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SUMMARY

The motivation for this research is to provide a quantitative model for improving shadow

detection in arbitrary environments. Many computer vision applications extract foreground

pixels to capture moving objects in a scene. However, since shadows share movement pat-

terns with foreground objects (and have a similar magnitude of intensity change compared

to a background model), they tend to be extracted with the desired object pixels. Shad-

ows generally contribute to inaccurate object classifications and impede proper tracking of

foreground objects. Contemporary shadow removal algorithms have made great strides in

discriminating between object pixels and shadow pixels, but lack scene-independence. In

order to perform optimally, these leading methods require assumptions to be made about

key factors of a scene, including illumination constancy, color content, and shadow in-

tensity. As a result, no leading shadow removal method is robust enough to compensate

for environmental change over time, nor are they suitable for deployment into a particular

environment without a priori tuning of parameters.

This research evaluates popular shadow removal methods, extracts corresponding al-

gorithmic parameters that affect shadow removal, correlates these parameters with salient

environmental aspects, and finally leverages this correlation to improve shadow removal

efficacy across diverse environments. Data collection and validation were performed using

a collection of widely-used computer vision datasets. Parameters, both algorithmic and en-

vironmental in nature, are identified, correlated, and evaluated using analytic tools. Using

the average attenuation of dark foreground pixels, an adaptive model improves shadow de-

tection by up to 10% and improves shadow-object discrimination by up to 28%. Additional

indirect environmental factors are found to increase the effectiveness of this attenuation

model. Brightness calculation methods are shown to improve attenuation correlation by

7% to 20%. Identifying low-contrast feature keypoints in a scene is also found to improve

attenuation-correlation in some environments by up to 12%.

xv



CHAPTER 1

INTRODUCTION

The need for accurate video analytics has emerged in many application areas, including

surveillance, transportation management, and smart-city sensing infrastructure. Many of

these applications, e.g., pedestrian and traffic counting [1], perform classification and anal-

ysis on moving objects. In order to detect and extract moving objects in an environment,

foreground pixels are differentiated from those of the background through the use of sta-

tistical techniques, including Mixture of Gaussians, and Multi-Modal Mean [2, 3]. These

strategies establish a model of the background of a scene, which changes gradually over

time. This background model is then compared directly to a frame. By finding the differ-

ence between an image frame and its background model, a mask containing the foreground

pixels is created. Foreground pixels are then grouped together and segmented as a moving

object, which is analyzed according to the needs of the application.

Applications that analyze moving objects rely on the accuracy of the foreground extrac-

tion of foreground pixels. These applications are disadvantaged by the fact that shadows are

often mischaracterized as foreground objects, and are included as part of a moving object.

This is often because shadows possess similar movement patterns and brightness compared

to non-shadow foreground objects [4]. Figure 1.1 illustrates the effect shadows have on the

segmentation of foreground objects.

The inclusion of shadows in foreground objects may hamper detection and tracking in

several ways. Prominent issues, noted by Sanin et al. [6], include the distortion of an ob-

ject’s appearance model (required to properly track an object), and the erroneous joining

of multiple objects into one labeled connected-component. Additional details regarding a

shadow’s effect on tracking can be found in [4, 7]. The removal of shadows from fore-

ground objects is thus a vital step in accurately segmenting moving foreground objects.

1



(a) (b)

(c) (d)

Figure 1.1: The need for shadow removal: (a) Original frame from the aton room dataset
[5]. (b) Result of foreground extraction, with shadows incorrectly being detected as moving
objects rather than as background. (c) Research goal: proper segmentation into shadow
regions and true foreground. (d) Proper identification of foreground with the removal of
shadows.
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Classifying shadow pixels within moving foreground objects has been approached in

numerous ways, including color-based attenuation models [8, 9, 10, 11, 12], geometric

projective models [13, 14, 15, 16, 17], and texture-matching models [18, 19, 20, 21, 22,

23]. Machine-learning has also been employed to attempt to learn the appearance of cast

shadows in an unsupervised manner [24, 25, 26, 27]. A taxonomy of shadow removal

methods produced by Prati et al. summarizes and evaluates four contemporary method

classes: Statistical Nonparametric, Statistical Parametric, Deterministic Nonmodel-based

and Deterministic Nonmodel-based [28]. The study concluded that the simpler methods

were more suited for general practice, but “to detect shadows efficiently in one specific

environment, [adding] more assumptions yields better results.” A second algorithm survey

conducted by Sanin et al. in [6] evaluated more modern methods (catalogued as Chromac-

ity, Geometry, Physical, Small Region Texture, and their own contribution, Large Region

Texture) on the same datasets as above, yielding similar results concerning the generaliza-

tion of shadow removal to an arbitrary scene. Mitra et al. provides a survey of threshold

selection strategies for identifying shadows in moving foreground objects [7].

1.1 The Problem

These surveys indicate that existing shadow removal algorithms fail to optimally adapt

to varying environmental properties; these methods quantifiably benefit from assumptions

made about key factors of a scene, including illumination constancy, color content, and

shadow intensity. In order to facilitate optimization, shadow removal methods possess

algorithm parameters that are manually tuned to an environment. The reliance on environ-

mental assumptions affects shadow removal in two ways: firstly, shadow removal performs

suboptimally when deployed in an arbitrary environment, and secondly, even when man-

ually calibrated, shadow removal fails to adapt to environmental parameters that change

over time. From an application context, a surveillance system that monitors a sun-lit en-

vironment throughout an entire day will possess a wide range of shadow qualities when
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(a) aton highway1 (b) aton campus

Figure 1.2: coneR1 set to 0.2. (a) Detection: 87.8, Discrimination: 59.84. (b) Detection:
99.9, Discrimination: 32.2

comparing shadows cast at dawn to shadows cast in the evening. Shadows cast in the same

location may vary in darkness, size, orientation, and shape depending on the time of day.

Therefore shadow removal must adapt not only to diverse environments, but continually

adapt as environmental properties vary over time.

We quantitatively demonstrate several cases that indicate the need for adaptation. Shadow

removal is judged by its detection rate and its discrimination rate, further detailed in sec-

tion 2.1. Detection rate indicates the number of shadow pixels correctly identified, while

discrimination rate indicates the number of foreground object pixels that are correctly iden-

tified. Figure 1.2 modifies a parameter belonging to Physical shadow removal, which con-

trols the chromacity range in which a shadow can lie. The parameter (coneR1) causes

Physical shadow removal to perform optimally in the aton highway1 frame at a value of 0.2.

Similarly, the same algorithm performs poorly in the included dataset aton campus with the

same parameter value. However, if coneR1 is modified from 0.2 to 0.68, aton highway1

experiences a 77% loss of detection, while aton campus gains 53% discrimination in ex-

change for a 15% loss of detection (1.3). Geometry shadow removal was found to also

showcase different results on the same scene, but with differing parameters (Figure 1.4).

4



(a) aton highway1 (b) aton campus

Figure 1.3: coneR1 shifted from ‘0.2’ to ‘0.68.’ (a) Detection: 10.59, Discrimination:
87.97. (b) Detection: 84.9, Discrimination: 85.4. No parameter value provides consistent
accuracy across datasets.

(a) gWeight: 70 (b) gWeight: 0

Figure 1.4: gWeight shifted from ’70’ to ’0.’ (a) Detection: 79.05, Discrimination: 86.74.
(b) Detection: 71.13, Discrimination: 90.21
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1.2 Objective and Contributions

Our research seeks to establish an understanding of environmental properties that affect

shadow removal, and use that understanding to optimize shadow removal in an arbitrary

environment. This is achieved by automatically calibrating an algorithm’s parameters based

on observed environmental properties. Furthermore, we seek to create an understanding

of how these environmental properties change over time, in order to continuously adapt

shadow removal algorithms. These objectives require the creation of an adaptive model

that automatically configures a shadow removal method to optimally perform given the

observed environmental properties.

Our research makes the following contributions. We perform a qualitative assessment

of each algorithm’s performance in various environments. We construct and utilize an inter-

active framework for evaluating the sensitivity of an algorithm with respect to its mutable

parameters. We identify and quantify observed environmental properties, and correlate

them to sensitive algorithm parameters. Finally, we demonstrate the construction of an

adaptive model, capable of leveraging correlated environmental properties to automatically

tune an algorithm’s parameters. The demonstration is completed by constructing a proof-

of-concept model for Physical shadow removal.

Our proof-of-concept adaptive model draws upon the correlation between brightness

attenuation in shadow regions and one of the Physical algorithm’s parameters, coneR1. It

improves shadow detection by up to 10% and shadow discrimination by up to 28% on a

range of standard datasets from ATON and PETS [5, 29]. Additional indirect environmental

factors are found to modify the effectiveness of the adaptive model. Various brightness

calculation methods are shown to influence attenuation correlation by 7% to 20%. A study

of low-contrast feature keypoints in a scene was shown to improve attenuation-correlation

by up to 12% in some environments.

The outline of this thesis is as follows. In Chapter 2, we detail the shadow removal
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algorithms utilized in this study, and outline the steps taken to produce an adaptive model.

Chapter 3 assesses the shadow removal algorithms for their performance in diverse envi-

ronments, as well as their sensitivity to parametric change. These assessments culminate in

the construction of a proof-of-concept adaptive model for Physical shadow removal, using

its coneR1 parameter. Chapter 3 also explores indirect environmental properties and their

potential impacts on the performance of the adaptive model. Chapter 4 quantifies and dis-

cusses the results of the adaptive model, and the indirect environmental properties’ effects

on the model. Chapter 5 summarizes conclusions and future work.
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CHAPTER 2

APPROACH

This chapter details evaluation metrics, provides background on the surveyed shadow re-

moval algorithms, and outlines our research methodology. In section 2.1, we quantify the

metrics used to evaluate the accuracy of shadow removal. Section 2.2 provides background

on the shadow removal algorithms examined in this study. Finally, our research approach

is outlined in section 2.3.

2.1 Evaluation Metrics

The efficacy of a shadow removal algorithm on a given frame is evaluated with the popular

metrics Detection (η) and Discrimination (ξ) (Eqn. 2.1, Eqn. 2.2) [28]. These measure

how many shadow pixels are correctly identified, and how many foreground object pixels

are correctly preserved, respectively. The metrics are calculated using true positives (TP)

and false negatives (FN) of both foreground pixels and shadow pixels. Subscripts signify

identifications on shadow pixels (S) or foreground pixels (F ).

η =
TPS

TPS + FNS

(2.1)

ξ =
TPF

TPF + FNF

(2.2)

2.2 Background: Shadow Removal Methods

We select five popular shadow removal algorithms for this study, named Chromacity, Phys-

ical, Geometry, Small-Region Texture, and Large-Region Texture. These shadow removal

methods use differing techniques for identifying foreground shadow pixels. These tech-
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niques are color information (Chromacity), brightness attenuation (Physical), shadow shape

(Geometry), and texture information (Small-Region Texture, Large-Region Texture). We

used standardized implementations of the shadow removal methods, licensed under GPL

v3+ and written in C++ [30].

2.2.1 Chromacity

Chromacity, or hue, represents the base color of a pixel, and is separable from brightness

and saturation. Chromacity-based shadow removal methods maintain that a pixel, when

covered by a shadow, loses luminosity (or brightness), while retaining its chromacity. This

assumption is referred to as color constancy, or linear attenuation. This study implements

one such algorithm from Cucchiara et al. [8], implemented using the Hue-Saturation-Value

(HSV) color representation.

