossed over each other and a BOP-Pushygpfaemed, and the
two BOPs equidistant ZIP location is computed (which is gnead to be on the current
segment due to the processing order guaranteed by thetygogue). The ZIPs are added
to both the Dandelion tree as lead nodes and t@#reneter set

When a BOP-Push-Split is pushed and splits the current BORIintoBOP segments,

some of them may no longer be pushed before reaching thenetagbrk distance from
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F, because they are dead-end segments and at a dead end (BEParéh no outgoing
segments to split onto, then a BOP-Push-Dead is invokedad 8©P-Push-Split.

When the cover popped from the ordered priority queue is & tdlered segment, it
is added to the Dandelion tree as an internal node and is goeeed.

This process iterates until all covers in the queue are ex@niAs a result, the Dande-
lion tree is fully constructed.

To maximize the reuse opportunity, we keep a separate Seg@madvid a separate
perimeter set for FWD and BWD. There are two obvious advantaigésodesign. First,
it allows the wholesale disposal of the segment-to-coveopimgy in the BWD portion of
a Dandelion tree efficiently. In addition, should be in BWD (if the user travels in a
beeline after the query coverage re-evaluatiof )athen the FWD and BWD SegCovMap
and perimeter set are simply swapped first. This swappimgexiglains why a coverbalf
bit is not by itself an indicator of containment in FWD. If thé twvere a direct indicator
of one half, then after a swap, all the covers in the newly-FWdhdelion half tree would
need to be traversed for updating this bit. This is anothanmgte of the Dandelion design
that maximizes both the reuse potential and the reuse eifizigy minimizing unnecessary

computation and update operations.
3.4.3 Dandelion Basic FWD-BWD Reuse Algorithm

We have described the algorithm to construct an initial [2diod tree (coverage) for the
initial evaluation of a continuous road network range quesyng the ordered priority
gueue. Given the query focdl, the the queue is initialized with only two root covers:
thefwd cover and thdwd cover. Upon the completion of the tree construction, weiabta
the FWD portion of the coverage and the BWD portion of the coverfagm the Dande-
lion tree respectively, as shown in Figure 31(a). In thed&=sindelion reuse, we keep a
separate SevCovMap and a separate perimeter set for FWD gevend BWD coverage

in order to speed up the computation of the coverage lay reuse of the coverage At
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(c) Coverage changes infato-F' transformation. (d) Coverage af”.

Figure 20: Schematic of evolution of BWD and FWD portions of coverage of arguat
F asitis transformed té¢”. (All dist. on road — real coverage not octogonal. Coverage at
F shown dashed on all figures for reference.)
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(a) Coverage af'. (b) Portion of coverage df reusable af".

AFWD+
YYip 0

(c) Changes in coverage during a transformati (d) Coverage at”.
from F to F.

Figure 21: Example of evolution of BWD and FWD portions of coverage of a g
as itis transformed t@".
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When the query focal point is moved fromto F, the basic Dandelion reuse algorithm
aims at computing the FWD coverage and the BWD coveragé by maximizing the
reuse of the FWD coverage and BWD coveragé'afThe key insight for Dandelion tree
reuse is that a forward portion of the Dandelion tree willd&ve same structure at bath
andF”, denoted by FWB (see Figure 31(b)), and all distances of BOPs, DEPs and ZIPs in
FWD simply need to be increased by the displacement betweefi and " to be correct
in the new FWD’ tree (regardless of the actual route taken byuser, as a coverage only
depends orf’s location andr). The FWD subtree is simply the portion of FWD that is
also forward from the new focal locatiafy.

However, those segments that are in FWD, but not in FWé2d to be removed from
both the SegCovMap and the perimeter set (see Figure 31{@selsegments can be found
by traversing in the Dandelion tree all of the side-treesgkhe shortest path frodi to F”.

As covers in these side-trees are removed, the ZIP poirttstifaaldle the demarcation line
between FWDand the non-overlapping part of FWD are turned into BOPs (byrgpls
type change). Finally, the FWD perimeter set will only contiiose BOPs whose distances
and paths are correct with respect to the new focal locdtion

Construction of Dandelion Tree at F' by Reuse. One way to reuse the coverage at
Fin constructing the Dandelion tree Atis to initialize the ordered priority queue with
both the FWD) perimeter set (instead of a new rdatd cover), and a new rodiwd cover.
Subsequently, the queue is processed iteratively as dedan the initial query coverage
computation. As a result, only the perimeter of FjMias been traversed, and its internal
covers (which may be numerous) have been reused complettiiput ever being touched
during the re-use.

Figure 31 shows the conceptual formulation of FyVIFigure 21 gives a detailed ex-
ample. FW[Q is the reusable portion of the coverageFWD+ is the FWD portion of the
guery coverage at” that has not been covered A&t AF2F is the portion of the query

coverage that is in both FWD and FWD’, but via different path] & thus not reusable.
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AF2B is the portion of the FWD tree that is in BWD’ &t. AB2B is the portion of the
BWHD tree that is also in BWD’, but still must be recomputed, as tiseadces into it may
have changed in unpredictable ways (notably, due to patiddhd into this portion via
AF2B, as they are shorter than those frétrbackwards viaF'). ABWD- is the portion of
the BWD tree that is no longer coveredFt

In summary, we can classify covers into three categoriegoh ee-evaluation: (i) New
covers signify segment covers that have been created dimenge-evaluation step. (ii)
Reused, but updated, covers are those that were created duprevious re-evaluation,
but have been modified in the current step (for example, teB&Ps would fall in this
category). (iii) Reused and not updated covers are thosethgtresent in a current re-
evaluation step in exactly the same form as in the previogss &.g. internal covers in
FWD)). Our experiences with Dandelion show that when the quetisareaches a non-
trivial size, the ratio of the three reuse types stabilizedicating good scalability of the

Dandelion reuse algorithms.

3.5 Danddion-T

In the Dandelion basic reuse algorithm, to compute the Diardé&ee at the new focal
location /', we need to first identify FW[) namely the FWD portion that is shared at both
F and F'. This requires the algorithm to traverse the perimeter s§8t@@FWD coverage
in order to find those BOPs in FWDand then follow the parent pointers at BOPS to
obtain the entire shared portion of FWD, namely FyViven that the perimeter set is
an unordered set of all non-internal covers (partially cedesegments) with a hash table
for quick containment check and removal, when the size ofpgremeter set is large, a
sequential scan of the perimeter set can be quite expeers®e though we keep a separate
perimeter set for FWD and BWD.

We envision that a fast way to identify those covers shareith&ypandelion tree (cov-

erage) att’ and the Dandelion tree (coverage)rats to have the capability to find all the
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Figure 22: Trident and Guide data structures.

non-internal covers in a subtree anchored at a given intemeer. This capability will
allow us to quickly find those non-internal covers that ane¢ pethe subtree anchored at an
internal cover, which is included in both the coveragé’and the coverage dt, without
scanning irrelevant covers in the perimeter set. This mt® us to introduce Trident, a
new data structure that allows us to create an inverted g¢oveerimeter index such that we
can find the set of non-internal covers in the subtree andradrany given cover efficiently,
speeding up the Dandelion reuse based query re-evaluations

Clearly, in Dandelion-T we no longer need to keep a separatmeter set for FWD
and BWD due to the integral update of a correctly ordered peemist during all BOP-
push and BOP-pull operations.

In the rest of the chapter we call the Dandelion basic reug@ighm simply as Dande-
lion and refer to the Dandelion that supports the Tridentcstre adDandelion-T.

Trident is a value-added auxiliary data structure to ex@wedver in the basic Dande-
lion in order to further improve the performance of Dandelieuse. A Trident cover is an
extended cover that contains three additional pointerslditian to the information about
a cover, which allows the management of the perimeter setliaked list (instead of a
hash table) and also enables us to quickly find the set of BOBsiperimeter set that
are descendants of the Trident cover. Formallyrident cover (Fig. 22) contains all the

attributes of a simple cover (Fig 22(a)), except for baf bit, and also contains: lkeft
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and aright pointer, which ensure that the perimeter list traverseohfiedt to right contains
all the BOP, DEP and ZIP covers that are descendants of tieatridnd aw (clockwise)
pointer, pointing clockwise towards tridents in the petieneof the Dandelion. All three
pointers of a Trident- left, right andcw point to aguide data structure (Fig. 22(c)), which
does not represent any location on the road network, andyssepves as an interstitial be-
tween covers. A guide contains a single(clockwise) pointer to a trident in the clockwise
direction. With this guide structure, all covers in the psster are linked in a clockwise
fashion, making the access to the BOPs relevant to any givesr convenient and fast.
Therefore the perimeter is composed of an alternating figidents and guides; each tri-
dent is an extended cover of either type BOP or DEP or ZIP. The Ralof a Dandelion
tree is accessible by iterating from fwd.left to fwd.rigat@ similarly for BWD). Also it is
worth to note that fwd.left = bwd.right, and fwd.right = b\eft.

Figure 23 gives an intuitive view of some part of a sample [@dind-T. Figure 23(a)
shows the sample portion of the Dandelion-T with internad &DP type tridents. Fig-
ure 23(b) shows the sample portion of the Dandelion-T witketrts of all four types (in-
cluding ZIP and DEP tridents).

The correctness of a perimeter list with tridents and guadesbe maintained using the
three primitive BOP-Push operations for trident coversohlis a slight modification of the
three basic BOP-Push operations in the Dandelion basicitigofrecall Section 3.4.1).
Figure 24 provides an intuitive illustration of tridentwtture updates.

By design, any complex operation in the FWD Dandelion can bkdwralown into the
three simple BOP-Push operations (and similarly for the BWDde#an), while keeping
all trident covers in a correct clockwise ordering in theipeter. Figure 25 shows an
example of how a proposed new BOP-Push-Merge subop can kmceeplith a BOP-
Push-Split followed by a BOP-Push-Zip.

All ZIP points also remain in the perimeter. To help underdtavhat a clockwise

ordering means in the case where BOPs are pushed into ZIPgowiegan example in
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(a) Dandelion-T with internal and BOP type tri-(b) Dandelion-T with internal, BOP, DEP and ZIP
dents. type tridents.

Figure 23: Detail of a sample Dandelion-T tree portion.

Figure 26 to show the detailed steps of how the ordering isitaiied once the creation
of a ZIP is taken into account. Concretely, Figure 26(a) shiwvesBOPs before entering
the crossing street. Figure 26(b) shows the two BOPs are nlitnrgp four BOPs after
expansion of each BOP onto the other two segments by crodsengdarby three way
junction. Figure 26(c) shows the case in which two BOPs on thesestreet expand by
crossing one another and BOP-Push-Zip generates two ZIRpkace the two BOPs on
the cross-street segment. Due to the space constrainis ichizpter we omit the theoretical
analysis of the correctness of the ordering of tridents andes in the perimeter set.

We have implemented Dandelion (basic reuse) and Dandé&l{gndent powered reuse)
in our first prototype system. To provide an intuitive viseation of Dandelion reuse en-
abled network range query evaluation, we present some lizatian screenshots taken
from our prototype of Dandelion and Dandelion-T, rangiranirthe simplest query cover-
age with only two BOPs (Fig 27(a)), to simple queries with oB®Ps (Fig 27(b) and
Fig 27(c)), and to highly complicated query coverage trdgg @8(a) and Fig 28(b)).

Fig 27(b) shows a query with very small query radius in terrhsiework distance of
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(a) Before BOP-Push-Split.

<€

(c) Before BOP-Push- (d) After BOP-Push-Dead.
Dead.

(e) Before BOP-Push-Zip. (f) After BOP-Push-Zip.

Figure 24: Dandelion-T data structure updates after FWD BOP-Push ops.
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(a) Before BOP-Push-Merge (b) After BOP-Push-Split. (c) After BOP-Push-Zip.

Figure 25: Decomposition of a complex BOP-Push-Merge situation insdsubopera-
tions.

(a) 2 BOPs before cross-stre  (b) 4 BOPs after expansion ¢ (c) 2 BOPs + 2 ZIPs after zipping
cross-street. on cross-street.

Figure 26: Ladder example showing the correct ordering of ZIPs in theypter.
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(a) Simplest possible query. (b) Small query. (c) Small query with left/right
pointers.

