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ABSTRACT

Satellite refueling can extend the lifetime of satellitestllations. Peer-to-peer satellite
refueling in particular has the potential to make the maitieht use of the fuel contained in
the constellation by redistributing it as on a need-to basithis paper we present an alternative
implementation of P2P refueling, namely pairing up fuefisiégnt satellites with fuel deficient
satellites so that they can refuel each other and guaramé¢esach satellite has more than a
certain baseline amount of fuel. To solve this problem weenade of the auction algorithm,
which is implemented in a distributed context. Asynchranbids have been used to illustrate
the robustness of the algorithm.

1.0 Introduction

As both government and private groups seek to enhance penfime and reduce costs of space systems,
satellite constellations are emerging as an attractiegrative to large, multi-million dollar satellites. Their
inherent distributed nature provides two advantages; éinsteasure of robustness because functions can be
implemented redundantly on more than one satellite, anohskethe ability—in case of failure—of replacing
only the satellite that failed, instead of the entire coietien. Moreover, in addition to being able to
perform tasks traditionally assigned to a single satelitech as internet routingsatellite constellations
can be used in novel ways to solve otherwise difficult prolslesuch as altimetAyor missile warning and
defense

With this new paradigm comes a whole slew of challengesudiab control, deployment, and initial-
ization. Of particular interest both for civilian and for litary applications is the refueling problem. It is
clear that the ability to refuel a satellite can extend iefukess. However, in the case of a satellite designed
to perform many complex functions, failure in one of the fiimies can cause the entire satellite to become
unusable. In this case, replacement can be very costly,amiting equally so. Therefore, the usefulness of
refueling is limited, since every satellite has a predidtedcycle, and can at worst be supplied with enough
fuel on launch to see it through that time period. By confrasthe case of a constellation, individual
satellites may fail or become obsolete, but they can be ceglavithout the need to decommission the en-
tire constellation. Since a constellation has potentiaitiimited usefulness (subject to periodic upgrades),
refueling becomes essential.
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The current work on peer-to-peer satellite refueling isniyafiound in Refs. 4-9. Therein, the authors
addressed optimal scheduling for external refuefirand later peer-to-peer refueling within a constella-
tion.> 89 The latter three papers focused on equalizing the fuelilbligion within the constellation by
exchanging fuel between the satellites in the consteliatibhe goal was to minimize the 1-norm of the
deviation of the satellites’ fuel content from the consitin average fuel. In Refs. 7,8 the authors showed
that P2P refueling can be more fuel-efficient than a singhecle strategy for refueling a large number of
satellites.

More recently, the authors of the present paper presenteddéa of using an auction algorithm to
match satellites in a peer-to-peer refueling scheme whoakig to guarantee that all satellites have more
than a certain baseline amount of fuel, which may be diffefeneach satellité® The auction algorithm
is advantageous for two reasons when solving the satedliteeling problem: firstly, it can be implemented
in a decentralized framework, and secondly it is robust ymelsronous bids, which can occur as a result
of poor communication, temporary failures, or other proise In this paper, we verify these attractive
properties of auctions via simulation results.

Section 2.0 briefly reviews the formulation of the peer-&®ip (P2P) refueling problem as presented
in Ref. 10. Section 3.0 presents an asynchronous formaolatfiaghe auction algorithm. It is a simplified
form the algorithm presented in Ref. 11 which nonethelessfficient to model disturbances likely to arise
in the space environment. Section 4.0 presents the sironladsults for a parallel implementation of the
algorithm, both with and without communication problem@benodeled. Special attention is being paid
to the effect of such communication problems on the speedmfargence of the algorithm. Finally, Section
5.0 summarizes our results.

2.0 The Peer-to-peer Assignment Problem

The formulation we will be using in this paper was put forwardRef. 10 as a more realistic alternative
to the formulation in Refs. 5,6,9. We present the main idearalgelow, without including the details of the
derivation, which can be found elsewhéfe.

Consider a satellite constellatiéhconsisting ofNV satellitess, ss, . .., sy. We will call the satellitesy,
fuel sufficientf

fo > e (1)

where f,~ denotes the fuel content of the satellite prior to refueliagdik denotes the minimum fuel
required for the satellite to be operational until the nestemal refueling. Otherwise, the satellite will be
calledfuel deficient To differentiate fuel deficient satellites from fuel suiict satellites, we define the
index set of fuel deficient satellites, indexedbas the seD = {i : i = 1,2,...,m}, and the index set of
fuel sufficient satellites, indexed hyas the se§ = {j : j = 1,2,...,n}. In what follows, the subscript
will always denote a fuel deficient satellite, and the subsgrwill always denote a fuel sufficient satellite.

