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 SUMMARY 

 

 

 
It  is  well  known  that  direct  surface  waves  of  large  earthquakes  are  capable  of  triggering  

shallow  earthquakes  and  deep  tremor  at  long-range  distances.  Recent  studies  have  shown  

that  multiple  surface  waves  circling  the  earth  could  also  remotely  trigger 

microearthquakes. However, it is still not clear whether multiple surface waves returning back to 

the main shock epicenters could also trigger/modulate aftershock behavior. Here we conduct a 

study to search for evidence of such triggering by systematically examining aftershock patterns 

of earthquakes with magnitude ≥ 8 since 1990 that produce observable surface waves circling the 

globe repeatedly. We specifically examine the 2011 M9 Tohoku-Oki event using a composite 

catalog of JMA, HiNet and newly detected events obtained by waveform cross correlation. We 

compute the magnitude of completeness for each sequence, and stack all the sequences together 

to compute the seismicity and moment rates by sliding data windows. The sequences are also 

shuffled randomly and these rates are compared to the actual data as well as synthetic aftershock 

sequences to estimate the statistical significance of the results.  Our results suggest that there is 

some moderate increase of early aftershock activity after a few hours when the surface waves 

return to the epicentral region. However, we could not completely rule out the possibility that 

such an increase is purely due to random fluctuations of aftershocks or caused by missing 

aftershocks in the first few hours after the mainshock.
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CHAPTER 1 

INTRODUCTION 

 

 
1.1. Overview 

Current observational evidence suggests that large earthquakes can dynamically trigger and 

modulate seismic activity at thousands of kilometers distance. To date, much research has 

focused on the triggering of microearthquakes in geothermal/volcanic systems or deep tectonic 

tremor along major plate boundary faults [Hill and Prejean, 2007; Peng and Gomberg, 2010].  

However, recent studies have found that multiple surface waves traveling around the Earth 

several times could also trigger microearthquakes or deep non-volcanic tremor [Peng et al., 

2011b; Zigone et al., 2012; Jay et al., 2012].  Surface waves sample the Earth’s lithosphere and 

upper-mantle due to their long wavelengths, and are affected by heterogeneity in the material in 

which they propagate.  Since the 1950s, both normal-mode and ray based surface wave studies 

have provided valuable insight into the structure of the lithosphere and mantle [Romanowicz, 

2002].     

 Displacement from surface waves decays with depth according to frequency. Surface wave 

displacements can transmit stresses capable of triggering earthquakes into the crust's seismogenic 

zone [Ben-Menahem and Singh, 1981].  Recent studies have begun to quantify the conditions 

necessary for triggering, primarily in terms of stress and strain in relationship to fault geometry 

[Brodsky and Prejean, 2005; van der Elst et al., 2010; Hill, 2010].  Current triggering thresholds 

for shallow earthquakes and deep tremor have been found to be around a few kilopascals [KPa] 

for identified events [Brodsky and Prejean, 2005; Peng and Gomberg, 2010].  For comparison, 

standard atmospheric pressure is about 101 KPa. The stress drop associated with a typical large 

earthquake is on the order of 1-10 MPa, and tidal stresses are no more than a few KPa. Why 
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triggering is not more common considering the large amplitude of surface waves is an active area 

of research.  Recently, evidence of frequency-dependent triggering has been found, but no 

general relationship between amplitude and triggering has been identified [Brodsky and Prejean, 

2005; Guilhem et al., 2010; Chao et al., 2012].   

 The phenomenon of antipodal focusing (i.e. ~180
o
 on the other side of the Earth) has also 

been observationally documented and investigated [Rial and Cormier, 1980].  However, the 

antipodes of most recent great earthquakes occur in the deep ocean, creating difficulty in 

studying potential triggering associated with them.  Ideally, when the surface waves of great 

earthquakes come back to the epicenter after traveling 360
o
 around the Earth, we would expect to 

see higher surface wave amplitudes due to similar superposition effects. For example, on 

December 26, 2004 a M9.0 megathrust earthquake occurred off of the coast of Sumatra, 

Indonesia on the interface of the India and Burma plates.  The event had unusually long rupture 

duration of ~ 600 seconds corresponding to slip on approximately 1200 kilometers of the 

subduction megathrust.  The average displacement was roughly 15 meters [Lay et al., 2005].  

Figure 1 shows the global displacement wave field of the Mw 9.0 Sumatra-Andaman Islands 

earthquake as recorded by the vertical component of the Global Seismographic Network (GSN).  

The R1 to R4 Rayleigh waves and their overtones are clearly evident with vertical ground motion 

of 1 cm or more.  The closest station is PSI located in northern Sumatra at approximately 3 

degrees near the epicenter. This station recorded clear Rn waves refocusing around the epicenter 

after propagating around the globe multiple times. In particular, a M7.2 aftershock occurred 

shortly after the predicted arrival of the R2 wave trains to the epicentral region. Although the 

arrival of the R2 wave and the M7.2 aftershock were not exactly coincident, this example raises 
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the question of whether aftershocks can be dynamically triggered by focusing of surface waves at 

the epicenter.   

 We also choose to examine the M9.0 Tohoku-Oki earthquake because of the high quality of 

the data available for the event. The Tohoku-Oki earthquake occurred on March 11, 2011 and is 

also considered a megathrust event nucleating where the Pacific Plate is subducting beneath the 

Eurasia plate near the Japan Trench although the exact dynamics in this region are still being 

debated.  In contrast with the Sumatran event, the Tohoku-Oki earthquake had a far more 

compact source and consisted of multiple events but the global displacement wavefield still 

shows significant energy in the R2 arrivals (Figure 2).   

 In addition to providing a better understanding of the physical mechanisms of earthquake 

triggering, the phenomenon of aftershock triggering by multiple surface waves of the mainshock 

is also of practical importance.  If large earthquakes can trigger other events of significance, then 

perhaps there exist times after the mainshock in which the seismic hazard for a region is 

temporarily increased.  Hence, it is important to determine whether or not delayed triggering is 

occurring in the epicentral region.  

1.2. Previous Studies 

Numerous studies of teleseismic earthquake triggering exist but focus on triggering of 

earthquakes by surfaces waves far from outside the aftershock zone [Peng et al., 2010; Peng et 

al., 2011a; Gonzalez-Huizar et al., 2012].   The ability of the Sumatra-Andaman event to trigger 

earthquakes at teleseismic distances due to its large amplitude surface waves (e.g., Figure 1) has 

also been well studied [e.g., West et al., 2005; Miyazawa and Mori,  2006; Peng et al., 2009; Wu 

et al., 2011]. Two studies of instantaneous triggering of large-magnitude earthquakes by seismic 

waves of the mainshock are known [Lin, 2010; Lin, 2012]. However, such instances appear rare. 
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In particular, Parsons and Velasco [2011] did not find any compelling evidence of 

instantaneously triggered Mw > 5 earthquakes by Mw > 7 events over the past thirty years.  

However, they did not examine the 180
o
 (antipodal) or the 360

o
 special cases, and their 

mainshock magnitudes may be too small to excite large amplitude surface waves at such 

distances.  Indeed, Pollitz et al., [2012] found a transient increase of global seismicity with Mw > 

5 immediately after the 2012/04/11 Mw 8.6 Sumatra earthquake, likely due to Love wave 

triggering.  In summary, no detailed studies of the ability of surface waves circling around the 

Earth to trigger additional aftershocks have been conducted. 
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CHAPTER 2 

DATA AND METHODOLOGY 

Here, we examine the aftershocks of shallow great earthquakes (with depths ≤ 75 km) and of Mw 

≥ 8 since 1990 for evidence that the returning surface waves can dynamically trigger additional 

aftershocks [Okal and Romanowicz, 1994]. To test this hypothesis, we search for statistically 

significant rate increases in aftershocks in the first few hours when the surface waves return back 

to the epicenter. We use earthquake catalogs reported by various network agencies and augment 

these with an early aftershock catalog of waveform detected events for the most recent Mw9.0 

Tohoku-Oki earthquake [Lengline et al., 2012]. 

