
Profile-Guided Microarchitectural Floorplanning

for Deep Submicron Processor Design

Mongkol Ekpanyapong Jacob R. Minz Thaisiri Watewai† Hsien-Hsin S. Lee Sung Kyu Lim

School of Electrical †Dept. of Industrial Engineering
and Computer Engineering and Operations Research

Georgia Institute of Technology University of California

Atlanta, GA 30332 Berkeley, CA 94720

{pop, jrminz, leehs, limsk}@ece.gatech.edu thaisiri@uclink.berkeley.edu

Abstract
As process technology migrates to deep submicron with fea-
ture size less than 100nm, global wire delay is becoming a
major hindrance in keeping the latency of intra-chip com-
munication within a single cycle, thus decaying the per-
formance scalability substantially. An effective floorplan-
ning algorithm can no longer ignore the information of dy-
namic communication patterns of applications. In this pa-
per, using the profile information acquired at the architec-
ture/microarchitecture level, we propose a “profile-guided
microarchitectural floorplanner” that considers both the im-
pact of wire delay and the architectural behavior, namely
the inter-module communication, to reduce the latency of
frequent routes inside a processor and to maintain perfor-
mance scalability. Based on our simulation results, the
profile-guided method shows a 5% to 40% IPC improve-
ment when clock frequency is fixed. From the perspective
of instruction throughput (in BIPS), our floorplanner is
much more scalable than a conventional wire length based
floorplanner.

1. INTRODUCTION
According to the projection of the International Technol-

ogy Roadmap for Semiconductors (ITRS) [13], deep sub-
micron process technology will be able to integrate more
than one billion transistors onto a single monolithic die
very soon. Given the continuing and fast miniaturization
of transistor feature sizes, global wire length is becom-
ing a major hindrance in keeping performance scalable as
its relative delay to the gate delay gradually worsens as
technology continues to shrink. Local wire length, on the
other hand, will scale with a marginal impact in adding ex-
tra delay with respect to the same process technology [7].
Despite the use of different materials, device structures,
circuit techniques or novel architectures including nano-
technology, this global interconnect limit still persists due
to the nature of device physics and inflicts a substantially
higher performance impact for chips manufactured with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

deep submicron technology, particularly, for microproces-
sors which keep pursuing ever-higher performance as the
primary design objective.

For the last decade, due to the dramatic advancement
of microelectronics and manufacturing technology, com-
puter architects were able to improve processor perfor-
mance simply by adding more computing capability and
increasing resource capacity, for example, increasing cache
sizes and hierarchy, enlarging reorder buffer, widening is-
sue and commit width, improving speculation by employ-
ing very complex branch predictors, to name a few. All
of these architecture enhancement effectively resulted in
higher processor performance in the past. On the other
hand, CAD tool developers and circuit designers try to
reduce the cycle time as much as possible, without any
knowledge of the entire design at the architectural level.
With the increasing impact of global wire length, however,
such design methods could lead to less optimal designs, if
not totally ineffective, due to the intra-chip communica-
tion latency, and need to be largely changed by taking the
wires into account. In this paper, we advocate the collab-
oration between architecture design and physical design.
By considering both simultaneously, we expect to achieve
a much better performance improvement for microproces-
sors designed using deep submicron technology.

The rest of this paper is organized as follows. The next
section discusses some related work. Section 3 overviews
the implication of IPC and clock speed and outlines our ap-
proach. Section 4 introduces our profile-guided floorplan-
ning and its mathematical foundation. The description of
our architectural framework follows in the next section.
Then we show our experimental results in Section 6. Fi-
nally, we conclude this work and point out some future
directions in Section 7.

2. RELATED WORK
With the growing concern in global wire delay, there are

a large number of researches focusing on this area that
attempt to address this issue from different aspects in-
cluding circuits, microarchitectures, and the combination
between logic synthesis and physical design. Agarwal et
al. in [1] raised the issue of the wirelength impact in de-
signing conventional microarchitecture. They showed that
reducing the feature size and increasing the clock rate do
not necessarily imply an overall performance improvement
for deep submicron processor designs. Cong et al. [4] con-
firmed their observation and showed that without consider-
ing clock speed, Instruction Per Cycle (IPC), widely used
in architecture research, can be misleading in evaluating
the performance of next generation processors.