Cucchiara et al. observe a shadowed pixel in the foreground (fgp) retains its hue when

compared to the corresponding background pixel (bgp), while losing saturation and inten-

sity (value). In order to be considered a shadow, the hue, saturation, and value of fgp must

fall within the pre-determined thresholds τH , τS , and [β1, β2] (Eqn. 2.3, 2.4, 2.5).

|fgp(H)− bgp(H)| ≤ τH (2.3)

fgp(S)− bgp(S) ≤ τS (2.4)

β1 ≤
fgp(V )

bgp(V )
≤ β2 (2.5)

The thresholds are optimized for the environment of the algorithm’s intended applica-

tion. Due to its reliance on curated thresholds, Chromacity shadow removal is sensitive to

strong illumination changes. Furthermore, the assumed linear attenuation model performs

worse with dark shadows.
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2.2.2 Physical

For a shadow pixel to attenuate linearly, the light source casting the shadow must consist

of primarily white light. Many environments experience multiple light sources, whether

they are the sun, surface reflections, or blue light refracted from the sky. The presence of

non-white light sources causes non-linear attenuation from a foreground shadow pixel to

its background pixel.

This study uses an implementation of Cheng et al.’s Physical shadow removal, which at-

tempts to learn the attenuation model of a shadow using a Gaussian Mixture Model (GMM)

[27]. Three features are used to learn the attenuation model of a pixel (p): illumination at-

tenuation (αp), red-green direction (θp), and blue direction (φp). θp and φp are spherical

coordinates, derived from the representation of the pixel p as a vector ~vp in the RGB coor-

dinate plane. ~bgp represents the pixel vector associated with the corresponding background

model. Eqn. 2.6, Eqn. 2.7, and Eqn. 2.8 describe the calculation of these features.

αp =
||~vp||
||~bgp||

(2.6)

θp = arctan(
~vp(G)

~vp(R)
) (2.7)

φp = arccos(
~vp(B)

||~vp||
) (2.8)

Physical shadow removal first uses a weak detector to identify candidate shadow pixels,

calculates the appropriate color features, and uses them to update the GMM. The GMM

learns the attenuation model of a shadow over time, and is used to discriminate between

foreground object pixels and shadow pixels.
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2.2.3 Geometry

Widely-used Geometry-based shadow removal methods attempt to identify shadow regions

in a foreground object using projective geometry [13, 14, 15, 16, 17]. The implementation

evaluated in this study, proposed by Hsieh et al. [13], characterizes the geometric moments

of foreground blobs in an attempt to identify the vertical peak and center of gravity of the

objects. Using this information, the foreground object is split into an object region and a

shadow region.

Geometric removal methods often require that a shadow and an object retain a clear

orientation in regard to one another. Geometric removal is best deployed in environments

with distinct, upright objects with a strong directional source of light.

2.2.4 Small-Region Texture

Texture-based shadow removal attempts to match shadow pixels based on the underlying

background texture, i.e., structural patterns observed in both the background model and the

foreground. If similar structural patterns are observed, it is concluded that the foreground

region does not occlude the background, and is therefore more likely to be a cast shadow.

Small-Region Texture (SRT) shadow removal, proposed by Leone et al. [20], utilizes a

set of Gabor functions with various bandwidths, orientations, and phases. A set of candi-

date shadow pixels, determined by a weak detector similar to that of Physical removal, is

projected onto the set of Gabor filters. After analyzing both foreground and background,

the texture correlation is found by computing the Euclidean distance.

2.2.5 Large-Region Texture

Large-Region Texture (LRT) shadow removal recognizes that the small regions analyzed

using SRT may fail to contain enough structural information to match foreground to back-

ground. LRT takes advantage of Chromacity removal to produce regions of probable

shadow candidates, and correlates the gradient information of both the foreground and
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background regions. LRT removal proves most effective in environments characterized by

strong textural features and large contiguous shadow regions.

2.3 Approach

Our approach is divided into two components: algorithm assessment in the context of

shadow removal in diverse environments, and the creation of the adaptive model for Phys-

ical shadow removal.

We first assess the previously catalogued algorithms (Chromacity, Physical, Geometry,

SRT, and LRT removal) for sensitivity to both environmental and parametric change. We

perform the analysis by applying each shadow removal method to each environment repre-

sented by our datasets. The detection and discrimination rates of each method’s shadow re-

moval are plotted over time. Each method is judged based on its (detection/discrimination)

response to the different environments of the datasets, and its response over time within

each dataset.

We then perform a similar sensitivity analysis upon the parameters utilized by the algo-

rithms. An algorithm is first explored through the use of interactive graphical tools, which

enable exploration of a parameter’s effect upon an algorithm. Parameter value ranges are

also methodically swept to reveal the sensitivity of an algorithm’s detection and discrimi-

nation rates to a give parameter’s value.

From the sensitivity assessments, we demonstrate the creation of an adaptive model

for Physical shadow removal’s coneR1 parameter. We create this adaptive model as a

proof-of-concept, demonstrating the capability of correlating environmental properties to

an algorithm’s parameter, and automatically calibrating the algorithm for improved shadow

removal. The adaptive model is created in five steps:

1. Determine optimal value of parameter (per frame): In accordance with our sensitiv-

ity analysis, each frame of a dataset has an optimal value for the selected parameter,
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i.e., there is an optimal value for which shadow removal is maximized. The process

for extracting these optimal values is detailed in section 3.1.1.

2. Quantify environmental properties: Observed environmental properties are the most

influential factor for creating an adaptive model. Section 3.2 details identifying and

quantifying salient environmental properties.

3. Correlate optimal parameter value and environmental properties: For each dataset, op-

timal parameter values and environmental properties are recorded for each frame. By

analyzing the correlation between the two sets, we receive a quantitative understand-

ing of how well that environmental parameter would serve as the basis for an adaptive

model. For example, if our optimal parameter value increases by x% from frame 1

to frame 2, and our environmental property also increases by x% from frame 1 to

frame 2, that environmental property may be used to predict an appropriate value of

our algorithm parameter. Consistent correlations are sought across each dataset to

eliminate false positives.

4. Improve/evaluate correlations: Many environmental properties exist that may not

display direct correlation with a parameter’s optimal value. We instead utilize these

indirect properties as modulators to improve correlation observed with a primary en-

vironmental property. Multiple contributing environmental properties are combined

to improve correlation and thereby shadow removal. Indirect properties are evaluated

in sections 3.2.3, 3.2.4, and 3.2.5.

5. Create general model for selected parameter: Incorporating direct and indirect cor-

relative environmental properties, we construct an adaptive model capable of calcu-

lating a new value for the algorithm parameter that improves shadow removal. This

model is independent of dataset, and is calculated per frame, rather than applied to

every frame in a dataset. Methodology for building this model is found in section

3.3.
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CHAPTER 3

METHODOLOGY

This chapter contains the research methodology employed while implementing a proof-

of-concept of an adaptive shadow removal model. Our methodology is divided into two

components: algorithm assessment in the context of shadow removal in diverse environ-

ments, and the creation of the adaptive model for Physical shadow removal, one of the

previously assessed algorithms.

We first assess the previously catalogued algorithms (Chromacity, Physical, Geometry,

SRT, and LRT removal) for sensitivity to both environmental and parametric change. We

then perform a similar sensitivity analysis upon the parameters utilized by the algorithms.

These assessments are performed qualitatively to determine the feasibility of an adaptive

model being created for each algorithm.

From the sensitivity assessments, we demonstrate the creation of an adaptive model

for physical shadow removal’s coneR1 parameter, which bounds the brightness deviation

used to distinguish shadow pixels from foreground. We consider various environmental

properties and evaluate their correlations to the selected algorithm parameter. Potential

indirect correlative factors are detailed in sections 3.2.4 and 3.2.5. Finally, methodology

concerning assembling the adaptive model follows in section 3.3.

3.1 Algorithm Assessment

We qualitatively assess several leading shadow removal algorithms (Chromacity, Physical,

Geometry, SRT, and LRT removal) for their sensitivity to different environmental prop-

erties. Environmental properties are identified across diverse datasets, examples includ-

ing shadow darkness, shadow directionality, and color saturation. Environmental property

shifts, such as illumination changes, are also observed in multiple datasets.
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In addition to analyzing the algorithms’ sensitivity to environmental change, we sim-

ilarly assess the algorithms’ sensitivity to parametric shift, i.e., algorithm performance is

qualitatively assessed according to the algorithm’s dependence on one or more curated

parameter values. Analysis and assessment of the previously presented shadow removal

algorithms is conducted using a series of graphical tools in conjunction with ground truths

identifying shadow regions across eight different datasets with seven unique environments.

3.1.1 Data Collection

This section details the datasets used to conduct our assessment, as well as tools devel-

oped for analyzing the sensitivity of algorithms and parameters. The tools and techniques

covered allow for both qualitative and quantitative assessment.

Datasets

A total of eight datasets were chosen for this assessment, and are summarized in Table 3.1.

Datasets 2 - 8 (denoted by the prefix “aton ”) are provided under the Computer Vision and

Robotics Research Laboratory (CVRR) in association with the University of San Diego

[31]. The datasets were cataloged with the Autonomous Agents for On-Scene Networked

Incident Management (ATON) project [5]. These datasets represent diverse environments,

including both indoor and outdoor scenes, a range of shadow intensity, and images of vary-

ing saturation.

In addition, two datasets were included from the Performance Evaluation of Track-

ing and Surveillance (PETS) project [29]. In contrast to the ATON datasets, these se-

quences were explicitly chosen because they possess subsequences featuring rapid illumi-

nation changes, due to a shift in weather conditions and cloud cover. These environmental

changes darken, lighten, and blend shadows in accordance with a background model. Fig-

ure 3.1 demonstrates the illumination changes within the PETS datasets.

All eight datasets were manually segmented to form ground truths that identify shadow
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Table 3.1: Dataset information.

Name Resolution Sequence Length # GT Frames
PETS1 768x576 175 12
PETS2 768x576 192 11

aton highway1 320x240 440 8
aton highway3 320x240 2227 7

aton room 320x240 300 22
aton campus 320x240 1179 53
aton hallway 320x240 1800 13

aton lab 320x240 887 14

(a) (b)

Figure 3.1: PETS2 experiencing both high illumination (a) and low illumination (b) (due
to cloud cover).

regions (gray) within foreground objects (white). Figure 3.2 illustrates the ground truths of

dataset frames.
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(a) (b) (c)

Figure 3.2: Datasets collected for ATON: (a) aton highway1, (b) aton lab, and (c)
aton hallway.

Assessment Tools

The first stage of our methodology is an exploration of the sensitivity of shadow removal

algorithms to environmental and parametric change. We developed tools to assist intu-

ition regarding an algorithm’s performance, capable of allowing a user to manually tune an

algorithm parameter, and observe its effect on performance.

To better understand an algorithm’s dependence on a parameter, a framework was re-

quired to rapidly modify the parameter in question. The initial implementation of the

shadow removal methods, courtesy of Sanin et al. [30], contained relevant parameters

hard-coded into the algorithms. Each algorithm therefore required re-compilation to bring

any modifications to fruition. This shortcoming was rectified by extracting each parameter

and organizing them into an .ini file. By utilizing username brofield’s SimpleINI architec-

ture, hosted on Github [32], parameters can be either set extemporaneously or altered by

an external script. An example SimpleIni .ini file is shown in Figure 3.3.