The peer-to-peer refueling problem consists of finding aglaig strategy that will ensure, for alj € C,
that

o> fo )

while minimizing fuel consumption during the ensuing rengris. Heref,j denotes the fuel content of
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satellites,, after the refueling transaction is completed

The setsD andsS induce a natural bi-partition on the gktGiven the index set® andS we may define
a bi-partite graptg = {D U S, &} overC, where the set of edges = {(i,j) : i € D,j € S} inthe
graph has as vertices pairs of fuel sufficient and fuel deficgatellites. If there are no other operational
constraintsg is a complete bipartite graph.

For each rendezvous between a fuel sufficient satellite dnel @eficient satellite, we will assume that
only one isactiveg namely only one initiates the rendezvous, and returnsstoriginal slot after refueling.
The other satellite remainmssiveduring the fuel transaction. We can then partittbinto three subsets as
follows

A = {(i,j) € € :iis active, (3a)
P = {(i,j) € £ :iis passive, (3b)
U = {@j) €é&:(ij)isinfeasiblg, (3c)

where an infeasible pair is defined as one for which neithéheftwo satellites can be active. Note that
ANP # @ to allow for the case when both satelliteandj may be active. Define the sets

Uy ={(i,5) :pl; > fi} (4)
Us = {(i,5) : pl; > 1} (5)
Us ={(i7) + fi +f; —eiy < [+ 1} (6)

wherepjﬁj is the fuel for the (active) satelliteto perform the one-way trip to the (passive) sateljitend

similarly for p{j, while ¢;; is the minimum amount of fuel required to perform the rendesvbetween
satellitesi andj. Details for the calculation of these quantities is giveRef. 10. We simply note that the
set of infeasible pairs in (3c) is then given y= Uzzlb{k. Moreover it can be shown that the quantities
cij,pﬁj,p§i, etc. can be computed explicitly in terms of the problem datéows 10

cij = min{p; + pl;. pj; + v}, @)
ply = (mi+ f7) (1= 78007 (8)
phi = (mi+ ) (1= e 8Vi/7) AVl 9)
Pl = (mj + ) (1 — AV ”f‘) : (10)
(my+ f; = vl — Fot ) (1= e/,
. it gn=/fi—f7,
P = (12)

(mj+ 1)) (1 _ e—AviiL/oj) AVl

it g5 =17 — 1, — v

A refueling transaction includes the forward and returritattransfers, as well as the actual exchange of fuel betieetwo
satellites.
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whereAVZg denotes the velocity impulse required for satellitto move from its orbital slot to that of
satellite j, and similarly forAV/,, AV, and AVY.. The parametes; is given byo; = golsy, with Isy
being the specific impulse of the satellite agidthe acceleration at the Earth’s surface. Hgreindicates
the optimal amount of fuel to transfer from satelljtéo satellitei upon rendezvous. It is chosen based on
the capacity of the fuel deficient satellite: if satelliteannot accept all the fuel satellifecan transfer to it,
given byg’; = f;~ — f . — pl,, satellitej will only transferg’; = f; — f;".

With the above definitions, we can create a subg@ph- {DU S, £} of G called thefeasible constel-
lation graphthat consists of the same verticestabut only the edges of G such that(i, j) ¢ U. Clearly,
&y = AUP. Now, we can weigh each eddg j) € £ by —c;;, and defineV (i) = {j € S : (4,7) € &}
as the set of fuel sufficient satellites that can perform atfaasaction withi € D. Since we only allow one
fuel exchange per satellite, the final result of a P2P refgedtrategy is a matching! C £, such that the
total fuel incurred during the associated rendezvous os#tellite pairs inM is minimized. By matching
here we mean a subset of edges jnsuch that no two edges share the same vertex. Our probleraris th
to find the matching that maximizes the weights of the edgesagted in it, hence minimizing the total
fuel cost, subject to the constraint that each fuel-deficsarellite is matched to exactly one fuel-sufficient
satellite.

