
CHARACTERIZING THE REDUNDANCY OF
UNIVERSAL SOURCE CODING FOR FINITE-LENGTH

SEQUENCES

A Thesis
Presented to

The Academic Faculty

by

Ahmad Beirami

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2011



CHARACTERIZING THE REDUNDANCY OF
UNIVERSAL SOURCE CODING FOR FINITE-LENGTH

SEQUENCES

Approved by:

Professor Faramarz Fekri, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor John Barry
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Steven W. McLaughlin
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Raghupathy Sivakumar
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 25 April 2011



To my parents.

iii



ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my research advisor Prof.

Faramarz Fekri for his continuous encouragement, advice, and guidance. Throughout

the last two years, I have enjoyed his company as a supportive and insightful friend

rather than a formal research advisor.

My sincere thanks go to my incredible friends Amir Hossein, Mehrsa, and Reza

who have been there for me through the difficult times and have provided me with

nonstop support and caring.

I thank my labmates Nima, Mohsen, Erman, and Arash for stimulating research

discussions and the fun we have had in the lab during the past couple of years.

I am grateful to my friends Laleh, Sasan, Sara, Arash, Ehsan, Farshid, Zohreh,

Amir Saeed, Navid, Josep, Massimiliano, and Yahya for making Atlanta a more fun

place to live. I also would like to acknowledge my other friends who are spread all over

the world: Meisam, Pooyan, Farid, Ali, Aliresa, Sadegh, Mohammadreza, Meysam,

Hessam, Sina, Soroush, Iman, Mohammad, Arman, Sepideh, Saba, and Shiva for their

support, encouragement, enthusiasm that has made my life much more enjoyable.

Last but not least, this thesis would not have been possible if it was not for the

support and motivation of my family throughout my life: my dad Karim, my mom

Farah, and my sister Elnaz. I also would like to thank my aunts and uncles Fariba,

Saeed, Afsaneh, Mehdi, and Hossein for their support, inspirations, and care.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II BACKGROUND REVIEW AND PROBLEM STATEMENT . . 7

2.1 Two–Stage Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Conditional Two–Stage Codes . . . . . . . . . . . . . . . . . . . . . 10

III MAIN RESULTS ON THE REDUNDANCY . . . . . . . . . . . . 12

3.1 Two–Stage Code Redundancy . . . . . . . . . . . . . . . . . . . . . 12

3.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Average Minimax Redundancy of Two–Stage Codes . . . . . . . . . 15

3.4 Conditional Two–Stage Code Redundancy . . . . . . . . . . . . . . 16

IV MEMORYLESS SOURCES . . . . . . . . . . . . . . . . . . . . . . . 18

V ELABORATION ON THE RESULTS . . . . . . . . . . . . . . . . . 22

5.1 Redundancy in Finite-Length Sequences with Small d . . . . . . . . 22

5.2 Two–Stage Codes Vs Conditional Two–Stage Codes . . . . . . . . . 25

5.3 Redundancy in Finite-Length Sequences with Large d . . . . . . . . 27

5.4 Significance of Redundancy in Finite-Length Compression . . . . . . 29

VI APPLICATION: CHARACTERIZING CONTEXT MEMORIZA-

TION GAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Problem Setup and Background . . . . . . . . . . . . . . . . . . . . 30

6.2 Main Results on the Context Memorization Gain . . . . . . . . . . . 35

6.3 Significance of the Results . . . . . . . . . . . . . . . . . . . . . . . 38

VII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



APPENDIX A — PROOF OF LEMMA 1 . . . . . . . . . . . . . . . 41

APPENDIX B — PROOF OF LEMMA 2 . . . . . . . . . . . . . . . 43

APPENDIX C — PROOF OF LEMMA 3 . . . . . . . . . . . . . . . 45

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



LIST OF FIGURES

1 Average redundancy of the conditional two–stage codes (Cond. Two–
Stage) and the average minimax redundancy (Minimax) as a function
of the fraction of sources P0 with Rn(l

c2p
n , θ) > R0. Memoryless source

M3
0 with k = 3 and d = 2. . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Average redundancy of the conditional two–stage codes (Cond. Two–
Stage) and the average minimax redundancy (Minimax) as a function
of the fraction of sources P0 with Rn(l

c2p
n , θ) > R0. First-order Markov

source M2
1 with k = 2 and d = 2. . . . . . . . . . . . . . . . . . . . . 24

3 Average redundancy of the two–stage codes (solid) vs average redun-
dancy of the conditional two—stage codes (dotted) as a function of the
fraction of sources P0. Memoryless source M2

0 with k = 2 and d = 1. 25

4 The extra redundancy incurred due to the two–stage assumption on
the code as a function of d. . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Average redundancy of the conditional two–stage codes (Cond. Two–
Stage) and the average minimax redundancy (Minimax) as a function
of the fraction of sources P0 with Rn(l

c2p
n , θ) > R0. First-order Markov

source with k = 256 and d = 65280. The sequence length n is measured
in bytes (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 The Lower bound on compression for at least 95% of the sources as a
function of sequence length n. . . . . . . . . . . . . . . . . . . . . . . 28

7 Lower bound on the context memorization gain, g(n,M, 0.05), as a
function of sequence length n for various M. . . . . . . . . . . . . . . 38

vii



SUMMARY

In this thesis, we first study what is the average redundancy resulting from the

universal compression of a single finite-length sequence from an unknown source. In

the universal compression of a source with d unknown parameters, Rissanen demon-

strated that the expected redundancy for regular codes is asymptotically d
2
logn +

o(logn) for almost all sources, where n is the sequence length. Clarke and Barron also

derived the asymptotic average minimax redundancy for memoryless sources. The av-

erage minimax redundancy is concerned with the redundancy of the worst parameter

vector for the best code. Thus, it does not provide much information about the effect

of the different source parameter values. Our treatment in this thesis is probabilistic.

In particular, we derive a lower bound on the probability measure of the event that a

sequence of length n from an FSMX source chosen using Jeffreys’ prior is compressed

with a redundancy larger than a certain fraction of d
2
log n. Further, our results show

that the average minimax redundancy provides good estimate for the average re-

dundancy of most sources for large enough n and d. On the other hand, when the

source parameter d is small the average minimax redundancy overestimates the av-

erage redundancy for small to moderate length sequences. Additionally, we precisely

characterize the average minimax redundancy of universal coding when the coding

scheme is restricted to be from the family of two–stage codes, where we show that the

two–stage assumption incurs a negligible redundancy for small and moderate length

n unless the number of source parameters is small. Our results, collectively, help to

characterize the non-negligible redundancy resulting from the compression of small

and moderate length sequences. Next, we apply these results to the compression of

a small to moderate length sequence provided that the context present in a sequence

viii



of length M from the same source is memorized. We quantify the achievable per-

formance improvement in the universal compression of the small to moderate length

sequence using context memorization.
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CHAPTER I

INTRODUCTION

This work is broadly motivated by the universal compression of a finite-length se-

quence from a library of finite-length sequences with similar context in storage sys-

tems. The tremendous increase in the amount of storage data has raised a great deal

of interest in the compression of storage data since the removal of redundancy can sig-

nificantly reduce the cost of data maintenance as well as data transmission. In many

cases, however, the data consists of several small files that need to be compressed

and retrieved individually, i.e., a finite-length compression problem. Moreover, dif-

ferent data sets may be of various natures, hence little a priori assumptions may

be made regarding the probability distribution of the data, i.e., universal compres-

sion [2, 9, 13, 14, 27, 39, 42]. When an entire database is concerned, in many cases,

it can be compressed to less than one tenth of its original size. However, most ap-

plications require that individual files from the database be retrieved and updated

separately from the rest of the database. On the other hand, the individual file sizes

may be relatively small raising the question that how effectively redundancy is re-

moved by the universal compression of files separately. Therefore, we have two main

objectives in this thesis. First, we wish to investigate the compression performance

of a single finite-length sequence. We will establish that the redundancy can be very

significant when a single finite-length sequence is compressed alone. Second, we aim

to determine the fundamental gains achieved in the compression of a single small

to moderate length sequence provided that both the encoder and the decoder have

access to a memorized context from the same source. This could be possibly used to
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determine the performance improvement by considering the context when compress-

ing a library of sequences from the same source. While previous work has developed

efficient clustering of data for the best compression performance for sequences from

similar context (cf. [19] and the references therein), our goal is to study memorization

to improve compression of the finite-length sequences.