Graphical tools (GUI) were then developed to rapidly assess and visualize a param-

eter’s affect on shadow removal. Each shadow removal method was modified to accept
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Figure 3.3: An example SimpleINI file. Parameters taken from this file are used to adjust
values in real-time.

arbitrary parameter values in real-time from the .ini file. These parameters were then tied

to graphical sliders (from OpenCV’s highgui library [33]) dictating their range and value.

Any numerical parameter that has the potential to modify the Detection or Discrimination

rates of a shadow removal method is included in the GUI. An example of the GUI is seen

in Figure 3.4. The process in which the GUI modifies and displays parameters is illustrated

in Figure 3.5.

The display is updated in real-time with both a visual representation of detected shadow

pixels (in gray), and a quantified display of both the exact detection and discrimination

rates, computed based on the ground truth. Leveraging human perception, the graphical

tools enabled rapid evaluation of the sensitivity of an algorithm to changes in parameter

values within specific scenes.
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Figure 3.4: GUI tools created using OpenCV, displaying Geometry shadow removal.

Figure 3.5: The GUI takes user input through sliders, updates values in a .ini file, which
are used to produce a new output image indicating shadow versus foreground pixels with
the corresponding detection and discrimination rates. The GUI then visualizes this output.
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Determining Optimal Parameter Values

Modifying the algorithms to accept arbitrary parameter value settings at each frame en-

ables us to create batch jobs to systematically vary parameter values across multiple runs.

This allows us to meticulously sweep a given parameter (pr) through a specified range and

record its corresponding affect upon detection and discrimination rates. Figure 3.6 illus-

trates the data collection process. The calculated detection and discrimination responses

to change in pr are recorded as the functions η(pr) and ξ(pr), respectively. Both η(pr)

and ξ(pr) are determined for one frame. Figure 3.7(a) demonstrates an example of these

responses.

We also utilize the iterative process to determine the optimal value of pr for each frame

in a dataset, i.e., which pr value yields the greatest improvements in detection and discrim-

ination. This optimal value is denoted as pr*. The detection and discrimination rates are

summed, resulting in a shadow removal score Ξ(pr) (Eqn. 3.1), which quantifies the effi-

cacy of the shadow removal algorithm given a certain pr value. Figure 3.7(b) illustrates the

score calculated using the responses found in Figure 3.7(a). We define the optimal value

pr* as the global maximum of Ξ(pr) (Eqn. 3.2).

Ξ(pr) = η(pr) + ξ(pr) (3.1)

pr* = max(Ξ(pr)) (3.2)

To assess the performance of algorithms throughout a dataset, pr* is calculated for each

frame. The pr* values are used to determine degrees of correlation for an environment, and

set the foundation for a general model of arbitrary shadow removal improvement.
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Figure 3.6: For one frame, a parameter is systematically iterated to provide detec-
tion/discrimination results for each possible parameter value.
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(a)

(b)

Figure 3.7: (a) Detection (blue) and Discrimination (orange) rates are charted against the
iterated parameter value pr (x-axis). For each parameter value, detection and discrimina-
tion are summed to produce a removal efficacy score Ξ(pr). The global maximum of this
value is the optimal parameter value (pr*).
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3.1.2 Algorithm Selection Strategy

Using the tools detailed in section 3.1.1, we perform a brief qualitative assessment of the

shadow removal algorithms’ sensitivity. Given the diversity of shadow removal methods,

a wide array of environmental factors may potentially influence an even wider array of

algorithmic parameters. The scope of this research has therefore been focused on identify-

ing a suitable algorithm to assess, linking a parameter (intrinsic to this algorithm) to unique

environmental properties or changes, and developing a model for real-time parameter adap-

tation based on correlations found.

Candidate shadow removal algorithms are evaluated according to the correlation be-

tween their efficacy (in terms of detection and discrimination rates) over time, and qualita-

tive observations attributed to a dataset; e.g., the PETS1 dataset experiences a large illumi-

nation change midway through its sampling, which is taken into account when searching

for trends among the accuracy of a candidate method. Figure 3.8 demonstrates shadow

detection rates using the PETS1 dataset, for each shadow removal algorithm.
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Evaluation of Methods

We evaluate popular shadow removal methods introduced in section 2.2: Chromacity, Phys-

ical, Geometry, SRT, and LRT. This section describes our rationale for using Physical

shadow removal as part of our proof-of-concept, implemented starting in section 3.1.3. Our

evaluation considers the tunable parameters of an algorithm, dependence on environmental

properties and content, and sensitivity of relevant parameters.

A parameter’s sensitivity is evaluated by viewing its detection and discrimination re-

sponses (η(pr), ξ(pr)). Figure 3.9 illustrates what is considered a sensitive parameter. A

parameter is considered sensitive when a narrow range of parameter values affect detection

and discrimination rates disproportionately. This sensitivity causes problems for an adap-

tive model, as the range of potential optimal parameter values (pr*) is too small to correlate

with environmental properties.

Both Geometry removal and SRT removal were shown to behave highly erratically

from frame to frame even within an environmentally consistent dataset, demonstrated in

Figure 3.10. Geometry-based removal remains dependent on the shape and consistency

of processed foreground objects, and therefore dependent on the consistency of whichever

foreground extractor is used for a scene. Furthermore, the algorithmic parameters asso-

ciated with Geometry removal apply only to scenes in which the previous dependency is

already fulfilled, i.e., the tunable parameters are relevant only to the geometric shapes nec-

(a) (b)

Figure 3.9: (a) depicts a sensitive parameter, while (b) represents a typical parameter.
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essary to enable Geometry removal. These dependencies are not related to the properties

of shadows within an environment, therefore we do not pursue further analysis with Ge-

ometry removal. SRT removal is based upon a series of Gabor filters used to characterize

textural patches found in shadows, and match them to a corresponding background model.

This technique requires that shadows cover textural portions of the background model large

enough to perform meaningful analysis. Manual tuning of SRT’s algorithmic parameters

provides no benefit to the algorithms detection or discrimination rates. This dependence on

a shadow’s area, coupled with the lack of parameters suitable to improve shadow removal,

eliminated SRT removal from candidacy.

Sanin et al.’s Large-Region Texture algorithm was also eliminated from the assessment

due to its inconsistent shadow removal, similar to Geometry and SRT removal (Figure

3.11). Some environments, such as the roadways of aton highway1, yielded null detections

for all frames. The Large-Region Texture algorithm recognizes the pitfalls of the Small-

Region approach, such as restrictive texture regions, and attempts to correct them using

hard-coded parameters. The algorithm primarily displays a sensitivity to environment, as

identical parameter values produce vastly disparate shadow removal performances (Figure

3.11).

LRT also demonstrates varying levels of parametric sensitivity, also dependent on the

deployment environment. For example, the parameter avgAttenThresh is highly sensitive,

shown in Figure 3.12, and has only one value per frame that affects detection and discrim-

ination. Furthermore, shadow removal is affected disproportionately to avgAttenThresh,

with shadow detection rates often dropping to zero when affected. LRT has several param-

eters that behave in similar ways, demonstrating a lack of scalability for changing environ-

mental properties.

Chromacity and Physical shadow removal provide tunable parameters that lie within

acceptable ranges of sensitivity. An example of an acceptable range of sensitivity is seen

in Figure 3.9(b). The shadow removal algorithms often respond similarly to the diversity
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(a) Geometry

(b) Small-Region Texture

Figure 3.10: (a) and (b) showcase erratic shadow detection run on the dataset aton campus,
which experiences no significant illumination change.
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(a)

(b)

Figure 3.11: (a) Run on aton hallway, LRT shows consistent shadow removal accuracy,
with occasional dips. (b) Run on aton campus, LRT performs erratically.
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Figure 3.12: The LRT parameter avgAttenThresh is highly sensitive, demonstrating a nar-
row range for which LRT removal accuracy is affected. LRT’s removal accuracy response
is shown, using the aton highway1 dataset.

Figure 3.13: Chromacity and Physical shadow removal demonstrate similar shadow detec-
tion results run on aton hallway.
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of environments in this study; for example, Figure 3.13 illustrates comparable detection

rates for the aton hallway dataset. Chromacity and Physical shadow removal also display

consistency between datasets, i.e., none of the datasets provide particularly poor results

that are not linked to an environmental property change, such as illumination change. The

Chromacity removal algorithm succeeds due to the tendency of shadows (within a dataset)

to remain a consistent darkness when compared to the corresponding background model.

However, this simple approach can prove problematic when illumination changes occur

within a dataset. Physical shadow removal utilizes a similar system of gauging a shadow’s

darkness compared to a background model - what is referred to as a weak detector [8, 23,

27] - and implicitly suffers similar breakdowns of detection when presented with signifi-

cant illumination flux within a dataset. Although they both suffer, Physical shadow removal

employs a strong detector to increase detection and discrimination at the cost of processing

time. In the end, Physical shadow removal was selected as the main experimental frame-

work for this study, in part due to Physical shadow removal’s more sophisticated model.

3.1.3 Selecting a Parameter of Physical Shadow Removal

Physical shadow removal operates in two stages: the weak detector, and the strong detec-

tor. The weak detector typically identifies candidate shadow pixels simply by eliminating

impossible pixels, i.e., pixels that are brighter than the background model. The remain-

ing foreground pixels are then provided as candidate pixels to the strong detector, which

characterizes these pixels as either shadow or foreground. Our assessment of algorithmic

parameters explores parameters in both of these detector spaces. Before we can illustrate

which parameters were considered for experimentation, we must first understand each pa-

rameter’s place within the algorithm.
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Weak Detector - Physical Shadow Removal

The purpose of the weak detector is to prevent impossible pixels from being fed to the

strong detector. The weak detector in Physical shadow removal functions similarly to the

Chromacity shadow removal process; the candidate pixel is evaluated by its distance from a

corresponding background pixel and sorted accordingly. The weak detector is visually, and

technically, a cone projected in an RGB plane indicating the range in which a normalized

shadow pixel may lie with respect to a background model. Normalizing the shadow pixel’s

position relative to the background model is accomplished by computing the angular dis-

tance between the RGB vector of the foreground and the RGB vector of the background.

The resultant represents the color-space deviation from foreground to background. This

threshold parameter is named coneAngle within the Physical shadow removal algorithm.

The cone represents two dimensions: color deviation (θ), and intensity (or brightness) de-

viation. A foreground pixel is considered a possible shadow if the normalized ratio of fore-

ground to background brightness (scaled by a function of the color deviation (cos(θ)), is

within a pre-defined brightness range. The tolerable brightness range, delimited by param-

eters named coneR1 (minimum) and coneR2 (maximum), is hard-coded within the original

algorithm to be 0.3 to 1.0.

The main components of the weak detector are parameterized within the algorithm to

fit a general model; coneR1 < x < coneR2 as an intensity range works reasonably well for

many scenes, but there exists an optimal range for any given environment. Similarly, the

optimal color angle (θ) between foreground and background vectors is dependent on en-

vironmental parameters. These parameters, coneR1, coneR2, and coneAngle are therefore

considered when looking for correlations with environmental conditions.