The problem of finding the optimal matchingl* can then be formulated as a integer program over the
bi-partite graphi; as follows

Maximize — Z Z CijTij (12)
i=1 j—1

Subjectto: Y =1, VieD, (13)
j=1
Zwijgl, VjGS, (14)
i=1
wijzl - ]EN(Z), 1€ D. (15)
Tij € {Oa 1}a vza] (16)

Inequality (13) enforces the condition that every fuel defit satellite must be paired with exactly one
fuel sufficient satellite. Inequality (14) enforces the dition that every fuel sufficient satellite can be paired
with at most one fuel deficient satellite. Equation (15) diyrgiates that all pairs considered are feasible.
Note that for a problem to be feasible, necessarily m.

The integrality constraint om;; is not needed since it is known that assignment problemsyalave
integral solutions? In other words, one may replace the condition (16)yby> 0 without loss of generality,
and be left with a linear program rather than an integer @nogio solve.

3.0 The Asynchronous Auction Algorithm

Problems of the form presented in (12)-(16) are knowassgnment problemsvhere persons in one
set must be assigned to objects in another set on a one-tbemie If the number of persons is equal to
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the number of objects, the problem is termrsanmetric Otherwise, it is termedsymmetric The P2P
refueling problem is an asymmetric assignment problemnesimogeneralyn # n. The assignment problem
is very well known in the literature, and it can be solved @ithia the standard simplex algorithfipr via
more specialized methods such as Kuhn’s Hungarian Metloodymmetric problems) that take advantage
of the special structure of the problem. Because of theinstiiess to asynchronous bids when properly
formulated, we are especially interested in auction aligors!!

Auction algorithms solve the assignment problem congstifv: persons seeking to be assignedito
objects one a one-to-one basis (assuming< n) in which each person bids for the object of its choice,
and the objects choose the best suited person from the bid8ebject to certain conditions on the bids,
these algorithms solve the assignment problem efficiemtty \&ithin arbitrarily given optimality bounds.
A thorough discussion of auction algorithms and their aygpions to transportation problems and network
flow problems is given in Ref. 13. The discussion in the |gitgrer centers around the serial implementation
of the auction algorithm. In the current paper, however, ves@nt a parallel and more robust version of the
auction algorithm. This algorithm is a simplified versionafieneral asynchronous distributed algorithm
that is known to have excellent performariée.

3.1. Overview of the Algorithm

Consider a set ofn personsD = {i : i« = 1,...,m} (in our case the fuel deficient satellites) whose
elements are to be assigned to those of a set albjectsS = {j : j = 1,...,n} (in our case the fuel
sufficient satellites) on a one-to-one basis, where< n, such that(i, j) € &£, where&; denotes the set
of all allowable pairs. For every persaithe set\/ (i) consists, as above, of all objects that persoan be
assigned to. For each object N (i) there is éenefita;; for matching persom with object; (in our case
the benefit is-¢;;). The objective is to find the person/object pdirsj;) such that all persons are assigned
to exactly one object and that the total benfif_, a;;, is maximized among all possible person/object
pairs.

The standard synchronous auction algorithm works by asgjgmprice 7; to every object, with the
price potentially changing at each iteration, and thenrgagiach person bid on the object that it finds most
desirable bywalue which is defined as the difference between benefit and phb&.personi bids on an
objecty; if

agj, = Tj, = jg}%){aij — ik (17)
which is called theeomplementary slackness CS condition. Objects will then take the bids they receive
from each person, select the highest bidder, and be assigrikdt person until a better bid comes along.
When all persons are assigned, the algorithm terminates.

The brief overview given above is a naive implementationhef algorithm. Because of the tight CS
condition, the algorithm may cycle. In addition, it assunpesfect information knowledge on the part
of each satellite regarding the price vector= [y, 79, ..., m,]. In order to prevent cycling and model
communication problems, we discuss next the more genedsiynchronous auction algorithmhich was
first presented in Ref. 11. The algorithm presented thessireiy general, and we simplify the discussion
in our presentation. Specifically, we assume that all segelthat are unassigned are able to bid every time
a bid can be made.
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We assume that time is discretized by bids: events (changdks state of the assignments) occur only at
the end of the bidding and assignment calculations. Theiledions themselves are referred to as iterations.
At the beginning of an iteration, we denote byt) C D the set of persons that are unassigned at time
We assume that all personsli{t) are capable of bidding at each iteration, but we do not asshatehe
members of)(¢) have up-to-date pricing information. Instead, we denogepiticing information at time
asm(t), a vector of lengt, wherer;(t) is the price associated with object S at timet, and we assume
that each persone V(t) is aware of a price vector(7;(t)) for somer;(t) < ¢t which has the property that
7;(t) — oo ast — oo. Finally, we define;(t) as the index of the person that objgds assigned to at time
t.

