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ABSTRACT

Satellite refueling can extend the lifetime of satellite constellations. Peer-to-peer satellite
refueling in particular has the potential to make the most efficient use of the fuel contained in
the constellation by redistributing it as on a need-to basis. In this paper we present an alternative
implementation of P2P refueling, namely pairing up fuel sufficient satellites with fuel deficient
satellites so that they can refuel each other and guarantee that each satellite has more than a
certain baseline amount of fuel. To solve this problem we make use of the auction algorithm,
which is implemented in a distributed context. Asynchronous bids have been used to illustrate
the robustness of the algorithm.

1.0 Introduction

As both government and private groups seek to enhance performance and reduce costs of space systems,
satellite constellations are emerging as an attractive alternative to large, multi-million dollar satellites. Their
inherent distributed nature provides two advantages: first, a measure of robustness because functions can be
implemented redundantly on more than one satellite, and second the ability–in case of failure–of replacing
only the satellite that failed, instead of the entire constellation. Moreover, in addition to being able to
perform tasks traditionally assigned to a single satellite, such as internet routing,1 satellite constellations
can be used in novel ways to solve otherwise difficult problems, such as altimetry2 or missile warning and
defense.3

With this new paradigm comes a whole slew of challenges, including control, deployment, and initial-
ization. Of particular interest both for civilian and for military applications is the refueling problem. It is
clear that the ability to refuel a satellite can extend its usefulness. However, in the case of a satellite designed
to perform many complex functions, failure in one of the functions can cause the entire satellite to become
unusable. In this case, replacement can be very costly, and servicing equally so. Therefore, the usefulness of
refueling is limited, since every satellite has a predictedlife-cycle, and can at worst be supplied with enough
fuel on launch to see it through that time period. By contrast, in the case of a constellation, individual
satellites may fail or become obsolete, but they can be replaced without the need to decommission the en-
tire constellation. Since a constellation has potentiallyunlimited usefulness (subject to periodic upgrades),
refueling becomes essential.
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The current work on peer-to-peer satellite refueling is mainly found in Refs. 4–9. Therein, the authors
addressed optimal scheduling for external refueling,4 and later peer-to-peer refueling within a constella-
tion.5, 6, 9 The latter three papers focused on equalizing the fuel distribution within the constellation by
exchanging fuel between the satellites in the constellation. The goal was to minimize the 1-norm of the
deviation of the satellites’ fuel content from the constellation average fuel. In Refs. 7,8 the authors showed
that P2P refueling can be more fuel-efficient than a single vehicle strategy for refueling a large number of
satellites.

More recently, the authors of the present paper presented the idea of using an auction algorithm to
match satellites in a peer-to-peer refueling scheme whose goal is to guarantee that all satellites have more
than a certain baseline amount of fuel, which may be different for each satellite.10 The auction algorithm
is advantageous for two reasons when solving the satellite refueling problem: firstly, it can be implemented
in a decentralized framework, and secondly it is robust to asynchronous bids, which can occur as a result
of poor communication, temporary failures, or other problems. In this paper, we verify these attractive
properties of auctions via simulation results.

Section 2.0 briefly reviews the formulation of the peer-to-peer (P2P) refueling problem as presented
in Ref. 10. Section 3.0 presents an asynchronous formulation of the auction algorithm. It is a simplified
form the algorithm presented in Ref. 11 which nonetheless issufficient to model disturbances likely to arise
in the space environment. Section 4.0 presents the simulation results for a parallel implementation of the
algorithm, both with and without communication problems being modeled. Special attention is being paid
to the effect of such communication problems on the speed of convergence of the algorithm. Finally, Section
5.0 summarizes our results.

