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SUMMARY 

The preparation, magnetic properties, spectral properties, 

crystal and molecular structure of some transition metal oxygen-bridged 

complexes have been investigated; correlations between the observed 

properties and structures have been made in terms of current bonding 

theories. 

This thesis reports the preparation of several new y^-oxo com­

plexes with the general formula M^OX^L^. The crystal and molecular 

structures of two of these complexes are reported. The C u ^ O C £ ^ q - L v 

anion and Cu.,OBr_ (NH 0), have structures similar to those of other 4 6 3 4 

reported complexes of this type, that is, four copper(II) atoms tetra-

hedrally surrounding a central oxygen atom with each pair of copper 

atoms being bridged by a halogen atom. The halogen atoms above the 

six edges of the tetrahedron form a regular octahedron around the 

central oxygen. A partial structure of Cu^0Br 6(TPP0)^-2CH 3N0 2 indicated 

that the structure is essentially the same as that of Cu.0C&_(TPPO). . 
4 b 4 -4 The preparation of the y. -oxo complexes Cu. 0(acetate),, and C d . 0 C £ n ^ 4 4 b 4 10 

are also reported. 

Other complexes chosen for study were the dianions of the mono-

Schiff's bases of acetylacetone and 2-aminoethanol, Cu(EIA); 3-amino-l-

propanol, Cu(PIA), and the copper(II) chloride complex of the anion of 

the S c h i f f s base of salicylaldehyde and 3-amino-l-propanol, 

Cu(SALPA)C£. The two complexes with subnormal magnetic moments, Cu(PIA) 



viii 

and Cu(SALPA)C&, have planar coordination for the bridging oxygens, 

a feature consistent with TT-bonding. The complexes with normal mag­

netic moments, Cu(EIA) and the y^-oxo complexes, have tetrahedral 

coordination for the bridging oxygen(s); no 7T-system can be present 

since all of the outer orbitals on the bridging oxygen(s) were used 

in a-bonding. The effect of a a-interaction on the magnetic exchange 

is unknown but seems to be minimal as the magnetic moments of Cu(EIA) 

and the y^-oxo compounds indicate. The effect of metal-metal bonding 

on the magnetic exchange also seems to be minimal since the copper-

copper distances are the same in Cu(PIA) and Cu(EIA) even though the 

magnetic moments differ significantly; the copper-copper distance in 

Cu(SALPA)C£ is longer than that in Cu(EIA), yet the magnetic moment of 

Cu(SALPA)C£ is subnormal while that of Cu(EIA) is normal. On the 

basis of these results, the most effective mechanism for magnetic 

exchange in these complexes is a TT-interaction. 

The preparation, crystal and molecular structure of a trinuclear 

cobalt complex, bis{tris(2-aminoethoxido)cobalt(III)} cobalt(II), are 

also reported. The trigonal prismatic coordination of the central 

cobalt(II) atom provided the first example of this type of coordina­

tion with oxygens as donor atoms. This suggests that there may be a 

significant energy minimum corresponding to trigonal prismatic coordi­

nation . 
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CHAPTER I 

INTRODUCTION 

Although a number of oxygen-bridged transition metal complexes are 

known, there have been few systematic attempts to prepare and study such 

compounds. At the time this work was begun, there was little understano 

ing of the conditions which favored the formation of such compounds--

most of the compounds had been prepared and isolated accidentally. 

Some complexes with oxygen bridges are known to catalyze certain or­

ganic reactions, others exhibit unusual magnetic properties; in spite 

of these properties, there have been only scattered attempts to relate 

structures and bonding to the properties of these compounds. The pur­

pose of this work was (1) to prepare oxygen-bridged complexes of tran­

sition metal ions, (2) to investigate the magnetic properties, spectral 

properties, and crystal and molecular structures of these compounds, 

and (3) to attempt, on the basis of current bonding theories, to relate 

the observed properties and structures. 

There has been considerable interest in oxygen-bridged complexes 

with subnormal magnetic moments (1)—moments lower than would be pre­

dicted on the basis of ligand field theory. When the distance between 

adjacent metal atoms is sufficiently large to rule out metal-metal 

bonding, the lowering of the magnetic moment has been attributed to a 

phenomenon called super-exchange. Super-exchange has been used to 

explain the subnormal magnetic moments in a variety of different types 
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of compounds, such as copper(II) formate tetrahydrate (y = 1.64 B.M.) 

and copper(II) oxide (y = 0.78 B.M.). 

The structure of copper(II) formate tetrahydrate (1) can be 

described as an infinite lattice network of copper ions bridged by 

formate ions. Martin (1) has suggested that the pathway for 

super-exchange is through a 7r-interaction--the TT-interaction being 

between the copper d and d orbitals and the 7r-system on the 
xz yz 

formate ions. This interaction would extend throughout the entire 

lattice. However, a different explanation is necessary to explain 

the super-exchange mechanism in copper(II) oxide (1). The copper(II) 

oxide structure (2) is also an extended-type with square planar copper 

ions and tetrahedral oxygen ions, but there cannot be an extended 7r-type 

interaction throughout the lattice as in copper(II) formate tetrahydrate 

since all of the outer orbitals of the oxygen atoms have been used in 

a-bonding and none remain for TT-bonding. Thus, the mechanism for super-

exchange in CuO has been considered to be a a-type interaction extend­

ing throughout the lattice. Since current bonding theories cannot 

adequately explain the bonding in extended structures in such a way to 

account for the magnetic properties, it is more feasible to study 

simpler systems that show the same type of magnetic properties and 

have the same basic structural units, except in a non-extended form, 

with the hope that the results can be related back to the extended 

lattice compounds. There are examples of such systems and these are 

usually polynuclear complexes with less than about six metal atoms per 

polynuclear unit. 
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In attempts to explain the mechanism for magnetic interaction in 

complex molecules, the energies of the different paths for the exchange 

process must be considered. If the distance between adjacent metal 

atoms is very close to that found in the free metal, metal-metal 

bonding must be considered as a possible explanation for the interac­

tion. However, if metal-metal bonding can be ruled out on the basis 

of metal-metal distances or comparison of other structural features, 

other mechanisms must be considered. There are two remaining possi­

bilities, a a-interaction through the a-framework or a IT-interaction 

through a Tr-system. The absolute energies of the a and TT paths can­

not normally be found easily, but one of the two possibilities can 

usually be chosen on the basis of structural information. For example, 
-4 

the unusual magnetic properties of the Ru(IV) complex, R u 2 O C £ 1 Q (3), 

which is diamagnetic, have been explained on the basis of a multicenter 

bonding interaction. The multicenter interaction, two TT bonds and one 

a bond between each Ru atom and the bridging oxygen, is consistent 

with a linear Ru-O-Ru arrangement (4). Also on the basis of structural 

information, explanations for the sub-normal magnetic moments of the 

basic acetates of Cr(III) and Fe(III), M o0(acetate) rCi•5H_0 (5,6), have 
3 6 / 

been offered. Figgis, et a l . , have suggested that the magnetic inter­

action occurs through the M-O-M linkage at the central oxygen since 

the metal-metal distances are large, 3.28A" for Cr(III). 

Since a structural approach had led to reasonable explanations 
-4 

for the magnetic properties of Ru^OCZ^ and the basic acetates of 

Cr(III) and Fe(III) in terms of current bonding theories and since there 
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was little structural information available for oxygen-bridged 

copper(II) complexes exhibiting unusual magnetic properties, an 

investigation of the structural and magnetic properties of oxygen-

bridged copper(II) complexes seemed promising. 

One type of oxygen-bridged copper(II) complex known is the 

pyridine-N-oxide (PyO) complex of copper(II) chloride (7), CuC& 2(PyO). 

This complex is dimeric with bridging oxygen atoms from the pyridine-

N-oxide molecules. Since metal-metal bonding can be ruled out on the 
o 

basis of a long copper-copper distance, 3.2 3A, either a a-interaction 

or a IT-interaction is responsible for the subnormal magnetic moment 

(y = 0.85 B.M.) and both have been offered as explanations. Another 

type of oxygen-bridged copper(II) complex with a subnormal magnetic 

moment (y = 1.37 B.M.) is the complex of the dianion of the mono-

Schiff's base formed between acetylacetone and o-hydroxyaniline (8). 

The tetrameric units of this complex are built up by the copper atoms 

of one "dimer" coordinating to the bridging oxygen atom (phenolic 

oxygen) of another "dimer". There are two of this type of Cu-0 bonds 

in each tetramer. 

In contrast to the two oxygen-bridged copper(II) complexes 

described above which had subnormal magnetic moments, Bertrand (9,10) 

prepared a new type of polynuclear oxygen-bridged complex of copper(II) 

with a normal magnetic moment (y = 2.2 B.M.). This complex was pre­

pared in an attempt recrystallize dichlorobis(triphenylphosphine oxide) 

copper(II), C u C £ 2 ( T P P 0 ) 2 , from methylisobutyl ketone. Only a small 

quantity of this material was obtained by this method, but enough was 
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available for carbon and. hydrogen analysis and for an X-ray structure 

determination. When the C u C J ^ C T P P O ^ w a s refluxed in methylisobutyl 

ketone, the initial yellow color changed to orange. Well-formed, red 

crystals of y^-oxo-hexa-y-chlorotetrakis{triphenylphosphine oxide 

copper(II)}, Cu^OC£ (TPPO)^, were deposited over a period of several 
o 

days. The crystals were cubic, a - 12.22A, with one molecule per unit 

cell and of space group symmetry P43m. A three-dimensional X-ray 

crystal structure found the structure to be as shown in Figure 1. 

The central oxygen atom, 0(1), is at the center of a regular 
o 

tetrahedron of copper atoms with a Cu-O(l) distance of 1.90A. Between 
each pair of copper atoms, there is a bridging chlorine atom with a 

o 

Cu-C£ distance of 2.38A. The six chlorine atoms form an octahedron 

around the central oxygen atom, 0(1). Each copper atom is on a three­

fold axis and the three chlorine atoms coordinated to each copper atom 
o 

are related by this threefold axis. The copper atom is displaced 0.23A 

from the plane of these three chlorine atoms, and away from the central 

oxygen to give a C£-Cu-0(1) angle of 85°. Completing a slightly dis­

torted trigonal bipyramid around the copper atom is the oxygen atom 
of the triphenylphosphine oxide (TPPO), 0(2). The Cu-0(2) distance is 

o 
1.89A. Since the C u , 0(2) and the P lie on a threefold axis, the bond 

o 

angle at 0(2) is 180°. The Cu-Cu distance is 3.11A. 

Since magnetic interaction between copper atoms in polynuclear 

copper(II) complexes with oxygen bridges is usually found (1), the room 

temperature magnetic moment of 2.2 Bohr magnetons for this complex is 

unusual. However, this value is only slightly greater than that 



Figure 1. Perspective Drawing of the Structure 
of un.-oxo-hexa-u-chloro-tetrakis{ (tri-
phenylphosphine oxide)copper(II)} 
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predicted for a trigonal bipyramidal copper(II) atom (11). The visible 

and near infrared spectrum of this complex is similar to that reported 
_3 

for the trigonal-bipyramidal C u C & 5 (12,13). C u ^ O C i ^ T P P O ^ shows 
_3 

absorption bands at 9.9 kilo Kaisers (kK) and 11.2 kK and CuC£._ shows 
b 

absorption bands at 8.2 kK and 10.4 kK. 

The infrared spectrum of Bertrand's compound also showed an 

interesting feature (9,10). The phosphorous-oxygen stretching fre­

quency (1194 cm "*") is at a much higher energy than that reported for 

other phosphine oxide complexes (14). Bertrand attributes this 

increase to TT-bonding between the copper and oxygen atom of the phos­

phine oxide. This ir-bonding argument was also substantiated by the 

linear Cu-0(2)-P arrangement. 

Since Bertrand' s initial preparation of C u ^ C O g (TPPO )^ resulted 

in a poor yield, better synthetic paths to this compound were desirable. 

The results of the development of better synthetic routes to this com­

plex are reported in this thesis. 

This thesis will also report the preparation of several new com­

pounds with the general formula M. 0X rL. , where M is other transition 
4 D 4 

metal ions with a plus two oxidation state, X is a halogen and L is 

other ligands replacing the TPPO. Such preparations seemed feasible 

since it was known that Mg i +0Brg(C i +H^ Q0) i + (15) had a structure similar to 

Cu i +0C£g(TPP0) i +. The magnetic and spectral properties of these new 

compounds will also be reported. X-ray crystal structures for two of 

these compounds will be reported. 
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During the course of this work, Bock, et al. (16) reported the 

preparation of several compounds similar to Cu.,OC£ c (TPPO) . They 
4 b 4 

reported forming several copper(II) complexes with the general formula 

Cu.OX-L,, where X = C£ or Br and L is an aromatic amine. Dunitz (17) 4 b 4 
reported the X-ray crystal structure of one of these compounds, 

Cu 0C£_(pyridine). . The basic arrangement of the atoms was the same 4 b 4 
as that of Cu. 0 C £ C (TPPO).,, but the octahedron of chlorine atoms was 4 b 4 

quite distorted in the pyridine complex. This distortion was attributed 

to intermolecular repulsions within the crystal lattice. 

This thesis will also report the preparation, magnetic and 

spectral properties, and X-ray crystal structures of two oxygen-bridged 

copper(II) complexes of a different type. The compounds were formed 

using the Schiff's bases shown b e l o w s 

r 
C H 0 

\ 2 

,C=NV OH 

4 2 -

where n = 2 and 3. The Schiff' s bases were formed by the reaction of 

acetylacetone with the appropriate aminoalcohol. Correlations between 

the magnetic properties and solid state structures of these two com­

plexes will be presented. The magnetic properties and spectral proper­

ties and crystal and molecular structure of a new dimeric five-
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coordinate oxygen-bridged copper(II) complex, the copper(II) chloride 

complex of the mono-anion of the Schiff's base of salicylaldehyde and 

3-amino-l-propanol, will also be presented. The structure and magnetic 

properties of this compound will be related to the previous compounds. 

The preparation, crystal and molecular structure of a trinuclear 

oxygen-bridged cobalt complex will also be reported. The unusual 

structure and stereochemistry of this complex will be discussed. 



CHAPTER II 

EXPERIMENTAL 

Preparation of Complexes 

JĴ  -oxo-hexa-]j-chlorotetrakis{triphenylphosphine oxide copper(II)} 
Cu 0C£ (TPPO) 

Since Bertrand's initial preparation resulted in a very low 

yield of Cu.,0C£_(TPPO) , methods of obtaining better yields were 4 b 4 

sought. 

Method One. Stoichiometric amounts of anhydrous CuCi^s CuO, 

and triphenylphosphine oxide(TPPO) were mixed in nitromethane and 

refluxed for about two hours; the hot solution was then filtered. 

Red-orange crystals slowly deposited over a period of several days. 

The crystals were filtered and then dried over sulfuric acid. This 

material was identified as being the same as Bertrand's initial 

material by elemental analysis and by unit cell and space group 

determinations. Analytical data for Cu,,OC£_ (TPPO)., are summarized 
4 b 4 

in Table 1. 

Method Two. Small amounts, but very large crystals, of 

Cu.,OC£_ (TPPO)., were prepared by mixing anhydrous C u C £ 0 (0.01 mole) 4 b 4 z 
and KOH (0.003 mole) in nitromethane and then adding triphenylphos­

phine oxide (0.013 mole). This solution was filtered while hot and 

after several days large red-orange crystals, about 0.5 cm square, 

were deposited. The crystals were identified as being Cu.0C£_(TPPO) 
4 b 

by a unit cell determination. 
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Table 1. Analytical Data 

Per Cent 
Metal 

Per Cent 
Halogen 

Per Cent 
Carbon 

Per Cent 
Hydrogen 

Per Cent 
Nitrogen 

Per Cent 
Phosphorous 

Calcd Found Calcd Found Calcd Found Calcd Found Calcd Found Calcd Found 

Cu^OCA (TPPO)^ 15 92 16 21 13. 33 13. 55 54 17 53. 61 3 80 3.64 - - 7.76 7.41 

Cu^OCA(TPPO) 4•2CH 3N0 2 14 80 14. 46 12.39 12. 09 51 76 50 38 3. 88 3.78 1.63 1.72 7.22 7.13 

[(CH 3)N] 1 +Cu l +OC£ 1 0 27 58 27. 77 38.48 38. 10 20 85 21. 00 5 26 5.22 - - - -

\ C u 1 + O C £ 1 0 32 08 32. 27 45.12 45. 38 - - - - -
C U l +0C£ 6(Py0) 4 

Method 1 
Method 2 

29 
29 

44 
44 

29 
28. 

03 
33 

24.64 23. 44 27 
27 

82 
82 

28. 
28 CO 

1—1 

CO 
00 2 

2 
34 
34 

2.50 
2.48 

6.49 
6.49 

6.47 
6.25 

- -

Cu 1 +OC£ 6(Py) 1 + 31 80 30. 94 26.62 26. 29 - - - - -
C U l +OBr 6 (TPPO ) 4 • 2CH 3N0 2 12 80 12. 85 - 44 77 43. 95 3 36 3.42 1.41 1.35 - -

c V B r 6 ( N H
3 V - 0 00 1 67 1 48 1.64 6.85 6.83 - -

Cu,0(acetate)_ 4 6 40 70 41. 07 - 23 08 23 12 2 91 2.98 - - - -

[ ( C H 3 ) ^ C d t + O C £ i o 34.87 35. 46 18 90 18 74 4 76 4.54 - - - -

Cu(EIA) 31 04 30 85 - 41 06 41 12 5 43 5.37 6.84 6.78 - -

Cu(PIA) 29 05 28. 62 - 43 92 44 07 6 00 5.96 6.40 6.30 - -

Cu(mSALPA) 23 46 23 68 - 48 79 48 66 4 85 4.88 5.17 5.04 - -

Cu(SALPA )C£ 22 .92 22 93 - 43 33 43 13 4 36 4.40 5.05 5.04 - -

"Cobalt trimer" 26 .97 27 04 29 32 29 88 6 47 6.88 12.83 11.79 - -



12 

y -oxo-hexa-y-chlorotetrakis{triphenylphosphine oxide copper(II)} 
d m i t r o m e t h a n e , Cu. OC£^(TPPO)., « 2 C H o N 0 o 

q. b 4 d Z— 

In an attempt to replace the central oxygen atom in these com­

plexes with a sulfur atom, CuS was substituted for CuO in method one 

above. After filtering the hot solution, orange crystals were deposi­

ted over a period of several days. It was first thought that this was 

the desired material, C u ^ S C £ g ( T P P O b u t elemental analysis showed no 

sulfur was present. Elemental analysis, Table 1, and a molecular 

weight determination via the density and unit cell volume determination 

indicated that the compound was Cu.0C£_(TPPO). «2CH oN0^. The same com-
^ 4 6 4 3 2 

pound could be prepared by heating the mixture in method one above for 

only about 15 minutes. The two nitromethane molecules could be removed 

by heating the compound under vacuum in a drying pistol; recrystalli-

zation of the compound from acetone yielded unsolvated Cu 0C£ (TPPO) . 
4 6 4 

The Tetramethylammonium Salt of y -oxo-hexa-y-chlorotetra{chloro-

A mixture of anhydrous CuCJi^ a n < 3 CuO was refluxed in methanol 

for about 24 hours. The hot solution was filtered and tetramethyl­

ammonium chloride added. Deep-red octahedral-shaped crystals were 

slowly deposited; after one day the crystals were filtered and then 

dried in a vacuum dessicator over sulfuric acid. Analytical data are 

Tetrapotassium y -oxo-hexa-y-chlorotetra{chlorocuprate(II)}, K. Cu. 0C£. 14 4 4 10-
About 0.1 gram of 8 5 per cent KOH was dissolved in 10 ml of 

methanol and this solution was added to a solution which contained 0.7 

gram of anhydrous C u C £ 0 in 125 ml benzene. A red powder precipitated 

given in Table 1 for [ ( C H 3 ) 4 N ] 4 C u 4 0 C £ 10' 
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immediately from the solution. The only solvent in which this material 

seemed to dissolve in was water, in which it decomposed. Analytical 

data for K Cu 0C£ are given in Table 1. 
4 4 -L U 

y^-oxo-hexa-y-chlorotetrakis{pyridine-N-oxide copper(II)}, Cu^OC£^(PyO)^ 

Method One. A mixture of anhydrous CuCJ^ and CuO was refluxed in 

isobutyl alcohol for about 48 hours. This hot solution was filtered and 

pyridine-N-oxide (PyO) was added to the filtrate. A golden yellow, very 

insoluble, powder precipitated immediately. This material was washed 

with acetone and dried in a vacuum dessicator. Analytical data for 

Cu^OCA (PyO)^ are given in Table 1. 

Method Two. Pyridine-N-oxide was added to a solution of 

Cu^OCil (TPPO)^ in acetone and a golden yellow powder precipitated 

immediately. Analytical data for this method are summarized in Table 

1. 

y ( |-oxo-hexa-y-chlorotetrakis{pyridine copper(II)}, Cu^OCfl (Py)^ 

Since the preparation of Cu., 0C£_ (Py)., by Bock (16) gave very 
4 b 4 

small yields, a preparation giving better yields was developed. 

Anhydrous C u C £ 2 and CuO were refluxed in isobutyl alcohol for about 48 

hours. The hot solution was filtered and pyridine added. A golden-

yellow, very insoluble, powder was precipitated immediately. The 

compound was washed with acetone and dried in a dessicator. Analytical 
data for Cu.,0C£ r (Py)., are given in Table 1. 4 b 4 
y, -oxo-hexa-y-bromotetrakis{triphenylphosphine oxide copper(II)} 
d m i t r o m e t h a n e , Cu.OBr_(TPPO)., ' 2 C H o N 0 o — — — — — ^ — 14 b 4 —o Z— 

A 3:1 molar ratio of C u B r 2 (0.01 mole) and KOH (0.003 mole) was 

dissolved in nitromethane and then triphenylphosphine oxide (TPPO) 
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(0.013 mole) was added. The hot solution was filtered and deep-red 

crystals formed in about one day. The crystals were filtered and then 

dried in a vacuum dessicator over sulfuric acid. Analytical data for 

C u . O B W T P P O ) . «2C H O N0_ are given in Table 1. The two nitromethane 4 6 4 3 2 
molecules could be removed by heating under vacuum in a drying pistol 

or by recrystallization of the complex from acetonitrile. 

y-oxo-hexa-y-bromotetrakis{ammine copper(II)}, Cu^OBr (NH^) 

Method One. In an attempt to recrystallize the bromide salt of 

the copper(II) complex of N(t-butyl)aminoethanol, Cu(0-CH 2-CH 2-NH-tbu)Br, 

from nitromethane, it was noticed that the solution became very gela­

tinous as it was heated almost to boiling. This solution was filtered 

and the filtrate was allowed to stand for several days, after which 

well-formed red-brown octahedral-shaped crystals were deposited. These 

crystals were filtered and then dried in a vacuum dessicator. Only a 

very small amount of this material was formed by this method, but a 

structure determination confirmed the formula to be Cu, OBr^(NH 0), . 
4 6 3 4 

Method Two. The same material in small quantities could be 

obtained by heating Cu(0-CH 2~CH 2-NH-tbu)Br in 3-nitropropane. This 

material was filtered and then dried in a vacuum dessicator. Analytical 
data for Cu. 0Br_(NH Q) prepared by this method are given in Table 1. 4 6 3 4 

Method Three. Small quantities of Cu,,0Br_ (NH Q) could be pre-4 b 3 4 

pared by heating the bromide salt of the copper(II) complex of 2-phenyl-

2-diethylamino ethanol in nitromethane. This material was identified 

as being the same as the material prepared by method one and method 

two by unit cell and space group determinations. 
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y^-oxo-hexa-y-acetatotetrakis copper(II), Cu 1 (0(Ac) 

Stoichiometric amounts of copper(II) acetate dihydrate and CuO 

were refluxed in methanol for several hours. Blue-green crystals were 

deposited on the walls of the flask during this period. The crystals 

were filtered, and dried in a dessicator. Analytical data for Cu^OCAC) 

are given in Table 1. 

Tetramethylammonium Salt of y -oxo-hexa-y-chlorotetra{chlorocadi-

Tetramethylammonium chloride(0.01 mole) and KOH(0.003 mole) were 

dissolved in a small amount of methanol and C d C i ^ O - O l S mole) was then 

added. This solution was heated and filtered while hot. Upon stand­

ing, a white crystalline material was precipitated. The crystals were 

filtered and dried in a vacuum dessicator over sulfuric acid. Analytical 

data for [ (CH 3 ) l +] 1 +Cd 1 +0C£ l Q are summarized in Table 1. 

