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SUMMARY 

A biomarker is a parameter that can be used to objectively quantify a physiological 

or pathophysiological process. Biomarkers used in medicine are commonly derived from 

blood, saliva, urine or other bodily fluids, and in many cases are used to inform medical 

decisions. There is a new emerging class of biomarkers, digital biomarkers, which are 

measures collected through connected digital tools, generally across multiple hardware and 

software layers. This work describes the use of wearable acoustic and vibration 

measurements to derive digital biomarkers, which can be used together with existing 

medical information to assist in clinical decisions. 

Acoustic and vibration signals carry information that is in many cases 

complementary to electrophysiology or movement, but the signals are not fundamentally 

well understood. This leads to a limited one-to-one correspondence between signal 

characteristics and important health parameters. To that end, this work aims to investigate 

this correspondence through signal processing, data-driven feature discovery and statistical 

techniques for deriving accurate and clinically relevant digital biomarkers. In addition, 

acoustic and vibration signals exhibit substantial inter-subject and intra-subject variability, 

thus their use in classical diagnostic approaches have not been successful in the past. Rather 

than focusing on adapting these signals as diagnostic tools, this work aims to derive and 

employ new algorithms to detect and track the relative changes in health, e.g. exacerbation 

in clinical state and/or response to a specific treatment, for a given subject over time. 

The first part of this dissertation discusses how wearable acoustic measurements 

can be leveraged in biomechanics, specifically in joint health assessment, to derive 
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clinically useful digital biomarkers. The first work presents the use of knee acoustical 

emissions captured through miniature sensors to derive a clinically relevant joint health 

score for the evaluation of juvenile idiopathic arthritis. Then, a novel click detection and 

classification algorithm leveraging the Teager Energy Operator is presented to detect the 

clicks in joint sound signals and distinguish between physiologic and pathologic clicks. 

The second part of this dissertation studies the wearable acoustic and vibration 

measurements for cardiovascular assessment in two different applications. The first 

application involves pump thrombosis detection in left ventricular assist devices based on 

analyzing the operating sounds of the pump with machine learning algorithms. The second 

application is the non-invasive estimation of stroke volume based on wearable 

seismocardiogram and phonocardiogram measurements taken from the sternum. 

Overall, this dissertation presents novel frameworks leveraging wearable vibration 

and acoustic measurements for knee joint and cardiovascular health assessment. Once 

verified and validated through large studies, such systems can potentially assist in clinical 

decisions and improve the management of various diseases and injuries outside the 

physical confines of the clinic. 
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CHAPTER 1: INTRODUCTION 

1.1 Digital Biomarkers for Continuous Health Monitoring 

Biomarkers are measurable and quantifiable indicators used in evaluating “normal 

vs. pathologic processes or biological responses to therapeutic interventions” [1, 2]. They 

are commonly derived from blood, saliva, urine or other bodily fluids, and in many cases 

are used to inform medical decisions as they relate to symptoms and surrogate or clinical 

endpoints [3, 4]. The diagnoses and treatment titration for any disease or injury are mostly 

achieved with these conventional biomarkers; however, their derivation requires frequent 

hospital visits and expensive laboratory tests [3]. Thus, there is a compelling need for novel 

modalities which can digitize the derivation of such indicators, and employ continuous and 

non-invasive health monitoring outside the physical confines of the clinic. 

The concept of remote health monitoring has existed for decades. In the early 70s, 

the World Health Organization (WHO) introduced the term telematics, which relies on the 

fusion of informatics and telecommunication to enable data transfer across different 

systems [3]. In the 90s, the idea of leveraging the information and communication 

technologies for disease diagnosis, treatment titration and patient monitoring was adopted. 

These discussions led to the definition of e-Health, where the Internet and related 

technologies are used to deliver health-related information and services to enable patients’ 

active involvement in treatments [3, 5]. With the ongoing establishment of mobile devices 

and patient monitoring devices, WHO defined the term mobile-Health (i.e. m-Health) 

around 2010. Today, digital health is the term used to describe digitization of the 
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healthcare industry, including through point-of-need diagnostic tools and smartphone-

linked wearable devices which can provide pervasive and unimpeded sensing [3, 6, 7].   

Within the umbrella of digital health exists a new class of biomarkers, digital 

biomarkers, which are measures collected through connected digital tools, generally across 

multiple hardware and software layers [1]. Such digital biomarkers comprise (i) behavioral 

data — such as consumer, social media and online search data, and (ii) physiological data 

— which is the main focus of this dissertation.  

Recent technological advancements have made it possible to embed various sensors 

into electronic devices which enable unobtrusive and non-invasive collection of digitized 

physiological signals. These captured signals are converted into actionable metrics through 

appropriate algorithms to enable continuous assessment of phenotypic indications [8]. For 

the caregivers and patients, some of these digital biomarkers are easier to interpret as they 

are the digitized versions of the well-known parameters, such as heart rate. However, 

health-related outcomes have a great range, varying from explaining disease states to 

predicting drug or intervention responses [1, 8]. Although most of these digital biomarkers 

are still being validated, they may, in the future, provide exhaustive information about the 

clinical status of the patients to inform diagnostics and dose treatments [9]. This 

dissertation describes the use of wearable acoustic and vibration measurements to derive 

novel digital biomarkers, which can be used together with existing medical information to 

assist in clinical decisions. 

1.2 Major Contributions 
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• Designed and implemented an algorithm for deriving a knee audio score, which 

places the knee joint on a gradient from 0 (healthy) to 1 (affected), for knee 

acoustic emission signals captured with wearable sensors for patients with 

juvenile idiopathic arthritis.  

• Designed and implemented a novel analysis framework which (i) detects the 

clicks heard from the knee joint using Teager Energy Operator, and (ii) 

classifies the detected clicks as physiologic or pathologic to provide an 

objective guide for knee health assessment.  

• Demonstrated that when multiple features are fused together with machine 

learning, (i) higher accuracy and sensitivity are achieved in thrombosis 

detection in left ventricular assist devices (LVADs) compared to the state-of-

the-art methods, and (ii) recurrent thrombosis cases, which are not identified by 

pump parameters or hemolysis markers, can be detected in advance. 

• Designed and implemented, for the first time, a machine learning based 

algorithm for mapping wearable seismocardiogram (SCG) and sternal 

phonocardiogram (PCG) features to stroke volume in patients undergoing 

major surgery, and thereby elucidated the salient features of SCG and sternal 

PCG signals corresponding to stroke volume. 

1.3 Scope and Organization of the Dissertation 

The remainder of this dissertation is organized as follows:  

Chapter 2 provides a short background on acoustic and vibration signals, and 

discusses the different acquisition methods to collect acoustic and vibration signals from 
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the body. Following this, the advantages and possible challenges of using acoustic and 

vibration signals in clinical applications are discussed.  

Chapter 3 discusses how wearable acoustic measurements can be leveraged in 

biomechanics, specifically in joint health assessment, to derive clinically useful digital 

biomarkers. The first sub-section of Chapter 4 summarizes how knee acoustical emissions 

captured through miniature sensors can be benefitted to derive a clinically relevant joint 

health score for knee health evaluation [10-12]. In the second sub-section, a novel click 

detection and classification algorithm leveraging Teager Energy Operator is presented to 

detect the clicks in joint sound signals and distinguish between physiologic and pathologic 

clicks [13].  

Chapter 4 studies the wearable acoustic and vibration measurements for 

cardiovascular assessment in two different applications. This first work shows that the 

operating sounds of LVADs may provide substantial information regarding pump 

thrombosis when combined with machine learning algorithms [14-16]. The second project 

discusses the use of wearable SCG in non-invasive stroke volume (SV) estimation and 

suggests that SV estimation benefits from both the acoustic and vibrational characteristics 

of the cardiovascular system [17]. 

Chapter 5 summarizes the concluding remarks and discusses the current challenges 

and future directions to achieve more robust and accurate detection and analysis 

frameworks. To that aim, several research questions and possible solutions are presented.  
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CHAPTER 2: ACOUSTIC AND VIBRATION SIGNALS 

According to theory, sound is a form of energy originating from the vibration of 

particles. These vibrations require a medium to travel (air, liquid or solid), and are 

transmitted through a series of compressions and rarefactions, and thus they are mechanical 

by nature [18]. The signals in the audible range (20 Hz to 20kHz) are referred as acoustic 

signals. On the other hand, vibration signals fall under the infrasound group, which has a 

frequency content below 20 Hz. In some cases, these vibration signals are also referred to 

as low-frequency sound (Fig. 1) [18, 19]. 

As acoustic and vibration analysis can provide a non-invasive method to assist in 

acquiring useful physiological information from the body, they can potentially be 

leveraged in the design of wearable sensing modalities [20]. Such modalities can provide 

continuous monitoring during daily life regardless of time, environmental setting and 

stressors, and thus are of great importance for the digitization of healthcare [21]. 

2.1 Instrumentation for Acoustic and Vibration Measurements from the Body 

2.1.1 Contact Microphones 

The acoustical energy originating from the underlying physiological events travels 

to the surface of the skin where it can be acquired as sound [20]. However, as there is a 

great impedance mismatch between the air and fluid-filled tissue, a small amount of energy 

propagates to the air and most of the acoustical energy is reflected back to the tissue [22].  
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Theoretically, contact microphones can provide higher signal quality for on-body 

measurements than microphones capturing airborne sounds; contact microphones are less 

susceptible to background noise and can acquire the original non-attenuated signal directly 

from the surface of the body [20]. Thus, although air microphones (such as electret or 

microelectromechanical systems (MEMS) microphones) can be used to acquire the sounds 

emitted to air from the body, most studies leverage contact microphones (piezoelectric 

systems, stethoscope, etc.) in clinical or lab settings [20, 23]. Some example studies include 

heart sound analysis [24], joint health assessment [23], and laryngeal disorder detection 

[25] studies. 

2.1.2 Digital Stethoscopes 

Auscultation stands for the recognition of the signals in the audible range (20Hz-

2kHz) from the body surface as a part of physical examination [26]. Auscultation is one of 

the most important steps in cardiovascular examination: specifically, in heart sound 

analysis, peripheral vascular system examination and blood pressure measurement. In the 

clinic, the ubiquitous tool for auscultation is a stethoscope, which transmits the sounds 

acquired from the chest piece to the examiner’s ears through an air-filled hollow. René 

Laennec invented the first monaural stethoscope consisting of a hollow wooden tube in 

1800s, and around the same time Golding Bird proposed a different version of the monaural 

stethoscope having a flexible tubing. Since Arthur Laered invented the binaural 

stethoscope, a number of advances have been made in the design of conventional 

stethoscopes [26]. The current binaural version consists of a chest piece having a 

diaphragm and a bell for transmitting high and low frequency sounds, respectively. 
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Figure 1 : Acoustic and vibration analysis can potentially be leveraged in the design of 
wearable modalities for deriving digital biomarkers to assist in clinical decisions. The 
signals in the audible range (20Hz-20kHz) are referred as acoustic signals, whereas 
vibration signals fall under the infrasound group, which has a frequency content below 20 
Hz.  

As the sensitivity of the human ear is variable, auscultation with conventional 

stethoscopes requires good listening training and clinical experience [27]. To overcome 

this challenge, digital stethoscopes emerged. Digital stethoscopes convert the acquired 

sound to electronic signals and consist of three main functionalities: data acquisition, pre-

processing and signal processing. In the data acquisition step, the sound is captured, 

filtered, buffered, amplified and converted to a digital signal. The pre-processing step is 

responsible for removing artifacts and normalization, and signal processing step conducts 

feature extraction and classification for clinical decision making. The transducers used in 
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the digital stethoscopes may be of great variety, such as microphones, piezoelectric sensor, 

etc. Moreover, current digital stethoscopes provide different frequency response options to 

adapt to different auscultation purposes (lung, heart and other parts of the body) [26, 27]. 

2.1.3 Accelerometers 

Today, the most commonly used sensor type in wearable system design is an 

accelerometer, which can be mounted on the skin using, for example, textiles [28], 

adhesives [29], or plastic mounting [30].  Accelerometers can respond to both acceleration 

from movement and acceleration from gravity [31]. In addition, they are very sensitive to 

physical vibrations [23], thus they have been widely used in various different studies 

ranging from monitoring cardiac-induced vibrations [32-34] to gait and motion analysis 

[35, 36].  

Depending on the application, either 

uni-axial or tri-axial accelerometers can be 

leveraged. Although a uni-axial accelerometer 

is capable of acquiring the vibrations in the 

dorso-ventral direction, tri-axial 

accelerometers can provide information 

regarding all three directions: dorso-ventral, 

lateral and head-to-foot (Fig. 2) [37]. Several 

uni-axial and tri-axial accelerometer types include piezo-electric [38] and MEMS [39] 

accelerometers. With the advancements in sensor technology, accelerometers have become 

lighter, with low noise and power consumption, and thus can be readily integrated into 

Figure 2 : Axes (planes) of the body 



 9 

wearable systems. These improvements also increased the quality of the signals acquired; 

therefore, among similar technologies, accelerometers are more widely used in remote 

health monitoring applications [37, 40]. 

2.2 Advantages and Potential Challenges of Wearable Acoustic and Vibration 

Measurements  

Acoustic and vibration signals carry information that is in many cases 

complementary to electrophysiology, biomechanics and movement. As they originate from 

the body, they have direct relationships to the underlying physiological events. However 

these signals are not fundamentally well understood, since most of this information has 

been obtained through empirical studies, and there has been no mechanistic model in the 

literature that describes the origin of these signals from a physiological standpoint [41]. 

Therefore, one of the main challenges with these signals is to decide whether the signal-

of-interest is a good “fit-for-purpose” [1]. Unfortunately, there is a limited one-to-one 

correspondence between signal characteristics and important health parameters. To that 

end, the first aim of this work is to investigate this correspondence through signal 

processing, feature exploration and statistical techniques for deriving more accurate digital 

biomarkers. 

In addition, physiological signals are highly subject-specific as each patient’s 

physiology reacts uniquely to medical interventions, treatment agenda and changes in 

environmental conditions [34]. Therefore, they can be great tools for individualized 

treatment through person-centered feedback systems [42]. Although their subject-specific 

nature is a great tool for individualized treatment, it also poses a major obstacle to the 
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development of accurate diagnostic tools.  Similarly, repeatability of these measurements 

for a single subject is challenging as well, since the morphology of the physiological signals 

varies depending on the patient’s body position (supine or standing), physical activity level 

(sleeping, resting, exercising) and sensor location or misplacement [33]. Thus, rather than 

focusing on adapting these signals as diagnostic tools, this work aims to derive and employ 

new algorithms to detect and track the relative changes in health, e.g. exacerbation in 

clinical state and/or response to a specific treatment, for a given subject over time. 

Based on these motivating factors, the use of wearable acoustic and vibration 

signals in biomechanical and cardiovascular health assessment is discussed through several 

different applications in the following chapters. In each work, signal processing, feature 

exploration and statistical techniques are leveraged to investigate the correspondences 

between the acquired signals and targeted clinical conditions. Following this, digital 

biomarkers are derived for each application using machine learning-based models, and the 

changes in these biomarkers are monitored to track the relative changes in patients’ clinical 

status. 
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CHAPTER 3: WEARABLE ACOUSTIC MEASUREMENT FOR 

BIOMECHANICS 

The previous chapter presented a short background on acoustic and vibration 

signals, and discussed the different acquisition methods to collect acoustic and vibration 

signals from the body. One example of such acoustic signals is the waveform derived from 

measurements of knee acoustical emissions. 

 In this chapter, a novel hardware setup and signal analysis algorithm is proposed 

to contribute to the field of acoustical emission signal analysis and non-invasive joint health 

monitoring. To acquire the acoustical emissions from the knee joint, a small piezoelectric 

accelerometer is attached to the medial side of the patella. The recorded signals are then 

analyzed using a novel algorithm that computes a knee audio score, which places the 

recorded joint along a gradient from healthy to a joint with arthritis. In the second part, a 

novel click detection and classification algorithm leveraging the Teager Energy Operator 

is presented to detect the clicks in joint sound signals and distinguish between physiologic 

and pathologic clicks. 

