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Although it has been claimed that the Rasch model leads to a higher degree of 
objectivity in measurement than has been previously possible, this model has had 
little impact on test development. Population-invariant item and ability calibra-
tions, together with the statistical equivalency of any two item subsets, are sup-
posedly possible if the item pool has been calibrated by the Rasch model. Initial 
research has been encouraging, but the implications of underlying assumptions 
and operational computations in the Rasch model for trait theory have not been 
clear from previous work. The current paper presents an analysis of the condi-
tions under which the claims of objectivity will be substantiated, with special em-
phasis on the nature of equivalent forms. It is concluded that the real advantages 
of the Rasch model will not be apparent until the technology of trait measure-
ment becomes more sophisticated. 

A procedure for a new kind of item analysis, based on the Rasch (1960, 1961, 1966a, 
1966b) logistic model, is now available for use in developing measures of unidimen-
sional traits. Wright (1967), one of the first researchers to operationalize the Rasch 
model, claims that the use of this model leads to an objectivity in measurement which 
is not possible under classical approaches to test development. The objectivity, ac-
cording to Rasch (1961), results from two basic features of the model: 1) the cali-
bration of the test items is independent of the sample and 2) the measurement of a 
person on the latent trait is independent of the particular items used. 

A psychological test having these general characteristics would become directly 
analogous to a yardstick that measures the length of objects. That is, the intervals on 
the yardstick are independent of the length of the objects and the length of individual 
objects is interpretable without respect to which particular yardstick is used. In 
contrast, tests developed according to the classical model have neither characteristic. 
The score obtained by a person is not interpretable without referring to both some 
norm group and the particular test form used. 

Wright and Panchapakesan (1969) claim that objective measurement is now possible 
because their estimation techniques for the Rasch parameters yield tests with the 
following specific properties: 1) the estimates of the item difficulty parameter will not 
vary significantly over different samples of people, 2) the estimates of a person's ability, 
given a certain raw score, will be invariant over different samples, and 3) estimates of a 
person's ability from any calibrated subset of items will be statistically equivalent. If 
these properties are truly now possible through application of the Rasch model, it 
would seem that mental measurement would be revolutionized. No longer would 
equivalent forms need to be carefully developed, since measurement is instrument inde-
pendent and any two subsets of the calibrated item pool could be used as alternative 

I 'Now at the Psychology Department, University of Kansas, Lawrence, Kansas. 
'This study was supported by an Office of Naval Research contract to Rene V. Dawis through the Center 

for the Study of Organizational Performance and Human Effectiveness at the University of Minnesota. 

163 



164 	 WHITELY AND DAWIS 

instruments. Similarly, independence of measurement from a particular population 
distribution implies that tests can be used for persons dissimilar from the standardiza-
tion population without the necessity of collecting new norms. 

To date, however, the Rasch model has had little apparent impact on test de-
velopment. The reasons for this are not clear, particularly since initial research has 
been encouraging. Both item and ability parameters have been found to be invariant 
over different nonrandom samples (Anderson, Kearney, & Everett, 1968; Brooks, 
1965; Tinsley, 1971). Furthermore, the model appears to be robust with respect to 
several of the underlying assumptions (Panchapakesan, 1969). However, little evidence 
on the equivalency of item subsets has been presented, nor is it clear from Wright and 
Panchapakesan's (1969) paper how application of the Rasch model yields either item-
invariance or sample-invariance of the estimated parameters. 

The major purpose of the present paper is to determine how the properties of the 
Rasch model, estimation procedures, and trait data interact to produce item- and 
sample-invariant parameters. The equivalency of item subsets will be given special at-
tention by presenting some empirical data in addition to determining thoroughly the 
nature of subset equivalency. 

THE RASCH MODEL 

The Rasch model is a latent structure model which is based on the outcome of the 
encounter between persons and items. The model seeks to reproduce, as accurately as 
possible, the probabilities of passing items, in the cells of an item by score group ma-
trix, where persons obtaining the same raw score are grouped together. Table 1 pre-
sents an item by score group matrix in which k items are ordered by their difficulty 
level and k — 1 score groups by obtained raw scores. The score groups for which all 
items are either passed or failed are excluded from the matrix, since these extreme 
score groups provide no differential information about the items. The cell entries repre-
sent the probability, Ff.„ that item i will be passed by score group]. The Rasch model is 
a function which is designed to reproduce these proportions of probabilities by use of 
only two parameters, item easiness and person ability, in the following manner: 

A i  x E, 
P,, 	 (1) 1 + A, x E, 

where A i  = ability parameter for score group j and E. = easiness parameter for item i. 
These parameters, A i  and E,, are latent marginals associated with the individual score 
groups and items, respectively. 