More recently, Sankaralingam et al. [11] proposed a
new data bypassing mechanism that enhances performance

when multi-cycle bypassing delays are preset in processor
designs. In logic synthesis, novel techniques [3, 6] were
proposed to improve the performance by applying wiring
aware logic synthesis. These techniques provide more in-
formation regarding locations in the phase of logic synthe-
sis, leading to overall performance improvement. However,
postponing the optimization after logic synthesis phase is
completed can be time-consuming, and is inapplicable to
custom design.

3. WIRE DELAY ISSUES
Ho, Mai and Horowitz in [7] classified wires into three

categories based on their delay impact: 1) wires that scale
in length, such as local interconnected wire within logic
blocks; 2) wires that do not scale in length and is super-
linear when feature size is reduced; 3) repeated wire, i.e.
long wire with repeated buffers along the wire. The prop-
agation delay of a repeated wire can be represented as
Equation (1), where Rd is the driver resistance, w is the
width of the driver transistor, Cd and Cg are diffusion and
gate resistances per unit width, Rwire and Cwire are wire
resistance and capacitance per unit length, l is the repeater
segment length, and beta is the PMOS to NMOS sizing ra-
tio. In next generation deep submicron processor design, it
is likely that repeaters will be inserted frequently for global
wires to prevent the wire delays from becoming non-linear.
In this paper, we assume repeated wires to be the domi-
nant wire and examine their performance impact from the
perspective of floorplanning. Based on predicted value of
resistor, capacitance and other parameters from [13, 7],
repeated wire delay is approximated to be 80pS/mm for
30nm technology, which we use as the baseline for our dis-
cussion in this paper. Note that a FO4 gate delay for 30
nm is approximately 17pS.

D = 0.7n

[

Rd [w(β + 1)(Cd + Cg) + lCwire]

w

+l2
RwireCwire

2
+ lRwirew(β + 1)Cg

]

(1)

Flip-flop insertion is a technique to alleviate the im-
pact of wire delay for achieving target clock frequency.
As shown in [9], by inserting flip-flops between modules,
clock frequency can be increased through deeper pipelin-
ing and results in a higher billion instructions per second
or BIPS. Nevertheless, the improvement cannot always be
anticipated especially for designs with a small feature size
as flip-flop insertions will cause IPC degradation from in-
creasing the latency as shown in Figure 1, in which if mod-
ule 2 is moved toward the righthand side from the lefthand
side, more flip-flops need to be inserted, leading to longer
latency. Therefore, inserting flipflops without a meticulous
evaluation, even though we can accelerate the clock rate,
it does not guarantee an overall performance improvement
since the latency of communication between modules might
now take longer.

4. PROFILE-GUIDED FLOORPLANNING
As shown in Figure 2, we propose an unified frame-

work that combines technology scaling parameters and the
execution profiling information of applications to guide
the floorplanning of a given processor architecture design.
First of all, a machine description is provided as the in-
put for the microarchitecture simulator in which profiling
counters were instrumented for bookkeeping module-to-
module communication. Then a cycle-accurate simulation
is performed to collect and extract the amount of intercon-
nection traffic between modules for given benchmark pro-

Module 1

Module 2

FF

FF

FF

Module 2

FF

FF

FF

FF

FF

Figure 1: Impact of Wire Delay on Latency

ȩnterline

CACTI GENESYS PROFILING

CYCLE
ACCURATE
SIMULATOR

FLOOR
PLANNER

Machine DescriptionTechnology Parameter

Module Info.
Interconnect
Statistic Info.

Architecture
Redesign

Frequency Target Range

Benchmark

Figure 2: Profile-Guided Floorplanning

grams. For cache-like or buffer-like structures, the area size
and module delay are estimated using a industry tool from
HP Western Research Labs called CACTI [12]. For scaling
the other structures such as ALUs, we use GENESYS [5]
developed at Georgia Tech which has a baseline using a .35
µm Verilog model. After the timing and area information
of each module is collected, the statistical interconnection
traffic and the processor target frequency range are fed
into our profile-guided floorplanner to generate a floorplan
for deriving the timing model (i.e. inter-module latency) of
the microarchitecture as a result of the generated floorplan.
With the new latencies, the architecture performance sim-
ulation is performed for simulating the IPC numbers, and
later the actual performance in BIPS can be calculated to-
gether with the cycle time. We keep iterating the entire
methodology for exploring alternate architecture designs
by increasing or decreasing the module size, or even split-
ting the module geometry for achieving the performance
goal. Results from our profile-guided microarchitectural
floorplanning can be used to guide the final global floor-
planning such that performance is not degraded.