3.1.1 Using Knee Acoustical Emissions for Sensing Joint Health in Patients with 

Juvenile Idiopathic Arthritis 

3.1.1 Introduction 

 Juvenile idiopathic arthritis (JIA) describes a clinically heterogeneous group of 

arthritides. It is the most common rheumatic condition in children and one of the more 

common chronic illnesses of childhood affecting more than 50,000 children in the United 
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States [43, 44]. The cause and pathogenesis of JIA are still poorly understood, but 

associations with various genetic and environmental factors have been made. There are 

seven defined categories of JIA, each with their own distinct presentation, clinical signs, 

symptoms, and clinical course. Identifying these categories coupled with recent studies into 

the genetic contributors of JIA have allowed for more precise treatment protocols; 

however, there is still significant variability within each of these categories. Each patient's 

clinical course is unique. Often, patients with JIA experience cyclical periods of active 

disease and remission. These unpredictable flare-ups, coupled with the highly variable 

causes and presentations, have made predicting the long-term prognosis of JIA difficult. 

This difficulty in predicting prognosis exacerbates the already difficult process of selecting 

an ideal treatment regimen [45, 46]. 

 The pathophysiologic changes to the joints caused by JIA can lead to progressive 

joint destruction. The long-term sequela of JIA is severe and includes chronic pain, joint 

immobility, unstable articulation, and even disability. Fortunately, if JIA is detected and 

treated properly early in its presentation, the long-term consequences can be largely 

prevented [47, 48]. One of the joints most commonly affected by JIA is the knee [48]. 

Unfortunately, there are very few quantitative means for readily assessing the disease status 

in affected knees.  

 There are both invasive and non-invasive procedures for knee-health evaluation. 

Various imaging technologies such as computed tomography (CT), musculoskeletal 

ultrasound, magnetic resonance imaging (MRI), and fMRI are non-invasive evaluation 

methods, however they fail to provide early diagnosis, are prohibitively expensive for 

continuous monitoring, and are inconvenient to perform [49]. One of the more common 

invasive procedures for assessing knee health is arthroscopy. Arthroscopy provides 

detailed information, but it is a small surgical procedure, cannot be used on highly 

degenerated knees and is both cost and time intensive [50, 51]. In a chronic condition as 
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variable as JIA, there is a compelling need for a quantitative, unobtrusive, and affordable 

method for assessing joint health. 

 The use of acoustics -- recording the sounds that the joints make during movement-

-- may provide such a method [20]. In the case of the knee, vibrations are emitted from the 

mid-patellar region during active movements such as flexion and extension [52]. These 

vibrations can be measured on the surface of the skin as sound. These so called 

vibroarthographic signals have been proposed as a possible diagnostic tool for early 

diagnosis of joint disorders [23]. Since Blodgett pioneered the technique in 1902, a number 

of advances have been made in the field of vibroarthography [53]. Vibration arthrometry 

was used to show substantial differences in injured and healthy joints [54]. Later, the power 

profile was found to be significantly different between joints that were healthy, had 

rheumatoid arthritis and degenerative arthritis. It was also discovered that the majority of 

the signals occurred in the range of 20-20,000 Hz [55]. The field of vibroarthography made 

a large leap forward with the development and application of piezoelectric accelerometers. 

This type of sensor is sensitive to physical vibrations (such as those seen on the skin during 

joint movement) and has less chance of registering external noises as compared to electret 

or other microphones sensing airborne pressure waves [56, 57]. 

 Accurately recording the joint's acoustical emissions is only part of what is required 

for the development of a successful joint health monitoring suite. Those signals must also 

be analyzed and given physiologic context, such that this technique can be applied on 

patients. To analyze the recorded signals, different signal processing and machine learning 

techniques have been used. The techniques used thus far include wavelet decomposition 

[58], time-frequency analysis [59], Fourier analysis [60], autoregressive modelling [61], 

statistical parameter investigation and neural networks [62]. There is a significant need for, 

and lack of understanding about, which signal analysis technique is ideal for a given 

acoustical emission signal, and more particularly for a given disorder, such as JIA. 
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 In order to contribute to the field of acoustical emission signal analysis and non-

invasive joint health monitoring, a novel hardware setup and signal analysis algorithm have 

been developed. In the hardware setup, a small piezoelectric accelerometer is attached to 

the medial side of the patella to acquire the acoustical emissions from the knee joint. The 

recorded signals are then analyzed using a novel algorithm that computes a knee audio 

score, which places the recorded joint along a gradient from healthy to an involved joint 

with arthritis. In this work, both the hardware setup for recording knee acoustical emissions 

and the developed machine learning algorithm for classifying the knees were detailed. The 

proposed methods were validated via a human subject study involving four healthy control 

subjects and four subjects with JIA. Finally, to investigate the ability of this technique for 

quantifying disease progression and treatment response---essential components for the 

monitoring of JIA--- data acquired from the subjects with JIA before and after treatment 

was presented. 

3.1.2 Methods 

3.1.2.1 Human Subject Protocol and Subject Demographics 

The study was conducted under a protocol approved by the Georgia Institute of 

Technology and Emory University Institutional Review Boards. Ten subjects participated 

in this study. However, due to a microphone failure, two control subjects had to be excluded 

from the data analysis and thus data is presented from only eight subjects. Although the 

dataset was small, the number of instances was increased using appropriate window and 

step sizes, which made it possible to train different machine learning algorithms as 

previously done in [63-65]. Four of the subjects were diagnosed with JIA by a pediatric 

rheumatologist and four of the subjects were healthy controls with no history of JIA or 

acute knee injuries. The group with JIA consisted of three females (height=157.1±8.8 cm, 
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weight=48.9±12.3 kg, and age=14.7±2.1 years old), and one male (height=175.7 cm, 

weight=65.3 kg, age=17 years old). The healthy control group consisted of five females 

(height=141.7±10 cm, weight=34.1±3.6 kg, and age=9.6±1.8 years old) and one male 

(height=167.6 cm weight=54.5 kg, age=11 years old). In order to monitor the changes in 

knee acoustical emissions during the course of treatment, data were acquired from the 

subjects with JIA a second time, 3-6 months after initial measurements. 

The data acquisition set up for each subject is shown in Fig.3(a). To record the 

sounds produced by the joints, a uniaxial analog accelerometer (3225F7, Dytran 

Instruments Inc. Chatsworth, CA) was attached 2 cm medial to the patellar tendon using 

KinesioTex tape (Kinesio Tex Gold, Kinesio, Albuquerque, NM). This accelerometer has 

a broad bandwidth (2Hz-10kHz), high sensitivity (100 mV/g), low noise floor (700 µgrms), 

miniature size and low weight (1 gram). To ensure strong contact between the 

accelerometer and the subject's knee, the accelerometer was additionally wrapped in 

MEDca adhesive tape. The medial patellar location was selected due to the relatively 

unimpeded route (only a thin layer of muscle, tendon, and fat) to the articulating surface of 

the knee (where inter-joint friction is theorized to produce the recorded vibrations) [66, 

67]. 

To record the knee acoustical emissions, the subjects performed ten unloaded knee 

flexion/extension exercises, while seated on a height-adjustable stool to prevent foot 

contact with the ground. The signals from the accelerometer were sampled at 108 kHz and 

recorded using a data acquisition module (USB-4432, National Instruments Corporation, 

Austin, TX). The exercise and recording protocol was repeated for both knees for all 
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subjects. The recorded signals were analyzed using Matlab (MathWorks, Natick, MA) and 

Python (Python Software Foundation, Beaverton, OR). 

 

3.1.2.2 Signal Processing and Feature Extraction 

The joint acoustical emissions were analyzed in the time and frequency domains. 

Fig.3(a) shows a representative plot of the time domain signal from one subject with JIA. 

The acoustical emissions from knee joints have high energy and a short duration (between 

Figure 3:  An overview of the methods used to acquire acoustical emissions from the knee and 
the algorithms used to analyze the signals. (a) The experiment setup. (b) The signal analysis 
workflow. (c) Knee audio score calculation. 
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10-20 ms). One unique characteristic of these signals is the audible “clicks” that have a 

spike-like appearance in the time domain plot. Additionally, these signals have high 

bandwidth frequency content reaching up to 20 kHz, which is fully expected for acoustical 

emissions [20, 55, 68]. 

Fig.3(b) details the signal analysis workflow for knee acoustical emissions. The 

signals are pre-processed using a digital finite impulse response (FIR) band-pass filter with 

250Hz-20kHz bandwidth. Artifacts related to sensor placement and repositioning often 

observed at the beginning and end of the recordings are removed manually. These signals 

are then separated into 500ms-long frames with 50% overlap, resulting in N=102 frames. 

The frame length of 500ms ensures that a single frame comprises an adequate sample of 

the variable signal, including both a combination of silent segments of the signal and those 

where clicks are observed. Additionally, for this dataset, using 500ms-long frames allows 

for multiple joint sound signatures to be present within a given frame [68]. The 50% 

overlap is selected to increase the number of instances used in processing. An overlap 

greater than 50% could decrease the processing speed. Fifty signal features are extracted 

from each frame and stored in the matrices XR and XL for the right and left knees, 

respectively. The rows of these matrices represent a single signal frame, and the columns 

represent the 50 features extracted (see Feature Matrix in Fig.3(b)).  

The features extracted are categorized as either “time domain”, “spectral”, 

“MFCC” or “bandpower” features. The time domain features are the zero crossing rate 

(ZCR), energy, and energy entropy (𝑓! − 𝑓"). The most important characteristic of these 

signals is the audible “clicks” that have a spike-like appearance in the time domain plot, 

and this unique, consistent time domain pattern of the signals result in distinctive time 
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domain features. On the other hand, the high bandwidth frequency characteristics of the 

joint sounds result in them having distinctive spectral features, which are the spectral 

centroid, spectral spread, spectral flux, spectral entropy and spectral roll-off (𝑓# − 𝑓$). The 

“MFCC” features are composed of the 13 mel-frequency cepstrum coefficients (𝑓% − 𝑓&!). 

which have the ability to separate joint sound signatures from background noise as 

previously shown in [68]. The “bandpower” features consist of the signal power in 29 

distinct frequency bands, between 30 logarithmically spaced frequencies in the range of 

250Hz-20kHz (𝑓&& − 𝑓'(). These extracted features are detailed in [68, 69]. 

3.1.2.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

The features extracted from the 500ms signal frames from all subjects are analyzed 

using machine learning techniques. For visualizing the ability of the feature set to 

distinguish between the control group and group with JIA, dimensionality reduction is 

performed using t-Distributed Stochastic Neighbor Embedding (t-SNE) [70]. Each feature 

of the data set represents one dimension. For this analysis, the dimensionality of the data 

is reduced from fifty to two dimensions for ease of visualization. Then, a scatter plot of the 

data was constructed with the two axes representing the two t-SNE dimensions and each 

point representing one 500ms signal frame. Two colors are used to categorically label the 

data points --- JIA in red and healthy controls in blue. If a particular feature set has the 

ability to distinguish between control subjects and subjects with JIA, the groups would 

form two separate clusters in the scatter plot. 

The dimensionality reduction technique that t-SNE employs attempts to maintain 

the distances of points based on their probabilities of being neighboring data points. 
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Assuming that 𝑥) is a point in the high dimensional space, 𝑥) chooses 𝑥* as its neighbor 

with the conditional probability 𝑝)|*; likewise, in the low dimensional space, this 

probability can be represented as 𝑞)|*. The t-SNE method aims to find the best low-

dimensional data representation for minimizing the mismatch between the probabilities 

that two points are neighbors in high dimensional space (𝑝)|*) and low dimensional space 

(𝑞)|*) [70]. These probabilities represent a similarity metric between the two points. The t-

SNE method is the preferred dimensionality reduction technique because, as shown in the 

literature, it minimizes local distortions and preserves the details within the data structure 

better that competing techniques, such as principal components analysis (PCA) or 

isometric feature mapping (ISOMAP) [71]. 

In order to visualize the dataset, first the matrices XR and XL from the right and left 

knees of all subjects are concatenated to form a matrix Xall. As this matrix has features with 

different physical units, all of the columns are standardized to zero mean and unity 

variance. This allows all features to be weighted equally during dimensionality reduction. 

The labels corresponding to the rows of Xall are stored in a vector 𝑦. A given entry of 𝑦 is 

labeled 0 if the corresponding frame belongs to a healthy subject and 1 if it belongs to a 

subject with JIA. Using all features, a scatter plot is plotted. The points of the scatter plot 

are colored according to the vector 𝑦 to investigate if there is separation between the two 

different groups. 

3.1.2.4 Knee Audio Score Calculation 

A knee audio score is calculated to place the knees on a gradient ranging from 0 to 

1 where a score of 0 represents a healthy, unaffected knee and 1 represents an involved 
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knee with arthritis. To calculate the knee audio score from the features extracted from the 

acoustical emissions, a classification model is trained. Signals acquired from the subjects 

in the training set are separated into frames and fifty features are extracted from each frame 

as explained previously. These features are stored in the matrix Ztrain and their 

corresponding labels are stored in the vector 𝑤,-./0. Ztrain and	𝑤,-./0 can then be used to 

train the classification model with the relationship between Ztrain and 𝑤,-./0.	After training, 

the model can be used to predict the label (healthy or JIA) of an incoming frame. The 

selected classification method supports “soft classification”, or the ability to estimate the 

probability that a given frame belongs to a subject with JIA [72]. Those probabilities are 

used to calculate the knee audio score from a recording. The knee audio score is the mean 

of the probabilities across all the frames from a given subject's recording. It is expected to 

obtain a higher score for subjects with JIA compared to control subjects. It is also 

hypothesized that this score will decrease with treatment. 

The classification model is a necessary component of the knee sound analysis 

algorithm. The relationships observed in this type of data are non-linear and high-

dimensional making more traditional classification techniques (which often apply linear 

methods) ineffective. In this project, Extreme Gradient Boosting (XGBoost) classification, 

which is a relatively new machine learning algorithm, is used [73]. XGBoost is an 

implementation of the gradient boosting machine learning algorithm [74] which falls under 

a category of learning algorithms called ensemble methods. In this type of algorithm, to 

predict a variable, multiple estimators are simultaneously used rather than the typical use 

of a single estimator [75]. In the XGBoost algorithm, many decision trees are iteratively 
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trained. This iterative training allows the model to predict the residual errors from the 

previous iteration and improve over time. 

The assessment of the performance of the algorithm for classifying healthy vs. 

involved joints with arthritis is performed using leave-one-subject-out cross-validation 

(LOSO-CV) [76]. In each fold of the cross-validation, one subject is omitted and an 

XGBoost classifier is trained using the data from both knees of the remaining seven 

subjects. The trained model is then used to classify the signal frames of the excluded 

subject's knee acoustical emissions. The classified frames are stored in the vectors 𝑦1,) and  

𝑦3,) for the right and left knees of the 𝑖45 subject. The same classification model is used to 

estimate the probability of JIA for each frame. These probabilities are stored in the vectors 

𝑝1,) and 𝑝3,) for the right and left knees of the 𝑖45 subject.  

The audio scores for the subject's knees are calculated by averaging the contents of 

the 𝑝1,) and 𝑝3,) for the right and left knees separately. An average knee audio score is also 

calculated for each subject by averaging the audio scores of the right and left knees 

(Fig.3(c)). A given subject is classified into the JIA group if the average knee audio score 

is greater than 0.5. For subjects with JIA, this process is repeated to calculate the knee 

audio scores for the post-treatment recordings. The cross-validation is completed by 

calculating knee audio scores for all eight subjects, excluding one subject per fold. Note 

that the post-treatment data for the JIA group is not used for training, as the ground truth 

labels for this data is not known certainly. The generalizability of the model is assessed by 

calculating the accuracy of the algorithm in labelling each frame. In addition, the accuracy 
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of the algorithm in predicting whether a subject belongs to the JIA or control groups is 

calculated. 

3.1.2.5 Feature Importance Ranking 

As was shown in Section 3.1.2.4, the knee audio score was calculated using the 

XGBoost classifier using fifty audio features. The relative weighting of each of those 

features in the model needs to be calculated to better understand which features are most 

relevant for the classification. All gradient boosting trees, including the XGBoost classifier 

train decision trees which can be used to rank the features according to their relative 

importance in the generated classification algorithm. Typically, the nodes of a tree divide 

using less important features while the initial node divides on the most important feature. 

The importance of features obtained from all the trees in the model are averaged resulting 

in the final relative feature importance scores [77].These scores are applied to this 

particular data set helps to discern which features are most important for properly 

classifying joints with JIA. 