Scaling a test through the use of the Rasch model may be contrasted to traditional 
test development techniques. The traditional indices associated with persons and items, i 
number correct and percent passing respectively, are direct linear calculations from 
the data. In contrast, the task in calibration with the Rasch model is to estimate the 
person and item parameters so that the probabilities of each person (score group) 
passing each item will be accurately reproduced. Although the Rasch ability 
parameters are monotonically related to raw scores, a scoring table must be used to 
convert one index to the other. Once an item pool is calibrated, the scoring table may 
be used to determine the Rasch ability equivalents of new raw scores. The Rasch ability 
parameters may also be determined for raw scores from tests which use only some 
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Table 1 

Item by Score Group Probability Matrix 
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subset of the calibrated items. Separate scoring tables can be produced for any subset 
of items. 

Assumptions and Implications 

Rasch (1961) makes two basic assumptions in recommending the application of his 
model to psychological test data: 1) the model, equation (1), characterizes the data and 
2) subjects and items are locally independent. The first assumption has several implica-
tions, to be described in some detail, while the second assumption concerns the experi-
mental conditions of the test situation. Independence of subjects means that the item 
responses of any given person do not affect the responses of any other person. Inde-
pendence of items, on the other hand, means that a person's responses to preceding 
items do not affect his responses to later items. Thus, the probabilities a person will 
pass the various individual items must remain invariant, regardless if the ability test 
contains the whole item pool or only some subset of items. 

The first assumption, equation (1) is true, has several implications for the kind of 
data to which the Rasch model may be appropriately applied. The most basic im-
plication is unidimensionality of the item pool. This means that if subjects are grouped 
according to raw score, within each group, there will be no remaining significant cor-
relations between items. Thus, all of the covariation between the items is accounted for 
by variation of persons on the latent trait to be measured. 
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Referring again to Table 1, the item by score group matrix, unidimensionality im-
plies that for each item, P, is less than Pi , and P„ is less than P,3  and so on to R , 
so that the probability of passing the item increases regularly with total score. Each 
item, then orders subjects in the same way. 

Another implication required for conjoint measurement of subjects and items, is 
that items are ordered in the same way within each score group. On the item by score 
group matrix, this implies that Pi , is less than P2j  and 132;  is less than 133,, etc. to P, , 
within each score group. A further implication is that probability of passing items must 
increase over score groups in accordance with the item characteristics curve specified 
by the Rasch logistic model. The shape of this curve closely approximates the cu-
mulative normal distribution curve. 

Test data for which the Rasch model is applicable must have two other properties. 
First, all items must have equal discrimination, that is, the rate at which the probability 
of passing the item increases with total score must be equal for all items. The Rasch 
model does not contain a parameter for item discrimination. Second, there must be 
minimal guessing so that the probability of passing an item by chance is minimized. 

As summarized by Wright and Panchapakesan (1969), use of the Rasch model im-
plies that the only way in which items differ is easiness. Although on the surface this 
seems to lead to a very restricted applicability of the model, several researchers have 
claimed the model is robust with respect to significant departures from these implied 
properties (Anderson, Kearney, & Everett, 1968; Panchapakesan, 1969; Wright & 
Panchapakesan, 1969). However, as will be pointed out in this paper, the degree to 
which calibrations by the Rasch model will yield the objective measurement charac-
teristics claimed by Wright and Panchapakesan (1969), depends directly on how much 
the data departs from some of these implied properties and the assumption of local in-
dependence. The next few sections will be devoted to explaining the model and esti-
mation techniques. 

Estimating the Parameters 

An understanding of how the item and person parameters are determined from the 
Rasch model necessitates converting the cell probabilities, as on Table 1, into likeli-
hood ratios. Likelihood ratios are simply betting odds, the ratio of the probability of 
passing to the probability of failing. In Wright and Panchapakesan's (1969) estimation 
procedure for Rasch item and person parameters, a correction factor is added to the 
cell likelihoods to prevent infinite values from occurring when all members of the score 
group pass the item. 3  For conceptual clarity, only the uncorrected cell likelihoods, 
without regard to estimation difficulties, will be used in this discussion. Given Po  , the 

'The cell likelihood values are corrected by the relative frequency of the score group, as given by the 
following equation: 

L 
	aii  + w 

— + w 

where L = corrected cell likelihood aid  = number of persons in score group j passing item i, 	— a o  = 
number of persons in score group j failing item i, and w = percentage of total calibrating sample obtaining 
score j. 
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cell likelihoods for a given item and a given score group are reproduced by the simple 
product of item easiness and person ability values as follows: 

P,, 
(2) 

1 - P
— A

' 
A

' 
 x E,. 