Now we formulate the mathematical programming mod-
els for our floorplanner. First, we present a mixed integer
nonlinear programming (MINP) model which minimizes
the product of the cycle time and the weighted wire length.
Since to find the optimal solution of the MINP model is

NP-hard, we then linearize and relax integral constraints
in such a way as to stay closed to the optimal solution
within a reasonable runtime. Finally, we demonstrate the
complete floorplanning algorithm.

4.1 Mixed Integer Non-linear Programming
Model

The parameters used in the model MINP are defined as
follows. Let N denote the set of all flexible modules, and E
denote the set of directed edges where a directed edge (i, j)
represents a wire from module i to module j. Also, let α be
the repeated delay per mm, and λij be the statistical traffic
on wire (i, j). gi is the gate delay of module i. wmin,i and
wmax,i denote the minimum half width and the maximum
half width of module i respectively. The area of module i
is denoted by ai. Finally, fij is the minimum number of
flip-flops on wire (i, j).

In the model, we need to determine the values of the
following decision variables: Let L denote the cycle time
of the system (1/clock frequency), and (xi, yi) denote the
location of the center of module i on R

2
+ space. Xij and

Yij represent |xi − xj | and |yi − yj | respectively. zij is
the number of flip-flops on wire (i, j). wi denotes the half
width of module i. To avoid overlapping between any two
modules i and j, where i < j, we also need a set of binary
variables so that at least one of the followings holds.

xi + wi ≤ xj − wj i is on the left of j

xi − wi ≥ xj + wj i is on the right of j

yi +
ai

4wi

≤ yj −
ai

4wi

i is below j

yi −
ai

4wi

≥ yj +
ai

4wi

i is above of j

We thus let cij and dij be the binary variables such that

(cij , dij) =











(0, 0) if i is on the left of j
(0, 1) if i is on the right of j
(1, 0) if i is below j
(1, 1) if i is above of j

The constraints for non-overlapping among modules are
given from inequality (9) to (12) in the MINP formulation
illustrated in Figure 3 wherein the objective function (2)
is to minimize the net weighted delay. Constraint (3) is
obtained by the definition of latency. (4) to (7) define the
absolute values. Constraint (8) represents the minimum
number of flip-flops required. (13) states the possible range
of each module’s half width. (14) are non-negative con-
straints of module’s location. (15) manifests that (cij , dij)
are binary. Finally, (16) specifies that the number of flip-
flops must be integer. Also note that M is a sufficiently
large number.

4.2 Mixed Integer Linear Programming Model
To avoid non-linearity of (11) and (12), we linearize the

half height of module i (hi) using linear approximation
as shown in Figure 4. Note that this approximation will
guarantee that the solution in the approximated model is
feasible (due to over approximation). Also, in (3) we can
eliminate the non-linearity by fixing L = L0 and iteratively
solve the problem with different L values. This, however,
doesn’t require too much effort since the set of the L can-
didates is not large based on achievable target frequency.
The resulting mixed integer linear programming formula-
tion, MILP, is shown in Figure 5.

4.3 Linear Programming Model
Despite the fact that we can convert MINP into MILP,

the problem still remains NP-hard for two dimensional bin-
packing. Hence, it will limit our search space by MILP run-
ning time for a large number of modules. To remedy this

MINP

Minimize L ×
∑

(i,j)∈E

λijzij (2)

Subject to

L ≥
gi + α(Xij + Yij)

zij

(i, j) ∈ E (3)

Xij ≥ xi − xj (i, j) ∈ E (4)

Xij ≥ xj − xi (i, j) ∈ E (5)

Yij ≥ yi − yj (i, j) ∈ E (6)