Next, the XGBoost classifier is applied to evaluate which audio features were most 

relevant for distinguishing between the control subjects and subjects with JIA. The data 

from every subject with JIA (excluding the follow-up data due to it lacking a ground truth 

classification) is used to train the classifier and the resulting model is used to generate 

relative feature importance scores. No testing set is required to quantify feature importance 

as the aim is not to evaluate how well the model generalizes. After ranking the fifty 

features, how the top six features, which contributed the majority of the classification 
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strength, differed between the control subjects and subjects with JIA as well as the manner 

in which they changed post-treatment is analyzed. 

3.1.2.6 Effect of Model Type 

In order to evaluate the sensitivity of the results to the type of classifier used, a 

neural network is trained using the same audio features. The estimated class probability 

output of the neural network is used to score each audio frame as described in Section 

3.1.2.4. Varying number of hidden layers (1 and 2), number of neurons in the hidden layers 

(16, 32, 64), and number of epochs (20, 50, 100, 200) are tested to classify the recorded 

acoustic emission data. All the activation functions in the hidden layers are chosen to be 

rectified linear unit (ReLU) activation functions. The final layer's activation function is 

chosen to be a sigmoid to get probability estimates as outputs. The network is trained using 

a binary cross-entropy loss function via a RMSprop optimizer [78]. Then, the best 

combination is found and the cross-validated accuracy values of the proposed approach 

and the neural network approach are compared. 

3.1.3 Results and Discussion 

3.1.3.1 t-SNE Visualization of the Knee Acoustical Emissions 

The data from the four controls and the four subjects with JIA was visualized using 

t-SNE as described in Section 3.1.2.3. The t-SNE output using all features is plotted in 

Fig.4(a). In this plot, it is observed that the healthy subjects form two different clusters. 

The representative signals in the time domain and their spectrograms from each of the 

clusters were plotted in Fig.4(a). To determine the cause of the two distinct clusters formed 
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by the healthy controls’ knee sounds, the time-domain plots and spectrograms of a 

representative subject from these two clusters were compared (Fig.4(c) vs. Fig.4(d)). The 

plot in Fig.4(c) is of one of the healthy controls from the cluster that overlapped with the 

JIA data clusters in the t-SNE plots. It can be seen that the signal shown in this plot has a 

number of clicks. Fig.4(d) is from a healthy control from the cluster with no overlap of the 

JIA data clusters in the t-SNE. This plot has no sizeable clicks. It can be inferred from the 

difference in these sound profiles that the healthy data with some clicks led to the overlap 

in the t-SNE analysis with the arthritis data that included much more prevalent and louder 

clicks. On the other hand, the healthy subjects with no clicks form the t-SNE clusters that 

are distinct from the JIA group [79, 80]. This is simply a minor issue that will not really 

have an impact on the classification process, but it is an interesting scientific observation 

worth mention. 

The subjects with JIA (Fig.4(b)) show periodic high energy clicks in each flexion-

extension cycle. These clicks have frequency components that reach up to 20 kHz. The 

most important characteristic of these signals is the audible “clicks” that have a spike-like 

appearance in the time domain plot. This unique, consistent “time domain'” pattern of the 

signals belonging to the group with JIA results in them having distinctive time-domain 

features. On the other hand, the high bandwidth “frequency characteristics” of these signals 

result in distinct spectral features which increases the separation ability of our feature set. 

More work is needed to determine the origin of these high frequency clicks, but it is 

hypothesized that they occur due to the degraded articulating surface creating increased 

friction in the joints of patients with JIA. The degraded articulating surface of the knees 
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develops from the chronic inflammation of the synovial membrane and reduced joint space 

[81]. 

 

3.1.3.2 Knee Audio Score Assessment 

Fig.5(a) shows the knee audio scores of the right legs, left legs and the average of 

both for all subjects. A knee audio score of 1.0 corresponds to an involved joint with 

arthritis; a score of 0.0 corresponds to a healthy knee. A subject’s score was calculated by 

training the model on all of the other subjects (LOSO-CV). The average left knee audio 

score was 0.022±0.025 and 0.96±0.044 for the control group and group with JIA, 

respectively (p<0.05 using Mann-Whitney U Test). The average right knee audio score was 

0.147±0.17 and 0.83±0.26 for the control group and group with JIA, respectively (p<0.05 

using Mann-Whitney U Test). The average knee audio score was 0.085±0.099 and 

0.89±0.012 for the control group and group with JIA, respectively (p<0.05 using Mann-

Whitney U Test). The calculated knee audio scores were closer to 1.0 for the subjects with 

Figure 4: (a) The t-SNE visualizations of knee acoustical emission data from four control 
subjects and four subjects with JIA using all features. Representative signals and spectrograms 
from a subject with JIA (b), and two control subjects (c) and (d). 
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JIA while the scores were closer to 0.0 for the control subjects as expected. It can be 

observed that the right and left knee audio scores for both JIA and control subjects differed 

by 0.2 (20% of the score's range). Therefore, using this method, asymmetries in symptoms 

could potentially be detected and monitored as well. This capability would be useful in 

tracking compensation when one of the knees is more symptomatic than the other by 

comparing the calculated knee audio scores. 

The subjects with average audio scores higher than 0.5 were classified as JIA and 

lower than 0.5 as healthy. This led to a cross-validated accuracy of 100% for the dataset. 

Additionally, each signal frame was classified as JIA or healthy (as explained in Section 

3.1.2.4) which led to a cross-validated accuracy of 92.3%.  

Next, in an attempt to quantify the response of the subjects with JIA to treatment, 

the knee audio scores were calculated for the data recorded pre-treatment and 3-6 months 

post-treatment (Fig.5(b)). Again, the data statistics for the right leg, left leg and averaged 

knee audio scores are plotted. The right knee audio score for these subjects decreased from 

0.83±0.26 to 0.27±0.42 (p>0.05 using Wilcoxon Test). The left knee audio score for these 

subjects decreased from 0.96±0.044 to 0.24±0.34 (p<0.05 using Wilcoxon Test). The 

average knee audio score for these subjects decreased from 0.89±0.012 to 0.25±0.20 

(p<0.05 using Wilcoxon Test). Of note, each of the post-treatment audio scores fell below 

the selected 0.5 classification threshold and thus were classified as healthy. The before and 

after treatment scores were statistically significant except the right knee scores, where 

statistical significance was not present as one subject's score increased post-treatment. 
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Figure 5: (a) The right, left and average knee audio scores of the subjects with JIA and 
control subjects. (b) Knee audio scores for the subjects with JIA before and after treatment. 

3.1.3.3 Feature Importance Ranking 

The fifteen most important features from the feature importance ranking are shown 

on Fig6(a). Features from all sets (time, spectral, MFCC and band power) can be seen 

within the top fifteen features, showing the importance of a diverse feature set. The Kernel 

Density Estimated distributions of the top six features are shown for the control, pre-

treatment JIA and post-treatment JIA data [77]. It can be seen in Fig.6(b) that control 

subjects have higher Zero Crossing Rate (ZCR) than the subjects with JIA as the signals 

from the control group are closer to the noise floor. Fig.6(c) shows that the energy 

distribution of the signal frames is slightly narrower for the control subjects compared to 

the subjects with JIA. This can be attributed to the fact that the subjects with JIA have a 

more variable set of signal frames ranging from silent to ones that contain clicks. The 

healthy subjects mainly contain low energy (silent) signal frames. A similar observation 

can be made for the spectral spread in Fig.6(d) for the same reasons. In Fig.6(f), the subjects 
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with arthritis have lower spectral rolloff on average than the controls. This might be a 

similar phenomenon as white noise having a high bandwidth since the healthy subjects 

have signals that are closer to the noise floor and thus a higher spectral rolloff. The 

differences in MFCC-13 and band power-26 seen in Fig.6(e) and (g) are due to the 

differences in the frequency content of signals from the two groups. The differences seen 

in the feature distributions (Fig.6(b)-(g)) between the pre-treatment JIA and control groups 

demonstrates the ability of separating these groups based on those features. The post-

treatment data is distributed similarly to the healthy control subjects indicating that the 

treatment was successful and the patients with JIA returned to their healthy baseline. 

 

Figure 6: (a) Feature importance ranking showing the top fifteen features in terms of salient 
information provided for classification. (b)-(g) Distributions of the top six features for the 
control subjects and pre- and post-treatment subjects with JIA. The distributions were 
calculated using kernel density estimation. 

3.1.3.4 Effect of Model Type 

The best result we obtained using a neural network was 72.9% cross-validated 

accuracy with 2 layers, 32 neurons and 100 epochs. As seen, a great discrepancy was 
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observed between the result of the proposed algorithm (92.3%) and the one we calculated 

using neural networks (72.9%). Although using neural networks is an appropriate approach 

for audio and speech processing applications, it is not the best fit for this study because of 

the limited size of the dataset. Nevertheless, as more subjects are recruited for the future 

studies, there will be a chance to apply deep neural networks properly as well. 

3.1.4 Conclusion 

In this work, the recording and analysis of acoustical emissions from the knee joints 

of healthy subjects and subjects with JIA were described. It was demonstrated that 

acoustical emissions acquired from the knee joint can potentially be used as a quantitative 

metric in the assessment and monitoring of JIA.  

First, knee acoustical emission data acquired from control subjects and subjects 

with JIA was visualized using t-SNE plots. The ability of different feature sets to 

distinguish between the two groups was explored. Following this analysis, an algorithm to 

compute a knee audio score was designed. This algorithm utilizes a soft classification 

model based on gradient boosted trees. It was shown that this algorithm can accurately 

distinguish control subjects and subjects with JIA for the dataset using LOSO-CV. Also, 

how the knee audio score of four subjects with JIA changes before and after treatment was 

demonstrated. Finally, to understand the contribution of individual audio features to the 

algorithm, feature ranking was performed. This analysis revealed that elements from all 

the feature sets that contributed to some degree in the knee audio score calculation. 

This work provides, for the first time, a framework for extracting a clinically-

relevant and actionable joint health score from acoustical emission signals measured with 
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miniature sensors that can be embedded into a wearable system for home use. The approach 

leverages several key innovative concepts, including the adaptation of a gradient boost 

regression algorithm as a soft classifier, and the use of t-SNE as a means of discovering 

features of relevance from the high-dimensional acoustical data. While the studies 

performed were with a small group of patients, the results are already statistically 

significant and suggest that the approach holds merit and should be tested and validated 

further in larger populations. The concept of delivering a joint health score to the physician 

or patient to assist in clinical decisions can be extended beyond JIA to assistive 

rehabilitation following musculoskeletal injury; such a joint health score can, for example, 

be used to determine when an athlete rehabilitating an acute injury can resume certain 

activities or intensities of activities.  

In future studies how different methods of interfacing the sensors to the skin affects 

the acoustical emission signals will be investigated. Furthermore, the feasibility of 

integrating the sensors to a knee brace or sleeve for continuous monitoring will be explored. 

In addition, the underlying physiology and source of the knee acoustical emissions using 

cadaver models will be studied. Most importantly, the statistically significant, but still 

preliminary, results from this work will be validated in a larger dataset of patients and 

controls. Upon completion of rigorous testing and validation in a larger population of 

subjects, the proposed approach can potentially be used to deliver a joint health score to 

the physician or patient to assist in clinical decisions. 
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3.2 Distinguishing between “Physiologic” and “Pathologic” Clicks using the Teager 

Energy Operator 

3.2.1 Introduction 

In the previous section, a novel hardware setup and signal analysis algorithm was 

developed to assess knee-joint health. The proposed algorithm was validated with the 

measurements taken from 4 control subjects with no history of knee injury or pathology 

and 4 subjects diagnosed with JIA with affected knees. Several time and frequency domain 

features were extracted from the acoustic emission signals and fed into a soft classifier 

which is based on gradient boosting trees. Using LOSO-CV, each subject was given a knee 

audio score ranging from 0 to 1, with 0 being a healthy knee and 1 being an involved joint. 

Although the cross-validated accuracy of the signal frames was high (92.3%), there 

remained an important observation and a potential drawback for the proposed algorithm. 

There were clicks that occurred in the healthy controls’ joint sounds (Fig. 7(a)) that 

appeared to resemble the clicks seen in the joint sounds of patients with JIA (Fig. 7(b)). 

The previously proposed algorithm did not focus on distinguishing the source of these 

clicks or classifying the clicks as physiologic versus pathologic. These physiologic clicks 

may arise from bursting of bubbles in the synovial fluid, ligament snapping, or physiologic 

synovium catching [82]. Although these physiologic clicks are generally not associated 

with joint or synovium pathology,  they still differ from the silent baseline knee recordings 

in terms of their time and frequency domain characteristics. Therefore, to prevent any false 
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positives during the analysis of joint sound recordings, these physiologic clicks should be 

detected precisely and be distinguished from the pathologic clicks.  

It was hypothesized that these physiologic and pathologic clicks have different 

characteristics and could be differentiated with an automated system allowing for more 

precise classification of knee health status. This work presents a novel algorithm to 

distinguish between these pathologic clicks and physiologic clicks. First, the desired clicks 

are located and extracted from the band-pass filtered signals using a detection pipeline 

(Fig.8). These clicks are then classified as “physiologic” or “pathologic” using a random 

forest classification algorithm.  

3.2.2 Methods 

3.2.2.1 Human Subject Protocol 

Figure 7: (a) Time domain signal and corresponding spectrogram of a recording taken from 
a control subject with physiological clicks. (b) Time domain signal and corresponding 
spectrogram of a recording taken from a subject with JIA. 
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This study was conducted under a protocol approved by the Georgia Institute of 

Technology and Emory University Institutional Review Boards. Knee acoustic emissions 

from 4 control subjects and 4 subjects with JIA were acquired as described in [10]. The 

recorded signals were analyzed using Matlab (MathWorks, Natick, MA) and Python 

(Python Software Foundation, Beaverton, OR). In this work, the recordings from the 

control subjects are compared against the recordings taken from patients with JIA prior to 

starting treatment. Post-treatment data is not included as the true nature of the clicks 

(pathologic vs. physiologic) could not be certainly known at this point. 

3.2.2.2 Pre-Processing and Acoustic Noise Suppression 

The signals are pre-processed using a digital finite impulse response (FIR) band-

pass filter with a 250Hz-20kHz bandwidth to reduce interface noise. Sound artifacts at the 

beginning and end of the recordings are removed manually (Fig.9(a)). After this 

preprocessing step, the spectral noise suppression algorithm developed by Ephraim and 

Malah [83] is employed to reduce the background noise. Each recording is segmented with 

Hanning windows and the corresponding short time Fourier transform (STFT) is computed 

to calculate the signal spectral power. Assuming that the noise is stationary, the power 

spectrum of the noise is computed using the small silent portions of the recordings where 

no clicks are present. For each frame, a posteriori (ratio of the noisy speech spectrum and 

the noise spectrum) and a priori (ratio of the clean speech spectrum and the noise spectrum) 

signal-to-noise ratio (SNR) values are calculated using the decision-directed approach 

described in [83]. The signal gain is updated after each frame and this gain vector is used 

to clean the actual STFT. Finally, the noise-reduced signal is reconstructed using inverse 

STFT and overlap-add methods (Fig.9(b)).  
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3.2.2.3 Teager Energy Operator 

The Teager energy operator is a non-linear operator derived from the energy of a 

simple oscillator using the physics of motion. It represents the running estimate of the 

signal energy by operating on three sequential samples of the signal at a given time point 

[84]. In the discrete-time case, it is defined as: 

Ψ67[𝑛]=𝒙[𝑛]& − 𝒙[𝑛 + 1]𝒙[𝑛 − 1] (1) 

This operator is generally used to detect instantaneous changes in signals such as 

discontinuities, changes in signal amplitude and/or changes in frequency. Additionally, it 

suppresses the background activity and discards soft changes [85]. Knee acoustic emissions 

usually have high energy and short duration [10, 55], therefore, the Teager operator appears 

to be well-suited for detecting the instantaneous changes in these signals: specifically, the 

“clicks” in the recordings. 

3.2.2.4 Click Detection 

After computing the Teager energy operator, the locations of these change points 

are stored for each recording using a simple peak detection algorithm. First, the envelope 

of the Teager operator is generated, then the peaks which are greater than 20% of the range 

of the signal value are selected as the potential click locations. This threshold is selected 

heuristically to include as many clicks as possible while ignoring small fluctuations in the 

signal. Using these clicks locations, the portions within click location ± 50ms are extracted 

from the main signals for each detected click. This 100ms window-length is selected to 

include the main click and its smaller, subsequent clicks (Fig.9(c)). A total of 53 clicks (30 
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from the involved knee recordings and 23 from the control recordings) are stored in matrix 

Y for further processing and classification. 

