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Abstract  

In this note, we consider some problems in active vi- 
sion for which techniques in robust control may be very 
relevant. In particular, we discuss eye tracking prob- 
lems. We also survey some key ideas from active vision 
including optical flow and deformable contours. 

1 Introduction 

In this paper, wecconsider some general ideas for a 
theory of controlled active vision. We will use as a 
model problem that of tracking, in particular tracking 
eye movements. We will indicate that one can treat 
this problem by using adaptive and robust control in 
conjunction with multiscale methods from signal pro- 
cessing, and shape recognition theory from computer 
vision. Tracking is a basic control problem in which 
we want the output to follow or track a reference sig- 
nal, or equivalently we want to make the tracking error 
as small as possible relative to some well-defined crite- 
rion (say energy, power, peak value, etc.). Even though 
tracking in the presence of a disturbance is a classical 
control issue, the problem at hand is very difficult and 
challenging because of the highly uncertain nature of 
the disturbance. There are a number of tracking prob- 
lems that can easily be considered in a university envi- 
ronment and which could act as benchmarks for testing 
various algorithms. For example, one could consider 
the eye movement tracking problem in the context of a 
man-computer interface. 

The techniques which we will discuss below should have 
a wide range of applicability in a number of tracking 
problems including those in robotics, remotely con- 
trolled vehicles, and pilot tracking helmets currently 
being developed. The latter are systems combining hel- 
met mounted head and eye track capability to define 
a subject’s true line of sight. Clearly the proper ex- 
ploitation of the dynamic characteristics of the human 
visual system by tracking the postion of the viewer’s 
eyes leads to drastic reduction in the amount of infor- 
mation that needs to be transmitted. 

We should note that the problem of visual tracking dif- 

fers from standard tracking problems in that the feed- 
back signal is measured using imaging sensors. In par- 
ticular, it has to be extracted via computer vision algo- 
rithms and interpreted by a reasoning algorithm before 
being used in the control loop. Furthermore, the re- 
sponse speed is a critical aspect. For obvious reasons, 
an eye tracking system should be as non-invasive as 
possible. The eye movement can be tracked by study- 
ing images acquired by grey scale or infra-red cameras 
or by an array of sensors. The images are analyzed to 
extract the relative motions of the eyes and the head. 
The low level data acquisition and recognition could 
be accomplished using multiscale technique. Recogni- 
tion could also be accomplished using such a multiscale 
approach and a new computational theory of shape. 
Consequently, from the control point of view, we have 
a tracking problem in the presence of a highly uncer- 
tain disturbance which we want to attenuate. Note 
that the uncertainty is due to the sensor noise (classi- 
cal), the algorithmic component described above (un- 
certainty in extracted features, likelihood of various hy- 
potheses, etc.), and modelling uncertainty. 

2 Visual Tracking 

There have a number of papers on the use of vision 
in tracking, especially in the robotics community. (See 
e.g., [4], [13], and the references therein.) Typically, 
the issue addressed in this work is the use of vision 
for servoing a manipulator for tracking (or an equiv- 
alent problem). The motivation for using vision in 
such a framework is clear, that is, the combination of 
computer vision coupled with control can be employed 
to improve the measurements. Indeed, because of im- 
provements in image processing techniques and hard- 
ware, robotic technology is reaching the point where 
vision information may become an integral part of the 
feedback signal. For problems with little uncertainty, 
simple PID controllers have been‘used, and for more 
noisy systems, adaptive schemes as well as stochastic 
based LQG controllers have been utilized. 

A number of control schemes have been proposed for 
the utilization of visual information in control loops. 
These have ranged from the use of sensory features to 
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characterize hierarchical control structures, Fourier de- 
scriptors, and image segmentation. Approaches based 
on optical flow have been used as a key element in the 
calculation of the robot’s driving signals (see in partic- 
ular, [13], and our discussion below). Indeed, since an 
object in an image is made up of brightness patterns, 
as the object moves in space so do the brightness pat- 
terns. The optical flow is then the apparent motion 
of the brightness patterns; see [6]. Under standard as- 
sumptions, given a static target and a moving camera 
(or equivalently, a static object and a moving camera), 
one can write down equations for the velocity of a pro- 
jected point of the object onto the image plane. Several 
methods have been discussed for the computations of 
this velocity. This information can then be used to 
track the image. 

