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Abstract— In nature, communal hunting is often performed
by predators by charging through an aggregation of prey. How-
ever, it has been noticed that variations exist in the geometric
shape of the charging front; in addition, distinct differences
arise between the shapes depending on the particulars of the
feeding strategy. For example, each member of a dolphin
foraging group must contribute to the hunt and will only be
able to eat what it catches. On the other hand, some lions earn
a “free lunch” by feigning help and later feasting on the prey
caught by the more skilled hunters in the foraging group. We
model the charging front of the predators as a curve moving

through a prey density modeled as a reaction-diffusion process
and we optimize the shape of the charging front in both the
free lunch and no-free-lunch cases. These different situations
are simulated under a number of varied types of predator-prey
interaction models, and connections are made to multi-agent
robot systems.

I. INTRODUCTION

Social animals often resort to communal hunting tech-

niques to increase their chances of catching prey and one

common approach is to charge through the aggregation of

prey. Bottlenose dolphins, Tursiops truncatus, and African

lions, Panthera leo, are examples of biological systems

that utilize such foraging methods. These predators arrange

themselves in a specific formation to create a predator front

that moves together, in unison, towards the collection of prey.

However, the shape of the dolphin fronts are different from

those of lions and this difference can be attributed to the

nature of their feeding strategies, e.g., [1], [2]. Our goal is

to recover these differences by optimizing over the shape of

the front for a given feeding strategy.

Each member of the dolphin foraging group must con-

tribute in the hunt [1]; on the other hand, most lions in the

group feast on the prey caught by others in the group [2]. In

this paper, we optimize predator fronts for foraging multi-

agent systems by drawing inspiration from these two biolog-

ical systems as representatives of two distinct cases: the free

lunch (lion-inspired) and the no-free lunch case (dolphin-

inspired). The predator front is modeled as a quadratic curve

and the total energy intake of the agents over the curve and

the energy of the agent that accumulates the least energy

is calculated under varied types of predator-prey interaction

models. The free lunch curve maximizes the total energy
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intake and the no-free lunch curve maximizes the energy of

the agent that feeds the least.

A potential application for prescribing the geometric shape

of a charging front of foraging robots is the US Navy

Sea shield mission, in which teams of autonomous vehicles

will coordinate with each other to secure littoral regions

[3]. Threats in the littoral regions usually consist of mines,

submarines, and unmanned underwater vehicles (UUVs),

which must be neutralized before other teams can land on

shore. With such engineering applications as the back-end

of our bio-inspired work, we design the predator fronts by

developing a simple, yet expressive model of the biological

systems, where the simplicity of the the model allows it

to be implemented in engineered devices, such as a multi-

agent robot system. At the same time, the model will be rich

enough to replicate complex biological phenomena (e.g., the

capturing of prey).

The foraging task is of eminent interest to the multi-robot

community (for a representative sample, see [4], [5], [6], [7],

[8]); yet previous work primarily focuses on the search and

retrieval aspects of foraging stationary objects or cooperative

agents. In [4], the effects of physical interference is presented

for different foraging strategies, such as the “bucket brigad-

ing strategy,” where each robot is in charge of a sub-area of

the entire foraging region. The effects of behavioral diversity

of the foraging group is studied in [5], where the behaviors

range from “homogeneous” to “specialized.” Bio-inspired

foraging strategies, based on ants and bees, are presented

in [6] and [7], respectively. In this work, for a given feeding

strategy, we obtain the most efficient predator front through

the solution to an optimization problem.

The remainder of the paper is organized as follows: Sec-

tion II describes, in detail, the two types of biological systems

under consideration. Our curve-based model of the charging

front is presented in Section III and the prey movement

rules are prescribed in Section IV. In Section V, we describe

how we obtain the free lunch and the no-free lunch curves.

Simulation results are provided in Section VI along with

discussions in Section VII. Finally, Section VIII presents the

conclusions.

II. BIOINSPIRATION

Here, we discuss the foraging techniques of the two

biological systems, Bottlenose dolphins and African lions,

which serve as inspiration for our multi-agent cooperative

foraging strategy.

Dolphins exhibit sophisticated coordination as a group

while searching for food and capturing prey. Dolphins have
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(a) Dolphins driving in a “line
abreast” formation.

(b) Lions driving in a “catcher’s
mitt” formation.

Fig. 1. The arrangement of foragers in the predator front is shown for
dolphins and lions. Predators (squares) are driving towards (arrows) the
direction of their prey (circles).

several prey capturing techniques at their disposal and the

particular method we are interested in is known as the wall

method (for details, see [1]). In this method, dolphins arrange

themselves next to each other to create a front that charges

through a school of fish, as shown in Fig. 1a. The shape

of the front is described in [1] as being “line abreast” and

the usefulness of the method stems from the ability of this

shape to constrict the movement of the fish. Moreover, each

dolphin contributes in the hunt and only eats what it can

catch.