2.1. Catalog Sources 

A catalog may be defined as a description of earthquakes giving the location, origin time, and 

magnitude of each event. Seismicity catalogs are by nature heterogeneous, therefore the 

aforementioned parameters may be composed of events obtained by various location methods, 

different magnitude scales, and both human and machine error contributes to the overall quality 

of the catalog.  The instrumental catalogs used in this study contain events beginning in 1990 and 

are produced from digital data obtained from dense seismic networks with automatic or semi-

automatic processing protocols, as opposed to historic catalogs in which events were recorded on 

analog instruments.  The most meaningful parameter in this study is the magnitude of the 

earthquake for reasons that are explained in section 2.4.  Since this is a statistical study, one must 

check and verify the data at each stage of processing to ensure as little bias as possible has been 

introduced into the analysis.   

 We use several sources of catalogs for this study. To define the mainshocks, the Advanced 

National Seismic System (ANSS) catalog is used. The ANSS catalog is a compilation of global 
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catalog data reported by various member networks. With the exception of the Tohoku-Oki event, 

all aftershock data also comes from the ANSS catalog as well. Most of the mainshock-aftershock 

sequences do not have local high quality catalogs within the first day since the events are in 

remote areas; furthermore, dense temporary networks are usually deployed after an event, 

causing difficulty in obtaining spatially dense data in the first few days unless permanent stations 

are situated near the epicenter.  The only exception is the 2011 Mw 9.0 Tohoku-Oki, Japan event. 

Japan has the densest seismic network coverage of any region in the world which allows for 

catalogs of very high quality in terms of the number of events recorded at a given magnitude. In 

this study, we use both standard catalog data from the Japan Meteorological Association (JMA) 

and the HiNet catalog from the National Research Institute for Earth Science Disaster Prevention 

(NIED).   

 Finally we use data obtained from waveform cross-correlation analysis for the Tohoku-Oki 

sequence [Lengline et al., 2012].  This technique utilizes verified seismic events as a waveform 

template, or "matched filter", and then searches the continuous waveform data to identify 

similarities between waveforms. The algorithm determines the degree of similarity by calculating 

the mean correlation coefficient.  If the coefficient reaches a specified threshold, then a new 

event has been found. The ‘matched filter’ procedure may yield false positives; however, the 

ratio of false positives to actual detections is estimated to be considerably less than one per day 

[Shelly et. al., 2007]. To date, the technique has yielded catalogs which contain possible 

observations of many more events than were previously reported [e.g., Peng and Zhao, 2009; 

Meng et al., 2012].   

 Here we use the catalog prepared from data collected from the Tohoku-Oki event [Lengline 

et al., 2012]. The first twelve hours utilizes a mix of waveform detections and JMA events, and 
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the later times use events listed only in the JMA catalog. In future studies, combining known 

empirical frequency-magnitude relationships with earthquake catalogs consisting of waveform 

detections should allow better estimation of the number of missing events at a given magnitude, 

at least for great earthquakes.  With this data, one could attach more significance to observed 

changes in seismicity rates due to unexpected or anomalous activity in the early hours of 

earthquakes. 

2.2. Aftershock Zone Selection 

The spatial extent of an aftershock zone depends upon multiple factors, the foremost being the 

extent of the mainshock rupture. Usually aftershock activity is observed in the immediate 

vicinity of the fault rupture, generally corresponding to the fault surface that has experienced 

relative motion, or slip, during the earthquake. Typically, the magnitude scales with the observed 

rupture size; hence the number of aftershocks increases with the size of the earthquake.  The 

spatial extent of aftershock activity is then expected to be greater for larger earthquakes.  As a 

starting point, we use the relationship asserted by Kagan [2002] with  

       
     

       
 

(1) 

where r is the aftershock zone radius and m is the moment magnitude of the mainshock.   Visual 

inspection confirmed the aftershock activity was well within the boundaries estimated by the 

Kagan [2002] scaling rule with the exceptions of the 2004 Mw 9.0 Sumatra-Andaman Islands 

(Figure 3) and the 2011 Mw 9.0 Tohoku-Oki earthquakes (Figure 4).  In the former, we 

modified the aftershock zone specifically for this event because of the unusually long rupture 

length and in the latter the aftershock zone was decreased due to the compactness of the source.   

The classical Gutenberg-Richter (G-R) relation [1954] asserts: 
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(2) 

 

where N(m) is the number of earthquakes with magnitude   . The parameters    and b are the 

logarithm of the number of earthquakes with       and the relation between the numbers of 

small and large earthquakes respectively.  The value    is the catalog completeness threshold, 

which is introduced because of the inability of seismic networks to capture events at all 

magnitudes.  This quantity will be discussed further in section 2.4. The G-R relationship has 

been show to hold from magnitudes of at least -1.3 to over 9 [Boettcher et al., 2009]. The 

parameter at is simply a constant of the distribution and m can be measured by different 

magnitude scales so it makes sense to transform this equation into one independent of catalog 

variation: 

      
  

 
 
 

 
 
    
  

 
            

 

(3) 

   
 

 
   

 

(4) 

 where    is the moment completeness threshold, and     is an empirical upper corner moment 

at large magnitudes. Several studies have shown that that the particular value of   in equation 

(4) or b value in equation (2) may reflect changes in the physics of the source, style of faulting, 

and/or tectonic regime [Okal and Romanowicz, 1994; Kagan, 2010].  

The depth at which aftershocks are included is constrained to shallow events ≤ 75 kilometers. 

The majority of aftershocks used in analysis are produced at much shallower depths (Figure 5, 

Table S1). However, past calculations of earthquake parameters typically do not constrain depth 

[Frohlich and Davis, 1993].  
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2.3. Data Selection Criteria 

To test the hypothesis stating a statistically significant rate increase in aftershocks occurs in the 

first few hours when the surface waves return back to the epicenter, three different catalog data 

sets were analyzed.  The different data sets include aftershocks within the one day of the 2004 

Sumatra-Andaman earthquake, within one day of the 2011 Tohoku-Oki earthquake, and 

aftershocks of Mw ≥ 8 events (i.e. the stacked data), which are stacked to improve coherence.  

Time shifting of mainshocks for stacking to obtain better estimates of spatial decay parameters 

has been done previously [Davis and Frohlich, 1991; Nyffenegger and Frohlich, 1998; Tosi et. 

al, 2010]. For the stacked data, the mainshocks and their aftershocks were selected from the 

global ANSS catalog and range from 1990 to 2012.  A mainshock was defined as an event not 

considered as an aftershock of any previous larger event within 100 days.  All 

mainshock/aftershock sequences were tested for uniqueness in order not to duplicate data, and a 

listing for selected events is shown in Table S1.  If the mainshock contained more than 20 

aftershocks, the event and its aftershocks were included in the stacked data.  A value of 20 

represents the threshold below which determining a magnitude of completeness becomes 

difficult [Woessner and Wiemer, 2005] and was chosen for this reason.  The majority of events 

had an order of magnitude more aftershocks than the selected threshold.  We use the ANSS 

catalog for the Sumatra-Andaman sequence, and a catalog containing a mixture of JMA and 

waveform detected events for the Tohoku-Oki event.  To avoid biasing the event stack, we use 

aftershocks listed in the ANSS catalog for the Tohoku-Oki event stack data. The aftershocks for 

a given mainshock were chosen using a temporal constraint of one day, and the spatial extent of 

the aftershocks was defined using an aftershock zone scaling relationship [Kagan, 2002] as 

discussed in Section 2.2.    
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2.4. Magnitude of Completeness 

Determining which aftershocks should be used to calculate both rate and aftershock decay 

parameters (e.g., Omori's law) is of critical importance.  The current criterion used is the 

magnitude of completeness, Mc. The magnitude of completeness is the smallest value of 

magnitude at which the catalog is thought to have included all seismic events. Missing events in 

the catalog most commonly occurs because the events are (1) too small to be detected at enough 

stations and, therefore, cannot be located, (2) stations may not be physically capable of recording 

events of a very small size and/or the amplitude of such events may be below the noise level of a 

station, and (3) aftershocks may be hidden in the coda of larger events.  The coda is defined as 

that portion of the direct phase wave train which is scattered and arrives following the main 

phase over an extended time interval [Sato and Fehler, 2012]. 