Yij ≥ yj − yi (i, j) ∈ E (7)

zij ≥ fij (i, j) ∈ E (8)

xi + wi ≤ xj − wj + M(cij + dij) i < j ∈ N (9)

xi − wi ≥ xj + wj − M(1 + cij − dij) i < j ∈ N(10)

yi +
ai

4wi

≤ yj −
ai

4wi

+ M(1 − cij + dij) i < j ∈ N(11)

yi −
ai

4wi

≥ yj +
ai

4wi

− M(2 − cij − dij) i < j ∈ N(12)

wmin,i ≤ wi ≤ wmax,i i ∈ N (13)

xi, yi ≥ 0 i ∈ N (14)

cij , dij ∈ {0, 1} i < j ∈ N (15)

zij ∈ N (i, j) ∈ E (16)

Figure 3: MINP Formulation

i
h

i
w

i
wmin,i

wmax,

iiii
kwmh

��

i

i

i

w

a
h

4

�

i

i

i

i

i

ii

i

i

w

a

w

a
k

ww

a
m

min,max,

max,min,

44

4

��

��

Figure 4: Block Area Constraint Approximation

problem, we further relax MILP into Linear Programming
(LP) as shown in Figure 6. We derive a method similar
to those described in [8, 2] by recursively bi-partitioning a
space into smaller subregions.

To relax the integrality while maintaining the feasibility
and staying closed to the optimal solution, we first relax
the integrality of zij to be a real number. We also solve
several linear programming problems to determine the non-
overlapping relationship — (cij , dij).

We start the algorithm by creating a large block contain-
ing all modules. In each iteration we divide each current
block into two smaller subblocks by specifying the centers
of each subblock as well as their corresponding boundaries.
Then we randomly assign modules currently in the block
into one of the centers of these two subblocks. For the next
iteration, the modules currently in the block must remain
in the same block ((22)-(25)), and all the modules assigned
to the same subblock have center of gravity of area at the
center of that subblock ((26)-(27)). Note that even if a
module assigned to a particular subblock, it can be moved
across the subblock boundary as long as the preceding two

MILP

Minimize
∑

(i,j)∈E

λijzij (17)

Subject to (4)—(10), (13)—(16) and the following

zij ≥
gi + α(Xij + Yij)

L0

(i, j) ∈ E (18)

yi + miwi + ki ≤ yj − mjwj − kj

+M(1 − cij + dij) i < j ∈ N (19)

yi − miwi − ki ≥ yj + mjwj + kj

−M(2 − cij − dij) i < j ∈ N (20)

Figure 5: MILP Formulation

LP(u): Minimizing net weighted delay

Minimize
∑

(i,j)∈E

λijzij (21)

Subject to (18), (4)—(8), (13)—(14) and the following
xi + wi ≤ rj i ∈ Mj(u), j ∈ B(u) (22)

xi − wi ≥ lj i ∈ Mj(u), j ∈ B(u) (23)

yi + miwi + ki ≤ tj i ∈ Mj(u), j ∈ B(u) (24)

yi − miwi − ki ≥ bj i ∈ Mj(u), j ∈ B(u) (25)
∑

i∈Sjk(u)

aixi =
∑

i∈Sjk(u)

ai × x̄jk k ∈ {1, 2}, j ∈ B(u) (26)

∑

i∈Sjk(u)

aiyi =
∑

i∈Sjk(u)

ai × ȳjk k ∈ {1, 2}, j ∈ B(u) (27)

Figure 6: Minimize Net Weighted Delay

conditions are satisfied. Once the locations of all modules
are determined at the current iteration (by LP(u) as shown
in Figure 6), each subblock will become a block in the next
iteration. We terminate the algorithm when each subblock
contains exactly one module. The following notations are
defined before we detail the whole algorithm. Let B(u) de-
note the set of all blocks at iteration u, and Mj(u) denote
the set of modules currently in block j at iteration u. Also,
let Sjk(u) be the set of modules assigned to the center of
subblock k (k ∈ {1, 2}) contained in block j at iteration u.
We denote the center of subblock k contained in block j
by (x̄jk, ȳjk). Finally, let rj , lj , tj , bj denote the right, left,
top, and bottom boundary of block j. The algorithm is
summarized in Figure 7.

Note that the LP(u) will be feasible if we start from an
initial block that is large enough, and at each iteration
each subblock is created according to the total of areas of
modules assigned to that subblock.