Figure 27: Sample small queriesr & 20 — 200 m; map scales not comparable)

less than 200 meters. Fig 27(c) shows a small radius quehytidients and guides in the
perimeter, while highlightindgeft andright pointers. Fig 28(a) shows a sample query with
relatively larger radius of 2000 meters with the query cagercomputed using Dandelion.
Fig 28(b) shows a sample query with the same radius of 200@rméut at a different
guery focal point with the query coverage computed usingdeaan-T, and highlighting

theleft andright pointers.

3.6 Treetransformation with Dandelion2

We have shown that Dandelion2 is faster and more effectare Brandelion basic algorithm
for speeding up the re-evaluations by maximum reuse, themitee compact trident data
structure to maintain a correctly ordered perimeter lisirduthe transformation of the
Dandelion tree af”" to the Dandelion tree ak’. However, by carefully examining the
transformation process in Dandelion and Dandelion-T, weeoke that when the query
focal point is moved front’ to I, the transformation of the Dandelion tree (coveragé) at
to the Dandelion tree (coverage)fatcan be done more intelligently and more efficiently.
First, we argue that the coverage at any location depengsarmbuery parameters
(such as focal location and query range) and the topolodyeafibderlying spatial network,
and it should be independent of the method used to calchliatstverage. Concretely, there

may be multiple paths fromi' to F'. Thus, transformation operations along any path ffom
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(a) Large query. (b) Large query with left/right pointers.

Figure 28: Sample large queriesr & 2000 m; map scales not comparable)

to I must yield the same coveragefdt By utilizing this path-independence property, we
can perform the transformation along the shortest patheop#th with the fewest number

of segments (and thus operations), instead of using thalgeth taken by the mobile user

who issued the continuous range query.

Second, the coverage-transformation frénto F/ can be broken down into a series of
primitive mov (move) andmp (jump) operations.

A mov dz operation transforms the coveragefat= (e, p;) into the coverage at, =
(e,p2), Wherep, = p; + dx; i.e., it moves the query’s coverage from a focal locatign
on a segment to another locatiéh on the same segment. The parametenot is a real
valuedz, which is the distance movement on the segment, considdrengrigin ¢ = 0)
of the segment is at the end-vertex with the lower indexizIt> 0, then the movement is
towards the end-vertex with the higher index (the "end” & #egment); and ifz < 0,
then the movement is towards the lower index vertex (thet"stéthe segment).

A jmp e, operation transforms the coveragefat= (e, len(e;)) into the coverage at

F, = (ey,0), wheree; ande, are connected edges ahg = F,; i.e., the primitivejmp
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sidettee |,

sidetree

Figure 29: Observation Ill: Breakdown of tree-transformation frdfrto £, as shown on
Figure 15(a), into a series of mov and jmp operations.

operation jumps the query’s coverage from one segment’scetie: next segment’s begin-
ning, without actually moving the coverage by any distanfee parameter ghmp is the
edge to jump to, and a jump is only a valid operation at the érdsegment. By}, = F5,
we mean that the network location exactly ataay vertex can be described bylifferent
forms, one per edge, sdy;,p) (i = 1,2,...,d), and all these forms represent the same
network location. Furthermore, the progressan be any value in the range of [@n(e)]
(the total length of the edge), in all possible combinatioGkearly, ajimp operation does
not move either the focal location, the border-points, erdbvered network locations. Al-
though the network locations before and after the jump anévalgnt,jmp transforms the
coverage from a focal location immediately before a junttio the coverage immediately
past the junction. Using the example in Figure 29, itis a nfove F; = (eq, len(e;) — €)

to Fy = (e, €) While e — 0).

Consider Figure 29, which breaks thhe = 200 m distance between the two queries
of Figure 15 into a series of 5 transformation steps:nfdy 50mmoves the query focal
location fromF’ to (vgvy, 100m); (2) jmp wvive jumps the focal location from the current
(vov1, 100m) to (vive, 0m), both of which are exactly at;; (3) mov 100mmoves us from

the start of theyyv; edge to its end; (4)np v, v3 iS a new jump without movement; and
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finally (5) mov 50mmoves the focal location to the desiréd

In short, we argue that the coverage at any location is intthgrd of the method used
to calculate the coverage, though it may depend on queryrdeas, such as focal location
and range and the underlying spatial network topology. T¥vascan prove that the series
of mov andjmp transformation operations along any path fréfrto F’ must yield the
same coverage &t'. Thus, by utilizing the pair of primitive transformation@ationsmov
andjmp, one can obtain an optimal implementation of the coveraggstormation from
F to F by simply performing the transformation along the shorfegh or the path with
the fewest number of segments (and thus operations), thefdaeing concerned with the
actual path taken by the mobile user who issued the contgnetwork range query.

Figure 30 shows the evolution of BWD (green) and FWD (red) pogtiof the coverage
of a query atF, as it is successively transformed fraim(Figure 30(a)) tat” (Figure 30(b))
and then tof” (Figure 30(c)), withr = 600 m and all distances are to scale. From this
example, we can see the advantage ohtheandjmp transformation for Dandelion reuse.
Note thatF’ and F' are on the same segment. Witmav operation,F' is pushed to the end-
vertex with the higher index on the same segment. The vestaxXdiway junction and thus
the segment wherE was located is now marked as a cover in BWD (color of the segraent i
changed from patrtially red to green). The other two segmemetsovers common in FWD
at bothF" and F'. The four ZAPs are pushed by the equal distanceeofvork_dist(F, F)
and the ZAP segments are updated in FWD and removed from BWD af [ P; and
DFEP; are unchanged BO FPs and BOP; become aZ 1 Pgg,7. BOPs is push-split into
BOPF, and BOPFy,. BOP5 is push-dead t@ E Pgs. Similarly, the coverage aftgmp at
F' chooses the right segment to push forward, making the leftrcm be removed from
FWD and inserted into BWD. The change of the left covel'ab be in the BWD coverage
triggered the transformation of all segment covers comtktd this cover into the same
half (BWD in this case).

Now consider the Dandelion tree with the constant rargéy usingmov andjmp
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Figure 30: Evolution of BWD (green) and FWD (red) portions of coverage otiarg at
F as it is successively transformed &b and then taF”. (r = 600 m and all distances are

to scale.)

(c) Coverage aftgmp (at F").

94



(a) Coverage af’ (see Figure 30(¢  (b) Changes in coverage imaov—to —
F’ operation.

AF2B
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e ——————
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(c) Coverage aftemov (at F'; see Fi  (d) Changes in coverage injeap —
ure 30(b)). to — F" operation.

e m e —————

(e) Coverage aftgmp (at F"; see Fig-
ure 30(c)).

Figure 31: Schematic of evolution of BWD and FWD portions of coverage of arguat
F as it is successively transformedfiv and then taF”. (All dist. on road — real coverage
not octogonal. Coverage atshown dashed on all figures for reference.)
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Figure 32: State diagram of the lifecycle of points in the courserefv and;jmp opera-
tions. (Reversal of direction not shown.)

operations we transform it frorf’ to new focal locations in the steps shown in Figure 32.
On the forward side, mov may transform a single fwd BOP into multiple fwd BOPs when
the movement takes it beyond a junction. A single fwd BOP mag hE transformed into

a fwd DEP when reaching the end of a dead-end segment, ofdraresi together with
another fwd BOP, into a single fwd ZIP, when pushed togethex single segment. fnp
transforms all fwd non-internal covers in the sidetree(syardless of the specific type,
that are being jumped over, into bwd non-internal coversti@rbackward side, the oper-
ations are symmetrical to the forward side operations bugwerse order, as summarized

in Table 2. The three principal operation-pairs are illatgd on Figure 33.
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Subop | Before| After || Inverse subop
BOP-Push-Split | 1 BOP| *BOP | BOP-Pull-Merge
BOP-Push-Dead| 1 BOP | 1 DEP | DEP-Pull-Undead
BOP-Push-Zip 1BOP| 1ZzIP ZIP-Pull-Unzip
BOP-Push-Merge * BOP | 1 BOP BOP-Pull-Split
ZAP-Push-Merge| * BOP | 1 BOP ZAP-Push-Split

Table 2: Suboperations that change the number or type of points.q@erg subops in
bold. Push subops are applicable only on the FWD side, and&dips only on the BWD
side.)

BO Fi Fe = F
BOPR’
BOR..’ Bg)P BOR,
¥,
(a) BOP-Pull-Merge. (b) BOP-Push-Spilit.

pep 7 ©F  pep
>) ¢ ®

BOP’ BOP
(c) DEP-Pull-Undead. (d) BOP-Push-Dead.
BOR/ BOR
ZIP Fo <F ZIP .,
BOR
(e) ZIP-Pull-Unzip. ) BOP-Push-le.

Figure 33: Subops.
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3.7 Experimental evaluation

This section presents the experimental evaluation of tbpqeed Dandelion approach. We
present three sets of experimental results: First, theopagnce comparison of the Dan-
delion algorithms with the conventional shortest path eknexpansion (NE) algorithm.
Second, we performed the comparison and evaluation of thadtof different parameters
on Dandelion reuse efficacy at various query ranges andaieation periods. Third, we
presented detailed, un-aggregated measurements ondlod Bin example query to gain

further understanding of Dandelion algorithms and thec#iffeness of Dandelion reuse.
3.7.1 Experimental Setup

All experimental results reported in this chapter were cmeld using our prototype im-
plementation of Dandelion, using Java 1.7.0 with a versiérLihux kernel, on a 3.0 GHz
Intel Xeon machine with 8 GB memory.

In all the experimental results reported in this sectiochedata point is the result of
a single simulation run using multiple simultaneous, sanyl parameterized continuous
gueries executed along different routes in the road netwdfi eliminate first-run effect
artifacts by preceding each simulation run with a warm-ugpoge The mobility traces of
guery issuing mobile objects are generated by a random togehof the GT MobiSim
simulator [34], wherein each mobile client selects a randi@stination on the road net-
work, then travels the fastest route to that destinatiomguspeeds at or below the posted
speed limits on the traveled road segments; and finallyy efching its destination, re-
peats with the next randomly selected destination andsdtagttrip again. The movements
of the individual queries are independent of each other,thadjueries do not interfere
with each other. The road networks used in simulations dredunty maps from the US

Census [43].
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3.7.2 Comparing Dandelion with standard NE

In order to make a fair comparison with standard NE, we diultke cost of Dandelion
into initial query coverage computation at initial focalipo/’ and subsequent coverage
re-evaluations at subsequent focal locations. We showalkiaugh the initial coverage
computation of Dandelion is relatively expensive comparethe standard NE, the sub-
sequent coverage re-evaluations through Dandelion reasélp significant payoffs over
the one-time initial computation cost.

Figure 34(a) shows the initial evaluation computation €det NE, Dandelion and
Dandelion-T as a function of the query radius, measured ih cl@ck time. Addition-
ally, Figure 34(b) plots the performance of the two Dandekdgorithms as a percentage
of the NE performance over similarly parameterized querlé initial evaluation cost is
the time required to calculate the coverage data structusbdrtest path tree for Network
Expansion; or a Dandelion data structure) for a newly issyesty (i.e. when no reuse
is possible). Since the initial evaluation of a query is a-bme event, it is only depen-
dent on the (randomly chosen) focal location and surroundiap topology of the query
issuers at the start of the simulation, and is independeaengboral proprieties, such as the
re-evaluation period or the route taken and the speed of tit@lenusers on the traveled
segments. Consequently, the initial evaluation cost is shaeithout reference to the irrel-
evant re-evaluation period. As the number of segments edvgy a query, is proportional
to the square of the query radius, we see a marked rise initke¢ @valuation cost with an
increase in query radius.

As the Dandelion data structure is more sophisticated tasitnple shortest path tree,
we also observe that the initial cost of building a Dandetree is around 40% higher than
that of NE when the query radius is large. However, the extst pays off handsomely
for subsequent re-evaluations through maximum reuse. dlsis interesting to note that
but the initial evaluation of Dandelion is lower than NE whie query radius is very

small (500 m), as a result of the extremely simple structdirdn@ coverage. The initial
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evaluation cost of Dandelion-T bears a similar but slighbtter profile, as its costs are
relatively lower, at around a 20-30% overhead to NE. Thisromgment is due to the
superior perimeter set management via trident covers irdBlam-T. The savings come
from not having to maintain a separate perimeter-set hasle-and perform unnecessary
search and computation on irrelevant non-internal covers.