Accordingly, the likelihoods in the cells of the item by score group matrix are re-
produced from the values associated with the row and column marginals. The person 
ability value represents an indication of the likelihood that a person will pass any item 
in the set, whereas the item easiness value is an indication of the likelihood the item will 
be passed by persons in any score group. This will become more obvious by a brief 
consideration of the computations of the parameters. 

The values for the Rasch model person and item parameters are usually reported as 
log likelihoods, rather than simple likelihoods. Similarly, the cell likelihoods are also 
converted to logarithms. The alternate set of values, tv , bp and di , are derived from the 
parameters defined in equation (2) as follows: 

P,, 
t, = log 1 

- P,, 

b, = log (A .,), and 

d, = log (E,)• 

Using log likelihoods rather than simple likelihoods has two advantages. The first is 
the obvious computational advantage. Second, the estimate of the log likelihood of any 
cell in the matrix, tij , is the simple sum of log Ai  and log E, as follows: 

= b, + di . 	 ( 3 ) 

Thus, on the logarithmic scale, the likelihood that a person will pass an item is given by 
the simple addition of his ability and the item's easiness.' 

The initial estimates for items, d„ are obtained directly from averaging the log 
likelihoods of passing the items over score groups, and then subtracting the grand 
mean. In terms of the matrix presented on Table 1 (assuming that the cell entries are 
now log likelihoods rather than probabilities), the rows are first averaged. Then, the 
resulting row marginals are averaged to obtain the grand mean. The initial item esti-
mate, d,, is obtained by subtracting the grand mean from the row marginal. The 
following equation gives the operations necessary to obtain the initial item estimates: 

k -1 	 k 	k -1 

= 11(k - 1)E t ;; - 11k(k - 1) E E (4) 

'The cell probabilities may be reproduced from the log likelihoods for items and persons. The following 
equation gives this relationship, where 4, d,, and 	are defined as before: 

exp (bi  + di ) 
— 

1 + exp (bi  + di) 
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where j is the subscript for score groups and i is the subscript for items. The first term 
refers to averaging over the columns to obtain the row marginal, while the second term 
is the grand mean of the matrix. 

The initial values for persons, bp are obtained in a similar manner, averaging the log 
likelihoods for each score group over the items and subtracting the grand mean. Refer-
ring again to Table 1, the columns are averaged and the grand mean is subtracted from 
the resulting column marginals. The following equation gives these operations: 

k k- 

= (1/k) 	— 11k(k — 1) E E (5 ) 

The final item and person parameter estimates are determined by the maximum 
likelihood procedure developed by Wright and Panchapakesan (1969). This procedure 
simultaneously solves two sets of equations until the estimates converge from one in-
teration to the next. The first condition to be satisfied is maximum predictability of the 
observed frequencies of passing each item for each score group from the estimated 
parameters of the model. The second condition is maximum predictability of obtained 
raw scores from a sum of the predicted probabilities, Po  , that the score group will pass 
each individual item. The final estimated parameters, then, maximize the fit of the 
model to the data in the item by score group matrix. 

Item Calibration and Unweighted Score Groups 

Whether the model is conceptualized in terms of simple likelihoods or log 
likelihoods, it is important to notice that each cell in the item by score group matrix 
has equal weight in determining the initial estimates of the parameters. The observed 
likelihoods of passing an item are summed over to estimate the initial item easiness 
parameters, without respect to the size of the groups obtaining each raw score. It 
makes no difference, then, if the estimates come from a high-ability sample, where high 
scores are obtained more frequently than low scores, or from a low-ability sample, 
where the reverse is the case. The Rasch model is concerned with reproducing the ob-
served pattern of likelihoods associated with raw score groups. In contrast, traditional 
item analysis techniques are concerned with the likelihood or probability that a 
member of a given population can pass an item. 

This particular feature of the Rasch model is critical with respect to claims about 
the invariance of item parameters over different nonrandom samples from the same 
population. When the specific distribution characteristics of a sample with respect to a 
latent trait are not permitted to weight the estimates, the item parameters will be 
sample-free. However, it is important to notice that this is true only if there is no 
"interaction effect" between samples and items. The item parameters will be invariant 
only if the same likelihoods are associated with items for each score group in each 
nonrandom sample. The more "culturally-biased" the items, the less likely item 
parameters will be invariant. In the final analysis, then, sample-invariance of items is a 
necessary condition for the Rasch model to provide sample-free calibrations. 