Once the algorithm is terminated with locations of all
modules, we investigate the non-overlapping relationship
(9) to (12). If for each pair (i, j) exactly one of four possible
pairs (cij , dij) is satisfied, we fix such (cij , dij), otherwise
we randomly fix one of the two possible relationships —
one from (9) to (10) and the other one from (11) to (12).
By fixing all (cij , dij), we solve MILP without (16) so that
it is a linear programming problem. Note that each time
we perform a random procedure, we repeat many times
with different random values and select the best result.

We also have another LP model in which we minimize
the total wire length for benchmarking. We apply the sim-

ilar approach as our model. The LP
′

(u) for wire length
minimization is described in Figure 8.

5. SIMULATION INFRASTRUCTURE

Bi-Partitioning LP Algorithm

For each L in target frequency range

Step 0: Initialize B(1) = {1}, M1(1) = N .
Step u: for count =1 to run

Specify Sjk(u), (x̄jk, ȳjk). Solve LP(u).
Update B(u +1), Mj(u +1), rj , lj , tj , and bj .
Goto final step if each Mj(u + 1) contains
exactly 1 module
end for

Project best obj. into next iteration u + 1
Final step: Solve MILP by fixing cij , dij obtained from

Recursive Bipartitioning.
Project best L and zij

Figure 7: Recursive Bi-partitioning LP Algorithm

LP
′

(u): Minimizing total wirelength

Minimize
∑

i,j∈N

(Xij + Yij) (28)

subject to (4)—(7), (22)—(25), (13)—(14), (26)—(27)

Figure 8: Minimize Total Wirelength

Simplescalar 3.0 tool suite is used as our architecture
simulator for both profile collection and performance simu-
lation. The detailed processor microarchitecture evaluated
in Section 6 is illustrated in Figure 9 and their variations
are listed in Table 1. Each functional block in Figure 9
represents a module used by our floorplanner. In order to
facilitate physical-design driven micro-architectural explo-
ration we added some new features. First, we extended the
Simplescalar to include configurable pipeline depth. The
fetch unit of the simulator was efficiently modified to ac-
commodate pipelines of desired depth. This gives us a
handle to study the effects of lengthening the processor
pipeline. In terms of performance, pipelining has a direct
impact on the operational frequency of the processor. The
number of pipeline stages is also affected by our exten-
sion of the functional units. In the modified simulator, the
functional units or execution resources are completely con-
figurable in terms of operation and issue latency and can
be specified as configuration input.

Provisions were also made to consider wire delays in
the simulator. The existing simulator assumes that the
forwarding latency between blocks is always single cycle
which is less reasonable while operating at extremely high
frequency, given the increased wire delays and larger die ar-
eas. In our modified simulator, the forwarding latencies of
the function units to other units or pipe stages were made
configurable, enabling a more realistic IPC projection.

For accurate prediction and optimization of performance,
the wires can no longer be isolated from architecture-level
evaluation but must be modeled as units that consume
power and have delays. Wires, as much as other logical,
storage, and control units of a processor must be ”de-
signed” appropriately. In order to have a simultaneous
view of the frequency and the IPC, we have to explore the
floorplan and processor organization together. The wire
parameters can be captured for architectural optimization
through floorplanning, to a reasonable degree of accuracy.
The wires directly affect the forwarding latency and the
pipeline depth of the processor. For performance evalua-
tion, we use the information provided by the floorplanner
to derive essential simulation parameters such as pipeline
depth and forwarding latency. The forwarding latency is a
function of the distance between units in the floorplan and
the number of flip-flops between modules. If the floorplan

fetch

i1cache mmu

reg file

dispatch

loadq

wb

bpred btb

issue

commit

dl1cache

d2cache

i2cache

3cache

fp reg file

ruu

biu memctrl

fruu

ialu

fpissue

ialu
ialu

ialu
ialu
ialu

ialu

ialu
ialu

ialu
fpu

storeq

fetch q

Figure 9: Processor Microarchitecture Model

has been optimized for clock speed, the pipeline depth of
the processor reflects it. In our experiments, we expect
an improvement in performance (in architectural simula-
tion) if the frequency of forwarding traffic between units
are included in our floorplan formulation. The forward-
ing frequency driven floorplanning tries to put heavy traf-
fic units closer together, minimizing their latencies as a
function of their distance. Our floorplanning algorithms
described in Section 4 were implemented in C, compiled
with gcc with -O3, integrated with Simplescalar tool set,
and executed on Pentium III 750MHz machines. We use
lp solve [10] to solve our linear programs.