2.0 The Peer-to-peer Assignment Problem

The formulation we will be using in this paper was put forwardin Ref. 10 as a more realistic alternative
to the formulation in Refs. 5,6,9. We present the main idea again below, without including the details of the
derivation, which can be found elsewhere.10

Consider a satellite constellationC consisting ofN satellitess1, s2, . . . , sN . We will call the satellitesk

fuel sufficientif

f−
k > f

k
, (1)

wheref−
k denotes the fuel content of the satellite prior to refueling, andf

k
denotes the minimum fuel

required for the satellite to be operational until the next external refueling. Otherwise, the satellite will be
called fuel deficient. To differentiate fuel deficient satellites from fuel sufficient satellites, we define the
index set of fuel deficient satellites, indexed byi, as the setD = {i : i = 1, 2, . . . ,m}, and the index set of
fuel sufficient satellites, indexed byj as the setS = {j : j = 1, 2, . . . , n}. In what follows, the subscripti
will always denote a fuel deficient satellite, and the subscript j will always denote a fuel sufficient satellite.

The peer-to-peer refueling problem consists of finding a refueling strategy that will ensure, for allsk ∈ C,
that

f+
k ≥ f

k
, (2)

while minimizing fuel consumption during the ensuing rendezvous. Heref+
k denotes the fuel content of
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satellitesk after the refueling transaction is completeda.
The setsD andS induce a natural bi-partition on the setC. Given the index setsD andS we may define

a bi-partite graphG = {D ∪ S, E} over C, where the set of edgesE = {(i, j) : i ∈ D, j ∈ S} in the
graph has as vertices pairs of fuel sufficient and fuel deficient satellites. If there are no other operational
constraints,G is a complete bipartite graph.

For each rendezvous between a fuel sufficient satellite and afuel deficient satellite, we will assume that
only one isactive, namely only one initiates the rendezvous, and returns to its original slot after refueling.
The other satellite remainspassiveduring the fuel transaction. We can then partitionE into three subsets as
follows

A = {(i, j) ∈ E : i is active}, (3a)

P = {(i, j) ∈ E : i is passive}, (3b)

U = {(i, j) ∈ E : (i, j) is infeasible}, (3c)

where an infeasible pair is defined as one for which neither ofthe two satellites can be active. Note that
A ∩ P 6= ∅ to allow for the case when both satellitesi andj may be active. Define the sets

U1 = {(i, j) : pi
ij > f−

i } (4)

U2 = {(i, j) : pj
ij > f−

j } (5)

U3 = {(i, j) : f−
i + f−

j − cij < f
i
+ f

j
}, (6)

wherepi
ij is the fuel for the (active) satellitei to perform the one-way trip to the (passive) satellitej, and

similarly for pj
ij , while cij is the minimum amount of fuel required to perform the rendezvous between

satellitesi andj. Details for the calculation of these quantities is given inRef. 10. We simply note that the
set of infeasible pairs in (3c) is then given byU =

⋃3
k=1 Uk. Moreover it can be shown that the quantities

cij , p
i
ij , p

i
ji, etc. can be computed explicitly in terms of the problem data as follows:10

cij = min{pi
ij + pi

ji, p
j
ji + pj

ij}, (7)

pi
ij = (mi + f−

i )
(

1 − e−∆V i
ij/σi

)

, (8)

pi
ji = (mi + f

i
)
(

1 − e−∆V i
ji/σi

)

e∆V i
ji/σi , (9)

pj
ji = (mj + f−

j )
(

1 − e−∆V j
ji/σj

)

, (10)

pj
ij =







































(mj + f−
j − pj

ji − f̄i + f−
i )

(

1 − e−∆V j
ij/σj

)

,

if g∗ji = f̄i − f−
i ,

(mj + f
j
)
(

1 − e−∆V j
ij/σj

)

e∆V j
ij/σj ,

if g∗ji = f−
j − f

j
− pj

ij,

(11)

aA refueling transaction includes the forward and return orbital transfers, as well as the actual exchange of fuel between the two
satellites.
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where∆V i
ij denotes the velocity impulse required for satellitei to move from its orbital slot to that of

satellitej, and similarly for∆V i
ji,∆V j

ji, and∆V j
ij. The parameterσi is given byσi = g0Ispi, with Ispi

being the specific impulse of the satellite andg0 the acceleration at the Earth’s surface. Hereg∗ji indicates
the optimal amount of fuel to transfer from satellitej to satellitei upon rendezvous. It is chosen based on
the capacity of the fuel deficient satellite: if satellitei cannot accept all the fuel satellitej can transfer to it,
given byg∗ji = f−

j − f
j
− pj

ij, satellitej will only transferg∗ji = f̄i − f−
i .