Copper(II) Complex of the Dianion of the 1:1 Schiff's Base of Acetyl-
acetone and 2-aminoethanol, Cu(EIA) 

The preparation of this compound was similar to that of Jager 

(19). Equimolar amounts of 2,4-pentanedione, 2-aminoethanoLj and KOH 

were dissolved in methanol and a methanol solution containing an equiva­

lent amount of copper(II) acetate dihydrate was added. The hot solution 

was heated and filtered; blue-green crystals separated upon standing. 

The crystals were filtered and then dried in a vacuum dessicator. 

Analytical data for Cu(EIA) are given in Table 1. 

Copper(II) Complex of the Dianion of the 1:1 Schiff's Base of 
Acetylacetone and 3-amino-l-propanol, Cu(PIA) (20) 

The preparation of Cu(PIA) was the same as that of Cu(EIA) except 

3-amino-l-propanol was substituted for 2-aminoethanol. The red-violet 

umate(II) , [ ( C H 0 ),, ]„Cd,,0CJt 
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crystalline product was filtered and then dried in a vacuum dessicator. 

Analytical data for Cu(PIA) are given in Table 1. 

Copper(II) Complex of the Dianion of the Schiff's Base of 2-hydroxy-
3-methoxybenzaldehyde, Cu(mSALPA) 

This complex was prepared by a method similar to that of Cu(PIA) 

except 2-hydroxy-3-methoxybenzaldehyde w a s substituted for 2,4-pentan-

edione. The red-violet crystalline product was filtered and dried in a 

vacuum dessicator. Analytical data for Cu(mSALPA) are given in Table 1. 

Copper(II) Chloride Complex of the Monoanion of the Schiff's Base of 
Salicylaldehyde and 3-amino-l-propanol, Cu(SALPA)C& 

The preparation of Breece (21) was used in preparing this com­

pound. Equimolar amounts of salicylaldehyde and 3-amino-l-propanol 

were mixed in methanol. One-half of this amount of anhydrous CnCl^ was 

dissolved in methanol and was slowly added to the first solution. The 

golden-brown crystalline product was filtered and dried in a vacuum. 

Analytical data for Cu(SALPA)C£ are given in Table 1. 

Bis{tris(2-aminoethoxido)cobalt(III )}Cobalt(II) diacetate , 
"Cobalt Trimer" 

In an attempt to prepare the cobalt(II) analog of Cu(EIA), this 

compound was prepared. Equimolar amounts of 2,4-pentanedione, 2-

aminoethanol, and KOH were mixed in methanol. An equivalent amount of 

cobalt(II) acetate tetrahydrate was dissolved in methanol and the two 

solutions were mixed while hot. The hot solution was filtered and 

after about one day deep-red octahedral-shaped crystals formed. The 

crystals were filtered and air dried. Analytical data for the "cobalt 

trimer" are given in Table 1. 
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Crystallographic Data and Location of Atomic Positions 

Unit Cell Determination 

Experimental Methods. A crystal, which appeared to be a single 

crystal when viewed under a stereoscopic or a polarizing microscope, 

was chosen for mounting. The crystal was mounted on a thin glass fiber 

which had been glued to a metal pin. The metal pin was secured into 

the goniometer head and a coarse adjustment of the arcs by visual 

examination of the crystal was performed. Final orientation of the 

crystal was carried out on a Buerger precession camera using unfiltered 

molybdenum radiation (22). 

Unit cell dimensions, diffraction symmetry and other data neces­

sary to define the unit cell and space group were obtained from zero 

level and upper level photographs using zirconium-filtered molybdenum 

radiation. 

Collection of Intensity Data on Film 

After the unit cell and space group data were collected, the col­

lection of intensity data began. Three timed exposures, usually of .50, 

5.0, and 0.5 hours, were made; Ilford Industrial-G X-ray film was used. 

The orientation of the crystal was checked periodically during the col­

lection of the data. The three timed exposures were all carried through 

the development process simultaneously. The intensities of the reflec­

tions were estimated by a visual comparison of the reflection to a 

standard series. 
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Collection of Diffractometer Data 

When the data were to be collected by counter methods, the crys­

tal and goniometer head were moved from the precession camera to a 

Picker Four-circle Automated Diffractometer after the preliminary 

studies. Since the alignment on the diffractometer was more critical 

than on the precession camera, the crystal was realigned according to 

published instructions (23). The four angles, <J>, x» w and 26, which 

define the position of the crystal and counter to record a reflection 

in reciprocal space, were determined for several reflections. From this 

data, refined unit cell parameters and angle settings for the remaining 

reflections were obtained by a least-squares method using a computer 

program (24). The intensities were measured with the scintillation 

counter mounted 21 centimeters from the crystal. The intensities were 

collected by the 9 - 2 9 scan technique with a takeoff angle of 1.6° 

and a scan rate of 1° per minute. When the scan was completed, sta­

tionary background counts were recorded on each side of the scan. Cali­

brated copper attenuators were used in the collection of the data. The 

attenuators were calibrated by collecting intensities on thirty differ­

ent reflections of various magnitudes. The threshold point was set so 

that attenuators would be inserted automatically when the counting rate 

exceeded 10,000 counts/second. The pulse height analyzer was set for 

approximately a 90 per cent window, centered on the molybdenum Ka peak. 

Corrected intensities (CI) were obtained by the equation 

CI = CT - S(bgdl + bdg2) 
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where CT is the total integrated peak count and S is the ratio of the 

scan time to the total time for counting backgrounds. Weights, W^, 

were assigned to each reflection in the refinement process by the 

formula 

W i = 4(CI)/a(I) 2 

The corrected intensities were assigned standard deviations according 

to the formula (25) 

a(I) = [CT + 0.25(tc/tb) 2(bdgl+bdg2) + ( P I ) 2 ] 1 / 2 

where a(I) is the standard deviation for the ith reflection, tc is the 

total scan time, tb is the counting time of each background, and P is 

an "ignorance factor" that must be added to keep the very strong 

reflections from having unreasonably high weights. 

Periodic scans of standard reflections were made to check for 

decomposition, loss of alignments and changes in the electrical cir­

cuitry. If any significant changes in the intensities of the standard 

reflections were noted, the crystal was realigned and the collection of 

the data was resumed. 

Calculations 

Computations were carried out on a Burroughs 5500 computer and 

on the Univac 1108 computer. Programs used include modified versions 

of F. L. Carter's program for calculating diffractometer settings (24), 
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Zalkin's FORDAP Fourier summation program (26), Busing, Martin and 

Levy's ORFLS (27), XFLS (28), and ORFFE (29), a program for calcu­

lating Lorentz-polarization corrections by Bertrand (30) a data 

reduction program by Kirkwood (31), and a program for calculating 

the best least-squares plane for a set of atoms (see Appendix 1 ) . 

In all of the structure factor calculations the scattering factors 

for neutral atoms by Ibers (32) were employed for all atoms. 

Determination of Structures 

Solution of the Structure of the Tetramethylammonium Salt of 
C u ^ Q C £ 1 0 " t t (18) 

An octahedral-shaped crystal with an average trigonal-face to 

trigonal-face distance of about 0.3 millimeters was chosen for the unit 

cell determination. Precession photographs, using zirconium-filtered 
o 

molybdenum Ka(X = 0.7107A) radiation, indicated that the crystal was 
o 

cubic with a unit cell dimension a of 19.30 ± 0.02A. The calculated 
3 

density of 1.70 g/cm agreed well with the experimental value of 
3 

1.69 ± 0.02 g/cm obtained by the floatation method in a mixture of 

carbon tetrachloride and methylene iodide. From the density of the 

crystal and the volume of the unit cell, it was calculated that there 

were eight formula units of C H N Cu O C L per unit cell. The Laue 
lb 4o 4 4 _L0 

symmetry was m3m and the hhZ reflections were systematically absent 

for I odd. Although space groups Pm3m and P43n were possible, only the 

latter was consistent with the presence of eight anions per unit cell. 

Successful refinement confirmed P43n as the correct space group. 
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The same crystal was used to collect intensity data on film. 

A Buerger precession camera was used to collect a total of 310 unique, 

non-zero reflections (which were visually estimated as previously 

described) from the hkt (£=0-4) layers. Lorentz-polarization correc­

tions (30) were then computed and applied to the data. The minimum 

structure factor, Fmin, was obtained by multiplying the least intense 

spot on the standard series, Imin, by the Lorentz-polarization factor 

for the reflections and then taking the square root of the product. 

Since the calculated absorption coefficient, ia, was only 32cm \ no 

corrections were made for absorption (32). 

From a three-dimensional Patterson synthesis .(33), coordinates 

were assigned to all atoms except those of the tetramethylammonium 

ions. The interpretation of the Patterson map was simplified since 

it was suspected that the basic structural unit would be similar to 

that found for the other Cu. 0Cft_L. (10) structure. The eight oxygen 
4 b 4 

atoms occupied a 2a set (site symmetry, 23) and a 6c set (site, sym­

metry, 4) (34). The copper atoms coordinated to the oxygens atoms 

of the 2a set (origin anion) occupied an 8e set and the copper atoms 

coordinated to the oxygen atoms of the 6c set occupied the 24i posi­

tions. The bridging chlorides of the origin anion were placed in a 

12f set and the bridging chloride of the non-origin anion were placed 

in 12g and 24i sets. (Since the bridging chlorides occupy equatorial 

positions in the coordination sphere of the copper, they will be desig­

nated CI ; primed symbols will be used for the non-origin anion), 

eq 
The terminal chlorides (designated C£ ) were placed in an 8e set for 
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the origin anion and in a 24i set for the non-origin anion. 

After two cycles of full-matrix least-squares refinement (27) of 

the coordinates of all of the atoms, the conventional R factor was 

0.17 (R = Z Fo - Fc /Z |Fo| ). A Fourier synthesis was then 

computed using the phases calculated for the known part of the structure 

From the resulting electron density map, all of the remaining non-

hydrogen atoms were located. Least-squares refinement of all atomic 

coordinates not defined by symmetry, individual isotropic temperature 

factors, and individual scale factors for the five layers of data was 

continued until successive cycles gave no appreciable change in any 

parameter. The final conventional R value was 0.090. Structure 

factors were then calculated for unobserved reflections and none of 

the calculated values exceeded two times Fmin. Final structural 

parameters are listed in Table 2 and observed and calculated structure 

factors are listed in Table 3. 

Solution of the Structure of Cu. 0Br_(NH 0). 
4 ^ — 

Crystals of Cu.0Br_(NH ) , suitable for X-ray diffraction studies, 4 6 o 4 

were obtained from method one of the preparation. A well-formed octa­

hedral-shaped crystal with a radius of approximately 0.15 mm was mounted 

on an apex of the octahedron. Precession camera photographs indicated 

that the crystal system was tetragonal since a - b i- a and a = 3 = Y = 

90°. The space group was uniquely defined as being P42^c since the 

odd index reflections in the hhl layer and along the ?z00 lines (I = 

2n+l on hhl and h = 2n+l on 7z00) were systematically absent. 
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Table 2. Positional and Thermal Parameters 
for [(CH 3) l +N] l +[Cu l +OC£ 1 0] 

Atom X y z B(A 2) 

0 0 .0000 0 , .0000 0 .0000 2. .4(2.3) a 

0' 0 .2500 0 , .5000 0, .0000 8, .7(3.0) 

Cu 0 .0582(5) 0, .0582 0 .0582 4, .3(3) 

Cu' 0 .1922(5) 0, .5501(4) 0 .0637(4) 3, .6(2) 

CI 
eq 

0 .1537(20) 0, .0000 0 .0000 7, .2(8) 

C£ , eq' (1) 0 .0980(14) 0 , .5000 0 .0000 4. ,8(5) 

eq' (2) 0 .2457(8) 0, .6511(8) 0 .0178(8) 3, .7(3) 

CI 
ax 

0 .1231(13) 0, .1231 0 .1231 8, .2(1.4) 

CI , ax' 0 .1295(9) 0, .6100(9) 0 .1417(10) 5 , .5(5) 

N 0 .3401(34) 0, .3401 0 .3401 5, .1(2.4) 

N' 0 .8549(39) 0, .9243(42) 0 .3459(40) 7, .3(1.9) 

C(l) 0 .2955(60) 0, .2955 0, .2955 12. .9(5.9) 

C(2) 0 .3365(68) 0. .4060(49) 0 .3251(61) 9, .9(3.2) 

C»(l) 0 .8046(48) 0. ,9532(47) 0, .2916(48) 9, .1(2.3) 

C»(2) 0 .8490(41) 0. ,8449(41) 0, .3276(40) 7, .1(1.8) 

C f (3) 0 .9284(43) 0, .9246(43) 0, .3371(50) 8, .3(2.0) 

C»(4) 0 .8418(41) 0, .9242(36) 0, .4108(40) 5, .3(1.5) 

Numbers in parentheses are the estimated stand­
ard deviations occurring in the last digits listed. 
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Table 3 . Observed and Calculated Structure 
Factors for [ (CH 3 ^ N ^ C u ^ O C * 

H K FO FC H K FO FC H K FO FC H K FO FC 

L = 0 16 2 1180 1133 10 8 1296 1249 22 4 455 294 
16 5 531 439 10 9 1076 1260 

3 3 733 731 16 6 376 287 11 2 1157 1031 L = 2 
4 0 3493 3175 16 8 1316 1234 11 4 1171 975 
4 2 550 595 16 10 542 493 11 5 1181 1 181 3 3 1805 1812 
4 3 423 463 16 11 385 311 11 6 1306 1274 L 1 1994 2004 
4 4 4950 4724 16 12 774 690 11 10 398 360 4 2 2267 2325 
6 0 2422 2244 16 16 669 492 12 1 537 500 4 3 2588 2872 
6 1 1719 1779 17 2 536 601 12 2 538 546 4 4 1621 1745 
6 5 828 981 17 4 380 460 12 5 948 807 5 1 555 487 
7 3 462 480 17 6 540 471 12 6 1460 1374 5 3 807 821 
7 6 3105 3131 17 10 669 730 12 7 557 480 5 4 2529 2561 
8 0 1967 151 1 17 16 380 168 12 11 585 827 5 5 1189 1101 
8 2 1121 1 085 18 1 941 1022 13 2 394 332 6 1 582 584 
8 4 1516 1598 18 3 544 640 13 3 791 782 6 2 1454 988 
8 6 2298 2434 18 7 386 388 13 4 889 922 6 4 1785 1901 
8 8 6932 7013 18 8 547 551 13 5 399 4 1 8 6 6 5256 4925 
9 2 1984 1970 18 9 671 647 13 6 697 736 7 3 1031 990 
9 4 601 530 19 2 548 556 13 10 4 1 8 382 7 4 1363 1244 
9 6 1856 1962 20 0 1739 1367 14 1 704 636 7 5 1083 1 041 

10 0 2582 2687 20 2 777 677 14 2 575 579 7 7 2565 2506 
10 1 2184 2126 20 4 673 468 14 3 1527 1274 8 3 1696 1817 
10 3 1527 1443 24 0 625 447 14 4 409 357 8 4 460 665 
10 5 1270 1394 14 6 4 1 3 325 8 5 1151 1069 
10 7 1459 1516 L = 1 14 11 4 3 1 484 8 6 339 4 1 0 
10 8 1623 1716 14 12 616 703 8 7 1702 1635 
10 9 1168 1235 3 2 1239 1050 14 13 440 583 8 8 1884 1861 
11 2 1293 1270 4 3 2124 2137 15 2 1025 916 9 3 1672 1769 
11 6 1053 992 4 1 2233 2098 15 3 4 1 9 421 9 4 977 1054 
11 7 674 724 4 2 2172 2004 15 10 6 1 5 672 9 6 356 390 
11 10 703 753 5 2 570 487 15 11 438 495 9 7 1360 1325 
12 4 1172 780 6 2 626 584 15 12 442 297 i 9 8 1173 1246 
12 5 340 400 6 1 601 656 15 13 445 534 9 9 1515 1623 
12 6 1537 1413 6 4 1502 1647 16 1 741 8 1 0 10 2 2264 2557 
12 7 347 181 6 5 2441 2 4 1 3 16 2 428 591 10 4 728 960 
12 8 1403 1338 7 2 720 764 16 3 607 536 i 10 5 521 6^3 
12 10 359 352 7 3 421 592 16 5 4 3 1 289 10 6 2362 2326 
12 12 1383 1519 7 4 303 3 1 0 16 6 6 1 2 560 10 10 565 730 
13 2 775 774 7 5 1158 1102 16 10 765 867 11 3 1311 1321 
13 3 491 526 7 6 2242 2385 16 13 450 443 ' 1 1 4 1525 1429 
13 4 349 557 8 2 1405 1 5 1 9 17 2 757 784 • 11 6 550 449 
13 5 496 557 8 4 1017 941 17 3 6 1 9 609 • 11 7 788 816 
13 6 1224 1052 8 5 1601 1535 17 6 623 461 11 8 692 741 
13 12 375 517 8 6 2355 2408 17 10 775 844 11 11 592 556 
14 0 1423 1479 8 7 1075 1223 18 1 1406 1470 12 3 1478 1428 
14 1 1744 1595 9 2 1761 1867 18 4 446 289 i 12 5 693 7 1 7 
14 4 507 200 9 4 830 840 18 5 446 393 i 1 2 6 700 782 
14 5 882 831 9 5 767 770 18 6 447 338 ! 12 7 913 1011 
15 1 365 409 9 6 1707 1647 18 7 634 379 12 8 584 6 1 4 
15 2 5 1 7 466 9 8 1021 782 18 8 636 633 12 9 4 1 8 489 
15 3 732 844 10 1 1395 1235 18 9 780 629 12 12 436 575 
15 10 536 539 10 3 2228 2089 18 11 453 453 13 3 4 1 0 269 
15 15 551 559 10 4 502 6 1 4 19 2 637 545 13 4 922 895 
16 0 2237 2381 10 7 2179 2336 20 2 643 547 13 5 1245 1161 
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H K FO FC 

13 8 425 358 
13 12 631 782 
13 13 639 748 
14 2 2395 2376 
14 4 953 893 
14 6 862 759 
14 8 437 315 
14 10 445 659 
14 12 455 581 
14 14 806 833 
15 8 448 453 
15 9 639 592 
15 12 655 554 
16 5 639 687 
16 6 454 302 
16 7 456 560 
16 8 794 791 
16 9 799 853 
16 1 1 8 1 0 702 
17 7 658 668 
17 8 661 694 
17 9 664 602 
18 1 468 323 
19 3 477 446 

L = 3 

Table 3 . 

H K FO FC 

5 4 1865 1777 
6 3 1879 1844 
6 4 1996 1968 
7 4 2193 2174 
7 6 1421 1527 

10 8 435 582 
11 4 1135 1180 
11 5 4 3 4 280 
11 6 4 3 9 478 
11 8 784 664 
11 9 651 644 
10 6 4 2 0 564 

9 5 874 872 
9 8 723 685 
9 7 816 788 

10 3 1138 1033 
10 4 1995 20?1 
10 5 584 648 

9 6 1056 946 
9 4 542 598 
8 4 506 559 
8 6 1068 1010 
8 7 549 704 

12 3 1180 1097 
12 5 2028 2159 
12 6 794 825 
12 7 927 823 

(Continued) 

H K FO FC 

12 11 850 1087 
13 4 1623 1385 
13 6 476 380 
13 7 480 430 
13 12 722 645 
14 4 1086 1081 
14 7 496 255 
14 11 730 699 
14 12 522 551 
15 4 7 1 0 735 
15 12 754 752 
16 3 515 534 
16 10 927 933 
20 3 795 791 

L = 4 

5 5 2941 3275 
6 6 1574 1917 
7 5 1819 1673 
7 6 1468 1493 
7 7 603 524 

CD
 

4 1523 1357 

CD
 

6 437 388 
9 5 785 603 
9 6 465 529 
9 7 478 533 

H K FO FC 

10 4 1161 1190 
10 5 1366 1364 
10 6 697 697 
11 5 1251 1413 
11 6 734 744 
11 7 1180 1134 
11 11 569 653 
12 4 2124 1943 
12 8 969 939 
13 5 1374 1413 
13 6 1267 1237 
13 7 573 698 
13 1 1 604 740 
13 13 622 678 
14 5 1167 1097 
14 6 832 1142 
14 7 840 973 
14 13 637 771 
14 14 645 641 
15 5 1209 1169 
15 6 608 847 
15 11 637 794 
16 4 1076 935 
16 6 627 357 
16 8 899 840 
17 6 645 357 
19 7 677 638 
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All of the photographs also showed mirror-mirror (mm) symmetry con­
sistent with the tetragonal classification. The calculated density, 

3 
3.44 g/cm , based upon two formula units of Cu.,OBr_ (NH Q) per unit cell 

4 b o 4 
agreed well with the experimental value of 3.35 ± 0.10 obtained by the 

flotation method in a mixture of iodoform and methylene iodide. 

After the space group determination and preliminary alignment 

was completed, the crystal and goniometer head were moved to the Picker 

Four-circle Diffractometer and realigned as described earlier (23). 

The refined unit cell constants obtained by the least-squares method 

(24) described earlier were a = b = 9.004(5) and o = 9.731(6), where 

the numbers in parentheses represent the standard deviation in the 

last figure. A total of 483 unique reflections were collected using 

a ten second background and a 2° scan. The reflections collected were 

within the region between 0-8 in h and k and 0-10 in £. No significant 

changes in the intensities of the standard reflections were noticed 

during the collection of the data. Of the 483 reflections collected, 

340 were accepted as being statistically above background on the basis 

that c(I)/CI was less than 0.30 with P = 0.02. Since the linear absorp­

tion coefficient, y, was 218 cm \ it was necessary to correct for 

absorption (32). Absorption corrections based on a spherical crystal, 

assuming the octahedral crystal approximated a sphere of radius 0.15 

mm were calculated and a corrected set of intensities obtained. 

Lorentz-polarization corrections (30) were also calculated for the data 

set. Corrections for the real and imaginary parts of the anomalous 

dispersion (32) were applied to the bromine and copper atoms. The 
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coordinates of all of the atoms except the ammonias were found from 

a three-dimensional Patterson synthesis (33). The Patterson map was 

quite confusing at first since the exact formula of the compound was 

not known and this structure was not expected. However, having worked 

with other y^-oxo type structures, the interpretation was straight­

forward once the nature of the compound was recognized. The oxygen 

atoms were placed in a 2a set (site symmetry, 4 ) , the copper atoms in 

the 8e set, and the bromine atoms in 4c and 8e sets. Three cycles of 

full-matrix least-squares refinement (28) resulted in a conventional 

R value of 0.15. From an electron density map (26) phased on these 

atoms, the nitrogen atom was located and placed in the 8e set. After 

two more cycles of least-squares refinement varying the scale factor, 

individual atomic coordinates not defined by symmetry, and individual 

isotropic temperature factors and with all of the data weighted at 

unity, the conventional R value dropped to 0.13. After further refine­

ment with anisotropic temperature factors and a weighting scheme (25) 
2 

based on counting statistics (w. = 4(CI)/a(I) ) values of 0.108 and 
I 

0.088 were obtained for R and R , where R is the previously defined 

contentional R factor and 

R = {z W . ( | F | - | F |) 2/z W . ( | F | ) 2 } 1 / 2 . 2 . I 1 o 1 ' c 1 . I 1 o' l l 

A final difference Fourier showed some intensity in the regions of the 

hydrogen atoms but these positions were not included in the refinement. 
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were not included in the refinement. These peaks were in the range 

of 0.9 to 1.1 electrons in height, thus the proposed structural formula 

was definitely established since if any heavier atoms had been bonded 

to the nitrogen, the peaks in the difference Fourier would have been 

much more intense. The positional parameters derived from the last 

cycle are presented in Table 4. The anisotropic temperature factors 

for the atoms are given in Table 5 and the final observed and calculated 

structure factors are given in Table 6. 