Strong Detector - Physical Shadow Removal

After the weak detector removes impossible candidates for shadow pixels, a Gaussian Mix-

ture Model (GMM) is used to learn the color features of shadow pixels when compared to
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background pixels. Using the remaining pixels, the GMM estimates the normalized spec-

tral ratio for shadows in a scene, i.e., the ratio of spectral illuminants [27, 34, 35]. More

information on spectral illuminants can be found in section 3.2.3. The GMM is a frame-

work based upon Expectation Maximization and learning over time; therefore, the initial

parameters presented in the algorithm have little influence over the efficacy of shadow re-

moval. Shadow removal displayed sensitivity to only one significant parameter, postThresh,

the parameter controlling the posterior threshold. The posterior threshold is the threshold

governing shadow/foreground assignment after the posterior probability of a pixel is deter-

mined via the GMM. Since the GMM adapts to its environment, modifying the posterior

threshold invalidates any learning the GMM has achieved. Therefore, correlating post-

Thresh to environmental properties is not performed in this study.

Evaluation of Parameters

Due to their integral nature to both the weak and strong detectors, the parameters coneR1

and coneAngle are evaluated for their effect on shadow removal. Each parameter is shown

to have a pronounced effect on shadow removal.

Figure 3.14 demonstrates coneR1’s contribution to detection/discrimination across datasets.

coneR1’s effect on shadow removal remains consistent and scalable. The parameter is exer-

cised through a large range, with an equally large range of resultant detection and discrim-

ination rates. Figure 3.15 shows that each dataset demonstrates an unambiguous maximum

score, coneR1*. The wider range and relatively coarse-grained nature of the parameter

facilitates identifying trends and correlations with the iterations.
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(a) PETS1 (b) PETS2

(c) aton highway1 (d) aton highway3

(e) aton room (f) aton campus

(g) aton hallway (h) aton lab

Figure 3.14: Detection (blue) and discrimination (orange) rates are calculated as the value
of coneR1 is varied from [0.0 .. 1.0]. Full results found in appendices.
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(a) PETS1 (b) PETS2

(c) aton highway1 (d) aton highway3

(e) aton room (f) aton campus

(g) aton hallway (h) aton lab

Figure 3.15: Example score (Ξ) of a frame for each dataset. Full results found in appen-
dices.
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coneR2 represents the upper limit of the cone describing a shadow pixel’s color repre-

sentation. While it serves a similar function as coneR1, upon sensitivity testing, coneR2

was never found to contribute to higher detection and discrimination rates. Its default

value (1.0) is also its optimal value (coneR2*). Figure 3.16 shows that the maximum of

Ξ(coneR2), coneR2*, is 1.0 across multiple datasets.

coneAngle inhabits too narrow a range of sensitivity to properly exploit (see results in-

cluded in the appendices). Figure 3.17 illustrates the sensitivity of the parameter. Within

the frames of a dataset, the calculated coneAngle* values are within millionths of one an-

other. Furthermore, coneAngle* does not provide as large an improvement in shadow re-

moval as coneR1* does. The minimal removal improvement and narrow range of sensitive

values makes further examination of coneAngle difficult. For the duration of this study,

environmental feature correlations were sought only in relation to coneR1.
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(a) aton campus (η, ξ) (b) aton campus (Ξ)

(c) aton highway1 (η, ξ) (d) aton highway1 (Ξ)

(e) aton room (η, ξ) (f) aton room (Ξ)

Figure 3.16: Parameter value responses for coneR2 for three datasets (aton campus,
aton highway1, and aton room). Full results found in appendices.
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(a)

(b)

Figure 3.17: (a) Shadow removal reponse (detection and discrimination) for coneAngle,
for aton highway1. (b) Shadow removal score for aton highway1. coneAngle* is the max-
imum of the score.
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3.2 Assessment of Environmental Properties

We now create a proof-of-concept of our adaptive model, by correlating environmental

properties with a previously assessed parameter coneR1. We explore observed environmen-

tal properties within the datasets: attenuation and saturation. We also perform sensitivity

analysis on multiple environmental properties (brightness functions, SIFT parameters) to

explore their possible influence on correlation between coneR1* and attenuation (α). A

model is given for using the observed environmental properties to calculate a new variable

coneR1′, which represents the adaptation of the coneR1 parameter to more closely match

the curated coneR1* ideal value.

3.2.1 Previous Work - Large Region Texture Removal

Of all the leading shadow removal algorithms we evaluated, only one attempts to adapt its

parameters to its current environment. In Sanin et al.’s LRT shadow removal [23], there are

three examples of ambient environment properties taken into account: average saturation

(of foreground pixels), average attenuation (from foreground to background), and average

perimeter size of foreground objects. These three global properties govern the value of

certain algorithm parameters.

LRT removal checks the average perimeter of foreground objects in a frame against

a predetermined threshold. Average perimeter is linked to three additional algorithm pa-

rameters that control the size of the texture region being matched to identify shadows. If

the average perimeter is above the predetermined threshold, the range of area for fore-

ground/background correlation is expanded. The average perimeter is computed on a per-

frame basis, while the threshold remains static.

LRT removal, like Physical shadow removal, uses a weak detector to retrieve candi-

date (shadow) pixels. The candidate shadow pixels must fit within a certain range of Hue

(H), Saturation (S), and Value (V)(or Brightness) when compared against the background
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model, i.e., the foreground HSV values subtracted from the corresponding background

HSV values, referred to as ∆HSV, must fall within a specified range. There are two defini-

tions of this acceptable range: ∆HSV1 ∈{[0, 76], [0, 36], [0.6, 1.0]}, and ∆HSV2 ∈{[0,

62], [0, 93], [0.21, 0.99]}. If the average saturation of all identified foreground pixels ex-

ceeds a predetermined threshold (average saturation = 35), ∆HS2 (∆H=[0, 62], ∆S=[0,

93]) is used as the acceptable range. Similarly, if the average attenuation of the foreground

pixels (compared to corresponding background pixels) exceeds its threshold (average at-

tenuation = 1.58), the latter range of ∆V2 ([0.21, 0.99]) is used for evaluating brightness.

This coarse-grained approach enables the LRT algorithm to switch between two pre-

sets for multiple parameters, based on observed environmental properties. However, the

two presets (∆HSV1, ∆HSV2), and the thresholds that govern them, require empirical

knowledge about the scenes in which they are deployed. The preset-switching fails to

adapt to environmental properties in a scalable manner. Applied to a 24-hour video feed,

the preset-switching model certainly fares better than the naive fully hard-coded approach,

but compromises shadow removal with its rigidity. We seek to adapt parameter values on a

per-frame basis, with the scalability necessary to create a continuous function of environ-

mental properties to parameter values.

This need for adaptability underscores the motivation of this research to discover a scal-

able and portable solution for parameterization. In the case of Physical shadow removal,

foreground object perimeter has no bearing on the accuracy of shadow removal, because

Physical removal utilizes a wholly pixel-based approach. However, both average satura-

tion of foreground objects and average attenuation are examined further in this study, as

described in the next section.

3.2.2 Attenuation and Saturation

Attenuation (α) represents the loss of intensity from foreground pixel to background pixel

in a frame. Traditionally, brightness attenuation is represented mathematically in decibels
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(dB) as the ratio of background and foreground brightness (Eqn. 3.3). The brightness()

function used here is the HSV brightness function (Eqn. 3.5), which defines brightness as

the maximum value between the R,G,B channels of a pixel.

αdB =
brightness(~bg(p))

brightness( ~fg(p))
(3.3)

p represents pixel coordinates. In an effort to better capture shadow pixels, we discard

any pixel where α < 1.0, implying it is brighter than its corresponding background. While

the αdB representation adheres most closely to the physical definition of light attenuation

within a shadow, we consider the reciprocal of this model (1/αdB) of attenuation for corre-

lation. As all considered pixels have an αdB of at least 1.0, the reciprocal bounds the value

between 0.0 and 1.0. This range is more suitable for correlation calculations, as the covari-

ance between data points is easily affected by large changes in value. More information

regarding correlation is found in section 4.1.

Alternatively, we consider the percentage change (%∆) model of light attenuation. This

model is defined in Eqn. 3.4.

α%∆ =
brightness(~bg(p)− ~fg(p))

brightness(~bg(p))
(3.4)

(1−α%∆) is considered for correlation, which indicates the percentage of a background

pixel’s intensity the foreground represents.

Saturation is the measurement of “depth of hue” in a pixel, e.g., a lower saturation

means the base hue is less expressed, while a higher saturation means the color of a pixel

more closely matches the base hue. The saturation level of a background pixel affects the

intensity attenuation a shadow pixel experiences. Saturation properties are discussed in

greater detail in section 3.2.5.

40



(a) (b)

Figure 3.18: (a) Shadow pixel SD is attenuated linearly from background pixel BG. (b) SD
is attenuated non-linearly.

3.2.3 Non-linear Attenuation and Spectral Properties of Light

In the ideal case, the attenuation of light is an entirely linear function, i.e., a shadow pixel

lies along the the vector drawn from the background pixel to the origin within the three

dimensional RGB space [27]. Figure 3.18 illustrates attenuation of a pixel linearly and

non-linearly.

Due to physical properties of illumination and reflectance, this linearity does not al-

ways hold true; cast shadows in real-world scenes are caused by more than one illumina-

tion source. In an outdoor scene, a shadow may be the product of direct sunlight, blue

light refracted from the sky, and diffuse light scattering from nearby objects or surfaces.

Any of these factors contribute to color bleed [27], influencing the attenuation of shadow

pixels. These disparate light sources are said to have different spectral power distributions,

different illumination characterized by varying concentrations of constituent wavelengths.

This non-linear attenuation model is the primary motivator behind using GMM to learn a

shadow’s color model in [27].
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Observed Spectral Properties in Outdoor Scenes

Since the spectral properties of an illumination source cannot always be predicted, this

study attempts to observe trends across datasets to properly characterize shadows. By

visualizing the magnitude of color shift due to shadows, we can clearly partition datasets

into outdoor and indoor images. Outdoor datasets experience change disproportionately

in each channel of an RGB image, while indoor datasets are characterized by equal and

predictable shifts in each channel.

This disproportionate discrepancy is most apparent during periods of large illumination

change, found prominently in datasets PETS1 and PETS2. Examining the outdoor datasets,

we can see that the red and green channels experience larger magnitude shifts than in the

blue channel. Based on assumed spectral power distributions of the source illumination

found in the outdoor scenes, we can deduce that outdoor scenes display an introduction

of blue light scattered from the sky that is not present in indoor scenes. With a spectral

power distribution skewed towards blue, the red and green channels experience greater

perturbation than the blue channel due to cast shadows. This study attempts to utilize this

observed multi-illuminant model to better characterize the attenuation model assumed by a

scene.
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(a) PETS1 (b) PETS2

(c) aton highway1 (d) aton highway3

(e) aton campus

Figure 3.19: Outdoor datasets demonstrate consistently greater deviations in the red and
green channels. During illumination changes (evident in PETS1 and PETS2), the red and
green channels shift disproportionate to that of the blue channel, indicating scattered blue
light is a primary component of the shadows’ spectral illuminant ratio.
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(a) aton room (b) aton hallway

(c) aton lab

Figure 3.20: Indoor datasets demonstrate closer grouping of each channel’s color shift.
aton hallway behaves most erratically of the indoor datasets. This is due to color-bleed
from nearby objects, making aton hallway the most diverse spectral ratio of the indoor
sets. aton lab behaves linearly, as expected.
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3.2.4 Brightness Models

Since attenuation is a function of brightness, we attempt to utilize multiple methods of

calculating brightness to improve attenuation modeling. We use different brightness func-

tions in the calculation of α for each dataset, hypothesizing that correlation between α and

coneR1* can be improved using different brightness functions. We conduct a sensitivity

analysis to determine the effect that different brightness models can have on attenuation.