With the above definitions, we can create a subgraphGf = {D ∪S, Ef} of G called thefeasible constel-
lation graphthat consists of the same vertices asG but only the edgesEf of G such that(i, j) /∈ U . Clearly,
Ef = A ∪ P. Now, we can weigh each edge(i, j) ∈ Ef by −cij , and defineN (i) = {j ∈ S : (i, j) ∈ Ef}
as the set of fuel sufficient satellites that can perform a fuel transaction withi ∈ D. Since we only allow one
fuel exchange per satellite, the final result of a P2P refueling strategy is a matchingM ⊂ Ef such that the
total fuel incurred during the associated rendezvous of thesatellite pairs inM is minimized. By matching
here we mean a subset of edges inEf such that no two edges share the same vertex. Our problem is then
to find the matching that maximizes the weights of the edges contained in it, hence minimizing the total
fuel cost, subject to the constraint that each fuel-deficient satellite is matched to exactly one fuel-sufficient
satellite.

The problem of finding the optimal matchingM∗ can then be formulated as a integer program over the
bi-partite graphGf as follows

Maximize −
m

∑

i=1

n
∑

j=1

cijxij (12)

Subject to:
n

∑

j=1

xij = 1, ∀ i ∈ D, (13)

m
∑

i=1

xij ≤ 1, ∀ j ∈ S, (14)

xij = 1 =⇒ j ∈ N (i), i ∈ D. (15)

xij ∈ {0, 1}, ∀ i, j. (16)

Inequality (13) enforces the condition that every fuel deficient satellite must be paired with exactly one
fuel sufficient satellite. Inequality (14) enforces the condition that every fuel sufficient satellite can be paired
with at most one fuel deficient satellite. Equation (15) simply states that all pairs considered are feasible.
Note that for a problem to be feasible, necessarilyn ≥ m.

The integrality constraint onxij is not needed since it is known that assignment problems always have
integral solutions.12 In other words, one may replace the condition (16) byxij ≥ 0 without loss of generality,
and be left with a linear program rather than an integer program to solve.

3.0 The Asynchronous Auction Algorithm

Problems of the form presented in (12)-(16) are known asassignment problems, where persons in one
set must be assigned to objects in another set on a one-to-onebasis. If the number of persons is equal to
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the number of objects, the problem is termedsymmetric. Otherwise, it is termedasymmetric. The P2P
refueling problem is an asymmetric assignment problem since, in general,m 6= n. The assignment problem
is very well known in the literature, and it can be solved either via the standard simplex algorithm,12 or via
more specialized methods such as Kuhn’s Hungarian Method (for symmetric problems) that take advantage
of the special structure of the problem. Because of their robustness to asynchronous bids when properly
formulated, we are especially interested in auction algorithms.11

Auction algorithms solve the assignment problem consisting of m persons seeking to be assigned ton
objects one a one-to-one basis (assumingm ≤ n) in which each person bids for the object of its choice,
and the objects choose the best suited person from the bidders. Subject to certain conditions on the bids,
these algorithms solve the assignment problem efficiently and within arbitrarily given optimality bounds.
A thorough discussion of auction algorithms and their applications to transportation problems and network
flow problems is given in Ref. 13. The discussion in the latterpaper centers around the serial implementation
of the auction algorithm. In the current paper, however, we present a parallel and more robust version of the
auction algorithm. This algorithm is a simplified version ofa general asynchronous distributed algorithm
that is known to have excellent performance.11