Table 4. Final Positional Parameters for Cu.OBr (NH^), 
4 b 3 4 

Atom X y z 

Ocnt 0 0 0 

Cu 0, .0663(6) 0. .1596(5) 0, .1147(5) 

N 0, .1343(36) 0, .3245(40) 0. .2339(35) 

Br8fs 0, .3230(5) 0, .1281(5) 0 , .0031(7) 

Br4fs 0 0 0 , .3138(5) 

Table 5. Final Anisotropic Thermal Parameters 
(X10k) for C u 4 0 B r 6 ( N H 3 ) 4 

Atom 11 22 33 12 13 23 

Ocnt 
Cu 
N 
Br8FS 
Br4FS 

59(15) 
68(7) 
29(12) 
51(5) 

144(12) 

59(15) 
36(7) 
55(14) 
81(6) 
65(10) 

50(13) 
66(4) 

114(23) 
102(4) 
60(5) 

0 
- 9(5) 
-34(13) 
- 8(4) 
- 1(11) 

0 
-19(6) 
- 2(5) 

8(6) 
0 

0 
- 5(5) 
-35(14) 
-25(5) 

0 
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Table 6. Observed and Calculated Structure 

H K FO FC 

L = 0 

2 2 96 76 
1 3 2 1 5 173 
2 3 112 93 
3 3 135 115 
0 4 120 102 
1 4 178 153 
2 4 138 120 
3 4 121 108 
4 4 143 130 
1 5 65 60 
3 5 117 109 
4 5 65 60 
5 5 101 101 
0 6 180 176 
1 6 74 70 
2 6 123 113 
4 6 31 13 
5 6 28 30 
1 7 52 41 
2 7 26 13 
3 7 1 48 152 
6 7 57 60 
0 8 34 3 
1 8 47 46 
2 8 34 26 
3 8 55 58 
4 8 83 87 
5 8 28 10 
6 8 33 28 
8 8 35 22 

L = 1 

1 2 122 111 
0 3 56 49 
1 3 73 66 
2 3 63 56 
0 4 28 17 
1 4 64 57 
2 4 191 166 
3 4 107 91 
0 5 165 144 
1 5 88 77 
2 5 38 33 
4 5 97 95 
0 6 83 82 
1 6 51 52 
2 6 55 49 
3 6 25 9 
4 6 56 52 
5 6 78 76 

H K FO FC H K FO FC H K FO FC 

0 7 25 21 8 8 46 43 4 4 39 32 
1 7 85 89 0 5 28 17 
2 7 34 39 L = • 3 2 5 143 149 
3 7 30 21 3 5 33 30 
5 7 78 78 0 1 68 64 4 5 28 22 
0 8 29 20 0 2 60 66 5 5 57 60 
1 8 84 86 1 2 91 94 0 6 56 59 
2 8 51 53 0 3 143 145 2 6 51 52 
3 8 92 90 1 3 1 22 128 3 6 35 35 
4 8 35 32 2 3 169 168 4 6 59 65 
5 8 31 34 0 4 45 44 6 6 52 60 
7 8 35 42 1 4 128 128 0 7 29 32 

2 4 30 23 1 7 29 28 
L = 2 3 4 41 42 2 7 36 38 

0 5 25 22 4 7 50 50 
1 1 139 142 1 5 48 48 6 7 26 22 
0 2 112 122 2 5 82 79 7 7 38 40 
1 2 203 199 3 5 82 83 0 8 35 40 
2 2 128 125 4 5 117 119 1 8 28 7 
0 3 114 116 . 0 6 66 67 2 R 33 28 
1 3 89 79 1 6 85 79 3 8 29 23 
2 3 72 64 2 6 94 95 4 8 27 10 
3 3 169 157 4 6 57 61 5 8 32 33 
0 4 156 151 5 6 37 35 6 8 41 46 
1 4 112 102 0 7 85 85 8 8 39 46 
2 4 36 27 1 7 79 83 
3 4 71 63 2 7 31 25 L = 5 
4 4 95 91 3 7 54 51 
0 5 54 45 4 7 33 27 0 1 139 142 
1 5 66 62 5 7 37 35 0 2 36 36 
2 5 99 95 6 7 75 81 1 2 89 93 
3 5 65 62 0 8 41 33 1 3 91 92 
4 5 59 61 2 8 30 25 2 3 46 39 
5 5 77 82 3 8 80 85 2 4 25 24 
0 6 37 27 4 8 33 30 3 4 85 93 
1 6 91 87 5 8 36 40 0 5 111 118 
2 6 40 38 6 8 38 43 1 5 43 42 
3 6 43 40 2 5 39 40 
4 6 82 79 L = 4 3 5 66 71 
6 6 29 25 4 5 30 27 
0 7 78 77 0 0 65 56 0 6 44 45 
1 7 51 52 1 1 129 133 1 6 32 32 
2 7 39 32 0 2 78 78 2 6 70 79 
3 7 42 35 1 2 118 125 3 6 91 102 
4 7 38 37 • 2 2 58 59 4 6 44 46 
5 7 45 48 0 3 38 35 5 6 39 42 
6 7 51 51 1 3 141 149 1 7 56 59 
0 8 38 33 2 3 33 28 2 7 75 82 
1 8 33 35 3 3 68 71 3 7 46 44 
2 8 46 49 0 4 62 47 4 7 41 43 
3 8 43 47 1 4 29 26 6 7 42 46 
4 8 37 39 2 4 70 75 1 8 43 47 
6 8 30 24 3 4 26 19 6 8 30 26 

Factors for Cu.,0Br c (NH 0 ), 4 6 3 4 



H K FO FC H 

L = 6 0 
0 

1 
0 0 128 129 2 
0 1 27 26 1 
1 1 26 25 2 
1 2 10] 110 3 
2 2 105 1 13 0 
0 3 60 66 2 
1 3 117 127 4 
2 3 27 21 0 
3 3 27 18 1 
1 4 38 37 2 
2 4 78 77 4 
4 4 82 83 5 
0 5 39 40 0 
1 5 33 37 1 
2 5 80 87 3 
3 5 40 31 4 
4 5 28 33 5 
5 5 83 86 3 
0 6 69 75 5 
1 6 49 55 
3 6 28 20 
6 6 37 46 
0 7 54 61 0 
2 7 31 34 0 
3 7 35 39 1 
4 7 36 28 0 
6 7 28 32 1 
7 7 34 33 2 
0 a 39 35 1 
2 8 28 21 2 
4 8 37 45 3 
6 8 33 36 0 

1 
L = 7 2 

3 
0 1 65 63 4 
0 2 58 61 1 
1 2 47 46 3 

Table 6. (Continued) 

K FO FC H K FO 

3 29 26 4 5 33 
3 50 48 1 6 40 
3 49 51 4 6 37 
4 28 28 6 6 36 
4 61 65 1 7 35 
4 34 32 4 7 25 
5 34 32 5 7 37 
5 37 35 6 7 28 
5 66 67 7 7 34 
6 63 67 0 8 41 
6 38 43 1 8 29 
6 28 30 2 8 32 
6 38 42 3 8 35 
6 27 19 4 8 31 
7 31 34 7 8 27 
7 52 51 8 8 34 
7 30 28 
7 28 20 L = 9 
7 40 42 
8 55 58 0 1 84 
8 26 18 0 2 27 

1 3 26 
L = 8 1 4 25 

2 4 65 
0 114 114 0 5 31 
1 25 20 1 5 37 
1 45 40 2 5 40 
2 66 67 4 5 50 
2 49 47 0 6 26 
2 66 70 1 6 42 
3 33 29 3 6 34 
3 39 36 4 6 27 
3 114 116 5 6 28 
4 102 108 0 7 31 
4 64 62 1 7 31 
4 37 29 2 7 33 
4 44 42 3 7 26 
4 4* 37 4 7 28 
5 48 43 5 7 33 
5 26 20 1 8 31 

FC H K FO FC 

28 2 8 28 23 
39 3 8 50 51 
38 4 8 27 18 
37 
30 L = 10 
11 
40 0 0 ] 12 n o 
27 1 1 39 35 
34 1 2 41 37 
41 2 2 30 22 
19 0 3 33 30 
25 1 3 44 39 
28 2 3 28 22 
21 3 3 25 15 

CO 1 4 42 36 
30 2 4 37 30 

3 4 35 25 
4 4 40 38 
0 5 29 8 

82 2 5 34 9 
5 3 5 37 32 

14 5 5 39 32 
12 0 6 43 37 
63 1 6 31 27 
25 2 6 36 28 
34 4 6 28 1 7 
36 0 7 30 26 
45 3 7 42 37 
7 4 7 31 7 

40 5 7 32 7 
24 7 7 27 4 
14 0 8 29 1 
17 1 8 29 18 
25 3 8 29 15 
21 4 8 31 21 
25 5 8 30 3 
7 6 8 30 15 

17 7 8 32 5 
30 
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Solution of the Structure of Cu(PIA) (20) 

Suitable crystals for diffraction work were obtained from the 

preparation of the compound. A needle-like crystal with approximate 

dimensions 0.10 x 0.17 x 0.60 mm was mounted along the long dimension 

and precession photographs were taken. The crystal was found to be 
o o o 

monoclinic with a - 5.98(1)A, b - 10.97(2)A, o = 14.42(2)A, and 6 = 

106.75(10)°. The density calculated on the basis of four formula 
3 

units per unit cell, 1.61 g/cm , agreed well with experimental value, 
3 

1.61(2) g/cm , obtained by the flotation method in a mixture of carbon 

tetrachloride and methylene iodide. The space group was uniquely 

defined as P2^/c since the systematic absence of the reflections with 

1 - 2n+l on the hOl zone and the systematic absence of the reflections 

with k = 2n+l on the OkO line were consistent only with this space 

group. 

Intensity data were collected on the Buerger precession camera 

using the same crystal as used for the space group determination. A 

total of 631 unique, non-zero reflections were usually estimated from 

the hklil - 0-3) and hklik = 0-2) layers. Lorentz-polarization cor­

rections (30) were made but no corrections for absorption were made 

since the linear absorption coefficient was small (y = 24 cm 

The coordinates of the copper atom were located from a three 

dimensional Patterson synthesis (33). After two cycles of full-matrix 

least-squares refinement (28), the conventional R value was 0.32. From 

an electron density map (26) phased on the copper atom, the positions of 

the atoms comprising the coordination sphere of the copper atom were 
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determined. At this point the conventional R value was 0.24 and another 

electron density map, phased on the atoms located, revealed the remain­

ing atoms. Four cycles of full-matrix least-squares refinement varying 

the seven individual scale factors, atomic coordinates and individual 

isotropic temperature factors converged to a conventional R value of 

0.100. At this point there were no significant changes in any parameter. 

The final structural parameters are listed in Table 7 and observed and 

calculated structure factors are listed in Table 8. 

Table 7. Final Positional and Thermal Parameters for Cu(PIA) 

Atom x y z B . A 2 

Cul 0 .1068(4) 0 .0322(2) 0, .1055(2) 4 .02(6) 

02 -0 .1465(21) 0 .0659(13) -0, .0015(9) 4 .89(30) 

C3 -0 .3369(33) 0 .1486(21) -0. .0102(15) 5 .04(44) 

C4 -0 .1792(38) 0 .2189(26) 0. .1710(18) 6 .20(52) 

N5 0 .0297(25) 0 .1377(17) 0, .2013(12) 4 .57(34) 

C6 0 .1506(34) 0 .1398(22) 0. .2908(16) 4 .96(44) 

C7 0 .0719(37) 0 .2174(25) 0. .3636(17) 6 .31(54) 

C8 0 .3489(31) 0 .0695(20) 0. .3327(14) 4 .66(41) 

C9 0 .4662(34) -0 .0068(24) 0, .2819(15) 5 .67(47) 

C10 0 .6916(35) -0 .0719(22) 0. .3353(16) 5 .79(49) 

011 0 .3762(22) -0 .0275(15) 0, .1892(10) 5 .59(31) 

C12 -0 .2506(40) 0 .2544(25) 0. .0637(20) 8 .07(65) 
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Table 8. Observed and 

H K FO FC H < FO FC 
L = 0 -5 8 95 87 

-5 0 67 68 
0 4 693 683 -4 3 281 263 
0 6 210 150 -4 5 145 176 
0 0 224 198 -4 1 87 74 
0 2 133 114 -3 3 440 496 
1 3 587 535 -3 5 253 208 
1 4 197 176 -3 6 82 67 
1 5 216 191 -3 7 65 85 
1 6 56 67 -3 8 119 119 
1 7 252 250 -3 9 58 49 
1 9 152 133 -3 0 38 50 
1 0 118 115 -3 1 67 73 
1 1 98 81 -3 2 39 31 
1 2 125 122 -3 3 55 47 
2 2 238 270 -2 2 510 404 
2 3 233 286 -2 3 70 45 
2 5 203 225 -2 4 381 388 
2 6 191 199 -2 5 76 70 
2 7 428 446 -2 6 289 288 
2 8 88 66 -2 7 45 53 
2 9 429 408 -2 8 384 3 64 
2 1 186 170 -2 9 43 23 
3 2 163 185 -2 0 156 176 
3 3 125 126 -2 1 54 63 
3 4 240 244 -2 2 55 63 
3 5 267 287 -1 3 234 223 
3 7 215 221 -1 4 278 297 
3 9 229 200 -1 5 44 46 
3 1 79 93 -1 6 412 443 
4 2 423 452 -1 7 115 151 
4 3 117 137 -1 8 529 428 
4 4 187 207 -1 9 41 36 
4 5 219 230 -1 0 339 314 
4 6 61 67 -1 2 116 110 
4 7 95 100 0 3 545 540 
4 8 68 56 0 5 214 264 
4 9 37 40 0 6 156 204 
4 0 82 67 0 7 91 106 
5 2 227 254 0 8 184 185 
5 4 135 154 0 9 115 114 
5 5 68 41 0 0 163 163 
5 6 44 48 0 1 117 118 
6 4 103 99 0 3 79 73 
6 5 89 88 1 3 971 887 

1 6 90 108 
L = -1 1 7 83 107 

1 8 77 69 
- 6 4 103 91 1 9 101 116 
- 6 6 110 113 1 0 50 56 
-5 3 92 106 1 1 118 124 
-5 4 84 91 1 2 47 46 
-5 5 71 82 1 3 97 87 
-5 6 121 135 2 5 39 62 

Structure Factors for Cu(PIA) 

H K FO FC H K FO FC 
2 6 249 276 -3 7 59 69 
2 7 104 99 -3 0 100 85 2 8 257 278 -3 2 80 74 2 9 49 64 -3 4 69 56 
2 0 121 129 -2 2 694 679 
2 1 100 97 -2 3 102 154 
2 2 67 68 -2 4 308 286 3 2 161 211 -2 6 180 177 
3 4 276 340 -2 7 130 153 3 5 151 158 -2 9 92 105 3 6 368 358 -2 0 89 94 
3 7 144 180 -2 1 53 43 3 8 274 279 -2 2 55 61 3 0 171 166 -2 4 70 50 
3 2 68 75 _1 3 335 314 
4 2 121 141 -1 4 159 177 
4 3 228 256 • -1 5 555 508 
4 4 218 253 _1 6 209 212 
4 5 60 68 -1 7 486 474 
4 6 226 244 -1 9 286 292 
4 7 36 35 -1 0 60 76 
4 8 154 147 -1 1 201 187 
4 0 95 97 -1 2 66 62 
5 2 90 106 0 3 402 350 
5 3 153 209 0 5 559 537 
5 4 99 123 0 7 429 381 
5 6 76 97 0 8 84 103 
5 8 72 78 0 9 322 296 
6 1 123 134 0 1 154 137 
6 3 145 158 0 3 56 52 
6 5 87 79 0 4 57 2Q 

1 3 755 752 
L = -2 1 4 593 666 

1 5 325 328 
-7 0 70 89 1 6 132 165 
-7 2 106 91 1 7 252 277 
-6 2 126 76 1 8 105 110 
-5 0 37 46 1 9 218 217 
-5 3 101 102 1 2 66 58 
-5 5 181 172 1 4 81 75 
-5 7 162 13'f 2 2 793 810 
-5 9 105 98 2 3 291 367 
-5 1 56 63 2 4 248 330 
-4 2 290 254 2 5 53 73 
-4 3 92 103 2 6 90 89 
-4 5 113 141 2 8 90 101 
-4 6 73 73 2 9 47 62 
-4 7 166 149 2 0 61 81 
-4 9 95 99 2 2 102 86 
-4 1 69 58 2 4 70 76 
-3 2 677 644 3 2 232 274 
-3 4 316 323 3 3 63 95 
-3 5 79 99 3 4 323 303 
-3 6 33 39 • 3 5 474 430 
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H K FO FC H 

3 6 266 251 - 2 
3 7 277 255 - 2 

3 8 91 102 - 2 

3 9 143 138 - 2 

3 0 52 64 - 2 

3 1 86 86 - 2 

3 2 68 64 - 2 

3 4 70 52 - 2 

4 3 155 1 77 - 1 
4 4 82 81 - 1 
4 5 287 269 - 1 
4 7 2 1 0 228 - 1 
4 9 120 126 - 1 
4 1 88 87 - 1 
5 2 96 1 10 - 1 
5 3 260 262 - 1 
5 4 98 121 - 1 
5 5 159 194 - 1 
5 7 163 173 0 
5 9 96 91 0 
5 1 56 31 0 
6 2 111 133 0 
6 4 104 109 0 
6 7 40 53 0 
7 2 99 82 0 
7 4 69 60 1 
7 6 69 43 1 

L = - 3 1 

7 1 116 81 1 
6 3 131 95 1 
5 2 106 94 1 
5 3 158 112 2 
5 4 124 109 2 
5 6 142 105 2 
5 8 102 90 2 
5 0 80 64 2 
4 2 176 140 2 
4 4 151 123 2 
4 6 221 166 2 
4 8 238 187 2 
4 0 157 127 3 
3 2 197 175 3 
3 3 346 296 3 
3 4 251 241 3 
3 5 116 123 3 
3 6 2 1 4 178 3 
3 8 198 168 3 
3 0 114 91 4 
3 1 63 49 4 
3 3 66 50 4 
2 2 220 173 4 
2 3 562 562 4 

Table 8. (Continued) 

K FO FC H K FO 

4 464 448 4 7 69 
5 2 1 3 189 4 8 117 
6 178 138 4 3 66 
7 50 41 5 2 107 
8 74 78 5 3 58 
9 110 98 5 4 176 
1 113 88 5 6 200 
3 65 68 5 8 140 
3 383 389 5 0 91 
4 243 238 6 2 77 
5 244 237 6 4 119 
6 463 392 6 6 151 
7 64 72 6 8 80 
8 77 60 7 3 66 
0 103 93 7 5 66 I—I 82 88 
2 43 37 H L FO 
3 78 61 
4 574 595 K = 0 
5 384 347 
6 737 645 - 7 2 98 
8 392 328 - 7 6 75 
0 241 199 - 7 8 98 
2 120 112 - 6 2 155 
3 89 78 - 6 6 276 
4 361 433 -6 10 58 
5 157 163 - 5 2 154 
6 437 4 1 9 -5 4 153 
7 131 123 - 5 6 233 
8 395 346 - 5 8 159 
0 179 153 . - 5 10 222 
2 113 99 -5 14 102 
3 44 36 - 4 2 151 
3 601 744 - 4 4 281 
4 633 754 - 4 6 68 
5 441 525 - 4 8 408 
6 436 471 - 4 10 244 
8 223 204 - 4 14 175 
0 56 62 - 3 2 352 
1 41 49 -3 4 335 
2 75 54 -3 8 643 
3 90 78 -3 10 132 
3 343 339 - 3 12 349 
5 222 231 - 3 16 79 
6 69 35 - 2 2 235 
7 96 86 - 2 4 502 
8 38 15 - 2 6 9 1 4 
1 75 76 - 2 8 427 
3 80 60 - 2 10 332 
2 112 114 - 2 12 171 
3 396 391 - 2 16 2 1 3 
4 309 313 - 1 2 602 
5 254 262 - 1 4 445 
6 276 268 - 1 6 750 

FC H L FO FC 

59 - 1 8 81 84 
94 - 1 10 478 497 

53 - 1 12 270 202 
103 - 1 14 108 99 

41 - 1 16 104 93 
158 0 4 626 525 
183 0 10 665 565 
134 1 2 62 70 

74 1 4 799 781 
84 1 6 30 25 

114 1 8 482 512 
136 1 10 175 209 

83 1 12 311 259 
62 1 14 111 120 

46 2 2 655 690 46 
2 4 594 579 

FC 2 6 230 255 FC 
2 8 406 392 
2 12 261 231 
2 14 66 38 

106 3 0 195 186 
81 3 2 644 645 

101 3 4 114 137 
180 3 6 3 1 7 351 
334 3 10 116 125 

68 3 12 121 116 
178 4 0 473 546 
175 4 2 297 327 
260 4 4 233 229 
180 4 6 49 62 
223 4 10 142 147 
104 5 0 238 280 
137 5 4 195 242 
291 5 6 65 61 

64 5 8 107 101 
408 6 2 65 73 
279 6 4 151 155 
179 
423 K = 1 
394 
635 - 7 3 97 103 
138 - 7 7 106 126 
342 - 7 11 61 55 

77 - 7 13 60 49 
220 - 6 4 79 65 
491 - 6 5 112 118 
852 - 6 7 189 211 
4 1 0 - 6 9 30 44 
307 - 6 11 121 134 
132 - 6 15 81 83 
170 - 5 3 28 37 
651 -5 4 74 84 
4 1 6 - 5 5 331 380 
732 - 5 9 220 224 
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Table 8. (Continued) 

H L FO FC 

5 11 116 123 
5 12 41 39 
5 15 118 107 
4 1 284 297 
4 2 67 74 
4 3 279 311 
4 5 2 77 2 39 
4 6 88 95 
4 7 15 3 17 3 
4 8 44 45 
4 9 407 380 
4 11 67 70 
4 12 56 47 
4 13 192 185 
4 15 42 58 
4 17 82 68 
3 1 300 317 
3 3 379 423 
3 4 87 110 
3 5 197 195 
3 6 158 206 
3 7 604 599 
3 8 66 92 
3 9 264 260 
3 11 150 154 
3 13 195 151 
3 17 151 135 
2 1 463 465 
2 2 164 113 
2 3 477 486 
2 5 2 1 9 223 
2 6 324 255 
2 7 8 1 2 763 
2 8 190 2 1 0 
2 9 67 92 
2 10 66 71 
2 11 443 369 
2 12 183 156 
2 13 54 67 
2 15 101 107 
2 17 123 111 
1 4 274 226 
1 5 506 497 
1 6 247 200 
1 7 329 324 
1 8 171 123 
1 9 309 267 
1 10 80 58 
1 11 466 4 1 4 
1 12 216 166 
1 15 207 166 
0 3 168 115 
0 4 111 99 
0 5 5 1 6 521 
0 7 78 50 

H L FO FC 

0 8 116 114 
0 9 599 567 
0 1 1 358 308 
0 13 196 190 
0 15 66 81 
0 16 61 39 
1 2 268 209 
1 3 642 661 
1 4 306 273 
1 5 384 361 
1 7 259 238 
1 9 464 472 
1 11 84 8? 
1 12 27 26 
1 13 141 157 
1 15 52 57 
1 16 53 35 
2 0 268 269 
2 1 188 207 
2 2 96 98 
2 3 880 878 
2 4 106 136 
2 5 55 70 
2 6 75 57 
2 7 442 472 
2 10 110 117 
2 11 120 1.48 
2 13 127 115 
3 0 228 280 
3 1 737 804 
3 2 53 73 
3 3 290 341 
3 4 133 166 
3 5 284 321 
3 7 77 110 
3 9 64 48 
3 11 2 1 1 186 
3 13 61 60 
3 15 74 67 
4 0 105 142 
4 3 77 88 
4 4 112 137 
4 5 180 227 
4 6 81 102 
4 7 77 75 
4 9 124 130 
4 11 86 103 
5 1 109 133 
5 5 148 174 
5 9 86 101 
6 5 61 73 

K= 2 

7 6 48 65 

H L FO FC 

- 7 8 107 119 
- 7 12 48 69 
- 6 5 56 85 
- 6 6 171 194 
- 6 10 122 118 
- 6 12 81 72 
- 6 14 67 45 
- 6 16 68 66 
-5 4 232 267 
-5 5 133 159 
-5 6 157 155 
-5 7 126 128 
- 5 8 30 43 
-5 10 193 191 
-5 11 87 98 
-5 12 54 47 
- 5 14 112 116 
- 5 16 58 59 
- 4 4 355 394 
- 4 7 240 245 
- 4 8 271 253 
- 4 10 154 172 
- 4 1 1 76 63 
- 4 12 51 42 
- 4 14 164 145 
- 4 1.7 75 60 
- 4 18 83 75 
- 3 4 156 185 
-3 5 200 220 
-3 6 144 166 
-3 7 115 121 
-3 8 541 564 
-3 9 100 117 
-3 10 51 67 
- 3 1 1 113 1 09 
-3 12 329 298 
- 3 15 53 50 
- 3 16 85 74 
- 3 18 75 66 
- 2 1 127 85 
- 2 3 337 3 1 1 
- 2 4 294 310 
- 2 5 230 2 1 4 
- 2 6 727 737 
- 2 8 390 368 
- 2 9 97 91 
- 2 10 287 263 
- 2 11 51 46 
- 2 12 207 204 
- 2 13 74 87 
- 2 15 81 80 
- 2 16 156 132 
- 1 5 538 541 
- 1 6 701 648 
- 1 8 125 139 

H L FO FC 

- 1 9 223 216 
- 1 10 320 304 
- 1 11 226 213 
- 1 12 189 195 
- 1 13 97 107 
- 1 14 177 142 
- 1 16 111 96 

0 5 132 117 
0 6 268 238 
0 7 252 223 
0 8 3 06 258 
0 9 147 150 
0 10 463 442 
0 11 155 143 
0 14 192 173 
0 16 56 45 
0 17 58 45 
0 18 83 67 
1 4 444 457 
1 5 520 517 
1 6 186 172 
1 7 188 224 
1 8 479 Ull 
1 10 223 220 
1 11 88 114 
1 12 117 125 
1 14 118 115 
1 15 56 35 
1 16 33 32 
1 18 68 53 
1 18 68 53 
2 6 205 230 
2 8 240 241 
2 10 65 49 
2 1 1 120 103 
2 12 132 152 
2 14 32 49 
2 15 67 45 
2 16 68 53 
3 4 91 95 
3 5 115 146 
3 6 332 393 
3 9 81 67 
3 10 154 1 56 
3 12 113 92 
3 13 47 47 
4 4 133 151 
4 6 152 178 
4 9 46 55 
4 10 141 136 
5 4 112 134 
5 5 93 95 
5 6 94 83 
5 7 67 62 
5 8 82 86 
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Solution of the Structure of Cu(EIA) (20) 

Suitable crystals for single-crystal X-ray work were obtained 

directly from the preparation of the compound. A needle-like crystal 

with approximate dimensions 0.10 x 0.15 x 0.60 mm was mounted along 

the long dimension and precession photographs were taken. The crystal 
o o 

was found to be tetragonal with a - b = 14.46(2)A, and a - 7.63(2)A. 