Since Shannon’s seminal work on the analysis of communication systems [30],

many researchers have contributed toward the development of source coding schemes

with the code length as close as possible to the entropy of the sequence. It is

well known that using a prefix-free code, the entropy of a sequence is the absolute

lower bound on the expected codeword length of any stationary ergodic information

source [7]. Provided that the statistics of the information source are known, Huffman

block coding achieves the entropy of a sequence with a redundancy smaller than 1 bit

per source symbol, where the redundancy term is due to the integer length constraint

on the codewords [34,35]. However, the assumption of known source statistics fails to

hold for many practical applications. We usually cannot assume a priori knowledge on

the statistics of the source although we still wish to compress the unknown stationary

ergodic source to its entropy rate. This is known as the universal compression prob-

lem. However, unfortunately, universality imposes an inevitable redundancy based

on the richness of the class of the sources with respect to which the code is universal.

In [31], Shields showed that it is not possible to find a universal redundancy for the

class of stationary ergodic sources by proving that there exists a stationary ergodic

source whose redundancy rate dominates any given rate. Therefore, in this thesis,

we focus our study on the fairly general class of FSMX (Finite State Machine X)

sources [8, 21, 37]. The asymptotic average redundancy of FSMX sources has been

investigated in the past [4, 24, 37, 38].

In the following, we describe our source model together with necessary notations

and related work. Denote A as a finite alphabet. Let A∗ be the set of all strings over
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the alphabet A, i.e.,

A∗ ,

∞
⋃

i=0

Ai, (1)

where Ai (i > 1) denotes the set of the strings of length i. We use A0 to represent

the empty string. Further, let the context tree T be defined as a finite subset of A∗

such that for all s ∈ T , each postfix of s also belongs to T . Let ∂T be defined as

∂T , {xs : x ∈ A, s ∈ T} ∪ A0 \ T. (2)

Note that ∂T forms a complete postfix set, i.e., no element in ∂T is a postfix of

another element. Assume that for all s ∈ A∗, there exists a unique element in ∂T

that is a postfix of the s. Let τ(s) be this unique postfix, which we refer to as the

context or state. Note that τ defines a state transition function.

Let an FSMX source P be defined as an information source, in which for each

context s the probability of the successive character is determined by a source pa-

rameter θs. Let d = |∂T | denote the number of the source parameters. Further,

let θ = (θ1, ..., θd) be the d-dimensional parameter vector associated with source P .

We assume that the d parameters are unknown and lie in the space Θd , (0, 1)d.

Denote Pd as the family of sources with d-dimensional unknown parameter vector

θ ∈ Θd. We use the notation xn = (x1, ..., xn) ∈ Ad to present a sequence of length

n generated by the source P . Let µθ denote the probability measure defined by the

parameter vector θ on sequences of length n. Let Hn(θ) be the source entropy given

parameter vector θ, i.e.,

Hn(θ) = E log

(

1

µθ(Xn)

)

=
∑

xn

µθ(x
n) log

(

1

µθ(xn)

)

.1 (3)

In this thesis log(·) always denotes the logarithm in base 2. Let Cn : An → {0, 1}∗ be

an injective mapping from the set An of the sequences of length n over A to the set

{0, 1}∗ of binary sequences. Further, denote l(Cn, x
n) = ln(x

n) as the regular length

1Throughout this thesis all expectations are taken with respect to the true unknown parameter
vector θ.

3



function that describes the codeword length associated with the sequence xn. Denote

Ln as the set of all regular length functions on an input sequence of length n.

Let rn(ln, θ, x
n) denote the redundancy of the code with length function ln and

the parameter vector θ on the individual sequence xn, defined as

rn(ln, θ, x
n) = ln(x

n)− log

(

1

µθ(xn)

)

. (4)

Note that the redundancy for an individual sequence xn is not necessarily non-negative

in general. Some past works [9,32] have studied the worst-case minimax redundancy

defined as

rn = min
ln∈Ln

max
θ∈Θd

max
xn

{rn(ln, θ, xn)} . (5)

The worst-case minimax redundancy characterizes the compression for the worst-case

individual sequence [4, 9, 12, 15, 18, 28, 32, 36, 37, 39, 41]. It has been shown that the

leading term in rn is asymptotically d
2
log n. In particular, Szpankowski derived the

asymptotic behavior of the worst-case minimax redundancy and precisely derived all

the terms up to O(n−3/2) [12]. The worst-case minimax redundancy, by definition, is a

good metric whenever bad compression performance is not tolerated on any individual

sequence. However, in the storage compression scenario, we are interested in reducing

the average size of the stored data, and hence, the worst-case minimax redundancy

would not be a good metric. We consider the average performance as opposed to the

redundancy associated with the individual sequences.

Denote Rn(ln, θ) as the expected redundancy of the code on a sequence of length

n, defined as the difference between the expected codeword length and the entropy.

That is

Rn(ln, θ) = Ern(ln, θ, X
n) = Eln(X

n)−Hn(θ). (6)

The expected redundancy is always non-negative. The code that asymptotically

achieves the entropy rate with length function ln would satisfy 1
n
Rn(ln, θ) → 0

as n → ∞ for all θ. Rissanen demonstrated that for the universal compression
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of the family Pd of the FSMX sources with parameter vector θ, the redundancy

of the codes with regular length functions ln is asymptotically lower bounded by

Rn(ln, θ) ≥ (1 − ε)d
2
log n [24, 25], for all ε > 0 and almost all parameter vector θ.

This asymptotic lower bound is tight since there exist coding schemes that achieve

the bound asymptotically [24, 39]. This result was later extended in [14, 22] to more

general classes of sources. Rissanen further proved that the redundancy for individ-

ual sequences is also asymptotically equal to the average minimax redundancy with

high probability [28]. However, these results do not provide much insight on the

performance of universal coding for a small to moderate length (size) sequence.

Let the maximum expected redundancy for a code with length function ln be given

as Rn(ln) = maxθ∈Θd Rn(ln, θ), which may be minimized over all codes to achieve the

average minimax expected redundancy [6, 10, 40]

Rn = min
ln∈Ln

max
θ∈Θd

Rn(ln, θ). (7)

The average minimax redundancy is concerned with the maximum redundancy over

all parameter space, i.e., it describes the performance of the best code for the worst

source parameter. Therefore, it does not characterize the average redundancy for all

parameters, which determines the fundamental limits of compression in the above-

mentioned setting. The leading term in the average minimax redundancy is asymp-

totically d
2
log n, similar to that of the redundancy for individual sequences and the

worst-case minimax redundancy [12, 40].

In the first part of this thesis, we extend Rissanen’s probabilistic treatment of

redundancy to the universal compression in finite-length regime using the two–stage

and conditional two–stage codes. In [5], we considered the redundancy of the universal

compression in finite-length memoryless sources for the family of two–stage codes. Al-

though the two–stage code assumption is restrictive and incurs an extra redundancy,

the constraint could be relaxed by considering the conditional two–stage codes that

are optimal in the sense that they achieve the average minimax redundancy.
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The rest of this thesis is organized as follows. In Chapter 2, after a review of the

previous work, we formally state the problem of redundancy for finite-length universal

compression of FSMX sources using the two–stage codes and the conditional two–

stage codes. In Chapter 3, we present our main results on the average redundancy

for universal compression of finite-length sequences. In Chapter 4, we tailor the

main results to the class of finite-alphabet memoryless sources and restate the main

results. In Chapter 5, we demonstrate the significance of our results through several

examples using memoryless sources as well as finite alphabet finite memory Markov

sources. In Chapter 6, we present an application of our results on determining the

gain of context memorization in the universal compression of finite-length sequences.

Finally, the conclusion is given in Chapter 7.
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CHAPTER II

BACKGROUND REVIEW AND PROBLEM STATEMENT

In this section, after a brief review of the previous work, we state the finite-length

redundancy problem. Let lθn denote the (non-universal) length function induced by a

parameter θ ∈ Θd. We require that the length function lθn be regular, i.e.,

lθn(x
n) ≥ log

(

1

µθ(xn)

)

∀xn ∈ An. (8)

Note that the requirement (8) is not restrictive since all codes that we know are

regular [7, 24].

Denote ln as the regular length function on the input sequence of length n. Denote

Rn(ln, θ) as the expected redundancy of the universal compression of source P ∈ Pd

using the length function ln. Let In(θ) be the Fisher information matrix for parameter

vector θ and a sequence of length n,

In(θ) = {I ijn (θ)} =
1

n log e
E

{

∂2

∂θi∂θj
log

(

1

µθ(Xn)

)}

. (9)

Fisher information matrix quantifies the amount of information, on the average, that

each symbol in a sample sequence of length n from the source conveys about the

source parameters.

In this thesis, we assume that the following conditions hold:

1. limn→∞ In(θ) exists and the limit is denoted by I(θ).