3.1. Overview of the Algorithm

Consider a set ofm personsD = {i : i = 1, . . . ,m} (in our case the fuel deficient satellites) whose
elements are to be assigned to those of a set ofn objectsS = {j : j = 1, . . . , n} (in our case the fuel
sufficient satellites) on a one-to-one basis, wherem ≤ n, such that(i, j) ∈ Ef , whereEf denotes the set
of all allowable pairs. For every personi the setN (i) consists, as above, of all objects that personi can be
assigned to. For each objectj ∈ N (i) there is abenefitaij for matching personi with objectj (in our case
the benefit is−cij). The objective is to find the person/object pairs(i, ji) such that all persons are assigned
to exactly one object and that the total benefit

∑

i∈D aiji
is maximized among all possible person/object

pairs.
The standard synchronous auction algorithm works by assigning a price πj to every object, with the

price potentially changing at each iteration, and then having each person bid on the object that it finds most
desirable byvalue, which is defined as the difference between benefit and price.MA personi bids on an
objectji if

aiji
− πji

= max
j∈N (i)

{aij − πj}, (17)

which is called thecomplementary slacknessor CS condition. Objects will then take the bids they receive
from each person, select the highest bidder, and be assignedto that person until a better bid comes along.
When all persons are assigned, the algorithm terminates.

The brief overview given above is a naive implementation of the algorithm. Because of the tight CS
condition, the algorithm may cycle. In addition, it assumesperfect information knowledge on the part
of each satellite regarding the price vectorπ = [π1, π2, . . . , πn]. In order to prevent cycling and model
communication problems, we discuss next the more generalizedasynchronous auction algorithmwhich was
first presented in Ref. 11. The algorithm presented therein is very general, and we simplify the discussion
in our presentation. Specifically, we assume that all satellites that are unassigned are able to bid every time
a bid can be made.
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We assume that time is discretized by bids: events (changes in the state of the assignments) occur only at
the end of the bidding and assignment calculations. The calculations themselves are referred to as iterations.
At the beginning of an iteration, we denote byV(t) ⊆ D the set of persons that are unassigned at timet.
We assume that all persons inV(t) are capable of bidding at each iteration, but we do not assumethat the
members ofV(t) have up-to-date pricing information. Instead, we denote the pricing information at timet
asπ(t), a vector of lengthn, whereπj(t) is the price associated with objectj ∈ S at timet, and we assume
that each personi ∈ V(t) is aware of a price vectorπ(τi(t)) for someτi(t) ≤ t which has the property that
τi(t) → ∞ ast → ∞. Finally, we definerj(t) as the index of the person that objectj is assigned to at time
t.

It is a standard result in linear programming12 that an optimal assignment satisfies the CS condition.
However, as mentioned earlier, strict application of the CScondition in the auction algorithm can lead to
cycling,13 so a relaxation of the CS condition, namely theε-complementary slacknesscondition, orε-CS
condition for short, is enforced. Specifically, for each pair (i, ji) in an assignment at timet, the following
holds:11

aiji
− πji

(t) ≥ max
j∈N (i)

{aij − πj(t)} − ε, (18)

whereε > 0. We now state the algorithm, in an exposition that closely follows that of Ref. 11.

INITIALIZATION : Sett = 0. At the beginning of the algorithm, no persons are assigned to any objects, so
V(t) = 0, andπ(0) = 0. At each subsequent iteration, all assigned pairs satisfy (18).

TERMINATION : The algorithm terminates whenV(t) = ∅.