The density calculated on the basis of eight formula units per unit 
3 

cell, 1.71 g/cm , agreed well with the experimental value of 1.70(2) 
3 

g/cm , obtained by the flotation method in a mixture of carbon tetra­

chloride and methylene iodide. The systematic absence of hhl reflec­

tions with I = 2n+l and the systematic absence of ?z00 reflections with 

h - 2n+l were consistent only with the space group P42^c. 

Intensity data were collected with the Buerger precession 

camera (22). A total of 344 unique, non-zero reflections were estimated 

visually for the hkl(k = 0-4) and hhl layers. Lorentz-polarization 

corrections (30) were made but no corrections were made for absorption 

(y = 31 c m " 1 ) . 

The coordinates of the copper atom were found from a three-

dimensional Patterson synthesis (33). Three cycles of full-matrix 

least-squares refinement (28) resulted in a conventional R value of 

0.28. Successive structure factor calculations and electron density 

maps (26) revealed the positions of the remaining non-hydrogen atoms. 

Full-matrix least-squares refinement of all atomic coordinates, 

individual isotropic temperature factors, and individual layer scale 

factors was continued until no parameter showed any significant change; 
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the final conventional R value was 0.089. The final atom coordinates 

and thermal parameters are listed in Table 9 and the observed and 

calculated structure factors are listed in Table 10. 

Table 9. Final Positional and Thermal Parameters for Cu(EIA) 

Atom X y z B , A 2 

Cul 0 .0493(2) 0, .0915(2) 0 .1619(5) 2 .57(6) 

02 0.0797(13) -0 .0418(12) 0, .1405(19) 2 .29(32) 

C3 0, .1435(22) -0, .0629(22) 0, .2716(35) 3 .21(60) 

C4 0, .2166(22) 0, .0114(24) 0, .2783(34) 2 .93(58) 

N5 0, .1652(18) 0, .1035(18) 0, .2758(28) 3 .06(44) 

C6 0, .1994(22) 0, .1750(22) 0, .3575(35) 3 .18(55) 

C7 0, .2878(23) 0, .1767(23) 0, .4474(39 ) 3 .93(71) 

C8 0 , .1531(22) 0, .2622(21) 0, .3442(44) 3 .35(56) 

C9 0, .0710(23) 0, .2798(21) 0, .2560(36) 3 .08(55 ) 

CIO 0, .0288(28) 0, .3774(30) 0, .2435(48) 5 .21(86) 

Oil 0 .0198(16) 0, .2198(15) 0, .1735(32) 4 .08(47) 
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Table 10. Observed and Calculated Structure Factors for Cu(EIA) 

H L FO FC H L FO FC H L FO FC H L FO FC 

K = 0 4 5 271 313 13 1 180 136 7 6 464 4 6 0 

7 5 178 204 15 1 238 235 8 6 234 249 
6 0 1020 938 8 5 222 216 16 1 14] 112 10 6 195 154 
8 0 809 822 10 5 458 412 17 1 203 196 ] 4 6 141 120 

16 0 312 250 12 5 333 362 1 2 1107 1100 2 7 306 353 
2 1 588 546 15 5 134 55 2 2 765 651 3 7 275 279 
3 1 811 797 0 6 808 887 3 2 803 753 4 7 ] 94 ] 70 
4 1 585 538 2 6 512 507 4 2 508 470 5 7 239 233 
5 1 452 462 6 6 453 435 5 2 632 599 6 7 277 276 
6 1 823 846 8 6 266 289 6 2 667 658 7 7 139 161 
7 1 773 756 9 6 189 112 7 2 422 420 8 7 198 166 
8 1 560 566 14 6 185 134 8 2 391 381 9 7 243 265 

10 1 809 902 1 7 597 660 9 2 190 155 11 7 244 215 
12 1 469 465 2 7 189 172 12 2 396 359 13 7 197 152 
15 1 194 116 3 7 189 172 • 16 2 246 262 3 8 200 217 
16 1 241 168 4 7 232 248 2 3 1190 1134 4 8 141 187 
0 2 2909 2957 5 7 300 258 3 3 407 450 5 8 141 155 
1 2 293 320 6 7 190 161 4 3 220 285 6 8 141 167 
2 2 951 794 7 7 270 254 5 3 600 606 8 8 141 104 
3 2 988 905 10 7 233 253 6 3 812 933 10 8 242 276 
5 2 460 475 12 7 261 245 7 3 434 439 2 9 200 191 
6 2 434 470 5 8 233 249 8 3 477 500 6 9 139 171 
7 2 102 128 9 8 260 273 9 3 404 406 7 9 138 135 
8 2 186 148 11 8 210 251 11 3 125 105 
9 2 666 713 1 9 416 438 12 3 129 57 K = 2 

11 2 491 468 3 9 130 80 13 3 133 133 
13 2 263 272 5 9 128 133 14 3 137 131 5 0 690 651 
15 2 195 162 7 9 173 210 15 3 198 192 6 0 1336 1244 
16 2 139 119 0 10 397 372 16 3 202 173 7 0 1334 1400 
17 2 276 268 1 4 761 918 9 0 462 442 
1 3 1645 1681 K = 1 2 4 286 326 11 0 173 125 
3 3 978 901 3 4 438 456 13 0 544 524 
5 3 652 6 56 4 0 837 681 4 4 471 416 15 0 418 412 
6 3 398 283 5 0 747 723 5 4 480 484 16 0 265 229 
7 3 818 934 6 0 975 898 6 4 282 287 4 1 453 427 

10 3 122 152 7 0 1134 1073 7 4 501 533 5 1 604 595 
11 3 126 78 8 0 682 670 8 4 242 302 6 1 602 671 
12 3 130 104 9 0 412 361 10 4 476 520 7 1 364 383 
15 3 239 224 10 0 189 101 12 4 299 284 8 1 522 526 
0 4 726 675 11 0 163 71 14 4 140 114 9 1 192 223 
2 4 534 484 12 0 343 346 16 4 202 204 10 1 55 3 471 
3 4 853 921 14 0 264 258 2 5 340 357 11 1 176 170 
5 4 227 206 15 0 237 197 3 5 513 516 12 1 226 235 
6 4 492 434 16 0 140 110 4 5 122 145 14 1 286 247 
7 4 237 189 17 0 143 134 5 5 246 304 15 1 148 140 
8 4 421 382 3 1 271 268 6 5 250 284 16 1 217 219 
9 4 466 470 4 1 508 490 9 5 414 424 17 1 224 213 

11 4 453 388 5 1 612 708 11 5 333 354 3 2 224 225 
1 3 4 272 258 6 1 768 702 13 5 140 184 4 2 820 842 
14 4 194 161 7 1 413 426 15 5 201 145 5 2 208 214 
15 4 137 128 8 1 463 425 1 6 686 813 6 2 525 503 
1 5 206 186 9 1 575 601 3 6 184 183 7 2 557 568 
2 5 339 376 11 1 691 684 5 6 263 296 8 2 192 158 
3 5 208 154 12 1 173 167 6 6 188 225 9 2 497 477 

I 
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Table 10. (Continued) 

H L FO FC H L FO FC H L FO FC H K FO FC 
11 2 446 443 15 6 227 180 5 3 445 464 9 9 157 143 
12 2 190 160 3 7 304 356 6 3 48 1 477 10 10 437 489 
13 2 198 211 4 7 152 148 7 3 818 872 11 11 512 503 
15 2 261 257 5 7 307 343 8 3 171 161 12 12 438 398 
16 2 220 188 6 7 267 270 9 3 591 618 
17 2 159 130 7 7 219 198 10 3 293 334 L = 2 
3 3 172 137 8 7 270 304 1 1 3 193 145 
4 3 547 504 10 7 223 180 12 3 245 287 2 2 853 7 0 4 

5 3 568 582 12 7 226 158 13 3 509 506 3 3 911 903 
6 3 591 608 14 7 159 140 15 3 415 376 4 4 586 531 
7 3 614 668 16 7 154 151 16 3 161 107 5 5 480 502 
8 3 763 856 2 8 274 263 3 4 772 782 6 6 33 1 317 

10 3 225 192 4 8 275 267 5 4 568 646 7 7 595 572 
11 3 190 171 5 8 159 188 6 4 432 458 8 8 374 437 
12 3 197 203 11 8 160 167 8 4 396 454 9 9 196 214 
13 3 144 103 1 9 229 191 9 4 136 191 10 10 167 196 
14 3 366 3P2 6 9 161 205 10 4 140 167 11 11 241 223 
15 3 153 125 8 9 159 181 11 4 204 170 12 12 208 169 
1 6 3 273 238 12 4 210 196 
1 7 3 160 123 K = 3 14 4 315 298 L = 4 
2 4 682 789 16 4 165 183 
3 4 202 191 6 0 1298 1290 4 5 597 632 4 4 470 404 
4 4 673 734 7 0 658 626 5 5 135 144 5 5 231 1O0 
5 4 421 425 8 0 1108 1069 6 5 276 243 6 6 386 319 
6 4 658 601 12 0 290 312 7 5 281 341 7 7 565 544 
7 4 441 416 13 0 306 274 8 5 202 212 8 8 324 328 
8 4 185 224 14 0 574 545 9 5 253 261 9 9 235 213 
9 4 465 494 16 0 412 382 10 5 149 116 10 10 207 238 

10 4 138 101 17 0 161 172 4 6 207 201 11 11 206 269 
11 4 284 308 6 1 551 4Q1 5 6 296 312 
12 4 206 169 7 1 607 562 6 6 335 374 L = 6 
13 4 299 264 8 1 207 200 8 6 343 430 
15 4 222 180 9 1 470 446 9 6 155 165 4 4 196 197 
17 4 161 137 10 1 333 321 12 6 230 214 6 6 164 161 
3 5 524 564 11 1 176 131 14 6 289 330 7 7 262 324 
4 5 296 24 7 12 1 131 119 16 6 169 157 8 8 118 119 
5 5 501 505 13 1 338 349 4 7 352 376 9 9 166 166 
7 5 239 210 15 1 301 248 5 7 224 196 10 10 227 277 
8 5 199 189 16 1 271 221 6 7 225 195 

10 5 292 316 17 1 162 122 7 7 321 347 L = 8 
11 5 149 118 18 1 236 203 8 7 162 110 
12 5 215 206 6 2 685 629 9 7 163 207 4 4 165 257 
15 5 159 110 7 2 232 215 3 8 286 315 5 5 164 192 
16 5 227 166 8 2 383 394 5 8 166 176 
2 6 426 371 9 2 234 244 7 9 241 219 < 

3 6 202 160 10 2 246 199 
4 6 203 156 11 2 183 124 H K FO FC 5 6 323 347 12 2 191 183 
6 6 462 471 13 2 141 117 L = 0 
7 6 511 432 14 2 208 206 
8 6 211 210 15 2 153 90 3 3 420 332 
9 6 302 282 16 2 275 191 4 4 317 358 

10 6 153 105 17 2 231 1 0 4 5 5 356 347 
13 6 275 248 4 3 345 365 8 8 182 153 
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Solution of the Structure of Cu(SALPA)Cic. 

Suitable crystals for single-crystal work were obtained by the 

recrystallization of the powdered material from methanol with a few 

drops of hydrochloric acid added. A needle-like crystal of approxi­

mate dimensions 0.10 x 0.12 x 0.50 mm was mounted along the long 

dimension of the crystal. Precession photographs indicated that the 

crystal was monoclinic. The systematic absence of the X - 2n+l reflec­

tions in the hot zone and the systematic absence of the k = 2n+l 

reflections along the OkO line uniquely defined the space group as P2^/c. 

The crystal and goniometer head were then transferred to the dif-

fractometer where final adjustments were made (23). Six reflections 

were scanned and used as input data for the least-squares program (24). 

The final unit cell dimensions obtained by the least-squares method are 

a - 8.564(3), b = 12.353(5), o = 10.305(4) and 3 = 98.43(3). The cal-
3 

culated density based on four formula units per unit cell, 1.71 g/cm , 
3 

agreed well with the observed value, 1.69(2) g/cm , obtained by the 

flotation method in a mixture of carbon tetrachloride and methylene 

iodide. The data were collected by methods described earlier. To 

insure that the low-angle reflections were collected first, the data 

were collected in four batches depending upon the 26 values of the 

reflections. The ranges were 0.00 to 15.00°, 15.01 to 25.00°, 25.01 

to 40.00° and above 40.01°. A total of 1256 reflections were collected 

using a 20-second background count and a 2° scan. The reflections col­

lected were in the region between 0-7 in h, 0-9 in k and -8 to +8 in I. 

After approximately 20 per cent of the data had been collected, the 
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intensities of the two standard reflections sharply increased by about 

10 per cent. The intensities of the standard reflections had been very 

constant before this increase, and were also very constant at the new 

value after the increase. This change was probably due to some elec­

tronic changes within the diffractometer circuitry. Because of this 

change, the data were broken into two parts and each part assigned a 

scale factor. The raw data were then processed (31) and 644 unique 

reflections were accepted as being statistically above background on 

the basis that a(I)/CI was less than 0.05 with P = 0.00. Lorentz-

polarization corrections were made, but no corrections for absorption 

were made (u = 23 cm "*"). 

The coordinates of the copper and chlorine atoms were found from 

a three-dimensional Patterson synthesis (33). After three cycles of 

full-matrix least-squares (28) refinement, the conventional R value was 

0.24. From an electron density map (26) phased on these atoms, the 

remaining non-hydrogen atoms were located. Four cycles of full-matrix 

least-squares refinement resulted in a conventional R value of 0.14. 

At this point the weighting scheme of Ibers (25), previously described, 

was introduced. Varying all atomic coordinates, individual isotropic 

temperature factors and two scale factors gave an R ^ of 0.13 and an R^ 

of 0.12. Anisotropic temperature factors were then computed for the 

copper and chlorine atoms. The refinement was continued, varying all 

atomic coordinates, anisotropic temperature factors for the copper 

and chlorine atoms and the two scale factors, until no parameter showed 

any significant change. The final R values are R-, = 0.089 and 
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Atom X y z 

Cu -0. .0489(3) 0, .0291(3) 0, .1447(3) 

C£ 0, .1070(7) 0, .1362(5) 0 .2596(6) 

02 -0, .1208(15) 0, .0428(13) -0, .0250(12) 

C3 -0, .2653(26) 0, .0872(19) -0, .0463(22) 

cu­ -0. .2764(25) 0. .1008(19) -0, .1813(21) 

es -0, .4255(27) 0. .1448(20) -0, .2096(22) 

C6 -0. ,5425(28) 0. .1681(20) -0, .1137(25) 

C7 -0. .5271(24) 0. .1531(19) 0 .0165(22) 

C8 -0. ,3738(22) 0, .1101(17) 0 .0501(19) 

C9 -0. .3750(24) 0. .1036(18) 0, .1868(20) 

N10 -0. .2478(19) 0. .0778(14) 0, .2414(16) 

Cll -0. .2684(25) 0. .0743(18) 0. .3876(21) 

C12 -0. .2822(26) -0. .0454(23) 0. .4444(23) 

C13 -0. .1302(25) -0. .1104(19) 0. .4050(21) 

014 -0. .0955(17) -0. .1163(13) 0. .2635(15) 

' A ' ° r Bll B22 B33 312 313 323 

38(4) 29(2) 31(3) 14(4) -36(2) -6(3) 

107(12) 19(6) 67(8) -13(6) -49(7) 4(5) 

1.7(5) 

2.1(8) 

1.8(7) 

2.2(8) 

2.6(8) 

1.9(8) 

0.8(6) 

1.5(7) 

1.5(6) 

1.9(8) 

3.0(9) 

2.0(8) 

2.7(6) 

Anisotropic temperature factors expressed as 

exp[-(B n lh 2 = B k 2 + 3 I7 T 2 6 hk + 2 S n „ M + 2B ]<A)] x l o \ 

- 0.081. The final structural parameters are listed In Table 11 

and the final observed and calculated structure factors are listed 

in Table 12. 

Table 11. Positional and Thermal Parameters for Cu(SALPA)C£ 
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Table 12. Observed and Calculated Structure Factors for Cu(SALPA)C£ 

H K FO FC 
L = -8 

1 0 46 47 
2 0 27 22 
3 0 37 48 
4 0 32 21 
5 0 44 40 
6 0 44 46 
7 0 33 24 
1 2 25 24 
4 2 28 20 
5 2 30 24 
6 2 31 30 
7 2 29 26 
2 3 26 30 
5 3 28 30 
7 4 30 21 

i—•
 5 53 59 

2 5 40 31 
3 5 48 52 
4 5 38 31 
5 5 29 26 
7 5 28 6 
1 7 52 52 
2 7 38 32 
3 7 36 32 
4 7 41 42 
1 9 30 21 
4 9 29 21 

L = -7 
1 1 86 92 
2 1 52 62 
6 1 29 31 
1 2 41 45 
2 2 30 44 
5 2 29 23 
6 2 33 38 
1 3 44 44 
2 3 41 42 
3 3 40 40 
7 3 28 23 
2 4 39 43 
3 4 39 44 
5 4 31 35 
6 4 30 25 
3 5 39 45 
1 6 33 34 
2 6 38 34 
3 6 46 49 
4 6 35 36 
6 6 27 17 
5 7 27 18 

H K FO FC 
3 8 31 24 
4 8 51 67 
5 8 31 18 

L = -6 
1 0 30 31 
2 0 70 74 
3 0 64 71 
4 0 51 52 
5 0 59 7 3 
6 0 30 13 
2 1 29 30 
3 1 33 32 
4 1 25 20 
1 2 62 67 
2 2 76 82 
3 2 47 47 
4 2 34 38 
5 2 30 23 
3 3 42 47 
4 3 27 21 
1 4 82 88 
2 4 53 53 
3 4 30 27 
1 5 41 38 
2 5 39 41 
6 5 27 14 
7 5 36 40 
1 6 28 24 
1 7 34 36 
2 7 25 23 
4 7 27 31 
6 7 30 26 
7 7 33 37 
1 8 28 24 
4 8 29 27 
4 9 32 32 

L = -5 
5 1 37 36 
6 1 32 21 
7 1 34 44 
4 2 22 10 
2 3 24 20 
3 3 30 26 
4 3 33 36 
5 3 29 19 
6 3 40 41 
7 3 34 23 
1 4 42 37 
2 4 40 42 
3 4 34 34 

H K FO FC 

i—•
 5 31 27 

2 5 27 28 
3 5 25 24 
4 5 26 22 
5 5 28 26 
6 5 29 30 
1 6 64 66 
2 6 38 29 
3 6 35 33 
2 7 35 36 
3 7 27 20 
1 8 39 43 
3 8 27 20 
4 8 29 28 

L = -4 
H .< FO FC 
7 0 27 17 
4 1 40 38 
5 2 29 23 
6 2 26 18 
7 2 31 27 
3 3 49 49 
4 3 48 47 
5 3 31 30 
4 4 29 25 
5 4 42 4] 
6 4 38 40 
7 4 33 34 
4 5 25 17 
5 5 39 38 
6 5 35 32 
7 5 33 35 
1 6 24 21 
1 7 36 37 
2 7 33 30 
3 7 28 20 
4 7 33 28 
5 7 34 33 
6 7 36 39 
7 7 29 22 
2 8 27 22 
1 9 52 55 
2 9 56 61 
3 9 48 50 
4 9 37 40 
5 9 34 33 
6 9 28 21 

L = -3 
5 1 32 35 
7 2 25 24 
4 3 52 55 
5 3 24 19 

H K FO FC 
4 4 40 36 
5 4 32 33 
6 4 35 40 
7 4 36 39 
4 5 27 23 
5 5 28 27 
3 6 27 22 
4 6 41 43 
5 6 47 45 
6 6 48 52 
7 6 37 38 
H K FO FC 
1 7 40 42 
2 7 26 30 
3 7 35 35 
5 8 3, 27 
6 8 34 33 
7 8 33 31 

L = -2 
5 0 38 42 
6 0 40 44 
7 0 34 35 
7 1 34 35 
5 2 58 62 
6 2 58 64 
7 2 26 22 
7 3 39 40 
4 4 86 89 
5 4 77 82 
6 4 44 46 
3 6 24 18 
5 6 35 33 
1 7 50 52 
2 7 25 23 
3 7 24 24 
4 7 28 25 
1 8 40 41 
5 8 29 24 
1 9 58 64 
2 9 56 57 
3 9 45 42 
4 9 34 33 
5 9 28 23 
6 9 30 27 
7 9 36 36 

L = -1 
5 1 55 57 
6 1 66 70 
7 1 51 52 



H K FO FC H 
7 2 33 35 6 
5 3 50 53 7 
6 3 32 33 0 
5 49 50 1 
4 5 35 26 4 
5 5 42 44 5 
7 5 27 29 6 
3 6 60 59 7 

6 71 72 2 
5 6 45 45 3 
2 7 28 23 
7 7 32 31 

i—
1 8 83 83 

2 8 75 78 6 
3 8 45 43 7 

8 41 39 5 
2 9 27 23 6 

7 
L = 0 5 

6 
6 0 62 68 5 
6 1 40 41 7 
6 2 31 28 4 
5 3 52 53 7 
6 3 45 46 4 
5 4 29 28 5 
4 5 64 62 2 
5 5 52 52 3 
2 7 107 105 4 
3 7 76 80 0 

7 54 55 1 
5 7 31 28 4 
6 7 29 26 5 
7 7 29 25 6 
0 8 41 36 0 
1 8 31 27 1 
2 8 29 27 3 
4 8 48 47 4 
1 9 27 23 
3 9 42 43 
5 9 30 29 
6 9 46 52 6 
7 9 4 5 49 7 

5 
L = 1 6 

5 
6 1 51 52 6 
6 2 30 23 4 
5 3 52 47 5 
7 4 30 28 6 
4 5 35 34 7 
5 5 29 21 5 
5 6 25 21 6 
7 6 32 35 7 

Table 12. (Continued) 

K FO FC H K FO 
7 27 19 3 6 32 
7 30 19 4 6 37 
8 49 52 5 6 35 
8 75 71 6 6 51 
8 34 32 7 6 33 
8 43 4 5 1 7 23 
8 32 34 2 8 36 
8 32 32 3 8 53 
9 25 17 4 8 56 
9 39 41 5 8 66 

6 8 40 
L = 2 

L = 4 
0 116 123 
0 64 67 5 0 68 
2 43 42 6 0 33 
2 67 69 5 2 38 
2 56 59 2 3 30 
3 46 40 3 3 41 
3 30 24 4 3 45 
4 25 22 5 3 30 
4 42 40 6 3 28 
5 70 63 7 3 36 
5 32 29 0 4 94 
6 50 50 1 4 81 
6 42 43 2 4 65 
7 46 42 3 4 41 
7 71 64 0 5 52 
7 60 59 1 5 42 
8 43 43 2 5 55 8 27 19 4 5 31 
8 40 40 5 5 51 
8 35 32 6 5 64 
8 31 23 7 5 52 
9 50 55 2 6 30 
9 29 27 3 6 36 
9 26 22 4 6 39 
9 33 25 0 7 33 

1 7 29 
L = 3 4 7 40 

5 7 45 
1 30 22 6 7 50 
1 41 39 7 7 37 
2 62 56 0 8 29 
2 32 26 3 8 26 
3 40 35 2 9 29 
3 48 47 3 9 37 
4 37 34 4 9 42 
4 36 34 5 9 37 
4 47 43 
4 29 19 L = 5 
5 40 37 

35 32 0 1 36 
5 34 32 1 1 48 

FC H K FO FC 
27 2 1 106 96 
33 3 1 92 90 
30 4 1 69 65 
50 5 1 58 58 
33 6 1 38 38 
13 1 2 69 58 
35 3 2 42 34 
55 4 2 31 25 
61 5 2 27 19 
68 2 3 4.1 36 
40 3 3 55 46 

4 3 63 60 
5 3 55 57 
6 3 59 63 

64 7 3 37 41 
25 0 4 73 73 
34 1 4 67 68 
20 2 4 42 39 
3 5 5 4 31 22 
37 6 4 29 19 
26 0 5 30 28 
21 3 5 49 40 
28 4 5 40 39 
98 5 5 38 37 
82 6 5 33 32 
57 7 5 31 28 
37 0 6 78 87 
52 1 6 51 57 
40 2 6 47 46 
48 5 6 35 29 
29 6 6 32 28 
49 1 7 34 36 
65 3 7 37 33 
56 i 0 8 39 43 
27 ' 1 8 37 34 
33 | 2 8 39 39 
35 1 3 8 46 48 
33 
26 L = 6 
40 
46 5 0 41 36 
52 7 0 57 67 
40 2 1 42 39 
21 3 1 47 36 
18 4 1 26 17 
26 1 2 32 27 
35 4 2 55 49 
40 5 2 39 38 
34 6 2 36 38 34 7 2 38 43 0 3 29 23 

1 3 63 64 
31 2 3 65 65 
46 3 3 54 49 
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Table 12. (Continued) 

H K FO FC H K FO FC H K FO FC H K FO FC 

2 5 35 34 1 1 58 61 5 6 41 49 2 2 42 41 
3 5 28 25 2 1 55 54 6 6 36 40 3 2 48 50 
4 5 32 27 3 1 48 48 0 7 29 24 4 2 47 48 
5 5 30 31 5 1 35 29 1 7 42 44 i 5 2 48 44 
6 5 41 39 0 2 26 18 2 7 30 30 6 2 35 30 
0 7 34 39 4 2 31 23 7 7 36 33 i 1 3 26 16 
1 7 40 39 7 2 43 40 1 8 34 28 2 3 27 17 
2 7 42 44 0 3 46 45 2 8 34 32 3 3 37 31 
3 7 41 41 1 3 31 31 5 8 31 30 7 3 37 35 
5 7 46 46 2 3 25 17 6 •8 37 41 2 4 32 28 
6 7 31 27 3 3 34 28 3 4 47 50 
3 8 28 23 5 3 41 31 L = 8 4 4 48 47 
4 8 33 27 3 4 41 39 5 4 58 59 
0 9 39 42 4 4 51 51 0 0 47 49 6 4 31 25 
1 9 55 62 7 4 40 40 1 0 63 61 0 7 38 36 
2 9 63 70 0 5 36 37 2 0 51 53 1 8 29 23 
3 9 40 48 1 5 32 29 3 0 31 28 0 9 38 41 
4 9 32 33 2 5 29 29 4 0 37 39 1 9 32 31 
5 9 30 24 4 5 35 24 6 0 42 34 2 9 31 30 

5 5 30 25 2 1 27 20 6 9 38 41 
L = 7 2 6 33 30 3 1 31 25 7 9 38 40 

3 6 58 61 0 2 31 21 
0 1 71 71 4 6 36 40 1 2 41 39 
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Solution of the Structure of the Cobalt Trimer (35) 

Crystals suitable for single-crystal X-ray work were obtained 

directly from the preparation of the compound. An octahedral-shaped 

crystal with an average trigonal-face to trigonal-face distance of 

approximately 0.3 mm was mounted and precession photographs were taken. 