 As Woessner and Wiemer [2005] point out, this definition is somewhat dependent on the 

functional form of the assumed frequency-magnitude distribution. A correct estimate is 

important because overestimating leads to usable data being discarded while underestimating 

leads to incorrect estimation of other parameters which depend upon the Mc, such as the G-R b 

and Omori p-values [e.g., Utsu et al., 1995].  For example, if the Mc is underestimated, then the 

b-value will be incorrect because there will be less cumulative events above the Mc cutoff than 

expected and the behavior will not be strict power-law.  Consequently, underestimation of the Mc 

value will cause the b-value to be lower than the actual value.  Another potential issue is 

overestimation due to magnitude indeterminacy. Difficulty in magnitude determination tends to 

occur for small events, and any systematic error will skew the estimated b-value.  In this study, 

the Mc is usually large, so missing events are of greater concern than incorrectly determined 

magnitudes.  
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 Two distinct methodologies of estimating the Mc have been demonstrated in the literature.  

One class of methods uses data from the seismic network either from phase-picks or waveform 

data [Woessner et. al., 2010].  In principle, such methods are potentially more accurate as well as 

more time consuming and have not been thoroughly investigated in the context of this study.  

The other class is a catalog based, statistical approach [Wiemer and Wyss, 2000; Woessner and 

Wiemer, 2005].  These methods rely upon the accurate interpretation and usage of waveform and 

phase-pick data, and, therefore, are perhaps more prone to error. However, for the relativity high 

Mc values found here, catalog methods are likely unaffected by such issues since the magnitude 

and location of larger earthquakes are more accurately determined.  Human errors can contribute 

to a systematic catalog bias, but, because the events are stacked the absence of a few events, 

would have minimum impact on the overall result.  

 More importantly, the magnitude of completeness Mc may change unpredictably with time 

for different sequences.  Obtaining a precise Mc value during an aftershock sequence is a difficult 

problem.  A quick check used compares the Mc at short times, such as a day, with that of longer 

times (e.g., months) to ensure that large variations do not bias the estimation at the short times. 

The Mc would be expected to decrease in time as well [Kagan, 2004]. For this study, the time 

periods of interest are 1 day and 100 days.  The Mc for either time period does not fluctuate 

significantly (Table S2).     

 The Mc for the aftershock sequences was determined by using both the entire magnitude 

range (EMR) method with bootstraps and the corrected maximum curvature method (MAXC) 

[Woessner and Wiemer, 2005].  In particular, because of small sample sizes and a short time 

window, the EMR method generally produced better values than the MAXC method with 

regards to identifying a reasonable Mc value. The MAXC method can become trapped in local 
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minima when trying to determine the magnitude of completeness. Adding a correction factor of 

0.2 to the MAXC results generally agreed with the magnitude of completeness calculated from 

the EMR method [Woessner and Wiemer, 2005].  Another way to check the obtained Mc against 

the frequency magnitude distribution is to estimate the b-value for a Mc range around the value 

found by EMR and MAXC to test its sensitivity to the catalog cutoff. A straightforward estimate 

of b is given by: 

     
      

           
 

 

(5) 

where   is the mean magnitude and the 0.05 is a correction factor associated with the typical 0.1 

magnitude binning. Marzocchi and Sandri [2003] demonstrate that this formula yields reliable 

estimates even in the presence of measurement error in a small catalog.   

 The variation of the maximum likelihood estimate of the b-value with the Mc value was also 

calculated.  As Table S2 shows, the Mc varied between 4.6 and 5.2 for the individual sequences. 

However, in some instances, too few aftershocks were available to calculate a magnitude of 

completeness for a mainshock event using a particular method. The aftershock sequences with a 

reasonable Mc value were then added to a stack to improve coherence as indicated in Table S2. A 

total of fifteen mainshocks aftershock sequences are used in the final stack, resulting in 

approximately 2763 aftershocks in a twenty-four hour period.   

2.5. Stacking and Rate Method 

Due to potential variation and incomplete catalogs for each sequence, we stack all possible 

sequences in order to improve the coherence of any signal that may be partially expressed in the 

individual sequences.  If surface wave triggering exists, at worst, stacking would tend to smooth 

out a signal, as the operations are additive. At best, stacking would sharpen a peak in either 
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moment or number rate when the surface waves return to the mainshock epicenter. Because of 

the small number of sequences and the number of total samples, stacking incoherent signals is a 

potential issue. For this reason, both the rate and moment rate are calculated and compared to the 

timing of the incident surface waves. By doing so, the chances of a purely random fluctuation are 

lessened, though not completely ruled out.   

  Multiple approaches have been developed to calculate statistically significant seismicity 

and moment rate changes. Two currently used approaches are the standard deviate, z 

[Habermann, 1988] and the β [Matthews and Reasenberg, 1988] value.  The β value is given by 

the equation  

         
         

        
 

 

(6) 

where n is the number of earthquakes for both time periods, t is the normalized end time of the 

interval of interest,    is the normalized length of the interval and M(t,  ) is the number of the 

events in the interval defined by end time t and duration  .  Essentially, this method computes 

the difference between the observed and expected number and normalizes by the standard 

deviation.  However, the β value is sensitive to the size of the data set used, relying upon the fact 

that a Poisson distribution tends to a Gaussian distribution for calculating probabilities. However, 

the use of the β value in this study is precluded because the β value assumes that earthquakes are 

independent of one another, so the catalog must be declustered which means aftershocks are 

removed.  The β method also assumes a uniform rate of background activity which is not 

applicable during an active aftershock sequence.  In contrast, the standard deviate is a symmetric 

extension of the β statistic: 
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(7) 

where Ri is the number of earthquakes in the ith period, ni is the number of bins of length Tbin 

into which the ith period is subdivided and    is the standard deviation of the number of 

earthquakes in Tbin. Values of z which use different sample sizes or window lengths cannot be 

directly compared. As before, z values are meant to be used on declustered data, so neither 

method can be applied to this study. The background activity composed of independent 

mainshocks is assumed to occur as a stationary Poisson process. However, the previously 

mentioned methods are used to find trends that are non-stationary with regards to the background 

activity. During an aftershock sequence, the aftershocks are a result of a non-stationary process 

and so rate changes cannot be identified by these measures.   

 Because of the lack of a stationary background, absolute changes in rate will be difficult to 

identify, so instead this study focuses on identifying relative rate changes using a moving 

window approach for both seismicity and moment rates.   The rates were calculated using a fixed 

event window and were also tabulated using a moving average approach with varying time 

windows for comparison.  Both central and forward moving averages in time were calculated for 

various time window sizes.  Fixed event-size windows were also used to calculate rate changes.  

We present the moving average results to directly compare different stacks because the size of 

the time window is fixed.  In order to quantify a rate increase, we use a forward moving average. 

Central moving averages also may be used but the method is not symmetric near zero times 

leading to artifacts. The time window chosen has to balance temporal resolution with sensitivity 

to artifacts. We find time windows corresponding to values between 15-45 minutes do not 

strongly affect the result (Figure 20).  The fixed event size windows yielded similar results, but 
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cannot be directly compared. Fixed event windows also may be more prone to errors with data 

more sparsely distributed in time.  

2.6. Modified Omori Law Fits 

The decay of aftershock activity following a mainshock follows a power law known as the 

Omori law [Omori, 1894]. In its current form, the power law is referred to as the Omori-Utsu or 

modified Omori law (MOL) [Utsu, 1961].  Changes in the temporal rate can be detected by 

employing various transformations of the Omori-Utsu model [Ogata, 1988; Utsu et al., 1995].   

The MOL takes the form: 

          
 

      
 

 

(8) 

where n(t) represents the frequency of aftershocks per unit time interval, K measures the 

productivity of the sequence, c adjusts for missing earthquakes in the catalog and p determines 

how quickly the activity falls off to the constant background  intensity which as before, was 

presumed also to be a stationary Poisson process. A point process is called a stationary Poisson 

process if the following conditions hold: 

I. Independent Intervals. The number of events occurring in two disjoint time intervals 

is independent of each other. 

II. Stationary. The probability distribution of the number of events falling in a time 

interval only depends on the length of the time interval. 

III. Simplicity. Two are more events never occur simultaneously. 

The value of p typically ranges between 0.6 and 2.5 with a median of 1.1 [Utsu et al., 1995]. 

Higher p values tend to characterize earthquake swarms as may be observed in geothermal or 

volcanic regions [Ben-Zion and Lyakhovsky, 2006]. Smaller p value have been associated with 

superimposed aftershock sequences, since the decay would occur more slowly than expected due 
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to multiple events with some time separating them contributing aftershocks to the sequence.  No 

dependence of p with mainshock magnitude has been found [Nyffenegger and Frohlich, 1998].  