Figure 34(c) and Figure 34(d) show the average re-evaluabsts as a function of the
query radius. In both figures, Dandelion and Dandelion-Tcamapared to NE in terms
of cost of re-evaluation in seconds and in percentage of Nfoqeance respectively. The
average re-evaluation cost at the current focal locafisthe average time required to cal-
culate the coverage data structure, given that the datztsteus already available from the
previous, nearby focal location. As the NE approach is umableuse a previously com-
puted shortest path tree, it is at a severe disadvantagertdeldan, which is designed to
maximize reuse. Note that the re-evaluation cost for NEderendent of the re-evaluation
period. The reason that re-evaluation cost in Figure 34(npt directly comparable to the
initial evaluation cost shown in Figure 34(a) is the follogi as the re-evaluation costs are
averaged over not only all queries, but the entire lifetirhalbqueries, and is thus depen-
dent on the network topology surrounding the trajectorieh® mobile users who issued
queries. In comparison, Dandelion maintains the core F\Wition of the expansion tree
unchanged, and only calculates the BWD subtree and a portitredfWD tree in each
step. As a result, the re-evaluation cost of Dandelion iseestng as a function of the query
range, since larger queries provide an opportunity foreeisiot only more segments but
also a larger proportion of the total number of segmentsercthverage. When the query
radius is not too small (more than 500-1000 m), re-evalnaiging a Dandelion tree is
faster than using NE, providing savings in the 20—-40% rarnvge NE for large queries in
each re-evaluation.

Cost Analysis of NE and Dandelion.We would like to note that comparing to NE,

although Dandelion has higher overhead for the initial @atibn, it is a one-time cost
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Figure 35: Breakeven query runtime of Dandelion algorithms against WEh re-
evaluation periods of s and5 s.
and the saving from subsequent re-evaluation is recuraes 8me when the query is re-
evaluated. Thus the overall payoff is significant, espgciakr long running continuous
network range queries with reasonably sized radius. Thsgmation is confirmed by the
relative performance of Dandelion at 1 sec and 5 sec re-atiafuperiods in Figure 34:
higher re-evaluation frequency decreases the compugtamst by around 10-20% and
larger query radius reduces the computational cost up t&@#- These factors indi-
cate that Dandelion is especially well suited for large roativork queries that must be
continuously re-evaluated in near real-time, at a highdeegy. Additionally, by incor-
porating Trident covers in the perimeter-set managemeandBlion-T offers additional
performance improvement over the basic Dandelion algorith

Figure 35 provides the experimental results on the breakeguery runtime of Dande-
lion against NE. Before we illustrate the plots in Figure 38,fisst provide a brief analysis
of the cost comparison between Dandelion and NE.

Let dt denote a re-evaluation period. Dandelion’s highgy initial cost and lowet?.

re-evaluation cost lead to a total computation cost'6f = ¢”

it

+t5) - L aftert seconds
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of query time. Similarly, NE's lower'Z initial cost and highetY* re-evaluation cost

init
lead to a total computation cost 6fYF = ¢))% + tI'¥ - L aftert seconds of query time.
Therefore, given a road network map and a constant quenygattliere exists a break-even
time ¢, which is whenC? = CV¥. If a query runs shorter tham, thenC” > CN¥, and
therefore it is cheaper to simply re-evaluate the coveragg/eime from scratch using NE.
However, if a query runs longer thap thenC? < CNE| and therefore using Dandelion

pays off. Thet, break-even time is derived as:

CD — CNE
1) 123
P D 2 VB g NE O
wnat _I— re dt it + re dt
tinit — timit
ty = dt - iNE 4D

We conduct a set of experiments to measure such break-aewerfdr the Dandelion
algorithm against NE by varying query radius from 500 met@&000 kilometers. This set
of experiments helps answer the question such as "How lomgidla query run, so that the
it becomes cheaper overall to run Dandelion than NE?” orlieiotvords, "After how many
seconds does the investment of the Dandelion reuse datausesl and algorithms in the
higher initial computation pay off (due to the much lower setuent incremental coverage
computation cost)?”. Figure 35(a) shows the payoff timedoosids for the Dandelion
algorithm comparing with NE.

First, we observe that for very small queries (500 m radith®,higher initial cost of
Dandeliondoes nopay off, as the re-evaluation cost is also relatively higheDandelion
compared with NE. The experimental result matches our arsatiiat when queries have
small radius, the number of segments covered is so few tmgiysrecomputing the short-
est path tree from scratch is inexpensive in comparison iidibg the Dandelion reuse

structures. Thus, using NE is recommended. However, aseguget larger (with 1 km or
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higher radius), running Dandelion does in fact become abreadper some time, but this pri-
marily depends on the re-evaluation period. With re-eva&naat every second, after only
around 1 sec of query runtime (i.e., after a single re-ev@ndollowing the initial evalu-
ation), Dandelion already breaks even. When re-evaluationperformed less frequently
(e.g., every 5 sec), the re-evaluation is more costly dueedigher displacement, thus for
the queries with radius of 1000 m moving along the same dpatjgon of the same map
as the ones we used in the experiments, NE wins the competfiowever, with a larger
query radius of 2 km or higher using re-evaluation frequesfcy sec, the break-even time
is around 5 sec, which again indicates that Dandelion pdyafiafr a single re-evaluation
following the initial evaluation. As queries get largerethreak-even time drops below the
periodic re-evaluation frequency @f. From Figure 35(a), we also observe that the payoff
time increases slightly when the radius is increased fromm 34 km and then drops back
to around 3 seconds when the radius rises to 5 km. These updoant are due to the
routes on the map the query issuers took given the randomtrgel used in the simulation
to generate queries and mobility traces of mobile usersurmsary, Dandelion generally
outperforms NE for queries with larger radius and higheguiency of evaluations.

Figure 35(b) shows the break-even time for the Dandeliongbrdhm against NE.
We note that for Dandelion-T, the payoff timg(see y-axis) is much lower than Dande-
lion basic algorithm, aroun@dt, indicating that there is substantial margin of safety in
performance when using Dandelion-T compared to NE, andRhatelion comfortably
outperforms NE with non-trivial query radius and long rumgicontinuous range queries

on road networks.
3.7.3 Impact of Different Parameters on Reuse Efficiency

In this set of experiments, we investigate the effect of tactdrs on query performance.
First, we vary the query radius from 500 m to 5 km. Second, wg tlee re-evaluation

period from 1 sec to 5 sec, and preform query re-evaluationa simulated 10 minutes.
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Figure 36: Average number of overlapping segments across coveragamsaécutive
re-evaluation/’ locations, with re-evaluation periods bk and5 s.
Note that both the re-evaluation period and the query fifetare measured with the internal
clock of the simulated world

Figure 36(a) shows the potential for reuse, by plotting tbenlber of fully-covered
(i.e. internal) segments, averaged over all consecutheyatuation focal locations’” and
F’. With an increase in query size, the overlap, and thus thengiat for cover reuse
grows quadratically. Additionally, Figure 36(b) plots tbeerlapping segment count as a
proportion of the total number of covered segments. Whildlsjoaries offer less overlap
between two re-evaluation locations, the ratio of the @agetd the entire coverage increases
above 90-95% as query radii grow. Comparing the overlap dweme-evaluation periods,
we observe that a higher frequency of re-evaluations atseases the ratio of the overlap,
due to smaller query focal location displacement.

We show the averagér displacement on Figure 37(a), both in terms of number of
segments, and in terms of meters (actual road network distaetweert” and F”). With
a high re-evaluation period (1 sec), most re-evaluatioks pace on the same segment
(dxz < 1 segment), while with a lower period (5 sec), most re-evadnattake place on

connected segmentga > 1 segment). The average displacement is less than 10 meters
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Figure 37: Re-evaluation displacement.

for the faster, and more than 60 meters for the slower reiatiah.

Figure 38(a) and Figure 38(b) show the measurement of théeuaf Dandelion cover
types and a percentage of the total coverage in a stack an stgpectively. While the
need to manage these key road network locations may seeousedheir total is less
than 60% of the count of covered segments. With small quety, rne proportion of
BOPs dominates, but as the query radius increases, BOPs makwednd 5% of the total
coverage (as they are only present in the outer perimetdreofjiery, whose length is
proportional to the query radius, while the size of the cageris proportional to the square
of the query radius). Furthermore, the large number of ZAiRd @lso DEPs) are immovable
when reused, leading to further performance gains over NE.

Figure 39 evaluates the efficiency of reuse by measuringviage number of covered
(reused) segments and the percentage of covered segmeqief@s with varying radius.
Covers are classified into three categories on each re-éaaiudlew covers signify seg-
ment covers that have been created during the re-evalusttign Reused, but updated
covers are those that were created during a previous reai@i, but have been modified

in the current step (for example, reused BOPs would fall is thitegory). Reused and not
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Figure 40: Average number of queue operations performed, with redatian periods of
1 sand5 s.

updated covers are those that are present in a current lkeawa step in exactly the same
form as in the previous step (e.g. internal covers in EWWIFigure 39(a) shows all three
types of covers measured at re-evaluation frequency of Ars@® sec for varying radius.
The number of reused and non-updated covers is the highebbfb frequencies. The

reused and updated covers are the lowest in comparisontiodls®ec and 5 sec frequency,
and the number of new covered segments inserted to the gevara in the middle. Fig-

ure 39(b) shows the percentage of the covered segmentshevietal coverage. We would
like to note that after an initial rise in the percentage ofezed segments, the ratio of
the three reuse types over the total number of covered segrstailizes as query radius

increases, showing an excellent scalability of Dandelerse.
3.7.4 Effectiveness of Data Structures

In this section we evaluate the key data structures usednd&imn and how effective they
are with respect to reuse scalability.
Recall Section 3.4.2, where we have discussed the orderedtymueue and three

types of queue operations (enqueue, dequeue and popgoewsniputing the coverage
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Figure 41: Average number of SegCovMap updates, with re-evaluatiangenf1 s and
5 s.

initially and incrementally. Figure 40 measures the avenagmber of queue operations
performed at different evaluation intervals. The numbequegue operations performed is
shown in Figure 40(a) and the percentage of queue operatimrsthe total coverage is

given in Figure 40(b). From both figures we observe that enguperations are slightly

lower than the number of popqueue operations, and dequeuatmms are the lowest for

varying radius and re-evaluation frequency, a good indicaf why Dandelion reuse is

effective and profitable.

We now evaluate the effect of SegCovMap on Dandelion reusaesflly. The Seg-
CovMap is served as an inverted index of segments to the cowefsem, and is updated
mostly by adding new covers for all but the entry segment ainatjon during a BOP-
Push-Split operation. Figure 41 measures the average mwhhb@dates to SegCovMap
at different re-evaluation frequencies. Fig 41(a) measthe total count of SegCovMap
updates and Fig 41(b)) shows the percentage of SegCovMapesgpaler the total num-
ber of covered segments. However, SegCovMap removals ateo,&s segments in the
portion of FWD, which are not present in FVyDmust be removed one by one. For this

experiment, we use the implementation of Dandelion bagierahm that maximizes reuse
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Figure 42: Perimeter updates and side-tree SegCovMap removal opesatioth re-
evaluation periods of s and5 s.

of FWD. Thus the SegCovMap for BWD is wholesale discarded, ehtmg the need for

any SegCovMap removal updates. That is why both figures shaiitt removal of covers

in the bypassed side-trees is manageably low at around 15 thile re-evaluation period

is high (5 sec), and almost negligible at around 5% when the/aduation period is low

(1 sec).

In the next set of experiments we evaluate the effectiveaktize perimeter set. Re-

call that for Dandelion, we keep a separate perimeter sefWoD and BWD, which is

hashed for quick containment checking and beneficial fofopeance of the Dandelion,

as FWD and BWD are always examined separately. However, sughasase perimeter

set is obviated in Dandelion-T due to the integral update adraectly ordered perimeter-

list during all push and pull operations. Figure 42(a) shtdwesnumber of segments that

have performed perimeter updates and side-tree SegCoviviegvaé operations, and Fig-

ure 42(b) shows the same measurement result as a percemtédgetotal coverage. In

both figures, we break out the aforementioned SegCovMap r@&nsosgts into perimeter

set removals and side-tree removals. From the measuremveribserve that perimeter

set removals are the smallest in comparison to side-treeva@sand perimeter set add
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Figure 43: Average age and staleness of covers, with re-evaluatioodseof1 s and5 s.

operations, which is the highest of the three types of omersimeasured.
3.7.5 Staleness of Covers and Maps on Reuse Efficacy

In this section we measure some additional parameters,ricagditional insight into the
effectiveness of Dandelion reuse. First, we want to measi@eage of a cover, which is
defined by the time elapsed since its creation, regardleasyo$ubsequent updates to the
cover (such as pushing and distance changes for a BOP). Sewendnt to measure the
staleness of a cover, which is the time elapsed since itsipakite of any kind, and is thus
an even stricter measure of how long covers live. Both meastae shed some light on
how effective the Dandelion coverage reuse is in subseqeesvaluations. Intuitively,
higher age and higher staleness both indicate that the reestective. For example, at
5 km radius, the average life of a cover is 35-40 seconds, anddne for 20—25 seconds
without any update. Note that for NE, both age and stalenesshaays 0, as the coverage
is always entirely recomputed (even if e.g. the mobile aldgenot moving).