Precession camera photographs indicated that the crystal was mono-

clinic with the systematic absence of all reflections with h + k = 

2n+l. These absences were consistent with space groups C2 or C2/m. 

After these data had been collected, the crystal and goniometer head were 

transferred to the diffractometer where final adjustments were made 

(23). Fourteen reflections were scanned and used as input data for 

the least-squares program (24). The refined unit cell constants 
o 

obtained by this least-squares method are a = 14.984(6 )A, b = 

8.617(4)A, c = 11.285(6 )A and 3 = 116.68(3)°. The density calculated 
3 

for two trimeric units per unit cell, 1.68 g/cm , agreed well with 
3 

the experimental value, 1.66 g/cm , obtained by the flotation method 

in a mixture of carbon tetrachloride and methylene iodide. The data 

were collected as described earlier. A total of 1262 reflections were 

collected using a 60-second background count and a 2° scan. The reflec­

tions with h + k = 2n+l were not collected since symmetry requirements 

forced them to be absent. The reflections collected were in the region 

between 0-10 in h9 0-10 in k and -10 to +10 in I. A standard reflection 

was measured about every four hours to check for electronic changes 

and crystal decomposition. No significant changes were noticed in the 

intensity of the standard reflection during the collection of the data. 



47 

After processing the data, 830 reflections were accepted (31) as being 

statistically above background on the basis that a(I)/CI was less than 

0.09 with P = 0.01. Lorentz-polarization corrections were then calcu­

lated but no corrections were made for absorption (y = 20 cm 1 ) . 

Although both space groups C2 and C2/m have two-fold positions, 

the 2/m symmetry of the two-fold positions in C2/m was not consistent 

with any reasonable structure for the trimer. Thus, C2 was chosen as 

the correct space group and was confirmed as being correct by the 

successful refinement of the structure. 

Since the origin in the y direction of space group C2 is not 

fixed by symmetry, the cobalt atom of the two-fold set (2a) was placed 

at the origin of the unit cell. From a three-dimensional Patterson 

synthesis (33), coordinates for the cobalt atom of the fourfold 

general set (4c) were obtained. Successive structure factor (28) and 

Fourier calculations (26) were used to locate the remaining non-hydrogen 

atoms of the structure. Since the three cobalt atoms are essentially 

in the xz plane, a false mirror plane was created. The effect of this 

mirror plane was noticed since the oxygen atoms of the acetates were 

disordered and the disordered oxygen atoms were almost related by the 

false mirror plane. With all reflections weighted at unity, individual 

isotropic temperature factors and no corrections for anomalous disper­

sion (32), the conventional R value, R, was 0.11. When corrections 

for anomalous dispersions (Af' and Af T T) were made and anisotropic 

temperature factors calculated for the cobalt atoms, the conventional 

R value was 0.088. On the final cycles of refinement all atomic 
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coordinates, anisotropic temperature factors for the cobalt atoms and 

the scale factor were varied until no parameter showed any significant 

change. The final structural parameters are given in Table 13 and 

the final observed and calculated structure factors are given in 

Table 14. 

Table 13. Final Positional and Thermal Parameters 
for the Cobalt Trimer 

Atom X y z B,A 2 or 3 n 

Col 0 0 0 48(3) 

Co2 0, .0860(2) -0. .0010(12 ) 0. .2577(2) 28(2) 

01 0. .1289(13) 0. .0867(20) 0, .1390(16) 3. .0(4) 

02 0. .0477(14) -0. .1829(19) 0. .1385(16) 2, .7(4) 

03 -0, .0434(14) 0. .0804(23) 0. .1389(18) 3. .8(5) 

Nl 0, .1037(21) 0. .1791(35) 0, .3604(25 ) 5 , .3(8) 

N2 0. .2255(19) -0. .0778(30) 0 . .3628(23) 4 . .5(7) 

N3 0. .0294(21) -0. .1216(32) 0, .3615(26) 5. ,0(7) 

Cll 0. .2888(18) -0. .0287(30) 0. .3143(21) 3. ,5(7) 

C12 0 . .2231(22 ) -0, .0292(39) 0, .1633(25 ) 5. .1(9) 

C21 0. .0062(24) 0. .2560(34) 0. .3231(29) 3. .5(8) 

C22 -0. .0397(28) 0. .2369(37) 0. .1721(35) 4. .6(1.0) 

C31 0, .0214(24) -0. .2898(36) 0, .3084(30) 3. ,7(8) 

C32 -o, .0212(25) -0, .2707(33) 0, .1593(31) 3. .7(9) 

CA1 0. .7213(13) -0. .0299(18) 0 . .1634(13) 0. .8(7) 

CA2 0 , .7689(15) 0. .0122(30) 0 .3055(17) 2. .0(5) 

01A 0, .7134(38) 0, .0263(72 ) 0. .3607(47) 7, .5(1.9) 

01AB 0 .7561(35) -0, .1057(50) 0, .3797(39) 4, .3(1.1) 

02A 0 .8145(29) -0 .1276(39) 0 .3600(31) 2 .8(8) 

02AB 0 .8513(33) 0, .0513(47) 0 .3729(41) 4 .9(1.2) 

22 33 12 13 23 

120(5) 68(4) 

58(3) 29(2) 

0 24(3) 0 

-33(3) 7(1) -28(3) 
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Table 14. Observed and Calculated Structure 
Factors for the Cobalt Trimer 

H K FO FC H K FO FC H K FO FC H K FO FC 

L = -10 8 2 26 31 1 5 47 47 L = -6 
1 3 19 17 3 5 36 37 

2 0 21 22 3 3 38 43 2 6 53 54 4 0 108 100 
4 0 30 30 5 3 41 48 4 6 18 8 6 0 123 121 
6 0 44 44 9 3 24 25 10 6 29 27 8 0 42 43 
8 0 69 71 2 4 35 38 1 7 31 33 1 1 22 31 
1 1 30 27 4 4 37 41 3 7 22 19 3 1 22 18 
5 1 32 36 6 4 33 38 2 8 26 28 5 1 101 101 
7 1 49 49 8 4 21 22 6 8 19 16- 7 1 90 91 
9 1 31 30 10 4 23 20 1 9 28 28 9 1 30 28 
2 2 17 21 1 5 24 19 3 9 22 14 2 2 71 68 
4 2 19 19 3 5 44 47 2 10 22 22 4 2 54 53 
6 2 24 25 5 5 47 51 4 10 19 3 6 2 108 105 CO 2 44 44 0 6 17 12 8 2 53 54 
5 3 34 37 2 6 34 33 L = -7 1 3 37 37 
7- 3 44 43 4 6 45 42 3 3 20 14 
9 3 25 24 6 6 30 30 4 0 25 27 5 3 81 79 
4 4 29 26 10 6 22 17 8 0 64 62 7 3 84 87 
6 4 44 44 1 7 20 12 10 0 42 42 9 3 33 31 
8 4 50 49 3 7 29 32 1 1 29 23 4 4 47 47 
5 5 35 38 5 7 33 31 3 1 27 28 6 4 64 67 
7 5 45 42 0 8 17 15 5 1 32 31 8 4 41 42 
9 5 23 21 2 8 20 19 7 1 40 46 1 5 27 29 
0 6 18 13 4 8 28 28 9 1 57 58 5 5 27 29 
2 6 19 19 6 8 20 15 2 2 24 25 7 5 31 35 
4 6 21 16 1 9 17 14 4 2 38 37 9 5 22 16 
6 6 34 33 3 9 23 22 8 2 67 71 2 6 25 30 
8 6 31 33 5 9 21 20 10 2 57 65 4 6 18 18 
1 7 18 15 7 9 19 6 1 3 21 21 6 6 25 28 
5 7 23 25 2 10 23 15 3 3 26 26 1 7 22 21 
7 7 32 30 4 10 24 19 7 3 43 46 5 7 35 37 
9 7 20 15 9 3 71 71 7 7 38 38 
2 8 17 14 L = -8 2 4 20 23 9 7 21 23 
6 8 22 20 8 4 49 48 4 8 27 26 
8 8 24 21 2 0 68 71 10 4 52 56 6 8 42 41 
1 9 22 15 4 0 25 23 3 5 20 22 8 8 32 28 
5 9 22 14 6 0 42 40 7 5 20 22 1 9 21 21 
2 10 18 12 8 0 28 29 9 5 36 37 5 9 26 26 
4 10 18 9 1 1 85 88 2 6 20 23 7 9 33 30 
6 10 21 16 3 1 43 45 8 6 34 34 6 10 25 24 
0 10 21 5 5 1 26 31 10 6 36 36 

7 1 27 26 3 7 19 17 L = -5 
L = -9 2 2 80 82 7 7 26 20 

4 2 18 26 9 7 42 39 2 0 44 45 
2 0 63 67 6 2 21 14 2 8 19 18 4 0 99 99 
4 0 55 54 10 2 36 37 4 8 19 19 6 0 36 32 
6 0 45 46 1 3 44 48 8 8 30 28 10 0 52 56 
8 0 31 34 3 3 32 31 10 8 30 28 1 1 61 54 
1 1 23 25 5 3 24 24 3 9 22 20 3 1 92 90 
3 1 65 66 7 3 25 29 9 9 24 26 5 1 93 94 
5 1 57 59 2 4 42 48 8 10 23 19 7 1 24 36 
2 2 49 54 6 4 21 20 10 10 22 16 9 1 36 37 
4 2 46 45 8 4 26 27 2 2 104 97 
6 2 46 53 10 4 31 29 4 2 133 129 
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Table 14. (Continued) 

H K FO FC 
10 2 34 40 
1 3 56 53 
3 3 113 112 
5 3 8. 78 
9 3 29 29 
2 4 82 82 
4 4 85 81 
6 4 28 30 

10 4 24 20 
1 5 44 44 
3 5 66 67 
5 5 40 37 
9 5 25 24 
2 6 52 54 
4 6 33 37 
6 6 19 17 
8 6 23 21 
1 7 31 33 
3 7 39 43 
5 7 26 26 
9 7 27 26 
2 8 44 44 
4 8 36 40 
6 8 21 17 
8 8 22 19 

10 8 23 17 
1 9 27 19 
3 9 34 36 
5 9 29 28 
9 9 22 19 
2 10 20 20 
4 10 25 23 
6 10 21 10 
8 10 21 13 

10 10 22 12 
L = -4 

2 0 80 79 
4 0 28 32 
6 0 34 29 
8 0 31 32 

10 0 63 64 
1 1 57 57 
3 1 57 64 

1 36 44 
7 1 29 32 
9 1 23 30 
2 2 117 107 
6 2 81 70 

10 2 26 18 
1 3 137 134 
3 3 52 49 
5 3 31 27 

H K FO FC 
7 3 31 28 
9 3 20 17 
2 4 82 80 
4 4 27 18 
6. 4 39 43 
8 4 19 

10 4 25 23 
1 5 87 91 
3 5 29 23 
5 5 24 24 
7 5 30 28 
2 6 42 42 
6 6 43 46 
1 7 55 56 
3 7 24 24 
5 7 19 22 
9 7 21 17 
2 8 32 33 
6 8 30 27 
1 9 33 33 
3 9 19 15 
7 9 19 16 
2 10 24 18 
6 10 20 15 

L = -3 
4 0 23 15 
6 0 56 48 
8 0 79 84 

10 0 112 114 
3 1 55 48 
5 1 22 30 
7 1 60 54 
9 1 99 102 
2 2 46 46 
4 2 54 50 
6 2 40 56 00 2 54 56 

10 2 66 59 
3 3 46 48 
5 3 27 33 
7 3 54 53 
9 3 57 64 
2 4 34 34 
2 4 34 34 
2 4 34 34 
4 4 60 54 
6 4 35 34 
8 4 68 64 

10 4 53 53 
3 5 40 41 
5 5 20 21 
7 5 59 54 

H K FO FC 
9 5 67 67 
2 6 17 16 
4 6 30 32 
6 6 25 26 
8 6 49 51 

10 6 36 39 
3 7 21 22 
7 7 32 34 
9 7 36 43 
2 8 18 16 
6 8 21 12 
8 8 32 33 

10 8 24 29 
3 9 18 19 
7 9 21 16 
9 9 29 29 
8 10 21 22 

10 10 21 21 
L = -2 

6 0 80 81 
8 0 31 22 

10 0 20 15 
1 1 28 23 
3 1 32 39 
5 1 83 82 
7 1 78 77 
9 1 34 34 
0 2 60 50 
2 2 123 108 
4 2 65 64 
6 2 129 140 00 2 53 49 

10 2 21 24 
1 3 57 48 
3 3 20 27 
5 3 80 79 
7 3 55 53 
9 3 21 19 
2 4 28 29 
4 4 33 34 
6 4 103 101 
8 4 25 28 
1 5 33 37 
3 5 36 34 
5 5 118 114 
7 5 95 90 
9 5 27 27 
2 6 20 21 
4 6 59 55 
6 6 113 112 
8 6 40 39 
1 7 24 26 

H K FO FC 
5 7 49 52 
7 7 39 42 
6 8 36 41 
5 9 31 33 
7 9 27 29 
0 10 18 18 
4 10 23 18 
6 10 28 28 
8 10 21 19 

L = -1 
8 0 57 56 
5 1 66 69 
7 1 28 37 
9 1 40 42 
0 2 32 47 
4 2 86 78 
6 2 42 47 
8 2 33 29 
1 3 67 68 
3 3 86 85 
5 3 63 51 
9 3 29 32 
2 4 81 79 
4 4 85 88 
6 4 24 23 CO 4 36 37 
LO 4 29 31 
1 5 55 55 
3 5 105 1 03 
5 5 67 69 
9 5 38 39 
2 6 70 64 
4 6 96 91 
6 6 24 26 
LO 6 24 21 
1 7 26 30 
3 7 68 65 
5 7 42 37 
0 8 18 15 
2 8 32 33 
4 8 37 37 
1 9 18 18 
3 9 37 38 
5 9 19 17 
2 10 32 31 
4 10 30 26 

L = 0 
4 0 122 112 
6 0 46 45 
8 0 26 23 
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Table 14-. (Continued) 

H K FO FC H K FO FC H K FO FC H K FO FC 

10 0 39 40 0 4 42 51 2 6 19 13 5 9 25 19 
5 1 58 56 2 4 31 37 4 6 34 36 7 9 22 19 
7 1 34 20 6 4 32 28 6 6 29 32 0 10 20 10 
9 1 28 25 8 4 61 65 8 6 22 22 2 10 27 26 
6 2 88 73 • 10 4 48 49 10 6 22 30 4 10 24 28 

10 2 42 43 1 5 17 28 1 7 28 26 8 10 22 18 
1 3 86 80 3 5 38 39 3 7 20 27 
5 3 33 34 7 5 36 37 5 7 36 39 L = 4 
9 3 36 33 9 5 49 54 7 7 31 37 
0 4 130 1 30 0 6 21 24 0 8 30 30 2 0 60 52 
2 4 63 67 2 6 36 40 4 8 37 37 4 0 70 72 
4 4 31 33 4 6 27 31 6 8 36 39 6 0 26 25 
6 4 39 35 8 6 36 39 8 8 26 22 10 0 47 48 
8 4 20 20 10 6 34 37 1 9 20 19 1 1 46 45 

10 4 51 56 • 3 7 37 39 3 9 23 18 3 1 22 17 
1 5 55 63 7 7 24 24 5 9 36 37 5 1 38 40 
3 5 25 26 9 7 36 39 7 9 28 31 7 1 22 24 
5 5 56 52 4 8 22 24 4 10 25 25 9 1 34 36 
7 5 28 28 6 8 20 18 6 10 26 28 0 2 96 93 
0 6 58 61 8 8 31 36 2 2 114 105 
2 6 25 31 10 8 28 33 L = 3 4 2 34 42 
4 6 20 13 3 9 24 24 6 2 20 15 
6 6 42 43 7 9 26 30 2 0 55 56 1 10 2 53 54 

10 6 34 35 9 9 27 30 4 0 101 100 1 3 107 105 
1 7 55 53 8 10 21 23 1 1 82 80 ' 5 3 30 34 
3 7 28 24 10 10 22 22 3 1 96 94 7 3 26 36 
9 7 21 1 5 5 1 55 53 1 0 4 113 107 
0 8 53 55 L = 2 0 2 59 71 | 2 4 41 44 
2 8 29 25 2 2 104 98 4 4 30 43 

10 8 29 28 4 0 112 103 4 2 106 104 10 4 32 34 
1 9 29 30 6 0 109 110 8 2 29 30 1 5 71 72 
5 9 22 23 8 0 46 49 1 3 100 101 5 5 20 9 
9 9 20 10 3 1 59 62 3 3 130 125 1 9 5 33 31 
0 10 36 35 5 1 137 131 5 3 41 46 0 6 76 77 
2 10 21 18 7 1 82 77 9 3 26 24 2 6 37 34 
6 10 20 20 2 2 30 35 ' 0 4 41 51 6 6 21 18 

4 2 100 93 2 4 94 94 8 6 20 12 
L = = 1 6 2 114 107 ( 4 4 67 65 10 6 29 36 

8 2 44 43 1 5 55 53 1 7 50 52 
4 0 44 48 10 2 27 31 3 5 61 61 5 7 23 24 
8 0 82 80 1 3 40 43 0 6 35 39 7 7 21 20 

10 0 27 22 3 3 37 34 2 6 62 64 0 8 45 48 
3 1 60 55 5 3 96 95 4 6 33 35 2 8 28 21 
7 1 83 77 7 3 72 72 1 7 51 54 4 8 22 27 
9 1 65 64 0 4 85 71 3 7 52 55 I 6 8 23 24 
2 2 25 21 2 4 26 37 5 7 22 23 8 8 21 9 
4 2 40 44 4 4 45 49 9 7 21 21 10 8 24 24 
6 2 39 52 6 4 62 63 0 8 26 29 1 9 31 35 
8 2 87 88 8 4 38 37 2 8 46 46 5 9 22 19 

10 2 51 51 10 4 25 22 4 8 37 39 0 10 22 26 
3 3 35 32 3 5 32 28 8 8 23 23 2 10 20 12 
5 3 22 27 5 5 46 46 10 8 21 19 4 10 21 15 
7 3 57 54 7 5 34 36 1 9 28 26 6 10 22 17 
9 3 76 74 0 6 30 31 3 9 33 36 10 10 23 22 

I 
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Table 14. (Continued) 

H K FO FC H K FO FC H K FO FC H K FO FC 
10 8 22 20 
1 9 23 18 
3 9 22 14 
0 10 23 23 
4 10 21 15 
6 10 22 14 
8 10 22 18 

L = 9 
2 0 29 28 
6 0 26 24 
8 0 36 36 
1 1 24 23 
3 1 21 22 
7 1 33 31 
9 1 23 22 
6 2 26 20 
8 2 32 32 
5 3 21 13 
7 3 33 30 
9 3 26 26 
2 4 20 21 
6 4 24 19 
8 4 29 32 

10 4 23 14 
1 5 20 19 
7 5 27 21 
9 5 23 21 
2 6 21 21 
8 6 25 24 
3 7 21 17 
7 7 23 22 
9 7 24 20 
6 8 23 20 
8 8 24 23 

10 8 26 15 
1 9 24 14 
5 9 23 18 
7 9 22 20 
9 9 25 16 
0 10 23 11 
2 10 21 17 
4 10 24 11 
6 10 23 19 

10 10 26 15 
L = 10 

0 0 38 37 
4 0 30 29 
6 0 31 32 
1 1 21 19 
3 1 31 26 

L = 5 2 2 26 27 8 6 21 21 
4 2 58 58 1 7 33 36 

2 0 24 30 , 6 2 27 25 • 3 7 28 34 
4 0 24 22 8 2 22 16 7 7 21 19 
6 0 35 31 1 3 27 26 9 7 22 14 
8 0 38 38 3 3 47 44 0 8 24 26 

10 0 37 37 5 3 52 50 2 8 28 29 
3 1 29 27 7 3 36 39 4 8 22 22 
5 1 21 29 0 4 20 12 6 8 21 17 
7 1 41 49 4 4 74 76 8 8 23 16 
9 1 45 46 6 4 43 46 1 9 24 22 
0 2 22 20 1 5 29 29 3 9 28 23 
2 2 27 28 3 5 34 33 5 9 22 17 
4, 2 28 36 5 5 45 47 7 9 23 15 
6 2 47 52 7 5 33 34 0 10 21 15 
8 2 45 47 9 5 22 17 2 10 24 25 

10 2 33 37 0 6 22 28 4 10 23 16 
1 3 35 30 4 6 43 45 6 10 24 18 
3 3 44 47 6 6 36 36 8 10 22 17 
7 3 45 45 3 7 30 31 
9 3 35 32 5 7 38 40 L = 8 
2 4 30 29 7 7 27 29 
4 4 34 36 0 8 18 19 0 0 84 79 
6 4 31 33 4 8 29 32 2 0 26 22 
8 4 34 33 6 8 26 30 4 0 21 22 

10 4 24 22 1 9 20 16 6 0 20 20 
7 5 39 47 5 9 23 25 8 0 22 9 
9 5 31 32 0 10 19 17 10 0 30 19 
6 6 36 37 8 10 22 17 1 1 65 66 
8 6 38 40 10 10 22 15 9 1 24 19 

10 6 22 25 0 2 68 66 
1 7 24 24 L = 7 2 2 34 30 
3 7 19 20 8 2 22 12 
7 7 36 34 0 0 66 62 10 2 23 20 
9 7 28 26 2 0 85 88 1 3 35 37 

8 27 26 4 0 50 54 5 3 20 20 
7 9 24 23 1 1 62 70 • 9 3 23 22 
2 10 19 14 3 1 65 67 0 4 27 29 
6 10 22 14 9 1 23 17 2 4 22 23 
8 10 25 24 0 2 44 44 4 4 23 26 

10 10 24 17 2 2 54 53 10 4 24 21 
4 2 33 36 1 5 36 38 

L = 6 1 3 58 61 5 5 29 25 
3 3 44 48 9 5 24 20 

2 0 35 24 5 3 25 24 0 6 35 36 
4 0 79 86 0 4 48 47 2 6 24 23 
6 0 40 46 2 4 52 51 4 6 23 21 
8 0 29 28 4 4 45 48 6 6 23 22 

10 0 24 16 1 5 46 46 10 6 23 19 
3 1 43 45 3 5 44 45 1 7 21 23 
5 1 46 48 . 5 5 26 24 3 7 20 19 
7 1 33 40 0 6 28 32 5 7 25 21 
9 1 20 11 2 6 33 36 9 7 23 17 
0 2 28 29 4 6 32 35 0 8 25 23 
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Table 14. 