Let us consider the concrete problem of tracking tar- 
gets on a computer screen. Then we have only a two 
dimensional tracking question. We assume for simplic- 
ity that the object moves in a plane which is perpen- 
dicular to the optical axis of the camera. If the camera 
then moves with translation velocity 

and rotational velocity pz (with respect to the cam- 
era frame), one may pose the two dimensional tracking 
problem as follows for an object [14]. Let Pt denote the 
area on the image plane which is the projection of the 
target. Then visually tracking this feature amounts to 
finding the camera translation r and rotation pz (with 
respect to the camera frame) which keeps Pt stationary. 
There are similar characterizations for the tracking of 
features. Now from this set-up, one can write down lin- 
earized equations of the optical flows generated by the 
motion of the camera where the control variables are 
given by those components of the optical flow induced 
by the camera’s tracking motion. 

The exact form may be found in [14], and need not 
concern us now. The point is that the resulting system 
may be written in standard state space form and after 
discretization (with T the time between two consecu- 
tive frames) takes on the form 

= z(n) + TuT(n) + Td(n) + v ( n ) ,  z(n + 1) 
z ( n )  = z(n) + w ( n ) ,  

where uT is the reference, d is the exogenous distur- 
bance, v is a “noise” term for the model uncertainty, z 
is the measurement together with noise component W. 

(All the vectors are in R3. The components of the state 
vector are made up of the the z, y ,  and roll component 
of the tracking error.) 

There are a number of important control issues related 
to such a set-up. Of course, one has the problem of 

measurement delays (we want to work in real time) and 
choice of sampling time. But we feel there is a much 
deeper and more difficult problem which must be ad- 
dressed before a reasonable choice of control strategy 
can be made. Namely, in general the uncertainty (v and 
w) is modelled as white noise. This model is conserva.- 
tive and does not bring into account any of the possible 
structure of noise environment. One of the key contri- 
butions in modern robust control has the consideration 
of structure in uncertainty. 

In our case, we are proposing a much deeper analysis 
of the uncertainty connected to such problems. This 
brings the key element of signal processing and in par- 
ticular, the new powerful methods of multiscale corn- 
putations. Shape recognition theory in computer vision 
based on Hamilton-Jacobi theory will also play a key 
role in this program as will be argued below. 

3 Image Feature Extraction 

In the context of eye tracking, there are two basic ap- 
proaches to data acquisition: an active approach and a 
passive imaging technique. 

In the active approach, a harmless near-infrared light is 
used to illuminate the user’s face. Two reflections from 
the eyes are then extracted. The first reflected signal 
is due to the corneal surface and is called the glint. 
The second reflection occurs off the retina and is called 
the bright eye component. To minimize the effect of 
background radiation, current systems typically require 
a dim lighting. 

The passive approach to data acquisition is again based 
on extracting the two reflections from an infra-red im- 
age of the scene. In this sense the approach is similar 
to the active system. The passive system that we con- 
sider simply consists of a grey scale levels camera. The 
camera is covered with light filters to attenuate diffuse 
reflections due to background illumination and enhance 
the pupil. 

3.0.1 Contour Map: In both cases, our im- 
mediate objective is to either extract the location of 
the pupil and a feature of the face such as the nose, 
or extract the glint and bright eye reflections from the 
image. We can accomplish this by first producing an 
edge image using a snakes based approach., In this sec- 
tion, we will describe a new paradigm for snakes or ac- 
tive contours based on principles from curvature driven 
flows which because of its speed and accuracy seems 
ideally suited for edge extraction in this context. 

Active contours may be regarded as autonomous pro- 
cesses which employ image coherence in order to track 
various features of interest over time. Such deformable 
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contours have the ability to conform to various object 
shapes and motions. Snakes have been utilized for seg- 
mentation, edge detection, shape modelling, and visual 
tracking. 

In the classical theory of snakes, one considers en- 
ergy minimization methods where controlled continu- 
ity splines are allowed to move under the influence of 
external image dependent forces, internal forces, and 
certain contraints set by the user. As is well-known 
there may be a number of problems associated with this 
approach such as initializations, existence of multiple 
minima, and the selection of the elasticity parameters. 
Moreover, natural criteria for the splitting and merging 
of contours (or for the treatment of multiple contours) 
are not readily available in this framework. 

In [7], we propose a novel deformable contour model 
to successfully solve such problems, and which will 
become one of our key techniques for tracking. Our 
method is based on the Euclidean curve shortening evo- 
lution (see our discussion below) which defines the gra- 
dient direction in which a given curve is shrinking as 
fast as possible relative to Euclidean arc-length, and on 
the theory of conformal metrics. We multiply the Eu- 
clidean arc-length by a conformal factor defined by the 
features of interest which we want to extract, and then 
we compute the corresponding gradient evolution equa- 
tions. The features which we want to capture therefore 
lie at the bottom of a potential well to which the initial 
contour will flow. Moreover, our model may be easily 
extended to extract 3D contours based on motion by 
mean curvature [7]. 