It is a standard result in linear programmtAdhat an optimal assignment satisfies the CS condition.
However, as mentioned earlier, strict application of thedd8dition in the auction algorithm can lead to
cycling® so a relaxation of the CS condition, namely theomplementary slacknessndition, ore-CS
condition for short, is enforced. Specifically, for eachrdaij;) in an assignment at timg the following
holds!!

Qij; — M55 (t) > max {alj Ty (t)} —& (18)
JEN(3)

wheree > 0. We now state the algorithm, in an exposition that closelypfes that of Ref. 11.

INITIALIZATION :  Sett = 0. At the beginning of the algorithm, no persons are assign@thy objects, so
V(t) = 0, andx(0) = 0. At each subsequent iteration, all assigned pairs satl§fy (

TERMINATION: The algorithm terminates whéa(t) = @

BIDDING: Each person € V(t) calculates the maximum value among all objects NV (7),

vi(t) = jIen/\E% {aij — mi(mi(t))}, (19)

an object that yields that maximum value,

Ji(t) = arg max {aw —mi(Ti(t))}, (20)
JEN(3)

the second best value among all objects N (i),

w;(t) = max {a;; — 7;(7i(t))}, (21)
JEN ()
J#5i(t)
and a bid for object;
Bi(t) = i) — wi(t) + €. (22)

Each person then submits their bid to the appropriate abje¢t(t) is the only object inV (i), then we
definew;(t) = —oo, and subsequently; (t) = +oo.
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ASSIGNMENT.  Each object receives bids from a (possibly empty) set of@esB;(t) = {i € V(¢) :
Ji(t) = j}. If Bj(t) # @, each objecy determines the highest bid

bi(t) = i (1), 23
(t) e Bi(t) (23)
and a person submitting such a bid,

4j(t) = arg max, Bi(t)- (24)

Object; then updates the patr;(t), r;(t)) according to the following rule:

(bj(t),4;(t))  if b;(t) = m;(t) +¢
(mj(t),r;(t)) otherwise.

(ﬂ'j(t—Fl),T‘j(t—Fl)) = { (25)

Since the above algorithm is a special case of the totallpa@spnous algorithm discussed in Ref. 11,
the results shown therein hold. In particular:

1. The algorithm is guaranteed to terminate if the problefeasible.

2. The final assignment benefit is guaranteed to be withirof the optimal assignment benefit, where
m = |D].

The only issue remaining is that of feasibility. Sadly, thexrnoa priori guarantee that a given problem
is feasible. If the problem is infeasible and there are nchodd for detecting it, the algorithm will go on
indefinitely, since the sat(¢) will never be empty. Fortunately, several ways of deteciirigasibility exist,
all of which are easy to implement assumisgmeforeknowledge by the satellites of the fuel capacity of
the whole constellation. For example, there is a minimummboenv; (t) for any feasible problem given by

vi(t) > —2n —1)C — (n — 1)e, (26)

foralli € Dandforallt > 0, in case the algorithm is initialized with; (0) = 0, whereC' = max; j)e¢, |ai;|-
Since for an infeasible problem, at least one object wilenez an infinite number of bids, at least onét)
will drop below this lower bound. Substituting with the total fuel capacity of the constellation, fr
(where f;, is the maximum fuel capacity of theth satellite in constellation), we have a condition that ca
easily be assumed knovenpriori by each satellite and moreover is an upper bound'psince no feasible
cost can be greater than the total fuel content of the cdattel.

4.0 Parallel and Asynchronous Implementation

In the above presentation, we assumed that all satellit¢¥¢inbid at every iteration. Borrowing ter-
minology from the theory of nonlinear numerical optimipaif* this is known as the Jacobi implementa-
tion. The serial algorithm, where onbyne of the satellites in/(¢) bids at any given time, is said to be of
Gauss-Seidel type. Intermediate versions, where a sub¥¢t obids each time, are known as block-Gauss-
Seideltt 4
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The particular instance of the asynchronous auction algoridescribed above is not the most general
asynchronous auction algorithm. The version in Ref. 1Iwadlfor only subsets o¥(¢) to bid (in other
words, it allows block-Gauss-Seidel implementations)yval as for the price data for computing the max-
imum value and that for computing the second maximum valueetdifferent (sayr;, (t) andr;, (t)).

For the purposes of validating the use of the auction algoritwve used a Jacobi implementation, where
every unassigned person bids at every iteration. The maiabla was the updating of the prices: in order
to simulate slow or defective communications, the algarigtores the time history of the price vectd).