BIDDING : Each personi ∈ V(t) calculates the maximum value among all objectsj ∈ N (i),

vi(t) = max
j∈N (i)

{aij − πj(τi(t))}, (19)

an object that yields that maximum value,

ji(t) = arg max
j∈N (i)

{aij − πj(τi(t))}, (20)

the second best value among all objectsj ∈ N (i),

wi(t) = max
j∈N (i)

j 6=ji(t)

{aij − πj(τi(t))}, (21)

and a bid for objectji

βi(t) = aiji(t) − wi(t) + ε. (22)

Each person then submits their bid to the appropriate object. If ji(t) is the only object inN (i), then we
definewi(t) = −∞, and subsequentlyβi(t) = +∞.
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ASSIGNMENT: Each object receives bids from a (possibly empty) set of personsBj(t) = {i ∈ V(t) :
ji(t) = j}. If Bj(t) 6= ∅, each objectj determines the highest bid

bi(t) = max
i∈Bj(t)

βi(t), (23)

and a person submitting such a bid,

ij(t) = arg max
i∈Bj(t)

βi(t). (24)

Objectj then updates the pair(πj(t), rj(t)) according to the following rule:

(πj(t + 1), rj(t + 1)) =







(bj(t), ij(t)) if bj(t) ≥ πj(t) + ε

(πj(t), rj(t)) otherwise.
(25)

Since the above algorithm is a special case of the totally asynchronous algorithm discussed in Ref. 11,
the results shown therein hold. In particular:

1. The algorithm is guaranteed to terminate if the problem isfeasible.

2. The final assignment benefit is guaranteed to be withinmε of the optimal assignment benefit, where
m = |D|.

The only issue remaining is that of feasibility. Sadly, there is noa priori guarantee that a given problem
is feasible. If the problem is infeasible and there are no methods for detecting it, the algorithm will go on
indefinitely, since the setV(t) will never be empty. Fortunately, several ways of detectinginfeasibility exist,
all of which are easy to implement assumingsomeforeknowledge by the satellites of the fuel capacity of
the whole constellation. For example, there is a minimum bound onvi(t) for any feasible problem given by

vi(t) ≥ −(2n − 1)C − (n − 1)ε, (26)

for all i ∈ D and for allt ≥ 0, in case the algorithm is initialized withπj(0) = 0, whereC = max(i,j)∈Ef
|aij |.

Since for an infeasible problem, at least one object will receive an infinite number of bids, at least onevi(t)
will drop below this lower bound. SubstitutingC with the total fuel capacity of the constellation

∑

k f̄k

(wheref̄k is the maximum fuel capacity of thek-th satellite in constellation), we have a condition that can
easily be assumed knowna priori by each satellite and moreover is an upper bound onC, since no feasible
cost can be greater than the total fuel content of the constellation.

4.0 Parallel and Asynchronous Implementation

In the above presentation, we assumed that all satellites inV(t) bid at every iteration. Borrowing ter-
minology from the theory of nonlinear numerical optimization,14 this is known as the Jacobi implementa-
tion. The serial algorithm, where onlyoneof the satellites inV(t) bids at any given time, is said to be of
Gauss-Seidel type. Intermediate versions, where a subset of V(t) bids each time, are known as block-Gauss-
Seidel.11, 14
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The particular instance of the asynchronous auction algorithm described above is not the most general
asynchronous auction algorithm. The version in Ref. 11 allows for only subsets ofV(t) to bid (in other
words, it allows block-Gauss-Seidel implementations), aswell as for the price data for computing the max-
imum value and that for computing the second maximum value tobe different (sayτi1(t) andτi2(t)).

For the purposes of validating the use of the auction algorithm, we used a Jacobi implementation, where
every unassigned person bids at every iteration. The main variable was the updating of the prices: in order
to simulate slow or defective communications, the algorithm stores the time history of the price vectorπ(t).
At each step, there is a fixed probability that every satellite will get the latest vector, implemented in the
form of a random number with a threshold. If the random numberis below the threshold, person (satellite)
i obtains the latest price vector. If it is above the threshold, personi keeps its current price vector. This
guarantees thatτi(t) → ∞ ast → ∞, while simulating random communications problems amongstthe
satellites. We also note that with probability zero, no updating happens for the prices, and the algorithm will
never terminate, while with probability one, we have a perfect information parallel algorithm.