Below is a short taxonomy of popular brightness models studied. Each of the brightness

models included are tested and analyzed for its affect on the α model.

HSV

Described as a ‘hexcone’model, [36], brightness in an HSV representation is defined as the

maximum value of the pixel represented in the red, green, and blue channels ( ~RGB(p)).

V = max(R,G,B) (3.5)

HSV can lead to misrepresentation of brightness as it is perceived by the human eye.

This is because, as noted in Rec. 709/601 [37, 38], the same intensity of green appears

brighter than that of red, which, in turn, appears brighter than the same intensity of blue. In

the HSV scheme, green at full intensity ( ˆRGB = (0, 1, 0)) matches the brightness of blue at

full intensity ( ˆRGB = (0, 0, 1)). It also minimizes contributions from channels other than

the dominant channel, e.g., ˆRGB(0, 1, 0) = ˆRGB(.9, 1, .9). HSV therefore is best suited

for environments characterized by abnormally low saturation, where light attenuation due

to shadows is most linear. Environments most likely to benefit from using HSV are scenes

with a single illuminant source, such as indoor scenes.
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HSI

HSI represents the most basic understanding of brightness, as Intensity.

I =
R +G+B

3
(3.6)

This understanding of brightness serves most environments properly, as it caters to each

channel equally. However, HSI still suffers from the inherent luminance of certain colors,

and fails to compensate for them.

HSL

HSL, a brightness representation called Lightness, is called a ‘bi-hexcone’model [36].

Lightness is an average of the primary and tertiary color components:

L =
max(R,G,B) +min(R,G,B)

2
(3.7)

Excluding the secondary color component has the effect of translating the brightness

plane described by HSI. While perceptually similar to other brightness models, HSL pro-

vides more balanced values when one channel’s value is in extrema.

Relative Luminance (Y)

Originally issued in 1982, Rec. 601 [38] defines one of the first standards for converting

analog signal into digital video. Relative Luminance (Y), or, when gamma-corrected, Luma

(Y’) is the simplest extrapolation of perceptually-relevant brightness. Luminance is defined

as a coefficient-weighted linear combination:

Y = 0.299R + 0.587G+ 0.114B (3.8)

Rec. 709 later modified the coefficients to 0.21, 0.72, and 0.07, respectively. For this
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study’s experimental purposes, Rec. 601 coefficients were used. This brightness model

highlights the human eye’s sensitivity to green hues, and is therefore particularly relevant

when observing outdoor scenes.

Euclidean Norm

Taking the Euclidean norm of an ~RGB vector is measuring the three-dimensional distance

from absolute black, ~RGB = (0, 0, 0).

Norm =
√

∆R2 + ∆G2 + ∆B2 (3.9)

While the Euclidean norm does not weight the channels perceptually, as Luminance

does, it does represent the most accurate way to determine the color difference between

two ~RGB vectors, and therefore proves valuable when comparing foreground pixels to

background pixels.

HSP

HSP, or Perceived Brightness, combines the three dimensional distance of Euclidean norm,

and the perceptually weighted coefficients of Luminance. HSP was introduced by Darel

Rex Finley in 2006 [39].

P =
√

0.299∆R2 + 0.587∆G2 + 0.114∆B2 (3.10)

Ideally, HSP provides the most accurate perceptually conscious brightness. Environ-

ments that experience large saturation shifts due to shadows benefit primarily, as both color

distance and weighted coefficients are considered.
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3.2.5 Low-contrast SIFT Keypoints

A scene typically contains a large set of low-level textural features unique to it. These

low-level features have been characterized and quantified in many ways, such as the SIFT,

SURF, or FAST feature descriptors [40, 41, 42]. These feature descriptors are used for im-

age recognition and retrieval, and are robust to varying scales, rotations, and translations.

These algorithms are traditionally performed on intensity images, i.e., grayscale images.

However, hue and saturation play a large role in scene characterization. Therefore, SIFT

implementations were developed to incorporate color information. Popular implementa-

tions of a color-SIFT method are HSV-SIFT, RGB-SIFT, HueSIFT, and others [43, 44, 45,

46, 47, 48].

Intensity images, while discarding chromatic information, often retain structural and

textural information, due to image gradients’ invariant basis in intensity. We assume a

cast shadow similarly has minimal impact on underlying structures and textures, due to the

success of textural shadow removal methods. As a result, SIFT keypoints remain largely

invariant between a frame and its background model in intensity images. Since cast shad-

ows do not modify the underlying textural structure, they do not affect the detection of

SIFT keypoints.

In a traditional understanding of shadow attenuation as a linear process, both the hue

and saturation of a pixel remain constant, as the intensity attenuates in a shadow region.

Since this study assumes a different, non-linear understanding of light attenuation, we

sought for representative changes that shadows bring to the hue and saturation channels

of an HSV image. By detecting and displaying SIFT keypoints in the saturation channel

alone, we observe qualitatively small localized structure changes within these shadowed

regions (Figure 3.21).

We attempt to characterize these localized changes in structure using HSV-SIFT, by

detecting SIFT keypoints using only the saturation channels of both a frame and its cor-

responding background model. It is apparent that foreground objects introduce significant
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(a) aton lab (b) aton lab ground truth

(c) Saturation channel (background) (d) Saturation channel (frame)

Figure 3.21: The limited structural effects of cast shadows in the saturation channel (d).
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structural changes in any of the three channels, therefore the collection of SIFT descrip-

tors is limited to only those considered low contrast. The SIFT algorithm operates in four

major stages: scale-space extrema extraction, elimination of low-contrast keypoints, elim-

ination of strong edge responses, and the assignment of orientations. Finally, low-contrast

detections are eliminated due to their susceptibility to noise [40]. In our study, we instead

preserve low-contrast SIFT keypoints, to characterize the small structural changes found in

shadow regions. We build two matrices: the first containing keypoints of low and normal

contrast (still excluding edge responses), and the second containing only normal contrast

keypoints. We then extract low-contrast keypoints using an exclusive-or operation. The

non-linearity of light attenuation, paired with previously observed structural changes, make

shadowed regions in the saturation channel ripe regions for low-contrast SIFT keypoints.

When drawn onto the source frame, we can see that low-contrast SIFT keypoints align

loosely with shadowed regions (Figure 3.22).

With shadows partially characterized by low-contrast SIFT keypoints, this study uti-

lizes this insight by modeling the approximate proportion of shadows introduced in a given

frame. The quantity of detected SIFT features in a frame f is represented as SIFTc(f),

where c represents the contrast ratio parameter used. The ratio of total low contrast SIFT

features to normal SIFT features is calculated for a single frame in Eqn. 3.11.

SIFT%C(f) = 1− SIFT0.04(f)

SIFT0.01(f)
(3.11)

SIFT0.04 represents features captured using the default contrast threshold (0.04), and

SIFT0.01 represents features captured using a lower contrast threshold. We then compare

the SIFT%C(f) ratios of the foreground and background frames, as defined in Eqn. 3.12.

SIFTfg/bg =
SIFT%C(fg)

SIFT%C(bg)
(3.12)

The resultant SIFTfg/bg estimates the percentage change of the number of detected
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(a) Low-contrast SIFT keypoints detected using
the intensity channel.

(b) Low-contrast SIFT keypoints detected in the
saturation channel.

Figure 3.22: Detecting low-contrast SIFT keypoints in the saturation channel more effec-
tively captures structural changes than in the intensity channel, due to cast shadows.
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low contrast SIFT features from the background to the current frame. We assume a greater

presence of low contrast SIFT features loosely indicates a greater quantity of shadows in

a frame. In order to boost correlation between a parameter and a primary environmental

property, SIFTfg/bg is multiplied against the value of an observed environmental property

(in our case, α), serving as a scaling factor. We use this scaling factor to perform sensitivity

analysis using the parameter coneR1* and the environmental property α. Results of this

analysis are found in section 4.1.2.

3.3 Weak Detector Estimation - Creating a Model

With coneR1* calculated for a wide variety of datasets, we can begin to model a difference

between environmental properties and the optimal parameter.While the attenuation from

the foreground to the background displays a correlative relationship to coneR1*, this corre-

lation does not indicate a relationship to the magnitude of coneR1*. This is due to the nature

of the properties of attenuation. The attenuation calculation utilized is a function of bright-

ness shift as a percentage of a background value, e.g., a pair of foreground/background

pixels with a value of 50 and 100 produces the same attenuation as a pair valued at 25

and 50. Normalizing correlative environmental properties, we model an optimal shift from

observed properties to the optimal value of the weak detector, i.e., the shift is modeled as

shiftreq. = (coneR1*−α).

shiftreq. can be extrapolated from the magnitude of color shift (∆RGB) found from

foreground to background. By plotting ∆RGB against shiftreq., we produce a general

relationship. Using data points from each frame in each dataset, we can produce a best-

fit polynomial to generalize a model of attenuation and brightness magnitude shift into a

function dictating the required shift of attenuation (shown in Figure 3.23). This required

shift is defined as shiftα. To avoid over-fitting, a parametrized logarithm was chosen to

represent the required magnitude shift (∆RGB). The logarithm used to calculate shiftα,
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Figure 3.23: Regression performed on RGB shift found per frame, vs. required magnitude
shift to optimal.

derived from Figure 3.23, is defined in Eqn. 3.13.

shiftα = −0.11307 ∗ ln(∆RGB)− 0.1884 (3.13)

We are now able to calculate a new algorithmic parameter, coneR1′. coneR1′ is calcu-

lated per frame, based on α%∆. Calculating coneR1′ is shown in Eqn. 3.14.

coneR1′ = (1−∆RGB) ∗ (1− α%∆) + shiftα (3.14)
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CHAPTER 4

RESULTS

This chapter contains results for the correlation of algorithm parameter coneR1* and envi-

ronmental property α, improvements to this correlation, and resulting calculated parameter

coneR1′. Section 4.1 describes the correlations (ρα) found between coneR1* and both mod-

els of average attenuation (αdB and α%∆). The correlations are compared based on their fit

to coneR1*. Section 4.1.2 contains results regarding two indirect environmental properties

(SIFTfg/bg and brightness calculation method) and how they affect correlations (ρα). The

parameter coneR1′ is calculated, and its effect on the detection and discrimination of Phys-

ical shadow removal is shown in section 4.2. The resultant detection and discrimination

rates are compared to those generated by the default parameter value.

4.1 Correlation of Parameters

We observe correlation between two parameters using the statistical definition of the cor-

relation coefficient (ρX,Y ), defined in Eqn. 4.1.