At each step, there is a fixed probability that every sageliill get the latest vector, implemented in the
form of a random number with a threshold. If the random nunibéelow the threshold, person (satellite)
1 obtains the latest price vector. If it is above the threshpketson: keeps its current price vector. This
guarantees that;(t) — oo ast — oo, while simulating random communications problems amotfust
satellites. We also note that with probability zero, no updghappens for the prices, and the algorithm will
never terminate, while with probability one, we have a petrieformation parallel algorithm.

It is implicit in our implementation that there is one (or rapisatellites that are organizing the data
and time the request for bids. This satellite is the one teatrptes the events by which we discretized
time in Section 3.0, and has the additional job of keepingktiegf how many objects have been assigned
to a person. Since once an object is assigned, it remairgnaskithis “central” satellite will declare the
algorithm terminated whem objects are assigned.

4.1. Validation of the Asynchronous Algorithm

In order to validate the proposed algorithm, we compared thé problem we solved in Ref. 10, which

consisted of twenty evenly spaced satellites in the saroalairorbit. The fuel content data for the constel-
lation is reproduced in Table 1. The matching produced byzaess-Seidel type algorithm used in Ref. 10
is shown in Figure 1. The algorithm took 108 iterations tovawge to a near optimal solution with a cost
of 107.565 units of fuel, where the units are normalized asrileed in Ref. 10. The relaxation factor was
chosen as = 1/(|D|+ 1), which guarantees that the matching will be within 1 fuetwhithe optimal cost.

Table 1. Satellite fuel specifics for the constellation in Re'

Satellite| f,” | f, || Satellite| f” | [,

1 12 | 30 11 44 | 30
9 | 30 12 75 | 30
26 | 30 13 52 | 30
0 |30 14 97 | 30
23 | 30 15 80 | 30
29 | 30 16 58 | 30
29 | 30 17 82 | 30
23 | 30 18 48 | 30
13 | 30 19 60 | 30
10 14 | 30 20 95 | 30

OO N jWIN
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Figure 1. The constellation graph for the example from Ref. 0. The bold lines indicate the final optimal pairings. The
thin lines indicate all feasible pairs. The arrows point from the active to the passive satellite. Serial implementatioof the
algorithm. No information loss.

Running the code in parallel yielded a bit of a surprise:raétking only 40 iterations, the code converged
to a different matching. As shown in Figure 2, the satellassigned to satellites 9 and 10 were switched,
as were those for satellites 6 and 7. This matching had a €éd€975772, which, though a little higher
than that of the first algorithm, is still well within the tobace guaranteed by the algorithm. Moreover,
running the asynchronous algorithm with different randpgegnerated rates of update (from 10% to 90%
probability of data loss) yielded additional near-optimedtching matchings, all within tolerance. The best
matching obtained was the one shown in Figure 3, with onlyadsgnments for 9 and 10 being switched
relative to the Gauss-Seidel type solution. The cost ofrtfasching was 107.5523, and the matching was
obtained after 48 iterations, with a price update probighif 0.9.

In addition to confirming that the auction algorithm conwsrgeliably to a near-optimum solution, the
above tests show that there isapriori matching that the algorithm will converge to, and that randmtion
of the price update laws may affect the final result. Howetber,optimal cost will always be withime of
the optimal one. This is evident in our results since all tbstg were within 0.1 fuel units of each other,
which is significantly less than the 1 fuel unit of toleranceug@nteed by the theory. This is significant from
a practical standpoint, since the algorithm is very fashdee a medium-sized constellation of 20 satellites:
it can be run several times, simulating communication @otsd even if there are none, and then choose
the best matching from those calculated. It is even possitde some matchings may have advantages
extraneous to the cost (such as proximity) that will makes#ful to know alternative matchings that are
guaranteed to be optimal within a given fuel tolerance.
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Figure 2. The constellation graph with the matching from theparallel version of the algorithm.

4.2. Performance Results of Asynchronous Bids

To get a better idea of the response of the auction algorithasynchronous bids, we ran two separate tests.
First, we ran a test with the same base case as above andev/¢negiumber of iterations for 1000 runs of
the algorithm af.1,0.2,. .., 0.9 probability of price vector update. Mathematically, calesithe following

definition of 7;(¢):

) {t+1 1 X() < P,
i(t) If X(t) > Pi(t),

where X (¢) is a uniformly distributed random variable ¢ 1], and P;(t) is the probability that satellité
will get the new price vector (¢ + 1). We ran the algorithm on the problem using the same probaloii
all satellites,P;(t) = P for P = {0.1,...,1.0} and for 1000 runs at each probability level. The average

results are given in Table 2.