2. All elements of the Fisher information matrix In(θ) are continuous in Θd.

3.
∫

Θd |I(θ)|
1

2dθ < ∞.

4. The family Pd has a minimal representation with the d-dimensional parameter

vector θ.
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Rissanen proved an asymptotic lower bound on the universal compression of an

information sources with d parameters as [24, 25]:

Fact 1 For all parameters θ, except in a set of asymptotically Lebesgue volume zero,

we have

lim
n→∞

Rn(ln, θ)
d
2
log n

≥ 1− ε, ∀ε > 0. (10)

While Fact 1 describes the asymptotic fundamental limits of the universal compression

of FSMX sources, it does not provide much insight for the case of finite-length n.

Moreover, the result excludes an asymptotically volume zero set of parameter vectors

θ that has non-zero volume for any finite n.

In [6], Clarke and Barron derived the expected minimax redundancy Rn for memo-

ryless sources, later generalized in [1] by Atteson for Markov sources, as the following:

Fact 2 The average minimax redundancy is asymptotically given by

Rn =
d

2
log
( n

2π

)

+ log

∫

|In(θ)|
1

2dθ +O

(

1

n

)

. (11)

The average minimax redundancy characterizes the maximum redundancy over the

space Θd of the parameter vectors. However, it does not say much about the rest

of the space of the parameter vectors. The average minimax redundancy is obtained

when the parameter vector θ follows Jeffreys’ prior, which is [40]

p(θ) =
|I(θ)| 12

∫

|I(λ)| 12dλ
. (12)

Rissanen further proved that the redundancy for individual sequences defined in (4),

except for a Lebesgue volume zero set of sequences, is asymptotically given as

rn(ln, θ, x
n) =

d

2
log
( n

2π

)

+ log

∫

|I(θ)| 12dθ +O

(

1

n

)

. (13)

In other words, the redundancy for almost all sequences is asymptotically equal to

the expected minimax redundancy, i.e., the redundancy is highly concentrated around

8



its mean. However, this result still does not characterize the redundancy for finite

n. Next, we state the redundancy problem in the finite-length regime, where we will

consider both two–stage and conditional two–stage codes.

2.1 Two–Stage Codes

In a two–stage code, the compression scheme attributes m bits to identify an estimate

for the unknown source parameters. Then, in the second stage of the compression, it

is assumed that the source with the estimated parameter has generated the sequence.

In this case, there will be 2m possible estimate points in the parameter space for

the identification of the source. Let Φm = {φ1, ..., φ2m} denote the set of all estimate

points with anm-bit estimation budget. Note that for all i, we have φi ∈ Θd [3,17,26].

Denote l2pn as the two–stage length function for the compression of sequences of

length n. For each sequence xn, there exists an estimate point in the set of the estimate

points, i.e., γ = γ(xn, m) ∈ Φm, which is optimal in the sense that it minimizes the

code length and the average redundancy. In other words, γ is the maximum likelihood

estimation of the unknown parameter in the set of the estimate parameters. That is

γ = arg min
φi∈Φm

log

(

1

µφi
(xn)

)

= arg max
φi∈Φm

µφi
(xn). (14)

The two–stage universal length function for the sequence xn is then given by

l2pn (xn) = m+ lγn(x
n), (15)

where lγn denotes the regular length function induced by the parameter γ ∈ Φm. Let

L2p
n be the set of all two–stage codes that could be described as in (15). Further

denote µγ(x
n) as the probability measure induced by γ.

Increasing the bit budget m for the identification of the unknown source param-

eters results in an exponential growth in the number of estimate points, and hence,

smaller lγn(x
n) on the average due to the more accurate estimation of the unknown

source parameter vector. On the other hand, m directly appears as part of the

9



compression overhead in (15). Therefore, it is desirable to find the optimal m that

minimizes the total expected codeword length, which is El2pn (Xn) = m+ Elγn(X
n).

Since we assumed the code is regular, we may use (8) to bound the average

redundancy of two–stage codes

Rn(l
2p
n , θ) ≥ m+ E log

(

1

µγ(Xn)

)

−Hn(θ). (16)

Our goal in Sec. 3.1 is to better characterize the lower bound on the universal com-

pression of two–stage codes in (16) in the small to moderate length regime.

Further, let R2p
n denote the average minimax redundancy of the two–stage codes,

i.e.,

R2p
n = min

l2pn ∈L2p
n

max
θ∈Θd

Rn(l
2p
n , θ). (17)

In Sec. 3.3, we precisely derive R2p
n .

2.2 Conditional Two–Stage Codes

In a two–stage code, we already have some knowledge about the sequence xn through

the optimally estimated parameter γ(xn) (maximal likelihood estimation) that can

be leveraged for encoding xn using the length function lγn(x
n). The two–stage length

function in (15) defines an incomplete coding, which is not optimal in the sense that it

does not achieve the optimal compression among all regular length functions. Further,

it does not achieve the average minimax redundancy of the regular codes [5, 17].

Conditioned on γ(xn), the length of the codeword for xn may be further decreased [26].

Let Sm(γ) be the collection of all xn for which the optimally estimated parameter

is γ, i.e.,

Sm(γ) , {xn ∈ An : µγ(x
n) ≥ µφi

(xn) ∀φi ∈ Φm} . (18)

Further, let Am(γ) denote the total probability measure of all sequences in the set

Sm(γ), i.e.,

Am(γ) =
∑

xn∈Sm(γ)

µγ(x
n). (19)

10



Thus, the knowledge of γ(xn) in fact changes the probability distribution of the

sequence. Denote µγ(x
n|xn ∈ Sm(γ)) as the conditional probability measure of xn

given γ, i.e., the probability distribution that is normalized to Am(γ). That is

µγ(x
n|xn ∈ Sm(γ)) =

µγ(x
n)

Am(γ)
. (20)

Note that µγ(x
n|xn ∈ Sm(γ)) ≥ µγ(x

n) due to the fact that Am(γ) ≤ 1. Let

lγn(x
n|xn ∈ Sm(γ)) be the codeword length corresponding to the conditional prob-

ability distribution, which is decreased to E log
(

Am(γ(Xn))
µγ(Xn)

)

. Denote lc2pn as the con-

ditional two–stage length function for the compression of sequences of length n using

the normalized maximum likelihood, which is given by

lc2pn = m+ lγn(x
n|xn ∈ Sm(γ)). (21)

Therefore, the average redundancy of the conditional two–stage scheme is lower

bounded as

Rn(l
c2p
n , θ) ≥ m+ E log

(

Am(γ(X
n))

µγ(Xn)

)

−Hn(θ). (22)

Denote Lc2p
n as the set of the conditional two–stage codes that are described us-

ing (21). Let Rc2p
n denote the average minimax redundancy of the conditional two–

stage codes, i.e.,

Rc2p
n = min

lc2pn ∈Lc2p
n

max
θ∈Θd

Rn(l
c2p
n , θ). (23)

Rissanen demonstrated that this conditional version of two–stage codes is in fact

optimal in the sense that it achieves the average minimax redundancy [28]. In other

words, Rc2p
n = Rn, where Rn is the average minimax redundancy of the regular codes

in (11). In Chapter 3.4, our goal is to investigate the performance of the conditional

two–stage codes using (22). In particular, we derive a lower bound on the average

redundancy for the compression of FSMX sources using regular conditional two–stage

codes.
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CHAPTER III

MAIN RESULTS ON THE REDUNDANCY

In Chapter 3.1, we present a lower bound on the redundancy for the universal com-

pression of two–stage codes. In Chapter 3.2, we prove the main result. In Chapter 3.3,

we precisely characterize the average minimax redundancy for two–stage codes. In

Chapter 3.4, we drop the two–stage assumption on the length function and extend

the main result on the average redundancy to the conditional two–stage sources.

3.1 Two–Stage Code Redundancy

In this section, we restrict the code to the set of two–stage length functions, i.e.,

l2pn ∈ L2p
n . The two–stage assumption asymptotically incurs an extra redundancy in

the compression. We derive a lower bound on the probability of the event that P is

compressed with redundancy greater than the redundancy level R0 for finite-length

n. In other words, we find a lower bound on P[Rn(l
2p
n , θ) > R0]. Let

Γ(x) =

∫ ∞

0

tx−1e−tdt (24)

denote Euler’s gamma function.

Theorem 1 Consider the universal compression of the family of FSMX sources Pd

with the parameter vector θ that follows Jeffreys’ prior. Let ε be a real number. Then,

P

[

Rn(l
2p
n , θ)

d
2
logn

≥ 1− ε

]

≥ 1− Cd
∫

|I(θ)| 12dθ

(

d

enε

)
d
2

, (25)

where Cd is the volume of the d-dimensional unit ball, which is

Cd =
Γ
(

1
2

)d

Γ
(

d
2
+ 1
) . (26)

12



As we shall see in the following, the proof of Theorem 1 is constructive, and hence,

the lower bound is indeed tight and achievable.