Interestingly, African lions, another social animal, imple-

ment a prey capturing technique quite similar to the wall

method. When hunting medium-sized prey like zebra, a

single lion has a low success rate (about 17%) [2] and as

a result, lions revert to group hunting and one technique that

is often used is very similar to the wall method. Female lions

are usually in charge of foraging and while charging towards

their prey, lionesses in the “wing” positions cause the prey to

drive towards the lionesses waiting in the “center” positions

[9]. The resulting predator front that drives towards the prey

is therefore U-shaped, often described as a “catcher’s mitt”

[2] as shown in Fig. 1b. A zebra typically weighs around 250

kg and although it is brought down by a singe lion, others

in the group claim their share and earn a free lunch.

We draw inspiration from these two different social an-

imals that use a similar idea during communal hunting to

prescribe efficient curves. In the next section, we present

our model of the predator front based on curve deformation

techniques.

III. PREDATOR FRONT AS CURVES

Our goal is to find the most efficient curves for 1) the

free lunch and 2) the no-free lunch case. In a related work,

Zhang et al. [10] proposed a control law for mobile particles

to converge to predefined spatial patterns. In another related

work, Lankton et al. [11] use a curve evolution technique

for image segmentation. There, based on the optimality

condition on the speed of the curve, a gradient descent

algorithm is used to deform the shape of the curve and

detect objects. Since our goal is to develop simple biological

models that can be implemented on engineered systems, to

K = Kf

K = Ki

y

x

K = 0

Fig. 2. The curves are parameterized by K and the candidate curves being
swept through the aggregation of prey include all the curves between K =Ki

and K = K f .

identify the most efficient curves, we specify a candidate set

of curves apriori, and each curve from this candidate set is

swept through the aggregation of prey.

More specifically, we only consider quadratic curves,

where each candidate curve has the same arc length. The

constant arc length requirement is placed from an engineer-

ing design perspective. If our multi-agent system consists

of M agents, each with a limited communication range, it is

desirable to restrict inter-agent distances to remain within this

range so that each agent remains in constant communication

with its neighboring agents. Since our predator agents create

a front and charge towards the prey while maintaining the

shape of the front, we simply require all of the candidate

curves to be of the same arc length, L; thus if we have M

agents, the inter-agent arc length remains L
M−1

.

Consider the curve of the form y = ax2 + K and arc

length L. In fact, due to the constant length assumption, the

coefficient a depends on K. More specifically, if the endpoint

of the curves are (−xm,0) and (xm,0), where xm > 0, then

the K-parametrized curve, C(K), is given by

y =
−K

x2
m

x2 +K, (1)

where, xm is given by solving the following equation:

L =

∫ xm

−xm

√

1+
dy

dx
dx (2)

=

∫ xm

−xm

√

1+
−2K

x2
m

x dx.

This formulation gives us the shape of the candidate curve for

each value of K. If the candidate curves under consideration

include all curves between C(Ki) and C(K f ), then we can

denote the set of candidate curves as C = {C(K) | K ∈
[Ki,K f ]}, as shown in Fig. 2.

Each K-parameterized curve charges towards the prey

aggregation and if we assume, without loss of generality,

that the front charges in the direction of increasing y, from

t = 0 to t = t f with a speed vc, then at time t, the curve C(k)
is given by y = −K

x2
m

x2 +K+ vct.
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IV. PREY AGGREGATION AS A DENSITY

FUNCTION

The 2D prey density is denoted by u(x,y, t), where u :

R
2 ×R→R and (x,y) represents Cartesian coordinates. We

consider two types of processes to define prey movement,

which in turn describes our predator-prey interaction, one

is a simple diffusion and the other is a reaction-diffusion.

Representing prey as a density function and using reaction-

diffusion equations to model the spatio-temporal profile of

prey is formally known as the “population framework” to

model prey [12]. We use this approach, as opposed to an

agent-based model of prey, such as the one presented in

[13], as we are interested in the collective movement of

prey, whereas the agent-based approach requires us to define

control laws for the movement of individual prey-like agents.

The details of our movement laws are discussed in more

detail below.

A. Diffusion

The first type of prey movement is a diffusion given by

∂u(x,y, t)

∂ t
= v0

(

∂ 2u(x,y, t)

∂x2
+

∂ 2u(x,y, t)

∂y2

)

, (3)

where, v0 ∈ R+ is the thermal diffusivity. As a movement

law for prey, (3) models the case where there is no predator-

prey interaction. The prey diffuses from its initial density,

u(x,y,0), at a “speed” of v0, regardless of the location of the

predator front. The diffusion of the prey is shown as contour

levels in Fig. 3.