H K FO FC H K FO FC 
5 1 40 38 5 3 34 36 
7 1 25 13 2 4 21 21 
0 2 19 20 4 4 24 24 
2 2 26 16 6 4 27 26 
4 2 32 33 10 4 22 12 
6 2 36 36 3 5 22 21 
3 3 23 27 5 5 30 28 

(Continued) 

H K FO FC H K FO FC 
4 6 25 23 6 8 21 18 
6 6 25 22 3 9 21 19 
8 6 21 15 5 9 27 22 
3 7 22 19 0 10 21 12 
5 7 25 24 2 10 22 15 
0 8 20 13 4 10 23 19 
4 8 25 22 10 10 24 14 
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Crystallographic Data for Cu, 0C& ( T P P O ) ^ - 2 0 ^ 0 ^ 

Well-shaped orange needle-like crystals were obtained from the 

preparation of the compound. A crystal was mounted along its long 

dimension and precession camera photographs were taken. These photo-
o 

graphs indicated that the crystal was monoclinic with a - 13.79(2)A, 

Id - 26.67(3)A, o = 22.50(3)A and 3 = 113(1)°. The density calculated 
3 

on the basis of four formula units per unit cell, 1.50 g/cm , was the 

same as the measured value obtained by the flotation method in a mixture 

of carbon tetrachloride and benzene. Systematic absence of the reflec­

tions with I = 2n+l on the hOl zone indicated that the space group was 

Pc or P2/c. 

No intensity data were collected on this crystal and no attempt 

was made to solve the structure. 

Crystallographic Data for Cu.,0Br c(TPP0). • 2 C H o N 0 o 

'I b 4 -—o Z— 

Well-shaped octahedral crystals were obtained from the prepara­

tion of the compound. A crystal was mounted on one of the apices of 

the octahedron and precession camera photographs were taken. These 
photographs indicated that the crystal was cubic, space group P23, with 

o 
a - 12.47(2)A. The calculated density based on one formula unit per 

3 
unit cell, 1.67 g/cm , agreed well with the experimental value, 1.69(2) 

3 

g/cm , obtained by the flotation method in a mixture of carbon tetra­

chloride and methylene iodide. 

A limited amount of intensity data, 127 reflections, were col­

lected on a Buerger precession camera. The central oxygen, copper and 

bromine atoms were located from a three-dimensional Patterson synthesis 
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(33), but the structure never refined properly. The atomic positions, 

Table 15, are essentially the same as those found for the Cu,,0C£ unit 
4 b 

in Cu.OC£ (TPPO) by Bertrand (10). These structural parameters are 4 b 4 

reasonable but the R value of 0.42 with these atoms in the calculations 

discouraged any further attempts toward the solution of the structure. 

Table 15. Approximate Structural Parameters 
for Cu,,0Br r (TPPO),,-2CH oN0 o 4 b 4 3 2 

Atom x y z 

Ocnt 0 0 0 

Cu 0.0899 0.0899 0.0899 

Br 0.2421 0 0 

Magnetic Studies 

All of the magnetic susceptibilities were determined at room 

temperature by the Gouy method as previously described (36). The 

gram susceptibilities, Xg» have been corrected for the susceptibilities 

of the glass tube and for the displaced air. Molar susceptibilities, 

X^, were obtained by correcting for the diamagnetism of the ligands 

and ions. The diamagnetic corrections of Lewis and Wilkins (37) were 

used. The magnetic moments, y, were calculated using the equation 

y = 2 .84 (x T ) 
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where T is the absolute temperature. The results of the calculations 

are given in Table 16. 

Table 16. Magnetic Moment Data 

Compound X x 1 0 X x 1 0 y(Bohr Magnetons) 

[ ( C H 3 ) I + N ] [ + C u I + O C £ 1 0 3, .60 2162 2. .20 

Cu.,OC£ (TPPO) -2CH_N0 o 

4 D 4 O Z 

CO
 .75 1835 2, .10 

C u I I 0 B r c ( T P P 0 ) I I « 2 C H o N 0 o 

4 b 4 o z 
2, .86 1675 2. .00 

C u u O C £ 6 ( P y O ) u 7. .76 1773 2, .06 

Cobalt Trimer 10, .00 2317 2, .36 

Cu(PIA) -0. .15 69 0, .41 

Cu(mSALPA) 0, .04 135 0. .57 

Cu(EIA) 6, .59 1440 1. ,87 

Cu(SALPA)C£ 1, .20 332 1. ,06 

Spectral Studies 

The visible and near infrared spectra were recorded using a 

Cary model 14 spectrophotometer. One-centimeter matched quartz cells 

were used in all cases. The results of these determinations are given 

in Figures 2 through 7. 
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Figure 7. Solution Spectrum at Cu.OCio (TPPO) ' 2 C H o N 0 n in C H o N 0 o 

4 6 4 o 2 o 2 
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CHAPTER III 

RESULTS AND DISCUSSION 

Structures 

y, -oxo-hexa-y-chlorotetra(chlorocuprate(II))anion 

A perspective drawing of the structure is shown in Figure 8. The 

structure consists of a regular tetrahedron of Copper(II) atoms surround­

ing a central oxygen atom at the center of the tetrahedron. Chloride 

atoms bridge adjacent copper atoms along the six edges of the tetra­

hedron and form a regular octahedron around the central oxygen. The 

coordination of the copper is essentially trigonal bipyramidal with 

the equatorial positions being occupied by three of the bridging 

chlorides and the axial positions being occupied by the central oxygen 

and a chloride atom. 

There are two independent polynuclear units of this type in the 

unit cell. The structure is analogous to that found for Cu, 0C£_ (TPPO), 
4 6 4 

(10), Cu,0C£ c (pyridine),, (17) and Mg OBr (C H o0) (15). Interatomic 
4 b 4 4 b 4 ±U 4 

-4 
distances and angles for the C u ^ 0 C £ ^ Q units are given m Table 17 and 

the bond distances and bond angles for the tetramethylammonium groups 

are given in Table 18. Although crystallographically independent, the 

only significant difference in the two anions is in the Cu-C£ distances. 
ax 

o o 
This distance is 2.17A for the origin ion and 2.25A for the non-origin 

o o 
ion. The Cu-0 distances, 1.95A and 1.92A, agree well with the values 

o o 
from previous structures of this type, 1.88A to 1.92A (10,15,17), and 
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Table 17. Interatomic Distances and Angles 
Within the C u ^ O C ^ - 1 * Anions 

Distance, Angle, 
Atoms A° Atoms degrees 

Cu - 0 1.945(5) Cu - 0 - Cu 109.5 

C u T - 0' 1.921(8) Cu' - 0' - Cu' 109.0(5) 

Cu - Cu 3.18(1) 109.7(3) 

C u T - Cu' 3.14(1) 0 - Cu - C£ 180.0 
ax 

Cu - C£ 2.43(3) 0' - Cu' - C£ . 177.0(7) eq ax' 
Cu' - C£ ,(1) 2.40(2) 0 - Cu - C£ 84.5(6) 

e q T eq 
Cu' - C£ .(2) 2.38(2) 0' - Cu' - C£ .(1) 84.8(5) e q T e q T 

2.45(2) 0' - Cu' - C£ .(2) 85.6(5) 
eq' 

Cu - C£ 2.17(2) 83.5(5) ax 
C u T - C£ , 2.25(2) C£ - Cu - C£ 119.1(2) ax' eq eq 

C£ ,(1) - Cu' - C£ .(2) 118.0(5) 
eq e q T 

120.5(5) 

C£ .(2) - Cu' - C£ ,(2) 118.9(4) e q T e q T 

C£ - Cu - C£ 95.5(8) ax eq 
C£ , - Cu' - C£ ,(1) 98.2(7) ax' eq' 
C£ , - Cu' - C£ .(2) 93.5(7) ax' eq' 

94.4(7) 

Cu - C£ - Cu 81.5(1.2) 
eq 

Cu' - C£ .(1) - Cu' 81.4(9) eq' 
Cu' - C£ ,(2) - Cu' 81.2(6) eq' 
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Table 18. Interatomic Distances and Angles Within 
the Tetramethylammonium Cations 

Distances, Angle, 
Atoms A° Atoms degrees 

N - C(l) 1, .49(7) C(l) - N - C(2) 113, .8(7, .2) 

N - C(2) 1. ,31(9) C(2) - N - C(2) 104, .8(6 .7) 

N f - C»(l) 1, .53(9) C'(l) - N' - C'(2) 98. .8(6 .0) 

N f - C'(2) 1. , 58(11) C'(l) - N 1 - C'(3) 123, .0(7, .7) 

N' - C'(3) 1. ,43(10) C»(l) - N' - C'(4) 123, .1(8, .1) 

N' - C'(4) 1. ,28(10) C'(2) - N 1 - C'(3) 92. .7(6, .6) 

C'(2) - N' - C'(4) 101. ,8(8. .4) 

with the value for Copper(II) oxide, 1.9 5A. Because of symmetry 

requirements, the octahedron of chlorides for the origin anion is 
o 

undistorted: it has a Cu-C£ distance of 2.43A, a Cu-C£-Cu angle of 

81.5°, and a C£ -Cu-C£ angle of 119.1°. The octahedron of chlorides eq eq & 

for the non-origin anion is not required to be symmetrical, but the 
o o 

agreement of the Cu-C£ distances, 2.38A - 2.45A, the C£ -Cu-C£ & eq eq eq 
angles, 118.0 - 120.5°, and the Cu-C£-Cu angles, 81.4 and 81.2°, show 

that no appreciable distortions are present. As in previous structures 

of this type (10,15,17), the copper atom is displaced out of the equa-
o 

torial plane (0.21A) of the trigonal bipyramid away from the central 

oxygen to give C£ e^-Cu-0 angles of 8 5° for both anions. This distance 
o 

is 0.23A for Cu. 0C£ r(TPPO)., (10) and Cu,,0C£ r(pyridine)., (17). The 4 6 4 4 6 4 
0-Cu-C£ arrangement is linear for the origin anion because of symmetry 
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requirements and is only slightly bent, 177.0°, for the non-origin anion. 

Since the isotropic temperature factor of atom C(l) was somewhat 

high, the possibility of disorder within the tetramethylammonium group 

along the threefold axis was investigated but no unusual features were 

found in the final difference Fourier in this region. 

This complex anion can be thought of as a member of the series 

of compounds with the general formula Cu. 0C£ L. . The basic Cu. 0C£_ 

units in this structure are essentially identical to that reported when 

L was triphenylphosphine oxide (10). The compound with L = pyridine 

(17) is very similar but shows significant distortion of the chloride 
o o 

octahedron. The Cu-C£ distances vary from 2.36A to 2.49A and the 
eq J 

CI -Cu-C£ angles vary from 108 to 138°. Since none of the other eq eq to J 

complexes with this basic formula show such distortions, it appears 

that intra-molecular contacts between the pyridine ring hydrogens and 

the chlorides of the octahedron are responsible. 
o o _n 

The Cu-C£ distances (2.17A and 2.25A) in the Cu.OCA.. ions ax 4 10 
o o 

are considerably shorter than the Cu-C£ distances (2.38A-2.45A ). J eq 
Such an effect could be attributed to TT-bonding. Electron density 

could be donated from the copper ir-orbitals to the vacant 3d orbitals 

of the chlorides. Such back-donation would result in the shortening 

of the Cu-C£ bonds. Such an effect was also present in Bertrand's ax 
(10) Cu.0C£ (TPPO). where a linear Cu-O-P arrangement and an increase M- 6 i 

in the phosphorous-oxygen stretching frequency was attributed to 

TT-bonding between the copper and the phosphorous-oxygen system. 
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The coordination sphere in these polyhedral anions is very 
-3 -3 similar to that found for the C u C & 5 ion (38,39). In the CuC& 5 ion, 

the Cu-C£ distances are considerably shorter than the Cu-C£ dis-ax eq 
_u o o 

tances. The Cu-C£ distances in the Cu,,OC£ n„ (2.38A - 2.45A) and 
eq 4 10 

-3 ° 
in the CuC£^ ion (2.39A) are identical even though these chlorides 

-4 
m C u ^ 0C £ ^ Q are bridging groups. A comparison of the Cu-Cl^ 

_ M o o 
distances of the Cu^OCJl ion (2.17A - 2.25A) with that of the 

-3 ° CuC£_ ion (2.30A), shows a significant shortening only in the case b of the origin anion. The shorter distance for the Cu-C£ bonds is to eq 
consistent with the 7T-bonding argument and a shorter Cu-C£ distance 

cLX 
-4 -3 in the Cu, 0C£ „ ions is also consistent since in the C u C £ r ion the 4 10 5 

two axial chlorides would compete for the copper electrons in the same 

manner that trans-carbonyl groups compete for metal electrons (and 

weaker bonds) in metal carbonyl complexes. 

y^-oxo-hexa-y-bromotetrakis{(ammine copper(II)} 

A perspective drawing of the structure is shown in Figure 9 and 

selected bond distances and bond angles are given in Table 19. This 

structure is basically the same as that found for other y^-oxo type 

structures (10,15,17). As in the other y^-oxo type structures (10, 

15,17), an oxygen atom is surrounded tetrahedrally by four copper(II) 

atoms. The copper atoms are bridged along the six edges of the 

tetrahedron by bromide atoms. The copper atoms are five coordinate 

with a nearly regular trigonal bipyramid being formed. The equa­

torial positions of the trigonal bipyramid are filled by three of the 

bridging bromides and the axial positions are filled by the central 
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Table 19. Interatomic Distances and Angles for Cu OBr (NH ) 

Distance, Angle, 
Atoms A Atoms degrees 

Cu-0 1 .915(5) Cu-O-Cu 108.7(3) 

109.9(1) 

Cu-Cu 3. .113(10) O-Cu-N 179.8(1.1) 

3, .135(8) 0-Cu-Br 87.2(2) 

Cu-N 1. .98(3) 87.5(2) 

Cu-Br CN .570(7) 86 .9(2) 

CM .557(6) Br-Cu-Br 118.8(2) 
CM .485(6) 121.2(2) 

119.3(2) 

N-Cu-Br 93.0(1.0) 

92.5(1.1) 

92.9(1.1) 

Cu-Br-Cu 77.6(3) 

75.4(3) 

oxygen and an ammonia molecule. The size of the central Cu^O unit has 

not changed significantly when the bridges are bromides instead of 
o 

chlorides. The Cu-0 distance in this structure, 1.915A, is the same 

as that found for other u^-oxo structures (see Table 20). The Cu-Cu 
o 

distance in this structure, 3.12A, is also in the same range found for 

other structures of this type. 
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One of the expected changes that took place when bromide bridges 

replaced the chloride bridges was the copper-halogen distances. The 
o o 

Cu-Br distances, 2.485A-2.570A, are longer than the corresponding 
O O _L\. 

Cu-Cl distances, 2.38A-2.45A, in the C u ^ O C ^ ion. This change 

reflects the difference in size of bromine and chlorine atoms. This 

increase in the copper-halogen distances, with a constant Cu-Cu distance 

maintained, necessarily increased the size of the octahedron of halo­

gens surrounding the central oxygen. However, this enlargement caused 

no distortions of the octahedron. The increase in the size of the octa­

hedron can be seen by the decrease in the copper-halogen-copper angles. 
-4 The average Cu-C£ -Cu angle in the Cu,0C£ n - ion was 81.3° and the to eq to 4 10 

average Cu-Br-Cu angle in this structure is 76.5°. What actually hap­

pens when bromide replaces chloride is that the bromides are further 

away from the edges of the tetrahedron than were the chlorides. The 

enlargement of the halogen octahedron also affects the distance of the 

copper atom from the equatorial plane of the trigonal bipyramid. The 
o o 

distance is 0.12A in this structure and is 0.11A in Mg^OBr (C^H 0 ) ^ 

(15). This distance is less than that found for the chloride structures 

(10,17) of this type (see Table 20). Another point of interest is that 

the overall dimensions of the Mg,OBr^ (15) unit and the Cu, OBr^ are 
4 b 4 b 

amazingly similar (Table 20). 

Although a complete structure determination was not carried out 

for Cu, OBr^(TPPO), * 2 C H o N 0 o , several points can be made about the struc-4 b 4 3 2 
ture. The Patterson synthesis (33) yielded atomic positions for all of 

the atoms of the central Cu, 0Br_ unit. These positions are not exact 
4 b 
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Table 20. Comparison of Average Bond Distances 
and Bond Angles for M. OX L k Structures 

M-M ,A M-0,A 
o 

M-L ,A M-X,A 

Distance of Metal 
Out of Equatorial 

Plane A 

I. 3.11 1.91 1.89 2.38 0.23 
II. 3.16 1.93 2.21 2.42 0.21 

Ill. 3.09 1.90 1.96 2.41 0.23 
IV. 3.12 1.92 1.98 2.54 0.12 
V. 3.20 1.95 2.11 2.60 0.11 

M-O-M X-M-X 0-M-X M-X-M 0-M-L 
I. 108.9 119.0 84 .4 81.6 180.0 

II. 109.4 119.1 84 .6 81.4 178.5 
Ill. 109.5 119.2 84 .8 80.2 177 .3 
IV. 109.2 119.7 87.2 76.5 179.8 
V. 109.7 119.3 87 .5 75.6 179.8 

I = Cu^OCi c(TPP0) 6 4 
II = 

III = 
Cu^OCJi 
Cu^OCJi 

-4 
10 
g(pyrid i n e ) 4 

IV = Cu^OBr 6 ( N H 3 > 4 
V = Mg^OBr 6 ( V l O 0 ) 4 

since complete refinement was not attained, but they are roughly the 

same as those found for the Cu.,0C£^ unit in Bertrand' s structure (10). 
4 6 

Both space groups, P23 and P43m (34), have the same type positions for 

the central Cu,0X^ unit and it seems that both structures are made up 4 6 " 
of units occupying the same type positions. Because of the symmetry 

of P23, the octahedron of bromide atoms is completely symmetrical. 
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As were the equatorial chlorides in Bertrand's structure (10), the 

three bromides of the equatorial plane of the trigonal bipyramid 
o 

are related by a threefold axis. Since this unit cell,a = 12.47A, 
o 

and Bertrand's unit cell, a = 12.22A, are similar, allowing for the 

fact that bromides are larger than chlorides, it is very likely that 

the Cu. OBr-(TPPO). and Cu.,0C£ r (TPPO)., units are isostructural. The 4 b 4 4 b 4 

phenyl rings are not required to be disordered in space group P23 as 

they were in P43m. The two nitromethane molecules would be required 

to be disordered in P23 since no twofold positions are available. 

Table 20 summarizes some of the important bond distances and 

bond angles for some of the known structures with the general formula 

M.OX-L,, . Inspection of this table shows that all of the chloride 4 o 4 
structures are basically the same; some may be distorted, but average 

dimensions compare favorably. For this reason, it was not considered 

necessary to carry out structure determinations of Cu^OCA (TPPO)^• 

2 C H 3 N 0 2 , C u 4 0 C £ 6 ( P y 0 ) 4 , and [ ( C H ^ ^ C d ^ O C ^ . 

Single crystals of Cu^O(acetate) could not be obtained, but 

the structure is probably similar to that found for Be^O(acetate) 

(40) and Zn.,0(acetate) c (41). 4 b 

Cu(EIA) 

A perspective drawing of the structure is shown in Figure 10 

and bond distances and bond angles are given in Table 21. The complex 

is tetrameric like the previously reported acetylacetone mono(o-hydroxy-

anil)Copper(II) complex (8). The tetrameric complex can be thought of 

as two dimers held together by copper-oxygen bonds. In the previous 



Figure 10. A Perspective Drawing of the Structure of Cu(EIA) 
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Table 21. Bond Distances and Bond Angles for Cu(EIA) 

Distance, Angle, 
Atoms A Atoms degrees 

Cul-Cul' 3 .006(8) Cul-02-Cul' 97 oo (8) 
Cul-Cul" 3 .259(8) 02-Cul-02' 81 .4 (8) 
Cul-02 1 .98(2) 02-Cul-02" 81 .8 :7) 
Cul-02' 2 .00(2) 02'-Cul-02" 81 .3 :7) 
Cul-02" 2 32(2) 02-Cul-N5 86 .0 Ci-o) 
Cul-011 1 .91(2) 02"-Cul-N5 120 .3 :s) 
Cul-N5 1. 90(2) 02'-Cul-N5 153 .1( :s) 
C9-011 1 30(4) 02'-Cul-011 98 .4( :9) 
02-C 3 1 40(3) N5-Cul-011 95 .0 [l.D 
C4-N5 1 53(4) Cul-02-C3 107 .5 [1.7) 
N5-C6 1 30(3) Cul'-02-C3 118 .6( [1.6) 
C9-C10 1 54(5) N5-C4-C3 106 .3 [2.4) 
C6-C7 1 45(4) 02-C3-C4 109 .41 [2.5) 
C8-C9 1 39(4) Cul-N5-C4 110 .9( [1.7) 
C6 -C8 1.43(4) C4-N5-C6 120 .1( [2.4) 
C3-C4 1 51(4) Cul-N5-C6 128 ,8( [2.3) 

N5-C6-C8 119 .1( '2.7) 
C6-C8-C9 126 .71 [2.9) 
C8-C9-011 126 .71 [3.0) 
Cul-011-C9 122 .9( '2.1) 
02-Cul-011 178 ,0( '9) 

Table 22. Equation of the Best Least-Squares Plane of the Acetyl-
acetenate Chelate Ring (N5, C6. C 7 , C 8 , C 9 , C10, Oil) 
of Cu(EIA) and the Distances (A) of the Atoms from 
That Plane 

0.499X + 0.196Y - 0.844Z = -0.329 

N5 0.040 
C6 -0.036 
C7 0.026 
C8 -0.037 

C9 -0.012 
C10 0.041 
Oil -0.021 
Cul -0.098 

02 -0.119 
C3 0.082 
C4 0.133 
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structure (8) one dimer was displaced with respect to the other so 

that there were only two such Cu-0 interactions per tetramer. In 

this complex, one dimer is rotated 90° with respect to the other so 

that there are four Cu-0 interactions per tetramer. The Cu-Cu distance 
o 

between "dimers" (3.26A) is longer than the Cu-Cu distance within the 
o 

dimer (3.01A). As in the y^-oxo complexes (10,15,17), the copper 

atoms are arranged in a tetrahedron, but in this complex there is 

nothing at the center of the complex. Also, in the y^-oxo complexes 

the copper atoms were bridged above the edges of the tetrahedron by 

halogens; in this complex the copper atoms are bridged above the 

faces of the tetrahedron by oxygen atoms. The close relationship 

between the bonding in these two types of structures has been discussed 

by Kettle (42). 

The coordination around the copper atom is somewhat distorted 

but is five-coordinate and is essentially bipyramidal with two oxygens 

of one chelate ligand in axial positions. The nitrogen of the same 

ligand and the oxygens of two other ligands of the tetramer occupy 

equatorial positions. As in the y^-oxo complexes (10,15,17), the 
o 

copper is displaced out of the equatorial plane (0.23A). The angles 

between the groups in the equatorial plane (81, 120 and 153°) are not 

indicative of square pyramidal coordination (90, 90, and 180°) nor of 

trigonal bipyramidal coordination (all 120°). 