The value c is often presumed positive and is thought to be an artificial constraint introduced by 

the incompleteness of catalogs at early times [Kagan, 2004]. Ideally, if all earthquakes were 

captured, the c-value would tend towards zero. However, Kagan [2004] argues that c is actually 

negative, otherwise, the singularity in the equation occurs before the mainshock.   

 In either case, when using real catalogs at short times and performing an MOL analysis, the 

estimation should be checked by examining changes in the Mc with time.  Such arguments 

reinforce the fact that the parameters p, c, and K introduced by the MOL can obscure the 

physical underpinnings of seismicity, so recent research has focused on finding laws in terms of 

quantities such as moment [Kagan and Houston, 2005], rather than number of earthquakes.  Utsu 

et al. [1995] commented that if aftershock sequences do obey a MOL with c equal to zero, that 

"... such a large percentage of missing events seems unlikely for many of the aftershock 

sequences to which relatively large c values have been estimated."  However, in light of recent 

evidence of significant numbers of waveform detections, the mentioned scenario may actually be 

true [e.g., Peng et. al., 2006, 2007; Enescu et al., 2007]. Therefore, defining completeness in 

terms of moment or another physically measurable quantity may be a more sensible approach.  

The uncertainty suggests the MOL should be considered as the time-dependent intensity function 

     of a non-stationary Poisson process which models aftershock activity and physical 

interpretations of its parameters must be carefully scrutinized.  The MOL represents a Poisson 

process which has a time variable rate violating assumption II, but this variable rate is 

independent of the occurrence of other events implying assumption I still holds.  The MOL can 

be integrated between times [S, T] analytically to obtain: 



17 

 

                

                    

     
      

                               

  

 

(9) 

where N represents the total number of events between times [S,T].  N is also referred to as   

which is the frequency-linearized or transformed time [Ogata, 1988]. If one has chosen the 

proper parameters for the Omori law, then the integration transforms the integrand into a 

stationary Poisson process with constant intensity.  This may be dependent upon the choice of 

the lower time bound, S, after which the MOL holds.  A transform time analysis yields the 

cumulative number of events for a particular fit and allows for comparison based upon the 

examination of the predicted cumulative values compared to the observed values. Past studies 

have used the transform time to estimate when an aftershock sequence is perturbed from or 

returns to its background rate [Ogata, 1984]. One then compares the cumulative number of 

aftershocks to the transformed time, which should both plot along a straight line as long as the 

occurrence of aftershocks is above the background rate.  Typically these studies attempt to 

estimate changes many days from the mainshock occurrence by fitting the Omori-Utsu model 

early in the aftershock sequence and predicting days or weeks ahead. In contrast we applied the 

same technique within the first day of the mainshock event.   

 In practice, obtaining accurate estimates of the MOL parameters is a non-trivial endeavor.  

The most common way is using the log-likelihood function (LL) of the MOL.  The times of the 

events ≥ Mc are the input data.  The LL is then maximized with respect to p, c, and K which 

yields estimates and their associated errors.  When combined with the G-R law, it becomes 

possible to forecast the probability of large aftershocks based upon observed data in the region or 

similar ones [Reasenberg and Jones, 1989].  A severe shortcoming of the MOL is the complete 

non-consideration of the existence of secondary, tertiary etc clustering of aftershocks. Clustering 
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and dependence of events violates assumption II above. The self-excitation of aftershocks 

effectively changes the intensity rate to be a function of its previous history. As a result, the fit to 

the MOL may be poorer than expected, which is further exacerbated at short times because the 

aftershock activity is more vigorous and can fluctuate markedly.   

2.6.1. MOL Analysis of Data 

Only data at and above the Mc was used in the MOL analysis. The MATLAB code used to 

calculate the magnitude of completeness was obtained from Dr. Jochen Woessner [personal 

communication, 11/21/2011] based upon their previous paper [Woessner and Wiemer, 2005].   

For this study, we also used a modified version of the ZMAP [Wiemer, 2001] MATLAB code to 

solve for the MOL parameters at 1 and 100 days for the stack and the Tohoku-Oki event 

according to equation (8).  With reference to the stack, the MOL calculation requires a 

mainshock, and so a composite mainshock of the mean of the stack, 8.32, was used.  Our 

approach is acceptable, because the p-value does not depend upon the mainshock magnitude. In 

contrast, the p-value will depend upon the length of the training period which is defined as the 

interval of time during which the aftershocks will be fit to the MOL.  Unfortunately, no agreed 

upon procedure for choosing p exists in the literature. General guidelines include the time period 

(1) should start when the catalog completeness may be changing but becomes calculable (2) must 

include the largest aftershock in the sequence in that interval and, (3) should be long enough 

such that extrapolation is meaningful.   For both stacks, the MOL was fit to the entire time period 

in order to estimate the parameter c.  We then compared c visually with the observed clustering 

and cumulative aftershock plots.  The estimated c was then used as the cut-off for the lower time 

period and the MOL parameters were recalculated. The upper times used were 1 and 100 days 
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and were chosen because backward extrapolation is desired as opposed to forward extrapolation, 

so all of the available data at the Mc should be used for parameter estimation.  

Once the parameters p, c, and K were obtained, the transform time equation (9) was plotted 

against the observed seismicity.  Using the estimate of the 100-day parameters, the rate was 

backwards extrapolated to 1 day and compared against the observed seismicity in order to detect 

seismicity rate changes. 

2.7. Synthetic Models 

All stochastic models of seismicity are incorrect to some degree. In order to make more accurate 

statistical inferences, baselines for comparisons must be found.  Synthetic catalogs that 

hypothetically describe seismicity are desirable.  Synthetic modeling methods derived from them 

will reflect those shortcomings. However, some models have features that are useful to test 

particular hypotheses against.  It is possible to generate synthetic aftershock timings from the 

MOL. However, the MOL may not accurately reflect the true characteristics of the aftershock 

sequence, especially at early times after the mainshock. If the fit to the MOL is poor, then 

timings generated by such methods will only be as good as the original parameter fit. At worst, 

the fit may reflect a simple exponential power law decay.  The MOL can be used, and typically 

smaller independent mainshocks will conform to assumptions I and II.  However, larger 

mainshocks will generate aftershocks that will excite further aftershocks.  Although aftershock 

seismicity is a spatiotemporal occurrence, I neglect the spatial modeling of the aftershocks 

because we are not addressing variability in space and time in this study.  

 Currently, the Epidemic Type Aftershock Model (ETAS) is the most widely used synthetic 

model [Ogata, 1988].  At its core, the ETAS model assumes that every aftershock can trigger 

further aftershocks according to externally imposed constraints and the occurrence rate can be 
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described by a superposition of MOL functions shifted in time.  The intensity function at time t 

given the history Ht for the ETAS model is given by: 

             
         

         
    

 

 

(10) 

In this model,   is a constant occurrence rate for background seismicity, the sum is taken for all 

earthquakes i occurring before time t. The productivity of each earthquake of magnitude Mi is 

determined by the parameter K0 and by the exponential term containing  .  In other words, the 

value of the productivity affects the total number of synthetic daughter events created in all 

generations.  Alpha,    is a parameter which assists in determining how many earthquakes a 

particular event triggers. Both K0 and   must be estimated using the observed data. The ETAS 

model is branching meaning that a daughter earthquake has only one unique mother earthquake. 

However, each unique mother earthquake may have a one-to-many relationship with its 

daughters. Physically, there is no reason why triggered earthquakes could not share several 

parents. However, this is a "mean-field" constraint imposed to simplify the process while 

qualitatively retaining the physics.   The cut-off value Mo is equal to the Mc of the data that is 

being modeled in this study.  This cut-off is necessary to ensure that too many events are not 

generated for larger mainshocks.  The most important parameter is not explicit in the functional 

form of the ETAS intensity. This key parameter is known as the branching number, n.  The 

branching ratio is the average number of daughters created per mother event [Helmstetter and 

Sornette, 2002]:  
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where          
  
  
 

 

   
     and          

 

(12) 

 

The parameters are the same as in the ETAS equation; however, the G-R equation determines the 

b-value.  The value of the branching number determines various regimes in which the seismicity 

diverges or converges.  Hence in practice, using the ETAS equation is not always straight 

forward.  The ETAS model requires initial parameters obtained from MOL fits; however, these 

estimates are somewhat sensitive to the conditioning of the data through the choice of the 

magnitude of completeness and the time interval assumed for the fit. 