Figure 43(a) shows the age and the staleness of covers witingae-evaluation fre-
guencies. This experimental result shows that both agetalehess of covers are increas-

ing as the query radius increases, though neither of themnisits/e to the frequency of
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Table 3: Road networks used in experiments

Style County location|| Total length Segments Junctions Avg. segment length  Junction degree

urban Kings, NY 3011 km (62 h) 21954 13003 137.2 m (10.1 sec) mean: 3.4, max: 8
suburban| Cook, IL 26022 km (524 h) 213306 165061 122.0 m (8.8 sec) mean: 2.6, max: 9
rural Coconino, AZ | 40437 km (819h) 91346 81396 442.7 m (32.3 sec) mean: 2.2, max: 6

re-evaluation. However, the increasing gap between theages and the staleness curves
shows the effectiveness of cover reuse since many cover®rgeived. Figure 43(b)
shows the result of comparing covered segments in DandeiibrNE traversed segments
and the number of push operations performed. It shows tmapaadng to the total number
of segments traversed in NE, the total number of covered setgis smaller and increases
slower as the radius increases. Furthermore the total nuoflqgush operations is the
smallest of all three and grows much slower as the query sddareases. This set of ex-
periments demonstrates again that Dandelion coverage reisghly effective as it uses
fewer covered segments and fewer push operations, comfmatled number of traversed
segments in NE.

In the next set of experiments, we compare the Dandelionighgoagainst the baseline
Network Expansion algorithm on three maps (Table 3): CoolktouL (Chicago area,
Fig. 44(b)) is a suburban city map, with residential areas @ead-end streets or cul-de-
sacs. Kings county, NY (Brooklyn area, Fig. 44(a)) is a bupteity map, with a dense,
regular grid structure, short streets, and most intersestvith four connecting streets.
Coconino county, AZ (Fig. 44(c)) is a rural map, with long higlys passing across a
desert region, with an occasional small town.

From Figure 44 we can observe that the three maps represeatdtiferent scales of
the road network topologies (urban, suburban and ruraBnmgs of geometry and spatial
density.

Figure 45 shows the initial evaluation cost and re-evatmatiost as function of the
query radius. Although the computational cost is heavilpaetwlent on the topology of
the map (especially striking for the rural map), and thaahevaluation cost for all three

maps are more expensive than NE, as shown in Figure 45(aurd=#H(b) shows that
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(a) Kings, NY (b) Cook, IL (c) Coconino, AZ

Figure 44: Typical map sections (same scale).

both Dandelion and Dandelion-T incur smaller cost of rek@ation when the query radius
increases above 1 km and the cost reduction is more sigrifidgan the radius gets larger.
Also Dandelion-T consistently outperforms Dandelion bagorithm in all three types of
road networks. Figure 45(b) and Figure 46(d) show the cagt-ef/aluation as a percentage
of the performance of the NE algorithm for initial evaluatiand reuse based re-evaluations
respectively. Clearly, both Dandelion and Dandelion-T payerin the initial evaluation
cost and pay less in the re-evaluation cost. In summary, Eemdalgorithms in general
outperform NE with high costs at low query radii, and lowed atable costs as queries

increase in size.
3.7.6 Life of a query

Our experimental results presented so far have been adeoage simulations of many
mobile users and many continuous network range queriesrolasitemporal and spatial

features. In this section we present four sets of experiah@asults about the life of a

113



I
o

w
>

N

NE, rural
Dandelion, rural
Dandelion-T, rural

- NE, suburban

Dandelion, suburban
Dandelion—T, suburban

- NE, urban

Dandelion, urban
Dandelion—T, urban

[

cost of initial evaluation [ms]

2 3
query radius [km]

(a) Initial evaluation cost

NE, rural

Dandelion, rural
Dandelion-T, rural
NE, suburban
Dandelion, suburban
Dandelion—T, suburban
NE, urban
Dandelion, urban

8i .o
/I -O-
Z e
‘mn‘u
il
5 a
©
1547 A
£
o
g2
o
1,
O0

Dandelion-T, urban

(c) Reevaluation cost

2 3
query radius [km]

200

150r

100r

501

cost of initial evaluation [% of NE]

cost of re—evaluation [% of NE]

0 l 2 3
query radius [km]

(b) Initial evaluation cost (as percentage of NE)

0 1 2 3 4 5
query radius [km]

(d) Reevaluation cost (as percentage of NE)

Figure 45: Average of initial and reevaluation query calculation sast Dandelion, on
three maps.

114



1500

— NE Il BOP

Dandelion Il DEP
—— Dandelion-T ZIP
z
210° | £1000-
E C
S )
S o
g £
> =
2 g 5001
810° : T

0 100 200 300 400 500 0 100 200 300 400 500
time [sec] time [sec]
(a) Computational cost of algorithms. (b) Dandelion cover types
1500 120 : :
—— overlap
Il BOP
ﬁlOO* Il DEP
e T
£1000( S 801
S g
(5}
1S >
> 8 60]
(%] =
— [}
o @
#* 500 £ 407
@
o
201 r
—— coverage
0 —— overlap 0
0 100 200 300 400 500 0 100 200 300 400 500
time [sec] time [sec]
(c) Total coverage and overlap. (d) Dandelion cover types and overlap (as percent-

age of covered segments)

Figure 46: Computational cost, overlap and covers.

single example query, to gain insight into the un-averagatopmance of the Dandelion
algorithms against the standard NE algorithm. We follow lifeeof a continuous road-
network range query with 5 km radius, which is re-evaluateerye second, for a total
simulated time of 10 minutes. The mobile user who issued tleygis traveling along
a pre-selected long route in the suburban Chicago area, etispathin the posted speed
limits on respective road segments.

Coverage Computation Cost.
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Figure 46(a) shows the computational cost of evaluatingjtley coverage of Dandelion,
Dandelion-T and standard NE. First, we note that the costaltiating the coverage using
NE tracks the size of the coverage, and is thus dependenteolothtion of the query
focal object, but not the temporal properties of the quersulting in a smooth cost-curve
on the top in red (colored red) — which is higher than the costes of the Dandelion
(green curve) and Dandelion-T (blue curve). The cost-auofdoth Dandelion algorithms
show that the ability to reuse portions of the previously pated query coverage tree can
indeed reduce the computation required to calculate a ageeat a next location. However,
we note several singularities in the Dandelion cost-cyrw®re the cost of re-evaluation
exhibits a sudden jump from one focal location to the nexd fatiing sharply from this
local maximum in the subsequent re-evaluations. Thesespdsts are due to the topology
of the road network, and the trajectory that the user takets and represent situations,
where FWD is too small to be beneficial. We note that the spikes are notalstop-and-
reverse mobility characteristics, as in such a case thefdathe BWD and FWD halves
are swapped (i.e., BWD becomes FWD), and thus normal reusesgpeoand maximized.
Figure 46(c) shows the total number of segments coveredfletety or partially) by
this query. Note that the higher curve represents the cawertaipdate and the lower curve
represents the overlapping segment count update, botle iifettime of the query in 600
seconds, as the query focal object is moving on the road mktwid the beginning of the
trip, the coverage is around 500 segments initially, ancsés up to 3 times at the peak.
This variation in the extent of the coverage is solely a fiomcof the query focal location
and surrounding map topology at each re-evaluation, andtisely independent of both
the query processing method used to calculate the shogtstpverage and the temporal
properties of the query re-evaluation (such as re-evandtequency, user travel speed).
The lower curve in this figure shows the number of segmentdap@ng between two
consecutive re-evaluation locations, initially at O (whke query is issued). Interestingly,

the overlapping segments closely follow the curve of themixbf the coverage in the entire
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duration of the simulation. This intuitively verifies the sasvation that as the coverage
increases, the overlapping cover occurances are increasedll. We would like to note
that unlike the coverage count, the overlapping segmemttamnes depend on the temporal
properties of the query, such as the re-evaluation freguesiich can in turn depend
on the travel speed of the mobile user. However, we conjedhat with slightly lower
frequency of re-evaluation, the curve shape will remainrexmating the curve of the
coverage update but the overlapping curve at lower frequesitbe lower with a bigger
gap to the coverage curve, compared to the overlapping @irkigh frequency of every
one second.

Figure 46(b) measure the perimeter size of the three coypastyBOP, DEP, ZIP)
present in a Dandelion tree (stacked on) and Figure 46(dysltite ratio of the perimeter
size over the total coverage size at each re-evaluationtidocaThe maximum potential
for reuse is given by the overlap (the number of completelyeoed segments), which is
around 90% throughout the lifetime of this query, mostlyapendent of the changes in
the size of the coverage along the route (but dependent otentgoral properties of the
guery). The total number of all non-internal covers is ah&0% for this query. Fur-
thermore, the majority of the non-internal covers are DE® Al types, giving potential
for further optimizations, as these points are generalipahile; only BOP covers (which
only make up 5-10% of the number of covered segments) wiltewably be moved in
the subsequent re-evaluation for maximum reuse.

Queue Operations

Fig. 47(a) and Fig. 47(b) show the number of queue operafionthe NE algorithm,
stacked on for dequeue and popgueue. The NE algorithm pepsdht of the queue
around 70%, and dequeues around 5% of the total coveragg &ication, regardless of
the absolute number of queue operations tracking the sizeva@rage as it changes with
the movement of the focal location on the network. The dequgerations occur when a

shorter path via a new node is found to a node that was enquweitied longer tentative
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Figure 48: Side-tree SegCovMap removal operations for Dandelion.

distance. We note that 15-20% of the covered segments aee @egueued, as no further
expansion is possible from them.

Fig 47(c) and Fig. 47(d) show that the queue operation prigiil®andelion is notice-
ably different compared to Fig. 47(a) and Fig. 47(b). Thightights the computational
cost improvement shown previously in Fig. 46(a). First, weearve that the total number
of dequeue and enqueue operations can be as low as only 106 total number of cov-
ered segments, indicating massive tree reusability. Skd¢be cost-spikes for Dandelion
algorithms correspond to spikes in both the number of eregland dequeued segments.
Impact of Reuse Data Structures.

The entire BWD tree (SegCovMap and perimeter set) can be detanda single step,

as the two halves of the query are maintained in separatesttatzstures. However, the
portion of the FWD tree AF2F) that has been bypassed, and which was forwarl, of
but is no longer forward at the subsequéhtocation, needs to be traversed and its covers
removed one by one from the SegCovMap. We show the total nuoflsrch side-tree
cover removals on Figure 48. While such side-tree removasastly (e.g. having to

remove around 80% of the covered segments in the worst casg kieey are also rare.
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Figure 49: Perimeter updates (basic Dandelion only).

Figure 48(b) sheds light on the origin of the performancedetation spikes in the previ-
ous figures: As the focal object crosses an intersectiop;rsidds at that intersection may
be the roots of an extensive side-tree, covering e.g. 80%eofdtal number of segments
in the coverage. As the user bypasses such a side-treegaglantipn of the total coverage
ceases to be in FWD (necessitating a costly removal of the megyents in the side-tree
from SegCovMap), and is subsequently to be found in BWD (netetisg) the recomputa-
tion of the Dandelion tree covering these segments, as the Béé&heeds to be discarded
between re-evaluations).