Let us briefly review some of the details from [7]. First 
of all, in [3, 101 a snake model based on the level set 
formulation of the Euclidean curve shortening equation 
is proposed. More precisely, the model is 

Here the function q5(z,y) depends on the given image 
and is used as a “stopping term.” For example, the 
term @(x, y) may chosen to be small near an edge, and 
so acts to stop the evolution when the contour gets 
close to an edge. One may take [3, 101 

where I is the (grey-scale) image and G, is a Gaus- 
sian (smoothing filter) filter. The function Q(z, y, t )  
evolves in (1) according to the associated level set flow 
for planar curve evolution in the normal direction with 
speed a function of curvature which was introduced in 
[12]. It is important to note that the Euclidean curve 
shortening part of this evolution, namely 

(3) 

is derived as a gradient flow for shrinking the perimeter 
as quickly as possible. As is explained in [3], the con- 
stant inflation term v is added in (1) in order to keep 
the evolution moving in the proper direction. 

We would like to modify the model (1) in a manner 
suggested by the curve shortening flow. We change 
the ordinary arc-length function along a curve C = 
( z ( p ) ,  ~ ( p ) ) ~  with parameter p given by 

ds = (xi + y:)’l2dp, 

to 
dsg = (xi + y;)’/’+dp, 

where +(z, y)  is a positive differentiable function. Then 
we want to compute the corresponding gradient flow for 
shortening length relative to the new metric dsg. 

Accordingly set 

Then taking.the first variation of the modified length 
function Lg, and using integration by parts. (see [7]), 
we get that 

which means that the direction in which the Lg perime- 
ter is shrinking as fast as possible is given by 

aC - = (4. - (Vq5 *fl))fl at (4) 

This is precisely the gradient flow corresponding to the 
miminization of the length functional Lg. The level set 
version of this is 

One expects that this evolution should attract the con- 
tour very quickly to the feature which lies at the bottom 
of the potential well described by the gradient flow (5). 
As is standard, we may also add a constant inflation 
term, and so derive a modified model of (1) given by 

Notice that for 4 as in (2), V$ will look like a dou- 
blet near an edge. Of course, one may choose other 
candidates for 4 in order to pick out other features. 
Clearly, the ability of these snakes to change topology, 
and quickly capture the desired features can make them 
an pwoerful tool for tracking algorithms. 

More specifically, let us review briefly how gnakes may 
be used for tracking. One uses a deformable contour 
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to capture the given object at time t - 1 in a video se- 
quence of images, and then uses the final position of the 
latter contour as the initial position of the active con- 
tour at time t .  The success of the method is dependent 
on having the deformable contour being in the basin of 
attraction of the object at time t .  In many cases an 
estimation step is necessary for which one may employ 
a Kalman filter (“Kalman snakes” [l]). Also other vi- 
sual cues may be necessary such as those provided by 
optical flow to be described below. 

3.0.2 Contour Shape Identification: The 
edge map that we produce via the multiscale approach 
is then analyzed to identify the shape of each contour. 
This allows us to associate the contour with one of the 
features (e.g. glint or bright eye reflection, nose con- 
tour, etc.) that we use to infer the instantaneous eye 
movement. We plan to exploit the our work in shape 
recognition and decomposition in our research [SI. 

In this work, a new approach is given for a computa- 
tional theory of shape which combines morphological 
operations with Gaussian smoothing in one framework. 
Moreover, an innovative notion of scale for signals can 
be applied to the problem of shape extraction. Our 
work can also be regarded as a generalization of certain 
useful morphological filters, and so offers a nonlinear 
multiscale framework for feature and motion detection 
in computer vision. See also [2, 111. 

The approach is based on a reaction-diffusion equation 
derived from the curve evolution 

= (a:+Pn)fl ,  d t  (7) 

where fl = fl(-, t )  denotes the unit normal and IC = 
~ ( . , t )  the curvature of the curve C ( . , t )  of the fam- 
ily. (See [8] for all the details.) We can study the 
evolution of shapes under very general deformations, 
and show that they compose into two types, a defor- 
mation that is constant along the normal (morphology) 
and corresponds to a nonlinear hyperbolic wave type of 
process, and a deformation which varies with the curva- 
ture and corresponds to a quasi-linear diffusive one (a 
quasi-linear analogue of Gaussian smoothing). Indeed, 
this last type of deformation may be derived from the 
geometric heat equation or Euclidean curve shortening 
process. Its smoothing properties have been shown to 
be superior to those of conventional (linear) Gaussian 
smoothing in vision applications [8]. Our evolutions 
give rise to shocks, the singularities of shape, which 
provide a hierarchical decomposition of a shape into a 
given set of shape elements, e.g., parts and protrusions. 