The four-membered ring of copper and oxygen atoms, which is 

not required by symmetry to be planar, is bent. The extent of bending 

of the ring is indicated by the dihedral angles between the two Cu-O-Cu 
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planes, about 14°, and between the two O-Cu-0 planes, about 12°. 

The tridentate ligand forms a six-membered ring (unsaturated 

chelate ring) and a five-membered ring (saturated chelate ring). 

Table 22 gives the calculated best least-squares plane of the 

acetylacetonate ring (unsaturated chelate ring) and the distances of 

the atoms from that plane. As Table 22 indicates, the unsaturated 

chelate ring is planar. In the saturated chelate ring, the carbon 

C3, bonded to the bridging oxygen is considerably out of the plane of 

the rest of the chelate ring. 

Cu(PIA) 

Figure 11 shows a perspective drawing of the structure and 

Table 23 gives bond distances and bond angles. The only difference 

between the ligand in this complex and the one in Cu(EIA) is one 

carbon atom in the saturated ring. This structure is dimeric 

and contains a central four-membered ring which, because of an inver­

sion center at the center of the ring, is exactly planar. In addition, 

the coordination of each copper atom is planar as indicated by the fact 

that none of the coordinated atoms are out of the plane defined by the 
o 

four-membered ring (see Table 24) by more than 0.03A. The coordination 

around the bridging oxygen is also essentially planar with the carbon 
o 

bonded to the oxygen only 0.02A out of the plane of the four-membered 

ring. 

In addition to the four-membered ring, there are two six-

membered chelate rings consisting of copper, oxygen, nitrogen and 

three carbon atoms. One of these chelate rings contains carbon atoms 
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Figure 11. A Perspective Drawing of the Structure of Cu(PIA) 



Table 23. Bond Distances and Bond Angles for Cu(PIA) 

Distance, Angle, 
Atoms A* Atoms degrees 

Cul-Cul' CO .025(6) Cul-02-Cul' 106 .4 : E ) 

Cul-02 1 .86(1) 02-Cul-02' 73 .6 : E ) 

Cul-02' 1 92(1) 02-Cul-N5 99 CD
 

: E ) 

Cul-011 1 96(2) 02'-Cul-N5 173 .1 : E ) 

Cul-N5 1 .83(1) 02'-Cul-011 91 CO : E ) 

C9-011 1 31(2) N5-Cul-011 95 .0 [7) 
02-C3 1 43(2) Cul-02-C3 129 .4 [1.2) 
C4-N5 1 49(3) Cul'-02-C3 124 .2 :i.2) 
N5-C6 1 28(2) N5-C4-C12 114 .4( [2.0) 
C9-C10 1 .52(3) 02-C3-C12 108 CM : i . E ) 
C6-C7 1 53(2) C3-C12-C4 116 CM [2.2) 
C8-C9 1 42(3) Cul-N5-C4 119 .61 :i.4) 
C6-C8 1 40(3) C4-N5-C6 117 .71 :i.9) 
C4-C12 1 53(3) Cul-N5-C6 122 .7 :i.s) 
C3-C12 1 .56(3) N5-C6-C8 120 CO 1.9) 

C6-C8-C9 125 CO :i.9) 
C8-C9-011 120 CD

 :i.9) 
Cul-011-C9 129 .4 :i.5) 



80 

Table 24. Equations of Atomic Planes and 
Distances(A°) of Atoms from 

These Planes 

(a) Equation of the Plane of the Four-
Membered Ring (Cul,02,Cul',02') of 
Cu(PIA): 

0.620X + 0.739Y - 0.264Z = 0.000 

Cul 0 .000 C4 0.044 C9 -0.082 
02 0 .000 N5 -0.028 C10 -0.106 
Cul' 0.000 C6 -0.120 Oil -0.006 
02' 0.000 C7 -0.230 C12 0.735 
C3 0.018 C8 -0.215 

(b) Equation of the Best Least-Squares 
Plane of the Acetylacetonate Chelate 
Ring (N5. ,C6,C7,C8,C9,C10,011) of 
Cu(PIA): 

0.620X + 0.762Y - 0.186Z = 0.212 

N5 0.014 C9 0.009 02 -0.197 
C6 0.019 C10 0.026 C3 -0.167 
C7 0 .001 Oil -0.020 C4 0.074 
C8 -0.049 Cul -0.090 C12 0.658 

from the acetylacetone (unsaturated chelate ring) and the other 

chelate ring contains the carbons from the aminopropanol (saturated 

chelate ring). The five carbon atoms of each unsaturated chelate 

ring are essentially coplanar (the greatest deviation of any of the 
o 

five atoms from their best least-squares plane is 0.05A) and that plane 

forms a dihedral angle of about 10° with the plane of the four-membered 

ring. Since the two unsaturated chelate rings of the dimer are related 

by a center of inversion, they are bent in opposite directions from the 

plane of the copper-oxygen ring. The carbon-carbon bond distances 
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within the unsaturated chelate ring do not differ by as much as their 

standard deviations. 

The saturated chelate ring, as expected, is non-planar. As 

indicated above, the carbon bonded to the bridging oxygen is in the 

plane of the four-membered ring, the carbon bonded to the nitrogen is 
o 

only slightly out of that plane (0.12A), and the other carbon of the 

ring is the only atom of the entire structure that causes the dimer 
o 

to deviate significantly from p l a n a r i t y — i t is 0.74A from the plane 

on the side opposite the unsaturated chelate ring of the same ligand. 

Cu(SALPA)Cft 

A perspective drawing of the structure of Cu(SALPA)C& is given 

in Figure 12 and bond distances and bond angles for the structure are 

given in Table 25. This complex is dimeric as was Cu(PIA) and the 

copper atoms are five-coordinate as were those in Cu(EIA). Since the 

molecule contains a center of inversion at the center of the four-

membered copper-oxygen ring, that ring is exactly planar as it was 

in the Cu(PIA) structure. 
o 

The Cu-Cu distance in this structure, 3.29A, is longer than 
o o o 

that distance found in Cu(PIA), 3.01A, or in Cu(EIA), 3.01A and 3.26A. 
Also, the central four-membered ring in this structure is not as sym­

metrical as it was in Cu(PIA). The Cu-0 distances within the four-
o o 

membered ring for this structure, 1.78A and 2.22A, show a much larger 
o 

difference than the two corresponding distances in Cu(PIA), 1.86A and 

1.92A. 



Figure 12. A Perspective Drawing of the Structure of Cu(SALPA)C£ 



Table 25. Bond Distances and Bond Angles for Cu(SALPA)C£ 

Atom 
Distance, 

A Atoms 
An$ 
dej 

lie, 
gvees 

Cul-Cul' 3 .294 (7) Cul-02-Cul' 110 .3(6) 

Cul-C£ 2 .115 (6) 02-Cul-02' 69 .7(6) 

Cul-02 1 .78 (1) Cl-Cul-02 126 .2(5) 

Cul-02' 2 .22 (1) Cl-Cul-02' 98 .6(4) 

02-02' 2 .31 (3) Cl-Cul-014 110.1(4) 

Cul-NIO 2 .18 (2) CI-Cul-NIO 92 .5(5) 

Cul-014 2 .24 [2) 02'-Cul-014 99 .6(6) 

02-C 3 1 .34 :2) 02'-Cul-NIO 168 .9(6) 

C3-C4 1 39 ( '3) 014-Cul-N10 76 .0(6) 

C4-C5 1 38 ( :3) 014-Cul-02 123 4(7) 

C5-C6 1 53 ( '3) N10-Cul-02 104 0(6) 

C6-C7 1 34 ( !3) Cul-02-C3 112. 3(1.3) 
C7-C8 1 41 ( 3) Cul'-02-C3 137 2(1.2) 

C3-C8 1. 48 ( 3) 02-C3-C4 98. 0(1.9) 

C8-C9 1. 41 ( 3) C4-C3-C8 133. 1(2.0) 

C9-N10 1. 19 ( 2) C8-C3-02 128. 9(1.9) 

N10-C11 1. 54 ( 3) C3-C4-C5 100. 6(2.1) 

C11-C12 1. 60 ( 3) C4-C5-C6 127. 6(2.1) 

C12-C13 1. 63 ( 3) C5-C6-C7 129. 8(2.2) 

C13-014 1. 53 ( 3) C6-C7-C8 104. 4(2.0) 



Table 25. (Continued) 

Angle, 
Atoms degrees 

C7-C8-C3 

C7-C8-C9 

C3-C8-C9 

C8-C9-N10 

C9-N10-Cul 

Cll-NlO-Cul 

C9-N10-C11 

N10-C11-C12 

C11-C12-C13 

123.9(1.9 

97.1(1.8 

139.0(1.8 

110.2(2.0 

125.4(1.6 

130.7(1.7 

103.9(1.8 

114.1(1.7 

105.0(1.8 
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The coordination of the copper can be thought of as being 

bipyramidal. The angles within the equatorial plane (126°, 110° and 

123°) are not too far from those of a regular trigonal bipyramid (all 

120°). The phenolic oxygen, the oxygen of the aminopropanol of one 

ligand, and the chlorine occupy the equatorial positions; the nitrogen 

and the phenolic oxygen of the other ligand occupy the axial positions. 

The N10-02 1 angle of 169° shows the amount of bending of these axial 

groups from the 180° of a regular trigonal bipyramid. If the coordi­

nation is assumed to be distorted trigonal bipyramidal, the copper 

o 

is only 0.06A out of the equatorial plane, away from 02'. 

As in the Cu(PIA) structure, the coordination of the bridging 

oxygen is essentially planar. The carbon bonded to the bridging 
o 

oxygen, C 3 , is only 0.08A out of the plane defined by the central 

four-membered ring. 

Table 26 gives the calculated best least-squares planes for 

the central four-membered ring and the distances of atoms from that 

plane. A similar plane is also given for the benzene ring. 

Cobalt Trimer 

A perspective drawing of the structure is given in Figure 13 

and selected bond distances and bond angles are given in Table 27. 

It has been found that this compound has a trinuclear structure. 

Hydrated salts of similar compounds have been prepared and have been 

assumed (43) to have a trinuclear structure with two tris-(2-amino-

ethoxido)cobalt(III) groups sharing triangular octahedral faces of 

oxygen atoms with a central octahedrally coordinated cobalt(II) atom. 
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Table 26. Calculated Best Least-Squares Planes 
and Distances of Atoms from Planes 

Atoms Defining Plane : Cul, C u l 1 , Atoms Defining Plane: C 3 , C4, C5, 
02 and 02 1 . C 6 , C7 and C8. 
Equation of Plane: -0.471X - Equation of Plane: 0.360X + 
0.882y + 0.012Z = 0. 0.922y + 0.142Z - 0.138 = 0. 

Distance Q from Distance Qfrom 
Atom Plane, A Atom Plane, A 

Cul 0.00 C3 -0.005 
C u l 1 0.00 C4 -0.007 
02 0.00 C5 -0.009 
0 2 f 0.00 C6 -0.001 
CI -1.70 C7 -0.006 
C3 0.08 C8 0.008 
C4 -0.13 C9 0.054 
C5 -0.04 N10 0.201 
C6 0.26 
C7 0.47 
C8 0.35 
C9 0.54 
N10 0.35 
Cll 0.59 
C12 2.00 
C13 2.06 
014 1.87 
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Figure 13. A Perspective Drawing of the 
Structure of the Cobalt Trimer 
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Table 27. Selected Bond Distances and Bond Angles for Cobalt Trimer 

Distance, Angle, 
Atoms % Atoms Degrees 

C01-C02 

CM 597(5) 03-Col-02 
Col-01 2 .005(3) 03-Col-02 78 .9 (5) 
Co2-01 1 885(7) 03-Col-Ol 78 7 '5) 
Col-02 2. 104(2) Ol-Col-02 79 .2 [1) 
Co2-02 1 975(5) 03-Col-Ol' 86 9 '5) 
01-02 2 621(4) 02-Col-02' 83 0 [1) 
Col-03 2 068(18) Ol-Col-03' 86 .9 [5) 
Co2-03 1 926(19) Nl-Co2-02 172 .1 [7) 
01-03 2 582(19) Nl-Co2-N3 92 7 :i.o) 
02-03 2 648(18) Nl-Co2-03 86 .9 [8) 
Co2-Nl 1 883(18) Nl-Co2-0l 96 .2 [6) 
Co2-N2 1 994(20) Nl-Co2-N2 95 11 ' 8 ) 
Co2-N3 2 016(29) 03-Co2-N2 172 5( !9) 
N2-C11 1 36(3) 03-Co2-N3 92 .1 : i . o 
C11-C12 1 54(4) 03-Co2-02 85 5 [6) 
C12-01 1 65(3) 03-Co2-01 85 3 [6) 
N1-C21 1 48(3) N3-Co2-0l 170 6( [8) 
C21-C22 1 53(3) N3-Co2-02 85 3( [9) 
C22-03 1 39(4) N3-Co2-N2 95 01 :i.o) 
N3-C31 1 55(4) 02-Co2-N2 92 7 :e) 
C31-C32 1 51(4) Co2-Nl-C21 110. 3( [1.4) 
C32-02 1 38(3) N1-C21-C22 99 1( 2.0) 
CA1-CA2 1 48(4) C21-C22-03 110 3( [ 2 . 2 ) 
CA2-01A 1 25(4) C22-03-Col 122 7( [ 1 . 6 ) 
CA2-01AB 1 38(4) Co2-N2-Cll 113 1( [1.5) 
CA2-02A 1 38(6) N2-C11-C12 103 4( 2.2) 
CA2-02AB 1 17(6) C11-C12-01 104. 8 [1.9) 
02-02' 2 79(1) C12-01-Col 110 8( 1 . 0 ) 
01-03' 2 80(2) Co2-N3-C31 103. 7( [1.7) 

C31-C32-02 106. 1( '2.7) 
C32-02-Col 120 5( 1.5) 
03-Col-03' 140 8( [ 1 . 0 ) 
03-Col-02 134. 1( [5) 
01-Col-Ol' 136 2( [1) 
01-Col-02' 138. 2( 1) 
02-Col-03' 134. 1( [5) 
02-Col-Ol' 138. 2( 1) 
03-01-02 61 2( [4) 
01-02-03 58. 7( '4) 
02-03-01 60 1( 4) 
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Analogous trinuclear complexes, [M (Co (chelate » with 2-amino-

ethanethiolate as the chelate ligand and with cobalt(III), zinc(II) 

and nickel(II) as the central metal, M, have been studied and a tri­

nuclear structure with each atom octahedrally coordinated has been 

proposed for these complexes (44,45). 

The way in which the chelate rings are placed about the metal 

atoms, namely, three rings closed around each terminal cobalt(III) 

atom and none around the central cobalt(II) atom is not too surprising 

since the amino groups cannot act as bridging groups. The surprising 

part of the structure is the coordination of the central cobalt(II) 

atom. The coordination of the terminal cobalt(III) atoms is essentially 
o 

octahedral with three Co-N distances of 1.88, 1.99 and 2.02A and three 
o 

Co-0 distances of 1.89, 1.93 and 1.98A while the coordination of the 

central cobalt(II) atom is an almost perfect trigonal prism. The Co-0 
o 

distances are 2.01, 2.07 and 2.10A. The triangular faces of the tri­

gonal prism are almost perfect equilateral triangles with 0-0 distances 
o 

of 2.58, 2.62 and 2.65A and angles of 58.7, 60.1 and 61.2°. Between 
the triangular faces there are two 0-0 distances of 2.80 and one of 

o 

2.79A. The best least-squares plane for the group of four oxygens 

comprising each rectangular face of the trigonal prism was calculated, 

the distance of each atom from the plane was calculated and the dihedral 
angle between each pair of adjacent faces was calculated; no atom was 

o 

more than 0.05A out of the plane of its face and the dihedral angles 

between the faces were 121.5° for one pair and 119.1° for the other 

two pair. 
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Since a twofold axis relates the two terminal cobalt(III) atoms, 

each has the same optical configuration and thus, the complex should 

be optically active. Construction of models of the structure found 

and of the postulated structure with octahedral coordination about the 

central cobalt(II) indicates the hydrogen atoms of the methylene groups 

adjacent to the oxygens may be responsible for the unusual coordination. 

Hydrogens of the two chelates appear to approach to less than the sum 

of their Van der Waal's radii in the octahedral complex but are less 

crowded in the trigonal prismatic complex. On the basis of models, 

octahedral coordination would give less crowding of the hydrogens in 

the inactive complex in which the cobalt(II) atom is coordinated to 

one A and one A tris chelate. 
o 

The Co-Co distance in this structure, 2.60A, is shorter than 

that found for other first row transition metal trinuclear structures. 
o 

Cotton (46) found a Co-Co distance of 2.92A for Co 0(DEPAM) , where 
o b 

DEPAM is the diethoxyphosphonylacetylmethane anion and the Ni-Ni 
o 

distance is 2.89A in the trinuclear nickel acetylacetonate. As found 
for this structure, Cotton's C o 0 ( D E P A M ) . structure had three chelate 

o b 

rings around each terminal cobalt atom and none around the central 

cobalt. However, one would expect a longer Co-Co distance in COg(DEPAM) ( 

since there would be more repulsion between the methyl groups on the 

DEPAM ligands than there was for the methylene hydrogens on the 2-amino-

ethoxido ligands. This would also be true for the methyl groups on the 

acetylacetonate ligands of nickel acetylacetonate. Metal-metal bonding 

cannot be ruled out for this structure. The magnetic moment per trimer, 
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4.05 Bohr magnetons, is reasonable for three unpaired electrons. The 

two cobalt(III) atoms would not affect this value even if metal-metal 

bonding were present. 

This complex represents the first example of a trigonal pris­

matic complex with a coordination sphere of oxygen atoms. The only 

other discrete complexes reported to have trigonal prismatic coordina­

tion have been with the dithiolate ligand (47). Since this complex 

was reported the structure of a trigonal prismatic complex, cis, cis-1, 

3,5-tris(pyridine-2-carboxaldimino)cyclohexane zinc(II) ion, with a 

coordination sphere of nitrogen atoms was reported by Wentworth, et 

al. (48). 

Correlations Between Magnetic Properties and Structure 

The common feature of the five copper(II) structures, 

Cu.OCA ~ \ Cu OBr (NH ) , Cu(PIA), Cu(EIA) and Cu(SALPA)C£, is that 4 ±0 4 b o 4 

they all contain copper(II) atoms bridged by oxygen atoms. The type 

of bridge varies from a four-coordinate oxygen in the y^-oxo complexes 

and in Cu(EIA) to a planar three-coordinate oxygen in Cu(PIA) and 

Cu(SALPA)C£. Usually when copper(II) atoms are bridged by oxygen atoms, 

magnetic exchange occurs (1), and results in a lowering of the room 

temperature magnetic moment. However, as Table 16 shows, there is a 

wide range in the room temperature magnetic moments for these compounds--

the magnetic moments vary from normal for Cu(EIA) to almost diamagnetic 

for Cu(PIA). 

Although the formulas of Cu(PIA) and Cu(EIA) differ by only one 

carbon atom, the room temperature magnetic moments, 0.41 and 1.87 Bohr 
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magnetons, respectively, are markedly different. As indicated above, a 

subnormal magnetic moment, as that of Cu(PIA), is characteristic of a 

large number of oxygen-bridged copper(II) complexes (1). The moment of 

Cu(EIA), although normal for an isolated copper(II) ion, is unusual for 

an oxygen-bridged complex. Other previously reported examples with nor­

mal magnetic moments are dimers of bis chelates (M-9), as the bis 8-

hydroxyquinoline chelate, the dimeric complex of N,N'-ethylene-bis(sali-

cylindeneiminato) (50) and the u^-oxo complexes (10,17). Because of the 

large difference in room temperature magnetic moments, a comparison of 

the structures of Cu(PIA) and Cu(EIA) should provide additional evidence 

as to the mechanism of the spin-exchange interaction in oxygen-bridged 

complexes. 

The principal difference in the two structures is the coordina­

tion of the bridging oxygens--in Cu(PIA) coordination about oxygen is 

planar while in Cu(EIA) coordination around oxygen is tetrahedral; the 

difference can be understood in terms of the chelate rings formed. In 
2 

order for the coordination around a bridging oxygen to be planar (sp 

hybridization), the Cul-02-C3 angle must be at least 120° (since the 

Cul-02-Cul' angle is considerably less than 120°, the two Cu-O-C angles 

for each oxygen must average more than 120° to maintain planarity). 

In the case of Cu(PIA), it is possible to have Cu-O-C angles of 129° 

and 124° and square-planar coordination around copper without any 
steric strain; however, the same arrangement in Cu(EIA), because of 
the smaller chelate ring, would be extremely strained. The strain can 

3 

be relieved to some extent by a change to sp hybridization of the 

oxygen orbitals, thus decreasing the Cu-O-C angle within the chelate 
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ring; this angle is 108° in Cu(EIA). 

With the change in hybridization of the oxygen, the ethanolimine 

ligand makes it impossible to have a planar four-membered metal-oxygen 

ring and square-planar coordination of the metal; in Cu(EIA), the four-

membered ring is slightly bent (the two Cu-O-Cu planes show a dihedral 

angle of 14°) and the coppers are five-coordinate. In the corresponding 

nickel complex (51), square-planar coordination of the metal is main­

tained but the four-membered ring shows much greater bending (the two 

Ni-O-Ni planes show a dihedral angle of 40°). 

In the case of the planar arrangement, three of the four outer 

orbitals of each bridging oxygen (2s, 2p , and 2p ) are used for 
x y 

a-bonding and the fourth orbital (2p z) is available for TT-bonding with 

the copper d , d orbitals; in the case of the non-planar tetramer, r xz yz 
the fourth orbital does not have ir-symmetry and it enters into a-bonding, 

forming the cubane-type structure. 

It seems significant that for all of the oxygen-bridged copper(II) 

complexes with normal magnetic moments at room temperature structure 

studies (9,10,17,49,50) have indicated tetrahedral hybridization of the 

outer orbitals of oxygen and TT-bonding is not possible. 

Although the oxygen 2p orbital and the copper d ,d orbitals 
z xz y z 

of Cu(PIA) have the correct symmetry for forming IT-type molecular 

orbitals (52), the assumption that dir-pir overlap would raise the TT 

orbital above the a ^ 2 2 or-':|i"tal--a condition necessary if the T T -
X ~ y 

interaction is to account for the difference in magnetic properties of 

these two compounds may be questioned. However, other possible 
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explanations of the magnetic properties may be eliminated by a 

comparison of the structures. Super-exchange involving the Cu d ^ 2 
x -y 

orbitals (a-overlap) has been suggested; although the Cu-0 bonds 

within the four-membered rings of the two structures differ by approxi­

mately 0.10A°, it seems unlikely that such a small difference could 

lead to the dramatic difference in magnetic properties; furthermore, 

the Cu-0 distances in CuCZ^(?yO) (7), which has a low magnetic moment, 

are longer than those in Cu(EIA). Metal-metal a-bonding has been sug­

gested for some vanadyl complexes (53) of Schiff's bases and is also 

a possibility in the copper compounds; the fact that the Cu-Cu distances 

in Cu(EIA) and Cu(PIA) are almost identical rules out that possibility. 

Metal-metal TT-bonding (through d ^ orbitals) can be ruled out on the 
z 

same basis. 
The only possibility remaining is a TT-interaction involving the 

-4 

oxygen pTr orbitals and the copper CLTT orbitals as in R ^ O C A . The 

six orbitals in C^ symmetry can be combined to form three molecular 

orbitals of A^ symmetry and three molecular orbitals of A^ symmetry. 

One molecular orbital of A^ symmetry and one of A^ symmetry will be 

strongly bonding, one orbital of each symmetry will be anti-bonding, 

and the remaining two orbitals (on the metal ions) will be essentially 

non-bonding. Of the ten electrons available, eight will fill the bond­

ing and non-bonding orbitals and there will be two electrons for the 

pair of anti-bonding orbitals. The two anti-bonding orbitals are 

not degenerate, and the energy difference would be expected to be small 

and, thus, would give rise to a singlet ground state and a low-lying 

triplet state. Furthermore, since the copper d-rr orbitals also overlap 
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with the TT-system of the chelate ring and since the different sym­

metries of the two anti-bonding orbitals cause them to interact 

differently with the chelate TT-system, the energy difference would 

be affected by changes in the chelate TT-system; in the case of the 

pyridine-N-oxide complexes, the interaction of the oxygen TT-orbital 

with the pyridine TT-system would also affect the energy difference. 

In studies of copper complexes of substituted pyridine~N-oxides (54) 

and in studies of both copper (55) and vanadyl (5 3) complexes of 

Schiff's bases formed from substituted salicylaldehydes and substi­

tuted o-aminophenols, some correlation between J (the energy differ­

ence between the pair of anti-bonding orbitals) and the resonance sub-

stituent constants has been observed. 