3.2 Proof of Theorem 1

To prove Theorem 1, first, we rewrite (16) as

Rn(l
2p
n , θ) ≥ m+ E log

(

µθ(X
n)

µγ(Xn)

)

. (27)

In order to bound the average redundancy in (27), we use the following lemma

Lemma 1

E log

(

µθ(X
n)

µγ(Xn)

)

= Dn(µθ||µβ) +O
(

2−Dn(µθ ||µβ)
)

, (28)

where β is defined as

β , arg min
φi∈Φm

Dn(µθ||µφi
), (29)

and

Dn(µθ||µβ) = E log

(

µθ(x
n)

µβ(xn)

)

. (30)

Proof: See Appendix A. �

Note thatDn(µθ||µβ) is the non-negative Kullback–Leibler divergence between the

probability measures µθ and µβ. We use a probabilistic treatment in order to bound

Dn(µθ||µβ) for a certain fraction of the source parameters. We assume that the

parameter vector θ follows Jeffreys’ prior. This distribution is particularly interesting

since it results in uniform convergence of redundancy over the space of the parameter

vectors and hence the achievement of the average minimax expected redundancy [20,

40].

In order to bound the average redundancy Rn(l
2p
n , θ), in the following, we find an

upper bound on the Lebesgue measure of the volume defined by 1
n
Dn(µθ||µβ) < δ

in the d-dimensional space of θ. Since β ∈ Φm, the total probability measure of

13



the volume defined by minφi∈Φm
1
n
Dn(θ||φi) < δ may be upper bounded as well.

This represents the total measure of the sources that have a small redundancy, i.e.,

it provides us with a lower bound on the probability measure of the sources with

Rn(l
2p
n , θ) ≥ δ.

Lemma 2 Assume that the parameter vector θ follows Jeffreys’ prior. Then,

P

[

1

n
Dn(µθ||µβ) < δ

]

≤ Cd
∫

|I(θ)| 12dθ

(

2δ

log e

)
d
2

. (31)

Further, we have

P

[

min
i

1

n
Dn(µθ||µφi

) < δ

]

≤ 2m
Cd

∫

|I(θ)| 12dθ

(

2δ

log e

)
d
2

. (32)

Proof: See Appendix B. �

Lemma 2 states that the probability of the event that 1
n
Dn(µθ||µβ) < δ does not

depend on β when θ follows Jeffreys’ prior. Further, the probability of the event

P[mini
1
n
Dn(µθ||µφi

) < δ] is only a function of m. In fact, it is independent of the

choice of the points in Φm in the space of θ, as long as the points are chosen far apart

so that the probability measures of the sources that are covered by each point do not

overlap. We are now equipped to prove the main result given in Theorem 1.

Proof of Theorem 1: Note that for all values of m, using Lemma 1, we can

rewrite (27) as:

Rn(l
2p
n , θ) ≥ min

φi∈Φm
{m+Dn(µθ||µφi

)}+O
(

2−Dn(µθ ||µβ)
)

. (33)

As we shall see, Dn(µθ||µβ) = O(logn), and hence, the error term is O
(

1
n

)

, which is

negligible compared to the main term. Therefore,

P

[

Rn(l
2p
n , θ)

d
2
log n

≤ 1− ε

]

(34)

≤ P

[

min
i

{m+Dn(µθ||µφi
)} ≤ (1− ε)

d

2
logn

]

(35)

14



= P

[

min
i

1

n
Dn(µθ||µφi

) ≤ (1− ε)
d

2n
log n− m

n

]

, (36)

≤
{

2m
Cd

∫

|I(θ)| 12dθ

(

2δ(m)

log e

)
d
2

}

. (37)

The last inequality is obtained using Lemma 2. Here, δ(m) is given by

δ(m) = (1− ε)
d

2n
logn− m

n
. (38)

The inequality in (37) holds for all values of m. We can minimize the right hand side

to find an upper bound that is independent of the value of m:

P

[

Rn(l2p, θ)
d
2
log n

≤ 1− ε

]

≤ min
m

{

2m
Cd

∫

|I(θ)| 12dθ

(

2δ(m)

log e

)
d
2

}

. (39)

Carrying out the minimization in (37) leads to the optimal value of m, denoted by

mop:

mop = (1− ε)
d

2
log
(n

e

)

. (40)

Using mop in (39), the desired result in Theorem 1 is obtained. �

3.3 Average Minimax Redundancy of Two–Stage Codes

In this section, we characterize the average minimax redundancy when the coding

scheme is restricted to be from the family of two–stage codes. The following Theorem

is the main result in this section.

Theorem 2 In the universal compression of the family of FSMX sources Pd, the

average minimax redundancy of two–stage codes is obtained by

R2p
n = Rn + g(d) +O

(

1

n

)

. (41)

Here, Rn is the average minimax redundancy defined in (11) and g(d) is the two–stage

penalty term given by

g(d) = log Γ

(

d

2
+ 1

)

− d

2
log

(

d

2e

)

. (42)

15



Proof: Let F (n, d, θ, ε) , Cd
∫
|I(θ)|

1
2 dθ

(

d
enε

)
d
2 . Denote Rε , (1− ε)d

2
logn as a redun-

dancy level. Then, according to Theorem 1, for any ε such that 1− F (n, d, θ, ε) > 0,

Rε is a lower bound on the maximum redundancy. This is due to the fact that

P [Rn(ln, θ) > Rε] > 0, i.e., there exists at least one parameter θ such that Rn(ln, θ) >

Rε. Moreover, note that the average minimax redundancy is achieved when the pa-

rameters follow Jeffreys’ prior [6,20]. Therefore, the maximum redundancy in our case

is the average minimax redundancy and we have R2p
n > Rε. Note that as described

in Sec. 3.2, the lower bound in Theorem 1 is tight and achievable. If we minimize

ε (maximize Rε) with the constraint that F (n, d, θ, ε) < 1, we get the tightest lower

bound on the average minimax redundancy as

R2p
n =

d

2
log n− logCd + log

∫

|I(θ)| 12dθ − d

2
log

(

d

e

)

, (43)

Theorem 2 is inferred if Cd is substituted from (26) in 43. �

3.4 Conditional Two–Stage Code Redundancy

Thus far, we established a lower bound on the average redundancy for the universal

compression of the family of FSMX sources when the coding scheme is restricted to

the two–stage codes. Now, we relax this constraint and obtain the lower bound on

the average redundancy of universal compression for conditional two–stage coding.

Theorem 3 Assume that the parameter vector θ follows Jeffreys’ prior in the uni-

versal compression of the family of FSMX sources Pd. Let ε be a real number. Then,

P

[

Rn(l
c2p
n , θ)

d
2
log n

≥ 1− ε

]

≥ 1− 1
∫

|I(θ)| 12dθ

(

2π

nε

)
d
2

. (44)

Note that it is straightforward to deduce Fact 1 for the case of conditional two–stage

codes from Theorem 3 for ε > 0 by letting n → ∞. The key in the proof of Theorem 3
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is the following lemma that upper bounds the saving achieved by using the conditional

two–stage codes.

Lemma 3 The penalty term in the redundancy of the two–stage coding is upper

bounded as

Rn(l
2p
n , θ)−Rn(l

c2p
n , θ) ≤ g(d) +O

(

1

n

)

. (45)

Proof: See Appendix C �

We may now prove Theorem 3.

Proof of Theorem 3: First note that according to Lemma 3, we have

Rn(l
2p
n , θ) ≤ Rn(ln, θ) + g(d) +O

(

1

n

)

. (46)

The O
(

1
n

)

term is much smaller than the main term Rn(ln, θ), which is O(logn) and

could be ignored even in the small to moderate n regime. Thus,

P

[

Rn(l
c2p
n , θ) + g(d)
d
2
logn

≥ 1− ε̂

]

≥ P

[

Rn(l
2p
n , θ)

d
2
logn

≥ 1− ε̂

]

≥ 1− Cd
∫

|I(θ)| 12dθ

(

d

enε̂

)
d
2

, (47)

where the second inequality is due to Theorem 1, for any ε̂. Now, the desired result

is then achieved if we set ε such that

(1− ε)
d

2
logn = (1− ε̂)

d

2
logn− g(d).

�
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CHAPTER IV

MEMORYLESS SOURCES

In this section, we tailor the results for the class of memoryless sources due to the

importance of memoryless information sources. Further, we highlight some of the

intermediate results. The proofs for the material in this section may be found in [5].