In fact, this approach gives a rigorous treatment of sin- 
gularities in the context of shape theory, and playing off 
the parameters (Y and p against one another leads to a 

2542 

new reaction-diffusion scale space. Thus it allows one 
to formulate a novel framework for multi-scale filter-. 
ing. Further, there is a strong connection to Hamilton- 
Jacobi theory in this research. See also [12], and [15]. 

To illustrate some of the above remarks, let us con- 
sider, the case in which (Y = 1,p = 0. In this case, 
Equation (7) is a nonlinear hyperbolic ’equation, and 
so its solutions develop singularities, and thus a notion 
of weak entropy solution must be developed. This leads 
to the corresponding viscosity solution in the Hamilton- 
Jacobi formulation of the evolution [12]. Indeed, in this 
case, it is very easy to see how singularities may develop 
from such an evolution. One can easily show that in 
general for the evolution (i’), if v denotes the arc-length 
parameter, then the curvature evolves as 

8 K  
7& = P K V V  + pn3 - an2. 

For (Y = 1,/3 = 0, we get that 

whose solution is 

421, 0) 
1 + t K ( V ,  0) .  

K ( V ,  t )  = 

Thus if the curve has a point of negative curvature, the 
solution must become singular in finite time. 

4 Tracking a-nd Optical Flow 

Once the contours corresponding to the various fea- 
tures that we wish to track have been identified, we 
use an optical flow procedure to  estimate the motion 
of each feature from two consecutive images that con- 
tain only that feature. The images are obtained from 
the current and previous contour images by deleting all 
contours except for the one of interest. The resulting 
motion estimation problem is much better conditioned 
than the traditional optical flow estimation from pure 
intensity images. As we discussed above, optical flow 
field is the velocity vector field of apparent motion of 
brightness patterns in a sequence of images [6]. One 
assumes that the motion of the brightness patterns is 
the result of relative motion, large enough to register a 
change in the spatial distribution of intensities on the 
images. Thus, relative motion between an object and a 
camera can give rise to  optical flow. Similarly, relative 
motion among objects in a scene being imaged by a 
static camera can give rise to optical flow. 

In our computation of the optical flow we use work on 
generalized viscosity solutions to Hamilton-Jacobi type 
equations. Indeed, these techniques seem ideally suited 
for the variational Euler-Lagrange approaches to this 
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problem (see also [5 ,  6, 161 and the references therein). 
Utilizing such generalized solutions, we have been able 
to handle the singularities and regularity problems for 
several distinct variational formulations of the optical 
flow that occur in this area. 

4.1 L1 Based Optical Flow 
In [9], we consider a spatiotemporal differentiation 
method for optical flow. Even though in such an ap- 
proach, the optical flow typically estimates only the 
isobrightness contours, it has been observed that if the 
motion gives rise to sufficiently large intensity gradi- 
ents in the images, then the optical flow field can be 
used as an approximation to the real velocity field and 
the computed optical flow can be used reliably in the 
solutions of a large number of problems; see [6] and the 
references therein. 

The problem of computing optical flow is ill-posed and 
so well-posedness has to be imposed by assuming suit- 
able a priori knowledge. In [9], we employ a variational 
formulation for imposing such a priori  knowledge. One 
constraint which has often been used in the literature is 
the “optical flow constraint”(0FC). The OFC is a re- 
sult of the simplifying assumption of constancy of the 
intensity, E = E(x ,  y, t ) ,  at any point in the image [SI. 
It-can be expressed as the following linear equation in 
the unknown variables U and v 

E,u + EYu +Et = 0, (8) 

where E,, E, and Et are the intensity gradients in the 
x, y, and the temporal directions respectively, and U 
and v are the x and y velocity components of the appar- 
ent motion of brightness patterns in the images, respec- 
tively. It has been shown that the OFC holds provided 
the scene has Lambertian surfaces and is illuminated 
by either a uniform or an isotropic light source, the 3-D 
motion is translational, the optical system is calibrated 
and the patterns in the scene are locally rigid. 