 

Figure 8: Detection and classification pipeline. Knee acoustic emissions are filtered, and 
spectral noise suppression is applied. Using the Teager energy operator, change points (in 
this case "clicks") are detected. Using these click locations, 100ms long click segments are 
extracted from the signals. Clicks are windowed, and time and frequency domain features 
are extracted from each window. Using the random forest classifier and LOSO-CV, the 
clicks are categorized as “physiologic” or “pathologic”. 

3.2.2.5 Feature Extraction 

Each 100ms-long click in matrix Y is segmented into 10ms windows using 50% 

overlap to increase the number of instances for the classification algorithm. This resulted 

in 954 frames in total (18 frames from each click), and time and frequency domain features 

are extracted from each frame. The wide bandwidth (250Hz to 20kHz) of the joint sounds 

causes these signals to have distinctive spectral features, whereas the spike-like 

appearances in the time domain result in unique time domain features. Thus, 8 total features 

are extracted: 3 in the time domain and 5 in the frequency domain. In the time domain, the 

zero crossing rate, energy, and energy entropy are calculated. In the spectral domain, the 

spectral flux, spectral spread, spectral entropy, spectral roll-off, and spectral centroid are 

calculated. The performance of these features and the importance of having a diverse 



 36 

feature set in knee acoustic emission analysis were previously discussed in [10]. These 

features are stored under the 954x8 matrix X. 

3.2.2.6 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

To visualize the ability of the feature set to distinguish between the physiologic and 

pathologic clicks, dimensionality reduction using t-distributed stochastic neighbor 

embedding (t-SNE) is applied [70]. In the current problem, each feature represents one 

dimension. Using t-SNE, the 8-dimensional data (with each dimension corresponding to 

one of the 8 features) is mapped onto 2-dimensional space for better visualization. After 

dimensionality reduction, a scatter plot with two axes, where each point is representing a 

10ms signal frame, is constructed. Two colors are used to categorically label the data points 

- pathologic clicks in red and physiologic clicks in green.  

 

Figure 9: (a) The signals are filtered using a 250Hz-20kHz band-pass filter. (b) Spectral 
noise suppression is applied for background noise. (c) Using the Teager energy operator, 
change point locations are detected. Using this information, 100ms long click segments are 
clipped from the band-pass filtered signals. 

3.2.2.7 Random Forest Classification 

As previously explained, the clicks clipped from the filtered signals are windowed 

and 8 features are extracted from each frame. These features are stored in matrix X. The 

pathologic signals and physiologic signals are given the labels 1 and 0, respectively, and 
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these labels are stored in 53x1 vector w. Random forest classification with 100 estimators 

and maximum depth value of 7 is employed to classify 954 frames from 53 physiologic or 

pathologic clicks. Random forest classifier is used, since it can achieve high accuracy 

values without causing any overfitting. Random forests are sets of trees with the same 

distribution where each tree depends on the values of an independently sampled random 

vector [86]. After several trees are generated, each tree casts a unit vote for the most popular 

class in the input data – in this case for “physiologic” and “pathologic” classes.  

The performance assessment is performed using LOSO-CV. In each fold, all click 

frames from one subject are left out, and the model is trained on the remaining click frames 

from 7 subjects. Then the model is tested on the click frames of the subject being left out. 

This procedure is completed for all 8 subjects and the predicted classes of the frames are 

stored in 53x18 matrix Z, where 53 is the number of clicks and 18 is the number of frames 

belonging to each click. These frame scores are then averaged to get the final score of each 

click and stored in 53x1 vector h. The clicks are classified as “pathologic” if the calculated 

score is greater than 0.5, an as “physiologic” if less than 0.5. Finally using the predicted 

scores in vector h and the actual classes in vector w, the performance metrics (accuracy, 

sensitivity and precision) are calculated and the corresponding receiver operating 

characteristics (ROC) curve is plotted.  

3.2.3 Results and Discussion 

3.2.3.1 t-distributed Stochastic Neighbor Embedding (t-SNE) 

The data from 4 subjects with JIA and 4 control subjects is visualized as described 

in Section 3.2.2.6. In Fig.10(a) the corresponding t-SNE graph for the physiologic (green 
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dots) and pathologic (red dots) clicks is presented. The frames from these two click types 

construct separate clusters in 2-dimensional space based on their time and spectral domain 

features. This separation supports the ability of the feature set to distinguish between these 

two groups, and supports the hypothesis about these physiologic and pathologic clicks 

having different characteristics. Physiologic clicks may be caused by cavitation in the 

synovial fluid, ligaments snapping, etc. [82]. The causes of clicks in JIA are yet unknown, 

but are most likely attributed to the chronic inflammatory state of the synovium and 

cartilage degradation [79-81]. Since these clicks have different origins, it is reasonable that 

there would be differences in their time and frequency information. 

3.2.3.2 Random Forest Classification 

As explained in Section 3.2.2.7, 53 physiologic and pathologic click frames are 

classified using random forest classifier and the model is validated using LOSO-CV. This 

led to cross validated accuracy, sensitivity and precision of 94.3%, 93.3% and 96.6%, 

respectively. Similarly, the ROC curve is plotted (Fig.10(b)), and the corresponding area 

under curve (AUC) is calculated to be 0.98. In biomedical applications, along with high 

accuracy, a high sensitivity value is preferred in the design of a screening test/technology, 

since this metric corresponds to the “detection rate” of the algorithm. In this study, a 

detection rate of 93.3% was obtained, which shows that this approach can detect and 

interpret the changes in joint sound signals. Thus, this algorithm could potentially be used 

to track and evaluate the knee health status of both healthy and diseased knees. In the future, 

this click-scoring pipeline could be extended beyond JIA to assist in rehabilitation and 

recovery following musculoskeletal injuries. Additionally, this signal differentiating 

capability could be utilized in remote monitoring or telemedicine frameworks. By using 
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miniature sensors embedded in a wearable system, the joints could be continuously 

monitored, and joint status changes or disease exacerbations could be detected or maybe 

even predicted. This early detection would improve patients’ quality of life and reduce 

surgeries and healthcare costs. 

 

Figure 10: (a) t-SNE graph for the physiologic and pathologic clicks. (b) The ROC curve 
for the proposed model. The AUC is calculated to be 0.98. 

3.2.4 Conclusion 

In this work, a new algorithm for detecting and classifying physiologic and 

pathologic clicks from the knees of subjects with JIA and healthy control subjects was 

presented. An automated algorithm such as the one presented in this work can potentially 

be used to assist clinical decision making and provide knee-health tracking in wearable 

systems for home-monitoring. In future studies, these findings should be validated with 

larger datasets and attempt to leverage not only supervised learning algorithms, but also 

unsupervised ones to ensure the generalizability of the proposed approach. 
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CHAPTER 4: WEARABLE ACOUSTIC AND VIBRATION 

MEASUREMENT FOR CARDIOVASCULAR ASSESSMENT 

Previous chapter investigated how acoustical emissions acquired from the knee 

joint can potentially be used as a quantitative metric in the assessment and monitoring of 

JIA. Similarly, recent studies have shown that wearable acoustic and vibration signals may 

provide substantial information regarding cardiovascular health, and enable continuous and 

non-invasive cardiovascular health assessment and monitoring under various settings and 

stressors  [21].  

The first work in this chapter discusses pump thrombosis detection in LVADs based 

on determining salient acoustic and pump features indicative of pump thrombosis and 

evaluating the added value of acoustic features in thrombosis detection using machine 

learning algorithms. The second project investigates how the combination of vibration and 

acoustic signals, specifically the SCG and PCG, captured through a wearable patch can be 

leveraged to enable continuous and non-invasive SV monitoring. 

4.1 Detecting Suspected Pump Thrombosis in Left Ventricular Assist Devices via 

Acoustic Analysis 

4.1.1 Introduction  

Pump thrombosis occurs in up to 10-13% of left ventricular assist device (LVAD) 

recipients within the first year post implant [87, 88]. Thromboembolic events may lead to 

pump failure requiring replacement at substantial rates (~5-7%) which has been previously 

reported in large trials [89-91]. LVADs stimulate the coagulation cascade resulting in 
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thrombus formation and, when exposed to the shearing force of blood flow, patients are 

predisposed to thromboembolic complications [92]. Pump thrombosis may result in 

hemodynamic derangement, stroke, and death [90, 92-94]. Presence of hemolysis 

{elevated plasma lactate dehydrogenase (LDH) or plasma free hemoglobin (pfHb) levels} 

and degradation of device performance (e.g., increased power) can indicate pump 

thrombosis, which is further investigated using echocardiogram ramp studies [95, 96].  

Resultant end-organ dysfunction requires the exchange of the pump through an 

additional surgical procedure, which is expensive, and can contribute to higher 

allosensitization that is correlated with worse heart transplant graft survival outcome if 

associated with blood product use [97]. Moreover, device exchange does not preclude 

recurrence of thrombosis if the origin is biological rather than mechanical [93]. Therefore, 

device thrombosis should be mitigated with earlier diagnosis, before triggering any heart 

failure (HF) exacerbation and additional surgeries. In particular, outpatient monitoring is 

needed as up to 15% of patients are readmitted due to device thrombosis and subsequent 

complications increase healthcare costs and decrease patients’ quality of life [98, 99]. 

Remote monitoring of pump parameters and hemodynamics should be achieved to allow 

real-time communication between caregivers and patients [100]. However, without having 

the required blood-derived biomarkers, it is not feasible to evaluate the normal vs. 

pathologic processes, or biological responses to therapeutic interventions. Nevertheless, 

such monitoring can be achieved by deriving “digital biomarkers” [1], which are measured 

through home-based sensors, wearable devices and implants, to support continuous 

measurement outside the physical confines of the clinic. Unfortunately, there is no 

technology currently available commercially nor in the research domain that has 
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demonstrated the ability to characterize and monitor hemodynamics and pump 

functionality of VAD recipients at home. 

In clinical settings, the operating sounds of these artificial blood pumps has been 

studied for assisting in thrombosis detection [101, 102]. Several studies, both in vitro [102-

107] and in vivo [101, 102, 104, 106, 108-111], have evaluated acoustic analysis as a non-

invasive method for thrombosis detection in axial and centrifugal pumps. These studies 

mostly leveraged harmonic frequency analysis and focused on detecting changes in the 

acoustic features following pump thrombosis. For example, Kaufmann et al. [101] asserted 

that the most intense harmonic is the fourth harmonic in the centrifugal pump recordings. 

Based on this assertion, they calculated the intensities of the first four harmonics and 

normalized the intensities of the first three to the fourth. They suggested that an increase 

in first and second harmonic intensities and the existence of the third harmonic indicate 

pump thrombosis. In addition, Yost et al. [104] and Castagna et al. [110] performed similar 

harmonic analysis on axial pump recipients. Yost et al. suggested that the normalized 

harmonic intensities decrease as the pump starts to develop thrombosis. On the other hand, 

Castagna et al. proposed that an increase in the normalized power of the first two harmonics 

and a decrease in the third harmonic indicate development of pump thrombosis. 

To the best of our knowledge, no validated method has been reported so far. 

Moreover, the reliance on a single feature of pump acoustics - harmonic content - as an 

indicator of pump thrombosis may not be generalizable to all datasets and all pump types. 

In this work, there were two objectives: (1) determining salient acoustic and pump features 

indicative of pump thrombosis; and (2) evaluating the added value of acoustic features in 
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thrombosis detection. Ultimately, this approach may enable detection and diagnosis of 

pump thrombosis with improved accuracy in clinical and/or home settings. 

4.1.2 Methods 

4.1.2.1 Study Protocol and Subject Demographics 

This study was conducted under a protocol approved by the University of California 

San Francisco (UCSF) and Georgia Institute of Technology Institutional Review Boards 

and all patients provided written informed consent. Thirteen adult centrifugal pump 

recipients were enrolled in the study. At the time of enrolment - the first post-implant clinic 

visit when the patient was deemed clinically optimized - a baseline sound recording was 

obtained and baseline pump parameters and laboratory data were collected. All the LVAD 

patients implanted at UCSF are followed using a remote management system (Abbott Alere 

Home Monitoring, Livermore, CA or Acticare Health, Livermore, CA) that records daily 

pump parameters (speed, power, flow, pulsatility index, peak, trough, alarms), vital signs 

(blood pressure, heart rate, weight) and point of care CoaguCheck INR (Roche Diagnostics, 

Indianapolis, IN). In case of abnormalities in the pump parameters or HF symptoms, 

patients are contacted and hemolysis biomarkers (LDH, pfHb) are promptly obtained to 

establish the diagnosis of suspected pump thrombosis. During the study, new sound 

recordings were obtained in cases where there was a change in pump speed or clinical 

condition. All subjects were recipients of HeartWare HVAD (Medtronic Framingham, 

MA) device for either bridge-to-transplantation or destination therapy indications. 
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Figure 11: System Overview. The digital stethoscope was placed on the patient’s exposed 
chest over the mitral valve and recordings were obtained in cases of changing pump speed 
or clinical condition. The acquired recordings were windowed, and 60 acoustic features 
were determined using LDH-based correlation analysis. It was hypothesized that the 
features which have higher correlation with LDH values would perform better in 
thrombosis detection. After calculating the correlation coefficients for each LDH-feature 
pair, the selected features were fed to a logistic regression classifier which was validated 
using LOSO-CV. Each window was assigned an estimated class and the overall thrombosis 
score for any given recording was defined as the mean of these estimated values. 

Patients were followed longitudinally for the outcome of suspected pump 

thrombosis, defined as abnormal pump parameters (power elevations above manufacturer’s 

baseline or an absolute power  ≥  10 Watts), hemolysis (LDH > 500 IU/L, pfHb > 20 

mg/dL), development of unexplained HF or clinical hemolysis (hemoglobinuria), or poor 

left ventricular unloading during an echocardiographic ramp study. Due to the enhanced 

surveillance of the patients treated at UCSF, suspected pump thrombosis was determined 

based on abnormal pump parameters and hemolysis. In patients hospitalized for suspected 

pump thrombosis, clinical data and sound recordings were obtained at admission, prior to 

and after administration of thrombolytic or anticoagulation therapy, and every 24 hours 

until laboratory and pump parameters normalized. Thrombus resolution was defined as 

normalization of pump power and LDH with no clinical evidence of hemolysis for at least 

24 hours.  
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Table 1: Subject Demographics, Pump Parameters and Blood Biomarkers  

SUBJECT DEMOGRAPHICS 

Age, y 57.4 ± 11.3 

Male, % 84.6 

Weight, kg 86.7 ± 20.1 

Height, cm 179.1 ± 10.5 

Number of Recordings per Subject 3.2 ± 4.2 

BASELINE BLOOD AND PUMP MARKERS 

Speed, rpm 2738.8 ± 169.1 

Flow, L/min 4.4 ± 1.0 

Power, watts 4.6 ± 0.9 

Pulsatility, L 3.5 ± 1.1 

Systolic Blood Pressure, mmHg 98.4 ± 9.7 

Diastolic Blood Pressure, mmHg 69.9 ± 7.6 

Mean Arterial Pressure, mmHg 79.3 ± 7.4 

Heart rate, bpm 79.2 ± 13.3 

Hemoglobin, g/dL 12.1 ± 2.4 

Hematocrit, % 36.0 ± 6.7 

Partial Thromboplastin Time, sec 38.6 ± 15.0 

INR 2.3 ± 0.7 

4.1.2.2 Study Design and Data Acquisition  

All sounds during the study period were collected and stored using the Eko 

Electronic Stethoscope System (Eko Devices, Inc. Berkeley, CA). With the patient in the 
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supine position in a quiet room, the diaphragm of the stethoscope was placed on the 

patient’s exposed chest over the mitral valve for 15 seconds (Fig. 11). The stethoscope 

settings were as follows: 40x gain, 4kHz sampling rate, 20Hz - 2kHz bandwidth.  