The shift in emphasis from populations to raw score groups has one important 
operational implication: huge N's are required. Unlike classical item analysis, each 
score group is used to give independent estimates of the item parameters. However, 
even when as many as 500 persons are used for item calibration, extreme scores may 
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not be obtained frequently enough to provide very stable estimates of the Pu  's. Even if 
scores on a 50-item test formed a perfectly rectangular distribution, for instance, a 
total N of 500 would produce only about 10 persons per score group. Typically, 
however, mid-range score groups have very high frequencies and extreme score groups 
may have few or no observations at all. Although the P0  's from the extremes can be 
estimated from the model, the need for very large N's during test development should 
be obvious. 

Anchoring and Interpreting Ability Scores 

The key to the sample-invariant interpretability of ability scores and comparability 
of ability scores from any item subset is the manner in which scores can be anchored. 
Whether the model is presented in terms of simple likelihoods or log likelihoods it can 
be seen that there is an indeterminacy in the solution of the parameter values. With 
simple likelihoods, for example, the ability parameters can be multiplied by any 
number, as long as the items are divided by the same number. Similarly, constants may 
be added or subtracted when the model is expressed as log likelihoods. 

The indeterminacy of the ability and item parameters permits the likelihoods to be 
anchored either to a set of items or a group of persons. To anchor to items, a set of 
items which have theoretical importance in measurement of the latent trait can be used 
as the standard set. The anchoring is accomplished by setting the mean simple likeli-
hood for the item set equal to 1.0. The parameters for ability are then adjusted to com-
pensate for the item anchoring. When items are used for the anchoring, ability scores 
are interpreted relative to the likelihood of solving an item in the standard set. For 
example, a person performing at the level of the item set (i.e., has a 50/50 likelihood of 
passing any item) should have an ability score of 1.0. 

Similarly, the solution for the Rasch parameters can be anchored to some group of 
persons. The persons may represent either typical, minimal or optimal ability levels; or 
the group may be a population of special interest. The average ability likelihood for the 
group can be set at 1.0 and the item likelihoods adjusted accordingly. Both a person 
with an ability likelihood of 1.0 and an item with a likelihood of 1.0 would be at the level 
of the group. 

The manner in which anchoring defines the unit of measurement for the Rasch 
ability parameters may be contrasted to norm-referenced (see Popham & Husek, 
1969, for this definition) measurement on traditional ability tests. Objective test score 
interpretation on traditional tests is made possible through the comparison of an indi-
vidual's score with some appropriate group. How much ability a person has, by z-
scores or percentile ranks, depends on with whom he is compared. 

In contrast, anchoring the Rasch ability parameters to a standard set of items leads 
to domain-referenced interpretations of individual scores. Rather than depending on 
the trait distribution in various subgroups of persons, item-anchored ability interpreta-
tions depend on the theoretical importance or representation of the trait from the stan-
dard set of items. As with the more typical usage of domain-referenced interpretations 
in achievement testing, the ability scores are indices of success on a specified group of 
items. If the simplest domain-referenced score, percentage correct, is used as an esti-
mate of the ability associated with each raw score, it is easy to see that this score will 
have the same interpretation regardless of group membership. The interpretability of 
Rasch ability parameters is, of course, slightly more involved than the direct in- 
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terpretability of percentage correct scores, differing mainly as to the sophistication 
with which ability and item information is used. However, the basic rationale is similar. 

Anchoring Rasch ability parameters to a standard group of persons seems, on the 
surface, similar to a norm-referenced approach. However, as with item anchoring, in-
dividual score interpretations are sample invariant since the scores are not interpreted 
as relative standings in a population. As Wright (1967) has indicated, ability likelihoods 
may be interpreted as direct ratios to the group mean—i.e., person X has twice as 
much ability as the group average, etc. The need to select a standard group which has 
intrinsic theoretical importance with respect to the trait should be obvious, if ratio in-
terpretations are to be meaningful. 

Unlike either norm-referenced ability tests or domain-referenced achievement tests, 
however, the anchoring of the Rasch ability parameters means that a person's ca-
pability can be estimated by using any subset from the calibrated item pool. The major 
prerequisite is local independence of items so that each item parameter and error of 
estimate remain invariant over test content. Once the item parameters are calibrated 
and anchored on some sample, the Rasch ability equivalents of all raw scores for any 
set of items may be produced from the standardization data. The comparability of the 
ability estimates results from fixing the item parameters relative to the likelihoods 
associated with some standard set of items, rather than the particular subset. Thus, the 
ability parameters will estimate the likelihoods of passing items in the whole set, rather 
than the particular subset, which may not represent the difficulty of the whole set. 