 We attempted to use two codes to generate suitable synthetics.  Both programs model 

aftershock activity by assuming an ETAS process.  The first code AftSimulator.m runs in 

MATLAB and is provided by Dr. Karen Felzer publicly on her website [Felzer, 2012].   The 

code simulates both the spatial and temporal decay of aftershocks [Felzer et al., 2002; Felzer and 

Brodsky, 2006].  The code is based upon work by Ogata [1988].   The second software package 

is SASeis2006 [Ogata, 2006].  SASeis2006 is a collection of routines written in FORTRAN 

which enable the user to solve for the MOL parameters and model synthetic aftershocks based 

upon those parameters.  

 The input parameters of SASeis2006 must be determined from an existing set of mainshock-

aftershock sequences, making it difficult to generalize synthetic generation using this code to 

regions with little data because the input parameters will be poorly constrained. In particular, 

         are difficult to determine consistently because they must be calculated and observed 

over long periods. However, once values have been set, SASeis2006 generates synthetic times 

using a pseudorandom number generator and employs an acceptance-rejection method known as 
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thinning.  In order to "thin", one finds a constant rate function    which serves as an upper bound 

for equation (10).  One then generates synthetic times using the constant rate and compares the 

ratio of  
       

  
 to a random number on (0,1).  If the random number is less than the ratio, then we 

keep the time. If not, we discard it and try again. Mathematical arguments can show that this 

process will approximate a simple nonhomogenous Poisson process. SASeis2006 generates the 

initial seed magnitudes by using the inverse G-R formula: 

              
           

 
                   

 

(13) 

where U(0,1) is a uniform random number on (0,1) and the cutoff magnitude is a user supplied 

magnitude threshold for all generated magnitudes. However, the code only generates aftershocks 

for one generation, meaning that it does not track the parent aftershocks of the produced children 

or vice-versa.  

 The code of Dr. Karen Felzer uses a different approach and solves for the inverse of the 

nonhomogenous Poisson process directly. The MATLAB program uses a starting productivity 

value AD that has to be found for each sequence to be simulated [e.g., Felzer et al., 2002] and this 

value is not the same as the    in equation (10).  The code generates aftershocks and branches 

according to a stopping criterion.  If the criterion is not reached, new aftershocks are generated 

by using each "active" parent aftershock.  The code does not allow for multiple parent 

earthquakes to trigger one or more daughter events. Only multiple children of one parent are 

allowed.  Although this approach is better grounded in physics than SASeis2006, it requires 

determination of the productivity of a sequence by rather ad-hoc determination.  For example in 

Felzer et al. [2002], the MOL parameters were found using forward modeling by minimizing the 

least squares residual between the model and observations for the number of aftershocks above 
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magnitude two in the first five days.  Why these specific numbers were chosen is not explained.  

Another issue is the inability to relate Felzer's productivity value to Ogata's productivity constant 

[Felzer, personal communication, 2012].  My investigations have concluded that regardless of 

which software package is used, some synthetic sequences may have non-unique MOL 

parameterizations.  At long time periods this may not matter, since the MOL exhibits a smooth 

decay and gradual accumulation of events. However, for short time periods mimicking the 

dynamics is important since the power law expression of these dynamics will affect the observed 

number rate fluctuations. The erstwhile issues somewhat negate the value of these synthetics 

with respect to backwards extrapolation of the MOL since the number rate may differ erratically.   

2.8. Summary of Analysis Procedure 

To summarize, the analysis procedure consists of the following steps: (1) the aftershock zones 

for the stack data consisting of fifteen mainshocks and two separate events were determined; (2) 

the aftershocks were then stacked into a one-day and 100-day sequences; (3) after stacking, the 

inter-event times were calculated and compared to the randomized times for the stacked 

sequence in order to examine the inter-event time frequency distributions for trending in the 

stacked data; (4) histograms of depth and magnitude distribution were created; (5) the data were 

cut at the magnitude of completeness Mc, and then  MOL and G-R parameters were found;  (6) 

both seismicity and moment rates were calculated for all sequences; (7)  data up to 100 days 

were also fit to the  MOL parameters and then backwards extrapolated to examine trends away 

from expected behavior for the stacked data and two events; and (8) synthetic sequences were 

generated using MOL parameters and compared to the observed sequences. 
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CHAPTER 3 

RESULTS 

Identifying a rate increase during an aftershock sequence is challenging because although the 

background activity is decaying in time, the instantaneous rates may fluctuate. As briefly 

mentioned before, existing methods for identifying rate increases such as z or β values require 

removing aftershocks by declustering to identify independent events in order to establish a 

background rate for comparison [van Stiphout et al., 2011].  These techniques are not suitable for 

application to this study for several reasons:  the triggered aftershocks may be removed during 

declustering, the triggering time interval corresponding to the surface wave arrival is small 

compared to the aftershock sequence duration, and stacking the results amplifies differences in 

the tectonic regimes to an extent where dependent events may not be separable.    

 The one day stacked data included 15 mainshocks with a mean magnitude of 8.3. Both the 

EMR and MAXC methods calculated of a magnitude of completeness of 5.0. Out of 2763 

aftershocks, 981 have magnitudes greater than or equal to 5.0. The Mc value is reasonable 

considering that the 100-day stack yielded similar values, and a visual inspection of the 

frequency-magnitude plot (Figure 6) and binned histogram agreed with the obtained Mc.  The 

change in the b-value with the Mc was also estimated in Figure 7. A comb plot is a useful 

measure of the qualitative clustering of the data and is plotted in Figure 8a and Figure 8b. The 

MOL parameters were determined using the Mc estimated 981 events. The cumulative, log and 

transform time plots for the MOL parameters are shown in Figure 9. Allowing for error, the 

MOL parameters were also estimated for the Mc ± 0.1, but were not found to be particularly 

sensitive to this choice as shown in Table S3.   We follow Kagan and Houston [2005] and plot 

the number and moment rate in Figure 10. The R2 arrival shows some evidence of rate increase, 
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while the R4 arrival is less clear.  While there is no obvious increase in aftershock occurrence 

rate at the epicenters, there is some evidence of increase in moment rates during those times.  

The one-day data was plotted against the MOL parameters estimated at 100 days in Figure 19.  

The 100-day MOL parameters used in the extrapolation were estimated at the one-day Mc (5.0) 

for consistency (Figure 13), even though the 100-day stack has an overall lower magnitude of 

completeness (~4.7).  

 The 100-day stacked data was composed of the aftershocks of the same mainshocks as the 

one-day data and had the same mean magnitude.  The Mc was found to be 4.7 using 11488 

events of which 5135 were at or above the Mc. The frequency magnitude plot is shown in Figure 

11.  Comb plots are shown in Figure 8c and Figure 8d.  The MOL parameters were estimated 

using 5135 events. The cumulative, log and transform time plots for the MOL parameters are 

shown in Figure 12. Allowing for error, the MOL parameters were also estimated for the Mc ± 

0.1, but were not found to be particularly sensitive to this choice as shown in Table S3. The stack 

data of up to 100 days was also fit to the MOL.  The resulting p-value was close to unity, which 

is typical for an aftershock sequence. The MOL plots also indicate possible deviation from the 

expected rate behavior at early times (Figure 19). Rate comparisons need a reference baseline, so 

synthetic distributions were created under uniform and epidemic type aftershock sequence 

(ETAS) assumptions [Ogata, 1988].  The ETAS parameters assumed were taken from 

performing a modified Omori law fit to the data and using the obtained parameters as inputs 

[Utsu et al., 1995].  The same rate calculations were then performed on those distributions and 

compared to the stack.  

 The 2004 Sumatra event (Figure 14) also shows evidence of modulation by the returning 

surface waves. The ANSS catalog data was used for this event. However, the aftershock zone 
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was extended by visual inspection to account for the long rupture length. The catalog data for the 

Sumatra event yields 298 aftershocks with 141 at and above the magnitude of completeness of 

5.0.  Therefore, the rates and moment do not fall off as sharply in the course of one day, and 

noticeably more scatter exists in the results.  The MOL parameters for the Sumatra event are 

shown in Table S3.   