6. EXPERIMENTAL RESULTS
We perform experiments on ten SPEC2000 benchmarks,

six from the integer suite and 4 from the floating point.
We performed profiling on training input sets. Our results
are reported by running on the reference input sets by fast
forward for 200 million instructions and simulation for an-
other 100 million instructions. The maximum execution
time combining both floorplanning and simulation is less
than two hours for each benchmark.

Figure 10 shows the IPC improvement based on the same
clock frequency with different microarchitecture configura-
tions for the baseline (WL) and our profile-guided floor-
planning algorithm (PGF). Note that the baseline floor-
plan is generated by minimizing the total wire length. The
results show that the baseline algorithm will no longer de-
liver higher IPCs as the number of the modules and/or the
size of the modules are increased due to the limitation of
wire length. On the other hand, our profile-guided floor-
planner continues to increase the IPCs since the dynamic
information of interconnection traffic between modules is
taken into account during floorplanning. For the most
complex microarchitecture (Configuration 4), the proces-
sor design based on our technique outperforms the baseline
by 40%.

Figure 11 evaluates the impact in terms of total wire
length using our technique. Instead of minimizing wire
length, our algorithm attempts to improve overall perfor-
mance and could potentially result into a longer total wire
length. As shown in the figure, our technique does not ac-
tually incur any significant increase in wires for less com-
plexity processors, in some cases it is even better than the
baseline1. For the outlyer case shown in Config3 of bzip2,

1Note that the baseline itself has some randomness in-
volved and is also a heuristics, not an optimal solution.

0

0.5

1

1.5

2

2.5

3

gzip vpr mcf gap bzip2 twolf swim art equake lucas Avg.

Total Wire Length
Ratio config1 config2 config3 config4

Figure 11: Impact on Total Wire Length (Cfg3)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

5GHz 5.5GHz 7.1GHz 10GHz 14.3GHz 20GHz

Wirelength
Profile-Guided

Figure 12: Performance versus Frequency Scaling

data are mostly forwarded from RUU to ALUs with very
little inter-ALU communication, hence the only constraint
imposed is from the RUU. Whereas in Config4 case, there
are more data forwarding between ALUs, hence the im-
posed constraint do not allow each ALU to move freely. For
complex machines such as the configuration 4, we increase
the total wire by 68% in average. Even though the total
wire length is increased, it only affects the inter-module
latencies of those less frequently used routes.

We present the overall performance in normalized BIPS
for different clock frequencies in Figure 12, in which the
clock period is decreased from 0.2ns (5GHz), 0.18ns (5.5GHz)
down to 50ps per cycle (20GHz). The results, averaged
across all benchmarks, are normalized to the BIPS de-
livered by 5GHz baseline machine using the floorplanner
that minimizes the wirelength. As shown, the advantage
of using a profile-guided method significantly stands out
when the clock speed is increased. When clock frequency
is quadFor a 20GHz processor, our technique shows almost
3 times improvement in BIPS over the baselne, whereas
minimizing wirelength can gain only twice. Hence our
floorplanner is more scalable than a conventional approach.
Eventhough we didn’t show the comparison between tim-
ing driven floorplaning here, it can be approximatedly con-
sidered as minimizing wirelength on higher clock frequency.
As shown in the Figure, our approach can be as good as
next generation processor and sometimes it is even better.

For optimal cycle time precdiction, our algorithm can
predict two out of eight correctly and another four are in
the close range. Since we relax the original MINP into LP,

This can be seen more clearly in small solution space such
as in Config1

Micro-arch Cfg 1 Cfg 2 Cfg 3 Cfg 4 # of
Structure Size Lat Size Lat Size Lat Size Lat Bits

Bpred 128 2 512 2 512 2 512 2 2
BTB 128 2 512 3 512 3 512 4 96
RUU 64 2 128 3 512 4 512 6 168

Int RF 32 2 32 2 32 2 32 3 64
FP RF 32 2 32 2 32 2 32 3 64

L1 Icache 8KB 3 64KB 3 8KB 4 8KB 4 512
L1 Dcache 8KB 2 64KB 5 8KB 5 8KB 5 512
L2 Ucache 64KB 3 512KB 10 128KB 10 128KB 10 1024
L3 Ucache None N/A None N/A 2MB 59 2MB 59 1024