Equivalency and Precision 

Wright (1967) suggested that since statistically equivalent forms can be obtained by 
using any item subset, the use of the Rasch model eliminates the need to painstakingly 
equate items to create equivalent forms. However, there is quite a difference between 
equivalent forms in the traditional sense and the kind of statistical equivalency that 
may be derived from Rasch-calibrated item subsets by the Wright and Panchapakesan 
(1969) estimation procedure. Lord and Novick's (1968) distinction between parallel 
measures and tau-equivalent measures helps clarify some of the differences between 
the traditional meaning of test equivalency and the equivalency of Rasch-calibrated 
item subsets. Parallel measures, the traditional concept of equivalency, measure the 
trait equally well for all persons, since the expected values for both true scores and er-
ror variances are equal. Parallel tests will then have equal means, variances, and inter-
correlations with all other variables. Tau-equivalent measures, however, have equal ex-' 
pected values for true scores, but not necessarily equal error variances. Under this 
more limited definition, equivalent forms need not have equal variances or reliabilities, 

• 	I The equivalency of Rasch item subsets falls under the more limited definition of equiva- 
lent measures. 

Another difference of Rasch-calibrated item subsets from classical parallel 
measures is the relationship between test equivalency and the precision of true score 
estimates. In the classical model, the same index, correlation between alternative test 
forms, is often used as evidence for both test equivalency and measurement precision. 
Furthermore, internal consistency reliability, another commonly used index of 
precision, is also related to test equivalency in the following ways: (1) the internal conl 
sistency of equivalent forms should be equal and (2) the degree of precision estimated 
by alternative form correlations of equivalent tests should not be substantially lower 
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than the respective internal consistencies. As will be shown in this section, the test 
equivalency of Rasch-calibrated item subsets does not show the same relationship to 
precision as for classical parallel measures. The main difference derives from the 
different indices of error and precision which are permitted by the local independence 
of subjects and items in the Rasch model. 

Wright and Panchapakasen (1969) apply the binomial model to estimate error, 
separately for each item and score group (ability) parameter. The standard error of 
estimate for items is approximated by the following equation: 

k -1 

v(di ) 	(11[1( — 1]2)E ii(r,p,[i - 	 (6) 
J -1 

where probability of correct response Pu  = as estimated by parameters for cell ij, r, = 
number of persons obtaining raw score], and = indicates approximately equal. It can 
be seen that the standard error of the item becomes small as the term [r;  (1 — 
increases. This term is maximized when the probability of passing the item is as close 
as possible to the probability of failing for the maximum number of persons in the stan-
dardization sample. For a sample with a normal distribution of ability scores, the stan-
dard error of the item will take on its smallest value when the probability of passing the 
item is .50 for the sample as a whole. Although the item easiness parameter estimate is 
sample-invariant, item error in the Rasch model is sample-specific. 

Unlike classical test models, where measurement error is assumed to be equal for all 
ability levels as a latent trait model, separate errors of measurement can be provided 
for each Rasch-scaled ability level. The standard error of an ability estimate is ap-
proximated by the following formula: 

11(bj) (1/ 1( 2 ) E 11r,P1 (1 — PO. 	 (7 ) 
i=i 

That is, the inverse of the predicted cell frequencies are summed over items and then 
multiplied by 1/k 2  to give the standard error of the ability estimate. As with items, the 
standard error is minimized for a score group when for as many cells as possible the 
probability of passing equals the probability of failing. Also, score groups with larger 
frequencies, rj , will have smaller standard errors than those with fewer persons. Over 
all score groups, the standard error will decrease as the number of items increases 
since (1/k 2) will be minimized. 

It can be seen, then, that the precision of estimating ability for any particular score 
group depends on which items are used. The most precise ability estimate for a score 
group occurs when as many items as possible are at the 50% difficulty level for the 
group. Following this line of reasoning, the best item subsets to use for different popu-
lations will vary when these populations vary with respect to the latent trait, if ability is 
to be estimated with maximum precision for the population as a whole. 

Regardless of the average size of measurement error for a group, Wright (1968) 
claims that the observed difference in estimation between any calibrated item subsets 
will be totally accounted for by the associated measurement errors. That is, the 
differences between ability scores on the two test forms will be distributed as would be 
expected from the confidence intervals associated with the scores obtained on each 
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test. To make a test of statistical equivalency, a "standardized difference score" must 
be computed for each person. This is given by the following formula: 

X ip  - X2p  
D 12 = 	  

(Sap  + SE2Zp ) 112 ' 
(8) 

where D 12  = standardized difference, 	= ability score obtained by person p on 
test 1 and test 2 respectively, and SE 2x 4,, SE 2x2p = measurement errors associated 
with xv, x21,. The observed difference between the ability estimates given by the two 
tests is divided by the standard error of the score differences. The standardized 
difference score computed for each person can be interpreted as a z score, which com-
pares his observed ability difference to the theoretical distribution of the differences ex-
pected from the measurement error associated with each score. If the error between 
the two tests is accounted for by measurement error, then when the standardized 
differences are summed over persons in the population, these scores should be nor-
mally distributed with a mean of 0 and standard deviation of 1.0. 