Furthermore, for the basic Dandelion algorithm, we mamthie set of non-internal
covers (the perimeter set), so that we can initialize thaigueith this set, enabling full
reuse of all internal covers in FWDThe number of add and remove operations performed
on the perimeter set are shown on Figure 49. The ordinaryne¢er update operations
take place in the course of a DEP-Push-Split suboperatidgh, tve removal of a single
BOP cover from the perimeter set (as it becomes an internarjo&nd the addition of
one BOP cover for each of the newly partially covered segmeHtswever, Fig. 49(b)

also exhibits the spikes (corresponding to side-tree ksypgk seen in previous figures,
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with the aggregate of cover additions and removals both%ti®®ne case (corresponding
to the largest side-tree bypass on Fig. 48(b)). We conclodethe perimeter set update
operations place additional computational costs on Damueat exactly the same time
when the SegCovMap removal costs jump, and when the size of RWis dand thus the
reusable FWP size drops), and the size (and thus cost) of re-calculating BWdips. All
these effects are due to the same root cause of bypassingeaH®#D side-tree, which
then on is part of BWD. We note that as Dandelion-T is designealtomatically keep
the perimeter in order without any additional computatjahs entire perimeter set update
cost is saved, resulting in a performance improvement caeictbandelion in exactly the
aforementioned critical high-cost situations.

The update of the SegCovMap only involves additions (nevaokals) in the case of
NE (Fig. 50(a)), as covers are never individually removedhBathe entire SegCovMap is
wholesale discarded and entirely recomputed at each st&yting in all covered segments
being added to SegCovMap. As some segments contain 2 BOPst{feodirection of the
two endpoints, but not joining as ZIPs), the total numberejGovMap add operations is
marginally higher than 100% of the number of covered sege@fig. 50(b)). In contrast,
the Dandelion algorithms save the cost of adding covers in fWiSplaying the now-well-
known pattern that is lower (most often substantially lomtean 100% of the number of
covered segments, spiking when side-tree segment renmm@ls sporadically (Fig. 50(c)
and Fig. 50(d)).

Effectiveness of Dandelion Reuse

This set of experiments help us gain additional insight theoeffectiveness of reuse. Fig-
ure 51(a) shows the average age and staleness of coverhatea@luation. Recall that
the age of a cover is the time elapsed since its creationidiega of any subsequent updates
to the cover (such as pushing and distance changes for a BO®&}xtdleness of a cover is
the time elapsed since its last update of any kind, and isdhusven stricter measure of

how long covers live.
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With a re-evaluation frequency of 1 second for our examplerguwe observe that,
rising from an age of 0 initially, covers — on average — ca@ for more than 80 seconds and
be reused without any update whatsoever for more than 5thdscdoth cover lifetime
metrics (age and staleness) exhibit sudden drops, whigkesmond to the bypassing of
large side-trees (recall Fig. 48).

An alternate view of reuse is shown on the stacked Figure) ah@ Figure 51(d), where
all covers are either marked "new” (created during the tagegvaluation), "upd” (updated
during the latest re-evaluation, but previously existing, reused after an update), or
"nonupd” (neither created, nor updated in the latest réuew®n, i.e. completely reused).

Finally, we show the amount of displacemedt) between eaclt” and consecutive
F’ re-evaluation location, in Figure 51(b). Maét values are zero-segment displacements
(i.e. bothF andF” are on the same segment), with some relating to two connsetgdents
(dx = 1 segment), and only a few to segments further apart. Vi@ageattual road distances
in metersdz is dependent on the speed chosen by the user, and reflecegtherg-wise

constant speed mobility model followed by the user in ouruation.
3.7.7 Reuse Effectiveness of Dandelion2

Figure 52 presents the performance comparison of the Dian@gpowered by FWD/BWD,
trident, mov and jump transformation primitives, with Datidn, Dandelion-T and NE in
terms of cost of initial evaluation and re-evaluation witrying radius. Fig. 52(a) and
Fig. 52(b)) show the initial evaluation cost and the cosbraf Dandelion over NE. Al-
though the initial evaluation cost is higher for all Dandelalgorithms due to the build-up
of more complex data structures, the initial evaluatiort tmsDandelion2 is only approxi-
mately 10% higher than it is for NE. In contrast, Fig. 52(d¢)pws that all three Dandelion
algorithms result in faster re-evaluation costs than NEmthe query radius is larger than
1 km. Fig. 52(d)) shows that Dandelion2 algorithm signifitaautperforms Danderlion-T,

Dandelion and NE for re-evaluation frequency of 1 sec anac5Elee cost of re-evaluation
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using Dandelion2 drops to around 20% of the cost of re-etialnaising NE. The re-
markable x speed-up by Dandelion2 is a substantial performance ingpnewnt, and such

speed-upncreasesas the radius of queries and thus the cost of re-evaluatwease.

3.8 Reated work

Graph algorithms are subject to general interest in conngatence due to their widespread
applicability to many problems that can be modeled as a grBjkstra’s keystone paper
on the calculation of single-source shortest paths in aaor&t{il 2] has been written more
than 50 years ago, but retains its relevance today from icsbtd Internet routing, and
is the algorithm of choice for calculating routes and negpbint-of-interest queries in
commercially available personal navigation devices. HBuo¢that Disjktra’s algorithm (and
its broader interpretation as the Network Expansion aligorj has retained such a central
role is not only a testament to Dijkstra’s insight, but alsdie fundamental difficulty of
improving upon it.

The challenge of any proposed improvement on NE is higreidy the careful study
in [35]. The paper — among other contributions — investigatbether road network range
guery evaluation could be improved by proposingwlidean restrictioni.e. applying a
filter first in the Euclidean (non-network) space, and onlyfgrening graph search after
this initial culling of results. The two approaches are tedniRange Euclidean Restriction
(RER; restrict then expand) and Range Network Expansion (RNEgrekthen restrict).
The experimental results show that, consistent with thertteeal framework, RER does
not improve, but rather increase the computational costRXE.

Recently, the work in [30] considers improvements to neamegihbor (KNN) contin-
uous road network query answering by attempting to reugainanformation from one
guery location to the next. The paper highlights the relegasf maintaining aexpansion
treein proposing an Incremental Monitoring Algorithm (IMA). €toncept ofnarksis in-

troduced, which denote the boundaries of the query, andhkgéck of partially covered
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segments is recognized in the concept ofittiieiencing interval The incremental monitor-
ing approach attempts to identifyvalid expansion treewhich corresponds to the portion
of the expansion tree that can be reused. However, the prd@mproach suffers from two
fatal flaws. First, the algorithm does not consider a netwuelnlere the valid and invalid
portions of the expansion tree can meet, which means thatgoeithm is only workable
on unrealistic tree type network graphs (i.e. road netwuaisre one cannot drive around
a block in a loop, to return to the same location). Seconldg/algorithm does not consider
how the valid portion of an expansion tree can be identified, lrFow expansion at a new
location could be initialized with the border points of suxlvalid expansion tree. As a
result, even the valid portion of the expansion tree mustréetsed at a new location,
entirely negating any performance improvements that nightealized after finding the
valid expansion tree.

The related problem of computing nearest neighbors in alaedand surface vertex
graph is considered in [45]. The proposed algorithm prop@seAngular Surface Index
Tree (ASI-Tree), a thin and tall tree, that partitions theerage of the query into angular
sub-trees, and succeeds in maintaining these sub-treespdiack of the kNN objects due
to the high density of the vertex network, the relatively Brdesplacement of the query
center, and the relative sparseness of nearest neighbatarge network.

The problem of computing shortest path trees (SPT) in the déhedge length changes
is investigated in [32], primarily in the context of Intetn@acket routing. While different
from our problem, in that it does not consider the displaceneé the root of the SPT
itself, the Dynamic SPT computation proposed in the papesiévant, as it highlights the
possibility for partial reuse in the face of at least a liditeimber of changes in the network
graph.

The authors of the above paper further propose a ball-amdyshodel of dynamically
rebalancing SPT trees in the face of network edge update33ijn [The ball-and-string

conceptualization is an important conceptual step forneand the paper makes the insight
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that the problem of re-calculating SPTs after network eduggates can be formulated as a

linear programming task.

3.9 Conclusion

The computational costs of answering continuous netwangeajueries are known to be
prohibitively high, as a shortest path based network expanteeds to be run repeatedly
at each and every location where the query is evaluated. §de dhnat continuous network
range queries, whose focal locations are "not far” from ezbler, have substantial overlap
in their segment coverage. Such a large overlap may offenfgignt reuse opportuni-
ties for performance enhancement. We have presented tlgndesd implementation of
Dandelion reuse framework and a suite of algorithms forrasvaluations of continuous
network range queries. The chapter makes three originafibations. First, we propose
the concept of Dandelion tree to accurately represent erage of a network range query
with arbitrary range, by keeping track of three key netwaraltion points: border points
(BOP), dead-end points (DEP), and zip points (ZIP). Secorddesign three BOP-Push
and three BOP-Pull primitive operations to compute the ayemltF’ by maximum reuse
of the coverage at previous query focal location Third but not the least, we define the
data structures and three Dandelion reuse algorithms toegffiy identify the portion of
the Dandelion tree that can be used as the basis for reuseidhdrfexpansion. The ba-
sic Dandelion algorithm enables reuse by dividing the Dioddree (query coverage) of
a query into the forward (FWD) and backward (BWD) halves, allmyseparate mainte-
nance of the key data structures for each half to reduce tiretsspace. The Dandelion-T
algorithm introduces and utilizes the Trident and Guided#tuctures to compose a more
reuse-efficient Dandelion-T tree, leading to faster quergvaluation than Dandelion ba-
sic algorithm. Finally the Dandelion2 algorithm furtheih@mces Dandelion-T in terms of
query re-evaluation cost by introducing the two primitivensformation operationsove

andjump. This development can effectively transform one Dandétiiea to another with a
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minimum set of primitive transformation operations. We @oct a series of extensive ex-
periments and our results show that Dandelion reuse modellgorithms can significantly
outperform the conventional shortest path network expanaigorithm (NE) in terms of

coverage computation cost for non-trivial radius size aigth he-evaluation frequency.
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CHAPTER IV

FASTEXPAND

We addressed the problem of speeding up continuous roagrietjueries in Chapter 3.
In this chapter, we briefly consider the problem of accelegathe computation of range
guery coverages in road networks, even when the query issmalyated a single time, and
thus a reuse-oriented approach is not applicable. Our appris to divide-and-conquer
by constructing precincts over the road network graph. Tdreept of precinct was first
introduced in Chapter 2, and the alternatives of hop- or degtdbased precinct radius def-
initions apply here as well, including the choice of roadverk distances or road network

travel times to be used as the relevant metric.

4.1 FastExpand query coverage

Figure 53(a) shows a range-query that is evaluated alongdfges of the road network.
The query has a range of 1500 m (with a standard block size®hf)Qand produces two
border points (BOPs). Such a long-range query produces askighent coverage, with a
large number of connected segments on the inside of the dpagng completely covered.
This observation is further highlighted on Figure 53(b) enéhthe high-connectivity inter-
mediate neighborhood bounded by four boundary poiBts B, Bs, B,) is highlighted.
This high-connectivity intermediate neighborhood is ctetgly covered by the query, but
contains many segment that add to its complexity, but do owtribute to the distance cal-
culations of a long-range shortest path query. Figure Fdf#)er highlights that the many
small local-neighborhood segments do not play a role, wieni® only concerned with
the shortest paths between other points in the network.idrcéise, only the four boundary
point serve as entry points into this neighborhood, and arthér internal graph structure

may be disregarded. In fact, we may replace the complex herlood with six fast-track
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(a) Query in the original road network.
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(b) A completely covered high-connectivity intermediatggi-
borhood.

BOR

(c) Road network simplified by shortcuts in completely cexer
precincts.

BOR

(d) Precincts used to simplify core cover- (e) A seed, two core and one
age. border precinct.

Figure 53: Construction steps of a FastExpand expansion network for &n1500 m
radius range query.
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traversal shortcuts, as shown on Figure 54(b), and stillrerthie correctness of all distance
calculations that contain this selected neighborhood. ¥éetie already familigorecinct
term to denote such neighborhoods, and their pre-comptdedrsal shortcuts. All high
connectivity neighborhoods may be "flattened” in this waychkeating a precinct coverage
of the entire road network, as described in Chapter 2. FigB(e) Eontinues our example
with the shortcuts of the intermediate precincts shownimghmplified network.

For purposes of shortest path distances, precincts ark Idexes, as illustrated on Fig-
ure 53(d), as the pre-computed shortest paths betweerppamscinct boundary points are
utilized as shortcuts, without the need to refer to the makgraph structure found inside a
precinct. The distance computation can't take advantageaainct-based shortcuts in the
immediate vicinity of the query focal locatidn, and near the query border points locations
BOP;, even though these locations are also found inside somélaigood. This gives
rise to three distinct precinct types.