Table 2: Pump Parameters and Blood Biomarkers for Baseline and Thrombosis Recordings 

 Baseline Thrombosis 

Lactate Dehydrogenase (LDH), IU/L 291.4 ± 80.4 866.7 ± 382.9 

Plasma Free Hemoglobin (pfHb), mg/dL 80%, < 8 

20%, 12.0 ± 5.6 

50%, < 8 

50%, 133.4 ± 64.8 

INR 2.2 ± 0.6 2.3 ± 0.8 

Abnormal power by device manufacturer 
standards, % 

N/A 81.8 

Treatment with both tissue plasminogen 
activator and IV heparin, % 

N/A 27.0 

Treatment with IV heparin exclusively, % N/A 54.5 

Each recording was assigned to one of three groups for analysis: “normal” for the 

baseline recording obtained at enrolment, “thrombosis” for recordings obtained when a 

patient met the above criteria for suspected thrombosis, and “post-thrombosis” for 

recordings obtained after initiation of medical treatment until normalization of pump 

parameters. For the post-thrombosis analysis, the recordings which were taken when the 

pump parameters and biomarkers returned to normal were used. The procedure by which 

recordings were processed and analyzed was as follows: (1) windowing and feature 

extraction; (2) feature selection using correlation analysis, (3) threshold selection and 

thrombosis score calculation. 
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Table 3: Number of Recordings for Each Subject 

Sub1 1 baseline 

Sub2 1 baseline, 3 thrombosis. 2 post-thrombolysis 

Sub3 1 baseline 

Sub4 3 baseline 

Sub5 4 baseline, 3 thrombosis, 8 post-thrombolysis 

Sub6 4 thrombosis, 3 post-thrombolysis 

Sub7 1 baseline 

Sub8 1 baseline 

Sub9 1 thrombosis, 1 post-thrombolysis 

Sub10 1 baseline 

Sub11 1 baseline 

Sub12 1 baseline 

Sub13 1 baseline 

TOTAL 41 recordings (16 baseline, 11 thrombosis, 14 post-thrombolysis) 

 

4.1.2.3 Pre-processing and Feature Extraction 

In this study, there were 41 recordings from 13 subjects (16 normal (baseline), 11 

thrombosis and 14 post-thrombolysis). The average number of days post-implantation the 

recordings were obtained was 372, ranging between 11 and 1374. Information about 

subject demographics, pump parameters and blood biomarkers can be found in Tables 1 

and 2. Detailed information about the recording types is presented in Table 3.  In this work, 

the focus was on the generalization across recordings rather than generalization across 
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subjects as it is more important to demonstrate whether the method is consistent regardless 

of when the recording is performed for a particular patient. Thus, the signals were 

segmented into 500 ms frames with 90% overlap to increase the number of instances. From 

each frame, 60 acoustic features were extracted. In the recent studies, the best indicators 

for detecting various pump states were shown to be the spectral content of the signals, as 

these pump states may have different frequency characteristics [101, 104, 112]. Contrarily, 

it was hypothesized that having a more diverse feature set would enhance the classifier 

performance, thus various different features were explored [10, 113]. The feature set 

included the common audio-processing features and features used in previous LVAD 

studies [101, 104, 110]. The features were categorized as “temporal”, “spectral”, “MFCC”, 

“bandpower”, “wavelet”, “non-linearity” or “harmonic” features. Detailed information 

about these features can be found in Table 4. Extracted features were stored in a matrix, 

where each row represents a single frame and the columns represent the 60 features 

extracted. In addition to the 60 acoustical features, also the reference pump parameters 

(pump power and pump flow) were tested as features, which resulted in 62 features in total 

(Fig.11). 

4.1.2.4 Feature Selection using Spearman Correlation Analysis 

In the previous section, the extracted features were presented; however as in many 

other cases, these features are selected ad hoc with a black box approach. Therefore, the 

redundant features were eliminated while keeping the informative ones; because although 

having more features can give extra power to ML algorithms, focusing on the intrinsic 

dimension is usually more desirable for preventing overfitting and ensuring robustness 

[114-116]. In addition, a mapping between blood-derived biomarkers and acoustical 
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features should be quantified for evaluating the pathological processes or tracking 

therapeutic interventions accurately outside of the clinic, as the ideal scenario is recording 

and analyzing the pump sounds of the subjects outside the clinic in the absence of blood 

tests or any additional diagnostic tool. Based on this motivation, it was hypothesized that 

finding the features which are highly correlated with the blood biomarkers may be 

beneficial to exclude the redundant features and include the most related ones to construct 

a global feature set, which can be used for all subjects in thrombosis detection without any 

need for blood work [15]. 

Table 4: Feature Descriptions of Different Feature Groups 

Feature Group Features 

Temporal Zero Crossing Rate (ZCR), Energy, Energy Entropy 

Spectral 
Spectral Centroid, Spectral Spread, Spectral Flux, Spectral Entropy 
and Spectral Roll-off 

MFCC 13 Mel-frequency Cepstrum Coefficients 

Bandpower 
Signal power in 29 distinct frequency bands, between 30 
logarithmically spaced frequencies in the range of 20Hz - 2kHz. 

Wavelet  
3-level Daubechies8 wavelet transform was computed and the 
bandpower of the 3rd level approximation and detail coefficients 
and 2nd level detail coefficients were calculated. [113] 

Non-linearity 
Fundamental frequency, total harmonic distortion (odd harmonics), 
total harmonic distortion (even harmonics)  

Harmonic First, second, third and fourth harmonic amplitudes 

 

As previously discussed, changes in hemolysis biomarker values (LDH > 500 IU/L, 

pfHb > 20 mg/dL) indicate pump thrombosis, therefore it was hypothesized that if the 

acoustical features which have similar trends with the hemolysis biomarkers could be 

determined, the classifier might have a higher performance in thrombosis detection. For 
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this study, LDH values were preferred over pfHb values as the reference, since it would 

not be possible to use some of the pfHb values (such as pfHb < 8 as in Table 2). Also, 

recent studies proposed LDH as the primary [90, 117-119] and the most specific [120, 121] 

indicator of thrombosis in LVADs. 

The Spearman correlation analysis [122] was used to investigate the relationship 

between the LDH values and the acoustical features. Spearman correlation was chosen 

instead of Pearson correlation as it does not make any assumptions regarding the frequency 

distribution of the variables or does not require a linear relationship between them. It was 

desired to treat the features as independent agents, because although some features (such 

as harmonics) are based on the same fundamental frequency, their behavior may be 

different during thrombosis development and there is no consensus across different studies 

[101, 104, 110]. The Spearman correlation coefficient 𝜌	was calculated for each LDH - 

feature pair (e.g.: LDH and ZCR, LDH and Energy, etc.) which resulted in 62 correlation 

coefficients varying between -1 and 1. Then the absolute value of these correlation values 

were taken and ranked in descending order. The cut-off correlation coefficient was 

determined as 0.3, since any value below 0.3 is considered negligible in the literature, 

especially in medical research [123-125]. Thus, it was decided to use the features which 

have absolute correlation coefficient above 0.3 (when rounded to two significant digits). 

Based on this investigation, 15 features were included in the final feature set. Note that the 

target labels of the normal and thrombosis groups were not included in this investigation, 

so the analysis was not biased. 

After ranking the features based on their correlation with LDH values, the kernel 

density estimate (KDE) plots were plotted for the best and worst performing features to 
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visualize the differences in their probability density functions [126]. It was expected to see 

distinguishable density functions between normal and thrombosis classes if a feature has 

high correlation with LDH biomarker. After determining the top 15 features, the analysis 

continued with threshold selection and thrombosis score calculation. 

4.1.2.5 Threshold Selection and Thrombosis Score Calculation 

The end goal was determined as deriving a thrombosis score to place the recordings 

on a scale ranging from 0 (normal) to 1 (thrombosis). To calculate the thrombosis score, 

the classifier was trained twice: using top 15 features and all 62 features, to test the 

effectiveness of the correlation-based feature ranking. The classifier was validated using 

LOSO-CV. In each cross-validation fold, all recordings from one subject were left out and 

the logistic regression classifier was trained using the recordings from the remaining 

subjects. The model was then tested on the recordings from the subject being left out. This 

procedure was completed for all subjects. Note that the post-thrombosis data was not used 

for training, as the ground truth labels for this data were not known certainly - in many 

cases, thrombosis can be recurrent even following treatment.  

Logistic regression was the preferred method due to several reasons. First, it is easy 

to implement and interpret - for example it does not require heavy scaling or tuning. This 

was the primary motivation, as an application like thrombosis detection is a collaborative 

work between medical doctors, researchers and patients; therefore, comprehensibility is an 

important consideration. Secondly, it is widely used in biostatistical applications where 

binary responses occur quite frequently, such as patients having heart disease or not, etc. 

[126]. Therefore, for a case like thrombosis detection, it is well suited. 
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In more detail, let R denote the training data. Each instance within our training set 

corresponds to a 500ms-long frame in the form	(𝐱) , 𝑦)), where 𝐱) 	= (𝑥),!, 𝑥),&, … , 𝑥),8&) are 

the 62 features, and 𝑦) is the thrombosis label (0 or 1). The training dataset R is used to 

build the logistic regression classifier	𝛭 which predicts the class of an incoming frame 

using its features. i.e., M: 𝐱 → predicted thrombosis label. In each fold, R includes data 

from all subjects, except the subject whose recordings are being tested. At prediction time, 

302 unlabeled frames from each recording are provided to M, and M predicts their labels 

as 0 or 1 (hard classification). This prediction phase was completed for all recordings of 

the subject which had been left out in the training phase. In the following folds, the same 

pipeline was followed for all subjects. The thrombosis score of each recording was defined 

as the mean of the predicted classes of all 302 frames within that recording.  

Using the thrombosis scores obtained from LOSO-CV and the actual class labels, 

the ROC curve was plotted to investigate how two models (with 15 features and with all 

features) behave for different threshold values. After showing the superior performance of 

the condensed feature set, the best threshold value for the current application was 

determined using the ROC curve plotted. Since ROC represents the probability of detection 

(true positive rate) vs. probability of false alarm (false positive rate) for different threshold 

values, a threshold was selected such that the probability of thrombosis detection was 

maximized while the probability of false alarm was minimized. Therefore, the optimum 

threshold was selected for the classification problem, which helped to discard the sub-

optimal models. The generalizability of the classifier was then assessed by calculating the 

accuracy, sensitivity, and precision values based on the threshold selected. In the final part 

of the scoring procedure, the constructed model using the baseline and thrombosis 
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recordings was fit into the post-thrombolysis data to investigate the pump conditions after 

heparin and/or tissue plasminogen activator (tPA) treatments. 

4.1.2.6 Performance Comparison with Existing State-of-the-Art Methods 

To benchmark the performance of the proposed approach - which integrates 

multiple acoustic features using machine learning approaches rather than focusing on one 

or two individual features - the reference parameters (pump features obtained from the 

controller) and state-of-the-art algorithms from the existing literature were employed, and 

the results of these approaches were compared to the proposed work. First, the 

classification was performed using the reference parameters: only the pump power and 

only the pump flow values as the features. As these parameters are directly associated with 

abnormal pump functionality, the performance metrics of these reference variables and the 

proposed method were compared. 

Second, Kaufmann et al. [101] asserted that the most intense harmonic is the fourth 

harmonic in centrifugal pumps; therefore based on their methods, the intensities of the first 

four harmonics were calculated for each recording. They suggested that an increase in the 

first and second normalized harmonic intensity and the existence of the third harmonic 

suggest pump thrombosis. The effectiveness of their features was investigated both with 

and without a machine learning approach - first the values of the harmonic intensities for 

normal and thrombosis recordings were compared, then the classifier performance, which 

was trained using only these normalized intensities as features, was reported. 

4.1.3 Results and Discussion 
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4.1.3.1 Feature Selection using Spearman Correlation Analysis 

As explained in Section 4.1.2.4, the Spearman correlation coefficient was 

calculated for each LDH-feature pair and these correlation values were used as a feature 

ranking metric. The hypothesis was that the features which have higher correlation with 

LDH values would perform better in thrombosis detection. Also, the redundant features 

were eliminated for the sake of robustness and simplicity. The 15 features having the 

highest absolute correlation coefficient are reported in Fig. 12(a). Each color represents a 

different feature group (e.g.: green: temporal, orange: spectral, etc.) As seen in the bar 

graph, there is a great diversity in the colors, thus each feature group has a relationship 

with the LDH values. Also highly correlated features do not come from a single group, 

which makes the investigation of a diverse feature set rather than relying solely on one 

feature group (like harmonics) even more desirable. 

To test whether the highly correlated features are indeed better in distinguishing 

between normal and thrombosis groups, the KDE plots were plotted and the differences in 

distributions were observed (Fig. 12(b-d)). The distributions of the top feature (pump flow, 

𝜌=0.84), the top acoustical feature (bandpower 16,  ~ 195-230 Hz, 𝜌 =0.48) and the least 

correlated feature (bandpower 21, ~ 440-520 Hz,	𝜌=0.012) were plotted. In the graphs, the 

thrombosis recordings were plotted with red and normal recordings with green. If a specific 

feature has the ability to distinguish between two groups, it was expected to see less 

overlapping distributions. As expected, it is visually clear that the features having higher 

correlations with LDH have less overlapping distributions compared to the ones having 

lower correlation. Thus, it was justified that if a feature behaves similar to the actual blood 
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biomarker, it will be more significant in thrombosis detection; therefore a mapping between 

our “acoustical biomarkers” and actual “blood biomarkers” is indeed achievable.  

4.1.3.2 Threshold Selection and Thrombosis Score Calculation 

As explained in Section 4.1.2.5, the algorithm was run twice: 1) Using the top 15 

features, 2) Using all 62 features. The ROC curves were plotted for both experiments to 

investigate whether the correlation-based feature selection algorithm helps to increase 

classifier performance and eliminate the redundant features independent of the threshold 

used. When all 62 features were used, the area under the ROC curve was calculated to be 

0.764, whereas for the top 15 features, this value was 0.921. This justified that the 

Spearman correlation coefficients between the features and LDH values can be used to 

rank and select the most prominent features. Also, another important point is that having 

more features is not always beneficial for the model and redundant features should be 

eliminated. A similar approach can be applied to many other biosignals to focus on the 

most relevant features while eliminating the unnecessary and deviating ones for a more 

robust analysis. Based on the ROC curve plotted using the 15 features in Fig.12(e), the 

threshold was determined as 0.15, since it was the best value which maximizes the TPR 

(probability of detection) while minimizing the FPR (probability of false alarm). Using this 

threshold, the accuracy, sensitivity and precision were calculated to be 88.9%, 90.9% and 

83.3%, respectively.  

Additionally, the constructed model using the baseline and thrombosis recordings 

was fit into the post-thrombolysis data to investigate the pump conditions after heparin 

and/or tPA treatments. The model was tested on 14 post-thrombolysis recordings taken 
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from 4 HVAD subjects; however, although the pump parameters and hemolysis biomarkers 

returned to normal, the scores were varying from 0 to 1, rather than being closer to 0, with 

4 of the 14 recordings being above the thrombosis threshold and 10 being below the 

threshold (Fig.13). 

The results from the post-thrombolysis recordings from 4 subjects revealed that, 

while pump power and hemolysis biomarkers may indicate that the thrombosis is resolved, 

there may still be other problems such as altered pump mechanics, increased friction, or 

even residual pump thrombosis that cannot be identified by these markers. Indeed, for 3 of 

the 4 subjects, recurrent thrombosis episodes were observed following the treatment of 

thrombosis, and the 4 recordings which had scores above the threshold belonged to these 

3 subjects (Subjects A, B, D in Fig. 13). When the clinical logs of these 3 subjects were 

investigated further, it was found out that these subjects had indeed been diagnosed with 

recurrent thrombosis right after the recordings having higher scores. The ability to predict 

recurrent thrombosis by supplementing pump power and blood biomarker data with 

acoustical signatures measured from the pump should be evaluated extensively in future 

studies. Note that no direct confirmation of pump thrombosis was available in the study as 

no devices were exchanged. 
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Figure 12: Results. (a) The 15 features having the highest absolute correlation with LDH 
are presented. There is a great diversity in the feature types, thus each feature group has a 
relationship with the LDH values. (b) KDE plot for the most correlated feature, pump flow. 
(c)  KDE plot for the most correlated acoustic feature, bandpower 16 (190 - 230 Hz band). 
(d) KDE plot for the least correlated feature, bandpower 21 (440 - 520 Hz band). (e) ROC 
curve when the classifier was trained using the top 15 features. The area under the curve 
(AUC) was calculated to be 0.92. The decision threshold was determined to be 0.15 as it is 
the optimum value for maximizing the TPR (~ 0.91) while minimizing the FPR (~ 0.13). 
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Figure 13: The constructed model using the baseline and thrombosis recordings was fit into 
the 14 post-thrombolysis recordings taken from 4 subjects to investigate the pump 
conditions after treatment. The results revealed that, while pump power and hemolysis 
biomarkers may indicate that the thrombosis is resolved, there may still be other problems 
such as altered pump mechanics, increased friction, or even residual pump thrombosis that 
cannot be identified by these markers. Indeed, recurrent thrombosis episodes were 
observed in 3 of the 4 subjects following the treatment of thrombosis, and the 4 recordings 
which had scores above the threshold belonged to these 3 subjects. 