Statistical equivalency of any item subsets, as obtained from applications of the 
Rasch logistic model, merely means that the observed ability differences between 
subset scores are distributed as would be expected from measurement error alone. 
However, there is no guarantee that "statistically equivalent forms" are also 
maximally precise forms. Precision of measurement, as shown above, is still popu-
lation-specific and will not be maximized unless items are carefully selected. Similarly, 
to minimize error in predicting ability scores from one test to the other, it is not 
possible to use just any subsets of items from the calibrated pool since the measure-
ment error on each form must be minimized. 

EQUIVALENCY OF CALIBRATED ITEM SUBSETS 

Tinsley (1971) compared the equivalency of item subsets on four tests and concluded 
that the ability estimates from the Rasch model were not invariant over item subsets. 
However, Tinsley did not use standardized differences in his comparisons and con-
founded precision with statistical equivalency. Data from one of Tinsley's tests were 
reanalyzed for two reasons: (1) to compare the observed ability differences between 
item subsets to the theoretical distributions of measurement error for scores, and (2) 
to examine the relative degree of precision of measurement between subsets. 

Procedure 

Test protocols for a 60-item verbal analogies test were calibrated by the Wright and 
Panchapakesan (1969) procedure for estimating Rasch model parameters. All items 
were multiple-choice, with five alternatives. The items on this test had been selected 
from a group of 96 items which were administered to college students. The items had 
been selected according to mixed criteria, with fit of the item data to the Rasch model 
as one of these criteria. 

Data from 949 subjects were available on the final 60-item analogies test. Ap-
proximately two-thirds of the sample were college students, while the remaining one-
third of the sample consisted of suburban high school students. The 60-item test had a 
mean of 34.86, and a variance of 89.32, and the Hoyt reliability coefficient was .877, 
showing an adequate degree of internal consistency for an analogy test. However, 30% 
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of the items did not fit the Rasch model at the .01 level, while 40% of the items did not 
fit when the more stringent criterion of .05 was used. 5  Thus, the robustness of the 
model with respect to equivalent forms was tested with the anlaogy test, since several 
items do not fit the model and the multiple-choice format yields possible guessing bias. 

Three different divisions of the pool of 60 calibrated items resulted in the following 
subset comparisons: (1) odd versus even items, (2) easy versus hard items, and (3) 
randomly selected subsets with no item overlap. Each subset contained 30 items. The 
corresponding log ability estimates for obtained raw scores on each subset were ob-
tained by a maximum likelihood procedure for each subset using the fixed item 
parameters, estimated from the full 60-item calibration on 949 subjects. 

Results 

Table 2 presents the means and variances for both log likelihood and raw scores on the 
six item subsets. The results from the comparisons between item subsets indicated that 
the raw score means and variances differed widely. For all three subset comparisons, 
the means were significantly different (p < .05). The odd-even and easy-hard subsets 
were significantly different in variability, while the random subsets did not differ. The t 
values reported are for correlated variances (Guilford, 1956). 

Scaling the test in log likelihoods produced fewer significant differences between 
subsets. The only significant differences were between the easy and hard item subsets, 
which had both significantly different means and variances. Although the mean 
difference, in absolute terms is probably too small to be theoretically important, the 
difference in variability is sizable. 

Table 2 also presents on the precision of the Rasch-scaled ability estimates for the 
sample as a whole. The individual score errors were weighted by the relative frequency 
of the scores to obtain the mean standard error of measurement. Table 2 shows that 
the average expected measurement error is approximately equal between the random 

Table 2 

Means, Variances and Measurement Errors 
of Item Subsets for Log Likelihood and Raw Scores 

Raw Scores 	 Log Likelihood Subset 
	

Hoyt 
Pass 	Index 

'The .01 and .05 significance levels refer to the probability of the observed item data, given that the item 
fits the model. The smaller the probability, the less the observed item data conforms to the distribution 
specified by the Rasch model. 
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Table 3 

Precision of Measurement and Standardized Differences 
Between Item Subsets 

Subset Comparison 
	

Log Likelihood 	Standardized Difference 

2 
s 	_ 	_ 

- 
x l x2 

r R 1 - R
2 

2 
S 	_ 	- 

x
1
-X

2 
S- 	- 
x 
1
-x

2 

Odd vs. Even .425 .76 .007 1.028 1.014 

Easy vs. Hard .590 .76 -.057 1.313 1.146 

Random Sets .410 .76 -.020 .995 .998 

subsets and the odd-even subsets, but that the precision of measurement is greater for 
the hard test than the easy test. 