It is implicit in our implementation that there is one (or more) satellites that are organizing the data
and time the request for bids. This satellite is the one that generates the events by which we discretized
time in Section 3.0, and has the additional job of keeping track of how many objects have been assigned
to a person. Since once an object is assigned, it remains assigned, this “central” satellite will declare the
algorithm terminated whenm objects are assigned.

4.1. Validation of the Asynchronous Algorithm

In order to validate the proposed algorithm, we compared it to the problem we solved in Ref. 10, which
consisted of twenty evenly spaced satellites in the same circular orbit. The fuel content data for the constel-
lation is reproduced in Table 1. The matching produced by theGauss-Seidel type algorithm used in Ref. 10
is shown in Figure 1. The algorithm took 108 iterations to converge to a near optimal solution with a cost
of 107.565 units of fuel, where the units are normalized as described in Ref. 10. The relaxation factor was
chosen asε = 1/(|D|+1), which guarantees that the matching will be within 1 fuel unit of the optimal cost.

Table 1. Satellite fuel specifics for the constellation in Ref.10

Satellite f−
k f

k
Satellite f−

k f
k

1 12 30 11 44 30

2 9 30 12 75 30

3 26 30 13 52 30

4 0 30 14 97 30

5 23 30 15 80 30

6 29 30 16 58 30

7 29 30 17 82 30

8 23 30 18 48 30

9 13 30 19 60 30

10 14 30 20 95 30
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Figure 1. The constellation graph for the example from Ref. 10. The bold lines indicate the final optimal pairings. The
thin lines indicate all feasible pairs. The arrows point from the active to the passive satellite. Serial implementation of the
algorithm. No information loss.

Running the code in parallel yielded a bit of a surprise: after taking only 40 iterations, the code converged
to a different matching. As shown in Figure 2, the satellitesassigned to satellites 9 and 10 were switched,
as were those for satellites 6 and 7. This matching had a cost of 107.5772, which, though a little higher
than that of the first algorithm, is still well within the tolerance guaranteed by the algorithm. Moreover,
running the asynchronous algorithm with different randomly generated rates of update (from 10% to 90%
probability of data loss) yielded additional near-optimalmatching matchings, all within tolerance. The best
matching obtained was the one shown in Figure 3, with only theassignments for 9 and 10 being switched
relative to the Gauss-Seidel type solution. The cost of thismatching was 107.5523, and the matching was
obtained after 48 iterations, with a price update probability of 0.9.

In addition to confirming that the auction algorithm converges reliably to a near-optimum solution, the
above tests show that there is noa priori matching that the algorithm will converge to, and that randomization
of the price update laws may affect the final result. However,the optimal cost will always be withinmε of
the optimal one. This is evident in our results since all the costs were within 0.1 fuel units of each other,
which is significantly less than the 1 fuel unit of tolerance guaranteed by the theory. This is significant from
a practical standpoint, since the algorithm is very fast even for a medium-sized constellation of 20 satellites:
it can be run several times, simulating communication problems even if there are none, and then choose
the best matching from those calculated. It is even possiblethat some matchings may have advantages
extraneous to the cost (such as proximity) that will make it useful to know alternative matchings that are
guaranteed to be optimal within a given fuel tolerance.
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Figure 2. The constellation graph with the matching from theparallel version of the algorithm.

4.2. Performance Results of Asynchronous Bids

To get a better idea of the response of the auction algorithm to asynchronous bids, we ran two separate tests.
First, we ran a test with the same base case as above and averaged the number of iterations for 1000 runs of
the algorithm at0.1, 0.2, . . . , 0.9 probability of price vector update. Mathematically, consider the following
definition ofτi(t):

τi(t + 1) =







t + 1 if X(t) ≤ Pi(t),

τi(t) if X(t) > Pi(t),
(27)

whereX(t) is a uniformly distributed random variable on[0, 1], andPi(t) is the probability that satellitei
will get the new price vectorπ(t + 1). We ran the algorithm on the problem using the same probability for
all satellites,Pi(t) = P for P = {0.1, . . . , 1.0} and for 1000 runs at each probability level. The average
results are given in Table 2.