ρX,Y =
cov(X, Y )

σXσY
(4.1)

cov represents covariance, and σS represents the standard deviation of a set S. The

correlation coefficient is unitless, and measured from -1.0 < ρX,Y < 1.0. A correlation

coefficient of 0 indicates the variables X and Y are uncorrelated, while -1.0 indicates the

variables are perfectly inversely correlated; likewise, a correlation coefficient of 1.0 means

X and Y are perfectly correlated. Correlation coefficient is used to estimate an environ-

mental parameter’s potential usefulness for calculating a new coneR1 for use in an arbitrary

environment. We represent the correlation between coneR1* and α as ρα.
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Table 4.1: Datasets and their αdB correlations to coneR1*.

Dataset ρα

PETS1 0.199
PETS2 0.671

aton highway1 0.684
aton highway3 0.742

aton room 0.548
aton campus 0.360
aton hallway 0.656

aton lab 0.695

Table 4.2: Datasets and their α%∆ correlations to coneR1*.

Dataset ρ%∆

PETS1 0.184
PETS2 0.743

aton highway1 0.592
aton highway3 0.801

aton room 0.623
aton campus 0.564
aton hallway 0.690

aton lab 0.551

4.1.1 coneR1* and Average Attenuation

Both attenuation models (αdB and α%∆) were considered for correlation against the coneR1*

values of a dataset. Correlation ρα is represented for both attenuation models as ρdB and

ρ%∆ respectively. Results for both are illustrated in Figure 4.1 and Figure 4.2. Tables 4.1

and 4.2 present correlation coefficients for each dataset for αdB and α%∆.

Both Tables 4.1 and 4.2 demonstrate significant correlation between coneR1* and α,

consistent across all datasets. To provide contrast, an arbitrary variable (number of normal

SIFT features detected) has been correlated against coneR1* (Table 4.3). In Table 4.3, we

observe positive and negative correlations, as well as strong and weak correlations. Signifi-

cant correlations are observed, but are inconsistent. These tables show consistent positive α

correlations across datasets. Strong and consistent correlation between the two sets implies

that both αdB and α%∆ will provide a coneR1′ that will improve shadow removal across the
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(a) aton room

(b) aton campus (c) PETS2

Figure 4.1: Correlation of αdB (orange) and coneR1* (blue) is observed across all datasets.
Three are shown here. (All results can be found in the appendix)
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(a) aton room

(b) aton campus (c) PETS2

Figure 4.2: Likewise, correlation of α%∆ (orange) and coneR1* (blue) is observed across
all datasets with three shown here. (All results can be found in the appendix)
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Table 4.3: Datasets and their SIFT correlations to coneR1*.

Dataset ρSIFT

PETS1 -0.057
PETS2 -0.727

aton highway1 0.009
aton highway3 0.350

aton room -0.079
aton campus 0.218
aton hallway -0.201

aton lab 0.046

selected datasets.

PETS1 is the primary outlier with a correlation coefficient of approximately 19% for

both attenuation models. While both PETS2 and PETS1 experience illumination change

within the extracted samples, PETS2 and coneR1* have a correlation coefficient of approx-

imately 74%. During the illumination change in PETS2, in which the average brightness of

the entire scene decreases by 23%, observed attenuation proportionally decreases by 28%.

We observe coneR1* decreases by 37%. PETS1 experiences a similar illumination change

(21%), and an attenuation change of 32%, but no significant corresponding fluctuation in

coneR1*. Illumination and parametric fluctuation was obtained by measuring these values

at the beginning and end of the illumination change within the dataset, a range of 22 frames

for PETS2, and 45 frames for PETS1. One possible explanation for this discrepancy is that

because every pixel is darkened by roughly the same amount due to the illumination shift,

the attenuation changes, while the normalized value coneR1* does not. However, since this

behavior is not evident in PETS2 as well, there are likely undiscovered factors influencing

PETS1’s poor correlation coefficient.

The results in Tables 4.1 and 4.2 indicate that some datasets benefit more from the

αdB model, while others have greater benefit from the α%∆ model. While the correlation

found using the two models are comparable, we use the α%∆ model in Eqn. 3.14, when

calculating the parameter coneR1′. This is because the α%∆ model provides a closer fit to

coneR1*, in terms of the magnitude shift required , which is covered in detail in section
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3.3.

4.1.2 Correlation Improvements

In sections 3.2.4 and 3.2.5, we discuss two indirect environmental properties that may

be used to improve correlation: low-contrast SIFT keypoints and brightness calculation

methods. We conduct sensitivity analysis on the two properties.

Low-contrast SIFT keypoints are analyzed within a frame and are used to produce a

scaling factor that is applied to observed attenuation α%∆. From this analysis we determine

that the low-contrast scaling factor provides boosts to correlation in select datasets, while

proving detrimental to others.

We also demonstrate that correlation (both ρdB and ρ%∆) are sensitive to varying bright-

ness models, by contrasting their effects across datasets. We show quantifiable and pre-

dictable effects on the αdB attenuation model, that indicate the HSP and Luma brightness

models are most appropriate for outdoor datsets, while indoor datasets are not sensitive

to varying brightness models. Similar analysis is performed regarding ρ%∆; however, the

same trends (outdoor/indoor) are not observed, due to differences intrinsic to attenuation

calculation.

Low-contrast SIFT Keypoints

Using Eqn. 3.12 defined in section 3.2.5, SIFTfg/bg is calculated per frame and multiplied

against the observed average attenuation. SIFT%C(f) represents the ratio of total low

contrast SIFT features to normal SIFT features within a frame f .

SIFTfg/bg =
SIFT%C(fg)

SIFT%C(bg)
(4.2)

The result of the multiplication is stored in the variable αSIFT , and a new correlation

is calculated (ρSIFT ). Figure 4.3 shows the multiplication’s effect on the aton highway1

dataset. Figure 4.4 and Table 4.4 detail the effects on correlation (ρ%∆) for each dataset.
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Figure 4.3: SIFTfg/bg multiplication’s effect on correlation for the dataset aton highway1.
The observed attenuation α%∆ (orange), is multiplied by the calculated SIFTfg/bg on a
per frame basis. The resultant (αSIFT ), shown in green, represents a closer fit to coneR1*
(blue).

Figure 4.4: Original correlations, ρ%∆, (orange) are plotted against newly calculated corre-
lations ρSIFT (green).
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Table 4.4: Correlation shifts (ρ%∆) when SIFTfg/bg is multiplied against observed attenu-
ation α%∆.

Dataset ρ%∆ Shift (%)
PETS1 -2.06
PETS2 -0.58

aton highway1 +13.62
aton highway3 -4.76

aton room +3.087
aton campus +6.06
aton hallway -11.78

aton lab -10.17

Table 4.4 shows that modulating α%∆ by SIFTfg/bg produces inconsistent results. For

aton highway1, aton room, and aton campus, the operation produced favorable results.

However, for all other datasets it produced unfavorable or negligible results. The datasets

that had the greatest improvements, aton highway1 and aton campus, contain the darkest

shadows. Similarly, the most negatively affected datasets, aton hallway and aton lab, have

the faintest shadows. From this observation, we posit that there is a range of shadow

brightness in which the saturation channel is affected enough (detailed in section 3.2.5)

to be detectable as a low-contrast SIFT keypoint, and therefore that range benefits from

analyzing low-contrast SIFT keypoints. This validates the assumption that low-contrast

SIFT features, while not in direct correlation with coneR1*, can provide indirect benefits

by improving the existing correlation (ρ%∆), depending on the environment. Future work

using low-contrast SIFT keypoints begins with determining this threshold.

Brightness Models - ρdB Attenuation Model

In addition to differing responses to attenuation models, datasets also respond uniquely to

varying brightness models. Figure 4.5 illustrates how differing brightness models affect

the correlation coefficient of attenuation. Table 4.5 enumerates the correlative changes

experienced by each dataset when subjected to a range of brightness models. These results

are illustrated in Figure 4.6.
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(a) PETS2

(b) aton lab

Figure 4.5: Example contrasting correlation improvements of the HSP model (green)
against HSV (orange) and coneR1* (blue).
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Table 4.5: Datasets and their correlations to coneR1* (αdB) against Brightness models.
Outdoor (top) and Indoor (bottom) scenes are grouped appropriately.

Dataset HSV HSP HSI HSL Y’ Norm
ρdB ρdB ρdB ρdB ρdB ρdB

PETS1 0.199 0.227 0.202 0.190 0.222 0.205
PETS2 0.671 0.710 0.690 0.653 0.696 0.695

aton highway1 0.684 0.477 0.524 0.560 0.471 0.669
aton highway3 0.742 0.814 0.795 0.780 0.816 0.773
aton campus 0.359 0.483 0.430 0.416 0.487 0.420

aton room 0.548 0.528 0.532 0.536 0.527 0.532
aton hallway 0.656 0.625 0.617 0.622 0.618 0.601

aton lab 0.695 0.710 0.705 0.717 0.710 0.708

Two distinct response trends are observed in Figure 4.6. These trends are shown in

Figure 4.7: outdoor datasets (PETS1, PETS2, aton highway3, and aton campus) share

a similar response to the various brightness models, while indoor datasets (aton room,

aton hallway, and aton lab) also share a similar response. Table 4.5 indicates that ρdB

is sensitive to change in brightness models among outdoor datasets (Figure 4.7(a)), with

HSP and Luma (Y’) consistently providing the highest correlations. Indoor datasets (Fig-

ure 4.7(b)) exhibit negligible sensitivity to brightness model change for ρdB attenuation.

From this indication, we deduce that utilizing either the HSP or Luma brightness model

improves correlation (ρdB) for outdoor scenes.

Furthermore, we can predict when to utilize the HSP/Luma models for better (dB) cor-

relation, by measuring the red-green color bias (defined below) corresponding to shadow

regions in a dataset. The difference in brightness models can be primarily characterized

by their individual treatments of color content in a pixel, i.e., both Y’ and HSP weight the

channels of an RGB image by scaling factors relevant to human perception, while HSV

simply takes the largest color channel value as the brightness. We differentiate between

the datasets by measuring the average red-green color bias (βRGp , for pixel p) present in

shadow pixels. To determine color bias, we use the color shift (∆RGB) from a foreground

shadow pixel to an illuminated background pixel. We define the red-green color bias as
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(a)

(b)

Figure 4.7: Outdoor datasets (a) share a common response to varying brightness models.
In contrast, indoor datasets (b) share a insensitivity to varying brightness models

.
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Table 4.6: Red-green bias for each dataset. βRG represents the average of the βRGf for each
frame in a dataset. Outdoor (top) and Indoor (bottom) scenes are grouped together.

Dataset βRG

PETS1 15.03
PETS2 7.57

aton highway1 6.69
aton highway3 2.56
aton campus 3.32

aton room 1.64
aton hallway -0.26

aton lab 0.35

the observed blue color shift of a foreground shadow pixel p subtracted from the mean of

observed red and green color shifts (Eqn. 4.3).

βRGp =
∆Rp + ∆Gp

2
−∆Bp (4.3)

This operation is performed on each foreground pixel that is darker than its correspond-

ing background pixel, and averaged into βfRG, the average red-green color bias per frame.

The values of βRG are contingent on the representation of the RGB channels in an image.

In our study, each channel has a range of (0, 255). As seen in Table 4.6, outdoor datasets

display consistently higher βRG values.