Recall that an application for our work is mine clearing by

teams of forging robots. Equation (3) captures the movement

of objects like floating mines, as opposed to advanced

mines (for details see [14]). The reaction-diffusion process

described next, models the movement of more sophisticated

threats, such as UUVs that react to the location of the

foraging robots.

B. Reaction-diffusion

A reaction-diffusion process is a more natural representa-

tion of the prey movement than a simple diffusion process (as

the one used in the previous subsection) since it incorporates

the prey response to a predator charge. In general, a reaction-

diffusion process models the changes in a substance under: 1)

reaction - the influence of another substance and 2) diffusion

- the spatial distribution. There are numerous mathematical

models of a reaction–diffusion process and the one we use

is known as the FitzHugh-Nagumo model. Because of its

simplicity, this model is widely used in the field of math-

ematical biology to describe the firing of neurons and the

propagation of nerve action potentials under the excitation

of ion movement across a membrane [15]. We tailor the

system of partial differential equations used to describe the

FitzHugh-Nagumo model in [15] to model the propagation

of prey under the excitement of the predator front as follows:

∂u

∂ t
= v(p(x,y))

(

∂ 2u

∂x2
+

∂ 2u

∂y2

)

−σ p(x,y), (4)

where σ ∈R+ and the diffusion coefficient, v, now depends

on the predator location, p(x,y). For a curve C(K), we define

the predator location as follows:

p(x,y) =

{

1 if (x,y) on C(K)
0 otherwise

, i ∈ {1, . . . ,M}. (5)

The diffusion coefficient is modeled as

v(p) =

{

v0 +κ if p = 1

v0 otherwise
(6)

where κ ∈R+. Such a formulation for the thermal diffusivity

captures the idea of the prey being “scared” in the presence

of predators. For a location (x,y), when p = 0 (i.e., there are

no predators present in that location), the prey-flock diffuses

according to the nominal “speed” of v0; but when p = 1,

they diffuse faster at a speed of v0 +κ . We also capture the

idea of prey being “eaten” with the −σ p term.

Our mathematical models for predator fronts and prey

aggregations are based on creating simple, yet rich biological

models. Recall that the goal of the work is not biomimicry,

but to draw inspiration from biology for engineering appli-

cations. Next, based on our models of the predator front and

the PDE-based models of prey movement, we characterize

the optimal charging front in both the free lunch and no-

free-lunch cases.

V. FRONT DESIGN

The most efficient charging front for a given feeding

strategy is obtained through the solution to an optimization

problem. From the set of candidate curves, C , defined in

Section III, the free-lunch curve maximizes the total energy

intake of the foraging group and the no-free lunch curve

maximizes the energy intake of the agent that feeds the least.

But before we begin, we need to define the energy intake for

an individual agent. If the position of agent i is denoted as

Ci(K) and we let agent i “eat” u(Ci(K), t) amount of prey at

time t, then the total amount of energy consumed, i.e. prey

captured, by agent i is given by

Ei =

∫ t f

0
u(Ci(K), t) dt, i ∈ {1, . . . ,M}. (7)

With this definition of individual energy intake, we now

characterize the optimal charging curves for the free lunch

and the no-free lunch case.

Lions earn a free lunch by eating the prey caught by the

more skilled hunters that take positions in the center of the

front. In this case, the goal is to capture as much prey as

possible for a group feasting to take place. Thus, since the

total energy, E , is given by

E =
M

∑
i=1

Ei, (8)

the free lunch curve is the curve C(K⋆), where

K⋆ = argmax
K

E (9)

As opposed to lions, each dolphin in the foraging group

must contribute in the hunt and as a result, in our formulation,
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Fig. 3. The curve C(−10) is sweeping through the prey (represented as contour levels), which are diffusing according to (3).

the no-free lunch curve is the curve that maximizes the total

energy intake of the agent that feeds the least. Let the energy

of the agent that feeds the least be denoted as E ′, then

E ′ = min
i

Ei, (10)

where i ∈ {1, . . . ,M}. The no-free lunch curve is the curve

C(K′), where

K′ = argmax
K

E ′ (11)

VI. SIMULATIONS

The results of our model are shown in Fig. 4. The foraging

area is represented as a 2D mesh, where xmin =−30, xmax =
30, ymin = −30, ymax = 30, and the mesh spacing is ∆x =
∆y = 0.5. The curves are swept from ti = 0 to t f = 20, with a

time step of ∆t = 0.005. The candidate curves are the curves

between Ki =−10 and K f = 10, with a step of ∆K = 0.5 and

arc length L = 23. We use 21 predator agents, thus curves

are drawn using M = 21 equally-spaced data points.

Three distinct initial prey densities are considered. Each

initial density is a ball of radius 4 units and they differ in

the location of their center (denoted as ‘x’). In Figs. 4a and

4b, the center is located at (0,−5); in Figs. 4c and 4d, the

center is located at (0,0); and in Figs. 4e and 4f, the center

is located at (0,10). For each position, we simulate the prey

movement as a diffusion process in Figs. 4a, 4c, and 4e;

as a reaction-diffusion process in Figs. 4b, 4d, and 4f. The

diffusion process parameters are v0 = 0.5, κ = v0, and σ =
10.