Pump thrombosis decision is currently based on the presence of hemolysis and 

degradation of device performance, which is further investigated using echocardiogram 

ramp studies [95, 96]. In these studies, left ventricle end-diastolic diameter is monitored in 

response to changing LVAD speed, which may potentially diagnose pump thrombosis or 

other obstructions within the pump [127]. However, there is a need for a convenient remote 

monitoring system for LVAD recipients for early detection of thrombus formation, 

therefore patients should be able to monitor their LVAD status at home continuously. In 

particular, the patients at home could use the microphone function of their smartphones 

and transmit these sounds electronically to the cloud for analysis. Machine learning 

algorithms could then be employed to identify abnormal recordings from baseline, 

initiating a warning for patients and caregivers before thrombosis exacerbation and 
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determining the need for clinical pump or blood tests. This way, early diagnosis and 

optimum treatment recommendations could be achieved, and this could help preventing 

HF aggravation and additional surgeries. 

4.1.3.3 Performance Comparison with Existing State-of-the-Art Methods 

Using only pump power values, accuracy, sensitivity and precision values were 

62.9%, 27.3% and 60.0%, respectively. Using only pump flow values, the corresponding 

values were 81.4%, 72.7% and 80.0%. This demonstrates that mechanical power or blood 

flow characteristics are not sensitive nor specific enough to detect the suspected pump 

thrombosis episodes by themselves. On the other hand, flow showed higher performance 

in thrombosis detection compared to power probably due to frequently adapted hematocrit 

settings, which affected the flow calculation but not power consumption. Thus, it can be 

said that although one of the most prominent clinical signs for thrombosis development is 

elevated pump power, the combination of acoustic features and pump flow values yields 

higher thrombosis detection rate and accuracy as shown in Table 5. 

Table 5: Performance Comparison with State-of-the-Art Methods 

 Accuracy Sensitivity Precision 

Pump power 62.9 % 27.3 % 60.0 % 

Pump flow 81.4 % 72.7 % 80.0 % 

Harmonic analysis 
(Kaufman et al.) [101] 

74.1 % 63.6 % 70.0 % 

Our method 88.9 % 90.9 % 83.3 % 
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Furthermore, when the approach outlined by Kaufmann et al. [101] was applied on 

the current dataset, the fourth harmonic was the most intense harmonic in only 17 of 41 

recordings. Nevertheless, the first, second and third harmonic intensities were normalized 

to the fourth harmonic intensity as the authors explained. It was found that the average 

intensity for the normalized first harmonic to be 2.46 ± 3.52 and 3.06 ± 2.43 for the control 

and thrombosis groups, respectively. For the second harmonic, these values were 0.43 ± 

0.57 and 2.01 ± 2.70 for the control and thrombosis groups, respectively. Indeed, these 

intensities increase as the pump starts to develop thrombosis as seen in previous work; 

however, high inter-recording variability resulted in lower than expected performance for 

classifying thrombosis. As the next step, the model was evaluated using the harmonic 

features and all classification results were reported in Table 5. However, it is important to 

note that Kaufmann et al. averaged 30 spectra in their work, whereas in this comparison 

the harmonics were computed from single 500 ms frames, which is likely noisier. Thus, 

this should not be considered as a direct comparison. 

4.1.3.4 Limitations and Future Work 

Currently, there is no clinical gold standard existing for certain comparisons. 

Therefore, the findings in this work may serve as the preliminary evidence for developing 

an extensive clinical study in the future. This study was limited by a relatively small sample 

size, and the study was conducted at a single clinical site; accordingly, future studies will 

be needed to assess the reproducibility of the methods. Moreover, as the number of subjects 

in the training set is increased, the generalizability and prospective validation of the 

proposed algorithm will be improved as will the determination of key acoustical features 
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associated with pump thrombosis. In addition, although the proposed algorithm may 

eventually help to decrease the frequency of hospital visits and blood tests, recording the 

sound signals and processing them requires additional time and computational power, 

compared to bedside testing. 

While this work leverages hard classification using logistic regression due to their 

high interpretability in the medical domain, the integration of soft-classification algorithms 

and calibration curve implementation into the current study could be investigated in future 

work. Similarly, the effect of recording length on feature sensitivity (e.g. sensitivity to 

harmonics) should be investigated in future studies. In this work, the bandpower features 

were calculated within fixed frequency bands. In future work, the possibility of obtaining 

higher accuracy if the frequency bands were adapted based on the pump speed will be 

investigated. Lastly, LDH was used as the reference blood-biomarker to employ 

correlation-based feature ranking and any other condition that may have increased LDH 

was excluded. In the future studies, the correlation between the acoustic features and other 

blood-biomarkers will be investigated as well. 

4.1.4 Conclusion 

It was demonstrated that the acoustical signatures of LVADs, combined with 

machine learning algorithms, can improve the detection accuracy of suspected thrombosis 

outcomes. Additionally, the scoring of post-thrombolysis recordings suggested residual 

pump thrombosis which is not identified by pump parameters or hemolysis markers. 

Additionally, patients who have normal pump operations but abnormal levels of hemolysis 

markers could benefit from acoustic analysis to detect acoustic signs consistent with 



 62 

thrombosis. As there is a need for a convenient remote monitoring system for VAD 

recipients, patients should be able to monitor their VAD status at home. Once the proposed 

algorithm is evaluated prospectively and demonstrates improvement in clinical 

management of pump thrombosis, the use of acoustical patterns can potentially enable 

detection of suspected pump thrombosis when biomarkers and pump parameters are non-

diagnostic. 
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4.2 Non-Invasive Wearable Patch Utilizing Seismocardiography for Peri-Operative 

Use in Surgical Patients 

The previous section investigated the use of acoustic signatures to derive clinically 

useful digital biomarkers for thrombosis detection in LVADs. This section presents a novel 

framework for non-invasive SV estimation through wearable SCG and PCG measurements 

taken from the sternum. 

4.2.1 Introduction 

Peri-operative fluid management has been shown to impact clinical outcomes 

including reducing the duration of hospital and/or intensive care unit (ICU) stays. 

Achieving and maintaining optimum fluid status is clinically challenging, especially since 

physiologic alterations associated with surgery may complicate interpretation of routine 

parameters. Clinicians often rely on additional hemodynamic parameters, such as stroke 

volume (SV), to guide peri-operative fluid management [128-135]. Several studies have 

demonstrated the advantages of fluid management by administering crystalloids or colloids 

to maintain SV within 10% of baseline [136-138]. 

In the last decade, hemodynamic monitoring at the bedside has been evolved 

remarkably both in the operating room and ICU. The most significant progression has been 

the declining use of the pulmonary artery catheter and increasing adoption of continuous, 

real time and less invasive monitoring techniques [139]. Today, a commonly used tool for 

SV estimation in the operating room is the Transesophageal Doppler (TED) which 

measures blood flow velocity in the descending thoracic aorta [136-138]. Although the 

TED is generally considered to be sufficiently accurate for fluid management intra-
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operatively, it has some disadvantages. It requires general anesthesia or deep sedation and 

therefore must be removed on emergence. In addition, it requires periodic repositioning 

and constant supervision by an experienced professional. Surgical patients often 

experience significant alterations in volume status post-operatively, however the TED is 

not a valid monitor in those situations for these reasons [128, 140]. There is therefore a 

clinical need for a non-invasive alternative to the TED, that could be used for monitoring 

SV in patients during the entire peri-operative period.  

Although multiple technologies for non-invasive SV prediction have been 

described in the literature, none is suitable for use in the pre-, intra- and post-operative 

settings. Impedance cardiography (ICG) involves placing 4-8 electrodes on the thorax, 

sending a small electrical current into the body and measuring the subsequent voltage drop 

to compute thoracic impedance changes resulting from aortic ejection of blood. While ICG 

has been demonstrated to be accurate for SV estimation in some settings, the accuracy is 

limited in patients with low cardiac output, subjects with high body mass index, and can 

be confounded by other fluids in the thoracic cavity (e.g., edema) [141-144]. Volume-

clamping based continuous blood pressure measurement technologies have also been 

implemented with empirical algorithms for estimating SV, however their accuracy has 

typically been shown to be low in large studies [145-148]. Ballistocardiography (BCG) 

based techniques, quantifying whole-body movements in response to the blood movement 

in the vascular tree, have been investigated as well for SV estimation; however, such 

techniques require cumbersome beds or tables and are thus not well-suited to clinical 

settings and cannot be applied readily to ambulatory settings [21, 149].  
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In this study, the primary aim was to develop an alternative to TED, which can 

track a patient’s SV continuously and non-invasively both during and after surgery. 

Previously a wearable patch was developed [150], and studied for ambulatory monitoring 

in heart failure patients. It was found that it accurately reflects the changes in clinical status 

[32, 151]. In this proof of concept study, the feasibility of estimating SV with wearable 

patch that measures the seismocardiogram (SCG) and electrocardiogram (ECG) signals in 

patients undergoing major gynecologic oncology surgery was investigated. To achieve this, 

an end-to-end signal processing and regression-based prediction algorithm using the 

features extracted from the patch signals was presented. The TED was used as a reference 

standard against which the estimates from the wearable patch could be compared. With 

such a mapping function, the wearable patch is expected to enable non-invasive and 

continuous hemodynamic monitoring and guide fluid management throughout the entire 

peri-operative phase. 

4.2.2 Study Design and Subject Demographics 

This project was conducted under a protocol approved by the Northwestern 

University Institutional Review Board and all subjects provided written consent. A total of 

12 female subjects (Age: 52.0 ± 10.1, Weight: 79.2 ± 23.2kg, Height: 162.6 ± 5.4 cm) 

undergoing major intra-abdominal gynecological oncology surgery participated in the 

study. The peri-operative care of all subjects was based on the Institutional Enhanced 

Recovery (ERAS) Protocol for Gynecologic Oncology patients. The protocol included pre-

operative hydration and multimodal analgesia. The wearable patch was applied pre-

operatively, to the anterior chest of the subject at the mid-sternal level. All patients received 

an opioid sparing total intravenous anesthetic. The TED was inserted following tracheal 
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intubation. The intravenous fluid therapy protocol was based on the ERAS protocol, guided 

by the Doppler parameters to maintain an SV greater than 70 mL/beat.  Upon emergence 

from anesthesia, the endotracheal tube and the TED were removed in all subjects. 

Additionally, post-operative analgesia, intravenous fluid therapy, oral intake and physical 

activity were based on the ERAS protocol in all subjects.  

4.2.2.1 Transesophageal Doppler (TED) 

Following endotracheal intubation, the TED (CardioQ-ODM, Deltex Medical, 

Greenville, SC) was inserted into the esophagus of the subject by an experienced 

practitioner. Once the appropriate Doppler signal and waveform were obtained, monitoring 

commenced [136, 152]. Windows (30 second length) of the resulting velocity-time 

waveform were used to calculate various parameters such as mean acceleration, peak 

velocity, and stroke distance. SV was calculated from the TED waveform by multiplying 

the distance a column of blood moves along the aorta at each left ventricular contraction 

(stroke distance) with a calibration constant (the approximate area of the aorta based on 

patient age, weight and height). 

4.2.2.2 Wearable Patch 

The custom wearable patch, which is shown in Fig. 14(a), was applied to the 

anterior chest of the subject at the mid-sternal level using three Ag/AgCl ECG adhesive-

backed gel electrodes (Red Dot 2560, 3M, Maplewood, MN). It weighs ~ 65 grams and 

has a diameter of ~10 cm, which does not make the subjects uncomfortable during data 

collection. To capture the ECG, an analog-front-end (AFE) integrated circuit (IC) with on 

board analog-to-digital converter, ADC, (ADS1292 Texas Instruments, Dallas, TX), which 
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connects to these three electrodes, was used. Each electrode corresponds to either the 

positive reference, negative reference, or right-leg drive.  

While the ECG waveform measures the electrical activity of the heart, the SCG 

waveform assesses the mechanical motions and corresponds to the local thoracic vibrations 

originating from the contraction of the heart and ejection of blood from the ventricles. An 

SCG waveform is generated for each contraction, which is characterized by several peaks 

and valleys. A tri-axial ultralow noise accelerometer (ADXL355, Analog Devices, 

Norwood, MA) is used to capture the SCG signals in lateral (X-axis), head-to-foot (Y-axis) 

and dorso-ventral (Z-axis) directions. SCG components each having a specific 

morphology, can be observed in all three axes as shown in  Fig. 14(b), [21, 153]. 

The patch includes an ATSAM4LS8B (Microchip Technology, Chandler, AZ) to 

sample all sensors (ECG at 1kHz and the accelerometer at 500 Hz) and to save the data to 

an on-board microSD card. When interfaced with a computer through a microUSB port, 

HeartPulse App (Department of Anesthesiology, Northwestern University, Chicago, IL) 

communicates with the microcontroller to download and subsequently delete the data on 

the microSD card. Additionally, the inserted microUSB interfaces with the battery charger 

(BQ24232RGTR, Texas Instruments) to charge the 150 mAh battery. The battery life of 

the patch is approximately 48 hours, which is more than adequate to record the data for the 

entirety of most surgeries and the first post-operative day. 
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Figure 14: (a) Custom-made patch hardware. (b) A representative beat from the ECG, 
SCGx,y,z,total and PCGsternum signals (for PCG, only Z-axis is shown as the other axes are less 
commonly used). The portion within each R-R interval is called a beat, which is usually 
around ~ 600 - 1000 ms. The R-peak locations on the ECG signal are used to split the SCG 
into individual beats. The peaks and valleys on the SCG signals correspond to specific 
cardiac events. 
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Figure 15: The block diagram for the data acquisition and signal processing. The wearable 
patch was mounted on the mid-sternum while the patient was undergoing a surgery. The 
ECG and SCGx,y,z signals were recorded throughout the surgery while the SV values were 
being acquired with the TED. In addition to the SCGx,y,z signals, the total acceleration 
magnitude, SCGtotal, was calculated. As the TED was averaging and storing the SV values 
every 30 seconds, the ECG and SCGx,y,z,total signals were split into 30 seconds-long 
segments. Within each segment, the R-peak locations were found on the ECG and used to 
detect the individual beats on the SCGx,y,z,total. The ensemble average of the detected beats 
was calculated, so per segment there was one single ensemble averaged frame for each 
axis. In total 65 features were extracted for the analysis. Then a random forest regression 
model was trained to predict the corresponding SV values. 

 

4.2.2.3 Pre-processing and Signal Segmentation 

The SCGx,y,z and ECG signals were filtered using finite impulse response (FIR) 

Kaiser-window band-pass filters (1-45 Hz and 0.5-40 Hz, respectively) to reduce the 

motion artifacts while preserving the shape of the signals. These cut-off frequencies were 

determined based on the existing literature [154, 155]. With these cut-off values, low 
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frequency noise caused by respiratory chest wall movements was also attenuated as these 

movements are usually observed below 0.5 Hz [156, 157]. In addition to the SCGx,y,z 

signals, the total acceleration magnitude, SCGtotal, was calculated using the formula 

9SCGx(𝑡)& +	SCGy(𝑡)& +	SCGz(𝑡)&, where SCGx(t), SCGy(t) and SCGz(t) represent the 

acceleration measured in the X, Y, Z directions at time instant t (Fig. 14(b)). This new 

signal represents the total physical activity of the heart by assessing the spatial curve of the 

displacement vector instead of separating the vector space into individual axis components 

[155, 158]. The TED and patch clocks were aligned using the corresponding timestamps 

in the stored data. The heart rate (HR) and SV values were obtained from the TED as the 

reference values. Since the TED averages and updates the HR and SV every 30 seconds, 

the SCGx,y,z,total and ECG signals obtained from the wearable patch were processed in a 

similar manner. The ECG and SCGx,y,z,total signals were split into 30 seconds long segments 

to ensure coherence with the TED measurements (Fig. 15).  

The first 20 minutes (data recorded during pre-incision) was considered as baseline 

or pre-incision data. For the intra-operative data, the patch signals were segmented into 

non-overlapping segments in accordance with the TED clock as previously explained (Fig. 

15). The average number of intra-operative data points was 228±128 (min:62, max:418). 