 A wealth of data is available for the Tohoku-Oki event due to the high quality of the 

Japanese seismic network.  In particular, we have analyzed this event using the first six hours of 

a catalog consisting of events from the JMA and HiNet catalogs as well as newly detected events 

found by the waveform cross correlation technique of Peng and Zhao [2009] adding ~1000 more 

aftershocks to the analysis [Lengline et al., 2012].  The second half of the day includes events 

only found in the JMA catalog; however, for this study, the first 2-6 hours are most relevant.  

The frequency-magnitude plot and histogram are shown in Figure 15. With the additional 

events, the catalog for the first day contains 2,305 events, and there are 682 events at and above 

the Mc value of 4.6.  The MOL parameters are shown in Table S3 and plotted for the event in 

Figure 16. Using an 1800-s time window, evidence exists of possible modulation of aftershocks 

by surface wave arrivals in the first six hours (Figure 17).  We estimated parameters for the 

MOL of the Tohoku-Oki data at 100 days at a Mc of 4.6 and then extrapolated to one day in 

Figure 18.   

 Using both the codes of Ogata [2006] and Felzer et al. [2002], we found it difficult to create 

and stack synthetics which accurately reflected observed data in a meaningful way.  For my 

purposes, we neglect background seismicity based upon the assumption that the background 

seismicity level is small compared with ongoing seismicity in the first few hours. One possible 

reason is the cumulative effect of repeated deviations from the G-R distribution due to stacking 
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of large events. The ETAS model also generates synthetic magnitudes based upon assumptions 

about the power law behavior of frequency and magnitude.  Recently it has been suggested that 

deviations occur for large magnitude mainshocks (e.g., Mw ≥ 8) and this could impact the 

accuracy of existing ETAS models [Wang et al., 2010]. Ultimately, the ETAS model relies upon 

self-excitation subject to constraint, and therefore seeks to emulate the behavior of real 

sequences which may be difficult if the aforementioned assumptions do not hold.   
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CHAPTER 4 

DISCUSSION 

4.1. Event Stack 

Based upon the analysis of timings, my results suggest a moderate increase of early aftershock 

activity when the surface waves return to the epicentral region, a time period of a few hours. The 

increase is observed in Figure 10 and Figure 17. We note that the event rate increase at later 

times after the R2 arrivals is less clear, but the moment rate does shown some increase and 

possible correlation during the R2 and R4 arrivals. However, we cannot completely rule out the 

possibility that such an increase is purely due to random fluctuations of aftershocks or caused by 

missing aftershocks in the first few hours after the main shock.  In addition, the magnitude of 

completeness may fluctuate in time. However, at almost 2.5 hours after the mainshock and for 

the high completeness values found during this study (Mc ~ 5.0), we believe the fluctuations in 

Mc are not an important source of error.   

 Ideally stacking should enhance the signal. However, we find that stacking causes difficulty 

in analyzing the stack in terms of the MOL [Nyffenegger and Frohlich, 1998].  Stacking may 

create an excess of events at short times, which complicates extrapolation from parameters 

estimated using larger time intervals.  Although we were able to use an enhanced catalog for the 

Tohoku-Oki event, no such catalogs are available for other events in the stack.  Different events 

contributed different numbers of aftershocks to the complete stack, but no attempt to normalize 

the individual contribution to the entire stack was made, so events may not be coherently 

interfering or subsets of events may contribute disproportionately. For example, the contribution 

of some aftershock sequences may mask or enhance a relative rate change between time 

intervals. However, even if our current results are caused by fluctuations, events below the 
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magnitude of completeness may exist which are triggered.  Recent studies indicate that a large 

number of aftershocks may be missed in the first hours of great earthquakes [e.g., Peng et al., 

2006, 2007], and our proposed effect may exist but not be discernible due to the high level of 

coda noise from the mainshock and large aftershocks.  Furthermore, if dynamic triggering mostly 

occurs for smaller magnitude earthquakes [Parsons and Velasco, 2011], the possible rate increase 

may involve the triggering of a cascade of events all below the magnitude of completeness or 

perhaps a mixture of both [Helmstetter and Sornette, 2003].  

 We admit that these events may occur regardless of the returning surface wave effects. 

However, antipodal focusing may serve to advance the timings of such events. The predicted 

antipodal convergence does not occur at a single point, instead focusing or constructive 

interference occurs in a wide region around the epicenter.  However, our study effectively 

collapses the region one dimensionally in time with no consideration of the spatial distribution of 

aftershocks. Surface wave triggering may occur in particular spatial domains in the epicentral 

region.  Possible differences in aftershock behavior based upon nearest neighbor relationships in 

time and space may exist but the proposed techniques are not yet suitable for attempting to 

partition the spatial clustering of aftershocks in the early hours after a large earthquake [Zaliapin 

et al., 2008].  In short, triggering may occur in a particular domain in the epicentral region, and 

the signal may be masked by the inclusion of data across the entire aftershock zone. 

Alternatively, transient increases may be explained by the clustering in time and space of a 

particular event unrelated to surface wave triggering. The current study cannot discriminate 

either possibility.   

 The parameters of the MOL were estimated using 100 days of stacked data, but when 

backwards extrapolated in the first day, the predicted values were found to be generally higher 
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than the observed values (Figure 19).  The stacking procedure could produce this observation, as 

the productivity at the Mc would be higher than expected by stacking.  Essentially, the MOL will 

over-predict the number rate at early times for a stacked sequence, so extrapolating the MOL is 

difficult because of the lack of a normalization procedure for stacked aftershock data.  One could 

choose to normalize by using a fraction of the number of the total as a weight, but then the 

choice seems arbitrary since many of the earthquakes are of different source dimensions and 

none of this is captured in such a scheme.  Normalizing by moment may be more useful, but this 

would potentially exaggerate differences in the reporting capabilities of networks that recorded 

the event.   

4.2. The Sumatra Andaman Sequence 

The Sumatra-Andaman results indicate some modulation (Figure 14).  However, the local 

network coverage was poor during the event, and subsequently, the Mc (5.0) is high on the first 

day.  If the Tohoku-Oki event is typical, then one would expect that thousands of aftershocks are 

missing from the catalog for the Sumatra-Andaman sequence.  In addition, the rupture length of 

the event was extended. Hence, a larger region must be analyzed for triggering.  But this presents 

a problem, since it delocalizes the focusing effect over a wider area and makes it more difficult 

to distinguish from the expected aftershock activity.   

4.3. The Tohoku-Oki Sequence 

 The Tohoku-Oki results share the same sources of error as the stacked sequence. However, 

because no stacking of the sequences was involved, inclusion of stacking related errors is 

unlikely.  The MOL parameters were estimated for 100 days of data and extrapolated backwards 

(Figure 18). The values for the Tohoku-Oki event appear reasonable.  However, a discrepancy 

between the predicted results and the observed rates is again observed.  The Tohoku-Oki event 
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produced large aftershocks, which may indicate a deviation away from the Omori law at short 

times.  In particular, intense aftershock activity may increase the expected productivity at short 

times and so parameter values obtained at later times may underestimate the initial intensity of 

aftershocks.  

4.4. Triggering Mechanisms 

A better understanding of the statistics of aftershocks helps inform our understanding of the 

physical mechanisms of earthquakes.  For example, magnitude-frequency relationships are 

observable manifestations of earthquake producing systems.  One can attempt to separate the 

rupture process from the triggering criteria that induces it.  Stress drop associated with slip has 

also been asserted as a proxy for aftershock productivity [Helmstetter et. al., 2005].  The 

underlying physical reason may be associated with differences in mechanical strength on the 

fault (e.g. asperities) and may change with time as the aftershock sequence evolves, but mapping 

such a situation is difficult at short times.   

Coulomb stress changes may be calculated using an earthquakes slip distribution and then 

the aftershock distribution are compared to the calculated field [King et al., 1994]. Specifically, 

stress shadows may influence the spatial extent of aftershock occurrence; however, such 

processes are typically modeled on the order of days after the mainshock [Felzer and Brodsky, 

2005].   Shadows are associated with static or quasi-static processes caused by the mainshock 

slip and are not considered relevant to the universal rate increases associated with dynamic 

triggering in the early hours after mainshock.  