There are two curves displayed for each prey center of

density and prey movement rule pair: the free lunch curve

(solid line), which maximizes E , and the no-free lunch curve

(dashed line), which maximizes E ′.

VII. DISCUSSION

Although we produced simple biological models of charg-

ing predator fronts, we observe that our simulations render

strong resemblances to actual lion fronts (i.e., the free lunch

case). In Figs. 4a, 4b, and 4d, we notice that our lion-inspired

fronts look like the catcher’s mitt shape described in [2] -

with agents in the wing and center positions.

In the diffusion cases of Figs. 4c and 4e, the lion-

inspired fronts are not U-shaped. This makes sense because

in these cases, as opposed to the diffusion case of Fig. 4a,

the candidate fronts sweep through more cells with a prey

density value of 0. Thus, in these cases, to maximize E , the

optimal curves are those that tend to “hug” the prey center

and capture the most available prey at the start of the sweep.
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(c) Prey at (0,0), K⋆ = 0, K′ =−10
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(e) Prey at (0,10), K⋆ = 10, K′ =−10
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Fig. 4. Left: prey movement is modeled as a diffusion process. Right: prey movement is modeled as a reaction-diffusion process. The free lunch curve
(solid line) and the no-free lunch curve (dashed line) is shown for different positions of the center of prey density (‘x’).
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For the prey centered at (0,−5), the lion-inspired fronts

are the same for both the diffusion (Fig. 4a) and the reaction-

diffusion case (Fig. 4b). However, we obtain different shapes

for the diffusion and reaction-diffusion cases when the prey

is centered at (0,0) and (0,10). As we mentioned earlier,

in Figs. 4c and 4e, the optimal fronts are the ones that pass

through the center of the prey at the beginning of the sweep.

However, since our reaction-diffusion process models prey

being scared, it turns out that the optimal thing to do is

no longer to start the sweep as a curve that intersects the

prey center. If the fronts begin the sweep by hugging the

prey, they scare away a lot of the prey and there are fewer

left to capture during the rest of the sweep. As a result,

the optimal lion-like fronts during a reaction-diffusion case

are less aggressive and tend to hold back more than their

diffusion case counterparts. In the case of Fig. 4b, the curve

cannot “avoid” the prey any longer than its counterpart of

the diffusion case, since the optimal curve in the diffusion

case is already the curve that holds back the most, C(−10)
(see Fig. 4a).

In the case of the dolphin-inspired predator fronts, we

notice that the optimal curve is always the curve that can

place the predators in the “wing” positions (which capture

the least prey) in the path of the initial ball of prey density.

Fig. 4f illustrates the only case when the optimal dolphin-like

curve is not the curve C(−10); in fact, the optimal curve is

C(−8) curve. This is makes sense because this is a reaction-

diffusion case and by the time a curve reaches the prey center,

the prey have extensively diffused and as a result, to eat more,

the predators in the wing positions must spread out further.

The result is a more straightened version of the diffusion

counterpart obtained in Fig. 4e.

Due to the simplified models of prey response and constant

length requirements placed on the predator fronts, we cannot

expect exact replicas of natural systems. Even though our

goal is bioinspiration, as mentioned before, we observe

strong biomimicry for the case of the lion-inspired fronts.

Dolphins in the wall method tend to charge in a straight

line and this is not obtained in our simulations. We do

however capture one interesting difference between lions and

dolphins: the fact that lions rely on stalking their prey and

dolphins do not. The maximum speed a lions can attain is

48− 59 Km/h, but they can only sustain this speed for a

short distance [2]. The type of prey they hunt can usually

outrun them and as a result, lions stalk their prey and charge

only when they are within 30 m of their prey. On the

other hand, dolphins tend to “drive” towards their for long

distances (often until their drive is obstructed by the shore or

boating activities [1]). This is captured by our results since

the optimal lion-like fronts start in positions that are either

the same distance or distance closer to the prey than the

dolphin-like fronts.

VIII. CONCLUSIONS

During group hunting, Bottlenose dolphins and African

lions arrange themselves to form a predator front that charges

towards the aggregation of prey in unison. However, the

shape of the dolphin front is different from that of lions and

this difference stems from the nature of the feeding strategy.

We modeled the predator fronts as quadratic curves and

used curve deformation techniques to characterize the most

efficient curve for a given feeding strategy. With engineering

applications as a possible back-end of our bio-inspired work,

simple mathematical models of the predator charge were

developed. However, these simple biological models were

rich enough to capture the true shape of lion fronts with the

inclusion of predator-prey interactions.
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