A seed precincts the single precinct containing tié focal location. Low-level local
graph search must be performed in a seed precinct, untiktels reached the boundary
points of the seed precinct.

The core precinctsare those fully covered intermediate neighborhoods thathm
safely traversed using pre-computed shortcuts, as thepetieer close to the focal lo-
cation, nor close the any border point.

Theborder precinctsare those partially covered neighborhoods that contagest lone
border point of the query. Because some segments inside arljorecinct are covered,
while other segments are not covered, a local search musrbmimpmed, and the shortcuts
can't be taken advantage of.

Figure 53(e) shows our continuing example, with all segsassigned to one of the
three precinct types. Figure 55 shows a general examplerewdneoad network range
guery’s coverage is tiled by a composite of seed, core andebgrecincts. Figure 56

shows a screenshot of the FastExpand coverage of an exangpie with shortcuts in core
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(a) Detail of intermediate neighborhood.

B,

ng

(b) Fast-track traversal shortcuts replace local complexi

Figure 54: Detail of a completely covered high-connectivity internate neighborhood
from Figure 53(b).
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Figure 55: Tiling of a road network range query’s coverage by a compasfiseed, core
and border precinct types.

Ihatiln i

Figure 56: Screenshot of the FastExpand coverage of a query (shomotse precincts
in blue; local segments in seed and border precincts in red).
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precincts drawn in blue, while local segments in seed anddvqurecincts are drawn in
red. TheF focal location is the black dot inside the red local segmehtke central seed
precinct.

The evaluation of the coverage of a road network range fallawnodified Network
Expansion algorithm, whereby a priority queue of shortestdtive node distances is
maintained, and the least distance node is processed atsegrh The expansion start
regularly from F', with a local search in the graph. However, unique to theBEqeind
algorithm is the need make a choice between continuing witbcal search or with a
shortcut-based fast search, at each precinct boundary. géan each boundary poirs,
the reach distances /) are pre-computed and stored. The reachBgf within precinct
P; is the p;; = maz(network_dist(B;;, L)) distance, such thaiL € P;. One reach
distance is stored for each precinct that a boundary poicbmected to. When a yet-
unexamined precinck; is first encountered by popping if3;; boundary point from the
queue, we test whether it is possible to reachLdncation within P;, such that the path
from F' to L via B;; is longer than the- range of the query. If such a path exists, then
networkgist(F, B;j) + p;; > r. Testing thisdrop-down criterionensures that we stop
the network expansion using the core precinct shortcut®as as the potential for en-
countering a query coverage border poiB({P) inside the next precinct arises, and we
drop down to pursue the expansion in the original graph. &mlently, the local search

terminates regularly, when&O P border point at exactly distance from¥' is met.

4.2 Experimental evaluation

In our first set of experiments, we usé & 500 m distance-based precinct radius partition-
ing of the Cook county, IL city map, and perform a comparisothwetwork Expansion.
Figure 57(a) shows the query evaluation costs using the fiyaoithms, with various query
radius settings. Figure 57(b) shows the query evaluatigtsdor FastExpand as a per-

centage of the Network Expansion baseline. As expectetEkaand outperforms NE by
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Figure 57: Road network range query evaluation costs of FastExpant, iméteasing
guery radius settings.
taking advantage of the pre-computed shortcuts.

Figure 58(a) shows the number of segments inspected usenigvthalgorithms, with
various query radius settings. Figure 58(b) shows the numbmspected segments for
FastExpand as a percentage of the Network Expansion baseélia note the same pattern
of FastExpand outperformance, as on the previous set ofhgrap

We compare the FastExpand algorithm against the baselitveodleExpansion algo-
rithm on two maps (Table 3), using= 200 m precinct radius partitioning: Cook county,
IL (Chicago area, Fig. 44(b)) is a suburban city map, withdestial areas and dead-end
streets or cul-de-sacs. Coconino county, AZ (Fig. 44(c)yigal map, with long highways
passing across a desert region, with an occasional smail tow

Figure 59(a) shows the number of segments inspected usrtgithalgorithms, during
expansion for the rural and urban maps. Figure 59(b) shogvaumber of inspected seg-
ments for FastExpand as a percentage of the Network Expabageline. We observe that
our shortcut- and precinct-based algorithm performs ewttebon rural maps, where the
network topology allows the creation and use of an even mibeet&e precinct partition-

ing.
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Figure 58: Segments inspected during evaluation of a road networkeragugry, with
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Figure 59: Segments inspected during evaluation of a road networkergngry, on a
rural (AZ) and an urban map (IL).
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4.3 Conclusion

In recent years, algorithms for finding shortest paths id regtworks have enjoyed ongoing
interest, as seen in [40], [2], [3], [41], [16], [28] and mangre. The problem of computing
the full coverage of a road network range query, — where myetaaxists, but only a source,
—is arelated, albeit somewhat different problem.

In this brief chapter, we considered the problem of accetegahe computation of
range query coverages in road networks, even when the gsienyly evaluated a single
time, and thus a reuse-oriented approach is not applic&tepresented our approach of
constructing precincts over the road network graph to elata the unnecessary complexity
of local neighborhood streets and replaced them with fasttslits. We provided a clas-
sification of precincts into seed, core and border types,aacriterion to determine when
the coverage computation should choose local search thefeshortcut based search. Our
experimental results showed that this approach is ablegedspp the computation of indi-

vidual static road network queries.

138



CHAPTER V

MAPSTITCHER

Commercial aerial imagery websites, such as Google Maps(QMest, Microsoft Virtual
Earth, and Yahoo! Maps, provide high-resolution seamleg®graphic imagery for many
populated areas, employing sophisticated equipment aliptary image post-processing
pipelines. There are many areas of the world with poor cayevehere locals might benefit
from recent, high-resolution orthographic imagery, butakildo not fit into the schedules
and scaling model of the big sites.

This chapter describes MapStitcher, a system that orttiiesand geographically reg-
isters imagery using only low-cost capturing equipmentpBk#cher combines manually-
entered relationships between images and known grouncerefes with a MOPs-based
image-stitching technique that automatically discovarage-to-image relationships. Our
image registration pipeline first extracts and matchesfegtoints, then clusters images,
then uses RANSAC-initialized bundle adjustment to simulbaiséy optimize all constraints
over the entire image set. Simultaneous optimization leglgthe requirements of precise
stitching and absolute placement accuracy. We used tHiaitpee to image a portion of the
Skagit River Valley in the vicinity of the town of Concrete, Wadp. 790) at 0.15 m/pixel.
Our technique is more accurate than stitching followed mpber-sheeting” (deforming
the stitched image into global coordinates), while it alsguires less effort and produces a
better-stitched composite than rubber-sheeting imagesately.

A version of this chapter was published as a paper co-audheite Jeremy Elson, Jon

Howell, Drew Steedly and Matthew Uyttendaele [36].
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5.1 Introduction

Commercial aerial imagery sites, such as Google Maps, MagQWdicrosoft Virtual
Earth, and Yahoo! Maps, provide high-resolution seamlgs®graphic imagery for densely
populated areas. To be able to image large areas in a caséeffmanner, their tech-
nigues depend on special-purpose cameras mounted in gpitized mounts and flown
in autopilot-equipped airplanes. Together, these commsrteghtly constrain the param-
eters of the captured images, easing the task of post-miogethe collection of images
into a single orthorectified image mosaic. While allowing tocatize the cost of the sys-
tem by imaging large areas, the equipment is also quite esxgerfor example, the Vex-
cel UltraCam-D camera costs over half a million dollars. Rertnore, there are only a few
competitors, and they tend to prioritize imaging populowskats. Users in small markets
would also stand to benefit from access to recent, highugsanlgeographically registered
aerial imagery. However, it is beyond the means of small canities and other “long tail”
users to purchase the expensive tools used by the largerigragerations. In addition, the
post-processing pipelines used in the industry are prigpyigposing an additional barrier
to entry for localized operations.

A quick survey of the image tiles available on public imagsitgs reveals the lack of
resolution for many regions of the Earth. For example, whitest of the United States is
covered at a 1 m/pixel resolution, with metropolitan areasged at 0.25 m/pixel (see Fig-
ure 60(a) and Figure 60(b), showing the eastern United §taither continents are mostly
covered at 16 m/pixel (see Figure 60(c) and Figure 60(d)wsigpan area of the Earth
bounded by the Equator (S), the Arctic Circle (N)(W). and 90E longitudes (E); some
large cities and Western European countries have highetutesh coverage). Further-
more, the imagery update schedules of the big sites are émdiemt of important changes
in the environment, such as natural disasters, construatid demolition of roads, build-

ings and parking spaces. This chapter describes a systégmel@$o provide such imagery
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at a low cost of entry in a timely fashion: imagery is captungith a consumer-grade cam-
era mounted on hardware-store plumbing pipe in a minimadjyipped light airplane, and
post-processed with a generic pipeline that depends on bh@amaunt of human annota-
tion. While this approach has a higher cost per image of humaatation, the dramatically
lower capital costs lead to lower overall cost for a smallgimg project.

We contrast our approach with two simpler techniques fdrarectifying poorly-constrained
aerial imagery.

The first approach is to simply manually annotate every captimage and then de-
form each image into place (“rubber-sheeting”) with a toatts as MapCruncher [13].
MapCruncher scales well, allowing users to readily reptogadsting maps, publishing
multi-gigapixel images on the web in a client-bandwidtiedfidly tiled format that inter-
operates with Microsoft Virtual Earth. Our experimentshatitis approach identified two
problems: First, because the post-processing system @ualyirfiormation about global
placement, relative inter-image placement often suffeleading to obvious discontinu-
ities at image boundaries. Second, where the images couedifferentiated or entirely
changed terrain, such as a construction site, there wassyowesy to manually label the
images with ground reference pairs.

In the second approach, the captured images are stitcloeal gmgle image of large ex-
tent using a modern photo stitching tool [4] that makes #it&age camera-pose estimates
to reproject the images to eliminate boundary discontiestit The resulting “panoramic”
image represents a single theoretical image taken fromgéedimgical viewpoint; this im-
age is then related to ground references, and translatedrmaser accessible user inter-
face [13]. In practice, the lack of global constraints caube photo stitcher to accumulate
error and emit images that correspond to no real viewpoitti@briginal terrain.

This chapter describes MapStitcher, an image orthoredtiibic system that combines

the two approaches above simultaneously. MapStitchetthstg component discovers
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(a) Resolution of coverage in Virtual Earth over the (b) Resolution of coverage in Yahoo! Maps over the
eastern United States. eastern United States.

(c) Resolution of coverage in Virtual Earth over por- (d) Resolution of coverage in Yahoo! Maps over
tions of Africa, Europe and Asia. portions of Africa, Europe and Asia.

. 0.25 m/pixel
. 1 m/pixel

16 m/pixel

Figure 60: Resolution of orthophoto coverage in large mapping wehsites

inter-image constraints. A human annotates a few imagds gvibund reference con-

straints. Then MapStitcher estimates the pose of each imegmera by first initializing
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Figure 61: Our operation: a consumer camera zip-tied to a PVC pipeuyatiotg from a
hand-flown Cessna 177.

with RANSAC, a general technique for fitting a model in the preseof outliers. Then
it uses bundle adjustment to minimize error across theeentinstraint set, both relative
and global. The resulting system is robust to poorly-c@nséd camera geometry, requires
global constraints on only a small subset of images, andymes output with minimal
image-boundary discontinuities.

We demonstrate MapStitcher by capturing imagery of the BIRiger Valley in the
vicinity of the town of Concrete, Washington. Concrete’s dapan of 790 has a long
wait before major services will find it profitable to send a hmission with expensive
equipment. Our mission, in contrast, involved an ordinamyrfseat Cessna ($160/hour
rental, including pilot), three feet of PVC pipe, a consumigital camera ($300), and two
people: one pilot and one to operate the camera shutter angelthe batteries (Figure 61).
In post-processing, we identified 25 ground reference paid used 60 photos to produce

a 208 megapixel image at a resolution of 0.15 m/pixel (Figi&e

5.2 Related Work

The creation of aerial mosaics to form composite photomamescribed in [11]. Our

method is analogous with the creation of semicontrolledaiuss where ground reference
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Figure 62: Our 0.15 m/pixel composite aerial imagery, showing a parbbthe Skagit
River Valley near Concrete, WA, overlaid on a map of the area.

pairs on a small number of images are combined with tie pdiet&zeen images to com-
pute the transformation parameters. Gtitch-firstcontrol method is analogous with the
creation of uncontrolled mosaics, and ti@stitchmethod is analogous with the creation
of controlled mosaics. However, these digital mosaickipgraaches only attempt to solve
for rotation and translation parameters, assuming vértamera positions during image
acquisition.