It is not difficult to see from equation (8) that computa- 
tion of optical flow is unique only up to computation of 
the flow along the intensity gradient VE = (E,, E,)T 
at a point in the image [6]. This is the celebrated uper- 
ture problem. One way of treating the aperture problem 
is through the use of regularization in computation of 
optical flow, and consequently the choice of an appro- 
priate constraint. A natural choice for such a constraint 
is the imposition of some measure of consistency on the 
flow vectors situated close to one another on the image. 

In their pioneering work, Horn and Schunk [6] use a 
quadratic smoothness constraint. The immediate diffi- 
culty with this method is that at the object boundaries, 
where it is natural to expect discontinuities in the flow, 
such a smoothness constraint will have difficulty cap- 
turing the optical flow. For instance, in the case o f a  
quadratic constraint in the form of the square of the 

norm of the gradient of the optical flow field [6], the 
Euler-Lagrange (partial) differential equations for the 
velocity components turn out to be linear elliptic. The 
corresponding parabolic equations therefore have a lin- 
ear diffusive nature, and tend to blur the edges of a 
given image. In the past, work has been done to try 
to suppress such a constraint in directions orthogonal 
to the occluding boundaries in an effort to capture dis- 
continuities in image intensities that arise on the edges. 

We have [9], a novel method for computing optical flow 
based on the theory of the evolution of curves and sur- 
faces. The approach employs an L1 type minimization 
of the norm of the gradient of the optical flow vector 
rather than quadratic minimization as has been under- 
taken in most previous regularization approaches. The 
equations that arise are nonlinear degenerate parabolic 
equations. The equations diffuse in a direction orthog- 
onal to the intensity gradients, i.e., in a direction along 
the edges. This results in the edges being preserved. of 
the equations leads to solutions which incorporate the 
nature of the discontinuities in image intensities into 
the optical flow. 

We can summarize our procedure as follows: 

1. Let E = E(z ,  y , t )  be the intensity of the given 
moving image. Assume constancy of intensity at 
any point in the image, i.e., 

EXu + E,v +Et = 0, 

where 
dx dY U = -  d t ’  v = -  

dt ’ 
are the components of the apparent motion of 
brightness patterns in the image which we want 
to estimate. 

2. Consider the regularization of optical flow using 
the L1 cost functional 

a2(E,u + E,v + Et)2dxdy, 

where cr is the smoothness parameter. 

3. The corresponding Euler-Lagrange equations 
may be computed to be 

IC, - Q~E,(E,U + E,V + E ~ )  = 0, 
nv - a2~,(~,u + E,” + E t )  = 0, 

where the curvature 

v u  n, := div( -), 
ll Vull 

and similarly for tcv. 
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4. These equations are solved via “gradient descent” 
by introducing the system of nonlinear parabolic 
equations 

G t f  = l c ~  - a2E2(E2G + Ey6 + E t ) ,  
‘Ljtf = r ~ a  - CX~E~(E ,G + Ey8 + E t ) ,  

for G = G(z, y, t ’ ) ,  and similarly for 8. 

The above equations have a significant advantage 
over the classical Horn-Schunck quadratic optimization 
method since they do not blur edges. Indeed, the diffu- 
sion equation 

@t 

= mIIV@ll 

does not diffuse in the direction of the gradient V@. 
Our optical flow equations are perturbations of the fol- 
lowing type of equation: 

Since llVipll is maximal at an edge, our optical flow 
equations do indeed preserve the edges. Thus the L1- 
norm optimization procedure allows us to retain edges 
in the computation of the optical flow. 

This approach to the estimation of motion will be one 
of the tools which we will employ in our tracking algo- 
rithms. The algorithm has already proven to be very 
reliable for various type of imagery [9]. 

5 Conclusions 

In this paper, we sketched several techniques for treat- 
ing tracking problems. We note that because of the 
uncertainty in the models and the signals, this class of 
problems presents a unique opportunity to researchers 
in robust control. Our approach is based on a combina- 
tion of robust control, computer vision, and multiscale 
signal processing. 

Recently, there has been a cross-fertilization among re- 
searchers in vision and control. Much of vision research 
until now has been open loop. When the loop has been 
closed very elementary control algorithms have been 
applied which have worked with mixed results. The 
use of visual information in a feedback loop can pro- 
vide a rich new source of questions which has the poten- 
tial of stimulating whole new areas of control research. 
The eye tracking problem outlined in this paper can 
be taken as a paradigm for a whole range of issues in 
controlled active vision. Indeed, the problem poses a 
powerful challenge to the robust control community. 
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