Dynamic triggering may occur in part to rate and state frictional dependence [Dieterich, 

1994; Parsons, 2005].  Whether an aftershock is triggered or not may depend on the orientation 

of the potential aftershock region with respect to the mainshock, and the magnitude of the 
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loading.   Surface wave displacements may change the loading rapidly in a frictionally locked 

region which depending upon geometry, may promote or inhibit frictional failure.  If a region 

does not fail concurrently with surface wave passage, the region may be still susceptible to stress 

corrosion or other secondary processes induced by the surface wave.  Stress corrosion occurs 

when a change in loading accelerates crack growth which shortens the time to failure.  Fluids are 

known to reduce stresses on faults, and the movements of fluids in the subsurface due to 

perturbations by the mainshock and aftershocks may promote failure [Kanamori and Brodsky, 

2004]. However, research is still quantifying the timescales on which such processes act. Finally, 

a combination of all of these processes may occur to explain the aftershock seismicity patterns 

observed.  If studies such as ours can positively identify transient changes in aftershock rates, 

then we may be able to better understand a great earthquake in the context of a system of 

interacting events, rather than an isolated one. 
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CHAPTER 5 

CONCLUSIONS 

Identifying a rate increase during an aftershock sequence triggered by returning surface waves 

has not been attempted previously. The results presented in this study admit the possibility of the 

phenomenon.  Existing methods for identifying rate increases focus on removing aftershocks by 

declustering to establish a background rate.  Rates must be calculated from a sequence of 

aftershocks with an accurately estimated magnitude of completeness. Overestimating the Mc may 

mask structure in the data; however, underestimating may lead to incorrect conclusions.  

Complications arise because it is possible that the earthquakes being triggered fall below this 

completeness threshold.  Alternatively, even if triggering does occur above the completeness 

magnitude, it would have to generate enough activity to indicate statistically observable 

deviations from the assumed distribution. Transform time analyses based upon the MOL may not 

see small, transient rate increases since such methods examine cumulative departures from 

expected behavior.  

We have found that (1) the Sumatra data is inconclusive owing to its sparse nature, (2) the 

event stack shows possible evidence of rate change, (3) the Tohoku-Oki event also shows 

possible evidence of rate modulation.  The results cannot be regarded as conclusive, since in the 

absence of adequate synthetic sequences for comparison, the statistical significance is difficult to 

assess.  The large number of detections found at high magnitudes during the Tohoku-Oki 

sequence may indicate a break in the classical G-R behavior, which has been theorized by 

previous studies [Kagan and Houston, 2005].  Accurate synthetics should be able to reproduce 

this behavior.  But existing software does not generate the current clustering seen in the Tohoku-

Oki results without a-priori and somewhat ad hoc assumptions.  In addition, newer Bayesian 
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methods of MOL parameters estimation may prove more accurate, because the use of priors can 

possibly build-in the self-similar nature of earthquake occurrence [Holschneider et al., 2012]. 

But whether a change in formalism will inform our understanding of the aftershock process 

remains to be seen.  

 Future work may need to focus on a spatial and temporal investigation of triggering using the 

Tohoku-Oki catalog [Lengline et al., 2012]. Resolving the correlation between surface waves 

and aftershock triggering may be easier if a particular spatial domain is selected. In particular, 

since waveform data for the Tohoku-Oki event is available, the move out of the Rayleigh and 

Love waves with respect to stations in Japan should be more evident [e. g., Miyazawa, 2011]. 

Recent topological studies of aftershocks suggest more natural classifications that are statistically 

distinct [Zaliapin et. al., 2008].  Aftershocks tend to cluster, and if one could resolve the 

particular clustering, it would be interesting to compare clusters of aftershocks to surface wave 

activity since the clusters may show better correlation. Currently, the seismological community 

has no general consensus of the most appropriate synthetic model to use. Ultimately, assertions 

pertaining to seismic hazard must be supported by unambiguous evidence; otherwise their 

validity is called into question.  Unfortunately, lack of consensus makes comparing the results of 

publications using different simulation techniques difficult. Furthermore, comparisons of 

observed data to different synthetic models may yield different statistical significance that 

complicates evaluation of the associated hazard. We believe these problems demonstrate the 

need for synthetics that can accurately represent aftershock activity. 

 

 

 



35 

 

FIGURES 

 

 
Table S1. Event list 

Event Name Mw Date 

# Events Found  

1 day / Mc* 

# Events Found 

100 day Mc Radius (km) 

Depth 

(km) 

Guam 8 1993/08/08 08:34:24.93 27 125 4.7 200 59 

Japan-NE 8.1 1994/10/04 13:22:55.84 158 556 4.8 224.4 48 

West-Papua 8.2 1996/02/17 05:59:30.55 197 436 4.6 251.8 33 

NewIreland-Papua 8 2000/11/16 04:54:56.74 116 590 4.8 200 33 

Peru-Southern 8.4 2001/06/23 20:33:14.13 126 238 5.0 317 33 

Hokkaido 8.3 2003/09/25 19:50:06.36 31 213 4.9 282.5 27 

Sumatra-Andaman 9 2004/12/26 00:58:53.45 298 1287 4.8 632.5 30 

Tonga 8 2006/05/03 15:26:40.29 51 222 4.9 200 55 

Kuril Islands 8.3 2006/11/15 11:14:13.57 304 942 4.8 282.5 10 

Solomon Islands 8.1 2007/04/01 20:39:58.71 130 367 4.7 224.4 24 

Peru 8 2007/08/15 23:40:57.89 63 162 4.7 200 39 

Sumatra-Bengkulu 8.5 2007/09/12 11:10:26.83 64 406 4.8 355.7 34 

Samoa 8.1 2009/09/29 17:48:10.99 127 306 4.9 224.4 18 

Chile 8.8 2010/02/27 06:34:11.53 406 1673 4.7 502.4 23 

Japan 9 2011/03/11 05:46:24.12 665 3965 4.7 632.5 29 

Total     2763 / 981 11488 /       

Table S2. Event magnitude of completeness 

Event Name Mw Mc (1 day) Mc (100 day) 

Guam 8 5.0 4.7 

Japan-NE 8.1 5.1 4.8 

West-Papua 8.2 4.6 4.6 

NewIreland-Papua 8 5.2 4.7 

Peru-Southern 8.4 5.0 5.0 

Hokkaido 8.3 5.2 4.9 

Sumatra-Andaman 9 5.0 4.8 

Tonga 8 4.9 4.9 

Kuril Islands 8.3 4.9 4.8 

Solomon Islands 8.1 4.8 4.7 

Peru 8 5.0 4.7 

Sumatra-Bengkulu 8.5 4.8 4.8 

Samoa 8.1 5.0 4.9 

Chile 8.8 4.9 4.7 

Japan 9 5.1 4.7 

Mean 8.32  5.0 4.8 

Event Stack  

Estimated Mc 

 

5.0 4.8 
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Table S3. Modified Omori Law parameters for selected events 

 

Mc number * p  c k p-err c-err k-err b value 

          Sumatra-Andaman 5** 141/298 2.36 0.544 115.3 

   

1.1 

          1 day Stack 

         

 

4.9 1207 / 2763 1.04 0.115 518.77 0.16 0.048 28.44 

 

 

5** 980 / 2763 1.04 0.085 373.5 0.15 0.035 23.41 1.13 

 

5.1 791 / 2763 1.11 0.071 259.1 0.15 0.03 19.43 

 

          100 day Stack 

         

 

4.6 6326 / 11488 1.12 0.342 1357.36 0.01 0.028 55.06 

 

 

4.7** 5135 / 11488 1.13 0.279 1057.71 0.02 0.024 43.76 1.11 

 

4.8 3991 / 11488 1.15 0.234 806.67 0.02 0.022 35.2 

 

 

4.9 3033 / 11488 1.14 0.159 556.83 0.02 0.017 24.06 

 

 

5 2293 / 11488 1.15 0.122 397.52 0.02 0.015 17.97 

 

 

5.1 1777 / 11488 1.11 0.08 275.82 0.02 0.012 12.45 

 

          Tohoku-Oki 

1 day  

         

 

4.2 1021 / 2305 2.7 0.63492 1014.549 

   

0.57 

 

4.6** 682 / 2305 2.7 0.527 476.1 

   

0.94 

 

4.7 602 / 2305 2.7 0.49656 374.6059 

   

1.03 

          Tohoku-Oki  

100 day 

         

 

4.6** 1271 / 37882 1.21 0.11 221.63 0.03 0.016 12.6 1.01 

* ( number at Mc / total aftershocks) 

** (used in final results) 
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Figure 1.  Global displacement wavefield of the December 26, 2004 Sumatra-Andaman Islands 

Earthquake (Mw=9.0).  The Rayleigh surface waves are indicated by R1-R4. The magnitude 7.2 

aftershock is indicated on the figure at 202 minutes. 