In order to perform digital mosaicking with less constraireameras, the problem of
estimating camera parameters must be tackled. Analyterati@angulation with simul-
taneous bundle adjustment aims to recover the 3D coordirdtebject points, and the
3D location and exterior orientation parameters of all exe stations [11]. These goals
are similar to our objectives in our camera parameter eftmatep. Using GPS to ob-
tain a priori knowledge about the three-dimensional position of the sypostations is a

possible improvement [44]. Alternatives to bundle adjwestirfor solving the equations to
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estimate projection matrices and scene point locationgxgred in [26]. For an intro-

duction to 3D reconstruction of cameras and scene stru@tome photographs, we refer
the reader to [17]. The problem of 3D scene reconstructiomgusundle adjustment has
also been explored recently in a computer vision context Bjindle adjustment based
methods [27] can benefit from initialization with RANSAC [14pecific techniques also
exist for the estimation of interior [19] and exterior paegters [18] of cameras from line

measurements, and for n-point camera pose determina®pn [3

5.3 Goalsof Aerial Image Composition

Before describing MapStitcher’s image processing pipelime first describe its design
goals.

The pipeline should convert an input set of overlapping iesagcquired individually,
into a single virtual image that covers the same area. Intagisg this composite image,
we would like to simultaneously optimize for two goals. Thetfis geographic fidelity:
features should have the correct shape in the compositeeinkag example, a straight road
should not appear to curve in the image. The second goal mslessness: the boundaries
between the input images should be invisible in the compasiage. That is, there should
not be visible discontinuities in features such as roads.

To ensure our system is practical and economical, we alsathavusability goals. The
first is that our pipeline should accept reasonably uncaimsd input images—for exam-
ple, it should not require pictures taken exactly straigivia, or with cameras whose exact
geometry or position is known. Such stringent requiremermsld significantly increase
the cost of image acquisition. Our second usability godias the pipeline should require
a minimum of user effort. A few hours of image acquisition @lionot be followed by
weeks of manual post-processing.

In light of these goals, it is instructive to consider the Weasses of other methods for

generating a geographically accurate composite imagehisnsection, we will consider
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Figure 63: The user interface of both MapCruncher and MapStitcher. Js@n specify
ground reference pairs by finding the same feature in their iomage and the standard
Virtual Earth imagery. If the area has been manually surdelaitude and longitude can
also be entered numerically.
two that are commonly used in low-cost applications: indlislly “rubber-sheeting” each
photo in the set, and rubber-sheeting a composite photonhstcreated with an image
stitching tool. The main weakness of these methods is thegt dptimize for only one
goal—geography or seamlessness—at a time.

The first method is exemplified by the previous work, MapCrandii3], which can
perform approximate Mercator reprojection of any imagewir&éo scale after being given
a few correspondence points as exemplars. We call thestsgoorund reference pairs-

that is, correspondences between a pixel in an input image datitude and longitude in

WGS84. MapCruncher has a simple interface, depicted in FigBréor specifying these
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pairs. Although surveying techniques (e.g., GPS) can be, tise fastest and easiest way is
to establish ground reference pairs is to visually comgaeenewly acquired imagery with
the existing imagery that is part of Microsoft Virtual EartWe have found this technique
useful because a typical use-case is overlaying recentreggiution images on top of
extant older or lower-resolution images. MapCruncher shihwesuser’'s images in one
window and Virtual Earth in another.

MapCruncher was originally designed for use with maps. Oitialrtests in using
it for aerial image compositing were promising, but had twajon drawbacks. First,
MapCruncher considers the placement of each image indiNygdweithout global con-
straints. As a result, relative inter-image placementrofteffers, causing obvious dis-
continuities at image boundaries, such as those shown urd-ig4. Second, where the
images cover undifferentiated or entirely changed terisiich as a new construction site,
generation of ground reference pairs is difficult. The exadun refers to this technique as
no-stitch

A second common approach is a two-step procedure. Firsg osalern photo stitch-
ing tool [4] that makes inter-image camera-pose estimatesreprojects the images to
eliminate boundary discontinuities. Next, rubber-shbetrhosaic to fit it to the depicted
geography. In practice, we have found the lack of geograpbmstraints during the mo-
saic step causes the photo stitcher to accumulate errorraitdneages that correspond
to no real viewpoint of the original terrain. For exampleg thosaic shown in Figure 65
depicts about a mile of a straight north-south street, cagtwith a dozen individual pho-
tos shot from an airplane. Without geographic constrathts stitcher incorrectly emits a

(seamless) photo of a curving road. The evaluation refettisdechnique astitch-first
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Figure 64: When overlapping aerial images are rubbersheeted indilyguigscontinu-
ities at the image boundaries are obvious.

54 TheMapStitcher Image Pipeline

The MapsStitcher image pipeline works by simultaneously loiming user-specified geo-
graphic image constraints, similar to MapCruncher, andraatizally generated image-
stitching constraints, similar to a photo stitcher. Witlhatiwely little user effort, Map-

Stitcher can convert a series of overlapping aerial imagesa seamless, orthorectified,
and geographically accurate composite. Users typically meed to specify a small num-
ber (e.g., 10) of ground reference pairs. For example, eatars might be set for only the
first and last images in a series; the positions of interntediaages are estimated auto-

matically using feature comparisons in the overlappingoresg
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Figure 65: A straight road, captured with 12 aerial photographs andaicked using an
image stitcher. Without geographic constraints, the rqgubars to curve.
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Image compositing is accomplished by first solving for theifion and orientation of
the camera at the moment each image was acquired. Then,neagh is reprojected into
an orthographic approximation and superimposed.

A homographic projection is used to model the view of the aanad each instant it
acquires each image. Our model includes hnthinsic andextrinsiccamera parameters.
Intrinsic parameters are properties of the camera itsalfeatly just its focal length, cap-
tured in theF matrix. The extrinsic camera parameters are the translatn rotation,
captured in thé” and R matrices, respectively. In our model, a ground pojft &) is

projected to an image point,(,.,.) according to the chained transformations:

q =F-T-R- Mp're * Pground,

/
Pimage =Mpost (q—l q—y) ;
qz qz

wherep,,...a andq are 3D points represented as 4D homogeneous coordindtes;
T, R and M,,. are 4D matrices)M,,.,; is a 2D matrix; an;,,qq. is a 2D point. As a
typical scene span$)~° equatorial circumferences in Mercator coordinates Mhe. pre-
transform matrix is used to scale the scene so that its sizenparable to the size of its
projection on the camera’s image plane, which has a largesirgion of1.0. This scaling
avoids rounding errors that lead to ill-conditioned op#iations. Thel/,,s; post-transform
matrix ensures that the scene’s projection is centeredemtage plane. This centering is
required to model the symmetry of the perspective projecimund the center of the real
camera’s imaging surface.

The remainder of this section will describe how all of the eaaparameters are es-
timated for each image acquired. Generally speaking, tbeepiure entails the following

steps:

1. The user specifies ground reference pairs for a subseeafthges to be stitched

(Figure 63).
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2. MapsStitcher automatically finds common features in insabat overlap (Section 5.4.1).
3. Each camera’s model parameters are initialized to theédsiimated” state.

4. lterate:

(a) Initial estimates for camera model parameters are madealch camera in a

“not estimated” state, that has sufficient ground refergraies (Section 5.4.2).

(b) Nonlinear optimization (bundle adjustment) is usedltinglly optimize the pa-
rameters of all cameras with estimates. Both the user-®gpgitound reference
pairs and constraints introduced by feature match pairsised in this global

optimzation step (Section 5.4.3).

(c) Synthetic ground reference pairs are temporarily eckathere two images
overlap, and at least one has a camera with a known modeli¢8éecy.4).
These are used to initialize camera parameter estimatesurefiterations of

Step 4a.
5. ... until there are no camera poses given new estimatdsa.
5.4.1 Automatic Extraction and Matching of Feature Points

MapsStitcher uses Multi-Scale Oriented Patches (MOPs)J&éntify corresponding fea-
tures in the overlapping portions of adjacent images. MCisrobustly identify features
in common across images, even if they vary in scale, oriemaind intensities.

The extraction of feature-matches is a five step process:

1. Interest points are identified (Figure 66(a)) on each grsgparately as local maxima

of a "corner strength” function. The orientation of interpsints is also computed.

2. The number of interest points is reduced for each imagaewahuniform distribution

of point locations on the image is maintained. The goal of #tep is to reduce the
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Figure 66: Automatic establishment of feature match point correspands between two

images.

total number of interest points, since the computationqliirements for matching

are superlinear.

3. A 64-dimensional feature descriptor vector is computedefich remaining interest

point using the local image structure.

4. The lowest three non-zero wavelet frequencies of theifeatectors are used to cre-

ate a three dimensional hash-table. This hash-table mevatt lookup for feature

points. Fast approximate feature matching is performedobkups in this hash-

table: a set of approximately matching feature points anedo- across all images —

for each feature point. Some of the matches are eliminatedtéisrs using a simple

heuristic (Figure 66(b)).

5. Finally, RANSAC is applied to remove additional outlielny, finding geometrically

consistent feature matches (Figure 66(c)).

We refer the reader to [6] for specific details of the alganth

After the feature matching step is complete, MapStitcher &dist of feature point

152



matcheqFigure 66(d))—that is, pairs of points on overlapping @sathat visually corre-

spond to the same features on the ground.
5.4.2 Camera Parameter Initialization

Nonlinear estimation algorithms converge most reliablyewlgiven an initial estimate in
the neighborhood of the final answer. Therefore, we estirmatdé camera’s parameters
before starting bundle adjustment.

The camera extrinsics (rotation and translation) for eatdgie are initialized by per-
forming RANSAC [14] on two sets of points: the ground-poinlamage-point half of
each ground reference pair. First, the inverse of the passtormation matrix is applied to
the image points, to ensure correct centerng‘oét “Dimage)- S€CONM, the pre-transformation
matrix is applied to the ground points, to ensure corredirsg&\,,. - Pgrouna). Finally,
RANSAC is preformed between these two sets of points, regulti a transformation
matrix for each image, that is then used as the first estimatiadhe bundle adjustment
algorithm.

The camera intriniscs (i.e. the focal length) are directltialized from the EXIF meta-
data fields recorded in the image file by the actual cameraXIiF Ehformation is unavail-

able, we assume the image was taken with‘aangle of view.
5.4.3 Optimization Using Bundle Adjustment

Once camera models have been given initial estimates, tieesefined using an iterative
nonlinear optimization process calledndle adjustmeritLl1]. Given a number of param-
eters to adjust (known in bundle-adjustment terminologyacetsve states and an error
metric based on those parameters, a bundle adjustervidyatnakes small updates to the
parameters until the error metric falls below a threshold.

As discussed in previous sections, MapStitcher has twatgpeonstraints: constraints
that pull images towards their correct geography and caimésrthat place images to mini-

mize seams at their overlap points. These two constraiatee@resented by two different
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types of error metrics to the bundle adjuster.

The representation of the geographic constraints aregbtfarward. The camera in-
trinsics and extrinsics are represented as active stakesuder-supplied ground reference
pairs are used to compute the error metric. MapStitcher ctespthe projection of the
ground point into the image plane using the hypothesizedkcaparameters. The distance
from the projected ground point to the user-selected imag# s the error.

Image-stitching constraints are somewhat more complexddem In this case, the
stitcher does not have a known ground point—only a set of expagnts that, according to
the feature matcher (Section 5.4.1), depict the same grfmatdre. We add a new active
state for each group of feature match points; it represémtdypothesized point on the
ground depicted by those features. The initial estimat@isfground point is the centroid
of the projection of all the feature match points onto theugidy given the estimates of
those images’ camera models. In each iteration of the buemjlester, the hypothetical
ground point is projected back into the image plane of eaaggamsing the updated camera
models. The error metric is the sum (over each image) of #tames in image space from
these projections to the corresponding feature matchgoint

For further technical details, we refer the reader to [5]ichidescribes the application

of the bundle adjustment algorithm in a similar context.
5.4.4 Grounding Images Iteratively

If the user originally supplies ground reference pairsdweeryimage in the mosaic, the
procedure described above will work in a single step. Eadeca’s parameters could be
initially estimated based on its image’s ground refereraiesp and all parameters could
be optimized in a single bundle-adjustment operation. Hewesuch a system would
be difficult to use: it can be time-consuming to find grouncrehce pairs manually and
many mosaics contain dozens or hundreds of images. To nz@insier effort, MapStitcher

creates synthetic ground reference pairs using adjaceamtapping images that already
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have camera model estimates.