Let M0 denote the family of memoryless sources. Denote the alphabet as A and

let k = |A| be the alphabet size. Let θ = (θ1, ..., θk) be the parameter vector, where

θj = P[X = αj] and
∑

j θj = 1. Note that the parameters live in a (k−1)-dimensional

simplex, i.e., d = k − 1. Let ri count the appearance of symbol αi in sequence xn.

Let fi denote the empirical mass function for the symbol αi, i.e., fi = ri/n. Then,

the probability measure µθ over a memoryless source with parameter vector θ is

µθ(x
n) = P[Xn = xn|θ] =

k
∏

i=1

θrii . (48)

Let Φm denote the set of 2m estimate points. Further, let γ = (γ1, ..., γk) ∈ Φm denote

the optimal estimated point for the sequence xn. Then, the probability measure

defined by γ is

µγ(x
n) =

k
∏

i=1

γi
ri. (49)

In the following, we state the main results on the compression of finite-alphabet

memoryless sources:

Corollary 1 Consider the universal compression of the family of memoryless sources

M0. Assume that the parameter vector θ follows Jeffreys’ prior. Let ε be a real

number. Then,

P

[

Rn(l
2p
n , θ)

k−1
2

logn
≥ 1− ε

]

≥ 1−
(

k − 1

enε

)
k−1

2

Bk, (50)
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where

Bk =
Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π
. (51)

Note that Bk ≈
√

2
kπ

for k � 2. Although Corollary 1 can be directly obtained from

Theorem 1, some of the intermediate results are insightful and could be simplified in

this case. In the following, we highlight the important steps in the proof, where we

introduce simple notation for some of the previously defined quantities. In the case

of the memoryless sources, the entropy could be rewritten as

Hn(θ) = nH(θ) = nE

k
∑

i=1

fi log

(

1

θi

)

. (52)

We can further simplify (16) to

Rn(l
2p
n , θ) ≥ m+ nE

k
∑

i=1

fi log

(

θi
γi(Xn)

)

. (53)

In order to bound the average redundancy in (53), in the following, we find a lower

bound on E
∑k

i=1 fi log
θi

γi(Xn)
. Note that this term implicitly depends on m since γ

is a function of m. Let β be defined as

β = argmin
φi

D(θ||φi). (54)

Then, we have the following.

E

k
∑

i=1

fi log

(

θi
γi(Xn)

)

≥ D(θ||β) +O

(

1

n2

)

, (55)

where

D(x||y) =
k
∑

j=1

xj log

(

xj

yj

)

. (56)

This is directly resulted from Lemma 1. In the case of memoryless sources, Jeffreys’

prior for the parameter vector θ is given by

p(θ) =
Γ
(

k
2

)

Γ
(

1
2

)k

k
∏

j=1

1
√

θj
, (57)
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where Γ(·) is Euler’s gamma function defined in (24). This is in fact the (1
2
, ..., 1

2
)

Dirichlet distribution.

Further, The square root of the determinant of the Fisher information matrix may

be analytically integrated to be

∫

Θd

|I(θ)| 12dθ =
Γ
(

1
2

)k

Γ
(

k
2

) . (58)

This analytical integration enables us to further simplify the main results in the

following.

In order to bound the average redundancy Rn(ln, θ), we would need an upper

bound on the Lebesgue measure of the volume defined by D(θ||γ) < δ in the (k− 1)-

dimensional simplex of θ. According to Lemma 2, we have

P[D(θ||γ) < δ] ≤ Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π

(

2δ

log e

)
k−1

2

. (59)

Further,

P

[

min
φi∈Φm

D(θ||φi) < δ

]

≤ 2m
Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π

(

2δ

log e

)
k−1

2

. (60)

The rest of the proof could be carried out following the lines of the proof of Theorem 1.

In [6], Clarke and Barron demonstrated that the expected minimax redundancy

Rn for the memoryless sources is asymptotically given by

Rn =
k − 1

2
log
( n

2π

)

+ log

(

Γ
(

1
2

)k

Γ
(

k
2

)

)

+O

(

1

n

)

. (61)

Using Theorem 2, the average minimax redundancy for the two–stage codes for the

case of the memoryless sources could be rewritten as follows.

Corollary 2 In the universal compression of the family of memoryless sources M0,

the average minimax redundancy of two–stage codes is obtained by

R2p
n = Rn + log Γ

(

k + 1

2

)

− k − 1

2
log

(

k − 1

2e

)

, (62)

where Rn is the average minimax redundancy for memoryless sources defined in (61).
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Theorem 2 gives the extra redundancy due to the two–stage coding of the memoryless

sources.

In the following, we present Theorem 3 for the special case of the memoryless

sources.

Corollary 3 Assume that the parameter vector θ follows Jeffreys’ prior in the uni-

versal compression of the family of memoryless sources M0. Let ε be a real number.

Then,

P

[

Rn(ln, θ)
k−1
2

log n
≥ 1− ε

]

≥ 1− Γ
(

k
2

)

√
π

(

2

nε

)
k−1

2

. (63)
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CHAPTER V

ELABORATION ON THE RESULTS

In this section, we elaborate on the significance of our results. In Chapter 5.1, we

demonstrate that the average minimax redundancy underestimates the performance

of source coding in the small to moderate length n for sources with small d. In

Chapter 5.2, we compare the performance of two–stage codes with conditional two–

stage codes. We show that the penalty term of two–stage coding is negligible for

sources with large d as well as for the sequences of long n. In Chapter 5.3, we

demonstrate that as the number of source parameters grow, the minimax redundancy

well estimates the performance of the source coding. In Chapter 5.4, we show that

the redundancy is significant in the compression of small to medium length sequences

with large number of parameters.

5.1 Redundancy in Finite-Length Sequences with Small d

In Figures 1 and 2, the x-axis denotes a fraction P0 and the y-axis represents a

redundancy level R0. The solid curves demonstrate the derived lower bound on the

average redundancy of the conditional two–stage codes R0 as a function of the fraction

P0 of the sources with redundancy larger than R0, i.e., P[Rn(l
c2p
n , θ) ≥ R0] ≥ P0. In

other words, at least a fraction P0 of the sources that are chosen from Jeffreys’ prior

have an expected redundancy that is greater than R0.

First, we consider a ternary memoryless information source denoted by M3
0. Let

k be the alphabet size, where k = 3. This source may be parameterized using two

parameters, i.e., d = 2. The unknown parameter vector is chosen from Jeffreys’ prior

in all of the examples. In Fig. 1, our results are compared to the average minimax

redundancy, i.e., Rn from (11). Since the conditional two–stage codes achieve the
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n = 512 (Cond. Two–Stage)
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Figure 1: Average redundancy of the conditional two–stage codes (Cond. Two–
Stage) and the average minimax redundancy (Minimax) as a function of the fraction
of sources P0 with Rn(l

c2p
n , θ) > R0. Memoryless source M3

0 with k = 3 and d = 2.

minimax redundancy of the regular codes, Rn is in fact the average minimax redun-

dancy for the conditional two–stage codes (Rc2p
n ) as well. The results are presented

in bits. As shown in Fig. 1, at least 40% of ternary memoryless sequences of length

n = 32 (n = 128) may not be compressed beyond a redundancy of 4.26 (6.26) bits.

Also, at least 60% of ternary memoryless sequences of length n = 32 (n = 128) may

not be compressed beyond a redundancy of 3.67 (5.68) bits. Note that as n → ∞, the

average redundancy approaches the average minimax redundancy for most sources.

Further, let M2
1 denote a binary first-order Markov source (d = 2). We present

the finite-length compression results in Fig. 2 for different values of sequence length

n. The values of n are chosen such that they are almost log(3) times the values

of n for the ternary memoryless source in the first example. This choice has been

made to equate the amount of information in the two sequences from M3
0 and M2

1
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c2p
n , θ) ≥ R0] ≥ P0

n = 12 (Cond. Two–Stage)

n = 12 (Minimax)

n = 50 (Cond. Two–Stage)

n = 50 (Minimax)

n = 202 (Cond. Two–Stage)

n = 202 (Minimax)

n = 811 (Cond. Two–Stage)

n = 811 (Minimax)

Figure 2: Average redundancy of the conditional two–stage codes (Cond. Two–
Stage) and the average minimax redundancy (Minimax) as a function of the fraction
of sources P0 with Rn(l

c2p
n , θ) > R0. First-order Markov source M2

1 with k = 2 and
d = 2.

allowing a fair comparison. For example, a sequence of length n = 8 from source

M3
0, consisted of 8 ternary symbols, is equivalent to 8 log(3) bits of information that

is almost equivalent to 12 bits in M2
1.