The same explanation has been given previously (52) sym­

metry was assumed) but omission of the pair of d orbitals from the 
xy 

final molecular orbital diagram resulted in an incorrect filling of 

orbitals; in D^^ symmetry, the highest filled level should be the b 

anti-bonding orbital derived from the d ,d orbitals of the coppers. 
x z y z 

The low magnetic moments of the vanadyl complexes were previously 

explained by assuming a direct overlap of d orbitals; however, if the 
x y 

above TT-bonding explanation is correct, the lowest lying d-orbital 

would be one of the non-bonding Tr-orbitals. The pair of nonbonding 

orbitals is not degenerate and the interaction of the orbitals with 

chelate TT-orbitals of different symmetries would lead to a slight 

energy difference consistent with the observed values of J . 
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It should be pointed out that the oxygen-bridged copper(II) 

complexes which have normal moments at room temperature may exhibit 

spin-exchange at lower temperatures; such effects have been observed 

in the y^-oxo complexes (56) and in Cu(EIA) (57). Although spin-

exchange through a pi-mechanism is not possible for such complexes, 

other mechanisms (which give rise to smaller splittings) are still 

possible. 

Although the mechanism of magnetic interaction in copper(II) 

oxygen-bridged complexes seems to be answered by the comparison of the 

structures of Cu(PIA) and Cu(EIA), there is still the possibility that 

the difference in magnetic properties may be due to either the differ­

ence in coordination of the copper atoms or the difference in coordi­

nation of the bridging oxygen atoms. 

Table 28 summarizes the relationships between the molecular 

structures and magnetic moments for the y^-oxo complexes, Cu(EIA) and 

Cu(PIA). This table shows that the differences in the magnetic proper­

ties of these complexes could be due to a difference in the coordination 

of the copper atoms or a difference in the coordination of the bridging 

oxygen atoms. A complex with four-coordinate, square planar copper 

atoms and four-coordinate tetrahedral bridging oxygen atoms or a complex 

with five-coordinate trigonal bipyramidal copper atoms and three-

coordinate planar bridging oxygen atoms would provide the necessary 

information to clarify this point. This question was not answered by 

the structure determination of the copper(II) 0-hydroxyanil complex 

(8), since the complex contained both four and five-coordinate copper 
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Table 28. Relationships Between Molecular 
Structures and Magnetic Moments 

Type of 
Structure 

u^-oxo complexes 

Cu(EIA) 

Cu(PIA) 

Cu(0-hydroxyanil) 

Cu(PyO)C£_ 

Coordination of Magnetic 
Coordination Bridging Oxygen Moments, 

of Copper Atom Atom B.M. 

five-coordinate four-coordinate 2.0-2.2 trigonal bipyramidal tetrahedral 2.0-2.2 

five-coordinate four-coordinate 1.87 trigonal bipyramidal tetrahedral 1.87 

four-coord inat e three-coordinate 0.41 square planar planar 0.41 

four-coordinate three-coordinate 
square planar planar 

and and 1.37 
five-coordinate four-coordinate 
trigonal bipyramidal tetrahedral 

questionable three-coordinate 
planar 0.85 

atoms and three- and four-coordinate bridging oxygen atoms. The 

structure of Cu(pyridine-N-oxide)C£ 2(7) was first reported to contain 

four-coordinate copper atoms and three-coordinate bridging oxygen atoms, 

but more recently it has been shown (58) that there is a chlorine atom 
o 

from a neighborhing dimer 2.84A from the copper atom. This chlorine 

would affect the coordination around copper but it is questionable 

whether it should be included in the coordination sphere of copper. 

The questions raised by the data in Table 28 were answered by the 

structure determination of Cu(SALPA)C£. As mentioned above, this 

structure contains features common to both Cu(PIA) and Cu(EIA). 
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The complex is dimeric as Cu(PIA) and the copper is five-coordinate 

as in Cu(EIA). The copper atom in Cu(SALPA)C£ has a coordination that 

closely approximates a trigonal bipyramid. The angles within the 

equatorial plane (110, 123 and 126°) are not very far from those of a 

regular trigonal bipyramid (all 120°). The N10-Cu-02' angle of 169° 

is not very far from "ideal" angle of 180° for a trigonal bipyramid. 

The coordination of the copper atom in Cu(EIA) was neither trigonal 

bipyramidal or square pyramidal; but if one assumes the coordination 

to be trigonal bipyramidal for the sake of discussion, the angles 

within the equatorial plane (81, 120 and 153°) show the trigonal 

bipyramid to be quite distorted in that plane. However, the "axial" 

angle of 178° is quite close to the predicted value of 180°. It seems 

unlikely that the difference in the degree of distortion of the tri­

gonal bipyramids would account for the difference in the room tempera­

ture magnetic moments of Cu(EIA) and Cu(SALPA)C£. Figure 14 compares 

the bond distances within the coordination spheres of Cu(EIA) and 

Cu(SALPA)C£. 

The possibility that metal-metal bonding is significant in the 

magnetic exchange process in these complexes is further eliminated by 
o 

the fact that the Cu-Cu distance (3.29A) in Cu(SALPA)C£ is longer than 

any of the Cu-Cu distances within the tetrameric Cu(EIA), 3.01 and 
o 

3.26A. If metal-metal bonding had been important, it seems likely that 

there would have been more interaction between the coppers in Cu(EIA) 

where the copper atoms are closer together. 
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N10 Oil 

02 N5 2.18 1.91 

Cu 

2.22 

2.12 

02'' 

Cu 2.00 

1.98 

02' 

014 

02' 02 
Cu(SALPA)C£ Cu(EIA) 

Figure 14. Comparison of Trigonal Bipyramid Bond 
Distances for Cu(EIA) and Cu(SALPA)C& 

With the possibility of metal-metal bonding being further ruled 

out and having shown that a difference in coordination number for the 

copper is not significant, the postulation that the spin-exchange 

process is through a TT-system within the central four-membered ring 

is further substantiated. Indeed, the planarity of the coordination 

around the bridging oxygens is the feature common to both structures, 

Cu(PIA) and Cu(SALPA)C£, that show a subnormal room temperature mag­

netic moment. 

Plymale (36) has shown that a copper(II) atom in n symmetry 

with five equivalent ligands should show two bands in the electronic 

spectrum. The low-energy transition, A f ->• E' , is electronically allowed 

and the high-energy transition, A' E " , is vibronically allowed. The 

Spectra 
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trigonal bipyramidal CuCJl^ ion shows two absorption bands (12,13) 

at 8.2kK and 10.4kK. Bertrand (10) reported the absorption spectrum 

of Cu^OCJl (TPPO)^ to show two absorption bands at 9.9kK and 11.2kK. 

Thus, it is probably reasonable to assume symmetry for all of the 

U^-oxo compounds reported here. However, inspection of Plymale 1s (36) 
9 

correlation diagram for a d configuration in symmetry shows two 

points. First, as the field strength increases around the copper atom, 

the energy of the absorption bands should increase. This is what 

Bertrand found for the spectrum of Cu^OC&g(TPPO) . The two axial posi­

tions of the trigonal bipyramid are oxygens in Cu^OCJlg (TPPO)^ instead 
_3 

of chlorines as in C u C £ c . Second, as the field strength increases 
b 

there should be a greater separation between the two predicted bands. 
However, Bertrand did not find this to be true. There was a smaller 

separation between the bands in C u u 0 C £ (TPPO) than there was in 
_3 

CuC£_ . This probably arises from the fact that Plymale's correla-b 
tion diagram assumes five equivalent groups around the copper. In 

Bertrand's complex this is not the case. In Bertrand's compound the 

axial ligands were oxygens and the equatorial ligands were chlorides 
_3 (as in CuC£_ ). Thus, one might expect the major difference in the b 

spectra would be a shift of the absorption to higher energy, which is the 

case. This is reasonable since the d ^ orbital on the trigonal bipyra-
z 

mid corresponds to the A' state of the correlation diagram and this 

orbital is the only one that feels any appreciable change when oxygens 

are replaced for chlorides. There would probably be some change in the 

separation of the two E states but this change is less predictable. 
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This means that for copper(II) complexes not in a uniform ligand field 

Plymale's correlation diagram can only be used qualitatively. 

The absorption spectrum of Cu.OBr_(TPPO). shows one large absorp-
4 D 4 

tion bond centered at 11.2kK and a smaller band at 15.6kK. The low-

energy band is probably the same band seen in other u^-oxo complexes. 

For this compound, the two theoretical bands have merged to form one 

fairly broad band. As Bock (16) found for Cu.,0C£_(pyridine) and 
4 6 4 

Cu^OBrg(pyridine) , the absorption spectra of the C u ^ O B r ^ T P P O )^ and 

Cu l +0C£ 6(TPP0) l + do not differ very much. The band at 15.6 kK is 

attributed to some decomposition product. This is reasonable since 
-4 

dilute solutions, about 10 moles/liter, were used in determining 
the spectrum, and Bock (16) did not find any band at this energy in 
any of his complexes. The absorption spectrum of Cu^0C£g(pyridine-
N-oxide), is very similar to that found for Cu,0C£„(pyridine). . The 

4 4 6 4 
-4 

spectrum of the ionic CU ^ O C A ^Q is also very similar to those reported 

for other u^-oxo complexes. 

If the copper atoms in Cu(EIA) and Cu(SALPA)C£ are assumed to 

have approximate D symmetry, the observed absorption spectra can 
o n 

be related to the spectra of the previously reported trigonal bipyra­

midal complexes. Cu(EIA) shows one broad absorption bond at 15.5 kK. 

There are four oxygens and one nitrogen surrounding the copper and one 

would predict that the absorption bonds for this complex would appear 
_ 3 

at higher energies than those of CuC£_ and the u.-oxo complexes. 
5 4 

This is indeed what the observed spectrum of Cu(EIA) shows. A more 

quantitative analysis of the spectrum of this complex would be very 
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difficult since the field strength is not symmetrical and the true 

symmetry is much lower than D^^. 

Since Cu(SALPA)C£ has two oxygens and one chlorine in the equa­

torial plane, one might expect the absorption spectrum to show maxima 

between the maximum of y^-oxo complexes with three halogens in the 

equatorial plane and the maximum of Cu(EIA) with two oxygens and one 

nitrogen in the equatorial plane absorbed. The observed spectrum of 

Cu(SALPA)C£ shows a band at 14-. 3 kK which is between the absorption 

maxima of the y^-oxo complexes and Cu(EIA). A large charge transfer 

band also is present at higher energy. 

Since the copper atom in Cu(PIA) is square planar, its absorp­

tion spectrum cannot be meaningfully compared to the previous spectra. 

Cu(PIA) shows an absorption bond at 17.9 kK and a large charge transfer 

band at higher energy. Theoretically square planar copper(II) com­

plexes should show three absorption bonds (58), but the absorption 

spectra of Cu(PIA), copper(II) acetylacetonate (59) and other square 

planar copper(II) complexes do not show all three of these bands. 

The absorption spectra for copper(II) acetylacetonate has been 

resolved into its three components by computer methods by Schievelbein 

(58). No attempt was made to resolve the spectra of Cu(PIA) into the 

separate components. 
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CHAPTER IV 

CONCLUSIONS 

Before this work began there were several types of oxygen-

bridged transition metal complexes known (1), but there had been no 

systematic attempt to correlate their solid state structures with 

their magnetic properties. Bertrand (9,10) had just prepared and 

completed the structure (9,10) of the first transition metal y^-oxo 

complex. In this structure the central oxygen was tetrahedrally 

coordinated and the complex had a magnetic moment which was normal 

for a trigonal bipyramidal copper(II), but unusual for an oxygen-

bridged copper(II) complex. This thesis has reported the preparation 

of several new y^-oxo complexes and the complete structures of two of 
-4 

these complexes. The Cu^OCil^^ anion and Cu^OBrg(NH^)^ have structures 

very similar to that of Bertrand Ts Cu^OCZ^(TPPO)^. The octahedron of 

halogens in the bromo complex was significantly larger than that in 

the known chloro complexes of this type, but the tetrahedron of 

copper(II) atoms remained the same in all of the complexes. A partial 
structure of Cu. 0Br_(TPPO) *2CH_N0 o indicated that the structure is 4 b 4 o 1 

essentially the same as that of C u ^ O C ^ ( T P P O ) ^ . The preparation of 
-4 the y -oxo complexes Cu. 0(acetate) and Cd 0C£ are also reported. 

H* H* O H* _LU 

After this work began, several other y^-oxo complexes of transition 

metal ions were reported, such as Cu^OCilg (pyridine )^ (17) and 

Co I +0(pivalate )6 (60). A comparison of the structures of several 
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y^-oxo complexes suggests that any distortions of the octahedron of 

halogens were probably due to intramolecular interactions instead 

of intermolecular interactions as Dunitz (17) suggested for Cu.,0C£_ 
4 6 

(pyridine) . 

The two complexes with subnormal magnetic moments, Cu(PIA) and 

Cu(SALPA)C£, have planar coordination for the bridging oxygens, a 

feature consistent with TT-bonding. The complexes with normal magnetic 

moments, Cu(EIA) and the y^-oxo complexes, have tetrahedral coordina­

tion for the bridging oxygen(s); no TT-system can be present since all 

of the outer orbitals on the bridging oxygen(s) were used in the 

a-bonding. The effect of a a-interaction on the magnetic exchange is 

unknown but seems to be minimal as the magnetic moments of Cu(EIA) and 

the y^-oxo compounds indicate. The effect of metal-metal bonding on 

the magnetic exchange also seems to be minimal since the Cu-Cu distances 

are the same in Cu(PIA) and Cu(EIA) even though the magnetic moments 

differ significantly, the Cu-Cu distance in Cu(SALPA)C£ is longer than 

in Cu(EIA), yet the magnetic moment of Cu(SALPA)C£ is subnormal while 

that of Cu(EIA) is normal. On the basis of these results, the most 

effective mechanism for magnetic exchange in these complexes is a 

TT-interact ion. 

Because of the uniqueness of the structures of some of these 

complexes and because of the unusual magnetic properties of these 

complexes, there are several parts of this work that merit further 

study, some of which are already in progress. Dunn (61) proposed to 
-4 

investigate the spectral properties of the Cu u0C£ anion m more 
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detail since this complex provides a good example of a copper(II) atom 

with trigonal bipyramidal coordination. Martin and Ginsberg (57) have 

studied the temperature-dependent magnetic properties of Cu,0C£ (TPPO) 
4 6 4 

and plan a similar study for the other y^-oxo complexes and for Cu(EIA). 

They also plan to study the electron spin resonance spectra of these com­

plexes. Hatfield (62) is currently investigating the temperature-

dependent magnetic properties of Cu(PIA). 

It is interesting and important to note that the explanation 
given for the magnetic exchange in these copper(II) complexes is the 

-4 

same as that given for Ru^OCi^ (4), that is, dir-pir-dir bonding 

between the bridging oxygen(s) and the metal atoms. Figgis, et al. 

(6) suggested that the magnetic interaction in the basic acetates of 

Cr(III) and Fe(III) occurred through the M-O-M system at the bridging 

oxygen but did not elaborate on this point. If the d or d orbital 
x z y z 

on each metal atom overlapped with the p z orbital on the central oxygen 

and formed a 4-centered delocalized TT system within the M^O unit, a 

reasonable pathway would be provided for magnetic exchange in these 

complexes. 

It is noteworthy to point out that the explanation of the mag­

netic properties of these complexes in terms of a delocalized TT system 

is the same as that suggested for the subnormal magnetic moment of 

copper(II) formate tetrahydrate (1). This suggests that this explana­

tion might be general for all degrees of polymerization, from dimers 

to extended-type structures, for these compounds. However, since 

copper(II)oxide (1) has a subnormal magnetic moment (y = 0.78 BM) 
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and the y^-oxo complexes have normal moments (y = 1.8 - 2.2 BM) (10, 

1 7 ) , the same type of generalization cannot be made for compounds, 

such as these two, where a TT-interaction has been ruled out. 

The structure of the cobalt trimer provided some interesting 

features. The trigonal prismatic coordination of the central cobalt(II) 

atom provided the first example of this type of coordination where 

oxygens were the donor atoms. All other known examples of discrete 

trigonal prismatic complexes were complexes of the dithiolate ligand 

(47). After this structure was completed, a trigonal prismatic complex 

with a sexadentate ligand using nitrogen atoms as donors was reported 

(48). At this time there are three different types of c o m p l e x e s — 

complexes of bidentate, tridentate and a sexadentate ligands—showing 

trigonal prismatic coordination. The fact that none of these show 

large distortions from a trigonal prismatic arrangement suggests that 

there may be a significant energy minimum at trigonal prismatic coordi­

nation; the existence of such a minimum has been questioned (47). 

Further work on similar complexes of 2-aminoethanol are now in progress 

(63). Replacement of the central cobalt by other metal ions and further 

spectral and structural studies should provide answers to many of the 

questions raised by the work on this complex. Horrocks (64) is pres­

ently investigating the magnetic anisctropy of this complex. 
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APPENDIX 

The following unpublished fortran program to calculate the 

best least-squares plane for a set of atoms was written with the help 

of Dr. J. A. Bertrand for the Univac 1108 computer. 

C THIS PROGRAM TRANSFORMS AXES TO AN ORTHOGONAL SFT.CALCULATES THF 
C BEST LEAST SQUARES PLANE FOR A SET OF M ATOWS, AND CALCULATES 
C THE DISTANCE OF EACH A T O M EROM THE P L A N F (IN A N G S T R O M ) 
C POSITIVE DISTANCES F R O M THE PLANE ARE OPPOSITE THE ORIGIN 
C THE COORDINATES IN THE CALCULATED PLANE ARF REAL.NOT FRACTIONAL 
C X( I )» Y( I ) ,ANDZ( I ) ARE REAL COORDINATES IN THE ORTHOGONAL SYSTEM 
C P(I) IS THE DISTANCE OF THE ATOM FROM THE CALCULATFD PLANE 

DIMENSION X(20),Y(20),Z(20),P(20),WORD(2 0),TITLE(12) 
DOUBLE PRECISION NUMA »NUMB , N U V C » NUMD »DE,NOM 

REAL ADP,BDP,CDP,L,M,N,P0»DDP 
IN = 5 
111=6 

C READ IN TITLE CARD 
READ ( IN,850) (TITLEt I ) , 1 = 1 ,12 ) 

850 FORMAT ( 12A6) 
WRITE (III.851 ) (TITLFt I ) ,1 = 1,12) 

851 FORMAT (1H112A6/1 
C READ IN UNIT CELL DIMENSIONS AND TRANSFORM, SAME FORMAT AS FORDAP 

100 READ (IN,102)A,B,C,ALPHA,B FTA,GAMMA 
102 FORMAT (3F10.4,3F10.6) 

WRITE!Ill,10) 
10 FORMAT(60H A B C ALPHA BETA GAMM 

1A / ) 
WRI TE ( I I I »101 ) A,B,C ,ALPHA,BFTA,GAM , v i A 

101 FORMAT (3F10.4,3F10.5/) 
COSA=COS(ALPHA*0.017453) 
COSB=COS(BETA*0.017453) 
COSC=COS(GAMMA*0•017453) 
SINA=SIN(ALPHA*0.017453) 
SINB=SIN(BETA*0. 017453) 
SINC=SIN(GAMMA*0.0174 53) 

C READ IN DATA SET, SAME FORMAT AS ATOM PARAMETER CARDS FOR FLS 
199 1=0 

I FL AG = 0 
NORG=0 
WRITE(111,301) 

301 FORMAT (34H ATOMS FOR WHICH PLANE IS DESIRED-/) 
WRITE( 111,11) 

11 FORMAT(53H I ATOM X Y 7 /) 
200 1=1+1 

READ (IN,201)WORD(I),XX,YY,XP,YP,7P,Z7 
201 FORMAT (A6 ,3X,6F9.6) 

IF (XP-10)300,400,400 
C TRANSFORM TO NEW COORDINATES 

300 X(I)=XP*A+YP*B*COSC+ZP*C*COSB 
Y(I)=(YP*B+ZP*A*SINB*COSA)*SINC 
Z<I)=ZP*C*SIN3*SINA 
IF (XP-5)310,320,320 

320 1=1-] 
IFL AG=1 

310 IF (IFLAG-1)311,200,200 
311 CONTINUE 

11=1-1 
C SET UP SUMMATIONS FOR NORMAL IZ FD EQUATIONS 



»WORD(I),XP»YP,ZP 

S N = F L 0 A T ( I ) 
SX=SX+X(I) 
SY=SY+Y(I) 
SZ=SZ+Z(I) 
SXX=SXX+X( I ) *X ( I 
SXY=SXY+X(I)*Y(I 
SX7=SXZ+X(I)*Z(I 
SY7=SY7+Y(I)*Z(I 
SYY=SYY+Y(I) * Y (I 
S7Z=SZZ+Z(I)*Z(I 
WRITE (III»302) 

302 FORMAT(I3»3X»A6»5X»3F12.5/) 
GO TC 200 

C SOLUTION OF NORMALIZED EQUATIONS 
400 IF (ABS(SX ) .LT .(0.0001 ) ) NORG=l 

IF (NORG) 402,402*450 
402 DFNOK=SXX*SYY*SZZ+SXY*SYZ*SXZ+SxZ*SXY*SYZ 

1-SXZ*SYY*SXZ-SXY*SXY*SZ7.-SXX*SYZ*SYZ 
NUMA=SZ*SYY*SXZ+SY*SXY*SZ7+SX*SYZ*SYZ-SX*SYY*S7 7-SZ*SXY*SYZ-SY*SXZ 

1*SY7 
NUMB=SXX*SZ*SYZ+SXY*5X*SZZ+SY*SxZ*SYZ-SZ*SXY*SXZ- cX*SY7*SXZ-SY*SXX 

1*SZZ 
NUMC=SY*SXX*5YZ+SZ*SXY*SXY+SX*SYY*SXZ-SX*SXY*SYZ-SY*SXY*2XZ-S7*SXX 
1 *SYY 
ADP=NU''1 A/DEMOM 
B D P = N U M 3 / P E N 0 M 
C D P = N U M C / D E N O M 
XM=1.0 
XM=SIGN(XM»CDP) 
PP = ( S Q R T ( 1 . 0 / ( A D P * A D P + R D P * B D P + C D P * C O P ) ) ) * Y M 
L=(ADP ) *PP 
M=(BDP)*PP 
N=(CDP1*PP 
GO TO 490 

45 0 DENOM=SYY*SZZ*SN+SYZ*SZ*SY+SY*SYZ*S7-^Y*SZZ*SY-SYZ*SYZ*SN-SYY*^Z 
1 *SZ 
NUMB=SY*SZZ*SX+SYZ*SXZ*SN+SXY*SZ*S7-SXY*SZZ*SN-SYZ*SZ*SX SY*SXZ* 
1 SO 
NUMC=SY*SXZ*SY+SXY*SY7*SN+SYY*S7*SX-SYY*SXZ*SN-SXY*S7*SY-SY*SYZ*SX 
NUMD=SXY*SZZ*SY+SYZ*SYZ*SX+5YY*SXZ*SZ-SYY*SZZ*SX-SYZ*SXZ*SY-SXY* 

1SYZ*SZ 
3 D P = N U M B / D E N 0 M 
CDP = NiJ MC/OFMO M 

DDP = NUMD/r>ENOM 
XM=T.0 
XM=SIGN(XM,DDP) 
L=- ( SORT ( 1 .0 / ( 1.0 + BDP*BDP + C.DP*Cnp ) ) ) *XM 
M=BDP*L 
N=CDP*L 
PP=(ODP)*L 

490 WRITE ( I I I .401 )L,M,N,PP 
401 FORMAT (25H EQUATION OF THE PLANE IS//F9.5,4H X+ F9.5.4H Y+ F9.5, 

14H Z+ F9.5»4H = 0/) 
C CALCULATION OF DISTANCF QF EACH POINT FROM B F S T PLANF 

W R I T E ( I I I , 12 ) 
12 F0RMAT(64H I ATOM X(I) Y(I) 7(1) 

1 P ( I ) / ) 
IMAX=I-1 
I =0 

500 1=1+1 
P(I )=L*X(I )+M*Y(I )+N*Z(I ) + P P 
WRITE ( I I I » 5 01 ) I»W O R 0( I )»X( I I»YI I )»Z( I )»P( I ) 

501 FORMAT! I3»3X»A6»5X»4F12.5/) 
IF (I-IMAX)500»600,600 

600 I F (XP-20)700,800,800 
C CLEAR SUMMATIONS FOR N E W CALCULATION 

700 S X = 0 
SY = 0 
SZ = n 
S X X = 0 
S Y Y = 0 
S Z Z = 0 
SXY = 0 
SXZ = 0 
SYZ = 0 
GO T O 199 

800 WRITE (III .801) 
801 FORMAT (20H E N D OF CALCULATION ) 

E N D 
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