Table 2. Average number of iterations to termination with respect to update probability.

Probability | 0.1 0.2 03 | 04| 05| 06| 07| 08| 09
Iterations | 222.2| 152.4| 111.9| 86.4| 70.7 | 60.5| 53.2 | 47.7 | 44.0

We note that even in a situation where there is only a ten peprebability that updated price data is
received, the algorithm, on average, runs only four and fainaés slower than the fully parallel algorithm.

Page 10 of 14 Pages



Session Title: Student Session | Paper

AL ST T
AL A

W N SHNPALL )

.

N

N
NN
NG

s18 7 /vl DA A L 59
A ‘k'QI/‘ a9,
N
1 % SOKT AR 510
Al y

whereY (k) is a uniformly distributed random variable ¢ 1], and f;, = 100 units of fuel.
The results for the run are given in Table 3.

Table 3. Average number of iterations to termination with respect to update probability.

No. GT-SSEC.F.5

Figure 3. The constellation graph with the best matching okdined with the asynchronous parallel version of the algorihm.

This is very good performance, but may be skewed by the fattitk modeled informatiolossrather than
informationdelay. In other words, there is no situation whetét + 1) = 7;(t — q) for some integeg > 1.

This means that when the satellite receives an update, ttegeifs the newest price vectat(t). The effects
of receiving an older price vector, sayt — q) for someg > 1, are not included in the current simulation.

In order to check that this promising performance is not arraion, we ran three more examples of
randomly generated constellations. The configuration efdbnstellations was identical to the previous
one, but the fuel content for each satellite was randomigehao that each satellite had a 0.4 probability
of being fuel deficient. Mathematically, we the fuel contesats determined as follows:

P 01|02 03|04|05|06)|07|08]09]|10
Constellation 1| 37.4 | 28.2| 22.4| 18.9| 16.2| 14.5| 13.5| 12.8| 12.3| 12.0
Constellation 2| 18.1| 13.4| 10.4| 81 | 70 | 6.0 | 5.2 | 48 | 43 | 4.0
Constellation 3| 6.5 | 50 | 42 | 35| 30| 26 | 24 | 22 | 21| 2.0
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Here again we note the same pattern as before, where lowataupabbability results in longer running
times, but the increase is not excessive, even for low upatateabilities.

Finally, to illustrate the behavior of the algorithm over ane complete range of probabilities, we ran
one randomly generated constellation at 1000 runs for pibitya? on the interval0.1, 1]. The results are
presented in Figure 4, where it is clear that the run timesiases as the probability of update goes to zero.

16

Iterations

2 1 1 1

0 0.2 04 0.6 0.8 1
Probability of update at each iteration.

Figure 4. The number of iterations compared with the probablity of each element of the setD having updated price
information after each iteration.

As can be seen from these results, there is good indicatetrthl the auction algorithm is very well
suited for this particular application, since even higlesadf data loss do not detract from relatively fast
convergence. However, it must be noted that several instaotrandomly generated constellations fell
prey to price wars. While this problem can be alleviated lgyuke of forward-reverse auctions, it is not
entirely avoided. In addition, the-scaling method? the preferred method of avoiding price wars, is not
readily applicable to asymmetric auctions as far as we knblowever, every time the straightforward
auction algorithm terminated within a reasonable timertmming times associated with the asynchronous
algorithm were of the same order of magnitude even undewvardhle communication conditions.
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5.0 Summary

This paper presents simulation results to validate thestoless of the auction algorithm to solve the
P2P refueling problem. The purpose of the P2P problem isdid yefueling transfer and pairs that ensure
that each satellite has a certain minimum level of fuel thidltideally allow it to remain operational until
the next outside refueling. The simulation results show tthe auction algorithm displays two important
properties:

1. It terminates with fewer iterations in a distributed @t

2. Poor price information updating has a benign effect orvemgence. Specifically, convergence rate
degrades gracefully as the probability of out-of-dategiidormation increases.

The ability of the algorithm to perform well even under poormamunication circumstances is one of
its main attractive characteristics. The main concernrimitgtion time, since it is guaranteed that when
it terminates, the result will be within the desired optiityatolerance. There is good indication, however,
that this is not an issue, since the asynchronous impleti@mteonverges quickly, despite the occasional
occurrence of price wars.
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