For example, imagine that our mosaic has imagesdB. A has user-supplied ground
reference pairs, but does not. The feature matching algorithm tells us that gixel A, )
inimageA depicts the same feature as pik8l,, B,) in imageB. MapStitcher first “boot-
straps” the mosaic using’s ground reference pairs to estimad&s camera parameters. It
then uses those parameters to projet A,) onto a ground pointA4,,, 4,,), and creates
a synthetic ground reference pair for image (5., B,) corresponds t¢A,,, A,,). This
technique can be used iteratively to propagate camera rastiglates to an entire contigu-
ous set of overlapping images. We call this successive gadjmn theripple algorithm
Note that after each ripple, global bundle adjustment is performed, as described in the
previous section.

An example for a succession of ripple steps is shown in Fi§utet. (For illustrative
purposes, we depict only a small number of feature matchtgdirin the initial ripple,
ground reference pairs (marked (i) on Figure 67(a)) are tsedlculate the homographic
transformations for image #2 and #9.

In the second ripple, feature match point pairs (markedfiifigure 67(b)) are found
that have one of their points on the known-model images: #2/8n These feature matches
add images #1, #3 and #8 to the ripple. Note that although é¥#aroverlap, the feature
extraction and matching algorithm didn’t find any featuretchgpoints between them in
this case. The ground location of the feature match poisalculated using the homo-
graphic transformation obtained for image #2 and #9 in th@alripple. After bundle
adjustment, the ripple’s three new images will also have frerameters for homographic
transformation.

In the third ripple (Figure 67(c)), feature match points mages #3 and #8 add images
#4, #5 and #7 to the ripple. Note that the two feature matchtpdietween the floating
images #4 and #5, marked (iv), are feature match points withbleast one image with a

known position, and thus are not used in the RANSAC initigigraof the third ripple.
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In the fourth ripple (Figure 67(d)), feature match point&eh image #6 to both #5
and #7. Note that up until this ripple, there were two indejget image groups: images
#1—#5 were grounded based on ground reference pairs frogei#, and images #7-—#9
were grounded based on ground reference pairs from imag@&hlink provided by #6
joins these two groups, and the subsequent bundle adjusjonatty refines all 9 camera
modelstogetherfor the first time in search of a globally optimal solution. dddition,
the feature match points marked (iv) between #4 and #5 canbeogrounded (using the
homographic projections from the previous ripple), whitloves them to be used in the
bundle adjustment. After the fourth ripple, all images ie tiuster are grounded with

homographic transformations, and the algorithm termmate

5.5 Evaluation

MapStitcher is designed to produce a well-georeferencedlamagery layer stack with
low human data-entry cost. To evaluate its design, we parfam experiment that com-
pares a MapStitcher orthorectified image with two controthods, no-stitchand stitch-
first. We measure each method on two criteria: cost of registratieasured in number of
manual ground reference pairs, and quality of registrateasured in deviation of unref-
erenced points from ground truth. In these experimentguigd truth” is defined by the
lower-resolution Virtual Earth aerial photography of thébgct region, and is affected by

distortions in the Virtual Earth orthorectification pip@edi.
5.5.1 Experiment Description

For this experiment, we use as input 60 source images weregptd the Skagit River
Valley in the vicinity of the town of Concrete, WA. We used eathhe three techniques to
combine all source images to produce a single orthorecttiled composite image of 208

megapixels.
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5.5.2 Measuring Cost

For theno-stitchmethod, we registered 257 points (mean 4.3 points per intagere 68(a)).

For thestitch-firstmethod, we stitched the images with the fully automatic plstitcher
described in [4]. We georegistered the resulting compasidége with 25 manually-entered
ground reference pairs (Figure 68(b)).

For the MapStitcher method, we registered 25 points spratdro5 images (mean 0.4
points per image over the whole set; Figure 68(c)). We sheviitle images with manually
entered ground reference pairs after transformation, gar€i69, while Figure 62 shows
all 60 images georegistered based on these five images.

Figure 70 shows the number of manual ground reference maited three methods.
5.5.3 Measuring Quality

We manually selected 12 recognizable points in the sceioh, feam separate source im-
ages, none of which were used as manually-entered refepens in any of the methods.
We measured the “ground truth” position of each point in thve-tesolution Virtual Earth
image. For each method, we computed the mean distance lmetwese the method ge-
olocates each point versus the point’s ground truth pesitio

Figure 71 shows the mean and standard deviation of the r&tyist errors for the three
methods. Theno-stitchmethod produces the best quality orthorectification, ®ithH m
mean error and5.8 m standard deviation, but usirid.3 times as many manual points as
the other methods. The referenstitch-first method results in a mean error 4.1 m
(with a large167.9 m standard deviation), showing that it is difficult to recogeography
as a discrete step if a mosaic is created using seamlessidryuconstraints alone. Our
method, which jointly optimizes image-to-ground and imégi@mage alignment, results
in a mean error that i834% (58.83 m) of the no-stitch method (with a standard deviation
of 37.9 m), while needing onlyd.7% of the manually entered ground reference pairs of

the latter method. The increased error may be due to placmgiuch relative weight on
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image-to-image alignment—that is, in some cases, we mayt&ising absolute posi-

tional accuracy for the sake of output that looks better.

5.6 FutureWork

While our current system produces composite imagery whoseefgrencing quality ap-
proaches that of the manual no-stitch method, it suffersxfeamilar problems as that
method: image boundaries remain clearly visible at soma@ar@oundaries. Panorama
stitching techniques employ graphcut algorithms to redisible seams in the final com-
posite [25], and gain compensation and multi-band blendsngsed to correct for un-
modelled camera effects (e.g. vignetting) [4]. Our appiccawould also benefit from
these techniques. MapStitcher currently hasmiori information about the relative po-
sitions of any images, and thus must attempt to find featuriehrea between all image
pairs. Adding a constraint that indicates potential imagerlaps will simplify the prob-
lem of finding feature matches, as the number of candidatgesto be considered will
be reduced fron®(n?) to a constant-sized neighborhood. This will significanthprove
processing speed and reduce feature match outliers, anakcachieved using a low-cost

(consumer-grade) GPS that is only loosely coupled to thg@&@quisition process.

5.7 Conclusion

MapStitcher produces orthorectified aerial imagery mesfiam images with poorly con-
strained geometry and only minimal manual labeling. Theiltas a system with low
capital cost that produces high-quality image mosaics. Meipate that access to such
low-cost imaging will lead to a much wider grass-roots dftorproduce aerial photogra-
phy. We hope to facilitate community-supported effortsediyfor example, at better cov-
erage of non-urban areas, timely coverage of special eeematural disasters, or more
frequent coverage of fast-changing areas. Ultimatelyeifahimaging becomes as cheap

and easy to produce as a blog, we may see aerial imagery witathe rich, decentralized

158



diversity as the blogosphere.

159



...................................................................................

e \:::::k s
L____!_<_—_:.:-=J‘ """"" 0] ‘5:\:_ :\\ ‘
2 s T e

(b) Second ripple; feature match points link some
floating images to already grounded ones

(c) Third ripple; some feature match points link more
than two images
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(d) Fourth and final ripple; a globally optimal solu-
tion is approached when independently estimated im-
age groups join

Figure 67: A succession of ripples is used to estimate the positionlafelges, even
though only a subset have user-specified ground referenmse pa
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(c) Ground reference points for MapStitcher method.

Figure 68: Locations of ground reference points.
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Figure 69: The only images with manually entered ground referencespaiour Map-
Stitcher example.
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CHAPTER VI

CONCLUSION

The theme of this thesis is the creation of location basedcses that are efficient, scalable
and available to all end users. In this chapter, we providecap of the main topics and
conclusions of our work.

We have presentedJADTRACK — a query-aware, precinct based location update
framework for scaling location updates and location traglservices. RADTRACK de-
velopment makes three original contributions. First, wieoduce encounter points as a
fundamental query awareness mechanism enable us to canttalifferentiate location
update strategies for mobile clients in the vicinity of eetlocation queries. Second, we
employ system-defined precincts to manage the desirechbpadblution of location up-
dates for all mobile clients and to control the scope of quemareness capitalized by a
location update strategy. Third but not the least, we dgvalmad network distance based
check-free interval optimization, which further enhaniteseffectiveness of ®ADTRACK
and enables us to effectively manage location updates oflendients traveling on road
networks by minimizing the unnecessary checks of whettesr lave crossed an encounter
point or precinct boundary point. We evaluate theAR TRACK location update approach
using a real world road-network based mobility simulatour ®@xperimental results show
that the RPADTRACK query aware, precinct-based location update strategyedotms
existing representative location update strategies mgesf both client computation effi-
ciency and server update load.

The computational costs of answering continuous netwargeajueries are known to
be prohibitively high, as a shortest path based networkresipa needs to be run repeatedly

at each and every location where the query is evaluated. e dnat continuous network
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range queries, whose focal locations are "not far” from eztbler, have substantial overlap
in their segment coverage. Such a large overlap may offaifgignt reuse opportuni-
ties for performance enhancement. We have presented tigndexl implementation of
Dandelion reuse framework and a suite of algorithms forrastvaluations of continuous
network range queries. The chapter makes three originafibations. First, we propose
the concept of Dandelion tree to accurately represent terage of a network range query
with arbitrary range, by keeping track of three key netwanaltion points: border points
(BOP), dead-end points (DEP), and zip points (ZIP). Secomrddesign three BOP-Push
and three BOP-Pull primitive operations to compute the cyertl’ by maximum reuse
of the coverage at previous query focal location Third but not the least, we define the
data structures and three Dandelion reuse algorithms tegifiy identify the portion of
the Dandelion tree that can be used as the basis for reuseidhdrfexpansion. The ba-
sic Dandelion algorithm enables reuse by dividing the Daodéree (query coverage) of
a query into the forward (FWD) and backward (BWD) halves, alfmvseparate mainte-
nance of the key data structures for each half to reduce #relsgpace. The Dandelion-T
algorithm introduces and utilizes the Trident and Guided#tuctures to compose a more
reuse-efficient Dandelion-T tree, leading to faster quergvaluation than Dandelion ba-
sic algorithm. Finally the Dandelion2 algorithm furtheih@mces Dandelion-T in terms of
guery re-evaluation cost by introducing the two primitivensformation operationsove
andjump. This development can effectively transform one Danddtiea to another with a
minimum set of primitive transformation operations. We @oct a series of extensive ex-
periments and our results show that Dandelion reuse modellgorithms can significantly
outperform the conventional shortest path network expanalgorithm (NE) in terms of
coverage computation cost for non-trivial radius size agtl he-evaluation frequency.

We also considered the problem of accelerating the compatat range query cov-
erages in road networks, even when the query is only evaluatgngle time, and thus

a reuse-oriented approach is not applicable. We presentedpproach of constructing
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precincts over the road network graph to eliminate the vessary complexity of local
neighborhood streets and replaced them with fast shortélgprovided a classification of
precincts into seed, core and border types, and a critevidetermine when the coverage
computation should choose local search instead of shdy&=séd search.

Finally, in a different flavor of location based servicest bantinuing our focus on
applicability to realistic scenarios, MapStitcher proesiorthorectified aerial imagery mo-
saics from images with poorly constrained geometry and arilyimal manual labeling.
The result is a system with low capital cost that produceb-ajgality image mosaics. We
anticipate that access to such low-cost imaging will leaa nouch wider grass-roots effort
to produce aerial photography. We hope to facilitate comtytsupported efforts aimed,
for example, at better coverage of non-urban areas, tinmlgrage of special events or
natural disasters, or more frequent coverage of fast-chgrayeas. Ultimately, if aerial
imaging becomes as cheap and easy to produce as a blog, weenagr&al imagery with
the same rich, decentralized diversity as the blogosphere.

We believe that location based services — while availables&rs in many forms today
— are still an area in its infancy. We hope that this thesistmaa useful contribution to the

furtherance of knowledge in this field.
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