A somewhat different pattern of results is obtained from a classical model index of 
reliability, internal consistency. The Hoyt index of reliability was approximately equal 
between the random subsets and the odd-even subsets, but differed between the hard 
and easy subsets. However, in direct contrast to the estimated precision for Rasch-
scaled ability scores, these results show that the easy test has the least measurement 
error. 

Table 3 presents two types of data on the equivalency of the item subsets. Stan-
dardized difference scores, used to compare subset equivalency for Rasch-scaled esti-
mates, were computed for each of the three comparisons. The mean standardized 
difference scores did not differ significantly from zero for all three comparisons, as 
would be expected for equivalent subsets. The variances were very close to the expected 
values of 1.0 for equivalent forms for both the random subsets and the odd-even com-
parison. The easy versus hard test comparison, however, yielded standardized 
difference scores with a variance significantly larger than 1.0 (F = 1.3, p < .01). The 
other type of equivalency data came from the classical model, correlations between 
subsets. Table 3 shows that the parallel form correlations were uniform for the three 
comparisons, but were only moderately high. Similarly, Table 3 shows that the 
variance of the differences between subsets (uncorrected for measurement error) is 
substantial. 

Discussion 

The results from two of the subset comparisons, odd-even and random sets, 
demonstrate the statistical equivalency of Rasch-calibrated item subsets which have 
not been matched for difficulty. The standardized differences between these subsets 
were distributed as would be expected from measurement error alone. These results 
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are notable because the classical model requirements of test equivalency were not fully 
met for either comparison. Test means were unequal for both the odd-even and 
random sets comparisons, while the variances were unequal for the odd-even com-
parison. 

However, the results from a third comparison, hard versus easy items, indicated 
differences which could not be accounted for by the measurement error estimated for 
the Rasch ability scores. Although the reason for this difference is not entirely clear, it 
is possible that poor fit of items to the model may have been a factor. To determine the 
plausibility of this interpretation, the percentage of items not fitting the model on the 
separate subsets was computed. It was found that 23% of the items on the easy subset 
and 57% of the items on the hard subset did not fit the model. Thus, both ability and 
measurement error were inaccurately estimated on the hard subset, since the 
responses to many of the difficult items did not conform to the item characteristics 
curve specified by the logistic model. 

The poor fit of the difficult items to the model also explains the inconsistent results 
on precision from internal consistency versus the Rasch ability error. Although the 
hard test theoretically provides the more precise measurement (that is, the probability 
of passing the items was closer to .50 for the most persons), many of the items ap-
parently were not highly correlated with total score, causing both the poor fit to the 
Rasch model and the lower internal consistency. 

In general, these results indicate that only under the most extreme conditions does 
the Rasch model fail to produce statistically equivalent forms for any item subsets. 
However, none of the item subsets resulted in the equivalency characteristic of tests de-
veloped by classical techniques. Furthermore, some increase in precision could have 
been gained by more efficient item selection, as evidenced by the varying average 
measurement error between forms. The Rasch ability error estimate and an index of 
internal consistency yielded different results, showing the need to consider both the 
slope of the item characteristic curve and the appropriateness of the difficulty level 
for subjects in this particular set of items. 

CONCLUSION 

A thorough analysis of applying the Rasch logistic model to trait test data revealed 
that objective measurement results from a complex interaction of the properties of the 
model, the nature of the estimation technique and the characteristics of the test data. 
Applying the Rasch model to typical trait data does not necessarily yield objective 
measurement, since some of the claimed advantages of applying the model depend 
directly on the characteristics of the item pool, rather than the model. For an item pool 
fully to possess the properties of objective measurement, a set of rigorous conditions 
must be met. 

The most direct influence of item characteristics is on the sample-invariance of item 
calibrations. The Rasch item parameter estimates will be invariant only under a special 
condition. Not only must individuals with the same raw score have the same 
probabilities of passing each item, regardless of the sample to which they belong, but 
the item characteristics curves must have equal slopes. Thus, item parameters will not 
be sample-invariant when there is cultural bias which differentially affects the item 
probabilities and alters the slopes. Since it is well known that many popular ability 



176 	 WHITELY AND DAWIS 

tests have items which differ in cultural loadings, the special condition required for 
item parameter invariance may be difficult to obtain. 

The difficulty in obtaining suitable items for the Rasch model, however, should not 
diminish its theoretical superiority over classical approaches to test development. The 
traditional index of item difficulty, percent passing, is always a population-specific 
statistic, determined by the distribution of the trait in a particular population. To ade-
quately estimate item difficulty, samples must be randomly selected. In contrast, the 
Rasch item parameter is independent of the trait distributions in a particular popu-
lation and the estimations need not be from random samples, if samples and items do 
not interact. Although currently available test data may not meet this requirement, 
future refinements in substantive measurement theory and techniques may extend the 
practical applicability of the Rasch model. 