ITLB entries 32 4 128 4 128 5 128 5 112
DTLB entries 32 4 128 4 128 5 128 5 112

ALU 2 2 4 2 4 2 8 2 N/A
FPU 1 7 2 7 2 7 4 7 N/A
LSQ 16 4 64 5 128 6 128 6 84

Mem port 1 N/A 4 N/A 8 N/A 8 N/A N/A
Machine width 2 N/A 4 N/A 8 N/A 8 N/A N/A

Table 1: Microarchitecture Configurations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

gzip vpr mcf gap bzip2 twolf swim art equake lucas Avg.

IP
C

WL_CONFIG1 PGF_CONFIG1 WL_CONFIG2 PGF_CONFIG2 WL_CONFIG3 PGF_CONFIG3 WL_CONFIG4 PGF_CONFIG4

Normalize
d

IPC

Figure 10: Performance Improvement for a 10GHz Processor (WL: Wirelength, PGF: Profile-Guided
Floorplan)

we cannot guarantee the optimal solution. In addition, it
is not easy for mathematical model to completely capture
architecture behavior. However we can use this as a guide-
line for faster search time. We can use predict cycle time
as the starting point and hence perform iterative search by
running floorplanner and simulator alternately.

7. CONCLUSIONS AND FUTURE WORK
Due to the miniaturization of feature size, global wire

delay needs to be addressed and considered as an architec-
tural entity for microprocessor designs. In this work, we
proposed a profile-guided floorplanning algorithm which
uses both the technology scaling parameters and the infor-
mation of dynamic internnection traffic between microar-
chitectural modules to guide the floorplanning for perfor-
mance optimization. Based on the statistics of the inter-
module communication, our design methodology generates
given a target clock frequency range. Our results show our
proposed method can effectively improve the overall ap-
plications’ performance by up to 40% over a conventional
wire length based floorplanner.

One future research direction of this work is to optimize
the performance by further partitioning each functional

unit into finer submodules. For example, one can parti-
tion the register file into several disjoint modules based on
the access frequency acquired from the execution profiling.
With this partitioning, our floorplanner could potentially
generate a floorplan with different access latencies to these
submodules while attempting to minimize the latency of
the most frequently accessed registers. This leads to a new
opportunity to explore the trade-offs in latency, area, and
parititioning for processor resources. The trade-offs study
and its overall impact can be performed for the other mi-
croarchitecture components such as the reorder buffer, the
branch target buffer and caches. In addition, resource al-
location with respect to what to allocate in the faster sub-
modules will also be a subject of many research interests.

8. REFERENCES
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger.

Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures. In ISCA, 2000.

[2] N. Sehgal B. Halpin, C.Y.R. Chen. Timing Driven Placement
using Physical Net Constraints. In DAC01, 2001.

[3] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang.
Architectural Synthesis Integrated with Global Placement for
Multi-Cycle Communication. In ICCAD, 2003.

[4] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis.

Microarchitecture Evaluation with Physical Planning. In
DAC, 2003.

[5] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl. A Generic
System Simulator (GENESYS) for ASIC Technology and
Architecture Beyond 2001. In Int’l ASIC Conference, 1996.

[6] W. Gosti and et al. Wireplanning in Logic Synthesis. In
ICCAD, 1998.

[7] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of Wires.
Proceedings of the IEEE, 2001.

[8] J. Kleinhaus and et al. GORDIAN: VLSI Placement by
Quadratic Programming and Slicing Optimization. IEEE
Tran. on CAD, 1991.

[9] S. Liao and L. He. Full-Chip Interconnect Power Estimation
and Simulation Considering Concurrent Repeater and
Flip-flop Insertion. In ICCAD, 2003.

[10] Eindhoven University of Technology. LP solve.
ftp:/ftp.es.ele.tue.nl/pub/lp solve/.

[11] K. Sankaralingam, V. A. Singh, S. W. Keckler, and D. Buger.
Routed Inter-ALU Networks for ILP Scalability and
Performance. In ICCD, 2003.

[12] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model. Technical Report
2001.2, HP Western Research Labs, 2001.

[13] SIA. National Techonology Roadmap for Semiconductors,
2001.