Figure 2 shows that the average minimax redundancy of two–stage codes for the

case of n = 12 is given as R12 ≈ 2.794 bits. Comparing Fig. 1 with Fig. 2, we conclude

that the average redundancy of universal compression for a binary first-order Markov

source is very similar to that of the ternary memoryless source, suggesting that d is

the most important parameter in determining the redundancy of finite-length sources.

This subtle difference becomes even more negligible as n → ∞ since the dominating

factor of redundancy for both cases approaches to d
2
logn.

As demonstrated in Figs. 1 and 2, there is a significant gap between the known
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n = 8 (Two–stage)
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Figure 3: Average redundancy of the two–stage codes (solid) vs average redundancy
of the conditional two—stage codes (dotted) as a function of the fraction of sources
P0. Memoryless source M2

0 with k = 2 and d = 1.

result by the average minimax redundancy and the finite-length results obtained in

this thesis when a high fraction P0 of the sources is concerned. Hence, for many

sources, the average minimax redundancy overestimates the average redundancy in

universal source coding of finite-length sequences where the number of the parameters

is small. In other words, the compression performance of a high fraction of finite-

length sources would be better than that of the average minimax redundancy estimate.

5.2 Two–Stage Codes Vs Conditional Two–Stage Codes

We now compare the finite-length performance of the two–stage codes with the con-

ditional two–stage codes on the class of binary memoryless source M2
0 with k = 2

(d = 1). The results are presented in Figure 3. The solid line (dotted line) demon-

strates the the lower bound for the two–stage codes (conditional two–stage codes). As
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Figure 4: The extra redundancy incurred due to the two–stage assumption on the
code as a function of d.

can be seen, the gap between the achievable compression using two–stage codes and

that of the conditional two–stage codes constitutes a significant fraction of the aver-

age redundancy for small n. For a Bernoulli source, the average minimax redundancy

of the two–stage code is given in (62) as

R2p
n = Rn +

1

2
log
(πe

2

)

≈ Rn + 1.048. (64)

The average minimax redundancy of two–stage codes for the case of n = 8 is given as

R2p
8 ≈ 2.86 bits while that of the conditional two–stage codes (i.e., all regular codes)

is R8 ≈ 1.82. Thus, the two–stage codes incur an extra compression overhead of more

than 50% for n = 8.

In Theorem 2, we derived that the extra redundancy g(d) incurred by the two–

stage assumption. We further use Stirling’s approximation for sources with large

number of parameters in order to show the asymptotic behavior of g(d) as d → ∞.
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Figure 5: Average redundancy of the conditional two–stage codes (Cond. Two–
Stage) and the average minimax redundancy (Minimax) as a function of the fraction
of sources P0 with Rn(l

c2p
n , θ) > R0. First-order Markov source with k = 256 and

d = 65280. The sequence length n is measured in bytes (B).

That is, asymptotically, we have

g(d) =
1

2
log (πd) + o(1). (65)

Note that o(1) denotes a function of d and not n here. As demonstrated in Figure 4,

g(d) is increasing logarithmically with d as d → ∞. Finally, we must note that

the main term of redundancy in Rn is d
2
log n, which is linear in d, but the penalty

term g(d) is logarithmic in d. Hence, the effect of the two–stage assumption becomes

negligible for the families of sources with larger d.

5.3 Redundancy in Finite-Length Sequences with Large d

The results of this thesis can be used to quantify the significance of redundancy in

finite-length compression. We consider a first-order Markov source with alphabet size
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Figure 6: The Lower bound on compression for at least 95% of the sources as a
function of sequence length n.

k = 256. We intentionally picked this alphabet size as it is a common practice to use

the byte as a source symbol. This source may be represented using d = 256× 255 =

62580 parameters. In Figure 5, the achievable redundancy is demonstrated for four

different values of n. Here, again the redundancy is measured in bits. The curves

are almost flat when d and n are very large validating our results that the average

minimax redundancy provides a good estimate on the achievable compression for most

sources. The sequence length in this example is presented in bytes (B). We observe

that for n = 256kB, we have Rn(ln, θ) ≥ 100, 000 bits for most sources. Further, the

extra redundancy due to the two–stage coding g(d) ≈ 8.8 bits, which is a negligible

fraction of the redundancy of 100, 000 bits.
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5.4 Significance of Redundancy in Finite-Length Compres-

sion

Figure 6 demonstrates the average number of bits per symbol required to compress the

class of the first-order Markov sources whose entropy rates are 1 bit per source symbol

(per byte). We have chosen this value since many practical sources have an entropy

rate that is smaller than 1 bit per source symbol. The dashed curve demonstrates the

lower bound on the achievable compression for at least 95% of the sources, i.e., at least

95% of the sources from this class may not be compressed with a redundancy smaller

than the dashed curve. The solid curve denotes the entropy rate of the source. As can

be seen, the compression overhead is 38%, 16%, 5.5%, 1.7%, and 0.5% for sequences

of lengths 256kB, 1MB, 4MB, 16MB, and 64MB, respectively. Hence, we conclude

that redundancy may be significant for the compression of small sequences of length

up to 1MB. On the other hand, redundancy is negligible for sequences of length 64MB

and higher.
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CHAPTER VI

APPLICATION: CHARACTERIZING CONTEXT

MEMORIZATION GAIN

In this section, we use the results we developed thus far to characterize the achievable

improvement due to the context memorization when compressing a small or moderate

size sequence from the same source. In Chapter 6.1, we present the problem setup

for the context memorization gain followed by the review of the existing results that

we need in the derivation of our main results. In Chapter 6.2, we present our main

results on the gain. In Chapter 6.3, we demonstrate the significance of our results.

6.1 Problem Setup and Background

Thus far, we established a lower bound on the average redundancy in the universal

compression of a single finite-length sequence. We learned that, on the average,

significant redundancy is present when a single finite-length sequence is compressed.

In this section, we consider a new scenario in which the source encoder wishes to

compress a single finite-length sequence. However, we assume that the encoder (and

hence the decoder) has already visited, i.e., compressed, another sequence from the

same context, i.e., generated by the same information source. We refer to this new

scenario as compression with context memory. Further, we assume that the problem

is a universal compression problem and the context is unknown a priori, i.e., the

parameter vector of the information source in unknown. While relevant, this problem

of compressing a sequence with context memorization is different from those addressed

by the distributed source coding techniques that are concerned with multiple sources

sending correlated information to the same destination [16, 23, 29, 33]. Instead, we
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with to establish the fundamental benefits of context memorization in the universal

compression of a single small or moderate length sequence from the same context

(originating from the same source).

Let xn be a sequence of length n from the FSMX source P that is to be com-

pressed. Further, assume that yM is a sequence of length M from the same source

P . Note that we assume that the sequences xn and yM are samples from the sta-

tistically independent random sequences Xn and Y M generated by P . By context

memorization, we mean that both the encoder and the decoder have already visited

the sequence yM.

Our goal is to investigate the fundamental benefits of context memorization in

the universal compression of the finite-length sequence xn. In particular, we show

that although Xn and Y M are independent given that the source model is known,

context memorization can indeed result in the reduction of the expected length of

the codeword associated with xn, i.e., better compression of an individual sequence

of length n on the average. This seemingly counter intuitive phenomenon is due to

the fact that the source model is unknown a priori and the compression is universal.

Therefore, the sequence yM indeed contains useful information about the unknown

source parameters, that can be used in the compression of xn.

As an example, consider the extreme case when M → ∞. In this case, the

sequence yM exactly determines the unknown source parameters. The fact that both

encoder and the decoder have access to yM simply means that both the encoder and

the decoder exactly know the source parameters, and hence, the problem reduces to

coding of xn with known source parameters. Consequently, the sequence xn can be

efficiently compressed with a redundancy smaller than 1 bit, e.g., using a Huffman

code, as opposed to the redundancy of about d
2
log n of the universal compression of

a source with d unknown parameters.

In order to demonstrate the benefits of context memorization, we will compare
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two schemes:

• Comp (Universal compression of an individual sequence with no context mem-

orization), which applies a sole universal compression on a sequence without

using context memorization.

• CompCM (Universal compression of an individual sequences with context mem-

orization), which assumes that the encoder and decoder have access to a mem-

orized context and utilizes the context when compressing xn.