The differences between the number of data points were due to either the varying length of 

the surgeries or loss in TED/patch signals. For the pre-incision data, a different signal 

segmentation method was employed to increase the number of instances. As the TED 

updates the SV and HR values every 30 seconds, there were 40 data points in each of the 

pre-incision SV and HR vectors. Cubic spline interpolation was applied on these SV and 

HR vectors in order to artificially increase the number of data points. Cubic spline 
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interpolation was chosen as it has been found to be an effective and computationally 

efficient method in the literature [159, 160]. It fits a series of unique cubic polynomials 

between adjacent pairs of points, so that a smooth and continuous curve is obtained [161]. 

From the interpolated SV and HR curves, equally spaced data points were obtained to 

increase the frequency of the SV and HR readings. The interval was selected as 3 seconds, 

so that the reference SV and HR values could be updated every 3 seconds, rather than every 

30 seconds. The pre-incision SCGx,y,z,total and ECG signals were segmented in accordance 

with these interpolated SV and HR values. A moving 30 seconds long window with 90% 

overlap (i.e. step size of 3 seconds for coherence with the interpolated SV and HR values) 

was applied on the SCGx,y,z,total and ECG signals to obtain the segments (Fig. 16).  

 

Figure 16: Cubic spline interpolation was performed on the pre-incision SV and HR vectors 
to increase the number of instances. From the interpolated SV and HR curves, equally 
spaced (3 seconds) data points were obtained to increase the frequency of the SV and HR 
readings. Similarly, the patch signals were segmented using a 30 seconds long moving 
window with 90% overlap (step size = 3 seconds). 
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4.2.2.4 Feature Extraction 

The R-peaks of the ECG were detected using a simple peak detection algorithm 

within each segment. The peaks were used to extract individual beats of the SCG in each 

of the three axes. These beats were then truncated to a length of 600 ms and ensemble 

averaged to produce a single averaged beat, or frame, per each segment for all three 

directions [34]. Additionally, for each segment, the average R-R interval duration tRR was 

calculated using the ratio 60 / tRR to obtain the average HR in beats per minute (bpm). 

These HR values were compared with the reference HR values obtained from the TED, 

and any 30 seconds-long segment was discarded from the analysis unless the reference and 

calculated average HR values were in 10% agreement. 

Table 6: Features Extracted from the Signals 

 Feature Names Number of 
Features 

SCGx,y,z,total 

0-250 ms 

First and second largest maxima (amp. and loc.) 
First and second largest minima (amp. and loc.) 
RMS power 
Peak-to-peak amplitude 

10 

(4 signals=40) 

SCGx,y,z,total 

250-500 ms 

Largest maximum (amp. and loc.) 
Largest minimum (amp. and loc.) 
RMS power 
Peak-to-peak amplitude 

6 

(4 signals=24) 

ECG Average HR derived from R-R interval length 1 

TOTAL  65 

 

SCG signals are characterized by several peaks and valleys, which are labeled in 

Fig. 14(b) based on their corresponding physiological events: MC (mitral valve closure), 
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IVC (isovolumetric contraction), AO (aortic valve opening), RE (rapid ejection), AC 

(aortic valve closure), MO (mitral valve opening), and RF (rapid filling) [21]. In the current 

analysis, the peaks or valleys were not matched with specific cardiac events as the cardiac 

events points are subject specific and prone to instability. Such instability may occur 

because, 1) SCG signals have high inter-subject variability and it is not always possible to 

detect these points accurately, 2) SCG signal morphology may change depending on the 

position of the subject or the location of the patch, 3) The current data set consists of 

subjects undergoing surgery rather than healthy subjects, and thus the subjects’ 

physiological state is not as stable as for healthy subjects. Thus, there was a need to account 

for instability of the signal morphology in the proposed methodology [41, 153]. 

Accordingly, rather than putting emphasis on specific physiological points (AO, MC, etc.), 

the methods in the literature were followed [33, 34] and a new feature set was defined 

consisting of maxima and minima points of the signal (instead of matching the peaks or 

valleys with underlying physiological events). 

A total of 65 features were extracted for the analysis (Table 6): 64 of these features 

were from the SCGx,y,z,total frames, i.e. 16 features were extracted from each SCG signal. 

These features included maxima-minima amplitudes and locations, root-mean-square 

(RMS) powers, and peak-to-peak amplitudes. As the final feature, calculated average HR 

values were used. All features were stored in a matrix, and the same feature extraction 

procedure was repeated for each subject. For nth subject, the feature matrices obtained from 

the pre-incision and intra-operative data were denoted by Bn and Sn, respectively. A sample 

feature matrix is shown in Fig. 15. In these feature matrices, each row corresponds to a 30 

seconds-long segment, and is of the form: (Fj, vj), where Fj = (xj,1, x j,2, ..., y j,1, y j,2, ..., z j,1, 
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z j,2, ..., t j,1, t j,2, ..., HR) are the 65 features extracted as described in the previous section, 

and vj is the SV values we obtained from the TED. 

4.2.2.5 Regression Model and Validation 

Random forest-based regression was used to estimate SV values as it can achieve 

high accuracy without overfitting. In this method, rather than relying on a single tree, 

multiple trees are bootstrapped by using randomized subsets drawn from the original 

dataset. The trees are trained in parallel independently and their final predictions are 

averaged to obtain the predicted target value [162, 163]. During the training phase, the 

model learned the relationship between the reference SV values and extracted features. 

This trained model was then used to predict the SV values for the incoming unseen 

segments.  

The model was validated using LOSO-CV. The feature matrices obtained from 

each subject from the pre-incision and intra-operative data as Bn and Sn, respectively. In 

each fold i, the intra-operative data (Si) from the ith subject was left out and the model was 

trained using the remaining Sn, where n ≠ i, and all pre-incision data (Bn). This effectively 

simulates the clinical scenario of requiring a calibration period with TED Bi after which 

time the TED would no longer be required intra- or post-operatively. The combination of 

these matrices and the corresponding SV values were the training data and training targets, 

respectively. The model was then tested on Sn and the predicted SV values were stored. A 

simplified representation of the proposed LOSO-CV framework is presented in Fig. 17. 

The same procedure was repeated for each subject. 
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Figure 17: A simplified representation of how LOSO-CV was performed. In each fold, 
intra-operative data from one subject was left out Si. The model was trained using the 
remaining Sn where n ≠ i and all Bn. The model was then tested on Si and the predicted SV 
values were stored. This step was repeated for each subject. 

The correlation coefficient (r-value) and the median absolute error (MedAE) 

between the reference and predicted SV were computed to assess the performance of the 

model. Beyond correlation, Bland-Altman methods were used to quantify the agreement 

between the SCG-based SV values and the reference standard values from TED [164]. 

Although a Bland-Altman plot presents the bias and limits of agreement, it does not provide 

direct information on whether the difference between the reference and predicted values is 

clinically acceptable. The most important reason is inter-subject variability, i.e. one limit 

of agreement might be acceptable for a subject with high SV, but it may be too high for a 

subject with low SV [165]. One of the methods to overcome this problem is to calculate 

the percent error (PE) for each subject, i.e. dividing the limits of agreement by the mean 

reference SV value [165, 166]. This error should be within ±30% to consider the new 

method as “interchangeable” with the reference method. It should be noted that in this 

study, rather than using the limits of agreement across all subjects, each subject’s own 

limits of agreement and mean reference SV value were used to remove the effect of inter-

subject variability. In the MedAE calculation, first the prediction error, i.e. the difference 

between the reference and predicted SV values of all segments from all subjects, was 
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calculated. Then the absolute value of the errors was computed, and their median was 

calculated. This yielded the MedAE of the model. MedAE was selected rather than mean 

error to reduce sensitivity of the assessment to outliers. 

4.2.2.6 Elucidating Mechanistic Insight Regarding Stroke Volume Correlations to SCG 

The analysis pipeline was built using the features from both SCG and ECG signals 

as explained in the previous section. To show that SV prediction would benefit from an 

electro-mechanical approach rather than relying only on electrical or mechanical schemes, 

different models were trained using: (i) features from SCG axes (only mechanical), (ii) 

features from ECG, i.e. HR (only electrical), and (iii) features from SCG axes and ECG 

together (the electro-mechanical approach presented in the previous section). Then the 

performance metrics described above (correlation coefficient and MedAE) were 

calculated.  

In addition, the importance of using multiple directions of acceleration (dorso-

ventral, lateral, and head-to-foot), and their effect on the regression result were examined 

to investigate which acceleration direction(s) provide(s) better mechanistic insight into the 

physiological underpinnings of the signal. Different models were trained using the features 

derived from each direction (or their combinations) and the correlation coefficient and 

MedAE value were calculated. 

After investigating the effect of acceleration direction, each feature's individual 

contribution to SV prediction was calculated by obtaining the feature importance scores 

from the random forest model. In each tree, every node splits the values of a feature based 

on impurity (variance) criteria, so that the similar feature values are grouped under the 
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same set. Therefore, feature importance scores can easily be obtained by calculating each 

feature's contribution to decreasing the weighted impurity [167].  Leveraging this fact, the 

feature importance scores were obtained from the model and ranked in descending order. 

While calculating the feature importance scores, two different approaches were employed 

to investigate the bias and outlier effects on the model: (i) obtaining the feature scores in 

each fold and averaging them across all folds, (ii) re-training the random forest model on 

the whole dataset and computing the feature importance scores.  

Finally, to investigate feature contributions further, the Pearson correlation 

coefficients between feature pairs were calculated. Pearson correlation analysis measures 

the strength and direction of the relationship between two variables [168]. If any feature 

pair has an absolute correlation coefficient close to 1 (high correlation), this means that 

these two features are linearly dependent and have almost the same effect on the dependent 

variable, in this case: SV. On the other hand, having lower absolute correlation coefficient 

means that these two features have distinguishable effect on the dependent variable. Thus, 

having less correlated features, and therefore diversification within a feature set, is actually 

better for information gain, thus model training. 

4.2.2.7 Comparison with State-of-the-Art 

Contribution of the Acoustic and Vibration Components 

In the literature, it was shown that the SCG signal is composed of two main 

components: low frequency (i.e. vibration, 1<f<20 Hz) component emerging from the 

cardiac output and high frequency (i.e. acoustic, f>20Hz) component originating from the 

heart sounds [169, 170]. The latter is also known as the phonocardiogram (PCG) waveform 
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Fig.(14(b)). In this work, in addition to investigating the SCG signal as a whole, the 

individual contributions of the PCG and vibration components were also investigated. 

However, it should be noted that the sensor placement was not optimized for PCG and thus 

it is not quite a fair head to head comparison.  

In accordance with the frequency cut-off presented in the literature, the SCG signals 

were split into PCG and vibration segments: f>20 Hz (PCGsternum)and 1<f<20 Hz (SCGvib). 

Again, the lower frequency cut-off was selected as 1 Hz to remove any chest movements 

originated from respiration (generally f<0.5 Hz) [156]. After segmenting the SCGx,y,z,total 

signals into PCG and vibration segments, the whole analysis pipeline was run with the 

same features (amplitude and location features) and same ML model (random forest 

including 20-min of calibration) for PCGsternum, SCGvib, and the combination of PCGsternum 

and SCGvib cases. 

Comparison with the Existing Literature 

Previously the relationship between SCG and SV was investigated in 8 individuals 

by recording their uni-axial SCG signals (using 393C, PCB Piezotronics) in two separate 

sessions at least a day apart [171]. In that study, the following features were extracted from 

each beat: the time between the ECG R-wave and the opening of mitral valve (tMO), the 

maximum of rapid ejection (REmax) and the slope of its increase (mRE), the area under curve 

during rapid systolic ejection (AUCRE), isovolumic contraction time (tMC-AO) and its slope 

(mMC-AO), systolic ejection time (tAO-AC) and isovolumic relaxation time (tAC-MO). For each 

subject, a linear regression model was trained on the first recording session and the second 

session was used for testing. 
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To provide a fair comparison with [171], the points corresponding to the cardiac 

events (the features above) were extracted from each of the SCGx,y,z,total signals. Then for 

each subject, the first half of the SCG signal was used to train a linear regression model 

and the second half was used for testing the model. It should be noted that there were 

several differences in the experimental setups of this study and the one being compared. In 

this study, (i) the recordings were taken at a single session where the subjects were 

undergoing surgery (i.e. their hemodynamic state was varying), (ii) instead of a uni-axial 

accelerometer, a  3-axis accelerometer was used, (iii) the features were extracted from the 

ensemble averaged frames derived from 30-sec long segments as the TED was updating 

the SV every 30 seconds.   

4.2.3 Results and Discussion 

4.2.3.1 Machine Learning Based Estimation of Stroke Volume 

The regression model trained on the combination of the SCG and ECG features was 

correlated to the TED reference standard (r = 0.81) with a relatively low MedAE (7.56 mL) 

across all subjects. Using the cardio-mechanical information only (i.e., SCG signal features 

alone) resulted in a correlation value of 0.67 and a MedAE of 9.51 mL, whereas using only 

the electrical (ECG) information resulted in a correlation value of 0.31 and a MedAE of 

14.75 mL. Fig. 18(a) provides the regression plot for the electro-mechanical approach, with 

each subject represented by a different color for ease of visualization. 

The results of this study demonstrated that the combination of the SCG and ECG 

features contains salient information for enabling estimation of SV with sufficiently high 

correlation and low MedAE across all subjects. The error is higher in SV values greater 



 80 

than 100 mL, and in particular quite high for SV values above 150 mL.  According to the 

Bland-Altman results (Fig. 18(b)), the differences between the reference and predicted SV 

values are closer to zero within the 60-100mL range, which justifies that the model 

achieves higher prediction performance within this range. Most of the data points are 

within the 95% confidence interval (limits of agreement: +33.08mL and -32.86mL), and 

the scatter around the bias line (mean difference: 0.11mL) increases as the average SV 

increases, demonstrating that the variability is not consistent throughout the graph. One 

reason for the greater error at higher values of SV is the high inter-subject variability in the 

dataset, as shown with different colors in Fig. 18(a,b); since most of the datapoints at these 

higher values of SV were from one subject, the model trained on other subjects with lower 

SV values did not perform as well for this case. In addition to the Bland-Altman plot, PE 

for each subject was calculated to investigate whether the proposed algorithm could be 

considered as “interchangeable” with the reference method. This analysis resulted in 

average PE of 37.5±22.45 for the lower limit (6 subjects being <%30), and 25.6±16.7 for 

the upper limit (9 subjects being <%30). 

4.2.3.2 Interpretation of Acceleration Directions and Features 

In contrast to the ECG signal which has been studied for more than a century and 

is well understood regarding its mechanistic underpinnings, the SCG signal is not as well 

characterized. The literature reports that the dorso-ventral component of the signal 

represents a combination of body acceleration responses to both heart and blood movement 

in the thoracic cavity [21]. Our group has previously reported that the head-to-foot 

component may better reflect blood movement [32]– due to the anatomical alignment of 

the aorta and the large component of the body acceleration that is originated from the 
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change of direction of blood through the aortic arch – and thus a sub-hypothesis of this 

work aimed at elucidating physiological mechanistic insight was that the head-to-foot SCG 

components would better reflect hemodynamic forces (e.g., stroke volume). In the current 

study similarly, a relatively higher correlation was obtained between the predicted and 

reference SV values when the features from the head-to-foot axis were used to train the 

model (r=0.65) compared to the dorso-ventral (r=0.50) or lateral (r=0.22) axes. In contrast, 

the dorso-ventral axis, which represents a combination of body acceleration responses to 

both heart and blood movement in the thoracic cavity, resulted in smaller MedAE (10.86 

mL) compared to other axes. When the total heart activity signal was used, the correlation 

and MedAE values were calculated as 0.56 and 10.49mL, respectively. The regression 

results of the models trained using features from each SCG axis and their combinations are 

presented in Table 7. 

Each feature's contribution to SV prediction was investigated by analyzing the 

feature importance scores obtained from the random forest models. Regardless of the 

method used (averaging across folds vs. re-training on the whole dataset), the same features 

were obtained as the top 15 most important features. In Table 8, the importance scores from 

the first method (averaging across all folds) are presented. The feature which has the 

highest importance is heart rate obtained from the patch ECG. This is followed by the 

amplitude of the minimum point within the first 250 ms of the dorso-ventral signal. From 

a physiological perspective, this point corresponds to the start of isovolumetric contraction, 

which occurs immediately before systolic ejection. Since stroke volume is defined as the 

difference between the end diastolic and end systolic volumes, finding isovolumetric 



 82 

contraction as one of the most prominent features is consisted with the underlying 

physiological events.  