 

Figure 2.  Global displacement wavefield of the March 11, 2011 Tohoku-Oki Earthquake (Mw=9.0).  

The Rayleigh surface waves are indicated by R1-R4 [Courtesy Rick Aster, New Mexico Tech]. 
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Figure 3. Aftershock zone (24 hour) of the 2004/12/26 M9.0 Sumatra-Andaman Islands Earthquake.  

Main shock location is given by a red and white beach ball. The black circle indicates the empirically 

determined Kagan [2002] aftershock region. The modified aftershock zone is shown in blue due to the 

long rupture length. 
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Figure 4. Aftershock zone (24 hour) of the 2011/03/11 M9.0 Tohoku-Oki Earthquake.  Main shock 

location is given by a black star. The black circle indicates the empirically determined Kagan [2002] 

aftershock region. The modified aftershock zone is given by the blue longitude/latitude bounding box:  

140E-145E, and 35N-40N. 
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Figure 5.  Event stack depth vs. distance from mainshock. (a) Depth vs. distance from mainshock of all 1 

day stacked events (b) Depth histogram of all 1 day stacked events   (c) Depth vs. distance from 

mainshock of all 100 day stacked events (d) Depth histogram of all 100 day stacked events.  Horizontal 

and vertical blue lines in (a, c) are mean depth and mean distance from mainshock respectively   
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Figure 6.  1 Day Event stack classical Gutenberg-Richter frequency-magnitude plot. Cumulative (triangle) 

and noncumulative (diamond) number of aftershocks versus magnitude for events listed in the catalog 

starting right after the mainshock for a 1 day time interval.  The dotted red line marks the maximum 

likelihood fit for the G-R frequency-magnitude relationship.  The left red x marks the Mc and start of the 

fit data. The right red x marks the end of the data used for the fit. 
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Figure 7.  Variation of b-value with Mc for the 1 Day Event stack.  The black dashed line corresponds to a 

b-value of 1.    
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Figure 8. Comb plot of aftershocks. The R2, R4 windows are blue, red, respectively. (a) 1 day stack with 

only the events at Mc (b) 1 day all events (c) 100 day stack with only the events at Mc  (d) 100 day all 

events   

 

 

 

 

 

  

a 

d b 

c 
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Figure 9.  1 Day Event Stack at Mc of 5.0. (a) Cumulative MOL predicted event numbers vs. observed (b) 

Log-Log transformed cumulative MOL predicted event numbers vs. observed to emphasize differences at 

early times. R2 and R4 shown as blue and red pairs, respectively. (c)  MOL fit plot showing fit versus 

observed. R2 and R4 shown as blue and red pairs, respectively. 
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Figure 10.  1 Day Event stack rate calculations for the 15 events.  (a) The black circles are the 1 day 

events. The Mc value (5.0) is shown as a horizontal blue line.  Individual sequences had similar Mc. (b) 

The rate of aftershocks per day for a sliding window of 1800s. The black circles are the estimated rates. 

(c) The moment rate change is shown in black using all events.  The black circles are the estimated rates. 

The blue line and associated circles uses only events at or below Mw 7.5 in order to lessen the saturation 

effect of large magnitude events. 



46 

 

 

 

Figure 11.  100 Day Event stack classical Gutenberg-Richter frequency-magnitude plot. Cumulative 

(triangle) and noncumulative (diamond) number of aftershocks versus magnitude for events listed in the 

catalog starting right after the mainshock for a 100 day time interval.  The dotted red line marks the 

maximum likelihood fit for the G-R frequency-magnitude relationship.  The left red x marks the Mc and 

start of the fit data. The right red x marks the end of the data used for the fit. 
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Figure 12.  100 Day Event Stack at Mc=4.7.  (a) Plot of cumulative aftershocks from a modified Omori 

law fit using 5135 events. (b) Transform time plot of cumulative aftershocks versus observed. R2 and R4 

shown as blue and red pairs, respectively. (c) MOL fit versus observed data. R2 and R4 shown as blue and 

red pairs, respectively. 
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Figure 13.  100 Day Event Stack at Mc=5.0. (a)  Plot of cumulative aftershocks from a modified Omori 

law fit using 2293 events. (b)  Transform time plot of cumulative aftershocks versus observed. R2 and R4 

shown as blue and red pairs, respectively. (c) MOL fit versus observed data. R2 and R4 shown as blue and 

red pairs, respectively. 
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Figure 14.  1 day rate calculations for the Sumatra event. (a) The black circles are the 1 day events. The 

Mc value of 5.0 is shown as a horizontal blue line at which 141 of 298 aftershocks were above this value. 

(b) The black circles are the estimated rates. The rate of aftershocks per day for a sliding window of 

1800s is plotted. The window size is estimated after the data is cut at the Mc of 5.0. The absolute rates are 

estimates; however, it is the correlation of arrival times with relative rate changes which is important for 

this study. The gaps indicate a lack of data during those time windows. (c) The moment rate change is 

shown using the same technique as above. 
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Figure 15. Tohoku-Oki 1 Day, 2305 events. (a) Magnitude histogram showing marked fluctuation from 

M2.6-M4.6.   Blue bars are events below the Mc. Red bars are aftershocks at or above the Mc of 4.7. The 

red line is placed at the magnitude of 4.7 for reference. (b) G-R plot. Cumulative (triangle) and 

noncumulative (diamond) number of aftershocks versus magnitude for a 1 day time interval.  The dotted 

red line marks the maximum likelihood fit for the G-R frequency-magnitude relationship.  The left red x 

marks the Mc and start of the fit data. The right red x marks the end of the data used for the fit. 
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Figure 16.  Tohoku-Oki 1 Day. Mc of 4.7, 602 events. MOL fit versus observed data. R2 and R4 shown as 

blue and red pairs, respectively 

 

  



52 

 

 

Figure 17. 1 day rate calculations for the Tohoku-Oki event. (a) The black circles are the 1 day events. 

The Mc of 4.7 is shown as a horizontal blue line at which 377 of 2303 aftershocks were above this value. 

(b) The black circles are the estimated rates. The rate of aftershocks per day for a sliding window of 

1800s. The gaps indicate a lack of data during those time windows. (c) The moment rate change is shown 

using the same technique as above.  
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Figure 18. Modified Omori law (MOL) fits 24 hours from the mainshock for the Tohoku-Oki event. The 

100 day fit was extrapolated for 1 day. The MOL fit utilized 602 events at a Mc of 4.7.  Predicted 

parameters are p=1.21, c=0.088, and k=178.76.  (a)  Predicted Omori law rate from 100 day MOL fit with 

observed rates. The black line indicates the MOL prediction.  The red line indicates the observed forward 

moving average rate and the blue line indicates a simple fixed time window rate.  The magenta and cyan 

lines indicate the R2 and R4 arrivals. (b)  Cumulative predicated number of aftershocks for the 

aforementioned MOL parameters versus the observed cumulative number. 

R2 R4 
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Figure 19. Modified Omori law (MOL) fits for the 15 event stack. The 100 day fit using 2293 events at a 

Mc of 5.0 was extrapolated to 1 day.  Obtained parameters are p=1.14, c=0.122, and k=397.52.  (a)  

Predicted Omori law rate from 100 day MOL fit versus observed 1 day event rates. The black line 

indicates the MOL prediction.  The red line indicates the observed forward moving average rate and the 

blue line indicates a simple fixed time window rate.  The magenta and cyan lines indicate the R2 and R4 

arrivals. (b)  Cumulative predicated number of aftershocks for the aforementioned MOL parameters 

versus the observed cumulative number.  

 

 

 

 

R2 R4 
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Figure 20.  1 Day Event Stack Rate Comparison at Mc=5.0. (a)  Plot of event rate for 3 different time 

windows (15,30,45 minutes). The R2 and R4 arrivals are indicated.  (b)  Plot of moment rate for the same 

time windows used in (a).  

 

 

 

 

a 

b 

R2 R4 
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