The exception to this grouping of outdoor and indoor datasets is aton highway1, an

outdoor dastaset that has a response reciprocal to that of most outdoor environments. Figure

4.8 illustrates the mirrored nature of aton highway1’s response. aton highway1 contains

the darkest cast shadows in relation to its background model. The relative low points, HSP

and Luma, both attempt to weight brightness according to color information. The applied

weights are the only differing factor in the HSP and Norm methods. Therefore, we conclude

that the consideration of color shift is a detriment to aton highway1’s ρdB correlations.
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Figure 4.8: aton highway1’s response to various brightness models behaves opposite to
other outdoor datasets.

Brightness Models - ρ%∆ Attenuation Model

Results indicating correlations (ρ%∆) per brightness model are enumerated in Table 4.7.

These results are illustrated in Figure 4.9.

It is important to note that Figure 4.9 does not exhibit the trends indicated by the αdB

model in Figure 4.6. The datasets are separated into outdoor/indoor datasets in Figure

Table 4.7: Datasets and their correlations to coneR1* (α%∆) against Brightness models.
Outdoor (top) and Indoor (bottom) scenes are grouped appropriately.

Dataset HSV HSP HSI HSL Y’ Norm
ρ%∆ ρ%∆ ρ%∆ ρ%∆ ρ%∆ ρ%∆

PETS1 0.183 0.320 0.241 0.222 0.239 0.314
PETS2 0.743 0.741 0.746 0.717 0.747 0.732

aton highway1 0.592 0.189 0.393 0.396 0.313 0.216
aton highway3 0.801 0.761 0.804 0.781 0.815 0.760
aton campus 0.564 0.371 0.407 0.395 0.459 0.361

aton room 0.622 0.618 0.621 0.621 0.623 0.616
aton hallway 0.689 0.429 0.746 0.754 0.756 0.404

aton lab 0.551 0.729 0.592 0.608 0.597 0.725

67



Fi
gu

re
4.

9:
D

at
as

et
s

an
d

th
ei

rc
or

re
la

tio
ns

(y
-a

xi
s)

to
co

ne
R

1*
(α

%
∆

)a
ga

in
st

B
ri

gh
tn

es
s

m
od

el
s

(x
-a

xi
s)

.

68



(a)

(b)

Figure 4.10: (a) Outdoor datasets. (b) Indoor datasets.
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4.10. Some datasets, such as PETS1, PETS2, aton highway3, and aton room, demonstrate

similar responses to those observed in Figure 4.6. However, aton lab, aton hallway, and

aton campus behave erratically in comparison to their corresponding αdB responses. The

disparity between the two brightness responses can be attributed to the vectorization of

the α%∆ model, which calculates the brightness of the vector between a foreground and

background pixel. For example, a pixel p1 is represented by the RGB values (25, 50, 75),

and a second pixel p2 is (75, 50, 25). Using the HSV brightness model, we calculate the

brightness of each pixel to be 75. The αdB model results in 1.0, or no attenuation. The α%∆

model calculates the brightness change of the difference, p2 − p1 = (50, 0,−50). Using

the HSV model, α%∆ reports a brightness shift of 50 units, with a resulting attenuation of

50/75 = 0.66. We conclude the attenuation model α%∆ is not predictably sensitive to a

change in brightness model.

4.2 Parameter Model Results

The primary challenge in adapting observed average attenuation into an arbitrary model

for shadow removal improvement lies in understanding the necessary translation between

observed attenuation and coneR1*. Utilizing the formulae specified in section 3.3, a coarse-

grained model is developed.

Applied to an arbitrary frame, attenuation (α%∆) and color magnitude shift (∆RGB) are

analyzed and used to create the necessary translation (shiftα). This analysis is performed

on each brightness model, seen in Figure 4.11.

Using ∆RGB, α%∆, and shiftα, we calculate the adapted variable coneR1′. Illus-

trated results of this model are displayed in Figure 4.12 for the datasets aton highway1 and

aton highway3. The resultant of the model (coneR1′), shown in orange, retains correlative

properties observed prior while providing a reasonable estimate for required translation.
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(a) HSV (b) HSP

(c) HSI (d) HSL

(e) Luma (Y’) (f) Norm

Figure 4.11: For each brightness model, ∆RGB is plotted against shiftreq.. The general
model for each brightness calculation is formed through a best-fit logarithm.
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(a) aton highway1

(b) aton highway3

Figure 4.12: Adaptively tuned coneR1′ parameter (green) charted against coneR1* (blue)
and average attenuation (α%∆) (orange). All results can be found in the appendix.
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4.2.1 Analysis

Figure 4.13 illustrates the resulting detection and discrimination rates of shadow removal

using the adapted parameter coneR1′, contrasting the generated results (orange) with de-

tection/discrimination determined via the original naive method (blue). Detection and dis-

crimination are averaged per frame for each dataset. Quantitative results are shown in

Tables 4.8 and 4.9.

Results indicate that for a majority of datasets, small amounts of shadow detection accu-

racy is sacrificed for disproportionate increases in shadow discrimination. Figure 4.14 qual-

itatively illustrates shadow removal improvements using the adaptive method for datasets

aton campus and aton room.

aton highway1 proved anomalous, trading in nearly equal part detection for discrimina-

tion, arriving at a net modest positive of 1.2%. We hypothesize that is because aton highway1

has the darkest cast shadows. Furthermore, aton highway1 attenuates non-linearly (as ex-

pected of an outdoor scene), yet appears desaturated. The combination of the strong shad-

ows and the low saturation of the frame allows a larger population of candidate shadows

pixels to be gathered. Due to these conditions, foreground object pixels are more likely

to appear identical to shadow pixels, in both color information and relative distance from

its background pixel. The confluence of these scene characteristics renders aton highway1

Table 4.8: Average detection (η) calculated from the adapted coneR1′ (left). η is compared
against original naive detection (coneR1= 0.3). The difference (right) is represented as a
percentage.

Dataset η (%) +/- (%)
PETS1 73.28 +0.459
PETS2 74.34 +0.056

aton highway1 80.99 +9.353
aton highway3 74.88 -1.154

aton room 89.10 -0.264
aton campus 96.46 -0.976
aton hallway 92.91 -0.660

aton lab 93.12 +0.192
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(a)

(b)

Figure 4.13: Average detection (a) and average discrimination (b) calculated using the
adaptive parameter model, for each dataset.
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Table 4.9: Average discrimination (ξ) calculated from the adapted coneR1′ (left). ξ is
compared against original naive discrimination (coneR1= 0.3). The difference (right) is
represented as a percentage.

Dataset ξ (%) +/- (%)
PETS1 68.61 -3.176
PETS2 64.04 -8.458

aton highway1 57.05 -8.172
aton highway3 46.35 +3.802

aton room 73.36 +5.278
aton campus 57.05 +29.67
aton hallway 78.22 +7.549

aton lab 80.16 +9.787

less predictable than other datasets.

PETS1 and PETS2 also do not conform to the upward trends seen in the majority

of datasets. In the case of PETS1, the low correlation coefficient infers the poor detec-

tion/discrimination observed. More interestingly, PETS2 experiences the same degradation

of performance as PETS1, but has a much stronger correlation coefficient, seen in Table 4.2.

This decoupling of correlation and accuracy stems from the necessary translation of the ob-

served average attenuation by the generalized adaptation model. This is illustrated in Figure

4.15. The model overcompensates for observed color shift (∆RGB) in PETS2, because of

the illumination change in the dataset. The misrepresentation of attenuation (and thereby

∆RGB) of cast shadows in PETS2 results in the unnecessary ‘downward’translation, im-

pacting PETS2’s shadow discrimination accuracy. This may be solved using techniques for

rapid illumination change compensation [49], explained in section 5.1.

76



Figure 4.15: For PETS2, the adapted parameter coneR1′ (green) is erroneously shifted
downwards. The originally observed attenuation (α%∆) is shown in orange.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

We have demonstrated the capability of an adaptive model to intelligently adapt the pa-

rameters of a shadow removal algorithm, using observed environmental features. This was

completed through the construction of a proof-of-concept which adapted the parameter

coneR1 of the Physical shadow removal algorithm, according to the average brightness at-

tenuation (α) observed between a shadow region and its corresponding background. The

adaptive model was shown to positively affect the discrimination (ξ) of foreground object

pixels from shadow pixels for 6 out of the 8 datasets, with average improvements ranging

from 4% to 29% greater accuracy (when compared to the naive model). The adaptive model

was shown to behave poorly with regards to rapid illumination change (PETS1, PETS2),

decreasing the shadow discrimination by 3% and 8% during these periods. The adap-

tive model marginally increases shadow detection (η) in three datasets (PETS1, PETS2,

aton highway1) by 0.5% to 9%, while the remaining datasets trade fractional amounts

(< 0.5%) of shadow detection for the previously observed increases in discrimination.

We have developed tools to facilitate the construction of the adaptive model, includ-

ing a graphical interface for rapidly modifying a shadow removal algorithm’s parameters,

and an iterative process designed to automatically calculate the optimal value of a given

parameter, i.e., the value that yields the highest combination of shadow detection and dis-

crimination for a frame. Using this framework, we provided the ability to quickly assess

an algorithm’s sensitivity to its mutable parameters, both qualitatively, using the interactive

graphical tools, and quantitatively, using the iterative process.

In order to construct the adaptive model for Physical shadow removal (and coneR1),

we correlated shadow brightness attenuation (α) to the optimal parameter value coneR1*,

determined empirically through the interactive parameter exploration. The correlation (ρα)
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ranges from 18% to 80%. We improve correlation by evaluating two models of attenuation,

αdB and α%∆. The adaptive model is based on the α%∆ model, because it provides a better

fit to coneR1*.

We also presented two methods to affect the correlation (ρ%∆). The first of these, the

measurement of low-contrast SIFT features in a scene, demonstrates changes in correlation

(ρα) ranging from -12% to 13%. Varying the brightness model (HSV, HSP, HSI, HSL, Y’,

and Norm) used in calculating attenuation produced a wide range of correlation changes for

both α%∆ and αdB. For αdB, we demonstrate the ability to select the best-suited brightness

model based on the red-green bias we calculate for dark pixels in a scene, which divide the

datasets into outdoor and indoor environments. Variation of brightness calculation methods

did not produce similar patterns for α%∆.

We show (by way of proof-of-concept) that an adaptive model based on environmental

properties can increase the portability of shadow removal algorithms, by automatically cal-

ibrating an algorithm to an environment. The implemented proof-of-concept is performed

on the Physical model for shadow removal, a method that employs unsupervised machine-

learning to learn the appearance of a shadow pixel over time. We demonstrate that an

adaptive model can still increase the efficacy of shadow removal by tuning the parameters,

for even an inherently adaptive shadow removal algorithm. The adaptive model is flexible

enough to continuously adapt an algorithm over long periods of time, providing a scalable

solution without relying on hard-coding thresholds and parameters.

5.1 Future Work

5.1.1 Modeling Low-contrast SIFT Keypoints

Given the correlation sensitivity shown with regard to SIFTfg/bg, it is apparent that a more

sophisticated model is required for the representation of low-contrast SIFT features in an

image. We believe there are improvements to be made to properly model the low-contrast

structural changes seen in shadow regions. One such improvement would be restricting
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the observed low-contrast features to those found within identified foreground objects,

eliminating false positives, i.e., low-contrast features existing outside of shadow regions

(primarily caused by pixel-level noise).