 

Figure 18: (a) The reference vs. predicted SV values are presented. 65 features were 
extracted and used to train a random forest regression model. This resulted in a correlation 
coefficient (r-value) of 0.81 and MedAE of 7.56 mL. (b) The Bland-Altman graph for the 
reference and predicted SV values. Horizontal line in the middle represents the bias line, 
whereas the area between the upper and lower horizontal lines represent the 95% 
confidence interval, (mean ± 2*standard deviation). 

 



 83 

Table 7: Experiments with Axis-Combinations 

 Correlation (r-value) MedAE (mL) 

SCGx 0.22 13.76 

SCGy 0.65 12.46 

SCGz 0.50 10.86 

SCGtotal 0.56 10.49 

ECG (HR) 0.31 14.75 

SCGx and ECG 0.58 9.64 

SCGy and ECG 0.74 8.44 

SCGz and ECG 0.67 9.29 

SCGtotal and ECG 0.71 9.65 

SCGx,y 0.48 10.81 

SCGx,z 0.53 11.80 

SCGy,z 0.61 10.94 

SCGx,y and ECG 0.77 7.93 

SCGx,z and ECG 0.74 8.73 

SCGy,z and ECG 0.73 8.86 

SCGx,y,z 0.64 10.63 

SCGx,y,z,total 0.67 9.51 

SCGx,y,z and ECG 0.80 7.61 

SCGx,y,z,total  and ECG 0.81 7.56 
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Table 8: Random Forest Feature Importance Ranking 

Feature Names Normalized Feature Scores 

Wearable Heart Rate (HR) 0.314 

0-250ms, First Min. Amp, Z 0.125 

0-250ms, First Max. Amp, X 0.079 

0-250ms, Peak-to-Peak, Y 0.050 

0-250ms, First Min. Loc, X 0.048 

0-250ms, First Min. Loc, Z 0.041 

0-250ms, First Min. Loc, Y 0.035 

0-250ms, Second Max. Amp, Z 0.026 

0-250ms, First Max. Loc, Z 0.024 

0-250ms, First Max. Amp, Z 0.020 

250-500ms, Peak-to-Peak, Y 0.017 

0-250ms, RMS Power, Y 0.014 

250-500ms, First Min. Amp, Z 0.013 

250-500ms, First Min. Amp, Y 0.013 

0-250ms, Second Min. Amp, Y 0.012 

 

Secondly, amplitude values of the maxima and minima points are dominating the 

location (timing) values of these points. As SV is directly related to the contraction and 

strength of the heart, it was expected to have mostly the amplitude-related features in the 

top features. Lastly, most of the top features belong to either the head-to-foot or dorso-
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ventral axes. These scores are consisted with the findings of the proposed regression 

analysis, and explain why dorso-ventral and head-to-foot axes resulted in relatively higher 

performance compared to the lateral axis. In contrast, none of the total heart activity 

features appeared in the top 15 list.  

Finally, the heatmaps showing the Pearson correlation coefficients between the 

feature pairs are presented in Fig. 19. Based on these heatmaps, most of the feature pairs 

have correlation coefficients ranging between -0.25 and 0.50. In the literature, especially 

in medical research, this range falls under negligible-low correlation group (0-0.3 

negligible correlation, 0.3-0.5 low correlation) [123-125]. Therefore, it can be inferred that 

the features are not linearly dependent, and each feature has a unique contribution to the 

analysis. 

 

Table 9: Contribution of the Acoustic and Vibration Components (SCGx,y,z,total and ECG) 

 Correlation (r-value) MedAE (mL) 

PCGsternum 0.69 11.67 

PCGsternum + ECG 0.75 10.39 

SCGvib 0.35 12.67 

SCGvib + ECG 0.64 10.16 

PCGsternum + SCGvib 0.76 9.87 

PCGsternum+ SCGvib + ECG 0.81 7.99 

THIS WORK 0.81 7.56 
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Figure 19: Pearson correlation coefficients between different feature pairs from SCGx,y,z,total 
signals. 

4.2.3.3 Comparison with State-of-the-Art 

Contribution of the Acoustic and Vibration Components 

After segmenting the SCGx,y,z,total signals into PCG and vibration segments, the 

whole analysis pipeline was run with the same features (amplitude and location features) 

and same ML model (random forest including 20-min of calibration) for PCGsternum, 
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SCGvib, and the combination of PCGsternum and SCGvib cases. Results in Table 10 show that 

the combination of PCGsternum and SCGvib segments has superior performance (r=0.76, 

MedAE=9.87 mL) compared to using only- PCGsternum (r=0.69, MedAE=11.67 mL) or 

only-SCGvib (r=0.35, MedAE=12.67 mL) segments. Moreover, using the ECG features, 

i.e. HR, increases the estimation performance. Indeed, the combination of PCGsternum, 

SCGvib and ECG resulted in similar correlation (r=0.81) and MedAE (7.99 mL) values to 

the method presented in this work (r=0.81, MedAE=7.56 mL). Therefore, SV estimation 

benefits from both the acoustic and vibrational characteristics of the cardiovascular system. 

In addition, although the most important feature was heart rate in our proposed algorithm, 

when PCGsternum and SCGvib components were separated from each other, the first and 

second minima of the total acceleration magnitude (0-250ms) and the peak-to-peak 

amplitude of the head-to-foot direction (0-250ms) outperformed heart rate.  In a typical 

PCG, the first oscillation (S1 heart sound) corresponds to the closing of the mitral valve. 

Thus, having features related to S1 heart sounds as the key features is indeed consistent 

with the underlying physiological events as stroke volume is defined as the difference 

between the end diastolic and end systolic volumes [37]. 

Comparison with the Existing Literature 

Finally, the analysis pipeline offered by Tavakolian et al. was applied on the current 

dataset to provide a quantitative comparison. It should be noted that the comparison was 

not head to head as there were differences in the experimental setups of the two studies 

(mentioned in Section 4.2.2.7). In addition, the analysis pipeline presented in this study 

was based on training a global model and validating with LOSO-CV, whereas in [171] 

subject-specific models were used. Thus, the correlation and MedAE values were 
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calculated for each subject separately and presented as mean±std in Table 10. Overall, the 

MedAE results of the two studies were close to each other, however there was a great 

difference between the correlation values. In addition, there was a great variance among 

the correlation and MedAE values of the subjects, e.g. one subject had a correlation value 

of 0.71, whereas another one had a correlation value of 0.01. One reason might be the 

insufficiency of linear regression as it assumes a linear relationship between both the 

dependent and independent variables. Another reason might be the errors during the 

detection of the cardiac event points (AC, AO, etc.). As the subjects in the current dataset 

were undergoing surgery, it was challenging to locate and detect these fiducial points 

accurately. Therefore, it can be deduced that detecting the maxima and minima amplitudes 

and locations instead of the actual cardiac event points indeed contributes to such 

frameworks by providing a more representative feature set. 

4.2.3.4 Limitations and Future Work 

The limitations of this study are the relatively small sample size, and that the study 

was conducted at a single clinical site. Future studies will be necessary to assess the 

reproducibility of the methods including larger and more diverse datasets in patients having 

various diseases, and undergoing a variety of surgical procedures or different anesthetics 

techniques. For example, more extensive studies with serial measurements under various 

surgical conditions (such as fluid loading etc.) needs to be done to ensure accurate stroke 

volume prediction. Similarly, an increase in the number of subjects in the training set will 

improve the generalizability of the algorithm as well as the determination of key SCG 

features associated with SV prediction. Once the generalizability is achieved through 

validation in larger datasets, potential ways to achieve real-time monitoring will also be 
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studied. Future versions of the wearable patch will attempt to minimize form factor and 

improve comfort as well. 

Table 10: Comparison with the Existing Literature 

  Tavakolian et al. [171] 

(mean ± std) 

THIS WORK 

SCGx Corr. (r-value) 0.15 ± 0.21 0.22 

MedAE (mL) 13.29 ± 10.98 13.76 

SCGy Corr. (r-value) 0.09 ± 0.13 0.65 

MedAE (mL) 13.54 ± 10.68 12.46 

SCGz Corr. (r-value) 0.11 ± 0.26 0.50 

MedAE (mL) 13.21 ± 10.75 10.86 

SCGtotal Corr. (r-value) 0.13 ± 0.21 0.56 

MedAE (mL) 12.96 ± 10.91 10.49 

 

Another drawback of this study is the additional prediction error introduced by 

inter-subject variability. The current problem was framed as monitoring the changes in SV 

throughout and after the surgery relative to the reference SV values taken in pre-incision 

period, therefore some baseline data was included in the training set for each subject. This 

reduced the added inter-subject variability error in SV prediction, but requires a brief 

calibration period (pre-incision) during which both the wearable device and TED were 

being used. To adapt the wearable patch as an alternative to the TED, the ideal scenario 

would be having a model without any baseline data. Therefore, future work will also focus 
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on methods to eliminate the effects of inter-subject variability, and the need for a baseline 

set to enhance the prediction performance of the trained model. 

4.2.4 Conclusion 

The results of this study demonstrate the feasibility of a wearable patch system to 

monitor the SV continuously and non-invasively that is applicable to pre-, intra- and post-

operative periods. With this proposed technology, the wearable sensor could be applied to 

conscious, ambulatory patients and used to monitor SV without requiring anesthesia or any 

invasive intervention. There are obvious benefits of this technology from a patients’ 

perspective. It eliminates the discomfort and risks associated with other techniques for 

hemodynamic monitoring. Additionally, this technology also has several benefits for 

healthcare providers. The rapidity and ease with which the device is applied to the patient 

and the lack of the risks associated with inadvertent needlesticks and exposure to 

bloodborne infections cannot be underestimated.  

In conclusion, the proposed wearable patch system could be a viable alternative for 

peri-operative hemodynamic monitoring of surgical patients throughout the entire 

encounter. Combined with appropriate remote capabilities, it could facilitate monitoring 

the patients remotely after discharge to their homes as well. In addition, as the success of 

fluid management protocols based on monitoring intra-operative SV has been recently 

shown, this wearable technology can also be used in the future to potentially guide peri-

operative fluid management. 

 

 



 91 

CHAPTER 5: CONCLUSION AND FUTURE WORK 

With recent advances in wearable technology and machine learning, engineered 

devices and algorithms may soon transform healthcare delivery from intermittent clinic 

visits to feedback controlled continuous health monitoring. This dissertation described the 

use of wearable acoustic and vibration measurements to derive digital biomarkers, which 

can be used together with existing medical information to assist in clinical decisions.  

The first part of the dissertation mainly focused on the wearable acoustic 

measurements for biomechanics, and discussed how knee acoustical emissions could be 

leveraged to derive a knee health score to assist in joint health assessment, specifically in 

JIA. This analysis was followed by a novel click detection and classification algorithm 

leveraging the Teager Energy Operator, which can detect the clicks in joint sound signals 

and distinguish between physiologic and pathologic clicks. 

The second part of the dissertation focused on the wearable acoustic and vibration 

measurements for cardiovascular assessment in two different applications. In the first work, 

it was shown that the operating sounds of LVADs may provide substantial information 

regarding pump thrombosis when combined with machine learning algorithms. The second 

project discussed the use of wearable SCG in non-invasive SV estimation and suggested 

that SV estimation benefits from both the acoustic and vibrational characteristics of the 

cardiovascular system. 

Although the current frameworks showed that the wearable acoustic and vibration 

measurements could potentially be used to derive digital biomarkers, future studies will be 
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necessary to assess the reproducibility of the methods. To achieve more robust and accurate 

detection and analysis frameworks, future work will include (i) ensuring reliability of the 

measurements, (ii) verifying and validating the proposed frameworks, and (iii) achieving 

biomarker phenotyping. Below, these research questions and possible solutions are 

discussed.  

5.1 Future Work 

5.1.1 Ensuring Reliability of the Measurements 

The first step to bring medical sensing out of the clinical settings requires 

investigating the ways to improve the robustness of the current frameworks. Many systems 

and algorithms this dissertation presented have mostly relied on controlled in-lab 

experiments for evaluation. Considering that the real-world environments will not be 

controlled, the proposed frameworks will be prone to motion artifacts, ambient noise and 

hardware-related hurdles.  

In practical settings, patients will be expected to have these devices mounted on 

their body all the time for continuous monitoring. However, as patients will engage in 

vigorous activity throughout the day (walking, working out, etc.), signals may be corrupted 

by the motion artifacts and various noise sources like clothing interference, speaking, 

sweating, etc. Another case is when the patient will not be required to wear the device 

continuously, but he/she will need to mount it to record their physiological signals. Based 

on these challenges, future work will include investigating (1) how different methods of 

interfacing the sensors to the body affect the acoustic and vibration measurements, and (2) 

how much noise is introduced through environmental sources or hardware flaws.  
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To address these challenges, the first step would be ensuring standardization across 

the measurements, i.e. maintaining controlled data collection. This could be achieved 

through proper calibration methods, such as calibration through reference comparison. 

Another major step would be identifying the noise and error sources through appropriate 

noise quantification and signal quality index schemes as previously done in [154]. Once 

these sources are identified, they could then be labeled and detached from the actual 

signals, and quantified to derive actionable correction factors. Such factors could also be 

leveraged in the calibration step to achieve more reliable, accurate and error-free 

measurements. 

5.1.2 Validating the Proposed Frameworks 

To bring medical sensing out of the clinical settings and to use these digital 

biomarkers in clinical decisions, several verification and validation steps should be 

completed. First, the sensing systems’ measurement reliability should be confirmed as 

confidence is the key factor for both the caregivers and patients [1]. Necessary engineering 

bench tests should be performed and rather than just comparing the current findings with 

the subjective physical examinations, direct correlations with pre-validated diagnostic 

tools, such as MRI, should be derived. In addition, larger studies including different patient 

populations should be designed. Proposed algorithms may show changing performance 

across different patient groups by outputting varying and inconsistent performance metrics 

[1]. Thus, future work should include necessary steps to ensure proper verification of the 

sensing systems and validation of the proposed algorithms.  
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5.1.3 Achieving Biomarker Phenotyping  

This dissertation presented novel wearable frameworks leveraging vibration and 

acoustic measurements for knee joint and cardiovascular health assessment. However, 

when the goal is instead to predict the underlying physiology or the cause and symptom of 

the decreased condition, one may need more extensive and interpretable biomarkers. To 

meet this goal, different biomarkers should be derived for specific disease and injury types.  

For example, the presented framework in this dissertation could distinguish 

between the healthy joints and joints with arthritis. However, the inherent disorder might 

be arthritis, meniscal tear, ligament tear, etc. Thus, the main question is how to distinguish 

arthritis and another joint disease or injury from each other. If the range of motion, swelling 

and structure of the joints could be quantified through different digital biomarkers; a more 

comprehensive and patient-specific wearable scheme could be developed. Therefore, it is 

important to determine which features encapsulate which symptom, i.e., to achieve 

biomarker phenotyping.  

Similarly, cardiovascular issues are not only limited to deterioration of assist 

devices or hemodynamic monitoring. For example, a unique wearable device acquiring 

cardiogenic and pulmonary data (vibrations, acoustics, pressure, etc.) could be designed to 

track the clinical status of the heart, lung and blood simultaneously through quantifying 

pulmonary activity (edema, respiratory rate, etc.), cardiovascular performance (atrial and 

ventricular performance, etc.), baroreflex sensitivity, and blood pressure and oxygen 

saturation.  
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In addition, effect of the spatial differences across the acquired recordings should 

be studied through appropriate experimental models to understand the underlying clinical 

relevance better. For instance, the location of the LVAD recordings might potentially 

explain the location of the thrombosis within the device (inflow cannula, outflow cannula, 

etc.) or the amount of the thrombus formed within the pump. Similarly, recording the joint 

sounds from different knee locations could potentially tell more about the underlying 

cartilage and soft tissue degradations, and the severity of disease/injury-of-interest. As the 

recording location may affect the information we obtain from the signals, cadaver and 

animal models should be leveraged to understand how underlying anatomy contributes to 

the information acquired from the signal, which directly relates to the biomarker 

phenotyping we want to achieve.    

5.2  Final Remarks 

Wearable technology is in its early stages today and the projects presented in this 

dissertation are only some examples of how wearable technology can be used to quantify 

human health. This dissertation paved the way for leveraging wearable acoustic and 

vibration measurements for remote health monitoring. Once verified and validated through 

large studies, such systems can potentially assist in clinical decisions and improve the 

management of various diseases and injuries outside the physical confines of the clinic. 
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