Another claimed advantage of using the Rasch model, sample-invariant interpreta-
tions of ability scores, is probably obtainable for many item pools. Unlike traditionally 
constructed tests, the interpretation of the anchored Rasch ability parameters does not 
depend on the distribution of the trait in specific populations. Anchoring the solution 
for the Rasch parameters to a set of items or a group of persons, eliminates the need 
for numerous norm tables to objectively interpret individual scores. However, the an-
chored score interpretations will be only superficially objective unless either explicit 
item-trait theory or a group of substantial interest to trait theory are available. The 
difficulty in obtaining a meaningful interpretation for the anchored parameters is 
similar to the interpretation problems in domain-referenced testing; the status of 
substantive knowledge in measurement is, at best, inadequate. Although use of the 
Rasch model offers a new basis for score interpretability, current trait theory is not 
sufficiently advanced to permit wide applicability. 

A major focus of this paper has been on the construction of equivalent forms from a 
calibrated item pool. Use of the Rasch model was found to have many more parallels 
to traditional criteria for the development of equivalent forms than would have been 
anticipated from previous explanations (Wright & Panchapakesan, 1969). To compare 
Rasch-calibrated item subsets to traditional equivalent forms, it was found necessary 
to consider statistical equivalency independently from precision. Statistical equiva-
lency, in the narrow sense, means that the ability difference scores obtained by a 
sample are distributed as would be expected from the measurement error associated 
with each score. Precision, however, means that the measurement differences between 
tests are as small as possible. In theory, any two subsets from an item pool calibrated 
with the Rasch model will yield statistical equivalency but not necessarily maximum 
precision. In comparison, traditional equivalent forms maximize both precision and 
statistical equivalency. 

The empirical results generally substantiated the theoretical interpretation of the 
nature of equivalent forms from the Rasch model. Only under extreme conditions did 
the measurement errors fail to account for the observed differences between subsets. 
However, none of the subsets were equivalent in the traditional sense. Alternate form 
correlations were only moderate, and there was some evidence that precision might 
have been increased by using more efficient techniques in selecting items. Although the 
Rasch item parameter may be invariant over populations, precision is specific to the 
trait distribution in a given population. If the goal of item selection is to develop fixed- 
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content tests, then the classical techniques of having item difficulties close to .50 and 
matching extreme item difficulties will yield the most precise equivalent forms. 

A primary strength of the statistical equivalency of Rasch-calibrated item subsets, 
however, is the possibility of individualized selection of items rather than the construc-
tion of fixed-content tests. Although the use of the Rasch model cannot improve 
precision in fixed-content tests, the special properties of a latent trait model permit the 
desired degree of precision for any person to be obtained from the fewest possible 
items. If the test data meets the latent trait model assumption of independence of items 
and persons, measurement error can be estimated separately for each score level. 
Furthermore, the anchoring of the items to a standard set permits the estimation of 
ability and measurement error for any subset of items, without standardizing the 
subset on a new sample. If items are administered by a computer, ability and measure-
ment error can be estimated after the person responds to each item. The next item se-
lected, then, can be as close to the ability estimate as possible and will give the largest 
increase in precision. 

It is important to realize that the assumption of local independence of items is 
critical for individualized testing. The administration of a given item must not influence 
the subject's responses to following items. When items are not locally independent, the 
subject's performance, in part, will depend on which items he has already completed. 
In this situation, only fixed content tests will provide comparable estimates of the sub-
ject's ability. The degree to which test items interact will have to receive systematic 
study if individualized testing is to be successful. 

Specifying measurement error for each score level, rather than the test as a whole, 
has an additional advantage; ability change at different score levels may be compared 
on a comparable statistical basis. A typical trait test is not equally precise for all popu-
lations. Extreme scoring populations can be expected to change more than mid-range 
scoring populations because of the greater measurement errors for populations at the 
tails of the total distribution. The standardized difference score (a z-ratio computed by 
dividing the differences in Rasch ability estimates by the measurement error associated 
with each score) permits comparison of change at different ability levels, since ability 
change is adjusted for the individual measurement errors. 

In conclusion, the lack of impact of the Rasch model in test development is due more 
to the current status of trait measurement than to the properties of the model. Many 
of the advantages of the Rasch model necessitate a different kind of data for trait 
measurement than is now characteristic of the field. Explicit trait-item theory, locally 
independent items and routine administration of tests by computer, would be part of 
the necessary technological sophistication. 
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