In what follows, we obtain the context memorization gain for the conditional two–

stage codes. Therefore, the performance of Comp may be characterized by the ex-

pected redundancy of the conditional two–stage coding, Rn(l
c2p
n , θ). For the ease of

notation, we drop the notation c2p although all the results in this section are derived

for conditional two–stage codes. In the case of CompCM, let ln|M be the regular

length function with the context memorization, where the encoder and the decoder

have access to a memorized context yM. Further, denote Rn(ln|M, θ) as the expected

redundancy of encoding a sequence of length n form the source with parameter vec-

tor θ using the length function ln|M, i.e., with context memorization. The average

redundancy of CompCM is given by

Rn(ln|M, θ) = Eln|M(Xn)−Hn(θ). (66)

Let Q(ln, ln|M, θ) be defined as the ratio of the expected codeword length of Comp to

that of CompCM as

Q(ln, ln|M, θ) ,
Eln(X

n)

Eln|M(Xn)
=

Hn(θ) +Rn(ln, θ)

Hn(θ) +Rn(ln|M, θ)
. (67)

Let δ be a real number such that 0 < δ < 1. We denote g(n,M, δ) as the fundamental

gain of the context memorization on the family of FSMX sources Pd on a sequence

of length n using a context sequence of length M for a fraction 1− δ of the sources,
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which is defined as follows:

g(n,M, δ) = sup
z∈R

{

z : P
[

Q(ln, ln|M, θ) ≥ z
]

≥ 1− δ
}

. (68)

In other words, the fundamental gain of memorization is at least g(n,M, δ) for a

fraction 1− δ of the sources in the family. The following is a trivial lower bound on

the context memorization gain.

Fact 3 The fundamental gain of context memorization is: g(n,M, δ) ≥ 1.

Proof: Note that there exists ln|M such that for all ln, we have Rn(ln|M, θ) ≤

Rn(ln, θ). The rational is that CompCM works no worse than Comp. Thus, we have

Q(ln, ln|M, θ) ≥ 1 and the claim follows. �

Fact 3 simply states that the context memorization does not degrade the perfor-

mance of the universal compression. To obtain a lower bound on the memorization

gain g(n,M, δ), we need a lower bound on Rn(ln, θ). Further, we require a useful

upper bound on Rn(ln|M, θ). In Theorem 3, we established the desired lower bound

on Rn(ln, θ), i.e., the redundancy of Comp. In order to obtain an upper bound on

the redundancy of CompCM, we use the known results on Context Tree Weighting

(CTW) [39]. Note that we do not claim that the CTW with memorization is the

optimal scheme. In fact, the sequential compression of the symbols results in the per-

formance loss. However, the CTW compression using context memorization provides

us with a useful upper bound on the average redundancy with context memorization

Rn(ln|M, θ). Willems et. al. proved that CTW is an optimal compression scheme

in the sense that it achieves Rissanen’s lower bound in Fact 1. Let λn denote the

CTW universal length function. Drmota et. al. derived the average redundancy of

the CTW [11]:

Fact 4 The average redundancy of the Context Tree Weighting (CTW) algorithm is
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given by

Rn(λn, θ) =
d

2
log

(

2n

πe

)

+ 2d+ f0(θ)− En +O

(

1√
n

)

, (69)

where f0(θ) is only a function of the parameter vector θ and En ≈ d
2
is the erratic

part of the redundancy.

Note that Fact 4 is a strong result in the sense that it precisely characterizes the

average redundancy for all parameters θ and all sequences for all ranges of n. Denote

λn|M as the CTW universal length function using memorization of the context of

length M. By memorization of the context, we mean that a sequence of length M

from the source has already been encoded using the CTW. Then, the resulting context

tree is used for the compression of the sequence of length n. Let Rn(λn|M, θ) denote

the expected redundancy of encoding the source with parameter θ using the CTW

length function λn|M. The following characterizes the redundancy for the compression

of the length n sequence.

Fact 5 The average redundancy of CompCM (the compression with context memo-

rization) is upper bounded as

Rn(ln|M, θ) ≤ R̂(n,M), (70)

where

R̂(n,M) ,
d

2
log
(

1 +
n

M
)

+ 2. (71)

Proof: Fact 4 describes the average redundancy of the CTW. As can be seen

in (69), only the first term and the erratic redundancy are significant functions of n.

In other words, the rest are upper bounded by a constant overhead for any sequence

length. Therefore, when the context is already memorized, there is no extra overhead

cost except for the penalty of the integer-length codeword requirement. We further

assume that the difference between the erratic redundancy terms at lengths M and
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n+M is negligible. Since the CTW algorithm is sequential, Rn(λn|M, θ) is obtained

as

Rn(λn|M, θ) = RM+n(λM+n, θ)−RM(λM, θ) + C1, (72)

where C1 arises due to the integer-length codeword requirement and C1 < 2. Then,

the result in Fact 5 is obtained by noting that

Rn(ln|M, θ) ≤ Rn(λn|M, θ).

�

Fact 5 sets an upper bound on the average redundancy of compression using

context memorization.

6.2 Main Results on the Context Memorization Gain

We are now equipped to establish a lower bound on the fundamental gains obtained

when context memorization is leveraged to achieve a better compression rate in Com-

pCM. The next theorem characterizes the fundamental gains:

Theorem 4 Assume that the parameter vector θ follows Jeffreys’ prior in the uni-

versal compression of the family of FSMX sources Pd. Then,

g(n,M, δ) ≥ 1 +
Rn + log(δ)− R̂(n,M)

Hn(θ) + R̂(n,M)
, (73)

where Rn is the average minimax redundancy defined in (11).

Proof: First note that

Q(ln, ln|M, θ) =
Eln(X

n)

Eln|M(Xn)
≥ Eln(X

n)

Eλn|M(Xn)
(74)

=
Hn(θ) +Rn(ln, θ)

Hn(θ) +Rn(λn|M, θ)
(75)

≥ Hn(θ) +Rn(ln, θ)

Hn(θ) + R̂(n,M)
(76)

, Q̂(ln,M, δ), (77)
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where the inequality in (76) is due to Fact 5. Further, let ĝ(n,m, δ) be defined as

ĝ(n,M, δ) , sup
z∈R

{

z : P
[

Q̂(ln,M, δ) ≥ z
]

≥ 1− δ
}

. (78)

Equation (77) implies

P
[

Q(ln, ln|M, θ) ≥ z
]

≥ P
[

Q̂(ln,M, δ) ≥ z
]

. (79)

Thus,

g(n,M, δ) ≥ ĝ(n,M, δ). (80)

We can now apply Theorem 3 to Rn(ln, θ) in (76) with the proper choice of ε in order

to obtain a lower bound on ĝ(n,M, δ), which will complete the proof. �

Let g(n,∞, δ) be defined as the achievable gain of context memorization where

there is no constraint on the size of the context, i.e, the encoder and the decoder have

access to an infinite length sequence from the source P .

g(n,∞, δ) , lim
M→∞

g(n,M, δ) (81)

The following Corollary quantifies the achievable context memorization gain when

there is no restriction on the memory size, which is obtained by taking limM→∞ R̂(n,M).

Corollary 4 Assume that the parameter vector θ follows Jeffreys’ prior in the uni-

versal compression of the family of FSMX sources Pd. Then,

g(n,∞, δ) ≥ 1 +
Rn + log(δ)− 2

Hn(θ) + 2
. (82)

Next, we consider the case where the sequence length n grows to infinity. Intu-

itively, we would expect that the context memorization gain become negligible for

the compression of long sequences, i.e., large n. Let g(∞,M, δ) be the context mem-

orization gain for the universal compression of an infinite length sequence, defined

as

g(∞,M, δ) , lim
n→∞

g(n,M, δ). (83)
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In the following, we claim that the context memorization does not provide any benefit

in this case

Fact 6 The context memorization gain for an infinite-length sequence is given as

g(∞,M, δ) = 1.

Proof: As n → ∞, an asymptotically optimal universal compression scheme (one

that asymptotically achieves the entropy of the sequences) would have a redundancy

that is o(n). Therefore,

lim
n→∞

Eln(X
n)

Hn(θ)
= 1. (84)

Since entropy is the absolute lower bound on the achievable expected codeword length

and Eln|M(Xn) ≤ Eln(X
n), we have

lim
n→∞

Eln|M(Xn)

Hn(θ)
= 1, (85)

which proves the claim. �

Finally, we note that these results are also applicable to the practical scenario,

where we have a library of sequences that consists of several independent sequences

from the same source P that need to be compressed and stored individually. There-

fore, the sequences may not be concatenated and stored. Our results in the first

part of the thesis quantify the performance limits of the compression, when each file

is compressed and stored without regard to the rest of the sequences in the library.

On the other hand, since the sequences share the same context, we may consider the

concatenation of all of the sequences in the library as a memorized context yM for the

compression of the sequence xn. Roughly speaking, this approximation is valid when

the length of the individual sequences in the library are fairly large compared to the

depth of the context tree so that they capture the statistics of the source. Therefore,

the results in the second part of the thesis will quantify the benefits of the context

memorization in the compression of xn.
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Figure 7: Lower bound on the context memorization gain, g(n,M, 0.05), as a function
of sequence length n for various M.