Table 2. Average number of iterations to termination with respect to update probability.

Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Iterations 222.2 152.4 111.9 86.4 70.7 60.5 53.2 47.7 44.0

We note that even in a situation where there is only a ten percent probability that updated price data is
received, the algorithm, on average, runs only four and a half times slower than the fully parallel algorithm.
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Figure 3. The constellation graph with the best matching obtained with the asynchronous parallel version of the algorithm.

This is very good performance, but may be skewed by the fact that we modeled informationlossrather than
informationdelay. In other words, there is no situation whereτi(t + 1) = τi(t − q) for some integerq ≥ 1.
This means that when the satellite receives an update, the update is the newest price vector,π(t). The effects
of receiving an older price vector, sayπ(t − q) for someq ≥ 1, are not included in the current simulation.

In order to check that this promising performance is not an aberration, we ran three more examples of
randomly generated constellations. The configuration of the constellations was identical to the previous
one, but the fuel content for each satellite was randomly chosen so that each satellite had a 0.4 probability
of being fuel deficient. Mathematically, we the fuel contentwas determined as follows:

f−
k = Y (k)f̄k, f

k
= 0.4f̄k (28)

whereY (k) is a uniformly distributed random variable on[0, 1], andf̄k = 100 units of fuel.
The results for the run are given in Table 3.

Table 3. Average number of iterations to termination with respect to update probability.

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Constellation 1 37.4 28.2 22.4 18.9 16.2 14.5 13.5 12.8 12.3 12.0

Constellation 2 18.1 13.4 10.4 8.1 7.0 6.0 5.2 4.8 4.3 4.0

Constellation 3 6.5 5.0 4.2 3.5 3.0 2.6 2.4 2.2 2.1 2.0
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Here again we note the same pattern as before, where lower update probability results in longer running
times, but the increase is not excessive, even for low updateprobabilities.

Finally, to illustrate the behavior of the algorithm over a more complete range of probabilities, we ran
one randomly generated constellation at 1000 runs for probability P on the interval[0.1, 1]. The results are
presented in Figure 4, where it is clear that the run time increases as the probability of update goes to zero.
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Figure 4. The number of iterations compared with the probability of each element of the setD having updated price
information after each iteration.

As can be seen from these results, there is good indication that the the auction algorithm is very well
suited for this particular application, since even high rates of data loss do not detract from relatively fast
convergence. However, it must be noted that several instances of randomly generated constellations fell
prey to price wars. While this problem can be alleviated by the use of forward-reverse auctions, it is not
entirely avoided. In addition, theε-scaling method,13 the preferred method of avoiding price wars, is not
readily applicable to asymmetric auctions as far as we know.However, every time the straightforward
auction algorithm terminated within a reasonable time, therunning times associated with the asynchronous
algorithm were of the same order of magnitude even under unfavorable communication conditions.
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5.0 Summary

This paper presents simulation results to validate the robustness of the auction algorithm to solve the
P2P refueling problem. The purpose of the P2P problem is to yield refueling transfer and pairs that ensure
that each satellite has a certain minimum level of fuel that will ideally allow it to remain operational until
the next outside refueling. The simulation results show that the auction algorithm displays two important
properties:

1. It terminates with fewer iterations in a distributed context.

2. Poor price information updating has a benign effect on convergence. Specifically, convergence rate
degrades gracefully as the probability of out-of-date price information increases.

The ability of the algorithm to perform well even under poor communication circumstances is one of
its main attractive characteristics. The main concern is termination time, since it is guaranteed that when
it terminates, the result will be within the desired optimality tolerance. There is good indication, however,
that this is not an issue, since the asynchronous implementation converges quickly, despite the occasional
occurrence of price wars.
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