5.1.2 Rapid Illumination Change Compensation

The presented adaptive model overcompensates for rapid illumination change, hampering

shadow detection and discrimination. The problematic illumination changes are exagger-

ated by a background model that has not adapted to properly represent the new scene bright-

ness. Bales et al.’s BigBackground is a process for illumination compensation that utilizes

stable background features to locally estimate illumination changes for an entire scene.

By utilizing BigBackground, we can compensate for the sluggish background model, and

realistically represent the exaggerated attenuation between shadow and background.

5.1.3 Classifying Indoor/Outdoor Scenes

While implementing various brightness calculation methods, we found (for the αdB model

of attenuation) that we could assign an ideal brightness model to a scene based on whether

or not it was an indoor or outdoor environment. We quantified the red-green bias of possible

shadow pixels, and used the measured bias to classify a scene as outdoor or indoor. Further

verification is required for this claim. Repeating these bias calculations on a wide variety

of datasets will validate the spectral-illuminant theory supported the supposition. Further

work in this area allows us to study the multi-illuminant properties of outdoor shadows vs.

indoor shadows in more depth, which can in turn provide more accurate classification.
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APPENDIX A

DEFAULT DETECTION AND DISCRIMINATION
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Table C.1: PETS1 - Detection and Discrimination rates calculated for both default coneR1
(Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
44 0.329 0.223804 69.2827 69.9578 75.9517 73.8973
49 0.31 0.246728 53.108 53.6512 83.4889 81.4617
67 0.278 0.402792 65.6433 58.9181 67.6909 71.1704
73 0.382 0.393097 66.2295 63.9344 64.7059 68.0561
77 0.28 0.192245 79.6947 82.1374 76.039 72.5529
82 0.311 0.222533 78.6989 80.3717 73.8816 69.7234
85 0.324 0.265211 68.8791 69.5225 66.9706 64.903
91 0.315 0.288086 71.5467 72.0817 68.4584 68.0297

107 0.297 0.0550418 63.1347 64.4592 80.6748 71.3574
124 0.329 0.117233 79.3729 86.3036 66.0321 47.3447
139 0.304 0.324891 89.7321 88.8393 57.1618 57.4271
167 0.334 0.173734 88.5057 89.1626 80.3523 77.3713

Table C.2: PETS2 - Detection and Discrimination rates calculated for both default coneR1
(Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
9 0.591 0.392866 68.0879 68.0879 76.4585 78.5824

19 0.639 0.277102 33.5938 33.5938 84.7328 84.2682
29 0.499 0.251038 33.9921 33.9921 84.0453 83.1735
54 0.448 0.102197 99.115 99.115 66.7976 31.0413
77 0.442 0.0969234 99.2218 99.2218 70.5216 57.3393
78 0.471 0.129563 100 100 66.2837 49.4034
81 0.391 0.147082 96.9161 97.1689 76.2933 70.1039
84 0.356 0.157141 92.2688 92.6301 74.164 69.3635
88 0.498 0.11751 100 100 62.7468 43.525

115 0.73 0.374374 20.2454 20.2454 65.5239 67.8525
177 0.454 0.298634 73.6506 73.6506 69.8562 69.7363
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Table C.3: aton highway1 - Detection and Discrimination rates calculated for both default
coneR1 (Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
45 0.233 0.220497 75.55 87.2782 69.2299 61.9624
65 0.311 0.220315 67.158 72.2248 65.4284 52.7443
85 0.214 0.216213 73.1796 84.2697 58.4456 51.8659

105 0.265 0.209683 82.7473 88.022 69.9272 62.7913
125 0.258 0.233547 69.1618 81.1887 63.6085 54.9916
145 0.275 0.219385 72.2989 80.6568 64.8861 56.0676
165 0.249 0.223016 67.2983 77.5194 63.1035 55.607
185 0.24 0.229775 65.7503 76.8051 67.1285 60.3536

Table C.4: aton highway3 - Detection and Discrimination rates calculated for both default
coneR1 (Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
101 0.468 0.387717 75.625 75.625 35.123 37.1365
201 0.325 0.394711 71.6456 67.3418 37.7417 39.9072
301 0.465 0.44571 72.1311 70.9016 45.23 50.0852
501 0.37 0.276136 73.5925 73.5925 67.1176 67.1176
601 0.745 0.476506 85.1695 82.6271 36.7862 45.6839
801 0.361 0.277987 74.0392 74.0392 34.5425 34.1364

1401 0.73 0.530566 80 80 41.2587 50.3497
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Table C.5: aton room - Detection and Discrimination rates calculated for both default
coneR1 (Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
85 0.751 0.649083 98.3146 97.191 40.4321 71.6049
95 0.745 0.484626 96.2506 95.8559 65.4899 80.2594

105 0.662 0.377712 91.674 91.054 74.0519 82.3353
115 0.634 0.30766 93.0137 93.0137 82.6196 82.8715
125 0.824 0.328275 89.6272 89.6272 78.0451 80.3008
135 0.887 0.483102 96.3006 95.6069 64.1892 78.5473
145 0.77 0.558232 96.7391 96.0474 65.8031 78.7565
155 0.754 0.443622 94.9045 94.6921 73.3198 80.8554
165 0.674 0.391485 93.8378 93.2973 69.0015 74.0686
175 0.689 0.397271 93.6877 93.3555 70.3377 75.7709
185 0.712 0.147542 82.381 83.3333 73.8574 57.7697
195 0.719 0.0423129 61.1111 64.8148 70.6796 34.3689
205 0.655 0.0391442 54.8387 54.8387 70.8333 42.6136
215 0.545 0.105035 48.913 50 70.3166 49.2084
225 0.674 0.20744 86.25 86.5625 63.7487 54.6859
235 0.715 0.337354 95.037 94.9314 73.5849 75.5503
245 0.754 0.492393 97.561 97.1458 65.1096 77.624
255 0.759 0.627669 99.0716 98.6822 65.9314 85.6863
265 0.779 0.687616 99.2512 97.6628 62.6719 85.8939
275 0.724 0.655212 98.8365 97.5761 66.711 89.0957
285 0.773 0.733917 99.4827 98.3026 68.1431 90.2896
295 0.805 0.709282 99.0119 96.6984 62.855 85.6879
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Table C.6: aton campus - Detection and Discrimination rates calculated for both default
coneR1 (Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
41 0.636 0.434367 100 100 2.139 17.9144
51 0.662 0.469132 99.9291 99.5272 11.5192 33.9065
61 0.683 0.495272 99.9034 95.9259 31.9713 59.868
71 0.642 0.454936 99.0625 93.3413 32.0908 54.5861
81 0.685 0.444833 96.8359 91.9249 29.5123 46.1152
91 0.649 0.466827 98.3946 94.7157 36.9529 51.9231

101 0.467 0.522102 100 93.3692 44.0171 55.6058
111 0.772 0.552027 97.0534 97.0534 58.1594 67.0103
121 0.542 0.514771 97.4386 91.1419 38.9846 55.8306
131 0.754 0.448236 96.8276 92.6897 32.298 46.3734
141 0.724 0.426879 90.6977 90.6977 52.2929 70.858
151 0.766 0.301711 72.8814 72.8814 38.3412 38.5308
271 0.852 0.671848 100 100 49.2236 78.5714
281 0.851 0.656997 100 100 40.597 73.8308
291 0.798 0.659748 100 100 39.1304 70.5828
301 0.791 0.616497 99.4709 99.4709 44.2506 72.7201
311 0.806 0.572523 100 100 41.1673 64.0467
321 0.84 0.649439 100 100 40.3864 73.5051
331 0.826 0.612811 100 100 28.903 64.346
341 0.748 0.53507 99.3392 99.3392 21.3919 53.3942
351 0.777 0.559359 99.3342 98.8016 16.0519 57.8182
361 0.743 0.521477 99.729 99.729 18.6912 47.6871
371 0.779 0.508699 95.6188 95.6188 13.4861 44.0589
381 0.793 0.545052 99.3644 99.3644 20.6265 69.3247
391 0.753 0.534082 92.4701 92.3997 21.9302 64.9692
401 0.692 0.541953 94.5976 94.4851 22.5201 73.4201
411 0.769 0.541069 92.452 92.452 23.6516 75
421 0.759 0.450694 92.1158 92.1158 25.9178 61.674

1061 0.711 0.515943 100 100 14.4099 40.6211
1071 0.789 0.636891 100 100 15.9018 50.4803
1081 0.748 0.583271 100 100 28.5558 49.2341
1091 0.798 0.628366 98.2456 98.2456 24.4784 48.1224
1101 0.848 0.65963 100 100 10.1961 46.6667
1111 0.784 0.586309 96.2025 95.5696 12.0468 52.6316
1121 0.79 0.631131 98.75 98.75 17.64 56.7342
1131 0.858 0.616672 97.9167 97.9167 18.595 58.6777
1141 0.85 0.63811 98.3871 98.3871 15.9574 63.2388
1151 0.883 0.700727 99.4723 99.4723 6.2691 57.9511
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Table C.7: aton hallway - Detection and Discrimination rates calculated for both default
coneR1 (Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
25 0.627 0.459744 91.8856 91.4769 64.1346 74.6609

151 0.712 0.434228 99.6218 99.5083 69.3347 78.6133
164 0.81 0.538867 97.5408 97.4856 55.5124 71.1619
175 0.516 0.391069 87.1708 82.9169 63.6149 67.8378
194 0.758 0.586353 99.3337 99.2945 76.1484 83.7938
251 0.833 0.664601 82.2111 81.3065 81.7981 86.5144
275 0.747 0.690587 98.7539 97.5078 78.8321 88.0779
431 0.702 0.471719 99.407 99.2453 59.2399 67.6975
451 0.769 0.54227 99.3588 99.2145 80.6987 86.1682
600 0.666 0.379226 63.4615 63.4615 73.7265 75.067
621 0.707 0.478939 99.6299 98.9309 48.4927 60.5728

1101 0.743 0.48757 98.4813 98.4343 83.9228 89.4248
1151 0.731 0.554371 99.572 99.0661 83.2968 87.2946

Table C.8: aton lab - Detection and Discrimination rates calculated for both default coneR1
(Original) and coneR1′ (Adaptive).

frame coneR1* coneR1′ Original η Adaptive η Original ξ Adaptive ξ
91 0.84 0.747661 98.2784 96.1688 44.6844 64.6179

101 0.908 0.729663 97.5334 97.5107 39.4961 63.1496
151 0.667 0.573093 95.804 95.4925 82.9254 93.3515
161 0.626 0.540102 93.4618 93.1693 80.3861 89.7572
221 0.892 0.509917 87.9733 87.9733 66.7318 70.371
231 0.76 0.771263 95.973 94.2403 61.1534 81.9075
281 0.724 0.629486 94.8925 94.1761 79.6353 90.1867
291 0.695 0.555757 97.0733 97.0551 77.8626 92.2074
301 0.656 0.561814 88.5236 88.3742 85.6973 96.1859
471 0.611 0.129561 78.898 90.1524 83.0598 58.7802
481 0.746 0.615002 97.2113 96.9035 76.6697 86.9145
561 0.755 0.670057 97.4796 96.0158 60.1613 74.2868
681 0.656 0.589291 95.7642 94.3217 62.9807 75.444
881 0.664 0.350949 82.1207 82.1207 83.7588 85.0625
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