6.3 Significance of the Results

In this section, we demonstrate the significance of the context memorization gain

through an example. We again consider a first-order Markov source with alphabet

size k = 256. In Figure 7, the lower bound on the context memorization gain is

demonstrated as a function of the sequence length n for different values of M. As

can be seen, significant improvement in the compression may be achieved using con-

text memorization. For example, the lower bound on g(1MB,M, 0.05) is equal to

1.084, 1.120, 1.144, and 1.154, when the context parameter M is 128kB, 512kB,

2MB, and 8MB, respectively. Further, g(1MB,∞, 0.05) = 1.158. As demonstrated in

Figure 7, the gain of a context of length 8MB is very close to g(n,∞, δ), and hence,

increasing the context memory beyond 8MB does not result in the significant increase
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of the memorization gain. We further observe that as n → ∞, the context memo-

rization gain becomes negligible. For example, at n = 32MB and M → ∞, we have

g(32MB,∞, 0.05) ≈ 1.01, which is a negligible improvement. On the other hand,

at n = 128kB and M = 8MB, we have g(32MB, 8MB, 0.05) ≈ 1.51, i.e., more than

50% improvement is achieved in the compression performance with memorization of

a context of length 8MB.
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CHAPTER VII

CONCLUSION

In this thesis, we investigated the average redundancy rate of universal coding schemes

on FSMX sources in the finite-length regime. We derived a lower bound on the prob-

ability of the event that an information source chosen using Jeffreys’ prior from the

family of FSMX information sources is not compressible beyond any certain redun-

dancy level. This work may be viewed as the finite-length extension of the previous

asymptotic results. We demonstrated that the average minimax redundancy underes-

timates the performance of source coding in the small to moderate length sequences

for sources with small number of parameters. We also compared the performance of

two–stage codes with conditional two–stage codes, where we showed that the penalty

term of two–stage coding is negligible for sources with large d as well as for the se-

quences of sufficient lengths. Further, we demonstrated that as the number of source

parameters grow very large, the minimax redundancy provides accurate estimate for

the performance of the source coding. We also showed that the redundancy is signif-

icant in the compression of small to medium length sequences with large number of

source parameters. Finally, we concluded that the context memorization can signif-

icantly improve the performance of source coding when the sequence length is small

or moderate and the number of source parameters are not too small.
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APPENDIX A

PROOF OF LEMMA 1

We have

E log

(

µθ(X
n)

µγ(Xn)

)

=
∑

xn

µθ(x
n) log

(

µθ(x
n)

µγ(xn)

)

= Dn(µθ||µβ) +
∑

xn

µθ(x
n) log

(

µβ(x
n)

µγ(xn)

)

= Dn(µθ||µβ) +
∑

xn

min
φi∈Φm

µθ(x
n) log

(

µβ(x
n)

µφi
(xn)

)

(86)

≥ Dn(µθ||µβ)− fn(Φ
m, θ), (87)

where fn(Φ
m, θ) is given by

fn(Φ
m, θ) =

∑

xn:γ 6=β

µθ(x
n) log

(

1

µβ(xn)

)

. (88)

Note that the sum is taken over all sequences xn whose best estimate γ is not equal

to β. Our goal is to show find an upper bound on fn(Φ
m, θ).

As the length n of the sequence increases, the source parameters concentrate

around the mean and the tail of the distribution becomes exponentially small. Let

θ̂(Xn) be an estimator of θ. Let Σθ(θ̂(X
n)) be the covariance matrix for the estimator

θ̂(Xn). According to the Cramer-Rao bound, we have

Σθ(θ̂(X
n)) � nIn(θ), (89)

i.e., for all θ ∈ Θd,

1

n
θTΣθ(θ̂(X

n))θ ≥ θT In(θ)θ. (90)

Thus, assuming that the central limit theorem conditions hold, the probability dis-

tributions µθ and µβ are well approximated with normal distributions. Let Gθ(·) be
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defined as

Gθ(θ̂) =
n

1

2 |In(θ)|
1

2

(2π)
d
2

exp
(

−n

2
(θ̂ − θ)T In(θ)(θ̂ − θ)

)

. (91)

Thus, assuming that θ̂ is the maximum likelihood estimate for the unknown parameter

θ given the sequence xn, we have

fn(Φ
m, θ) ≈

∫

Gγ(θ̂)>Gβ(θ̂)

Gθ(θ̂) log

(

1

Gβ(θ̂)

)

≤
∫

Dn(µθ ||µθ̂
)≥Dn(µθ ||µβ)

Gθ(θ̂) log

(

1

Gβ(θ̂)

)

(92)

Therefore, by working out details we can show that

fn(Φ
m, θ) = O

(

exp
(

−n

2
(β − θ)T In(θ)(β − θ)

))

(93)

Note that as discussed in the proof of Lemma 2, we have

n

2
(β − θ)T In(θ)(β − θ) ≈ 1

log e
Dn(µθ||µβ), (94)

and hence,

fn(Φ
m, θ) = O

(

2−Dn(µθ ||µβ)
)

, (95)

which completes the proof. �
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APPENDIX B

PROOF OF LEMMA 2

Let f(θ) = Dn(µθ||µβ). We may use Taylor series to characterize f(θ) for θ close to

β.

1

n
Dn(µθ||µβ) ≈ Eβ(θ) +O(||θ − β||3), (96)

where

Eβ(θ) =
log e

2
(θ − β)T In(β)(θ − β) (97)

Since we have

lim
n→∞

1

n
Dn(µθ||µβ) = 0, (98)

the error term of O(||θ − β||3) is negligible. Further, note that Eβ(θ) ≤ δ, where

δ > 0, defines an ellipsoid on the d-dimensional space of θ. It is straightforward to

demonstrate that the volume of the ellipsoid is given by

Vd(β, δ) =
Cd

|I(β)| 12

(

2δ

log e

)
d
2

, (99)

where Cd is the volume of the d-dimensional unit ball. Moreover, since θ follows

Jeffreys’ prior, the probability measure covered by the ellipsoid is given by

P [Eβ(θ) ≤ δ] = Vd(β, δ)

(

|I(β)| 12
∫

|I(θ)| 12dθ

)

=
Cd

∫

|I(θ)| 12dθ

(

2δ

log e

)
d
2

. (100)

Thus, the volume defined by 1
n
Dn(µθ||µβ) < δ is almost equal to the volume Eβ(θ) < δ,

which completes the proof of the first claim. Although the volume of the ellipsoid

depends on the point β in the parameter space, the probability measure of the ellipsoid

does not depend on β.
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For the second claim, let the event Vi be the defined as

Vi =

{

ω ∈ Ω :
1

n
Dn(µθ||µφi

) < δ

}

. (101)

Note that there are 2m choices for φi. For all 1 < i < 2m, in the first claim, we found

an upper bound on the probability of the event Vi. Thus, using the union bound, we

can upper bound the probability of
⋃2m

i=1 Vi. Define the following event.

W =

{

ω ∈ Ω : min
i

1

n
Dn(µθ||µφi

) < δ

}

. (102)

The second claim is obtained by noting that

W =

2m
⋃

i=1

Vi. (103)

�
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APPENDIX C

PROOF OF LEMMA 3

First, note that

Rn(l
2p
n , θ)− Rn(l

c2p
n , θ) = E log

(

1

Am(γ(Xn))

)

. (104)

According to (40), m increases as ε decreases until ε is minimized and the average min-

imax redundancy is achieved as in (43). Let |Sm(γ)| be the number of the sequences

whose optimally estimated point (maximum likelihood estimation) is γ. Increasing

m results in the increase of the number of the estimate points. Thus, |Sm(γ)| de-

creases with m on the average and so does Am(γ). Therefore, we would conclude that

E log
(

1
Am(γ(Xn))

)

is an increasing function of m. As discussed earlier, we optimized

m in order to find the best lower bound on the redundancy in Theorem 1. As can be

seen in (40), the optimal value of m is decreasing with ε. Thus, in order to maximize

E log
(

1
Am(γ(Xn))

)

, we would need to minimize ε. As discussed in the proof of Theo-

rem 2, by minimizing ε, we obtain the average minimax redundancy. Therefore, we

have

E log

(

1

Am(γ(Xn))

)

≤ R2p
n − Rc2p

n , (105)

Note that the conditional two–stage codes achieve the average minimax redundancy

of the regular codes, i.e., Rc2p
n = Rn. Thus,

R2p
n −Rc2p

n = g(d) +O

(

1

n

)

. (106)

�
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